In vivo miniature robots for natural orifice surgery: State of the art and future perspectives.
Tiwari, Manish M; Reynoso, Jason F; Lehman, Amy C; Tsang, Albert W; Farritor, Shane M; Oleynikov, Dmitry
2010-06-27
Natural orifice translumenal endoscopic surgery (NOTES) is the integration of laparoscopic minimally invasive surgery techniques with endoscopic technology. Despite the advances in NOTES technology, the approach presents several unique instrumentation and technique-specific challenges. Current flexible endoscopy platforms for NOTES have several drawbacks including limited stability, triangulation and dexterity, and lack of adequate visualization, suggesting the need for new and improved instrumentation for this approach. Much of the current focus is on the development of flexible endoscopy platforms that incorporate robotic technology. An alternative approach to access the abdominal viscera for either a laparoscopic or NOTES procedure is the use of small robotic devices that can be implanted in an intracorporeal manner. Multiple, independent, miniature robots can be simultaneously inserted into the abdominal cavity to provide a robotic platform for NOTES surgery. The capabilities of the robots include imaging, retraction, tissue and organ manipulation, and precise maneuverability in the abdominal cavity. Such a platform affords several advantages including enhanced visualization, better surgical dexterity and improved triangulation for NOTES. This review discusses the current status and future perspectives of this novel miniature robotics platform for the NOTES approach. Although these technologies are still in pre-clinical development, a miniature robotics platform provides a unique method for addressing the limitations of minimally invasive surgery, and NOTES in particular.
Review of emerging surgical robotic technology.
Peters, Brian S; Armijo, Priscila R; Krause, Crystal; Choudhury, Songita A; Oleynikov, Dmitry
2018-04-01
The use of laparoscopic and robotic procedures has increased in general surgery. Minimally invasive robotic surgery has made tremendous progress in a relatively short period of time, realizing improvements for both the patient and surgeon. This has led to an increase in the use and development of robotic devices and platforms for general surgery. The purpose of this review is to explore current and emerging surgical robotic technologies in a growing and dynamic environment of research and development. This review explores medical and surgical robotic endoscopic surgery and peripheral technologies currently available or in development. The devices discussed here are specific to general surgery, including laparoscopy, colonoscopy, esophagogastroduodenoscopy, and thoracoscopy. Benefits and limitations of each technology were identified and applicable future directions were described. A number of FDA-approved devices and platforms for robotic surgery were reviewed, including the da Vinci Surgical System, Sensei X Robotic Catheter System, FreeHand 1.2, invendoscopy E200 system, Flex® Robotic System, Senhance, ARES, the Single-Port Instrument Delivery Extended Research (SPIDER), and the NeoGuide Colonoscope. Additionally, platforms were reviewed which have not yet obtained FDA approval including MiroSurge, ViaCath System, SPORT™ Surgical System, SurgiBot, Versius Robotic System, Master and Slave Transluminal Endoscopic Robot, Verb Surgical, Miniature In Vivo Robot, and the Einstein Surgical Robot. The use and demand for robotic medical and surgical platforms is increasing and new technologies are continually being developed. New technologies are increasingly implemented to improve on the capabilities of previously established systems. Future studies are needed to further evaluate the strengths and weaknesses of each robotic surgical device and platform in the operating suite.
Future robotic platforms in urologic surgery: Recent Developments
Herrell, S. Duke; Webster, Robert; Simaan, Nabil
2014-01-01
Purpose of review To review recent developments at Vanderbilt University of new robotic technologies and platforms designed for minimally invasive urologic surgery and their design rationale and potential roles in advancing current urologic surgical practice. Recent findings Emerging robotic platforms are being developed to improve performance of a wider variety of urologic interventions beyond the standard minimally invasive robotic urologic surgeries conducted presently with the da Vinci platform. These newer platforms are designed to incorporate significant advantages of robotics to improve the safety and outcomes of transurethral bladder surgery and surveillance, further decrease the invasiveness of interventions by advancing LESS surgery, and allow for previously impossible needle access and ablation delivery. Summary Three new robotic surgical technologies that have been developed at Vanderbilt University are reviewed, including a robotic transurethral system to enhance bladder surveillance and TURBT, a purpose-specific robotic system for LESS, and a needle sized robot that can be used as either a steerable needle or small surgeon-controlled micro-laparoscopic manipulator. PMID:24253803
Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID
2010-09-21
The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.
Simulation of cooperating robot manipulators on a mobile platform
NASA Technical Reports Server (NTRS)
Murphy, Stephen H.; Wen, John Ting-Yung; Saridis, George N.
1991-01-01
The dynamic equations of motion are presented for two or more cooperating manipulators on a freely moving mobile platform. The system of cooperating robot manipulators forms a closed kinematic chain where the force of interaction must be included in the formulation of robot and platform dynamics. The formulation includes the full dynamic interactions from arms to platform and arm tip to arm tip, and the possible translation and rotation of the platform. The equations of motion are shown to be identical in structure to the fixed-platform cooperative manipulator dynamics. The number of DOFs of the system is sufficiently large to make recursive dynamic calculation methods potentially more efficient than closed-form solutions. A complete simulation with two 6-DOF manipulators of a free-floating platform is presented along a with a multiple-arm controller to position the common load.
Modular Countermine Payload for Small Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman Herman; Doug Few; Roelof Versteeg
2010-04-01
Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processormore » that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multi-mission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.« less
Modular countermine payload for small robots
NASA Astrophysics Data System (ADS)
Herman, Herman; Few, Doug; Versteeg, Roelof; Valois, Jean-Sebastien; McMahill, Jeff; Licitra, Michael; Henciak, Edward
2010-04-01
Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processor that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multimission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.
Robotic follow system and method
Bruemmer, David J [Idaho Falls, ID; Anderson, Matthew O [Idaho Falls, ID
2007-05-01
Robot platforms, methods, and computer media are disclosed. The robot platform includes perceptors, locomotors, and a system controller, which executes instructions for a robot to follow a target in its environment. The method includes receiving a target bearing and sensing whether the robot is blocked front. If the robot is blocked in front, then the robot's motion is adjusted to avoid the nearest obstacle in front. If the robot is not blocked in front, then the method senses whether the robot is blocked toward the target bearing and if so, sets the rotational direction opposite from the target bearing, and adjusts the rotational velocity and translational velocity. If the robot is not blocked toward the target bearing, then the rotational velocity is adjusted proportional to an angle of the target bearing and the translational velocity is adjusted proportional to a distance to the nearest obstacle in front.
NASA Astrophysics Data System (ADS)
Heath Pastore, Tracy; Barnes, Mitchell; Hallman, Rory
2005-05-01
Robot technology is developing at a rapid rate for both commercial and Department of Defense (DOD) applications. As a result, the task of managing both technology and experience information is growing. In the not-to-distant past, tracking development efforts of robot platforms, subsystems and components was not too difficult, expensive, or time consuming. To do the same today is a significant undertaking. The Mobile Robot Knowledge Base (MRKB) provides the robotics community with a web-accessible, centralized resource for sharing information, experience, and technology to more efficiently and effectively meet the needs of the robot system user. The resource includes searchable information on robot components, subsystems, mission payloads, platforms, and DOD robotics programs. In addition, the MRKB website provides a forum for technology and information transfer within the DOD robotics community and an interface for the Robotic Systems Pool (RSP). The RSP manages a collection of small teleoperated and semi-autonomous robotic platforms, available for loan to DOD and other qualified entities. The objective is to put robots in the hands of users and use the test data and fielding experience to improve robot systems.
A pilot study of surgical training using a virtual robotic surgery simulator.
Tergas, Ana I; Sheth, Sangini B; Green, Isabel C; Giuntoli, Robert L; Winder, Abigail D; Fader, Amanda N
2013-01-01
Our objectives were to compare the utility of learning a suturing task on the virtual reality da Vinci Skills Simulator versus the da Vinci Surgical System dry laboratory platform and to assess user satisfaction among novice robotic surgeons. Medical trainees were enrolled prospectively; one group trained on the virtual reality simulator, and the other group trained on the da Vinci dry laboratory platform. Trainees received pretesting and post-testing on the dry laboratory platform. Participants then completed an anonymous online user experience and satisfaction survey. We enrolled 20 participants. Mean pretest completion times did not significantly differ between the 2 groups. Training with either platform was associated with a similar decrease in mean time to completion (simulator platform group, 64.9 seconds [P = .04]; dry laboratory platform group, 63.9 seconds [P < .01]). Most participants (58%) preferred the virtual reality platform. The majority found the training "definitely useful" in improving robotic surgical skills (mean, 4.6) and would attend future training sessions (mean, 4.5). Training on the virtual reality robotic simulator or the dry laboratory robotic surgery platform resulted in significant improvements in time to completion and economy of motion for novice robotic surgeons. Although there was a perception that both simulators improved performance, there was a preference for the virtual reality simulator. Benefits unique to the simulator platform include autonomy of use, computerized performance feedback, and ease of setup. These features may facilitate more efficient and sophisticated simulation training above that of the conventional dry laboratory platform, without loss of efficacy.
Miao, Qing; Zhang, Mingming; Wang, Congzhe; Li, Hongsheng
2018-01-01
This review aims to compare existing robot-assisted ankle rehabilitation techniques in terms of robot design. Included studies mainly consist of selected papers in two published reviews involving a variety of robot-assisted ankle rehabilitation techniques. A free search was also made in Google Scholar and Scopus by using keywords "ankle ∗ ," and "robot ∗ ," and ("rehabilitat ∗ " or "treat ∗ "). The search is limited to English-language articles published between January 1980 and September 2016. Results show that existing robot-assisted ankle rehabilitation techniques can be classified into wearable exoskeleton and platform-based devices. Platform-based devices are mostly developed for the treatment of a variety of ankle musculoskeletal and neurological injuries, while wearable ones focus more on ankle-related gait training. In terms of robot design, comparative analysis indicates that an ideal ankle rehabilitation robot should have aligned rotation center as the ankle joint, appropriate workspace, and actuation torque, no matter how many degrees of freedom (DOFs) it has. Single-DOF ankle robots are mostly developed for specific applications, while multi-DOF devices are more suitable for comprehensive ankle rehabilitation exercises. Other factors including posture adjustability and sensing functions should also be considered to promote related clinical applications. An ankle rehabilitation robot with reconfigurability to maximize its functions will be a new research point towards optimal design, especially on parallel mechanisms.
3D printed rapid disaster response
NASA Astrophysics Data System (ADS)
Lacaze, Alberto; Murphy, Karl; Mottern, Edward; Corley, Katrina; Chu, Kai-Dee
2014-05-01
Under the Department of Homeland Security-sponsored Sensor-smart Affordable Autonomous Robotic Platforms (SAARP) project, Robotic Research, LLC is developing an affordable and adaptable method to provide disaster response robots developed with 3D printer technology. The SAARP Store contains a library of robots, a developer storefront, and a user storefront. The SAARP Store allows the user to select, print, assemble, and operate the robot. In addition to the SAARP Store, two platforms are currently being developed. They use a set of common non-printed components that will allow the later design of other platforms that share non-printed components. During disasters, new challenges are faced that require customized tools or platforms. Instead of prebuilt and prepositioned supplies, a library of validated robots will be catalogued to satisfy various challenges at the scene. 3D printing components will allow these customized tools to be deployed in a fraction of the time that would normally be required. While the current system is focused on supporting disaster response personnel, this system will be expandable to a range of customers, including domestic law enforcement, the armed services, universities, and research facilities.
Li, Hongsheng
2018-01-01
This review aims to compare existing robot-assisted ankle rehabilitation techniques in terms of robot design. Included studies mainly consist of selected papers in two published reviews involving a variety of robot-assisted ankle rehabilitation techniques. A free search was also made in Google Scholar and Scopus by using keywords “ankle∗,” and “robot∗,” and (“rehabilitat∗” or “treat∗”). The search is limited to English-language articles published between January 1980 and September 2016. Results show that existing robot-assisted ankle rehabilitation techniques can be classified into wearable exoskeleton and platform-based devices. Platform-based devices are mostly developed for the treatment of a variety of ankle musculoskeletal and neurological injuries, while wearable ones focus more on ankle-related gait training. In terms of robot design, comparative analysis indicates that an ideal ankle rehabilitation robot should have aligned rotation center as the ankle joint, appropriate workspace, and actuation torque, no matter how many degrees of freedom (DOFs) it has. Single-DOF ankle robots are mostly developed for specific applications, while multi-DOF devices are more suitable for comprehensive ankle rehabilitation exercises. Other factors including posture adjustability and sensing functions should also be considered to promote related clinical applications. An ankle rehabilitation robot with reconfigurability to maximize its functions will be a new research point towards optimal design, especially on parallel mechanisms. PMID:29736230
Robotic-assisted single-port donor nephrectomy using the da Vinci single-site platform.
LaMattina, John C; Alvarez-Casas, Josue; Lu, Irene; Powell, Jessica M; Sultan, Samuel; Phelan, Michael W; Barth, Rolf N
2018-02-01
Although single-port donor nephrectomy offers improved cosmetic outcomes, technical challenges have limited its application to selected centers. Our center has performed over 400 single-port donor nephrectomies. The da Vinci single-site robotic platform was utilized in an effort to overcome the steric, visualization, ergonomic, and other technical limitations associated with the single-port approach. Food and Drug Administration device exemption was obtained. Selection criteria for kidney donation included body mass index <35, left kidney donors, and ≤2 renal arteries. After colonic mobilization using standard single-port techniques, the robotic approach was utilized for ureteral complex and hilar dissection. Three cases were performed using the robotic single-site platform. Average total operative time was 262 ± 42 min including 82 ± 16 min of robotic use. Docking time took 20 ± 10 min. Blood loss averaged 77 ± 64 mL. No intraoperative complications occurred, and all procedures were completed with our standard laparoscopic single-port approach. This is the first clinical experience of robotic-assisted donor nephrectomy utilizing the da Vinci single-site platform. Our experience supported the safety of this approach but found that the technology added cost and complexity without tangible benefit. Development of articulating instruments, energy, and stapling devices will be necessary for increased application of robotic single-site surgery for donor nephrectomy. Copyright © 2017 Elsevier Inc. All rights reserved.
Robotic Precursor Missions for Mars Habitats
NASA Technical Reports Server (NTRS)
Huntsberger, Terry; Pirjanian, Paolo; Schenker, Paul S.; Trebi-Ollennu, Ashitey; Das, Hari; Joshi, Sajay
2000-01-01
Infrastructure support for robotic colonies, manned Mars habitat, and/or robotic exploration of planetary surfaces will need to rely on the field deployment of multiple robust robots. This support includes such tasks as the deployment and servicing of power systems and ISRU generators, construction of beaconed roadways, and the site preparation and deployment of manned habitat modules. The current level of autonomy of planetary rovers such as Sojourner will need to be greatly enhanced for these types of operations. In addition, single robotic platforms will not be capable of complicated construction scenarios. Precursor robotic missions to Mars that involve teams of multiple cooperating robots to accomplish some of these tasks is a cost effective solution to the possible long timeline necessary for the deployment of a manned habitat. Ongoing work at JPL under the Mars Outpost Program in the area of robot colonies is investigating many of the technology developments necessary for such an ambitious undertaking. Some of the issues that are being addressed include behavior-based control systems for multiple cooperating robots (CAMPOUT), development of autonomous robotic systems for the rescue/repair of trapped or disabled robots, and the design and development of robotic platforms for construction tasks such as material transport and surface clearing.
Astrobee: A New Platform for Free-Flying Robotics on the International Space Station
NASA Technical Reports Server (NTRS)
Smith, Trey; Barlow, Jonathan; Bualat, Maria; Fong, Terrence; Provencher, Christopher; Sanchez, Hugo; Smith, Ernest
2016-01-01
The Astrobees are next-generation free-flying robots that will operate in the interior of the International Space Station (ISS). Their primary purpose is to provide a flexible platform for research on zero-g freeflying robotics, with the ability to carry a wide variety of future research payloads and guest science software. They will also serve utility functions: as free-flying cameras to record video of astronaut activities, and as mobile sensor platforms to conduct surveys of the ISS. The Astrobee system includes two robots, a docking station, and a ground data system (GDS). It is developed by the Human Exploration Telerobotics 2 (HET-2) Project, which began in Oct. 2014, and will deliver the Astrobees for launch to ISS in 2017. This paper covers selected aspects of the Astrobee design, focusing on capabilities relevant to potential users of the platform.
Bruemmer, David J [Idaho Falls, ID
2009-11-17
A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.
NASA Astrophysics Data System (ADS)
Stenzel, Roland; Lin, Ralph; Cheng, Peng; Kronreif, Gernot; Kornfeld, Martin; Lindisch, David; Wood, Bradford J.; Viswanathan, Anand; Cleary, Kevin
2007-03-01
Minimally invasive procedures are increasingly attractive to patients and medical personnel because they can reduce operative trauma, recovery times, and overall costs. However, during these procedures, the physician has a very limited view of the interventional field and the exact position of surgical instruments. We present an image-guided platform for precision placement of surgical instruments based upon a small four degree-of-freedom robot (B-RobII; ARC Seibersdorf Research GmbH, Vienna, Austria). This platform includes a custom instrument guide with an integrated spiral fiducial pattern as the robot's end-effector, and it uses intra-operative computed tomography (CT) to register the robot to the patient directly before the intervention. The physician can then use a graphical user interface (GUI) to select a path for percutaneous access, and the robot will automatically align the instrument guide along this path. Potential anatomical targets include the liver, kidney, prostate, and spine. This paper describes the robotic platform, workflow, software, and algorithms used by the system. To demonstrate the algorithmic accuracy and suitability of the custom instrument guide, we also present results from experiments as well as estimates of the maximum error between target and instrument tip.
Comparison of precision and speed in laparoscopic and robot-assisted surgical task performance.
Zihni, Ahmed; Gerull, William D; Cavallo, Jaime A; Ge, Tianjia; Ray, Shuddhadeb; Chiu, Jason; Brunt, L Michael; Awad, Michael M
2018-03-01
Robotic platforms have the potential advantage of providing additional dexterity and precision to surgeons while performing complex laparoscopic tasks, especially for those in training. Few quantitative evaluations of surgical task performance comparing laparoscopic and robotic platforms among surgeons of varying experience levels have been done. We compared measures of quality and efficiency of Fundamentals of Laparoscopic Surgery task performance on these platforms in novices and experienced laparoscopic and robotic surgeons. Fourteen novices, 12 expert laparoscopic surgeons (>100 laparoscopic procedures performed, no robotics experience), and five expert robotic surgeons (>25 robotic procedures performed) performed three Fundamentals of Laparoscopic Surgery tasks on both laparoscopic and robotic platforms: peg transfer (PT), pattern cutting (PC), and intracorporeal suturing. All tasks were repeated three times by each subject on each platform in a randomized order. Mean completion times and mean errors per trial (EPT) were calculated for each task on both platforms. Results were compared using Student's t-test (P < 0.05 considered statistically significant). Among novices, greater errors were noted during laparoscopic PC (Lap 2.21 versus Robot 0.88 EPT, P < 0.001). Among expert laparoscopists, greater errors were noted during laparoscopic PT compared with robotic (PT: Lap 0.14 versus Robot 0.00 EPT, P = 0.04). Among expert robotic surgeons, greater errors were noted during laparoscopic PC compared with robotic (Lap 0.80 versus Robot 0.13 EPT, P = 0.02). Among expert laparoscopists, task performance was slower on the robotic platform compared with laparoscopy. In comparisons of expert laparoscopists performing tasks on the laparoscopic platform and expert robotic surgeons performing tasks on the robotic platform, expert robotic surgeons demonstrated fewer errors during the PC task (P = 0.009). Robotic assistance provided a reduction in errors at all experience levels for some laparoscopic tasks, but no benefit in the speed of task performance. Robotic assistance may provide some benefit in precision of surgical task performance. Copyright © 2017 Elsevier Inc. All rights reserved.
Automatic Modeling and Simulation of Modular Robots
NASA Astrophysics Data System (ADS)
Jiang, C.; Wei, H.; Zhang, Y.
2018-03-01
The ability of reconfiguration makes modular robots have the ability of adaptable, low-cost, self-healing and fault-tolerant. It can also be applied to a variety of mission situations. In this manuscript, a robot platform which relied on the module library was designed, based on the screw theory and module theory. Then, the configuration design method of the modular robot was proposed. And the different configurations of modular robot system have been built, including industrial mechanical arms, the mobile platform, six-legged robot and 3D exoskeleton manipulator. Finally, the simulation and verification of one system among them have been made, using the analyses of screw kinematics and polynomial planning. The results of experiments demonstrate the feasibility and superiority of this modular system.
New Developments in Robotics and Single-site Gynecologic Surgery.
Matthews, Catherine A
2017-06-01
Within the last 10 years there have been significant advances in minimal-access surgery. Although no emerging technology has demonstrated improved outcomes or fewer complications than standard laparoscopy, the introduction of the robotic surgical platform has significantly lowered abdominal hysterectomy rates. While operative time and cost were higher in robotic-assisted procedures when the technology was first introduced, newer studies demonstrate equivalent or improved robotic surgical efficiency with increased experience. Single-port hysterectomy has not improved postoperative pain or subjective cosmetic results. Emerging platforms with flexible, articulating instruments may increase the uptake of single-port procedures including natural orifice transluminal endoscopic cases.
Applications for the MATILDA robotic platform
NASA Astrophysics Data System (ADS)
Munkeby, Steve H.; Jones, Don; Bugg, George; Smith, Kathryn
2002-07-01
Most robotic platforms have, up to this point, been designed with emphasis placed on improving mobility technologies. Minimal emphasis has been placed on payloads and mission execution. Using a top-down approach, Mesa Associates, Inc. identified specific UGV mission applications and structured its MATILDA platform using these applications for vehicle mobility and motion control requirements. Specific applications identified for the MATILDA platform include: Target surveillance, explosive device neutralization, material pickup and transport, weapon transport and firing, and law enforcement. Current performance results, lessons-learned, technical hurdles, and future applications are examined.
KC-135 materials handling robotics
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1991-01-01
Robot dynamics and control will become an important issue for implementing productive platforms in space. Robotic operations will become necessary for man-tended stations and for efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to an anticipated increase in acceleration levels due to manipulator motion and for safety concerns. The objective of this study will be to provide baseline data to meet that need. Most texts and papers dealing with the kinematics and dynamics of robots assume that the manipulator is composed of joints separated by rigid links. However, in recent years several groups have begun to study the dynamics of flexible manipulators, primarily for applying robots in space and for improving the efficiency and precision of robotic systems. Robotic systems which are being planned for implementation in space have a number of constraints to overcome. Additional concepts which have to be worked out in any robotic implementation for a space platform include teleoperation and degree of autonomous control. Some significant results in developing a robotic workcell for performing robotics research on the KC-135 aircraft in preperation for space-based robotics applications in the future were generated. In addition, it was shown that TREETOPS can be used to simulate the dynamics of robot manipulators for both space and ground-based applications.
Sensor deployment on unmanned ground vehicles
NASA Astrophysics Data System (ADS)
Gerhart, Grant R.; Witus, Gary
2007-10-01
TARDEC has been developing payloads for small robots as part of its unmanned ground vehicle (UGV) development programs. These platforms typically weigh less than 100 lbs and are used for various physical security and force protection applications. This paper will address a number of technical issues including platform mobility, payload positioning, sensor configuration and operational tradeoffs. TARDEC has developed a number of robots with different mobility mechanisms including track, wheel and hybrid track/wheel running gear configurations. An extensive discussion will focus upon omni-directional vehicle (ODV) platforms with enhanced intrinsic mobility for positioning sensor payloads. This paper also discusses tradeoffs between intrinsic platform mobility and articulated arm complexity for end point positioning of modular sensor packages.
DROP: Durable Reconnaissance and Observation Platform
NASA Technical Reports Server (NTRS)
Parness, Aaron; McKenzie, Clifford F.
2012-01-01
Robots have been a valuable tool for providing a remote presence in areas that are either inaccessible or too dangerous for humans. Having a robot with a high degree of adaptability becomes crucial during such events. The adaptability that comes from high mobility and high durability greatly increases the potential uses of a robot in these situations, and therefore greatly increases its usefulness to humans. DROP is a lightweight robot that addresses these challenges with the capability to survive large impacts, carry a usable payload, and traverse a variety of surfaces, including climbing vertical surfaces like wood, stone, and concrete. The platform is crash-proof, allowing it to be deployed in ways including being dropped from an unmanned aerial vehicle or thrown from a large MSL-class (Mars Science Laboratory) rover.
Raven-II: an open platform for surgical robotics research.
Hannaford, Blake; Rosen, Jacob; Friedman, Diana W; King, Hawkeye; Roan, Phillip; Cheng, Lei; Glozman, Daniel; Ma, Ji; Kosari, Sina Nia; White, Lee
2013-04-01
The Raven-II is a platform for collaborative research on advances in surgical robotics. Seven universities have begun research using this platform. The Raven-II system has two 3-DOF spherical positioning mechanisms capable of attaching interchangeable four DOF instruments. The Raven-II software is based on open standards such as Linux and ROS to maximally facilitate software development. The mechanism is robust enough for repeated experiments and animal surgery experiments, but is not engineered to sufficient safety standards for human use. Mechanisms in place for interaction among the user community and dissemination of results include an electronic forum, an online software SVN repository, and meetings and workshops at major robotics conferences.
NASA Astrophysics Data System (ADS)
Chen, Yuzhen; Xie, Fugui; Liu, Xinjun; Zhou, Yanhua
2014-07-01
Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error's influence on the moving platform's pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.
Surrogate: A Body-Dexterous Mobile Manipulation Robot with a Tracked Base
NASA Technical Reports Server (NTRS)
Hebert, Paul (Inventor); Borders, James W. (Inventor); Hudson, Nicolas H. (Inventor); Kennedy, Brett A. (Inventor); Ma, Jeremy C. (Inventor); Bergh, Charles F. (Inventor)
2018-01-01
Robotics platforms in accordance with various embodiments of the invention can be utilized to implement highly dexterous robots capable of whole body motion. Robotics platforms in accordance with one embodiment of the invention include: a memory containing a whole body motion application; a spine, where the spine has seven degrees of freedom and comprises a spine actuator and three spine elbow joints that each include two spine joint actuators; at least one limb, where the at least one limb comprises a limb actuator and three limb elbow joints that each include two limb joint actuators; a tracked base; a connecting structure that connects the at least one limb to the spine; a second connecting structure that connects the spine to the tracked base; wherein the processor is configured by the whole body motion application to move the at least one limb and the spine to perform whole body motion.
Analyzing Cyber-Physical Threats on Robotic Platforms.
Ahmad Yousef, Khalil M; AlMajali, Anas; Ghalyon, Salah Abu; Dweik, Waleed; Mohd, Bassam J
2018-05-21
Robots are increasingly involved in our daily lives. Fundamental to robots are the communication link (or stream) and the applications that connect the robots to their clients or users. Such communication link and applications are usually supported through client/server network connection. This networking system is amenable of being attacked and vulnerable to the security threats. Ensuring security and privacy for robotic platforms is thus critical, as failures and attacks could have devastating consequences. In this paper, we examine several cyber-physical security threats that are unique to the robotic platforms; specifically the communication link and the applications. Threats target integrity, availability and confidential security requirements of the robotic platforms, which use MobileEyes/arnlServer client/server applications. A robot attack tool (RAT) was developed to perform specific security attacks. An impact-oriented approach was adopted to analyze the assessment results of the attacks. Tests and experiments of attacks were conducted in simulation environment and physically on the robot. The simulation environment was based on MobileSim; a software tool for simulating, debugging and experimenting on MobileRobots/ActivMedia platforms and their environments. The robot platform PeopleBot TM was used for physical experiments. The analysis and testing results show that certain attacks were successful at breaching the robot security. Integrity attacks modified commands and manipulated the robot behavior. Availability attacks were able to cause Denial-of-Service (DoS) and the robot was not responsive to MobileEyes commands. Integrity and availability attacks caused sensitive information on the robot to be hijacked. To mitigate security threats, we provide possible mitigation techniques and suggestions to raise awareness of threats on the robotic platforms, especially when the robots are involved in critical missions or applications.
Analyzing Cyber-Physical Threats on Robotic Platforms †
2018-01-01
Robots are increasingly involved in our daily lives. Fundamental to robots are the communication link (or stream) and the applications that connect the robots to their clients or users. Such communication link and applications are usually supported through client/server network connection. This networking system is amenable of being attacked and vulnerable to the security threats. Ensuring security and privacy for robotic platforms is thus critical, as failures and attacks could have devastating consequences. In this paper, we examine several cyber-physical security threats that are unique to the robotic platforms; specifically the communication link and the applications. Threats target integrity, availability and confidential security requirements of the robotic platforms, which use MobileEyes/arnlServer client/server applications. A robot attack tool (RAT) was developed to perform specific security attacks. An impact-oriented approach was adopted to analyze the assessment results of the attacks. Tests and experiments of attacks were conducted in simulation environment and physically on the robot. The simulation environment was based on MobileSim; a software tool for simulating, debugging and experimenting on MobileRobots/ActivMedia platforms and their environments. The robot platform PeopleBotTM was used for physical experiments. The analysis and testing results show that certain attacks were successful at breaching the robot security. Integrity attacks modified commands and manipulated the robot behavior. Availability attacks were able to cause Denial-of-Service (DoS) and the robot was not responsive to MobileEyes commands. Integrity and availability attacks caused sensitive information on the robot to be hijacked. To mitigate security threats, we provide possible mitigation techniques and suggestions to raise awareness of threats on the robotic platforms, especially when the robots are involved in critical missions or applications. PMID:29883403
ATHLETE as a Mobile ISRU and Regolith Construction Platform
NASA Technical Reports Server (NTRS)
Howe, A. Scott; Wilcox, Brian; Barmatz, Martin; Voecks, Gerald
2016-01-01
The All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) robotic mobility platform can provide precision positioning and mobility for site preparation and regolith construction needs. ATHLETE is a multi-use platform designed to use swap-out tools and implements that can be applied to any number of tasks that need precision limb manipulation or mobility. Major capabilities include off-loading habitats, transporting surface assets, robotically assembling outposts from multiple mission manifests, and supporting science and technology objectives. This paper describes conceptual approaches for supporting NASA regolith construction research, such as additive construction, modular brick and panel factory, and mobile ISRU platform.
Fast instantaneous center of rotation estimation algorithm for a skied-steered robot
NASA Astrophysics Data System (ADS)
Kniaz, V. V.
2015-05-01
Skid-steered robots are widely used as mobile platforms for machine vision systems. However it is hard to achieve a stable motion of such robots along desired trajectory due to an unpredictable wheel slip. It is possible to compensate the unpredictable wheel slip and stabilize the motion of the robot using visual odometry. This paper presents a fast optical flow based algorithm for estimation of instantaneous center of rotation, angular and longitudinal speed of the robot. The proposed algorithm is based on Horn-Schunck variational optical flow estimation method. The instantaneous center of rotation and motion of the robot is estimated by back projection of optical flow field to the ground surface. The developed algorithm was tested using skid-steered mobile robot. The robot is based on a mobile platform that includes two pairs of differential driven motors and a motor controller. Monocular visual odometry system consisting of a singleboard computer and a low cost webcam is mounted on the mobile platform. A state-space model of the robot was derived using standard black-box system identification. The input (commands) and the output (motion) were recorded using a dedicated external motion capture system. The obtained model was used to control the robot without visual odometry data. The paper is concluded with the algorithm quality estimation by comparison of the trajectories estimated by the algorithm with the data from motion capture system.
Agile and dexterous robot for inspection and EOD operations
NASA Astrophysics Data System (ADS)
Handelman, David A.; Franken, Gordon H.; Komsuoglu, Haldun
2010-04-01
The All-Terrain Biped (ATB) robot is an unmanned ground vehicle with arms, legs and wheels designed to drive, crawl, walk and manipulate objects for inspection and explosive ordnance disposal tasks. This paper summarizes on-going development of the ATB platform. Control technology for semi-autonomous legged mobility and dual-arm dexterity is described as well as preliminary simulation and hardware test results. Performance goals include driving on flat terrain, crawling on steep terrain, walking on stairs, opening doors and grasping objects. Anticipated benefits of the adaptive mobility and dexterity of the ATB platform include increased robot agility and autonomy for EOD operations, reduced operator workload and reduced operator training and skill requirements.
Designing a Microhydraulically driven Mini robotic Squid
2016-05-20
applications for microrobots include remote monitoring, surveillance, search and rescue, nanoassembly, medicine, and in-vivo surgery . Robotics platforms...Secretary of Defense for Research and Engineering. Designing a Microhydraulically-driven Mini- robotic Squid by Kevin Dehan Meng B.S., U.S. Air...Committee on Graduate Students 2 Designing a Microhydraulically-driven Mini- robotic Squid by Kevin Dehan Meng Submitted to the Department
Robotic platform for traveling on vertical piping network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nance, Thomas A; Vrettos, Nick J; Krementz, Daniel
This invention relates generally to robotic systems and is specifically designed for a robotic system that can navigate vertical pipes within a waste tank or similar environment. The robotic system allows a process for sampling, cleaning, inspecting and removing waste around vertical pipes by supplying a robotic platform that uses the vertical pipes to support and navigate the platform above waste material contained in the tank.
Robotic guarded motion system and method
Bruemmer, David J.
2010-02-23
A robot platform includes perceptors, locomotors, and a system controller. The system controller executes instructions for repeating, on each iteration through an event timing loop, the acts of defining an event horizon, detecting a range to obstacles around the robot, and testing for an event horizon intrusion. Defining the event horizon includes determining a distance from the robot that is proportional to a current velocity of the robot and testing for the event horizon intrusion includes determining if any range to the obstacles is within the event horizon. Finally, on each iteration through the event timing loop, the method includes reducing the current velocity of the robot in proportion to a loop period of the event timing loop if the event horizon intrusion occurs.
Miniature in vivo robotics and novel robotic surgical platforms.
Shah, Bhavin C; Buettner, Shelby L; Lehman, Amy C; Farritor, Shane M; Oleynikov, Dmitry
2009-05-01
Robotic surgical systems, such as the da Vinci Surgical System (Intuitive Surgical, Inc., Sunnyvale, California), have revolutionized laparoscopic surgery but are limited by large size, increased costs, and limitations in imaging. Miniature in vivo robots are being developed that are inserted entirely into the peritoneal cavity for laparoscopic and natural orifice transluminal endoscopic surgical (NOTES) procedures. In the future, miniature camera robots and microrobots should be able to provide a mobile viewing platform. This article discusses the current state of miniature robotics and novel robotic surgical platforms and the development of future robotic technology for general surgery and urology.
Modular Track System For Positioning Mobile Robots
NASA Technical Reports Server (NTRS)
Miller, Jeff
1995-01-01
Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.
Development of robotic mobile platform with the universal chassis system
NASA Astrophysics Data System (ADS)
Ryadchikov, I.; Nikulchev, E.; Sechenev, S.; Drobotenko, M.; Svidlov, A.; Volkodav, P.; Feshin, A.
2018-02-01
The problem of stabilizing the position of mobile devices is extremely relevant at the modern level of technology development. This includes the problem of stabilizing aircraft and stabilizing the pitching of ships. In the laboratory of robotics and mechatronics of the Kuban State University, a robot is developed. The robot has additional internal degrees of freedom, responsible for compensating for deflections - the dynamic stabilization system.
Multi-Robot Assembly Strategies and Metrics.
Marvel, Jeremy A; Bostelman, Roger; Falco, Joe
2018-02-01
We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies.
Multi-Robot Assembly Strategies and Metrics
MARVEL, JEREMY A.; BOSTELMAN, ROGER; FALCO, JOE
2018-01-01
We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies. PMID:29497234
PC/AT-based architecture for shared telerobotic control
NASA Astrophysics Data System (ADS)
Schinstock, Dale E.; Faddis, Terry N.; Barr, Bill G.
1993-03-01
A telerobotic control system must include teleoperational, shared, and autonomous modes of control in order to provide a robot platform for incorporating the rapid advances that are occurring in telerobotics and associated technologies. These modes along with the ability to modify the control algorithms are especially beneficial for telerobotic control systems used for research purposes. The paper describes an application of the PC/AT platform to the control system of a telerobotic test cell. The paper provides a discussion of the suitability of the PC/AT as a platform for a telerobotic control system. The discussion is based on the many factors affecting the choice of a computer platform for a real time control system. The factors include I/O capabilities, simplicity, popularity, computational performance, and communication with external systems. The paper also includes a description of the actuation, measurement, and sensor hardware of both the master manipulator and the slave robot. It also includes a description of the PC-Bus interface cards. These cards were developed by the researchers in the KAT Laboratory, specifically for interfacing to the master manipulator and slave robot. Finally, a few different versions of the low level telerobotic control software are presented. This software incorporates shared control by supervisory systems and the human operator and traded control between supervisory systems and the human operator.
Robotic Fish to Aid Animal Behavior Studies and Informal Science Learning
NASA Astrophysics Data System (ADS)
Phamduy, Paul
The application of robotic fish in the fields of animal behavior and informal science learning are new and relatively untapped. In the context of animal behavior studies, robotic fish offers a consistent and customizable stimulus that could contribute to dissect the determinants of social behavior. In the realm of informal science learning, robotic fish are gaining momentum for the possibility of educating the general public simultaneously on fish physiology and underwater robotics. In this dissertation, the design and development of a number of robotic fish platforms and prototypes and their application in animal behavioral studies and informal science learning settings are presented. Robotic platforms for animal behavioral studies focused on the utilization replica or same scale prototypes. A novel robotic fish platform, featuring a three-dimensional swimming multi-linked robotic fish, was developed with three control modes varying in the level of robot autonomy offered. This platform was deployed at numerous science festivals and science centers, to obtain data on visitor engagement and experience.
How to prepare the patient for robotic surgery: before and during the operation.
Lim, Peter C; Kang, Elizabeth
2017-11-01
Robotic surgery in the treatment of gynecologic diseases continues to evolve and has become accepted over the last decade. The advantages of robotic-assisted laparoscopic surgery over conventional laparoscopy are three-dimensional camera vision, superior precision and dexterity with EndoWristed instruments, elimination of operator tremor, and decreased surgeon fatigue. The drawbacks of the technology are bulkiness and lack of tactile feedback. As with other surgical platforms, the limitations of robotic surgery must be understood. Patient selection and the types of surgical procedures that can be performed through the robotic surgical platform are critical to the success of robotic surgery. First, patient selection and the indication for gynecologic disease should be considered. Discussion with the patient regarding the benefits and potential risks of robotic surgery and of complications and alternative treatments is mandatory, followed by patient's signature indicating informed consent. Appropriate preoperative evaluation-including laboratory and imaging tests-and bowel cleansing should be considered depending upon the type of robotic-assisted procedure. Unlike other surgical procedures, robotic surgery is equipment-intensive and requires an appropriate surgical suite to accommodate the patient side cart, the vision system, and the surgeon's console. Surgical personnel must be properly trained with the robotics technology. Several factors must be considered to perform a successful robotic-assisted surgery: the indication and type of surgical procedure, the surgical platform, patient position and the degree of Trendelenburg, proper port placement configuration, and appropriate instrumentation. These factors that must be considered so that patients can be appropriately prepared before and during the operation are described. Copyright © 2017. Published by Elsevier Ltd.
Experimental validation of docking and capture using space robotics testbeds
NASA Technical Reports Server (NTRS)
Spofford, John
1991-01-01
Docking concepts include capture, berthing, and docking. The definitions of these terms, consistent with AIAA, are as follows: (1) capture (grasping)--the use of a manipulator to make initial contact and attachment between transfer vehicle and a platform; (2) berthing--positioning of a transfer vehicle or payload into platform restraints using a manipulator; and (3) docking--propulsive mechanical connection between vehicle and platform. The combination of the capture and berthing operations is effectively the same as docking; i.e., capture (grasping) + berthing = docking. These concepts are discussed in terms of Martin Marietta's ability to develop validation methods using robotics testbeds.
ARTIE: An Integrated Environment for the Development of Affective Robot Tutors
Imbernón Cuadrado, Luis-Eduardo; Manjarrés Riesco, Ángeles; De La Paz López, Félix
2016-01-01
Over the last decade robotics has attracted a great deal of interest from teachers and researchers as a valuable educational tool from preschool to highschool levels. The implementation of social-support behaviors in robot tutors, in particular in the emotional dimension, can make a significant contribution to learning efficiency. With the aim of contributing to the rising field of affective robot tutors we have developed ARTIE (Affective Robot Tutor Integrated Environment). We offer an architectural pattern which integrates any given educational software for primary school children with a component whose function is to identify the emotional state of the students who are interacting with the software, and with the driver of a robot tutor which provides personalized emotional pedagogical support to the students. In order to support the development of affective robot tutors according to the proposed architecture, we also provide a methodology which incorporates a technique for eliciting pedagogical knowledge from teachers, and a generic development platform. This platform contains a component for identiying emotional states by analysing keyboard and mouse interaction data, and a generic affective pedagogical support component which specifies the affective educational interventions (including facial expressions, body language, tone of voice,…) in terms of BML (a Behavior Model Language for virtual agent specification) files which are translated into actions of a robot tutor. The platform and the methodology are both adapted to primary school students. Finally, we illustrate the use of this platform to build a prototype implementation of the architecture, in which the educational software is instantiated with Scratch and the robot tutor with NAO. We also report on a user experiment we carried out to orient the development of the platform and of the prototype. We conclude from our work that, in the case of primary school students, it is possible to identify, without using intrusive and expensive identification methods, the emotions which most affect the character of educational interventions. Our work also demonstrates the feasibility of a general-purpose architecture of decoupled components, in which a wide range of educational software and robot tutors can be integrated and then used according to different educational criteria. PMID:27536230
ARTIE: An Integrated Environment for the Development of Affective Robot Tutors.
Imbernón Cuadrado, Luis-Eduardo; Manjarrés Riesco, Ángeles; De La Paz López, Félix
2016-01-01
Over the last decade robotics has attracted a great deal of interest from teachers and researchers as a valuable educational tool from preschool to highschool levels. The implementation of social-support behaviors in robot tutors, in particular in the emotional dimension, can make a significant contribution to learning efficiency. With the aim of contributing to the rising field of affective robot tutors we have developed ARTIE (Affective Robot Tutor Integrated Environment). We offer an architectural pattern which integrates any given educational software for primary school children with a component whose function is to identify the emotional state of the students who are interacting with the software, and with the driver of a robot tutor which provides personalized emotional pedagogical support to the students. In order to support the development of affective robot tutors according to the proposed architecture, we also provide a methodology which incorporates a technique for eliciting pedagogical knowledge from teachers, and a generic development platform. This platform contains a component for identiying emotional states by analysing keyboard and mouse interaction data, and a generic affective pedagogical support component which specifies the affective educational interventions (including facial expressions, body language, tone of voice,…) in terms of BML (a Behavior Model Language for virtual agent specification) files which are translated into actions of a robot tutor. The platform and the methodology are both adapted to primary school students. Finally, we illustrate the use of this platform to build a prototype implementation of the architecture, in which the educational software is instantiated with Scratch and the robot tutor with NAO. We also report on a user experiment we carried out to orient the development of the platform and of the prototype. We conclude from our work that, in the case of primary school students, it is possible to identify, without using intrusive and expensive identification methods, the emotions which most affect the character of educational interventions. Our work also demonstrates the feasibility of a general-purpose architecture of decoupled components, in which a wide range of educational software and robot tutors can be integrated and then used according to different educational criteria.
Current state of virtual reality simulation in robotic surgery training: a review.
Bric, Justin D; Lumbard, Derek C; Frelich, Matthew J; Gould, Jon C
2016-06-01
Worldwide, the annual number of robotic surgical procedures continues to increase. Robotic surgical skills are unique from those used in either open or laparoscopic surgery. The acquisition of a basic robotic surgical skill set may be best accomplished in the simulation laboratory. We sought to review the current literature pertaining to the use of virtual reality (VR) simulation in the acquisition of robotic surgical skills on the da Vinci Surgical System. A PubMed search was conducted between December 2014 and January 2015 utilizing the following keywords: virtual reality, robotic surgery, da Vinci, da Vinci skills simulator, SimSurgery Educational Platform, Mimic dV-Trainer, and Robotic Surgery Simulator. Articles were included if they were published between 2007 and 2015, utilized VR simulation for the da Vinci Surgical System, and utilized a commercially available VR platform. The initial search criteria returned 227 published articles. After all inclusion and exclusion criteria were applied, a total of 47 peer-reviewed manuscripts were included in the final review. There are many benefits to utilizing VR simulation for robotic skills acquisition. Four commercially available simulators have been demonstrated to be capable of assessing robotic skill. Three of the four simulators demonstrate the ability of a VR training curriculum to improve basic robotic skills, with proficiency-based training being the most effective training style. The skills obtained on a VR training curriculum are comparable with those obtained on dry laboratory simulation. The future of VR simulation includes utilization in assessment for re-credentialing purposes, advanced procedural-based training, and as a warm-up tool prior to surgery.
Phé, Véronique; Cattarino, Susanna; Parra, Jérôme; Bitker, Marc-Olivier; Ambrogi, Vanina; Vaessen, Christophe; Rouprêt, Morgan
2017-06-01
The utility of the virtual-reality robotic simulator in training programmes has not been clearly evaluated. Our aim was to evaluate the impact of a virtual-reality robotic simulator-training programme on basic surgical skills. A simulator-training programme in robotic surgery, using the da Vinci Skills Simulator, was evaluated in a population including junior and seasoned surgeons, and non-physicians. Their performances on robotic dots and suturing-skin pod platforms before and after virtual-simulation training were rated anonymously by surgeons experienced in robotics. 39 participants were enrolled: 14 medical students and residents in surgery, 14 seasoned surgeons, 11 non-physicians. Junior and seasoned surgeons' performances on platforms were not significantly improved after virtual-reality robotic simulation in any of the skill domains, in contrast to non-physicians. The benefits of virtual-reality simulator training on several tasks to basic skills in robotic surgery were not obvious among surgeons in our initial and early experience with the simulator. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Transoral robotic thyroidectomy: a preclinical feasibility study using the da Vinci Xi platform.
Russell, Jonathon O; Noureldine, Salem I; Al Khadem, Mai G; Chaudhary, Hamad A; Day, Andrew T; Kim, Hoon Yub; Tufano, Ralph P; Richmon, Jeremy D
2017-09-01
Transoral thyroid surgery allows the surgeon to conceal incisions within the oral cavity without significantly increasing the amount of required dissection. TORT provides an ideal scarless, midline access to the thyroid gland and bilateral central neck compartments. This approach, however, presents multiple technical challenges. Herein, we present our experience using the latest generation robotic surgical system to accomplish transoral robotic thyroidectomy (TORT). In two human cadavers, the da Vinci Xi surgical system (Intuitive Surgical, Sunnyvale, CA, USA) was used to complete TORT. Total thyroidectomy and bilateral central neck dissection was successfully completed in both cadavers. The da Vinci Xi platform offered several technologic advantages over previous robotic generations including overhead docking, narrower arms, and improved range of motion allowing for improved execution of previously described TORT techniques.
New technologies in robotic surgery: the Korean experience.
Tuliao, Patrick H; Kim, Sang W; Rha, Koon H
2014-01-01
The development of the robotic systems has made surgery an increasingly technology-driven field. Since the introduction of the first robotic platform in 2005, surgical practice in South Korea has also been caught up in the global robotic revolution. Consequently, a market focused on improving the robotic systems was created and Korea has emerged as one of its frontrunners. This article reviews the Korean experience in developing various robotic technologies and then Korea's most recent contributions to the development of new technologies in robotic surgery. The goal of new technologies in the field of robotic surgery has been to improve on the current platforms by eliminating their disadvantages. The pressing goal is to develop a platform that is less bulky, more ergonomic, and capable of providing force feedback to the surgeon. In Korea, the Lapabot and two new robotic systems for single-port laparoscopic surgery are the most recent advances that have been reported. Robotic surgery is rapidly evolving and Korea has stayed in the forefront of its development. These new advancements in technology will eventually produce better robotic platforms that will greatly improve the manner in which surgical care is delivered.
Robotic assisted andrological surgery
Parekattil, Sijo J; Gudeloglu, Ahmet
2013-01-01
The introduction of the operative microscope for andrological surgery in the 1970s provided enhanced magnification and accuracy, unparalleled to any previous visual loop or magnification techniques. This technology revolutionized techniques for microsurgery in andrology. Today, we may be on the verge of a second such revolution by the incorporation of robotic assisted platforms for microsurgery in andrology. Robotic assisted microsurgery is being utilized to a greater degree in andrology and a number of other microsurgical fields, such as ophthalmology, hand surgery, plastics and reconstructive surgery. The potential advantages of robotic assisted platforms include elimination of tremor, improved stability, surgeon ergonomics, scalability of motion, multi-input visual interphases with up to three simultaneous visual views, enhanced magnification, and the ability to manipulate three surgical instruments and cameras simultaneously. This review paper begins with the historical development of robotic microsurgery. It then provides an in-depth presentation of the technique and outcomes of common robotic microsurgical andrological procedures, such as vasectomy reversal, subinguinal varicocelectomy, targeted spermatic cord denervation (for chronic orchialgia) and robotic assisted microsurgical testicular sperm extraction (microTESE). PMID:23241637
Miniature surgical robot for laparoendoscopic single-incision colectomy.
Wortman, Tyler D; Meyer, Avishai; Dolghi, Oleg; Lehman, Amy C; McCormick, Ryan L; Farritor, Shane M; Oleynikov, Dmitry
2012-03-01
This study aimed to demonstrate the effectiveness of using a multifunctional miniature in vivo robotic platform to perform a single-incision colectomy. Standard laparoscopic techniques require multiple ports. A miniature robotic platform to be inserted completely into the peritoneal cavity through a single incision has been designed and built. The robot can be quickly repositioned, thus enabling multiquadrant access to the abdominal cavity. The miniature in vivo robotic platform used in this study consists of a multifunctional robot and a remote surgeon interface. The robot is composed of two arms with shoulder and elbow joints. Each forearm is equipped with specialized interchangeable end effectors (i.e., graspers and monopolar electrocautery). Five robotic colectomies were performed in a porcine model. For each procedure, the robot was completely inserted into the peritoneal cavity, and the surgeon manipulated the user interface to control the robot to perform the colectomy. The robot mobilized the colon from its lateral retroperitoneal attachments and assisted in the placement of a standard stapler to transect the sigmoid colon. This objective was completed for all five colectomies without any complications. The adoption of both laparoscopic and single-incision colectomies currently is constrained by the inadequacies of existing instruments. The described multifunctional robot provides a platform that overcomes existing limitations by operating completely within one incision in the peritoneal cavity and by improving visualization and dexterity. By repositioning the small robot to the area of the colon to be mobilized, the ability of the surgeon to perform complex surgical tasks is improved. Furthermore, the success of the robot in performing a completely in vivo colectomy suggests the feasibility of using this robotic platform to perform other complex surgeries through a single incision.
A perspective on space robotics in Japan
NASA Technical Reports Server (NTRS)
Ohkami, Yoshiaki; Nakatani, Ichiro; Wakabayashi, Yasufumi; Iwata, Tsutomu
1994-01-01
This report summarizes the research and development status and perspective on space robotics in Japan. The R & D status emphasizes the current on-going projects at NASDA including the JEM Remote Manipulator System (JEMRMS) to be used on Space Station Freedom and the robotics experiments on Engineering Satellite 7 (ETS-7). As a future perspective, not only NASDA, but also ISAS and other government institutes have been promoting their own research in space robotics in order to support wide spread space activities in the future. Included in this future research is an autonomous satellite retrieval experiment, a dexterous robot experiment, an on-orbit servicing platform, an IVA robot, and several moon/planetary rovers proposed by NASDA or ISAS and other organizations.
Klibansky, David; Rothstein, Richard I
2012-09-01
The increasing complexity of intralumenal and emerging translumenal endoscopic procedures has created an opportunity to apply robotics in endoscopy. Computer-assisted or direct-drive robotic technology allows the triangulation of flexible tools through telemanipulation. The creation of new flexible operative platforms, along with other emerging technology such as nanobots and steerable capsules, can be transformational for endoscopic procedures. In this review, we cover some background information on the use of robotics in surgery and endoscopy, and review the emerging literature on platforms, capsules, and mini-robotic units. The development of techniques in advanced intralumenal endoscopy (endoscopic mucosal resection and endoscopic submucosal dissection) and translumenal endoscopic procedures (NOTES) has generated a number of novel platforms, flexible tools, and devices that can apply robotic principles to endoscopy. The development of a fully flexible endoscopic surgical toolkit will enable increasingly advanced procedures to be performed through natural orifices. The application of platforms and new flexible tools to the areas of advanced endoscopy and NOTES heralds the opportunity to employ useful robotic technology. Following the examples of the utility of robotics from the field of laparoscopic surgery, we can anticipate the emerging role of robotic technology in endoscopy.
Glyco-Immune Diagnostic Signatures and Therapeutic Targets of Mesothelioma
2015-09-01
Mesothelioma; Glycan Array; Immunoprofiles; Robotic Arrayer 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT: UU 18. NUMBER OF PAGES 19 19a...PROJECT SUMMARY: General Comments: This project involved novel technology in which biochemically synthesized glycans were robotically printed on glass...include 386 glycans and the platform was known as the PGA-400. (Figure 1) A standard robotic technology for printing a large range of
Occupancy change detection system and method
Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID
2009-09-01
A robot platform includes perceptors, locomotors, and a system controller. The system controller executes instructions for producing an occupancy grid map of an environment around the robot, scanning the environment to generate a current obstacle map relative to a current robot position, and converting the current obstacle map to a current occupancy grid map. The instructions also include processing each grid cell in the occupancy grid map. Within the processing of each grid cell, the instructions include comparing each grid cell in the occupancy grid map to a corresponding grid cell in the current occupancy grid map. For grid cells with a difference, the instructions include defining a change vector for each changed grid cell, wherein the change vector includes a direction from the robot to the changed grid cell and a range from the robot to the changed grid cell.
A technical review of flexible endoscopic multitasking platforms.
Yeung, Baldwin Po Man; Gourlay, Terence
2012-01-01
Further development of advanced therapeutic endoscopic techniques and natural orifice translumenal endoscopic surgery (NOTES) requires a powerful flexible endoscopic multitasking platform. Medline search was performed to identify literature relating to flexible endoscopic multitasking platform from year 2004-2011 using keywords: Flexible endoscopic multitasking platform, NOTES, Instrumentation, Endoscopic robotic surgery, and specific names of various endoscopic multitasking platforms. Key articles from articles references were reviewed. Flexible multitasking platforms can be classified as either mechanical or robotic. Purely mechanical systems include the dual channel endoscope (DCE) (Olympus), R-Scope (Olympus), the EndoSamurai (Olympus), the ANUBIScope (Karl-Storz), Incisionless Operating Platform (IOP) (USGI), and DDES system (Boston Scientific). Robotic systems include the MASTER system (Nanyang University, Singapore) and the Viacath (Hansen Medical). The DCE, the R-Scope, the EndoSamurai and the ANUBIScope have integrated visual function and instrument manipulation function. The IOP and DDES systems rely on the conventional flexible endoscope for visualization, and instrument manipulation is integrated through the use of a flexible, often lockable, multichannel access device. The advantage of the access device concept is that it allows optics and instrument dissociation. Due to the anatomical constrains of the pharynx, systems are designed to have a diameter of less than 20 mm. All systems are controlled by traction cable system actuated either by hand or by robotic machinery. In a flexible system, this method of actuation inevitably leads to significant hysteresis. This problem will be accentuated with a long endoscope such as that required in performing colonic procedures. Systems often require multiple operators. To date, the DCE, the R-Scope, the IOP, and the Viacath system have data published relating to their application in human. Alternative forms of instrument actuation, camera control and master console ergonomics should be explored to improve instrument precision, sphere of action, size and minimize assistance required. Copyright © 2012 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Direct target NOTES: prospective applications for next generation robotic platforms.
Atallah, S; Hodges, A; Larach, S W
2018-05-01
A new era in surgical robotics has centered on alternative access to anatomic targets and next generation designs include flexible, single-port systems which follow circuitous rather than straight pathways. Such systems maintain a small footprint and could be utilized for specialized operations based on direct organ target natural orifice transluminal endoscopic surgery (NOTES), of which transanal total mesorectal excision (taTME) is an important derivative. During two sessions, four direct target NOTES operations were conducted on a cadaveric model using a flexible robotic system to demonstrate proof-of-concept of the application of a next generation robotic system to specific types of NOTES operations, all of which required removal of a direct target organ through natural orifice access. These four operations were (a) robotic taTME, (b) robotic transvaginal hysterectomy in conjunction with (c) robotic transvaginal salpingo-oophorectomy, and in an ex vivo model, (d) trans-cecal appendectomy. Feasibility was demonstrated in all cases using the Flex ® Robotic System with Colorectal Drive. During taTME, the platform excursion was 17 cm along a non-linear path; operative time was 57 min for the transanal portion of the dissection. Robotic transvaginal hysterectomy was successfully completed in 78 min with transvaginal extraction of the uterus, although laparoscopic assistance was required. Robotic transvaginal unilateral salpingo-oophorectomy with transvaginal extraction of the ovary and fallopian tube was performed without laparoscopic assistance in 13.5 min. In an ex vivo model, a robotic trans-cecal appendectomy was also successfully performed for the purpose of demonstrating proof-of-concept only; this was completed in 24 min. A flexible robotic system has the potential to access anatomy along circuitous paths, making it a suitable platform for direct target NOTES. The conceptual operations posed could be considered suitable for next generation robotics once the technology is optimized, and after further preclinical validation.
Modeling and Simulation for a Surf Zone Robot
2012-12-14
of-freedom surf zone robot is developed and tested with a physical test platform and with a simulated robot in Robot Operating System . Derived from...terrain. The application of the model to future platforms is analyzed and a broad examination of the current state of surf zone robotic systems is...public release; distribution is unlimited MODELING AND SIMULATION FOR A SURF ZONE ROBOT Eric Shuey Lieutenant, United States Navy B.S., Systems
Robotic single-access splenectomy using the Da Vinci Single-Site® platform: a case report.
Corcione, Francesco; Bracale, Umberto; Pirozzi, Felice; Cuccurullo, Diego; Angelini, Pier Luigi
2014-03-01
Single-access laparoscopic splenectomy can offer patients some advantages. It has many difficulties, such as instrument clashing, lack of triangulation, odd angles and lack of space. The Da Vinci Single-Site® robotic surgery platform could decrease these difficulties. We present a case of single-access robotic splenectomy using this device. A 37 year-old female with idiopathic thrombocytopenic purpura was operated on with a single-site approach, using the Da Vinci Single-Site robotic surgery device. The procedure was successfully completed in 140 min. No intraoperative and postoperative complications occurred. The patient was discharged from hospital on day 3. Single-access robotic splenectomy seems to be feasible and safe using the new robotic single-access platform, which seems to overcome certain limits of previous robotic or conventional single-access laparoscopy. We think that additional studies should also be performed to explore the real cost-effectiveness of the platform. Copyright © 2013 John Wiley & Sons, Ltd.
Human-Robot Interface: Issues in Operator Performance, Interface Design, and Technologies
2006-07-01
and the use of lightweight portable robotic sensor platforms. 5 robotics has reached a point where some generalities of HRI transcend specific...displays with control devices such as joysticks, wheels, and pedals (Kamsickas, 2003). Typical control stations include panels displaying (a) sensor ...tasks that do not involve mobility and usually involve camera control or data fusion from sensors Active search: Search tasks that involve mobility
Control of intelligent robots in space
NASA Technical Reports Server (NTRS)
Freund, E.; Buehler, CH.
1989-01-01
In view of space activities like International Space Station, Man-Tended-Free-Flyer (MTFF) and free flying platforms, the development of intelligent robotic systems is gaining increasing importance. The range of applications that have to be performed by robotic systems in space includes e.g., the execution of experiments in space laboratories, the service and maintenance of satellites and flying platforms, the support of automatic production processes or the assembly of large network structures. Some of these tasks will require the development of bi-armed or of multiple robotic systems including functional redundancy. For the development of robotic systems which are able to perform this variety of tasks a hierarchically structured modular concept of automation is required. This concept is characterized by high flexibility as well as by automatic specialization to the particular sequence of tasks that have to be performed. On the other hand it has to be designed such that the human operator can influence or guide the system on different levels of control supervision, and decision. This leads to requirements for the hardware and software concept which permit a range of application of the robotic systems from telemanipulation to autonomous operation. The realization of this goal requires strong efforts in the development of new methods, software and hardware concepts, and the integration into an automation concept.
Development of a New Robotic Ankle Rehabilitation Platform for Hemiplegic Patients after Stroke
Duan, Lihong
2018-01-01
A large amount of hemiplegic survivors are suffering from motor impairment. Ankle rehabilitation exercises act an important role in recovering patients' walking ability after stroke. Currently, patients mainly perform ankle exercise to reobtain range of motion (ROM) and strength of the ankle joint under a therapist's assistance by manual operation. However, therapists suffer from high work intensity, and most of the existed rehabilitation devices focus on ankle functional training and ignore the importance of neurological rehabilitation in the early hemiplegic stage. In this paper, a new robotic ankle rehabilitation platform (RARP) is proposed to assist patients in executing ankle exercise. The robotic platform consists of two three-DOF symmetric layer-stacking mechanisms, which can execute ankle internal/external rotation, dorsiflexion/plantarflexion, and inversion/eversion exercise while the rotation center of the distal zone of the robotic platform always coincides with patients' ankle pivot center. Three exercise modes including constant-speed exercise, constant torque-impedance exercise, and awareness exercise are developed to execute ankle training corresponding to different rehabilitation stages. Experiments corresponding to these three ankle exercise modes are performed, the result demonstrated that the RARP is capable of executing ankle rehabilitation, and the novel awareness exercise mode motivates patients to proactively participate in ankle training. PMID:29736231
Design of underwater robot lines based on a hybrid automatic optimization strategy
NASA Astrophysics Data System (ADS)
Lyu, Wenjing; Luo, Weilin
2014-09-01
In this paper, a hybrid automatic optimization strategy is proposed for the design of underwater robot lines. Isight is introduced as an integration platform. The construction of this platform is based on the user programming and several commercial software including UG6.0, GAMBIT2.4.6 and FLUENT12.0. An intelligent parameter optimization method, the particle swarm optimization, is incorporated into the platform. To verify the strategy proposed, a simulation is conducted on the underwater robot model 5470, which originates from the DTRC SUBOFF project. With the automatic optimization platform, the minimal resistance is taken as the optimization goal; the wet surface area as the constraint condition; the length of the fore-body, maximum body radius and after-body's minimum radius as the design variables. With the CFD calculation, the RANS equations and the standard turbulence model are used for direct numerical simulation. By analyses of the simulation results, it is concluded that the platform is of high efficiency and feasibility. Through the platform, a variety of schemes for the design of the lines are generated and the optimal solution is achieved. The combination of the intelligent optimization algorithm and the numerical simulation ensures a global optimal solution and improves the efficiency of the searching solutions.
Understanding of Android-Based Robotic and Game Structure
NASA Astrophysics Data System (ADS)
Phongtraychack, A.; Syryamkin, V.
2018-05-01
The development of an android with impressive lifelike appearance and behavior has been a long-standing goal in robotics and a new and exciting approach of smartphone-based robotics for research and education. Recent years have been progressive for many technologies, which allowed creating such androids. There are different examples including the autonomous Erica android system capable of conversational interaction and speech synthesis technologies. The behavior of Android-based robot could be running on the phone as the robot performed a task outdoors. In this paper, we present an overview and understanding of the platform of Android-based robotic and game structure for research and education.
Investigation on Requirements of Robotic Platforms to Teach Social Skills to Individuals with Autism
NASA Astrophysics Data System (ADS)
Nikolopoulos, Chris; Kuester, Deitra; Sheehan, Mark; Dhanya, Sneha
This paper reports on some of the robotic platforms used in the project AUROSO which investigates the use of robots as educationally useful interventions to improve social interactions for individuals with Autism Spectrum Disorders (ASD). Our approach to treatment uses an educational intervention based on Socially Assistive Robotics (SAR), the DIR/Floortime intervention model and social script/stories. Requirements are established and a variety of robotic models/platforms were investigated as to the feasibility of an economical, practical and efficient means of helping teach social skills to individuals with ASD for use by teachers, families, service providers and other community organizations.
Thoracoscopic versus robotic approaches: advantages and disadvantages.
Wei, Benjamin; D'Amico, Thomas A
2014-05-01
The overall advantages of thoracoscopy over thoracotomy in terms of patient recovery have been fairly well established. The use of robotics, however, is a newer and less proven modality in the realm of thoracic surgery. Robotics offers distinct advantages and disadvantages in comparison with video-assisted thoracoscopic surgery. Robotic technology is now used for a variety of complex cardiac, urologic, and gynecologic procedures including mitral valve repair and microsurgical treatment of male infertility. This article addresses the potential benefits and limitations of using the robotic platform for the performance of a variety of thoracic operations. Copyright © 2014 Elsevier Inc. All rights reserved.
A robotic platform for laser welding of corneal tissue
NASA Astrophysics Data System (ADS)
Rossi, Francesca; Micheletti, Filippo; Magni, Giada; Pini, Roberto; Menabuoni, Luca; Leoni, Fabio; Magnani, Bernardo
2017-07-01
Robotic surgery is a reality in several surgical fields, such as in gastrointestinal surgery. In ophthalmic surgery the required high spatial precision is limiting the application of robotic system, and even if several attempts have been designed in the last 10 years, only some application in retinal surgery were tested in animal models. The combination of photonics and robotics can really open new frontiers in minimally invasive surgery, improving the precision, reducing tremor, amplifying scale of motion, and automating the procedure. In this manuscript we present the preliminary results in developing a vision guided robotic platform for laser-assisted anterior eye surgery. The robotic console is composed by a robotic arm equipped with an "end effector" designed to deliver laser light to the anterior corneal surface. The main intended application is for laser welding of corneal tissue in laser assisted penetrating keratoplasty and endothelial keratoplasty. The console is equipped with an integrated vision system. The experiment originates from a clear medical demand in order to improve the efficacy of different surgical procedures: when the prototype will be optimized, other surgical areas will be included in its application, such as neurosurgery, urology and spinal surgery.
Autonomous Exploration Using an Information Gain Metric
2016-03-01
implemented on 2 different robotic platforms: the PackBot designed by iRobot and the Jackal designed by Clearpath Robotics. The PackBot, shown in Fig. 1, is a... Jackal is a wheeled, man-portable robot system. Both robots were equipped with a Hokuyo UTM-30LX-EW scanning laser range finder with a motor...Fig. 2, the robot was used to explore and map the second floor of a building located in a military and rescue training facility. The Jackal platform
Vicentini, Federico; Pedrocchi, Nicola; Malosio, Matteo; Molinari Tosatti, Lorenzo
2014-09-01
Robot-assisted neurorehabilitation often involves networked systems of sensors ("sensory rooms") and powerful devices in physical interaction with weak users. Safety is unquestionably a primary concern. Some lightweight robot platforms and devices designed on purpose include safety properties using redundant sensors or intrinsic safety design (e.g. compliance and backdrivability, limited exchange of energy). Nonetheless, the entire "sensory room" shall be required to be fail-safe and safely monitored as a system at large. Yet, sensor capabilities and control algorithms used in functional therapies require, in general, frequent updates or re-configurations, making a safety-grade release of such devices hardly sustainable in cost-effectiveness and development time. As such, promising integrated platforms for human-in-the-loop therapies could not find clinical application and manufacturing support because of lacking in the maintenance of global fail-safe properties. Under the general context of cross-machinery safety standards, the paper presents a methodology called SafeNet for helping in extending the safety rate of Human Robot Interaction (HRI) systems using unsafe components, including sensors and controllers. SafeNet considers, in fact, the robotic system as a device at large and applies the principles of functional safety (as in ISO 13489-1) through a set of architectural procedures and implementation rules. The enabled capability of monitoring a network of unsafe devices through redundant computational nodes, allows the usage of any custom sensors and algorithms, usually planned and assembled at therapy planning-time rather than at platform design-time. A case study is presented with an actual implementation of the proposed methodology. A specific architectural solution is applied to an example of robot-assisted upper-limb rehabilitation with online motion tracking. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Robotics-assisted mass spectrometry assay platform enabled by open-source electronics.
Chiu, Shih-Hao; Urban, Pawel L
2015-02-15
Mass spectrometry (MS) is an important analytical technique with numerous applications in clinical analysis, biochemistry, environmental analysis, geology and physics. Its success builds on the ability of MS to determine molecular weights of analytes, and elucidate their structures. However, sample handling prior to MS requires a lot of attention and labor. In this work we were aiming to automate processing samples for MS so that analyses could be conducted without much supervision of experienced analysts. The goal of this study was to develop a robotics and information technology-oriented platform that could control the whole analysis process including sample delivery, reaction-based assay, data acquisition, and interaction with the analyst. The proposed platform incorporates a robotic arm for handling sample vials delivered to the laboratory, and several auxiliary devices which facilitate and secure the analysis process. They include: multi-relay board, infrared sensors, photo-interrupters, gyroscopes, force sensors, fingerprint scanner, barcode scanner, touch screen panel, and internet interface. The control of all the building blocks is achieved through implementation of open-source electronics (Arduino), and enabled by custom-written programs in C language. The advantages of the proposed system include: low cost, simplicity, small size, as well as facile automation of sample delivery and processing without the intervention of the analyst. It is envisaged that this simple robotic system may be the forerunner of automated laboratories dedicated to mass spectrometric analysis of biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Comparison of the LEGO Mindstorms NXT and EV3 Robotics Education Platforms
ERIC Educational Resources Information Center
Sherrard, Ann; Rhodes, Amy
2014-01-01
The release of the latest LEGO Mindstorms EV3 robotics platform in September 2013 has provided a dilemma for many youth robotics leaders. There is a need to understand the differences in the Mindstorms NXT and EV3 in order to make future robotics purchases. In this article the differences are identified regarding software, hardware, sensors, the…
Multi-layer robot skin with embedded sensors and muscles
NASA Astrophysics Data System (ADS)
Tomar, Ankit; Tadesse, Yonas
2016-04-01
Soft artificial skin with embedded sensors and actuators is proposed for a crosscutting study of cognitive science on a facial expressive humanoid platform. This paper focuses on artificial muscles suitable for humanoid robots and prosthetic devices for safe human-robot interactions. Novel composite artificial skin consisting of sensors and twisted polymer actuators is proposed. The artificial skin is conformable to intricate geometries and includes protective layers, sensor layers, and actuation layers. Fluidic channels are included in the elastomeric skin to inject fluids in order to control actuator response time. The skin can be used to develop facially expressive humanoid robots or other soft robots. The humanoid robot can be used by computer scientists and other behavioral science personnel to test various algorithms, and to understand and develop more perfect humanoid robots with facial expression capability. The small-scale humanoid robots can also assist ongoing therapeutic treatment research with autistic children. The multilayer skin can be used for many soft robots enabling them to detect both temperature and pressure, while actuating the entire structure.
Use of the NetBeans Platform for NASA Robotic Conjunction Assessment Risk Analysis
NASA Technical Reports Server (NTRS)
Sabey, Nickolas J.
2014-01-01
The latest Java and JavaFX technologies are very attractive software platforms for customers involved in space mission operations such as those of NASA and the US Air Force. For NASA Robotic Conjunction Assessment Risk Analysis (CARA), the NetBeans platform provided an environment in which scalable software solutions could be developed quickly and efficiently. Both Java 8 and the NetBeans platform are in the process of simplifying CARA development in secure environments by providing a significant amount of capability in a single accredited package, where accreditation alone can account for 6-8 months for each library or software application. Capabilities either in use or being investigated by CARA include: 2D and 3D displays with JavaFX, parallelization with the new Streams API, and scalability through the NetBeans plugin architecture.
PR-PR: Cross-Platform Laboratory Automation System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linshiz, G; Stawski, N; Goyal, G
To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Goldenmore » Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.« less
PR-PR: cross-platform laboratory automation system.
Linshiz, Gregory; Stawski, Nina; Goyal, Garima; Bi, Changhao; Poust, Sean; Sharma, Monica; Mutalik, Vivek; Keasling, Jay D; Hillson, Nathan J
2014-08-15
To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Golden Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.
Automated platform for designing multiple robot work cells
NASA Astrophysics Data System (ADS)
Osman, N. S.; Rahman, M. A. A.; Rahman, A. A. Abdul; Kamsani, S. H.; Bali Mohamad, B. M.; Mohamad, E.; Zaini, Z. A.; Rahman, M. F. Ab; Mohamad Hatta, M. N. H.
2017-06-01
Designing the multiple robot work cells is very knowledge-intensive, intricate, and time-consuming process. This paper elaborates the development process of a computer-aided design program for generating the multiple robot work cells which offer a user-friendly interface. The primary purpose of this work is to provide a fast and easy platform for less cost and human involvement with minimum trial and errors adjustments. The automated platform is constructed based on the variant-shaped configuration concept with its mathematical model. A robot work cell layout, system components, and construction procedure of the automated platform are discussed in this paper where integration of these items will be able to automatically provide the optimum robot work cell design according to the information set by the user. This system is implemented on top of CATIA V5 software and utilises its Part Design, Assembly Design, and Macro tool. The current outcomes of this work provide a basis for future investigation in developing a flexible configuration system for the multiple robot work cells.
Design and Evolution of a Modular Tensegrity Robot Platform
NASA Technical Reports Server (NTRS)
Bruce, Jonathan; Caluwaerts, Ken; Iscen, Atil; Sabelhaus, Andrew P.; SunSpiral, Vytas
2014-01-01
NASA Ames Research Center is developing a compliant modular tensegrity robotic platform for planetary exploration. In this paper we present the design and evolution of the platform's main hardware component, an untethered, robust tensegrity strut, with rich sensor feedback and cable actuation. Each strut is a complete robot, and multiple struts can be combined together to form a wide range of complex tensegrity robots. Our current goal for the tensegrity robotic platform is the development of SUPERball, a 6-strut icosahedron underactuated tensegrity robot aimed at dynamic locomotion for planetary exploration rovers and landers, but the aim is for the modular strut to enable a wide range of tensegrity morphologies. SUPERball is a second generation prototype, evolving from the tensegrity robot ReCTeR, which is also a modular, lightweight, highly compliant 6-strut tensegrity robot that was used to validate our physics based NASA Tensegrity Robot Toolkit (NTRT) simulator. Many hardware design parameters of the SUPERball were driven by locomotion results obtained in our validated simulator. These evolutionary explorations helped constrain motor torque and speed parameters, along with strut and string stress. As construction of the hardware has finalized, we have also used the same evolutionary framework to evolve controllers that respect the built hardware parameters.
Patel, Manish N; Aboumohamed, Ahmed; Hemal, Ashok
2015-12-01
To describe our robot-assisted nephroureterectomy (RNU) technique for benign indications and RNU with en bloc excision of bladder cuff (BCE) and lymphadenectomy (LND) for malignant indications using the da Vinci Si and da Vinci Xi robotic platform, with its pros and cons. The port placement described for Si can be used for standard and S robotic systems. This is the first report in the literature on the use of the da Vinci Xi robotic platform for RNU. After a substantial experience of RNU using different da Vinci robots from the standard to the Si platform in a single-docking fashion for benign and malignant conditions, we started using the newly released da Vinci Xi robot since 2014. The most important differences are in port placement and effective use of the features of da Vinci Xi robot while performing simultaneous upper and lower tract surgery. Patient positioning, port placement, step-by-step technique of single docking RNU-LND-BCE using the da Vinci Si and da Vinci Xi robot are shown in an accompanying video with the goal that centres using either robotic system benefit from the hints and tips. The first segment of video describes RNU-LND-BCE using the da Vinci Si followed by the da Vinci Xi to highlight differences. There was no need for patient repositioning or robot re-docking with the new da Vinci Xi robotic platform. We have experience of using different robotic systems for single docking RNU in 70 cases for benign (15) and malignant (55) conditions. The da Vinci Xi robotic platform helps operating room personnel in its easy movement, allows easier patient side-docking with the help of its boom feature, in addition to easy and swift movements of the robotic arms. The patient clearance feature can be used to avoid collision with the robotic arms or the patient's body. In patients with challenging body habitus and in situations where bladder cuff management is difficult, modifications can be made through reassigning the camera to a different port with utilisation of the retargeting feature of the da Vinci Xi when working on the bladder cuff or in the pelvis. The vision of the camera used for da Vinci Xi was initially felt to be inferior to that of the da Vinci Si; however, with a subsequent software upgrade this was much improved. The base of the da Vinci Xi is bigger, which does not slide and occasionally requires a change in table placement/operating room setup, and requires side-docking especially when dealing with very tall and obese patients for pelvic surgery. RNU alone or with LND-BCE is a challenging surgical procedure that addresses the upper and lower urinary tract simultaneously. Single docking and single robotic port placement for RNU-LND-BCE has evolved with the development of different generations of the robotic system. These procedures can be performed safely and effectively using the da Vinci S, Si or Xi robotic platform. The new da Vinci Xi robotic platform is more user-friendly, has easy installation, and is intuitive for surgeons using its features. © 2015 The Authors BJU International © 2015 BJU International Published by John Wiley & Sons Ltd.
Acoustic sensors on small robots for the urban environment
NASA Astrophysics Data System (ADS)
Young, Stuart H.; Scanlon, Michael V.
2005-05-01
As the Army transforms to the Future Force, particular attention must be paid to operations in Complex and Urban Terrain. Because our adversaries realize that we don't have battlefield dominance in the urban environment, and because population growth and migration to urban environments is still on the increase, our adversaries will continue to draw us into operations in the urban environment. The Army Research Laboratory (ARL) is developing technology to equip our soldiers for the urban operations of the future. Sophisticated small robotic platforms with diverse sensor suites will be an integral part of the Future Force, and must be able to collaborate not only amongst themselves but also with their manned partners. The use of acoustic sensors on robotic platforms, as shown in this paper, will greatly aid the soldiers of the future force in performing numerous types of missions including Reconnaissance, Surveillance, and Target Acquisition (RSTA) by providing situational awareness, particularly to the dismounted soldier operating in the urban environment. The work conducted by the Army Research Laboratory, discussed in this paper will be transitioned to the FCS-Small Unattended Ground Vehicle (SUGV) program and FFW. The Army Research Laboratory is already working with these programs to ensure a feasible migration path. This paper focuses on four areas relating to acoustic sensing on robots for the urban environment as demonstrated at the DoD Horizontal Fusion Portfolio"s Warriors Edge (WE) Quantum Leap II (QL II) demonstration at Ft Benning, GA in August, 2004: small (man-portable) robot detection, mule-sized robot detection, sensor fusion across multiple platforms, and soldier/robot team interaction.
FLS tasks can be used as an ergonomic discriminator between laparoscopic and robotic surgery.
Zihni, Ahmed M; Ohu, Ikechukwu; Cavallo, Jaime A; Ousley, Jenny; Cho, Sohyung; Awad, Michael M
2014-08-01
Robotic surgery may result in ergonomic benefits to surgeons. In this pilot study, we utilize surface electromyography (sEMG) to describe a method for identifying ergonomic differences between laparoscopic and robotic platforms using validated Fundamentals of Laparoscopic Surgery (FLS) tasks. We hypothesize that FLS task performance on laparoscopic and robotic surgical platforms will produce significant differences in mean muscle activation, as quantified by sEMG. Six right-hand-dominant subjects with varying experience performed FLS peg transfer (PT), pattern cutting (PC), and intracorporeal suturing (IS) tasks on laparoscopic and robotic platforms. sEMG measurements were obtained from each subject's bilateral bicep, tricep, deltoid, and trapezius muscles. EMG measurements were normalized to the maximum voluntary contraction (MVC) of each muscle of each subject. Subjects repeated each task three times per platform, and mean values used for pooled analysis. Average normalized muscle activation (%MVC) was calculated for each muscle group in all subjects for each FLS task. We compared mean %MVC values with paired t tests and considered differences with a p value less than 0.05 to be statistically significant. Mean activation of right bicep (2.7 %MVC lap, 1.3 %MVC robotic, p = 0.019) and right deltoid muscles (2.4 %MVC lap, 1.0 %MVC robotic, p = 0.019) were significantly elevated during the laparoscopic compared to the robotic IS task. The mean activation of the right trapezius muscle was significantly elevated during robotic compared to the laparoscopic PT (1.6 %MVC lap, 3.5 %MVC robotic, p = 0.040) and PC (1.3 %MVC lap, 3.6 %MVC robotic, p = 0.0018) tasks. FLS tasks are validated, readily available instruments that are feasible for use in demonstrating ergonomic differences between surgical platforms. In this study, we used FLS tasks to compare mean muscle activation of four muscle groups during laparoscopic and robotic task performance. FLS tasks can serve as the basis for larger studies to further describe ergonomic differences between laparoscopic and robotic surgery.
Application of robotics in gastrointestinal endoscopy: A review
Yeung, Baldwin Po Man; Chiu, Philip Wai Yan
2016-01-01
Multiple robotic flexible endoscope platforms have been developed based on cross specialty collaboration between engineers and medical doctors. However, significant number of these platforms have been developed for the natural orifice transluminal endoscopic surgery paradigm. Increasing amount of evidence suggest the focus of development should be placed on advanced endolumenal procedures such as endoscopic submucosal dissection instead. A thorough literature analysis was performed to assess the current status of robotic flexible endoscopic platforms designed for advanced endolumenal procedures. Current efforts are mainly focused on robotic locomotion and robotic instrument control. In the future, advances in actuation and servoing technology, optical analysis, augmented reality and wireless power transmission technology will no doubt further advance the field of robotic endoscopy. Globally, health systems have become increasingly budget conscious; widespread acceptance of robotic endoscopy will depend on careful design to ensure its delivery of a cost effective service. PMID:26855540
Rao, Akshay; Elara, Mohan Rajesh; Elangovan, Karthikeyan
This paper aims to develop a local path planning algorithm for a bio-inspired, reconfigurable crawling robot. A detailed description of the robotic platform is first provided, and the suitability for deployment of each of the current state-of-the-art local path planners is analyzed after an extensive literature review. The Enhanced Vector Polar Histogram algorithm is described and reformulated to better fit the requirements of the platform. The algorithm is deployed on the robotic platform in crawling configuration and favorably compared with other state-of-the-art local path planning algorithms.
Towards Autonomous Operation of Robonaut 2
NASA Technical Reports Server (NTRS)
Badger, Julia M.; Hart, Stephen W.; Yamokoski, J. D.
2011-01-01
The Robonaut 2 (R2) platform, as shown in Figure 1, was designed through a collaboration between NASA and General Motors to be a capable robotic assistant with the dexterity similar to a suited astronaut [1]. An R2 robot was sent to the International Space Station (ISS) in February 2011 and, in doing so, became the first humanoid robot in space. Its capabilities are presently being tested and expanded to increase its usefulness to the crew. Current work on R2 includes the addition of a mobility platform to allow the robot to complete tasks (such as cleaning, maintenance, or simple construction activities) both inside and outside of the ISS. To support these new activities, R2's software architecture is being developed to provide efficient ways of programming robust and autonomous behavior. In particular, a multi-tiered software architecture is proposed that combines principles of low-level feedback control with higher-level planners that accomplish behavioral goals at the task level given the run-time context, user constraints, the health of the system, and so on. The proposed architecture is shown in Figure 2. At the lowest-level, the resource level, there exists the various sensory and motor signals available to the system. The sensory signals for a robot such as R2 include multiple channels of force/torque data, joint or Cartesian positions calculated through the robot's proprioception, and signals derived from objects observable by its cameras.
Nejdl, Lukas; Kudr, Jiri; Cihalova, Kristyna; Chudobova, Dagmar; Zurek, Michal; Zalud, Ludek; Kopecny, Lukas; Burian, Frantisek; Ruttkay-Nedecky, Branislav; Krizkova, Sona; Konecna, Marie; Hynek, David; Kopel, Pavel; Prasek, Jan; Adam, Vojtech; Kizek, Rene
2014-08-01
Remote-controlled robotic systems are being used for analysis of various types of analytes in hostile environment including those called extraterrestrial. The aim of our study was to develop a remote-controlled robotic platform (ORPHEUS-HOPE) for bacterial detection. For the platform ORPHEUS-HOPE a 3D printed flow chip was designed and created with a culture chamber with volume 600 μL. The flow rate was optimized to 500 μL/min. The chip was tested primarily for detection of 1-naphthol by differential pulse voltammetry with detection limit (S/N = 3) as 20 nM. Further, the way how to capture bacteria was optimized. To capture bacterial cells (Staphylococcus aureus), maghemite nanoparticles (1 mg/mL) were prepared and modified with collagen, glucose, graphene, gold, hyaluronic acid, and graphene with gold or graphene with glucose (20 mg/mL). The most up to 50% of the bacteria were captured by graphene nanoparticles modified with glucose. The detection limit of the whole assay, which included capturing of bacteria and their detection under remote control operation, was estimated as 30 bacteria per μL. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Falotico, Egidio; Vannucci, Lorenzo; Ambrosano, Alessandro; Albanese, Ugo; Ulbrich, Stefan; Vasquez Tieck, Juan Camilo; Hinkel, Georg; Kaiser, Jacques; Peric, Igor; Denninger, Oliver; Cauli, Nino; Kirtay, Murat; Roennau, Arne; Klinker, Gudrun; Von Arnim, Axel; Guyot, Luc; Peppicelli, Daniel; Martínez-Cañada, Pablo; Ros, Eduardo; Maier, Patrick; Weber, Sandro; Huber, Manuel; Plecher, David; Röhrbein, Florian; Deser, Stefan; Roitberg, Alina; van der Smagt, Patrick; Dillman, Rüdiger; Levi, Paul; Laschi, Cecilia; Knoll, Alois C.; Gewaltig, Marc-Oliver
2017-01-01
Combined efforts in the fields of neuroscience, computer science, and biology allowed to design biologically realistic models of the brain based on spiking neural networks. For a proper validation of these models, an embodiment in a dynamic and rich sensory environment, where the model is exposed to a realistic sensory-motor task, is needed. Due to the complexity of these brain models that, at the current stage, cannot deal with real-time constraints, it is not possible to embed them into a real-world task. Rather, the embodiment has to be simulated as well. While adequate tools exist to simulate either complex neural networks or robots and their environments, there is so far no tool that allows to easily establish a communication between brain and body models. The Neurorobotics Platform is a new web-based environment that aims to fill this gap by offering scientists and technology developers a software infrastructure allowing them to connect brain models to detailed simulations of robot bodies and environments and to use the resulting neurorobotic systems for in silico experimentation. In order to simplify the workflow and reduce the level of the required programming skills, the platform provides editors for the specification of experimental sequences and conditions, environments, robots, and brain–body connectors. In addition to that, a variety of existing robots and environments are provided. This work presents the architecture of the first release of the Neurorobotics Platform developed in subproject 10 “Neurorobotics” of the Human Brain Project (HBP).1 At the current state, the Neurorobotics Platform allows researchers to design and run basic experiments in neurorobotics using simulated robots and simulated environments linked to simplified versions of brain models. We illustrate the capabilities of the platform with three example experiments: a Braitenberg task implemented on a mobile robot, a sensory-motor learning task based on a robotic controller, and a visual tracking embedding a retina model on the iCub humanoid robot. These use-cases allow to assess the applicability of the Neurorobotics Platform for robotic tasks as well as in neuroscientific experiments. PMID:28179882
Falotico, Egidio; Vannucci, Lorenzo; Ambrosano, Alessandro; Albanese, Ugo; Ulbrich, Stefan; Vasquez Tieck, Juan Camilo; Hinkel, Georg; Kaiser, Jacques; Peric, Igor; Denninger, Oliver; Cauli, Nino; Kirtay, Murat; Roennau, Arne; Klinker, Gudrun; Von Arnim, Axel; Guyot, Luc; Peppicelli, Daniel; Martínez-Cañada, Pablo; Ros, Eduardo; Maier, Patrick; Weber, Sandro; Huber, Manuel; Plecher, David; Röhrbein, Florian; Deser, Stefan; Roitberg, Alina; van der Smagt, Patrick; Dillman, Rüdiger; Levi, Paul; Laschi, Cecilia; Knoll, Alois C; Gewaltig, Marc-Oliver
2017-01-01
Combined efforts in the fields of neuroscience, computer science, and biology allowed to design biologically realistic models of the brain based on spiking neural networks. For a proper validation of these models, an embodiment in a dynamic and rich sensory environment, where the model is exposed to a realistic sensory-motor task, is needed. Due to the complexity of these brain models that, at the current stage, cannot deal with real-time constraints, it is not possible to embed them into a real-world task. Rather, the embodiment has to be simulated as well. While adequate tools exist to simulate either complex neural networks or robots and their environments, there is so far no tool that allows to easily establish a communication between brain and body models. The Neurorobotics Platform is a new web-based environment that aims to fill this gap by offering scientists and technology developers a software infrastructure allowing them to connect brain models to detailed simulations of robot bodies and environments and to use the resulting neurorobotic systems for in silico experimentation. In order to simplify the workflow and reduce the level of the required programming skills, the platform provides editors for the specification of experimental sequences and conditions, environments, robots, and brain-body connectors. In addition to that, a variety of existing robots and environments are provided. This work presents the architecture of the first release of the Neurorobotics Platform developed in subproject 10 "Neurorobotics" of the Human Brain Project (HBP). At the current state, the Neurorobotics Platform allows researchers to design and run basic experiments in neurorobotics using simulated robots and simulated environments linked to simplified versions of brain models. We illustrate the capabilities of the platform with three example experiments: a Braitenberg task implemented on a mobile robot, a sensory-motor learning task based on a robotic controller, and a visual tracking embedding a retina model on the iCub humanoid robot. These use-cases allow to assess the applicability of the Neurorobotics Platform for robotic tasks as well as in neuroscientific experiments.
Daluja, Sachin; Golenberg, Lavie; Cao, Alex; Pandya, Abhilash K; Auner, Gregory W; Klein, Michael D
2009-01-01
Robotic surgery has gradually gained acceptance due to its numerous advantages such as tremor filtration, increased dexterity and motion scaling. There remains, however, a significant scope for improvement, especially in the areas of surgeon-robot interface and autonomous procedures. Previous studies have attempted to identify factors affecting a surgeon's performance in a master-slave robotic system by tracking hand movements. These studies relied on conventional optical or magnetic tracking systems, making their use impracticable in the operating room. This study concentrated on building an intrinsic movement capture platform using microcontroller based hardware wired to a surgical robot. Software was developed to enable tracking and analysis of hand movements while surgical tasks were performed. Movement capture was applied towards automated movements of the robotic instruments. By emulating control signals, recorded surgical movements were replayed by the robot's end-effectors. Though this work uses a surgical robot as the platform, the ideas and concepts put forward are applicable to telerobotic systems in general.
NASA Astrophysics Data System (ADS)
Herbrechtsmeier, Stefan; Witkowski, Ulf; Rückert, Ulrich
Mobile robots become more and more important in current research and education. Especially small ’on the table’ experiments attract interest, because they need no additional or special laboratory equipments. In this context platforms are desirable which are small, simple to access and relatively easy to program. An additional powerful information processing unit is advantageous to simplify the implementation of algorithm and the porting of software from desktop computers to the robot platform. In this paper we present a new versatile miniature robot that can be ideally used for research and education. The small size of the robot of about 9 cm edge length, its robust drive and its modular structure make the robot a general device for single and multi-robot experiments executed ’on the table’. For programming and evaluation the robot can be wirelessly connected via Bluetooth or WiFi. The operating system of the robot is based on the standard Linux kernel and the GNU C standard library. A player/stage model eases software development and testing.
NASA Technical Reports Server (NTRS)
Colombano, Silvano P.; Kirchner, Frank; Spenneberg, Dirk; Starman, Jared; Hanratty, James; Kovsmeyer, David (Technical Monitor)
2003-01-01
NASA needs autonomous robotic exploration of difficult (rough and/or steep) scientifically interesting Martian terrains. Concepts involving distributed autonomy for cooperative robotic exploration are key to enabling new scientific objectives in robotic missions. We propose to utilize a legged robot as an adjunct scout to a rover for access to difficult - scientifically interesting - terrains (rocky areas, slopes, cliffs). Our final mission scenario involves the Ames rover platform "K9" and Scorpion acting together to explore a steep cliff, with the Scorpion robot rappelling down using the K9 as an anchor as well as mission planner and executive. Cooperation concepts, including wheeled rappelling robots have been proposed before. Now we propose to test the combined advantages of a wheeled vehicle with a legged scout as well as the advantages of merging of high level planning and execution with biologically inspired, behavior based robotics. We propose to use the 8-legged, multifunctional autonomous robot platform Scorpion that is currently capable of: Walking on different terrains (rocks, sand, grass, ...). Perceiving its environment and modifying its behavioral pattern accordingly. These capabilities would be extended to enable the Scorpion to: communicate and cooperate with a partner robot; climb over rocks, rubble piles, and objects with structural features. This will be done in the context of exploration of rough terrains in the neighborhood of the rover, but inaccessible to it, culminating in the added capability of rappelling down a steep cliff for both vertical and horizontal terrain observation.
Rapid Prototyping Platform for Robotics Applications
ERIC Educational Resources Information Center
Hwang, Kao-Shing; Hsiao, Wen-Hsu; Shing, Gaung-Ting; Chen, Kim-Joan
2011-01-01
For the past several years, a team in the Department of Electrical Engineering (EE), National Chung Cheng University, Taiwan, has been establishing a pedagogical approach to embody embedded systems in the context of robotics. To alleviate the burden on students in the robotics curriculum in their junior and senior years, a training platform on…
Robotics in invasive cardiac electrophysiology.
Shurrab, Mohammed; Schilling, Richard; Gang, Eli; Khan, Ejaz M; Crystal, Eugene
2014-07-01
Robotic systems allow for mapping and ablation of different arrhythmia substrates replacing hand maneuvering of intracardiac catheters with machine steering. Currently there are four commercially available robotic systems. Niobe magnetic navigation system (Stereotaxis Inc., St Louis, MO) and Sensei robotic navigation system (Hansen Medical Inc., Mountain View, CA) have an established platform with at least 10 years of clinical studies looking at their efficacy and safety. AMIGO Remote Catheter System (Catheter Robotics, Inc., Mount Olive, NJ) and Catheter Guidance Control and Imaging (Magnetecs, Inglewood, CA) are in the earlier phases of implementations with ongoing feasibility and some limited clinical studies. This review discusses the advantages and limitations related to each existing system and highlights the ideal futuristic robotic system that may include the most promising features of the current ones.
Novel Robotic Platforms for the Accurate Sampling and Monitoring of Water Columns
Fernández, Roemi; Apalkov, Andrey; Armada, Manuel
2016-01-01
The hydrosphere contains large amounts of suspended particulate material, including living and non-living material that can be found in different compositions and concentrations, and that can be composed of particles of different sizes. The study of this particulate material along water columns plays a key role in understanding a great variety of biological, chemical, and physical processes. This paper presents the conceptual design of two patented robotic platforms that have been conceived for carrying out studies of water properties at desired depths with very high accuracy in the vertical positioning. One platform has been specially designed for operating near to a reservoir bottom, while the other is intended to be used near the surface. Several experimental tests have been conducted in order to validate the proposed approaches. PMID:27589745
2015-05-31
ISS043E276404 (05/31/2015) --- Expedition 43 Commander and NASA astronaut Terry Virts is seen here in the International Space Station’s Cupola module, a 360 degree Earth and space viewing platform. The module also contains a robotic workstation for controlling the station’s main robotic arm, Canadarm2, which is used for a variety of operations including the remote grappling of visiting cargo vehicles.
I want what you've got: Cross platform portabiity and human-robot interaction assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Julie L. Marble, Ph.D.*.; Douglas A. Few; David J. Bruemmer
2005-08-01
Human-robot interaction is a subtle, yet critical aspect of design that must be assessed during the development of both the human-robot interface and robot behaviors if the human-robot team is to effectively meet the complexities of the task environment. Testing not only ensures that the system can successfully achieve the tasks for which it was designed, but more importantly, usability testing allows the designers to understand how humans and robots can, will, and should work together to optimize workload distribution. A lack of human-centered robot interface design, the rigidity of sensor configuration, and the platform-specific nature of research robot developmentmore » environments are a few factors preventing robotic solutions from reaching functional utility in real word environments. Often the difficult engineering challenge of implementing adroit reactive behavior, reliable communication, trustworthy autonomy that combines with system transparency and usable interfaces is overlooked in favor of other research aims. The result is that many robotic systems never reach a level of functional utility necessary even to evaluate the efficacy of the basic system, much less result in a system that can be used in a critical, real-world environment. Further, because control architectures and interfaces are often platform specific, it is difficult or even impossible to make usability comparisons between them. This paper discusses the challenges inherent to the conduct of human factors testing of variable autonomy control architectures and across platforms within a complex, real-world environment. It discusses the need to compare behaviors, architectures, and interfaces within a structured environment that contains challenging real-world tasks, and the implications for system acceptance and trust of autonomous robotic systems for how humans and robots interact in true interactive teams.« less
Hamad, Ahmad; Zenati, Mazen S; Nguyen, Trang K; Hogg, Melissa E; Zeh, Herbert J; Zureikat, Amer H
2018-02-01
The application of minimally invasive surgery to chronic pancreatitis (CP) procedures is uncommon. Our objective was to report the safety and feasibility of the robotic approach in the treatment of surgical sequelae of CP, and provide insights into the technique, tricks, and pitfalls associated with the application of robotics to this challenging disease entity. A retrospective review of a prospectively maintained database of patients undergoing robotic-assisted resections and/or drainage procedures for CP at the University of Pittsburgh between May 2009 and January 2017 was performed. A video of a robotic Frey procedure is also shown. Of 812 robotic pancreatic resections and reconstructions 39 were for CP indications. These included 11 total pancreatectomies [with and without auto islet transplantation], 8 Puestow procedures, 4 Frey procedures, 6 pancreaticoduodenectomies, and 10 distal pancreatectomies. Median age was 49, and 41% of the patients were female. The most common etiology for CP was idiopathic pancreatitis (n = 16, 46%). Median operative time was 324 min with a median estimated blood loss of 250 ml. None of the patients required conversion to laparotomy. A Clavien III-IV complication rate was experienced by 5 (13%) patients, including one reoperation. Excluding the eleven patients who underwent TP, rate of clinically relevant postoperative pancreatic fistula was 7% (Grade B = 2, Grade C = 0). No 30 or 90 day mortalities were recorded. The median length of hospital stay was 7 days. Use of the robotic platform is safe and feasible when tackling complex pancreatic resections for sequelae of chronic pancreatitis.
Technological advances in robotic-assisted laparoscopic surgery.
Tan, Gerald Y; Goel, Raj K; Kaouk, Jihad H; Tewari, Ashutosh K
2009-05-01
In this article, the authors describe the evolution of urologic robotic systems and the current state-of-the-art features and existing limitations of the da Vinci S HD System (Intuitive Surgical, Inc.). They then review promising innovations in scaling down the footprint of robotic platforms, the early experience with mobile miniaturized in vivo robots, advances in endoscopic navigation systems using augmented reality technologies and tracking devices, the emergence of technologies for robotic natural orifice transluminal endoscopic surgery and single-port surgery, advances in flexible robotics and haptics, the development of new virtual reality simulator training platforms compatible with the existing da Vinci system, and recent experiences with remote robotic surgery and telestration.
Task decomposition for a multilimbed robot to work in reachable but unorientable space
NASA Technical Reports Server (NTRS)
Su, Chau; Zheng, Yuan F.
1991-01-01
Robot manipulators installed on legged mobile platforms are suggested for enlarging robot workspace. To plan the motion of such a system, the arm-platform motion coordination problem is raised, and a task decomposition is proposed to solve the problem. A given task described by the destination position and orientation of the end effector is decomposed into subtasks for arm manipulation and for platform configuration, respectively. The former is defined as the end-effector position and orientation with respect to the platform, and the latter as the platform position and orientation in the base coordinates. Three approaches are proposed for the task decomposition. The approaches are also evaluated in terms of the displacements, from which an optimal approach can be selected.
Autonomous robotic platforms for locating radio sources buried under rubble
NASA Astrophysics Data System (ADS)
Tasu, A. S.; Anchidin, L.; Tamas, R.; Paun, M.; Danisor, A.; Petrescu, T.
2016-12-01
This paper deals with the use of autonomous robotic platforms able to locate radio signal sources such as mobile phones, buried under collapsed buildings as a result of earthquakes, natural disasters, terrorism, war, etc. This technique relies on averaging position data resulting from a propagation model implemented on the platform and the data acquired by robotic platforms at the disaster site. That allows us to calculate the approximate position of radio sources buried under the rubble. Based on measurements, a radio map of the disaster site is made, very useful for locating victims and for guiding specific rubble lifting machinery, by assuming that there is a victim next to a mobile device detected by the robotic platform; by knowing the approximate position, the lifting machinery does not risk to further hurt the victims. Moreover, by knowing the positions of the victims, the reaction time is decreased, and the chances of survival for the victims buried under the rubble, are obviously increased.
Dynamics and control of cable-suspended parallel robots for giant telescopes
NASA Astrophysics Data System (ADS)
Zhuang, Peng; Yao, Zhengqiu
2006-06-01
A cable-suspended parallel robot utilizes the basic idea of Stewart platform but replaces parallel links with cables and linear actuators with winches. It has many advantages over a conventional crane. The concept of applying a cable-suspended parallel robot into the construction and maintenance of giant telescope is presented in this paper. Compared with the mass and travel of the moving platform of the robot, the mass and deformation of the cables can be disregarded. Based on the premises, the kinematic and dynamic models of the robot are built. Through simulation, the inertia and gravity of moving platform are found to have dominant effect on the dynamic characteristic of the robot, while the dynamics of actuators can be disregarded, so a simplified dynamic model applicable to real-time control is obtained. Moreover, according to control-law partitioning approach and optimization theory, a workspace model-based controller is proposed considering the characteristic that the cables can only pull but not push. The simulation results indicate that the controller possesses good accuracy in pose and speed tracking, and keeps the cables in reliable tension by maintaining the minimum strain above a certain given value, thus ensures smooth motion and accurate localization for moving platform.
Urban search mobile platform modeling in hindered access conditions
NASA Astrophysics Data System (ADS)
Barankova, I. I.; Mikhailova, U. V.; Kalugina, O. B.; Barankov, V. V.
2018-05-01
The article explores the control system simulation and the design of the experimental model of the rescue robot mobile platform. The functional interface, a structural functional diagram of the mobile platform control unit, and a functional control scheme for the mobile platform of secure robot were modeled. The task of design a mobile platform for urban searching in hindered access conditions is realized through the use of a mechanical basis with a chassis and crawler drive, a warning device, human heat sensors and a microcontroller based on Arduino platforms.
BILL-E: Robotic Platform for Locomotion and Manipulation of Lightweight Space Structures
NASA Technical Reports Server (NTRS)
Jenett, Benjamin; Cheung, Kenneth
2017-01-01
We describe a robotic platform for traversing and manipulating a modular 3D lattice structure. The robot is designed to operate within a specifically structured environment, which enables low numbers of degrees of freedom (DOF) compared to robots performing comparable tasks in an unstructured environment. This allows for simple controls, as well as low mass and cost. This approach, designing the robot relative to the local environment in which it operates, results in a type of robot we call a "relative robot." We describe a bipedal robot that can locomote across a periodic lattice structure, as well as being able to handle, manipulate, and transport building block parts that compose the lattice structure. Based on a general inchworm design, the robot has added functionality for traveling over and operating on a host structure.
Introduction to autonomous mobile robotics using Lego Mindstorms NXT
NASA Astrophysics Data System (ADS)
Akın, H. Levent; Meriçli, Çetin; Meriçli, Tekin
2013-12-01
Teaching the fundamentals of robotics to computer science undergraduates requires designing a well-balanced curriculum that is complemented with hands-on applications on a platform that allows rapid construction of complex robots, and implementation of sophisticated algorithms. This paper describes such an elective introductory course where the Lego Mindstorms NXT kits are used as the robot platform. The aims, scope and contents of the course are presented, and the design of the laboratory sessions as well as the term projects, which address several core problems of robotics and artificial intelligence simultaneously, are explained in detail.
Controlling multiple security robots in a warehouse environment
NASA Technical Reports Server (NTRS)
Everett, H. R.; Gilbreath, G. A.; Heath-Pastore, T. A.; Laird, R. T.
1994-01-01
The Naval Command Control and Ocean Surveillance Center (NCCOSC) has developed an architecture to provide coordinated control of multiple autonomous vehicles from a single host console. The multiple robot host architecture (MRHA) is a distributed multiprocessing system that can be expanded to accommodate as many as 32 robots. The initial application will employ eight Cybermotion K2A Navmaster robots configured as remote security platforms in support of the Mobile Detection Assessment and Response System (MDARS) Program. This paper discusses developmental testing of the MRHA in an operational warehouse environment, with two actual and four simulated robotic platforms.
Hinaut, Xavier; Petit, Maxime; Pointeau, Gregoire; Dominey, Peter Ford
2014-01-01
One of the principal functions of human language is to allow people to coordinate joint action. This includes the description of events, requests for action, and their organization in time. A crucial component of language acquisition is learning the grammatical structures that allow the expression of such complex meaning related to physical events. The current research investigates the learning of grammatical constructions and their temporal organization in the context of human-robot physical interaction with the embodied sensorimotor humanoid platform, the iCub. We demonstrate three noteworthy phenomena. First, a recurrent network model is used in conjunction with this robotic platform to learn the mappings between grammatical forms and predicate-argument representations of meanings related to events, and the robot's execution of these events in time. Second, this learning mechanism functions in the inverse sense, i.e., in a language production mode, where rather than executing commanded actions, the robot will describe the results of human generated actions. Finally, we collect data from naïve subjects who interact with the robot via spoken language, and demonstrate significant learning and generalization results. This allows us to conclude that such a neural language learning system not only helps to characterize and understand some aspects of human language acquisition, but also that it can be useful in adaptive human-robot interaction.
Hinaut, Xavier; Petit, Maxime; Pointeau, Gregoire; Dominey, Peter Ford
2014-01-01
One of the principal functions of human language is to allow people to coordinate joint action. This includes the description of events, requests for action, and their organization in time. A crucial component of language acquisition is learning the grammatical structures that allow the expression of such complex meaning related to physical events. The current research investigates the learning of grammatical constructions and their temporal organization in the context of human-robot physical interaction with the embodied sensorimotor humanoid platform, the iCub. We demonstrate three noteworthy phenomena. First, a recurrent network model is used in conjunction with this robotic platform to learn the mappings between grammatical forms and predicate-argument representations of meanings related to events, and the robot's execution of these events in time. Second, this learning mechanism functions in the inverse sense, i.e., in a language production mode, where rather than executing commanded actions, the robot will describe the results of human generated actions. Finally, we collect data from naïve subjects who interact with the robot via spoken language, and demonstrate significant learning and generalization results. This allows us to conclude that such a neural language learning system not only helps to characterize and understand some aspects of human language acquisition, but also that it can be useful in adaptive human-robot interaction. PMID:24834050
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Muroyama, Masanori
2017-01-01
Robot tactile sensation can enhance human–robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as “sensor platform LSI”) as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated. PMID:29061954
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Nonomura, Yutaka; Muroyama, Masanori
2017-08-28
Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as "sensor platform LSI") as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated.
Versteeg, Roelof J; Few, Douglas A; Kinoshita, Robert A; Johnson, Doug; Linda, Ondrej
2015-02-24
Methods, computer readable media, and apparatuses provide robotic explosive hazard detection. A robot intelligence kernel (RIK) includes a dynamic autonomy structure with two or more autonomy levels between operator intervention and robot initiative A mine sensor and processing module (ESPM) operating separately from the RIK perceives environmental variables indicative of a mine using subsurface perceptors. The ESPM processes mine information to determine a likelihood of a presence of a mine. A robot can autonomously modify behavior responsive to an indication of a detected mine. The behavior is modified between detection of mines, detailed scanning and characterization of the mine, developing mine indication parameters, and resuming detection. Real time messages are passed between the RIK and the ESPM. A combination of ESPM bound messages and RIK bound messages cause the robot platform to switch between modes including a calibration mode, the mine detection mode, and the mine characterization mode.
Versteeg, Roelof J.; Few, Douglas A.; Kinoshita, Robert A.; Johnson, Douglas; Linda, Ondrej
2015-12-15
Methods, computer readable media, and apparatuses provide robotic explosive hazard detection. A robot intelligence kernel (RIK) includes a dynamic autonomy structure with two or more autonomy levels between operator intervention and robot initiative A mine sensor and processing module (ESPM) operating separately from the RIK perceives environmental variables indicative of a mine using subsurface perceptors. The ESPM processes mine information to determine a likelihood of a presence of a mine. A robot can autonomously modify behavior responsive to an indication of a detected mine. The behavior is modified between detection of mines, detailed scanning and characterization of the mine, developing mine indication parameters, and resuming detection. Real time messages are passed between the RIK and the ESPM. A combination of ESPM bound messages and RIK bound messages cause the robot platform to switch between modes including a calibration mode, the mine detection mode, and the mine characterization mode.
Space Technology Game Changing Development Astrobee: ISS Robotic Free Flyer
NASA Technical Reports Server (NTRS)
Bualat, Maria Gabriele
2015-01-01
Astrobee will be a free-flying robot that can be remotely operated by astronauts in space or by mission controllers on the ground. NASA is developing Astrobee to perform a variety of intravehicular activities (IVA), such as operations inside the International Space Station. These IVA tasks include interior environmental surveys (e.g., sound level measurement), inventory and mobile camera work. Astrobee will also serve as a platform for robotics research in microgravity. Here we describe the Astrobee project objectives, concept of operations, development approach, key challenges, and initial design.
Wang, Tianmiao; Wu, Yao; Liang, Jianhong; Han, Chenhao; Chen, Jiao; Zhao, Qiteng
2015-04-24
Skid-steering mobile robots are widely used because of their simple mechanism and robustness. However, due to the complex wheel-ground interactions and the kinematic constraints, it is a challenge to understand the kinematics and dynamics of such a robotic platform. In this paper, we develop an analysis and experimental kinematic scheme for a skid-steering wheeled vehicle based-on a laser scanner sensor. The kinematics model is established based on the boundedness of the instantaneous centers of rotation (ICR) of treads on the 2D motion plane. The kinematic parameters (the ICR coefficient , the path curvature variable and robot speed ), including the effect of vehicle dynamics, are introduced to describe the kinematics model. Then, an exact but costly dynamic model is used and the simulation of this model's stationary response for the vehicle shows a qualitative relationship for the specified parameters and . Moreover, the parameters of the kinematic model are determined based-on a laser scanner localization experimental analysis method with a skid-steering robotic platform, Pioneer P3-AT. The relationship between the ICR coefficient and two physical factors is studied, i.e., the radius of the path curvature and the robot speed . An empirical function-based relationship between the ICR coefficient of the robot and the path parameters is derived. To validate the obtained results, it is empirically demonstrated that the proposed kinematics model significantly improves the dead-reckoning performance of this skid-steering robot.
Review of the role of robotic surgery in male infertility.
Etafy, Mohamed; Gudeloglu, Ahmet; Brahmbhatt, Jamin V; Parekattil, Sijo J
2018-03-01
To present the current state of the art in various robot-assisted microsurgical procedures in male infertility and review the latest literature, as the technology in infertility procedures has substantially developed since the incorporation of the Vinci® robotic platform (Intuitive Surgical, Inc., Sunnyvale, CA, USA). The search strategy in this review was conducted in accordance with Cochrane guidelines and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A search strategy was conducted in MEDLINE, PubMed and the Cochrane electronic databases (from 2000 to present) to identify studies that included both robotic and male infertility. In all, 23 studies were found, 12 of which met our inclusion criteria. Articles were excluded if the study did not include both male infertility and robotics. Robotic assistance for microsurgical procedures in male infertility appears to be safe and feasible. It has several advantages including elimination of tremor, multi-view magnification, additional instrument arms, and enhanced dexterity with articulating instrument arms. It also has a short learning curve with a small skin incision. However, larger, prospective studies are needed to establish the clinical benefits over standard microsurgery.
A modular wireless in vivo surgical robot with multiple surgical applications.
Hawks, Jeff A; Rentschler, Mark E; Farritor, Shane; Oleynikov, Dmitry; Platt, Stephen R
2009-01-01
The use of miniature in vivo robots that fit entirely inside the peritoneal cavity represents a novel approach to laparoscopic surgery. Previous work demonstrates that both mobile and fixed-based robots can successfully operate inside the abdominal cavity. A modular wireless mobile platform has also been developed to provide surgical vision and task assistance. This paper presents an overview of recent test results of several possible surgical applications that can be accommodated by this modular platform. Applications such as a biopsy grasper, stapler and clamp, video camera, and physiological sensors have been integrated into the wireless platform and tested in vivo in a porcine model. The modular platform facilitates rapid development and conversion from one type of surgical task assistance to another. These self-contained surgical devices are much more transportable and much lower in cost than current robotic surgical assistants. These devices could ultimately be carried and deployed by non-medical personnel at the site of an injury. A remotely located surgeon could use these robots to provide critical first response medical intervention.
Investigation of human-robot interface performance in household environments
NASA Astrophysics Data System (ADS)
Cremer, Sven; Mirza, Fahad; Tuladhar, Yathartha; Alonzo, Rommel; Hingeley, Anthony; Popa, Dan O.
2016-05-01
Today, assistive robots are being introduced into human environments at an increasing rate. Human environments are highly cluttered and dynamic, making it difficult to foresee all necessary capabilities and pre-program all desirable future skills of the robot. One approach to increase robot performance is semi-autonomous operation, allowing users to intervene and guide the robot through difficult tasks. To this end, robots need intuitive Human-Machine Interfaces (HMIs) that support fine motion control without overwhelming the operator. In this study we evaluate the performance of several interfaces that balance autonomy and teleoperation of a mobile manipulator for accomplishing several household tasks. Our proposed HMI framework includes teleoperation devices such as a tablet, as well as physical interfaces in the form of piezoresistive pressure sensor arrays. Mobile manipulation experiments were performed with a sensorized KUKA youBot, an omnidirectional platform with a 5 degrees of freedom (DOF) arm. The pick and place tasks involved navigation and manipulation of objects in household environments. Performance metrics included time for task completion and position accuracy.
Tiong, Ho Yee; Goh, Benjamin Yen Seow; Chiong, Edmund; Tan, Lincoln Guan Lim; Vathsala, Anatharaman
2018-03-31
Robotic-assisted kidney transplantation (RKT) with the Da Vinci (Intuitive, USA) platform has been recently developed to improve outcomes by decreasing surgical site complications and morbidity, especially in obese patients. This potential paradigm shift in the surgical technique of kidney transplantation is performed in only a few centers. For wider adoption of this high stake complex operation, we aimed to develop a procedure-specific simulation platform in a porcine model for the training of robotic intracorporeal vascular anastomosis and evaluating vascular anastomoses patency. This paper describes the requirements and steps developed for the above training purpose. Over a series of four animal ethics' approved experiments, the technique of robotic-assisted laparoscopic autotransplantation of the kidney was developed in Amsterdam live pigs (60-70 kg). The surgery was based around the vascular anastomosis technique described by Menon et al. This non-survival porcine training model is targeted at transplant surgeons with robotic surgery experience. Under general anesthesia, each pig was placed in lateral decubitus position with the placement of one robotic camera port, two robotic 8 mm ports and one assistant port. Robotic docking over the pig posteriorly was performed. The training platform involved the following procedural steps. First, ipsilateral iliac vessel dissection was performed. Second, robotic-assisted laparoscopic donor nephrectomy was performed with in situ perfusion of the kidney with cold Hartmann's solution prior to complete division of the hilar vessels, ureter and kidney mobilization. Thirdly, the kidney was either kept in situ for orthotopic autotransplantation or mobilized to the pelvis and orientated for the vascular anastomosis, which was performed end to end or end to side after vessel loop clamping of the iliac vessels, respectively, using 6/0 Gore-Tex sutures. Following autotransplantation and release of vessel loops, perfusion of the graft was assessed using intraoperative indocyanine green imaging and monitoring urine output after unclamping. This training platform demonstrates adequate face and content validity. With practice, arterial anastomotic time could be improved, showing its construct validity. This porcine training model can be useful in providing training for robotic intracorporeal vascular anastomosis and may facilitate confident translation into a transplant human recipient.
NASA Astrophysics Data System (ADS)
Meng, Qizhi; Xie, Fugui; Liu, Xin-Jun
2018-06-01
This paper deals with the conceptual design, kinematic analysis and workspace identification of a novel four degrees-of-freedom (DOFs) high-speed spatial parallel robot for pick-and-place operations. The proposed spatial parallel robot consists of a base, four arms and a 1½ mobile platform. The mobile platform is a major innovation that avoids output singularity and offers the advantages of both single and double platforms. To investigate the characteristics of the robot's DOFs, a line graph method based on Grassmann line geometry is adopted in mobility analysis. In addition, the inverse kinematics is derived, and the constraint conditions to identify the correct solution are also provided. On the basis of the proposed concept, the workspace of the robot is identified using a set of presupposed parameters by taking input and output transmission index as the performance evaluation criteria.
Towards Autonomous Inspection of Space Systems Using Mobile Robotic Sensor Platforms
NASA Technical Reports Server (NTRS)
Wong, Edmond; Saad, Ashraf; Litt, Jonathan S.
2007-01-01
The space transportation systems required to support NASA's Exploration Initiative will demand a high degree of reliability to ensure mission success. This reliability can be realized through autonomous fault/damage detection and repair capabilities. It is crucial that such capabilities are incorporated into these systems since it will be impractical to rely upon Extra-Vehicular Activity (EVA), visual inspection or tele-operation due to the costly, labor-intensive and time-consuming nature of these methods. One approach to achieving this capability is through the use of an autonomous inspection system comprised of miniature mobile sensor platforms that will cooperatively perform high confidence inspection of space vehicles and habitats. This paper will discuss the efforts to develop a small scale demonstration test-bed to investigate the feasibility of using autonomous mobile sensor platforms to perform inspection operations. Progress will be discussed in technology areas including: the hardware implementation and demonstration of robotic sensor platforms, the implementation of a hardware test-bed facility, and the investigation of collaborative control algorithms.
Accuracy Analysis of a Low-Cost Platform for Positioning and Navigation
NASA Astrophysics Data System (ADS)
Hofmann, S.; Kuntzsch, C.; Schulze, M. J.; Eggert, D.; Sester, M.
2012-07-01
This paper presents an accuracy analysis of a platform based on low-cost components for landmark-based navigation intended for research and teaching purposes. The proposed platform includes a LEGO MINDSTORMS NXT 2.0 kit, an Android-based Smartphone as well as a compact laser scanner Hokuyo URG-04LX. The robot is used in a small indoor environment, where GNSS is not available. Therefore, a landmark map was produced in advance, with the landmark positions provided to the robot. All steps of procedure to set up the platform are shown. The main focus of this paper is the reachable positioning accuracy, which was analyzed in this type of scenario depending on the accuracy of the reference landmarks and the directional and distance measuring accuracy of the laser scanner. Several experiments were carried out, demonstrating the practically achievable positioning accuracy. To evaluate the accuracy, ground truth was acquired using a total station. These results are compared to the theoretically achievable accuracies and the laser scanner's characteristics.
Maurice, Matthew J; Ramirez, Daniel; Kaouk, Jihad H
2017-04-01
Robotic single-site retroperitoneal renal surgery has the potential to minimize the morbidity of standard transperitoneal and multiport approaches. Traditionally, technological limitations of non-purpose-built robotic platforms have hindered the application of this approach. To assess the feasibility of retroperitoneal renal surgery using a new purpose-built robotic single-port surgical system. This was a preclinical study using three male cadavers to assess the feasibility of the da Vinci SP1098 surgical system for robotic laparoendoscopic single-site (R-LESS) retroperitoneal renal surgery. We used the SP1098 to perform retroperitoneal R-LESS radical nephrectomy (n=1) and bilateral partial nephrectomy (n=4) on the anterior and posterior surfaces of the kidney. Improvements unique to this system include enhanced optics and intelligent instrument arm control. Access was obtained 2cm anterior and inferior to the tip of the 12th rib using a novel 2.5-cm robotic single-port system that accommodates three double-jointed articulating robotic instruments, an articulating camera, and an assistant port. The primary outcome was the technical feasibility of the procedures, as measured by the need for conversion to standard techniques, intraoperative complications, and operative times. All cases were completed without the need for conversion. There were no intraoperative complications. The operative time was 100min for radical nephrectomy, and the mean operative time was 91.8±18.5min for partial nephrectomy. Limitations include the preclinical model, the small sample size, and the lack of a control group. Single-site retroperitoneal renal surgery is feasible using the latest-generation SP1098 robotic platform. While the potential of the SP1098 appears promising, further study is needed for clinical evaluation of this investigational technology. In an experimental model, we used a new robotic system to successfully perform major surgery on the kidney through a single small incision without entering the abdomen. Copyright © 2016. Published by Elsevier B.V.
Total robotic pancreaticoduodenectomy: a systematic review of the literature.
Kornaropoulos, Michail; Moris, Demetrios; Beal, Eliza W; Makris, Marinos C; Mitrousias, Apostolos; Petrou, Athanasios; Felekouras, Evangelos; Michalinos, Adamantios; Vailas, Michail; Schizas, Dimitrios; Papalampros, Alexandros
2017-11-01
Pancreaticoduodenectomy (PD) is a complex operation with high perioperative morbidity and mortality, even in the highest volume centers. Since the development of the robotic platform, the number of reports on robotic-assisted pancreatic surgery has been on the rise. This article reviews the current state of completely robotic PD. A systematic literature search was performed including studies published between January 2000 and July 2016 reporting PDs in which all procedural steps (dissection, resection and reconstruction) were performed robotically. Thirteen studies met the inclusion criteria, including a total of 738 patients. Data regarding perioperative outcomes such as operative time, blood loss, mortality, morbidity, conversion and oncologic outcomes were analyzed. No major differences were observed in mortality, morbidity and oncologic parameters, between robotic and non-robotic approaches. However, operative time was longer in robotic PD, whereas the estimated blood loss was lower. The conversion rate to laparotomy was 6.5-7.8%. Robotic PD is feasible and safe in high-volume institutions, where surgeons are experienced and medical staff are appropriately trained. Randomized controlled trials are required to further investigate outcomes of robotic PD. Additionally, cost analysis and data on long-term oncologic outcomes are needed to evaluate cost-effectiveness of the robotic approach in comparison with the open technique.
Autonomous Mobile Platform for Research in Cooperative Robotics
NASA Technical Reports Server (NTRS)
Daemi, Ali; Pena, Edward; Ferguson, Paul
1998-01-01
This paper describes the design and development of a platform for research in cooperative mobile robotics. The structure and mechanics of the vehicles are based on R/C cars. The vehicle is rendered mobile by a DC motor and servo motor. The perception of the robot's environment is achieved using IR sensors and a central vision system. A laptop computer processes images from a CCD camera located above the testing area to determine the position of objects in sight. This information is sent to each robot via RF modem. Each robot is operated by a Motorola 68HC11E micro-controller, and all actions of the robots are realized through the connections of IR sensors, modem, and motors. The intelligent behavior of each robot is based on a hierarchical fuzzy-rule based approach.
The evolution of robotic general surgery.
Wilson, E B
2009-01-01
Surgical robotics in general surgery has a relatively short but very interesting evolution. Just as minimally invasive and laparoscopic techniques have radically changed general surgery and fractionated it into subspecialization, robotic technology is likely to repeat the process of fractionation even further. Though it appears that robotics is growing more quickly in other specialties, the changes digital platforms are causing in the general surgical arena are likely to permanently alter general surgery. This review examines the evolution of robotics in minimally invasive general surgery looking forward to a time where robotics platforms will be fundamental to elective general surgery. Learning curves and adoption techniques are explored. Foregut, hepatobiliary, endocrine, colorectal, and bariatric surgery will be examined as growth areas for robotics, as well as revealing the current uses of this technology.
Virtual reality surgical simulators- a prerequisite for robotic surgery.
Rajanbabu, Anupama; Drudi, Laura; Lau, Susie; Press, Joshua Z; Gotlieb, Walter H
2014-06-01
The field of computer assisted minimally invasive surgery is rapidly expanding worldwide, including in India. With more hospitals in India contemplating the acquisition of a robotic platform, training of robotic surgeons is becoming essential. Virtual reality simulators can be used for surgeons to become acquainted with the robotic console prior to live surgery. Our aim was to evaluate the amount of simulator training required before a surgeon first operates on the da Vinci® Surgical System. Simulations were conducted on the Intuitive Surgical's da Vinci® Robot Skill Simulator using the software obtained from Mimic Technologies. Participants included attending staff surgeons experienced in robotic surgery and novices. A set of seven activities were chosen for each participant. Based on the mean exercise score from the first attempt, staff surgeons outperformed the novices in all exercises. However, the difference in score between the staff and the novices decreased after the participants repeated the exercises and by the sixth attempt most of the novices obtained similar scores to the staff, suggesting that this might be at present the minimum set of repetitions indicated (or required) prior to performing life robotic surgery.
Open source hardware and software platform for robotics and artificial intelligence applications
NASA Astrophysics Data System (ADS)
Liang, S. Ng; Tan, K. O.; Lai Clement, T. H.; Ng, S. K.; Mohammed, A. H. Ali; Mailah, Musa; Azhar Yussof, Wan; Hamedon, Zamzuri; Yussof, Zulkifli
2016-02-01
Recent developments in open source hardware and software platforms (Android, Arduino, Linux, OpenCV etc.) have enabled rapid development of previously expensive and sophisticated system within a lower budget and flatter learning curves for developers. Using these platform, we designed and developed a Java-based 3D robotic simulation system, with graph database, which is integrated in online and offline modes with an Android-Arduino based rubbish picking remote control car. The combination of the open source hardware and software system created a flexible and expandable platform for further developments in the future, both in the software and hardware areas, in particular in combination with graph database for artificial intelligence, as well as more sophisticated hardware, such as legged or humanoid robots.
Assistive and Autonomous Breast Ultrasound Screening: Improving PPV and Reducing RSI
imaging with quantitative elastography. Major objectives achieved in this period included development of a research platform including a compliant...This report details our first year of research activity on technologies that support sonographer-supervised robotic systems for breast ultrasound
Robotic-assisted Heller myotomy: a modern technique and review of outcomes.
Afaneh, Cheguevara; Finnerty, Brendan; Abelson, Jonathan S; Zarnegar, Rasa
2015-06-01
Achalasia is a debilitating esophageal motility disorder characterized by incomplete relaxation of the lower esophageal sphincter and lack of peristalsis. Manometry is the gold standard for diagnosis and laparoscopic Heller myotomy has been the gold standard for definitive therapy. However, current advances in surgical technology have introduced the robotic platform as a viable approach for this procedure. The safety and efficacy has been clearly established with comparable operative times to laparoscopy in experienced hands. Importantly, the rate of resolution of dysphagia postoperatively is over 80% which is comparable to laparoscopic outcomes. Moreover, some literature suggests lower esophageal perforation rates utilizing the robotic platform. Nevertheless, costs remain one of the largest barriers to widespread use of the robotic platform and future studies should aim to identify strategies in cost reduction.
NASA Technical Reports Server (NTRS)
Trube, Matthew J.; Hyslop, Andrew M.; Carignan, Craig R.; Easley, Joseph W.
2012-01-01
A hardware-in-the-loop ground system was developed for simulating a robotic servicer spacecraft tracking a target satellite at short range. A relative navigation sensor package "Argon" is mounted on the end-effector of a Fanuc 430 manipulator, which functions as the base platform of the robotic spacecraft servicer. Machine vision algorithms estimate the pose of the target spacecraft, mounted on a Rotopod R-2000 platform, relay the solution to a simulation of the servicer spacecraft running in "Freespace", which performs guidance, navigation and control functions, integrates dynamics, and issues motion commands to a Fanuc platform controller so that it tracks the simulated servicer spacecraft. Results will be reviewed for several satellite motion scenarios at different ranges. Key words: robotics, satellite, servicing, guidance, navigation, tracking, control, docking.
2013-10-21
Platform for Testing a Space Robotic System to Perform Contact Tasks in Zero- Gravity Environment 5a. CONTRACT NUMBER FA9453-11-1-0306 5b...SUBJECT TERMS Microgravity, zero gravity , test platform, simulation, gravity offloading 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...4 3.3 Principle of Gravity Offloading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quintana, John P.
This paper reports on the progress toward creating semi-autonomous motion control platforms for beamline applications using the iRobot Create registered platform. The goal is to create beamline research instrumentation where the motion paths are based on the local environment rather than position commanded from a control system, have low integration costs and also be scalable and easily maintainable.
Micro-intestinal robot with wireless power transmission: design, analysis and experiment.
Shi, Yu; Yan, Guozheng; Chen, Wenwen; Zhu, Bingquan
2015-11-01
Video capsule endoscopy is a useful tool for noninvasive intestinal detection, but it is not capable of active movement; wireless power is an effective solution to this problem. The research in this paper consists of two parts: the mechanical structure which enables the robot to move smoothly inside the intestinal tract, and the wireless power supply which ensures efficiency. First, an intestinal robot with leg architectures was developed based on the Archimedes spiral, which mimics the movement of an inchworm. The spiral legs were capable of unfolding to an angle of approximately 155°, which guaranteed stability of clamping, consistency of surface pressure, and avoided the risk of puncturing the intestinal tract. Secondly, the necessary power to operate the robot was far beyond the capacity of button batteries, so a wireless power transmission (WPT) platform was developed. The design of the platform focused on power transfer efficiency and frequency stability. In addition, the safety of human tissue in the alternating electromagnetic field was also taken into consideration. Finally, the assembled robot was tested and verified with the use of the WPT platform. In the isolated intestine, the robot system successfully traveled along the intestine with an average speed of 23 mm per minute. The obtained videos displayed a resolution of 320 × 240 and a transmission rate of 30 frames per second. The WPT platform supplied up to 500 mW of energy to the robot, and achieved a power transfer efficiency of 12%. It has been experimentally verified that the intestinal robot is safe and effective as an endoscopy tool, for which wireless power is feasible. Proposals for further improving the robot and wireless power supply are provided later in this paper. Copyright © 2015 Elsevier Ltd. All rights reserved.
Manufacturing and metrology for IR conformal windows and domes
NASA Astrophysics Data System (ADS)
Ferralli, Ian; Blalock, Todd; Brunelle, Matt; Lynch, Timothy; Myer, Brian; Medicus, Kate
2017-05-01
Freeform and conformal optics have the potential to dramatically improve optical systems by enabling systems with fewer optical components, reduced aberrations, and improved aerodynamic performance. These optical components differ from standard components in their surface shape, typically a non-symmetric equation based definition, and material properties. Traditional grinding and polishing tools are unable to handle these freeform shapes. Additionally, standard metrology tools cannot measure these surfaces. Desired substrates are typically hard ceramics, including poly-crystalline alumina or aluminum oxynitride. Notwithstanding the challenges that the hardness provides to manufacturing, these crystalline materials can be highly susceptible to grain decoration creating unacceptable scatter in optical systems. In this presentation, we will show progress towards addressing the unique challenges of manufacturing conformal windows and domes. Particular attention is given to our robotic polishing platform. This platform is based on an industrial robot adapted to accept a wide range of tooling and parts. The robot's flexibility has provided us an opportunity to address the unique challenges of conformal windows. Slurries and polishing active layers can easily be changed to adapt to varying materials and address grain decoration. We have the flexibility to change tool size and shape to address the varying sizes and shapes of conformal optics. In addition, the robotic platform can be a base for a deflectometry-based metrology tool to measure surface form error. This system, whose precision is independent of the robot's positioning accuracy, will allow us to measure optics in-situ saving time and reducing part risk. In conclusion, we will show examples of the conformal windows manufactured using our developed processes.
Winder, Joshua S; Juza, Ryan M; Sasaki, Jennifer; Rogers, Ann M; Pauli, Eric M; Haluck, Randy S; Estes, Stephanie J; Lyn-Sue, Jerome R
2016-09-01
The robotic surgical platform is being utilized by a growing number of hospitals across the country, including academic medical centers. Training programs are tasked with teaching their residents how to utilize this technology. To this end, we have developed and implemented a robotic surgical curriculum, and share our initial experience here. Our curriculum was implemented for all General Surgical residents for the academic year 2014-2015. The curriculum consisted of online training, readings, bedside training, console simulation, participating in ten cases as bedside first assistant, and operating at the console. 20 surgical residents were included. Residents were provided the curriculum and notified the department upon completion. Bedside assistance and operative console training were completed in the operating room through a mix of biliary, foregut, and colorectal cases. During the fiscal years of 2014 and 2015, there were 164 and 263 robot-assisted surgeries performed within the General Surgery Department, respectively. All 20 residents completed the online and bedside instruction portions of the curriculum. Of the 20 residents trained, 13/20 (65 %) sat at the Surgeon console during at least one case. Utilizing this curriculum, we have trained and incorporated residents into robot-assisted cases in an efficient manner. A successful curriculum must be based on didactic learning, reading, bedside training, simulation, and training in the operating room. Each program must examine their caseload and resident class to ensure proper exposure to this platform.
Analysis and design of a six-degree-of-freedom Stewart platform-based robotic wrist
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami; Zhou, Zhen-Lei
1991-01-01
The kinematic analysis and implementation of a six degree of freedom robotic wrist which is mounted to a general open-kinetic chain manipulator to serve as a restbed for studying precision robotic assembly in space is discussed. The wrist design is based on the Stewart Platform mechanism and consists mainly of two platforms and six linear actuators driven by DC motors. Position feedback is achieved by linear displacement transducers mounted along the actuators and force feedback is obtained by a 6 degree of freedom force sensor mounted between the gripper and the payload platform. The robot wrist inverse kinematics which computes the required actuator lengths corresponding to Cartesian variables has a closed-form solution. The forward kinematics is solved iteratively using the Newton-Ralphson method which simultaneously provides a modified Jacobian Matrix which relates length velocities to Cartesian translational velocities and time rates of change of roll-pitch-yaw angles. Results of computer simulation conducted to evaluate the efficiency of the forward kinematics and Modified Jacobian Matrix are discussed.
A Robotic Platform to Study the Foreflipper of the California Sea Lion.
Kulkarni, Aditya A; Patel, Rahi K; Friedman, Chen; Leftwich, Megan C
2017-01-10
The California sea lion (Zalophus californianus), is an agile and powerful swimmer. Unlike many successful swimmers (dolphins, tuna), they generate most of their thrust with their large foreflippers. This protocol describes a robotic platform designed to study the hydrodynamic performance of the swimming California sea lion (Zalophus californianus). The robot is a model of the animal's foreflipper that is actuated by motors to replicate the motion of its propulsive stroke (the 'clap'). The kinematics of the sea lion's propulsive stroke are extracted from video data of unmarked, non-research sea lions at the Smithsonian Zoological Park (SNZ). Those data form the basis of the actuation motion of the robotic flipper presented here. The geometry of the robotic flipper is based a on high-resolution laser scan of a foreflipper of an adult female sea lion, scaled to about 60% of the full-scale flipper. The articulated model has three joints, mimicking the elbow, wrist and knuckle joint of the sea lion foreflipper. The robotic platform matches dynamics properties-Reynolds number and tip speed-of the animal when accelerating from rest. The robotic flipper can be used to determine the performance (forces and torques) and resulting flowfields.
A haptic sensing upgrade for the current EOD robotic fleet
NASA Astrophysics Data System (ADS)
Rowe, Patrick
2014-06-01
The past decade and a half has seen a tremendous rise in the use of mobile manipulator robotic platforms for bomb inspection and disposal, explosive ordnance disposal, and other extremely hazardous tasks in both military and civilian settings. Skilled operators are able to control these robotic vehicles in amazing ways given the very limited situational awareness obtained from a few on-board camera views. Future generations of robotic platforms will, no doubt, provide some sort of additional force or haptic sensor feedback to further enhance the operator's interaction with the robot, especially when dealing with fragile, unstable, and explosive objects. Unfortunately, the robot operators need this capability today. This paper discusses an approach to provide existing (and future) robotic mobile manipulator platforms, with which trained operators are already familiar and highly proficient, this desired haptic and force feedback capability. The goals of this technology are to be rugged, reliable, and affordable. It should also be able to be applied to a wide range of existing robots with a wide variety of manipulator/gripper sizes and styles. Finally, the presentation of the haptic information to the operator is discussed, given the fact that control devices that physically interact with the operators are not widely available and still in the research stages.
Autonomous mobile platform with simultaneous localisation and mapping system for patrolling purposes
NASA Astrophysics Data System (ADS)
Mitka, Łukasz; Buratowski, Tomasz
2017-10-01
This work describes an autonomous mobile platform for supervision and surveillance purposes. The system can be adapted for mounting on different types of vehicles. The platform is based on a SLAM navigation system which performs a localization task. Sensor fusion including laser scanners, inertial measurement unit (IMU), odometry and GPS lets the system determine its position in a certain and precise way. The platform is able to create a 3D model of a supervised area and export it as a point cloud. The system can operate both inside and outside as the navigation algorithm is resistant to typical localization errors caused by wheel slippage or temporal GPS signal loss. The system is equipped with a path-planning module which allows operating in two modes. The first mode is for periodical observation of points in a selected area. The second mode is turned on in case of an alarm. When it is called, the platform moves with the fastest route to the place of the alert. The path planning is always performed online with use of the most current scans, therefore the platform is able to adjust its trajectory to the environment changes or obstacles that are in the motion. The control algorithms are developed under the Robot Operating System (ROS) since it comes with drivers for many devices used in robotics. Such a solution allows for extending the system with any type of sensor in order to incorporate its data into a created area model. Proposed appliance can be ported to other existing robotic platforms or used to develop a new platform dedicated to a specific kind of surveillance. The platform use cases are to patrol an area, such as airport or metro station, in search for dangerous substances or suspicious objects and in case of detection instantly inform security forces. Second use case is a tele-operation in hazardous area for an inspection purposes.
Towards multi-platform software architecture for Collaborative Teleoperation
NASA Astrophysics Data System (ADS)
Domingues, Christophe; Otmane, Samir; Davesne, Frederic; Mallem, Malik
2009-03-01
Augmented Reality (AR) can provide to a Human Operator (HO) a real help in achieving complex tasks, such as remote control of robots and cooperative teleassistance. Using appropriate augmentations, the HO can interact faster, safer and easier with the remote real world. In this paper, we present an extension of an existing distributed software and network architecture for collaborative teleoperation based on networked human-scaled mixed reality and mobile platform. The first teleoperation system was composed by a VR application and a Web application. However the 2 systems cannot be used together and it is impossible to control a distant robot simultaneously. Our goal is to update the teleoperation system to permit a heterogeneous collaborative teleoperation between the 2 platforms. An important feature of this interface is based on the use of different Virtual Reality platforms and different Mobile platforms to control one or many robots.
Robotic right colectomy using the Da Vinci Single-Site® platform: case report.
Morelli, Luca; Guadagni, Simone; Caprili, Giovanni; Di Candio, Giulio; Boggi, Ugo; Mosca, Franco
2013-09-01
While single-port laparoscopy for abdominal surgery is technically challenging, the Da Vinci Single-Site® robotic surgery platform may help to overcome some of the difficulties of this rapidly evolving technique. The authors of this article present a case of single-incision, robotic right colectomy using this device. A 74-year-old female with malignant polyp of caecum was operated on with a single-site approach using the Da Vinci Single-Site® robotic surgery device. Resection and anastomosis were performed extra-corporeally after undocking the robot. The procedure was successfully completed in 200 min. No surgical complications occurred during the intervention and the post-operative stay and no conversion to laparotomy or additional trocars were required. To the best of our knowledge, this is the first case of right colectomy using the Da Vinci Single-Site® robotic surgery platform to be reported. The procedure is feasible and safe and its main advantages are restoration of triangulation and reduced instrument clashes. Copyright © 2013 John Wiley & Sons, Ltd.
Wang, Tianmiao; Wu, Yao; Liang, Jianhong; Han, Chenhao; Chen, Jiao; Zhao, Qiteng
2015-01-01
Skid-steering mobile robots are widely used because of their simple mechanism and robustness. However, due to the complex wheel-ground interactions and the kinematic constraints, it is a challenge to understand the kinematics and dynamics of such a robotic platform. In this paper, we develop an analysis and experimental kinematic scheme for a skid-steering wheeled vehicle based-on a laser scanner sensor. The kinematics model is established based on the boundedness of the instantaneous centers of rotation (ICR) of treads on the 2D motion plane. The kinematic parameters (the ICR coefficient χ, the path curvature variable λ and robot speed v), including the effect of vehicle dynamics, are introduced to describe the kinematics model. Then, an exact but costly dynamic model is used and the simulation of this model’s stationary response for the vehicle shows a qualitative relationship for the specified parameters χ and λ. Moreover, the parameters of the kinematic model are determined based-on a laser scanner localization experimental analysis method with a skid-steering robotic platform, Pioneer P3-AT. The relationship between the ICR coefficient χ and two physical factors is studied, i.e., the radius of the path curvature λ and the robot speed v. An empirical function-based relationship between the ICR coefficient of the robot and the path parameters is derived. To validate the obtained results, it is empirically demonstrated that the proposed kinematics model significantly improves the dead-reckoning performance of this skid–steering robot. PMID:25919370
First 101 Robotic General Surgery Cases in a Community Hospital
Robertson, Jarrod C.; Alrajhi, Sharifah
2016-01-01
Background and Objectives: The general surgeon's robotic learning curve may improve if the experience is classified into categories based on the complexity of the procedures in a small community hospital. The intraoperative time should decrease and the incidence of complications should be comparable to conventional laparoscopy. The learning curve of a single robotic general surgeon in a small community hospital using the da Vinci S platform was analyzed. Methods: Measured parameters were operative time, console time, conversion rates, complications, surgical site infections (SSIs), surgical site occurrences (SSOs), length of stay, and patient demographics. Results: Between March 2014 and August 2015, 101 robotic general surgery cases were performed by a single surgeon in a 266-bed community hospital, including laparoscopic cholecystectomies, inguinal hernia repairs; ventral, incisional, and umbilical hernia repairs; and colorectal, foregut, bariatric, and miscellaneous procedures. Ninety-nine of the cases were completed robotically. Seven patients were readmitted within 30 days. There were 8 complications (7.92%). There were no mortalities and all complications were resolved with good outcomes. The mean operative time was 233.0 minutes. The mean console operative time was 117.6 minutes. Conclusion: A robotic general surgery program can be safely implemented in a small community hospital with extensive training of the surgical team through basic robotic skills courses as well as supplemental educational experiences. Although the use of the robotic platform in general surgery could be limited to complex procedures such as foregut and colorectal surgery, it can also be safely used in a large variety of operations with results similar to those of conventional laparoscopy. PMID:27667913
First 101 Robotic General Surgery Cases in a Community Hospital.
Oviedo, Rodolfo J; Robertson, Jarrod C; Alrajhi, Sharifah
2016-01-01
The general surgeon's robotic learning curve may improve if the experience is classified into categories based on the complexity of the procedures in a small community hospital. The intraoperative time should decrease and the incidence of complications should be comparable to conventional laparoscopy. The learning curve of a single robotic general surgeon in a small community hospital using the da Vinci S platform was analyzed. Measured parameters were operative time, console time, conversion rates, complications, surgical site infections (SSIs), surgical site occurrences (SSOs), length of stay, and patient demographics. Between March 2014 and August 2015, 101 robotic general surgery cases were performed by a single surgeon in a 266-bed community hospital, including laparoscopic cholecystectomies, inguinal hernia repairs; ventral, incisional, and umbilical hernia repairs; and colorectal, foregut, bariatric, and miscellaneous procedures. Ninety-nine of the cases were completed robotically. Seven patients were readmitted within 30 days. There were 8 complications (7.92%). There were no mortalities and all complications were resolved with good outcomes. The mean operative time was 233.0 minutes. The mean console operative time was 117.6 minutes. A robotic general surgery program can be safely implemented in a small community hospital with extensive training of the surgical team through basic robotic skills courses as well as supplemental educational experiences. Although the use of the robotic platform in general surgery could be limited to complex procedures such as foregut and colorectal surgery, it can also be safely used in a large variety of operations with results similar to those of conventional laparoscopy.
NASA Technical Reports Server (NTRS)
Simmons, Reid; Apfelbaum, David
2005-01-01
Task Description Language (TDL) is an extension of the C++ programming language that enables programmers to quickly and easily write complex, concurrent computer programs for controlling real-time autonomous systems, including robots and spacecraft. TDL is based on earlier work (circa 1984 through 1989) on the Task Control Architecture (TCA). TDL provides syntactic support for hierarchical task-level control functions, including task decomposition, synchronization, execution monitoring, and exception handling. A Java-language-based compiler transforms TDL programs into pure C++ code that includes calls to a platform-independent task-control-management (TCM) library. TDL has been used to control and coordinate multiple heterogeneous robots in projects sponsored by NASA and the Defense Advanced Research Projects Agency (DARPA). It has also been used in Brazil to control an autonomous airship and in Canada to control a robotic manipulator.
Sánchez, Eduardo Munera; Alcobendas, Manuel Muñoz; Noguera, Juan Fco. Blanes; Gilabert, Ginés Benet; Simó Ten, José E.
2013-01-01
This paper deals with the problem of humanoid robot localization and proposes a new method for position estimation that has been developed for the RoboCup Standard Platform League environment. Firstly, a complete vision system has been implemented in the Nao robot platform that enables the detection of relevant field markers. The detection of field markers provides some estimation of distances for the current robot position. To reduce errors in these distance measurements, extrinsic and intrinsic camera calibration procedures have been developed and described. To validate the localization algorithm, experiments covering many of the typical situations that arise during RoboCup games have been developed: ranging from degradation in position estimation to total loss of position (due to falls, ‘kidnapped robot’, or penalization). The self-localization method developed is based on the classical particle filter algorithm. The main contribution of this work is a new particle selection strategy. Our approach reduces the CPU computing time required for each iteration and so eases the limited resource availability problem that is common in robot platforms such as Nao. The experimental results show the quality of the new algorithm in terms of localization and CPU time consumption. PMID:24193098
A neurorobotic platform for locomotor prosthetic development in rats and mice
NASA Astrophysics Data System (ADS)
von Zitzewitz, Joachim; Asboth, Leonie; Fumeaux, Nicolas; Hasse, Alexander; Baud, Laetitia; Vallery, Heike; Courtine, Grégoire
2016-04-01
Objectives. We aimed to develop a robotic interface capable of providing finely-tuned, multidirectional trunk assistance adjusted in real-time during unconstrained locomotion in rats and mice. Approach. We interfaced a large-scale robotic structure actuated in four degrees of freedom to exchangeable attachment modules exhibiting selective compliance along distinct directions. This combination allowed high-precision force and torque control in multiple directions over a large workspace. We next designed a neurorobotic platform wherein real-time kinematics and physiological signals directly adjust robotic actuation and prosthetic actions. We tested the performance of this platform in both rats and mice with spinal cord injury. Main Results. Kinematic analyses showed that the robotic interface did not impede locomotor movements of lightweight mice that walked freely along paths with changing directions and height profiles. Personalized trunk assistance instantly enabled coordinated locomotion in mice and rats with severe hindlimb motor deficits. Closed-loop control of robotic actuation based on ongoing movement features enabled real-time control of electromyographic activity in anti-gravity muscles during locomotion. Significance. This neurorobotic platform will support the study of the mechanisms underlying the therapeutic effects of locomotor prosthetics and rehabilitation using high-resolution genetic tools in rodent models.
A neurorobotic platform for locomotor prosthetic development in rats and mice.
von Zitzewitz, Joachim; Asboth, Leonie; Fumeaux, Nicolas; Hasse, Alexander; Baud, Laetitia; Vallery, Heike; Courtine, Grégoire
2016-04-01
We aimed to develop a robotic interface capable of providing finely-tuned, multidirectional trunk assistance adjusted in real-time during unconstrained locomotion in rats and mice. We interfaced a large-scale robotic structure actuated in four degrees of freedom to exchangeable attachment modules exhibiting selective compliance along distinct directions. This combination allowed high-precision force and torque control in multiple directions over a large workspace. We next designed a neurorobotic platform wherein real-time kinematics and physiological signals directly adjust robotic actuation and prosthetic actions. We tested the performance of this platform in both rats and mice with spinal cord injury. Kinematic analyses showed that the robotic interface did not impede locomotor movements of lightweight mice that walked freely along paths with changing directions and height profiles. Personalized trunk assistance instantly enabled coordinated locomotion in mice and rats with severe hindlimb motor deficits. Closed-loop control of robotic actuation based on ongoing movement features enabled real-time control of electromyographic activity in anti-gravity muscles during locomotion. This neurorobotic platform will support the study of the mechanisms underlying the therapeutic effects of locomotor prosthetics and rehabilitation using high-resolution genetic tools in rodent models.
Kinematic evaluation of mobile robotic platforms for overground gait neurorehabilitation
NASA Astrophysics Data System (ADS)
Alias, N. Akmal; Huq, M. Saiful; Ibrahim, B. S. K. K.; Omar, Rosli
2017-09-01
Gait assistive devices offer a great solution to the walking re-education which reduce patients theoretical limit by aiding the anatomical joints to be in line with the rehabilitation session. Overground gait training, which is differs significantly from body-weight supported treadmill training in many aspects, essentially consists of a mobile robotic base to support the subject securely (usually with overhead harness) while its motion and orientation is controlled seamlessly to facilitate subjects free movement. In this study, efforts have been made for evaluation of both holonomic and nonholonomic drives, the outcome of which may constitute the primarily results to the effective approach in designing a robotic platform for the mobile rehabilitation robot. The sets of kinematic equations are derived using typical geometries of two different drives. The results indicate that omnidirectional mecanum wheel platform is capable for more sophisticated discipline. Although the differential drive platform happens to be more simple and easy to construct, but it is less desirable as it has limited number of motions applicable to the system. The omnidirectional robot consisting of mecanum wheels, which is classified as holonomic is potentially the best solution in terms of its capability to move in arbitrary direction without concerning the changing of wheel's direction.
Development of a Guide-Dog Robot: Leading and Recognizing a Visually-Handicapped Person using a LRF
NASA Astrophysics Data System (ADS)
Saegusa, Shozo; Yasuda, Yuya; Uratani, Yoshitaka; Tanaka, Eiichirou; Makino, Toshiaki; Chang, Jen-Yuan (James
A conceptual Guide-Dog Robot prototype to lead and to recognize a visually-handicapped person is developed and discussed in this paper. Key design features of the robot include a movable platform, human-machine interface, and capability of avoiding obstacles. A novel algorithm enabling the robot to recognize its follower's locomotion as well to detect the center of corridor is proposed and implemented in the robot's human-machine interface. It is demonstrated that using the proposed novel leading and detecting algorithm along with a rapid scanning laser range finder (LRF) sensor, the robot is able to successfully and effectively lead a human walking in corridor without running into obstacles such as trash boxes or adjacent walking persons. Position and trajectory of the robot leading a human maneuvering in common corridor environment are measured by an independent LRF observer. The measured data suggest that the proposed algorithms are effective to enable the robot to detect center of the corridor and position of its follower correctly.
Evolving a Neural Olfactorimotor System in Virtual and Real Olfactory Environments
Rhodes, Paul A.; Anderson, Todd O.
2012-01-01
To provide a platform to enable the study of simulated olfactory circuitry in context, we have integrated a simulated neural olfactorimotor system with a virtual world which simulates both computational fluid dynamics as well as a robotic agent capable of exploring the simulated plumes. A number of the elements which we developed for this purpose have not, to our knowledge, been previously assembled into an integrated system, including: control of a simulated agent by a neural olfactorimotor system; continuous interaction between the simulated robot and the virtual plume; the inclusion of multiple distinct odorant plumes and background odor; the systematic use of artificial evolution driven by olfactorimotor performance (e.g., time to locate a plume source) to specify parameter values; the incorporation of the realities of an imperfect physical robot using a hybrid model where a physical robot encounters a simulated plume. We close by describing ongoing work toward engineering a high dimensional, reversible, low power electronic olfactory sensor which will allow olfactorimotor neural circuitry evolved in the virtual world to control an autonomous olfactory robot in the physical world. The platform described here is intended to better test theories of olfactory circuit function, as well as provide robust odor source localization in realistic environments. PMID:23112772
Robotic vehicle with multiple tracked mobility platforms
Salton, Jonathan R [Albuquerque, NM; Buttz, James H [Albuquerque, NM; Garretson, Justin [Albuquerque, NM; Hayward, David R [Wetmore, CO; Hobart, Clinton G [Albuquerque, NM; Deuel, Jr., Jamieson K.
2012-07-24
A robotic vehicle having two or more tracked mobility platforms that are mechanically linked together with a two-dimensional coupling, thereby forming a composite vehicle of increased mobility. The robotic vehicle is operative in hazardous environments and can be capable of semi-submersible operation. The robotic vehicle is capable of remote controlled operation via radio frequency and/or fiber optic communication link to a remote operator control unit. The tracks have a plurality of track-edge scallop cut-outs that allow the tracks to easily grab onto and roll across railroad tracks, especially when crossing the railroad tracks at an oblique angle.
NASA Technical Reports Server (NTRS)
Parness, Aaron
2012-01-01
Three robots that extend microspine technology to enable advanced mobility are presented. First, the Durable Reconnaissance and Observation Platform (DROP) and the ReconRobotics Scout platform use a new rotary configuration of microspines to provide improved soldier-portable reconnaissance by moving rapidly over curbs and obstacles, transitioning from horizontal to vertical surfaces, climbing rough walls and surviving impacts. Next, the four-legged LEMUR robot uses new configurations of opposed microspines to anchor to both manmade and natural rough surfaces. Using these anchors as feet enables mobility in unstructured environments, from urban disaster areas to deserts and caves.
Review of contemporary role of robotics in bariatric surgery
Bindal, Vivek; Bhatia, Parveen; Dudeja, Usha; Kalhan, Sudhir; Khetan, Mukund; John, Suviraj; Wadhera, Sushant
2015-01-01
With the rise in a number of bariatric procedures, surgeons are facing more complex and technically demanding surgical situations. Robotic digital platforms potentially provide a solution to better address these challenges. This review examines the published literature on the outcomes and complications of bariatric surgery using a robotic platform. Use of robotics to perform adjustable gastric banding, sleeve gastrectomy, roux-en-y gastric bypass (RYGB), biliopancreatic diversion with duodenal switch and revisional bariatric procedures (RBP) is assessed. A search on PubMed was performed for the most relevant articles in robotic bariatric surgery. A total of 23 articles was selected and reviewed in this article. The review showed that the use of robotics led to similar or lower complication rate in bariatric surgery when compared with laparoscopy. Two studies found a significantly lower leak rate for robotic gastric bypass when compared to laparoscopic method. The learning curve for RYGB seems to be shorter for robotic technique. Three studies revealed a significantly shorter operative time, while four studies found a longer operative time for robotic technique of gastric bypass. As for the outcomes of RBP, one study found a lower complication rate in robotic arm versus laparoscopic and open arms. Most authors stated that the use of robotics provides superior visualisation, more degrees of freedom and better ergonomics. The application of robotics in bariatric surgery seems to be a safe and feasible option. Use of robotics may provide specific advantages in some situations, and overcome limitations of laparoscopic surgery. Large and well-designed randomised clinical trials with long follow-up are needed to further define the role of digital platforms in bariatric surgery. PMID:25598594
THE DECADE OF THE RABiT (2005–15)
Garty, G.; Turner, H. C.; Salerno, A.; Bertucci, A.; Zhang, J.; Chen, Y.; Dutta, A.; Sharma, P.; Bian, D.; Taveras, M.; Wang, H.; Bhatla, A.; Balajee, A.; Bigelow, A. W.; Repin, M.; Lyulko, O. V.; Simaan, N.; Yao, Y. L.; Brenner, D. J.
2016-01-01
The RABiT (Rapid Automated Biodosimetry Tool) is a dedicated Robotic platform for the automation of cytogenetics-based biodosimetry assays. The RABiT was developed to fulfill the critical requirement for triage following a mass radiological or nuclear event. Starting from well-characterized and accepted assays we developed a custom robotic platform to automate them. We present here a brief historical overview of the RABiT program at Columbia University from its inception in 2005 until the RABiT was dismantled at the end of 2015. The main focus of this paper is to demonstrate how the biological assays drove development of the custom robotic systems and in turn new advances in commercial robotic platforms inspired small modifications in the assays to allow replacing customized robotics with ‘off the shelf’ systems. Currently, a second-generation, RABiT II, system at Columbia University, consisting of a PerkinElmer cell::explorer, was programmed to perform the RABiT assays and is undergoing testing and optimization studies. PMID:27412510
A Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics.
Ashok, Praveen C; Giardini, Mario E; Dholakia, Kishan; Sibbett, Wilson
2014-01-01
We report the development of a fiber-based Raman sensor to be used in tumour margin identification during endoluminal robotic surgery. Although this is a generic platform, the sensor we describe was adapted for the ARAKNES (Array of Robots Augmenting the KiNematics of Endoluminal Surgery) robotic platform. On such a platform, the Raman sensor is intended to identify ambiguous tissue margins during robot-assisted surgeries. To maintain sterility of the probe during surgical intervention, a disposable sleeve was specially designed. A straightforward user-compatible interface was implemented where a supervised multivariate classification algorithm was used to classify different tissue types based on specific Raman fingerprints so that it could be used without prior knowledge of spectroscopic data analysis. The protocol avoids inter-patient variability in data and the sensor system is not restricted for use in the classification of a particular tissue type. Representative tissue classification assessments were performed using this system on excised tissue. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SMARBot: a modular miniature mobile robot platform
NASA Astrophysics Data System (ADS)
Meng, Yan; Johnson, Kerry; Simms, Brian; Conforth, Matthew
2008-04-01
Miniature robots have many advantages over their larger counterparts, such as low cost, low power, and easy to build a large scale team for complex tasks. Heterogeneous multi miniature robots could provide powerful situation awareness capability due to different locomotion capabilities and sensor information. However, it would be expensive and time consuming to develop specific embedded system for different type of robots. In this paper, we propose a generic modular embedded system architecture called SMARbot (Stevens Modular Autonomous Robot), which consists of a set of hardware and software modules that can be configured to construct various types of robot systems. These modules include a high performance microprocessor, a reconfigurable hardware component, wireless communication, and diverse sensor and actuator interfaces. The design of all the modules in electrical subsystem, the selection criteria for module components, and the real-time operating system are described. Some proofs of concept experimental results are also presented.
Intelligent mobility for robotic vehicles in the army after next
NASA Astrophysics Data System (ADS)
Gerhart, Grant R.; Goetz, Richard C.; Gorsich, David J.
1999-07-01
The TARDEC Intelligent Mobility program addresses several essential technologies necessary to support the army after next (AAN) concept. Ground forces in the AAN time frame will deploy robotic unmanned ground vehicles (UGVs) in high-risk missions to avoid exposing soldiers to both friendly and unfriendly fire. Prospective robotic systems will include RSTA/scout vehicles, combat engineering/mine clearing vehicles, indirect fire artillery and missile launch platforms. The AAN concept requires high on-road and off-road mobility, survivability, transportability/deployability and low logistics burden. TARDEC is developing a robotic vehicle systems integration laboratory (SIL) to evaluate technologies and their integration into future UGV systems. Example technologies include the following: in-hub electric drive, omni-directional wheel and steering configurations, off-road tires, adaptive tire inflation, articulated vehicles, active suspension, mine blast protection, detection avoidance and evasive maneuver. This paper will describe current developments in these areas relative to the TARDEC intelligent mobility program.
An Analytic Model for the Success Rate of a Robotic Actuator System in Hitting Random Targets.
Bradley, Stuart
2015-11-20
Autonomous robotic systems are increasingly being used in a wide range of applications such as precision agriculture, medicine, and the military. These systems have common features which often includes an action by an "actuator" interacting with a target. While simulations and measurements exist for the success rate of hitting targets by some systems, there is a dearth of analytic models which can give insight into, and guidance on optimization, of new robotic systems. The present paper develops a simple model for estimation of the success rate for hitting random targets from a moving platform. The model has two main dimensionless parameters: the ratio of actuator spacing to target diameter; and the ratio of platform distance moved (between actuator "firings") to the target diameter. It is found that regions of parameter space having specified high success are described by simple equations, providing guidance on design. The role of a "cost function" is introduced which, when minimized, provides optimization of design, operating, and risk mitigation costs.
Autonomous navigation system and method
Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID
2009-09-08
A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.
Thomaier, Lauren; Orlando, Megan; Abernethy, Melinda; Paka, Chandhana; Chen, Chi Chiung Grace
2017-08-01
Although surgical simulation provides an effective supplement to traditional training, it is not known whether skills are transferable between minimally invasive surgical modalities. The purpose of this study was to assess the transferability of skills between minimally invasive surgical simulation platforms among simulation-naïve participants. Forty simulation-naïve medical students were enrolled in this randomized single-blinded controlled trial. Participants completed a baseline evaluation on laparoscopic (Fundamentals of Laparoscopic Surgery Program, Los Angeles, CA) and robotic (dV-Trainer, Mimic, Seattle, WA) simulation peg transfer tasks. Participants were then randomized to perform a practice session on either the robotic (N = 20) or laparoscopic (N = 20) simulator. Two blinded, expert minimally invasive surgeons evaluated participants before and after training using a modified previously validated subjective global rating scale. Objective measures including time to task completion and Mimic dV-Trainer motion metrics were also recorded. At baseline, there were no significant differences between the training groups as measured by objective and subjective measures for either simulation task. After training, participants randomized to the laparoscopic practice group completed the laparoscopic task faster (p < 0.003) and with higher global rating scale scores (p < 0.001) than the robotic group. Robotic-trained participants performed the robotic task faster (p < 0.001), with improved economy of motion (p < 0.001), and with higher global rating scale scores (p = 0.006) than the laparoscopic group. The robotic practice group also demonstrated significantly improved performance on the laparoscopic task (p = 0.02). Laparoscopic-trained participants also improved their robotic performance (p = 0.02), though the robotic group had a higher percent improvement on the robotic task (p = 0.037). Skills acquired through practice on either laparoscopic or robotic simulation platforms appear to be transferable between modalities. However, participants demonstrate superior skill in the modality in which they specifically train.
A lightweight, inexpensive robotic system for insect vision.
Sabo, Chelsea; Chisholm, Robert; Petterson, Adam; Cope, Alex
2017-09-01
Designing hardware for miniaturized robotics which mimics the capabilities of flying insects is of interest, because they share similar constraints (i.e. small size, low weight, and low energy consumption). Research in this area aims to enable robots with similarly efficient flight and cognitive abilities. Visual processing is important to flying insects' impressive flight capabilities, but currently, embodiment of insect-like visual systems is limited by the hardware systems available. Suitable hardware is either prohibitively expensive, difficult to reproduce, cannot accurately simulate insect vision characteristics, and/or is too heavy for small robotic platforms. These limitations hamper the development of platforms for embodiment which in turn hampers the progress on understanding of how biological systems fundamentally work. To address this gap, this paper proposes an inexpensive, lightweight robotic system for modelling insect vision. The system is mounted and tested on a robotic platform for mobile applications, and then the camera and insect vision models are evaluated. We analyse the potential of the system for use in embodiment of higher-level visual processes (i.e. motion detection) and also for development of navigation based on vision for robotics in general. Optic flow from sample camera data is calculated and compared to a perfect, simulated bee world showing an excellent resemblance. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Bioinspired legged-robot based on large deformation of flexible skeleton.
Mayyas, Mohammad
2014-11-11
In this article we present STARbot, a bioinspired legged robot capable of multiple locomotion modalities by using large deformation of its skeleton. We construct STARbot by using origami-style folding of flexible laminates. The long-term goal is to provide a robotic platform with maximum mobility on multiple surfaces. This paper particularly studies the quasistatic model of STARbot's leg under different conditions. We describe the large elastic deformation of a leg under external force, payload, and friction by using a set of non-dimensional, nonlinear approximate equations. We developed a test mechanism that models the motion of a leg in STARbot. We augmented several foot shapes and then tested them on soft to rough grounds. Both simulation and experimental findings were in good agreement. We utilized the model to develop several scales of tri and quad STARbot. We demonstrated the capability of these robots to locomote by combining their leg deformations with their foot motions. The combination provided a design platform for an active suspension STARbot with controlled foot locomotion. This included the ability of STARbot to change size, run over obstacles, walk and slide. Furthermore, in this paper we discuss a cost effective manufacturing and production method for manufacturing STARbot.
Anticipation: Beyond synthetic biology and cognitive robotics.
Nasuto, Slawomir J; Hayashi, Yoshikatsu
2016-10-01
The aim of this paper is to propose that current robotic technologies cannot have intentional states any more than is feasible within the sensorimotor variant of embodied cognition. It argues that anticipation is an emerging concept that can provide a bridge between both the deepest philosophical theories about the nature of life and cognition and the empirical biological and cognitive sciences steeped in reductionist and Newtonian conceptions of causality. The paper advocates that in order to move forward, cognitive robotics needs to embrace new platforms and a conceptual framework that will enable it to pursue, in a meaningful way, questions about autonomy and purposeful behaviour. We suggest that hybrid systems, part robotic and part cultures of neurones, offer experimental platforms where different dimensions of enactivism (sensorimotor, constitutive foundations of biological autonomy, including anticipation), and their relative contributions to cognition, can be investigated in an integrated way. A careful progression, mindful to the deep philosophical concerns but also respecting empirical evidence, will ultimately lead towards unifying theoretical and empirical biological sciences and may offer advancement where reductionist sciences have been so far faltering. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Laniel, Sebastien; Letourneau, Dominic; Labbe, Mathieu; Grondin, Francois; Polgar, Janice; Michaud, Francois
2017-07-01
A telepresence mobile robot is a remote-controlled, wheeled device with wireless internet connectivity for bidirectional audio, video and data transmission. In health care, a telepresence robot could be used to have a clinician or a caregiver assist seniors in their homes without having to travel to these locations. Many mobile telepresence robotic platforms have recently been introduced on the market, bringing mobility to telecommunication and vital sign monitoring at reasonable costs. What is missing for making them effective remote telepresence systems for home care assistance are capabilities specifically needed to assist the remote operator in controlling the robot and perceiving the environment through the robot's sensors or, in other words, minimizing cognitive load and maximizing situation awareness. This paper describes our approach adding navigation, artificial audition and vital sign monitoring capabilities to a commercially available telepresence mobile robot. This requires the use of a robot control architecture to integrate the autonomous and teleoperation capabilities of the platform.
Software for project-based learning of robot motion planning
NASA Astrophysics Data System (ADS)
Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.
2013-12-01
Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can be explained in a simplified two-dimensional setting, but this masks many of the subtleties and complexities of the underlying problem. We have developed software for project-based learning of motion planning that enables deep learning. The projects that we have developed allow advanced undergraduate students and graduate students to reflect on the performance of existing textbook algorithms and their own variations on such algorithms. Formative assessment has been conducted at three institutions. The core of the software used for this teaching module is also used within the Robot Operating System, a widely adopted platform by the robotics research community. This allows for transfer of knowledge and skills to robotics research projects involving a large variety robot hardware platforms.
NASA Technical Reports Server (NTRS)
Hebert, Paul; Ma, Jeremy; Borders, James; Aydemir, Alper; Bajracharya, Max; Hudson, Nicolas; Shankar, Krishna; Karumanchi, Sisir; Douillard, Bertrand; Burdick, Joel
2015-01-01
The use of the cognitive capabilties of humans to help guide the autonomy of robotics platforms in what is typically called "supervised-autonomy" is becoming more commonplace in robotics research. The work discussed in this paper presents an approach to a human-in-the-loop mode of robot operation that integrates high level human cognition and commanding with the intelligence and processing power of autonomous systems. Our framework for a "Supervised Remote Robot with Guided Autonomy and Teleoperation" (SURROGATE) is demonstrated on a robotic platform consisting of a pan-tilt perception head, two 7-DOF arms connected by a single 7-DOF torso, mounted on a tracked-wheel base. We present an architecture that allows high-level supervisory commands and intents to be specified by a user that are then interpreted by the robotic system to perform whole body manipulation tasks autonomously. We use a concept of "behaviors" to chain together sequences of "actions" for the robot to perform which is then executed real time.
A novel robotic platform for single-port abdominal surgery
NASA Astrophysics Data System (ADS)
Singh, Satwinder; Cheung, Jo L. K.; Sreedhar, Biji; Hoa, Xuyen Dai; Ng, Hoi Pang; Yeung, Chung Kwong
2018-03-01
In this paper, a novel robot-assisted platform for single-port minimally invasive surgery is presented. A miniaturized seven degrees of freedom (dof) fully internalized in-vivo actuated robotic arm is designed. Due to in-vivo actuation, the system has a smaller footprint and can generate 20 N of gripping force. The complete work envelop of the robotic arms is 252 mm × 192 mm × 322 m. With the assistance of the cannula-swivel system, the robotic arms can also be re-positioned and have multi-quadrant reachability without any additional incision. Surgical tasks, such as lifting, gripping suturing and knot tying that are commonly used in a standard surgical procedure, were performed to verify the dexterity of the robotic arms. A single-port trans-abdominal cholecystectomy in a porcine model was successfully performed to further validate its functionality.
Development of the HERMIES III mobile robot research testbed at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manges, W.W.; Hamel, W.R.; Weisbin, C.R.
1988-01-01
The latest robot in the Hostile Environment Robotic Machine Intelligence Experiment Series (HERMIES) is now under development at the Center for Engineering Systems Advanced Research (CESAR) in the Oak Ridge National Laboratory. The HERMIES III robot incorporates a larger than human size 7-degree-of-freedom manipulator mounted on a 2-degree-of-freedom mobile platform including a variety of sensors and computers. The deployment of this robot represents a significant increase in research capabilities for the CESAR laboratory. The initial on-board computer capacity of the robot exceeds that of 20 Vax 11/780s. The navigation and vision algorithms under development make extensive use of the on-boardmore » NCUBE hypercube computer while the sensors are interfaced through five VME computers running the OS-9 real-time, multitasking operating system. This paper describes the motivation, key issues, and detailed design trade-offs of implementing the first phase (basic functionality) of the HERMIES III robot. 10 refs., 7 figs.« less
The mechanical design of a humanoid robot with flexible skin sensor for use in psychiatric therapy
NASA Astrophysics Data System (ADS)
Burns, Alec; Tadesse, Yonas
2014-03-01
In this paper, a humanoid robot is presented for ultimate use in the rehabilitation of children with mental disorders, such as autism. Creating affordable and efficient humanoids could assist the therapy in psychiatric disability by offering multimodal communication between the humanoid and humans. Yet, the humanoid development needs a seamless integration of artificial muscles, sensors, controllers and structures. We have designed a human-like robot that has 15 DOF, 580 mm tall and 925 mm arm span using a rapid prototyping system. The robot has a human-like appearance and movement. Flexible sensors around the arm and hands for safe human-robot interactions, and a two-wheel mobile platform for maneuverability are incorporated in the design. The robot has facial features for illustrating human-friendly behavior. The mechanical design of the robot and the characterization of the flexible sensors are presented. Comprehensive study on the upper body design, mobile base, actuators selection, electronics, and performance evaluation are included in this paper.
Human-Robot Teaming for Hydrologic Data Gathering at Multiple Scales
NASA Astrophysics Data System (ADS)
Peschel, J.; Young, S. N.
2017-12-01
The use of personal robot-assistive technology by researchers and practitioners for hydrologic data gathering has grown in recent years as barriers to platform capability, cost, and human-robot interaction have been overcome. One consequence to this growth is a broad availability of unmanned platforms that might or might not be suitable for a specific hydrologic investigation. Through multiple field studies, a set of recommendations has been developed to help guide novice through experienced users in choosing the appropriate unmanned platforms for a given application. This talk will present a series of hydrologic data sets gathered using a human-robot teaming approach that has leveraged unmanned aerial, ground, and surface vehicles over multiple scales. The field case studies discussed will be connected to the best practices, also provided in the presentation. This talk will be of interest to geoscience researchers and practitioners, in general, as well as those working in fields related to emerging technologies.
Results from a long-term study of a portable field robot in urban terrain
NASA Astrophysics Data System (ADS)
Lundberg, Carl; Reinhold, Roger; Christensen, Henrik I.
2007-04-01
The military have a considerable amount of experience from using robots for mine clearing and bomb removal. As new technology emerges it is necessary to investigate the possibly to expand robot use. This study has investigated an Army company, specialized in urban operations, while fulfilling their tasks with the support of a PackBot Scout. The robot was integrated and deployed as an ordinary component of the company and included modifying and retraining a number of standard behaviors to include the robot. This paper reports on the following issues: evaluation of missions where the platform can be deployed, what technical improvements are the most desired, and what are the new risks introduced by use of robots? Information was gathered through observation, interviews, and a questionnaire. The results indicate the robot to be useful for reconnaissance and mapping. The users also anticipated that the robot could be used to decrease the risks of IEDs by either triggering or by neutralising them with a disruptor. The robot was further considered to be useful for direct combat if armed, and for placing explosive loads against, for example, a door. Autonomous rendering of maps, acquiring images, two-way audio, and improved sensing such as IR were considered important improvements. The robot slowing down the pace of the unit was considered to be the main risk when used in urban operations.
Dual Arm Work Platform teleoperated robotics system. Innovative technology summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The US Department of Energy (DOE) and the Federal Energy Technology Center (FETC) has developed a Large Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial Deactivation and Decommissioning (D and D) technologies in comparison with current baseline technologies. The Dual Arm Work Platform (DAWP) demonstration focused on the use of the DAWP to segment and dismantle the CP-5 reactor tank and surrounding bio-shield components (including the graphite block reflector, lead and boral sheeting) and performing some minor tasks best suited for themore » use of teleoperated robotics that were not evaluated in this demonstration. The DAWP system is not a commercially available product at this time. The CP-5 implementation was its first D and D application. The demonstration of the DAWP was to determine the areas on which improvements must be made to make this technology commercially viable. The results of the demonstration are included in this greenbook. It is the intention of the developers to incorporate lessons learned at this demonstration and current technological advancements in robotics into the next generation of the DAWP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Pin, F.G.
This paper addresses the problem of time-optional motions for a mobile platform in a planar environment. The platform has two non-steerable independently driven wheels. The overall mission of the robot is expressed in terms of a sequence of via points at which the platform must be at rest in a given configuration (position and orientation). The objective is to plan time-optimal trajectories between these configurations assuming an unobstructed environment. Using Pontryagin's maximum principle (PMP), we formally demonstrate that all time optimal motions of the platform for this problem occur for bang-bang controls on the wheels (at each instant, the accelerationmore » on each wheel is either at its upper or lower limit). The PMP, however, only provides necessary conditions for time optimality. To find the time optimal robot trajectories, we first parameterize the bang-bang trajectories using the switch times on the wheels (the times at which the wheel accelerations change sign). With this parameterization, we can fully search the robot trajectory space and find the switch times that will produce particular paths to a desired final configuration of the platform. We show numerically that robot trajectories with three switch times (two on one wheel, one on the other) can reach any position, while trajectories with four switch times can reach any configuration. By numerical comparison with other trajectories involving similar or greater numbers of switch times, we then identify the sets of time-optimal trajectories. These are uniquely defined using ranges of the parameters, and consist of subsets of trajectories with three switch times for the problem when the final orientation of the robot is not specified, and four switch times when a full final configuration is specified. We conclude with a description of the use of the method for trajectory planning for one of our robots.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Pin, F.G.
This paper addresses the problem of time-optional motions for a mobile platform in a planar environment. The platform has two non-steerable independently driven wheels. The overall mission of the robot is expressed in terms of a sequence of via points at which the platform must be at rest in a given configuration (position and orientation). The objective is to plan time-optimal trajectories between these configurations assuming an unobstructed environment. Using Pontryagin`s maximum principle (PMP), we formally demonstrate that all time optimal motions of the platform for this problem occur for bang-bang controls on the wheels (at each instant, the accelerationmore » on each wheel is either at its upper or lower limit). The PMP, however, only provides necessary conditions for time optimality. To find the time optimal robot trajectories, we first parameterize the bang-bang trajectories using the switch times on the wheels (the times at which the wheel accelerations change sign). With this parameterization, we can fully search the robot trajectory space and find the switch times that will produce particular paths to a desired final configuration of the platform. We show numerically that robot trajectories with three switch times (two on one wheel, one on the other) can reach any position, while trajectories with four switch times can reach any configuration. By numerical comparison with other trajectories involving similar or greater numbers of switch times, we then identify the sets of time-optimal trajectories. These are uniquely defined using ranges of the parameters, and consist of subsets of trajectories with three switch times for the problem when the final orientation of the robot is not specified, and four switch times when a full final configuration is specified. We conclude with a description of the use of the method for trajectory planning for one of our robots.« less
NASA Astrophysics Data System (ADS)
Hinton, Tracy Barger
With the large expected growth in STEM-related careers in American industries, there are not enough graduates to fill these positions (United States Department of Labor, 2015). Increased efforts are being made to reform STEM education from early childhood to college level studies, mainly through increased efforts to incorporate new technologies and project-based learning activities (Hegedorn & Purnamasari, 2012). At the middle school level, a robotics educational platform can be a worthwhile activity that provides hands-on learning as students learn basic programming and engineering skills (Grubbs, 2013). Based on the popularity of LEGO toys, LEGO Education developed an engaging and effective way to learn about computer programming and basic engineering concepts (Welch & Huffman, 2011). LEGO MINDSTORMS offers a project-based learning environment that engages students in real-life, problem-solving challenges. The purpose of this qualitative study was to investigate the instructional use of a robotics educational curriculum on middle school students' attitudes toward and interests in STEM and their experiences with LEGO Robotics activities. Participants included 23 seventh grade students who were enrolled in a Career Cluster Technologies I class in a suburban middle school. Data for the study were collected from three focus group interviews, open-ended surveys, classroom observations, and the Career Cruising program. Findings revealed that the robotics activities led to an increased interest and higher self-efficacy in STEM tasks. If students continue to nurture and develop their STEM interests, it is possible that many of them may develop higher confidence and eventually set personal goals related to STEM classes and careers. While other studies have been conducted on similar topics, this qualitative research is unique because it contributed to the gap in research that investigates the impact of an in-class robotics curriculum on middle school students' attitudes and interests in STEM. Throughout the robotics unit, students exhibited positive reactions, including much excitement and enjoyment as they solved the robotics challenges. In addition, students demonstrated a greater interest in STEM courses and careers as a result of this hands-on activity. Middle school teachers should incorporate STEM-based activities such as robotics to help students gain hands-on STEM skills.
Role of Robotics in Children: A brave New World!
Spinoit, Anne-Françoise; Nguyen, Hiep; Subramaniam, Ramnath
2017-04-01
The key in the evolution towards minimally invasive surgery is the availability of appropriate equipment, especially when procedures involve children. While robotic procedures in adults continue to struggle to prove measurable advantages compared with open or classical laparoscopic ones, the use of the robotic platform (RP) in pediatric urology is steadily increasing. To review the contemporary literature regarding the use of robotic-assisted (RA) urologic interventions in children. A nonsystematic review of the literature was conducted through PubMed database between 2002 and 2017, with an emphasis on large series. A few major challenges must be considered before using the RP in children: anesthesia, placement of trocars, and technical difficulties related to small space. To date, only the robot-assisted pyeloplasty is recognized as safe and efficient with an equivalent outcome compared to the open or classical laparoscopy; this was supported by large multicentric studies, which are not available for most of the other procedures. RA procedure in children has been proven safe and effective. Still in its infancy, further data over time is likely to prove different RA procedures to be equivalent to open or laparoscopy in terms of outcome. The advent of the robotic platform means an evolution towards minimizing surgical trauma for the child. Currently, the available platforms designed for adults are adapted to work in children. However, it might be expected in the future that new technologies will improve the technical possibilities to improve the robotic platform for minimally invasive surgery in children. To date, a few applications are considered safe and efficient (in experienced hands), considering that the team has to be aware of some challenges to overcome regarding anesthesia, material, and technique adaptation to the patient. The most accepted robotic applications in children comprises of the robot-assisted pyeloplasty, hemi-nephrectomy, and ureteric reimplantation. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.
High-Performance 3D Articulated Robot Display
NASA Technical Reports Server (NTRS)
Powell, Mark W.; Torres, Recaredo J.; Mittman, David S.; Kurien, James A.; Abramyan, Lucy
2011-01-01
In the domain of telerobotic operations, the primary challenge facing the operator is to understand the state of the robotic platform. One key aspect of understanding the state is to visualize the physical location and configuration of the platform. As there is a wide variety of mobile robots, the requirements for visualizing their configurations vary diversely across different platforms. There can also be diversity in the mechanical mobility, such as wheeled, tracked, or legged mobility over surfaces. Adaptable 3D articulated robot visualization software can accommodate a wide variety of robotic platforms and environments. The visualization has been used for surface, aerial, space, and water robotic vehicle visualization during field testing. It has been used to enable operations of wheeled and legged surface vehicles, and can be readily adapted to facilitate other mechanical mobility solutions. The 3D visualization can render an articulated 3D model of a robotic platform for any environment. Given the model, the software receives real-time telemetry from the avionics system onboard the vehicle and animates the robot visualization to reflect the telemetered physical state. This is used to track the position and attitude in real time to monitor the progress of the vehicle as it traverses its environment. It is also used to monitor the state of any or all articulated elements of the vehicle, such as arms, legs, or control surfaces. The visualization can also render other sorts of telemetered states visually, such as stress or strains that are measured by the avionics. Such data can be used to color or annotate the virtual vehicle to indicate nominal or off-nominal states during operation. The visualization is also able to render the simulated environment where the vehicle is operating. For surface and aerial vehicles, it can render the terrain under the vehicle as the avionics sends it location information (GPS, odometry, or star tracking), and locate the vehicle over or on the terrain correctly. For long traverses over terrain, the visualization can stream in terrain piecewise in order to maintain the current area of interest for the operator without incurring unreasonable resource constraints on the computing platform. The visualization software is designed to run on laptops that can operate in field-testing environments without Internet access, which is a frequently encountered situation when testing in remote locations that simulate planetary environments such as Mars and other planetary bodies.
Hung, Andrew J; Shah, Swar H; Dalag, Leonard; Shin, Daniel; Gill, Inderbir S
2015-08-01
We developed a novel procedure specific simulation platform for robotic partial nephrectomy. In this study we prospectively evaluate its face, content, construct and concurrent validity. This hybrid platform features augmented reality and virtual reality. Augmented reality involves 3-dimensional robotic partial nephrectomy surgical videos overlaid with virtual instruments to teach surgical anatomy, technical skills and operative steps. Advanced technical skills are assessed with an embedded full virtual reality renorrhaphy task. Participants were classified as novice (no surgical training, 15), intermediate (less than 100 robotic cases, 13) or expert (100 or more robotic cases, 14) and prospectively assessed. Cohort performance was compared with the Kruskal-Wallis test (construct validity). Post-study questionnaire was used to assess the realism of simulation (face validity) and usefulness for training (content validity). Concurrent validity evaluated correlation between virtual reality renorrhaphy task and a live porcine robotic partial nephrectomy performance (Spearman's analysis). Experts rated the augmented reality content as realistic (median 8/10) and helpful for resident/fellow training (8.0-8.2/10). Experts rated the platform highly for teaching anatomy (9/10) and operative steps (8.5/10) but moderately for technical skills (7.5/10). Experts and intermediates outperformed novices (construct validity) in efficiency (p=0.0002) and accuracy (p=0.002). For virtual reality renorrhaphy, experts outperformed intermediates on GEARS metrics (p=0.002). Virtual reality renorrhaphy and in vivo porcine robotic partial nephrectomy performance correlated significantly (r=0.8, p <0.0001) (concurrent validity). This augmented reality simulation platform displayed face, content and construct validity. Performance in the procedure specific virtual reality task correlated highly with a porcine model (concurrent validity). Future efforts will integrate procedure specific virtual reality tasks and their global assessment. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
ROS-IGTL-Bridge: an open network interface for image-guided therapy using the ROS environment.
Frank, Tobias; Krieger, Axel; Leonard, Simon; Patel, Niravkumar A; Tokuda, Junichi
2017-08-01
With the growing interest in advanced image-guidance for surgical robot systems, rapid integration and testing of robotic devices and medical image computing software are becoming essential in the research and development. Maximizing the use of existing engineering resources built on widely accepted platforms in different fields, such as robot operating system (ROS) in robotics and 3D Slicer in medical image computing could simplify these tasks. We propose a new open network bridge interface integrated in ROS to ensure seamless cross-platform data sharing. A ROS node named ROS-IGTL-Bridge was implemented. It establishes a TCP/IP network connection between the ROS environment and external medical image computing software using the OpenIGTLink protocol. The node exports ROS messages to the external software over the network and vice versa simultaneously, allowing seamless and transparent data sharing between the ROS-based devices and the medical image computing platforms. Performance tests demonstrated that the bridge could stream transforms, strings, points, and images at 30 fps in both directions successfully. The data transfer latency was <1.2 ms for transforms, strings and points, and 25.2 ms for color VGA images. A separate test also demonstrated that the bridge could achieve 900 fps for transforms. Additionally, the bridge was demonstrated in two representative systems: a mock image-guided surgical robot setup consisting of 3D slicer, and Lego Mindstorms with ROS as a prototyping and educational platform for IGT research; and the smart tissue autonomous robot surgical setup with 3D Slicer. The study demonstrated that the bridge enabled cross-platform data sharing between ROS and medical image computing software. This will allow rapid and seamless integration of advanced image-based planning/navigation offered by the medical image computing software such as 3D Slicer into ROS-based surgical robot systems.
Industrial-Like Vehicle Platforms for Postgraduate Laboratory Courses on Robotics
ERIC Educational Resources Information Center
Navarro, P. J.; Fernandez, C.; Sanchez, P.
2013-01-01
The interdisciplinary nature of robotics allows mobile robots to be used successfully in a broad range of courses at the postgraduate level and in Ph.D. research. Practical industrial-like mobile robotic demonstrations encourage students and increase their motivation by providing them with learning benefits not achieved with traditional…
Distributed and Modular CAN-Based Architecture for Hardware Control and Sensor Data Integration
Losada, Diego P.; Fernández, Joaquín L.; Paz, Enrique; Sanz, Rafael
2017-01-01
In this article, we present a CAN-based (Controller Area Network) distributed system to integrate sensors, actuators and hardware controllers in a mobile robot platform. With this work, we provide a robust, simple, flexible and open system to make hardware elements or subsystems communicate, that can be applied to different robots or mobile platforms. Hardware modules can be connected to or disconnected from the CAN bus while the system is working. It has been tested in our mobile robot Rato, based on a RWI (Real World Interface) mobile platform, to replace the old sensor and motor controllers. It has also been used in the design of two new robots: BellBot and WatchBot. Currently, our hardware integration architecture supports different sensors, actuators and control subsystems, such as motor controllers and inertial measurement units. The integration architecture was tested and compared with other solutions through a performance analysis of relevant parameters such as transmission efficiency and bandwidth usage. The results conclude that the proposed solution implements a lightweight communication protocol for mobile robot applications that avoids transmission delays and overhead. PMID:28467381
Distributed and Modular CAN-Based Architecture for Hardware Control and Sensor Data Integration.
Losada, Diego P; Fernández, Joaquín L; Paz, Enrique; Sanz, Rafael
2017-05-03
In this article, we present a CAN-based (Controller Area Network) distributed system to integrate sensors, actuators and hardware controllers in a mobile robot platform. With this work, we provide a robust, simple, flexible and open system to make hardware elements or subsystems communicate, that can be applied to different robots or mobile platforms. Hardware modules can be connected to or disconnected from the CAN bus while the system is working. It has been tested in our mobile robot Rato, based on a RWI (Real World Interface) mobile platform, to replace the old sensor and motor controllers. It has also been used in the design of two new robots: BellBot and WatchBot. Currently, our hardware integration architecture supports different sensors, actuators and control subsystems, such as motor controllers and inertial measurement units. The integration architecture was tested and compared with other solutions through a performance analysis of relevant parameters such as transmission efficiency and bandwidth usage. The results conclude that the proposed solution implements a lightweight communication protocol for mobile robot applications that avoids transmission delays and overhead.
Creature co-op: Achieving robust remote operations with a community of low-cost robots
NASA Technical Reports Server (NTRS)
Bonasso, R. Peter
1990-01-01
The concept is advanced of carrying out space based remote missions using a cooperative of low cost robot specialists rather than monolithic, multipurpose systems. A simulation is described wherein a control architecture for such a system of specialists is being investigated. Early results show such co-ops to be robust in the face of unforeseen circumstances. Descriptions of the platforms and sensors modeled and the beacon and retriever creatures that make up the co-op are included.
2018-04-01
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...2006. Since that time , SS-RICS has been the integration platform for many robotics algorithms using a variety of different disciplines from cognitive...voice recognition. Each noise level was run 10 times per gender, yielding 60 total runs. Two paths were chosen for testing (Paths A and B) of
Design of a dynamic test platform for autonomous robot vision systems
NASA Technical Reports Server (NTRS)
Rich, G. C.
1980-01-01
The concept and design of a dynamic test platform for development and evluation of a robot vision system is discussed. The platform is to serve as a diagnostic and developmental tool for future work with the RPI Mars Rover's multi laser/multi detector vision system. The platform allows testing of the vision system while its attitude is varied, statically or periodically. The vision system is mounted on the test platform. It can then be subjected to a wide variety of simulated can thus be examined in a controlled, quantitative fashion. Defining and modeling Rover motions and designing the platform to emulate these motions are also discussed. Individual aspects of the design process are treated separately, as structural, driving linkages, and motors and transmissions.
Robotics in general thoracic surgery procedures.
Latif, M Jawad; Park, Bernard J
2017-01-01
The use of robotic technology in general thoracic surgical practice continues to expand across various institutions and at this point many major common thoracic surgical procedures have been successfully performed by general thoracic surgeons using the robotic technology. These procedures include lung resections, excision of mediastinal masses, esophagectomy and reconstruction for malignant and benign esophageal pathologies. The success of robotic technology can be attributed to highly magnified 3-D visualization, dexterity afforded by 7 degrees of freedom that allow difficult dissections in narrow fields and the ease of reproducibility once the initial set up and instruments become familiar to the surgeon. As the application of robotic technology trickle downs from major academic centers to community hospitals, it becomes imperative that its role, limitations, learning curve and financial impact are understood by the novice robotic surgeon. In this article, we share our experience as it relates to the setup, common pitfalls and long term results for more commonly performed robotic assisted lung and thymic resections using the 4 arm da Vinci Xi robotic platform (Intuitive Surgical, Inc., Sunnyvale, CA, USA) to help guide those who are interested in adopting this technology.
JacksonBot - Design, Simulation and Optimal Control of an Action Painting Robot
NASA Astrophysics Data System (ADS)
Raschke, Michael; Mombaur, Katja; Schubert, Alexander
We present the robotics platform JacksonBot which is capable to produce paintings inspired by the Action Painting style of Jackson Pollock. A dynamically moving robot arm splashes color from a container at the end effector on the canvas. The paintings produced by this platform rely on a combination of the algorithmic generation of robot arm motions with random effects of the splashing color. The robot can be considered as a complex and powerful tool to generate art works programmed by a user. Desired end effector motions can be prescribed either by mathematical functions, by point sequences or by data glove motions. We have evaluated the effect of different shapes of input motions on the resulting painting. In order to compute the robot joint trajectories necessary to move along a desired end effector path, we use an optimal control based approach to solve the inverse kinematics problem.
A Face Attention Technique for a Robot Able to Interpret Facial Expressions
NASA Astrophysics Data System (ADS)
Simplício, Carlos; Prado, José; Dias, Jorge
Automatic facial expressions recognition using vision is an important subject towards human-robot interaction. Here is proposed a human face focus of attention technique and a facial expressions classifier (a Dynamic Bayesian Network) to incorporate in an autonomous mobile agent whose hardware is composed by a robotic platform and a robotic head. The focus of attention technique is based on the symmetry presented by human faces. By using the output of this module the autonomous agent keeps always targeting the human face frontally. In order to accomplish this, the robot platform performs an arc centered at the human; thus the robotic head, when necessary, moves synchronized. In the proposed probabilistic classifier the information is propagated, from the previous instant, in a lower level of the network, to the current instant. Moreover, to recognize facial expressions are used not only positive evidences but also negative.
Sutherland, J David; Tu, Noah P; Nemcek, Thomas A; Searle, Philip A; Hochlowski, Jill E; Djuric, Stevan W; Pan, Jeffrey Y
2014-04-01
A flexible and integrated flow-chemistry-synthesis-purification compound-generation and sample-management platform has been developed to accelerate the production of small-molecule organic-compound drug candidates in pharmaceutical research. Central to the integrated system is a Mitsubishi robot, which hands off samples throughout the process to the next station, including synthesis and purification, sample dispensing for purity and quantification analysis, dry-down, and aliquot generation.
Robonaut: a robot designed to work with humans in space
NASA Technical Reports Server (NTRS)
Bluethmann, William; Ambrose, Robert; Diftler, Myron; Askew, Scott; Huber, Eric; Goza, Michael; Rehnmark, Fredrik; Lovchik, Chris; Magruder, Darby
2003-01-01
The Robotics Technology Branch at the NASA Johnson Space Center is developing robotic systems to assist astronauts in space. One such system, Robonaut, is a humanoid robot with the dexterity approaching that of a suited astronaut. Robonaut currently has two dexterous arms and hands, a three degree-of-freedom articulating waist, and a two degree-of-freedom neck used as a camera and sensor platform. In contrast to other space manipulator systems, Robonaut is designed to work within existing corridors and use the same tools as space walking astronauts. Robonaut is envisioned as working with astronauts, both autonomously and by teleoperation, performing a variety of tasks including, routine maintenance, setting up and breaking down worksites, assisting crew members while outside of spacecraft, and serving in a rapid response capacity.
Robonaut: a robot designed to work with humans in space.
Bluethmann, William; Ambrose, Robert; Diftler, Myron; Askew, Scott; Huber, Eric; Goza, Michael; Rehnmark, Fredrik; Lovchik, Chris; Magruder, Darby
2003-01-01
The Robotics Technology Branch at the NASA Johnson Space Center is developing robotic systems to assist astronauts in space. One such system, Robonaut, is a humanoid robot with the dexterity approaching that of a suited astronaut. Robonaut currently has two dexterous arms and hands, a three degree-of-freedom articulating waist, and a two degree-of-freedom neck used as a camera and sensor platform. In contrast to other space manipulator systems, Robonaut is designed to work within existing corridors and use the same tools as space walking astronauts. Robonaut is envisioned as working with astronauts, both autonomously and by teleoperation, performing a variety of tasks including, routine maintenance, setting up and breaking down worksites, assisting crew members while outside of spacecraft, and serving in a rapid response capacity.
Grounding language in action and perception: From cognitive agents to humanoid robots
NASA Astrophysics Data System (ADS)
Cangelosi, Angelo
2010-06-01
In this review we concentrate on a grounded approach to the modeling of cognition through the methodologies of cognitive agents and developmental robotics. This work will focus on the modeling of the evolutionary and developmental acquisition of linguistic capabilities based on the principles of symbol grounding. We review cognitive agent and developmental robotics models of the grounding of language to demonstrate their consistency with the empirical and theoretical evidence on language grounding and embodiment, and to reveal the benefits of such an approach in the design of linguistic capabilities in cognitive robotic agents. In particular, three different models will be discussed, where the complexity of the agent's sensorimotor and cognitive system gradually increases: from a multi-agent simulation of language evolution, to a simulated robotic agent model for symbol grounding transfer, to a model of language comprehension in the humanoid robot iCub. The review also discusses the benefits of the use of humanoid robotic platform, and specifically of the open source iCub platform, for the study of embodied cognition.
PaR-PaR Laboratory Automation Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linshiz, G; Stawski, N; Poust, S
2013-05-01
Labor-intensive multistep biological tasks, such as the construction and cloning of DNA molecules, are prime candidates for laboratory automation. Flexible and biology-friendly operation of robotic equipment is key to its successful integration in biological laboratories, and the efforts required to operate a robot must be much smaller than the alternative manual lab work. To achieve these goals, a simple high-level biology-friendly robot programming language is needed. We have developed and experimentally validated such a language: Programming a Robot (PaR-PaR). The syntax and compiler for the language are based on computer science principles and a deep understanding of biological workflows. PaR-PaRmore » allows researchers to use liquid-handling robots effectively, enabling experiments that would not have been considered previously. After minimal training, a biologist can independently write complicated protocols for a robot within an hour. Adoption of PaR-PaR as a standard cross-platform language would enable hand-written or software-generated robotic protocols to be shared across laboratories.« less
PaR-PaR laboratory automation platform.
Linshiz, Gregory; Stawski, Nina; Poust, Sean; Bi, Changhao; Keasling, Jay D; Hillson, Nathan J
2013-05-17
Labor-intensive multistep biological tasks, such as the construction and cloning of DNA molecules, are prime candidates for laboratory automation. Flexible and biology-friendly operation of robotic equipment is key to its successful integration in biological laboratories, and the efforts required to operate a robot must be much smaller than the alternative manual lab work. To achieve these goals, a simple high-level biology-friendly robot programming language is needed. We have developed and experimentally validated such a language: Programming a Robot (PaR-PaR). The syntax and compiler for the language are based on computer science principles and a deep understanding of biological workflows. PaR-PaR allows researchers to use liquid-handling robots effectively, enabling experiments that would not have been considered previously. After minimal training, a biologist can independently write complicated protocols for a robot within an hour. Adoption of PaR-PaR as a standard cross-platform language would enable hand-written or software-generated robotic protocols to be shared across laboratories.
Panteleimonitis, Sofoklis; Harper, Mick; Hall, Stuart; Figueiredo, Nuno; Qureshi, Tahseen; Parvaiz, Amjad
2017-09-15
Robotic rectal surgery is becoming increasingly more popular among colorectal surgeons. However, time spent on robotic platform docking, arm clashing and undocking of the platform during the procedure are factors that surgeons often find cumbersome and time consuming. The newest surgical platform, the da Vinci Xi, coupled with integrated table motion can help to overcome these problems. This technical note aims to describe a standardised operative technique of single docking robotic rectal surgery using the da Vinci Xi system and integrated table motion. A stepwise approach of the da Vinci docking process and surgical technique is described accompanied by an intra-operative video that demonstrates this technique. We also present data collected from a prospectively maintained database. 33 consecutive rectal cancer patients (24 male, 9 female) received robotic rectal surgery with the da Vinci Xi during the preparation of this technical note. 29 (88%) patients had anterior resections, and four (12%) had abdominoperineal excisions. There were no conversions, no anastomotic leaks and no mortality. Median operation time was 331 (249-372) min, blood loss 20 (20-45) mls and length of stay 6.5 (4-8) days. 30-day readmission rate and re-operation rates were 3% (n = 1). This standardised technique of single docking robotic rectal surgery with the da Vinci Xi is safe, feasible and reproducible. The technological advances of the new robotic system facilitate the totally robotic single docking approach.
Robotic Stereotaxy in Cranial Neurosurgery: A Qualitative Systematic Review.
Fomenko, Anton; Serletis, Demitre
2017-12-14
Modern-day stereotactic techniques have evolved to tackle the neurosurgical challenge of accurately and reproducibly accessing specific brain targets. Neurosurgical advances have been made in synergy with sophisticated technological developments and engineering innovations such as automated robotic platforms. Robotic systems offer a unique combination of dexterity, durability, indefatigability, and precision. To perform a systematic review of robotic integration for cranial stereotactic guidance in neurosurgery. Specifically, we comprehensively analyze the strengths and weaknesses of a spectrum of robotic technologies, past and present, including details pertaining to each system's kinematic specifications and targeting accuracy profiles. Eligible articles on human clinical applications of cranial robotic-guided stereotactic systems between 1985 and 2017 were extracted from several electronic databases, with a focus on stereotactic biopsy procedures, stereoelectroencephalography, and deep brain stimulation electrode insertion. Cranial robotic stereotactic systems feature serial or parallel architectures with 4 to 7 degrees of freedom, and frame-based or frameless registration. Indications for robotic assistance are diversifying, and include stereotactic biopsy, deep brain stimulation and stereoelectroencephalography electrode placement, ventriculostomy, and ablation procedures. Complication rates are low, and mainly consist of hemorrhage. Newer systems benefit from increasing targeting accuracy, intraoperative imaging ability, improved safety profiles, and reduced operating times. We highlight emerging future directions pertaining to the integration of robotic technologies into future neurosurgical procedures. Notably, a trend toward miniaturization, cost-effectiveness, frameless registration, and increasing safety and accuracy characterize successful stereotactic robotic technologies. Copyright © 2017 by the Congress of Neurological Surgeons
Monaco, Vito; Galardi, Giuseppe; Coscia, Martina; Martelli, Dario; Micera, Silvestro
2012-11-01
Over the past decades, a large number of robotic platforms have been developed which provide rehabilitative treatments aimed at recovering walking abilities in post-stroke patients. Unfortunately, they do not significantly influence patients' performance after three months from the accident. One of the main reasons underlying this result seems to be related to the time of intervention. Specifically, although experimental evidences suggest that early (i.e., first days after the injury) and intense neuro-rehabilitative treatments can significantly favor the functional recovery of post-stroke patients, robots require patients to be verticalized. Consequently, this does not allow them to be treated immediately after the trauma. This paper introduces a new robotic platform, named NEUROBike, designed to provide neuro-rehabilitative treatments to bedridden patients. It was designed to provide an early and well-addressed rehabilitation therapy, in terms of kinesiology, efforts, and fatigue, accounting for exercises functionally related to daily motor tasks. For this purpose, kinematic models of leg-joint angular excursions during both walking and sit-to-stand were developed and implemented in control algorithms leading both passive and active exercises. Finally, a set of pilot tests was carried out to evaluate the performance of the robotic platform on healthy subjects.
ARV robotic technologies (ART): a risk reduction effort for future unmanned systems
NASA Astrophysics Data System (ADS)
Jaster, Jeffrey F.
2006-05-01
The Army's ARV (Armed Robotic Vehicle) Robotic Technologies (ART) program is working on the development of various technological thrusts for use in the robotic forces of the future. The ART program will develop, integrate and demonstrate the technology required to advance the maneuver technologies (i.e., perception, mobility, tactical behaviors) and increase the survivability of unmanned platforms for the future force while focusing on reducing the soldiers' burden by providing an increase in vehicle autonomy coinciding with a decrease in the total number user interventions required to control the unmanned assets. This program will advance the state of the art in perception technologies to provide the unmanned platform an increasingly accurate view of the terrain that surrounds it; while developing tactical/mission behavior technologies to provide the Unmanned Ground Vehicle (UGV) the capability to maneuver tactically, in conjunction with the manned systems in an autonomous mode. The ART testbed will be integrated with the advanced technology software and associated hardware developed under this effort, and incorporate appropriate mission modules (e.g. RSTA sensors, MILES, etc.) to support Warfighter experiments and evaluations (virtual and field) in a military significant environment (open/rolling and complex/urban terrain). The outcome of these experiments as well as other lessons learned through out the program life cycle will be used to reduce the current risks that are identified for the future UGV systems that will be developed under the Future Combat Systems (FCS) program, including the early integration of an FCS-like autonomous navigation system onto a tracked skid steer platform.
FOCU:S--future operator control unit: soldier
NASA Astrophysics Data System (ADS)
O'Brien, Barry J.; Karan, Cem; Young, Stuart H.
2009-05-01
The U.S. Army Research Laboratory's (ARL) Computational and Information Sciences Directorate (CISD) has long been involved in autonomous asset control, specifically as it relates to small robots. Over the past year, CISD has been making strides in the implementation of three areas of small robot autonomy, namely platform autonomy, Soldier-robot interface, and tactical behaviors. It is CISD's belief that these three areas must be considered as a whole in order to provide Soldiers with useful capabilities. In addressing the Soldier-robot interface aspect, CISD has begun development on a unique dismounted controller called the Future Operator Control Unit: Soldier (FOCU:S) that is based on an Apple iPod Touch. The iPod Touch's small form factor, unique touch-screen input device, and the presence of general purpose computing applications such as a web browser combine to give this device the potential to be a disruptive technology. Setting CISD's implementation apart from other similar iPod or iPhone-based devices is the ARL software that allows multiple robotic platforms to be controlled from a single OCU. The FOCU:S uses the same Agile Computing Infrastructure (ACI) that all other assets in the ARL robotic control system use, enabling automated asset discovery on any type of network. Further, a custom ad hoc routing implementation allows the FOCU:S to communicate with the ARL ad hoc communications system and enables it to extend the range of the network. This paper will briefly describe the current robotic control architecture employed by ARL and provide short descriptions of existing capabilities. Further, the paper will discuss FOCU:S specific software developed for the iPod Touch, including unique capabilities enabled by the device's unique hardware.
A Gradient Optimization Approach to Adaptive Multi-Robot Control
2009-09-01
implemented for deploying a group of three flying robots with downward facing cameras to monitor an environment on the ground. Thirdly, the multi-robot...theoretically proven, and implemented on multi-robot platforms. Thesis Supervisor: Daniela Rus Title: Professor of Electrical Engineering and Computer...often nonlinear, and they are coupled through a network which changes over time. Thirdly, implementing multi-robot controllers requires maintaining mul
Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm
NASA Astrophysics Data System (ADS)
Kassem, Salma; Lee, Alan T. L.; Leigh, David A.; Markevicius, Augustinas; Solà, Jordi
2016-02-01
Modern-day factory assembly lines often feature robots that pick up, reposition and connect components in a programmed manner. The idea of manipulating molecular fragments in a similar way has to date only been explored using biological building blocks (specifically DNA). Here, we report on a wholly artificial small-molecule robotic arm capable of selectively transporting a molecular cargo in either direction between two spatially distinct, chemically similar, sites on a molecular platform. The arm picks up/releases a 3-mercaptopropanehydrazide cargo by formation/breakage of a disulfide bond, while dynamic hydrazone chemistry controls the cargo binding to the platform. Transport is controlled by selectively inducing conformational and configurational changes within an embedded hydrazone rotary switch that steers the robotic arm. In a three-stage operation, 79-85% of 3-mercaptopropanehydrazide molecules are transported in either (chosen) direction between the two platform sites, without the cargo at any time fully dissociating from the machine nor exchanging with other molecules in the bulk.
Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm.
Kassem, Salma; Lee, Alan T L; Leigh, David A; Markevicius, Augustinas; Solà, Jordi
2016-02-01
Modern-day factory assembly lines often feature robots that pick up, reposition and connect components in a programmed manner. The idea of manipulating molecular fragments in a similar way has to date only been explored using biological building blocks (specifically DNA). Here, we report on a wholly artificial small-molecule robotic arm capable of selectively transporting a molecular cargo in either direction between two spatially distinct, chemically similar, sites on a molecular platform. The arm picks up/releases a 3-mercaptopropanehydrazide cargo by formation/breakage of a disulfide bond, while dynamic hydrazone chemistry controls the cargo binding to the platform. Transport is controlled by selectively inducing conformational and configurational changes within an embedded hydrazone rotary switch that steers the robotic arm. In a three-stage operation, 79-85% of 3-mercaptopropanehydrazide molecules are transported in either (chosen) direction between the two platform sites, without the cargo at any time fully dissociating from the machine nor exchanging with other molecules in the bulk.
Free-standing leaping experiments with a power-autonomous elastic-spined quadruped
NASA Astrophysics Data System (ADS)
Pusey, Jason L.; Duperret, Jeffrey M.; Haynes, G. Clark; Knopf, Ryan; Koditschek, Daniel E.
2013-05-01
We document initial experiments with Canid, a freestanding, power-autonomous quadrupedal robot equipped with a parallel actuated elastic spine. Research into robotic bounding and galloping platforms holds scientific and engineering interest because it can both probe biological hypotheses regarding bounding and galloping mammals and also provide the engineering community with a new class of agile, efficient and rapidly-locomoting legged robots. We detail the design features of Canid that promote our goals of agile operation in a relatively cheap, conventionally prototyped, commercial off-the-shelf actuated platform. We introduce new measurement methodology aimed at capturing our robot's "body energy" during real time operation as a means of quantifying its potential for agile behavior. Finally, we present joint motor, inertial and motion capture data taken from Canid's initial leaps into highly energetic regimes exhibiting large accelerations that illustrate the use of this measure and suggest its future potential as a platform for developing efficient, stable, hence useful bounding gaits.
Training Surgical Residents With a Haptic Robotic Central Venous Catheterization Simulator.
Pepley, David F; Gordon, Adam B; Yovanoff, Mary A; Mirkin, Katelin A; Miller, Scarlett R; Han, David C; Moore, Jason Z
Ultrasound guided central venous catheterization (CVC) is a common surgical procedure with complication rates ranging from 5 to 21 percent. Training is typically performed using manikins that do not simulate anatomical variations such as obesity and abnormal vessel positioning. The goal of this study was to develop and validate the effectiveness of a new virtual reality and force haptic based simulation platform for CVC of the right internal jugular vein. A CVC simulation platform was developed using a haptic robotic arm, 3D position tracker, and computer visualization. The haptic robotic arm simulated needle insertion force that was based on cadaver experiments. The 3D position tracker was used as a mock ultrasound device with realistic visualization on a computer screen. Upon completion of a practice simulation, performance feedback is given to the user through a graphical user interface including scoring factors based on good CVC practice. The effectiveness of the system was evaluated by training 13 first year surgical residents using the virtual reality haptic based training system over a 3 month period. The participants' performance increased from 52% to 96% on the baseline training scenario, approaching the average score of an expert surgeon: 98%. This also resulted in improvement in positive CVC practices including a 61% decrease between final needle tip position and vein center, a decrease in mean insertion attempts from 1.92 to 1.23, and a 12% increase in time spent aspirating the syringe throughout the procedure. A virtual reality haptic robotic simulator for CVC was successfully developed. Surgical residents training on the simulation improved to near expert levels after three robotic training sessions. This suggests that this system could act as an effective training device for CVC. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
The evolving application of single-port robotic surgery in general surgery.
Qadan, Motaz; Curet, Myriam J; Wren, Sherry M
2014-01-01
Advances in the field of minimally invasive surgery have grown since the original advent of conventional multiport laparoscopic surgery. The recent development of single incision laparoscopic surgery remains a relatively novel technique, and has had mixed reviews as to whether it has been associated with lower pain scores, shorter hospital stays, and higher satisfaction levels among patients undergoing procedures through cosmetically-appeasing single incisions. However, due to technical difficulties that arise from the clustering of laparoscopic instruments through a confined working space, such as loss of instrument triangulation, poor surgical exposure, and instrument clashing, uptake by surgeons without a specific interest and expertise in cutting-edge minimally invasive approaches has been limited. The parallel use of robotic surgery with single-port platforms, however, appears to counteract technical issues associated with single incision laparoscopic surgery through significant ergonomic improvements, including enhanced instrument triangulation, organ retraction, and camera localization within the surgical field. By combining the use of the robot with the single incision platform, the recognized challenges of single incision laparoscopic surgery are simplified, while maintaining potential advantages of the single-incision minimally invasive approach. This review provides a comprehensive report of the evolving application single-port robotic surgery in the field of general surgery today. © 2013 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
Integrated multi-sensor package (IMSP) for unmanned vehicle operations
NASA Astrophysics Data System (ADS)
Crow, Eddie C.; Reichard, Karl; Rogan, Chris; Callen, Jeff; Seifert, Elwood
2007-10-01
This paper describes recent efforts to develop integrated multi-sensor payloads for small robotic platforms for improved operator situational awareness and ultimately for greater robot autonomy. The focus is on enhancements to perception through integration of electro-optic, acoustic, and other sensors for navigation and inspection. The goals are to provide easier control and operation of the robot through fusion of multiple sensor outputs, to improve interoperability of the sensor payload package across multiple platforms through the use of open standards and architectures, and to reduce integration costs by embedded sensor data processing and fusion within the sensor payload package. The solutions investigated in this project to be discussed include: improved capture, processing and display of sensor data from multiple, non-commensurate sensors; an extensible architecture to support plug and play of integrated sensor packages; built-in health, power and system status monitoring using embedded diagnostics/prognostics; sensor payload integration into standard product forms for optimized size, weight and power; and the use of the open Joint Architecture for Unmanned Systems (JAUS)/ Society of Automotive Engineers (SAE) AS-4 interoperability standard. This project is in its first of three years. This paper will discuss the applicability of each of the solutions in terms of its projected impact to reducing operational time for the robot and teleoperator.
Development of 6-DOF painting robot control system
NASA Astrophysics Data System (ADS)
Huang, Junbiao; Liu, Jianqun; Gao, Weiqiang
2017-01-01
With the development of society, the spraying technology of manufacturing industry in China has changed from the manual operation to the 6-DOF (Degree Of Freedom)robot automatic spraying. Spraying painting robot can not only complete the work which does harm to human being, but also improve the production efficiency and save labor costs. Control system is the most critical part of the 6-DOF robots, however, there is still a lack of relevant technology research in China. It is very necessary to study a kind of control system of 6-DOF spraying painting robots which is easy to operation, and has high efficiency and stable performance. With Googol controller platform, this paper develops programs based on Windows CE embedded systems to control the robot to finish the painting work. Software development is the core of the robot control system, including the direct teaching module, playback module, motion control module, setting module, man-machine interface, alarm module, log module, etc. All the development work of the entire software system has been completed, and it has been verified that the entire software works steady and efficient.
PADF RF localization experiments with multi-agent caged-MAV platforms
NASA Astrophysics Data System (ADS)
Barber, Christopher; Gates, Miguel; Selmic, Rastko; Al-Issa, Huthaifa; Ordonez, Raul; Mitra, Atindra
2011-06-01
This paper provides a summary of preliminary RF direction finding results generated within an AFOSR funded testbed facility recently developed at Louisiana Tech University. This facility, denoted as the Louisiana Tech University Micro- Aerial Vehicle/Wireless Sensor Network (MAVSeN) Laboratory, has recently acquired a number of state-of-the-art MAV platforms that enable us to analyze, design, and test some of our recent results in the area of multiplatform position-adaptive direction finding (PADF) [1] [2] for localization of RF emitters in challenging embedded multipath environments. Discussions within the segmented sections of this paper include a description of the MAVSeN Laboratory and the preliminary results from the implementation of mobile platforms with the PADF algorithm. This novel approach to multi-platform RF direction finding is based on the investigation of iterative path-loss based (i.e. path loss exponent) metrics estimates that are measured across multiple platforms in order to develop a control law that robotically/intelligently positionally adapt (i.e. self-adjust) the location of each distributed/cooperative platform. The body of this paper provides a summary of our recent results on PADF and includes a discussion on state-of-the-art Sensor Mote Technologies as applied towards the development of sensor-integrated caged-MAV platform for PADF applications. Also, a discussion of recent experimental results that incorporate sample approaches to real-time singleplatform data pruning is included as part of a discussion on potential approaches to refining a basic PADF technique in order to integrate and perform distributed self-sensitivity and self-consistency analysis as part of a PADF technique with distributed robotic/intelligent features. These techniques are extracted in analytical form from a parallel study denoted as "PADF RF Localization Criteria for Multi-Model Scattering Environments". The focus here is on developing and reporting specific approaches to self-sensitivity and self-consistency within this experimental PADF framework via the exploitation of specific single-agent caged-MAV trajectories that are unique to this experiment set.
DOT National Transportation Integrated Search
2011-05-01
The 2002 Office of Pipeline Safety (OPS) regulations requiring the inspection of all transmission pipelines, including those that are now deemed "unpiggable", triggered the search for technologies that would make the inspection of unpiggable pipeline...
Balancing Theory and Practical Work in a Humanoid Robotics Course
ERIC Educational Resources Information Center
Wolff, Krister; Wahde, Mattias
2010-01-01
In this paper, we summarize our experiences from teaching a course in humanoid robotics at Chalmers University of Technology in Goteborg, Sweden. We describe the robotic platform used in the course and we propose the use of a custom-built robot consisting of standard electronic and mechanical components. In our experience, by using standard…
NASA Astrophysics Data System (ADS)
Schubert, Oliver J.; Tolle, Charles R.
2004-09-01
Over the last decade the world has seen numerous autonomous vehicle programs. Wheels and track designs are the basis for many of these vehicles. This is primarily due to four main reasons: a vast preexisting knowledge base for these designs, energy efficiency of power sources, scalability of actuators, and the lack of control systems technologies for handling alternate highly complex distributed systems. Though large efforts seek to improve the mobility of these vehicles, many limitations still exist for these systems within unstructured environments, e.g. limited mobility within industrial and nuclear accident sites where existing plant configurations have been extensively changed. These unstructured operational environments include missions for exploration, reconnaissance, and emergency recovery of objects within reconfigured or collapsed structures, e.g. bombed buildings. More importantly, these environments present a clear and present danger for direct human interactions during the initial phases of recovery operations. Clearly, the current classes of autonomous vehicles are incapable of performing in these environments. Thus the next generation of designs must include highly reconfigurable and flexible autonomous robotic platforms. This new breed of autonomous vehicles will be both highly flexible and environmentally adaptable. Presented in this paper is one of the most successful designs from nature, the snake-eel-worm (SEW). This design implements shape memory alloy (SMA) actuators which allow for scaling of the robotic SEW designs from sub-micron scale to heavy industrial implementations without major conceptual redesigns as required in traditional hydraulic, pneumatic, or motor driven systems. Autonomous vehicles based on the SEW design posses the ability to easily move between air based environments and fluid based environments with limited or no reconfiguration. Under a SEW designed vehicle, one not only achieves vastly improved maneuverability within a highly unstructured environment, but also gains robotic manipulation abilities, normally relegated as secondary add-ons within existing vehicles, all within one small condensed package. The prototype design presented includes a Beowulf style computing system for advanced guidance calculations and visualization computations. All of the design and implementation pertaining to the SEW robot discussed in this paper is the product of a student team under the summer fellowship program at the DOEs INEEL.
Current status of validation for robotic surgery simulators - a systematic review.
Abboudi, Hamid; Khan, Mohammed S; Aboumarzouk, Omar; Guru, Khurshid A; Challacombe, Ben; Dasgupta, Prokar; Ahmed, Kamran
2013-02-01
To analyse studies validating the effectiveness of robotic surgery simulators. The MEDLINE(®), EMBASE(®) and PsycINFO(®) databases were systematically searched until September 2011. References from retrieved articles were reviewed to broaden the search. The simulator name, training tasks, participant level, training duration and evaluation scoring were extracted from each study. We also extracted data on feasibility, validity, cost-effectiveness, reliability and educational impact. We identified 19 studies investigating simulation options in robotic surgery. There are five different robotic surgery simulation platforms available on the market. In all, 11 studies sought opinion and compared performance between two different groups; 'expert' and 'novice'. Experts ranged in experience from 21-2200 robotic cases. The novice groups consisted of participants with no prior experience on a robotic platform and were often medical students or junior doctors. The Mimic dV-Trainer(®), ProMIS(®), SimSurgery Educational Platform(®) (SEP) and Intuitive systems have shown face, content and construct validity. The Robotic Surgical SimulatorTM system has only been face and content validated. All of the simulators except SEP have shown educational impact. Feasibility and cost-effectiveness of simulation systems was not evaluated in any trial. Virtual reality simulators were shown to be effective training tools for junior trainees. Simulation training holds the greatest potential to be used as an adjunct to traditional training methods to equip the next generation of robotic surgeons with the skills required to operate safely. However, current simulation models have only been validated in small studies. There is no evidence to suggest one type of simulator provides more effective training than any other. More research is needed to validate simulated environments further and investigate the effectiveness of animal and cadaveric training in robotic surgery. © 2012 BJU International.
Using advanced computer vision algorithms on small mobile robots
NASA Astrophysics Data System (ADS)
Kogut, G.; Birchmore, F.; Biagtan Pacis, E.; Everett, H. R.
2006-05-01
The Technology Transfer project employs a spiral development process to enhance the functionality and autonomy of mobile robot systems in the Joint Robotics Program (JRP) Robotic Systems Pool by converging existing component technologies onto a transition platform for optimization. An example of this approach is the implementation of advanced computer vision algorithms on small mobile robots. We demonstrate the implementation and testing of the following two algorithms useful on mobile robots: 1) object classification using a boosted Cascade of classifiers trained with the Adaboost training algorithm, and 2) human presence detection from a moving platform. Object classification is performed with an Adaboost training system developed at the University of California, San Diego (UCSD) Computer Vision Lab. This classification algorithm has been used to successfully detect the license plates of automobiles in motion in real-time. While working towards a solution to increase the robustness of this system to perform generic object recognition, this paper demonstrates an extension to this application by detecting soda cans in a cluttered indoor environment. The human presence detection from a moving platform system uses a data fusion algorithm which combines results from a scanning laser and a thermal imager. The system is able to detect the presence of humans while both the humans and the robot are moving simultaneously. In both systems, the two aforementioned algorithms were implemented on embedded hardware and optimized for use in real-time. Test results are shown for a variety of environments.
Burrell, Thomas; Fozard, Susan; Holroyd, Geoff H; French, Andrew P; Pound, Michael P; Bigley, Christopher J; James Taylor, C; Forde, Brian G
2017-01-01
Chemical genetics provides a powerful alternative to conventional genetics for understanding gene function. However, its application to plants has been limited by the lack of a technology that allows detailed phenotyping of whole-seedling development in the context of a high-throughput chemical screen. We have therefore sought to develop an automated micro-phenotyping platform that would allow both root and shoot development to be monitored under conditions where the phenotypic effects of large numbers of small molecules can be assessed. The 'Microphenotron' platform uses 96-well microtitre plates to deliver chemical treatments to seedlings of Arabidopsis thaliana L. and is based around four components: (a) the 'Phytostrip', a novel seedling growth device that enables chemical treatments to be combined with the automated capture of images of developing roots and shoots; (b) an illuminated robotic platform that uses a commercially available robotic manipulator to capture images of developing shoots and roots; (c) software to control the sequence of robotic movements and integrate these with the image capture process; (d) purpose-made image analysis software for automated extraction of quantitative phenotypic data. Imaging of each plate (representing 80 separate assays) takes 4 min and can easily be performed daily for time-course studies. As currently configured, the Microphenotron has a capacity of 54 microtitre plates in a growth room footprint of 2.1 m 2 , giving a potential throughput of up to 4320 chemical treatments in a typical 10 days experiment. The Microphenotron has been validated by using it to screen a collection of 800 natural compounds for qualitative effects on root development and to perform a quantitative analysis of the effects of a range of concentrations of nitrate and ammonium on seedling development. The Microphenotron is an automated screening platform that for the first time is able to combine large numbers of individual chemical treatments with a detailed analysis of whole-seedling development, and particularly root system development. The Microphenotron should provide a powerful new tool for chemical genetics and for wider chemical biology applications, including the development of natural and synthetic chemical products for improved agricultural sustainability.
Carlson, Jay; Kowalczuk, Jędrzej; Psota, Eric; Pérez, Lance C
2012-01-01
Robotic surgical platforms require vision feedback systems, which often consist of low-resolution, expensive, single-imager analog cameras. These systems are retooled for 3D display by simply doubling the cameras and outboard control units. Here, a fully-integrated digital stereoscopic video camera employing high-definition sensors and a class-compliant USB video interface is presented. This system can be used with low-cost PC hardware and consumer-level 3D displays for tele-medical surgical applications including military medical support, disaster relief, and space exploration.
Current status and future directions of robotic single-site surgery: a systematic review.
Autorino, Riccardo; Kaouk, Jihad H; Stolzenburg, Jens-Uwe; Gill, Inderbir S; Mottrie, Alex; Tewari, Ash; Cadeddu, Jeffrey A
2013-02-01
Despite the increasing interest in laparoendoscopic single-site surgery (LESS) worldwide, the actual role of this novel approach in the field of minimally invasive urologic surgery remains to be determined. It has been postulated that robotic technology could be applied to LESS to overcome the current constraints. To summarize and critically analyze the available evidence on the current status and future of robotic applications in single-site surgery. A systematic literature review was performed in April 2011 using PubMed and the Thomson-Reuters Web of Science. In the free-text protocol, the following terms were applied: robotic single site surgery, robotic single port surgery, robotic single incision surgery, and robotic laparoendoscopic single site surgery. Review articles, editorials, commentaries, and letters to the editor were included only if deemed to contain relevant information. In addition, cited references from the selected articles and from review articles retrieved in the search were assessed for significant manuscripts not previously included. The authors selected 55 articles according to the search strategy based on Preferred Reporting Items for Systematic Reviews and Meta-analysis criteria. The volume of available clinical outcomes of robotic LESS (R-LESS) has considerably grown since the pioneering description of the first successful clinical series of single-port robotic procedures. So far, a cumulative number of roughly 150 robotic urologic LESS cases have been reported by different institutions across the globe with a variety of techniques and port configurations. The feasibility of robot-assisted single-incision colorectal procedures, as well as of many gynecologic procedures, has also been demonstrated. A novel set of single-site instruments specifically dedicated to LESS is now commercially available for use with the da Vinci Si surgical system, and both experimental and clinical use have been reported. However, the current robotic systems were specifically designed for LESS. The ideal robotic platform should have a low external profile, the possibility of being deployed through a single access site, and the possibility of restoring intra-abdominal triangulation while maintaining the maximum degree of freedom for precise maneuvers and strength for reliable traction. Several purpose-built robotic prototypes for single-port surgery are being tested. Significant advances have been achieved in the field of R-LESS since the first reported clinical series in 2009. Given the several advantages offered by current the da Vinci system, it is likely that its adoption in this field will increase. The recent introduction of purpose-built instrumentation is likely to further foster the application of robotics to LESS. However, we are still far from the ideal robotic platform. Significant improvements are needed before this technique might reach widespread adoption beyond selected centers. Further advances in the field of robotic technology are expected to provide the optimal interface to facilitate LESS. Copyright © 2012 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Grounding language in action and perception: from cognitive agents to humanoid robots.
Cangelosi, Angelo
2010-06-01
In this review we concentrate on a grounded approach to the modeling of cognition through the methodologies of cognitive agents and developmental robotics. This work will focus on the modeling of the evolutionary and developmental acquisition of linguistic capabilities based on the principles of symbol grounding. We review cognitive agent and developmental robotics models of the grounding of language to demonstrate their consistency with the empirical and theoretical evidence on language grounding and embodiment, and to reveal the benefits of such an approach in the design of linguistic capabilities in cognitive robotic agents. In particular, three different models will be discussed, where the complexity of the agent's sensorimotor and cognitive system gradually increases: from a multi-agent simulation of language evolution, to a simulated robotic agent model for symbol grounding transfer, to a model of language comprehension in the humanoid robot iCub. The review also discusses the benefits of the use of humanoid robotic platform, and specifically of the open source iCub platform, for the study of embodied cognition. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Elfes, Alberto; Podnar, Gregg W.; Dolan, John M.; Stancliff, Stephen; Lin, Ellie; Hosler, Jeffrey C.; Ames, Troy J.; Higinbotham, John; Moisan, John R.; Moisan, Tiffany A.;
2008-01-01
Earth science research must bridge the gap between the atmosphere and the ocean to foster understanding of Earth s climate and ecology. Ocean sensing is typically done with satellites, buoys, and crewed research ships. The limitations of these systems include the fact that satellites are often blocked by cloud cover, and buoys and ships have spatial coverage limitations. This paper describes a multi-robot science exploration software architecture and system called the Telesupervised Adaptive Ocean Sensor Fleet (TAOSF). TAOSF supervises and coordinates a group of robotic boats, the OASIS platforms, to enable in-situ study of phenomena in the ocean/atmosphere interface, as well as on the ocean surface and sub-surface. The OASIS platforms are extended deployment autonomous ocean surface vehicles, whose development is funded separately by the National Oceanic and Atmospheric Administration (NOAA). TAOSF allows a human operator to effectively supervise and coordinate multiple robotic assets using a sliding autonomy control architecture, where the operating mode of the vessels ranges from autonomous control to teleoperated human control. TAOSF increases data-gathering effectiveness and science return while reducing demands on scientists for robotic asset tasking, control, and monitoring. The first field application chosen for TAOSF is the characterization of Harmful Algal Blooms (HABs). We discuss the overall TAOSF architecture, describe field tests conducted under controlled conditions using rhodamine dye as a HAB simulant, present initial results from these tests, and outline the next steps in the development of TAOSF.
A new family of omnidirectional and holonomic wheeled platforms for mobile robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pin, F.G.; Killough, S.M.
1994-08-01
This paper presents the concepts for a new family of holonomic wheeled platforms that feature full omnidirectionality with simultaneous and independently controlled rotational and translational motion capabilities. The authors first present the orthogonal-wheels'' concept and the two major wheel assemblies on which these platforms are based. The authors then describe how a combination of these assemblies with appropriate control can be used to generate an omnidirectional capability for mobile robot platforms. Several alternative designs are considered, and their respective characteristics with respect to rotational and translational motion control are discussed. The design and control of a prototype platform developed tomore » test and demonstrate the proposed concepts is then described, and experimental results illustrating the full omnidirectionality of the platforms with decoupled rotational and translational degrees of freedom are presented.« less
The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot.
Kitson, Philip J; Glatzel, Stefan; Cronin, Leroy
2016-01-01
An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware) of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic 'programs' which can run on similar low cost, user-constructed robotic platforms towards an 'open-source' regime in the area of chemical synthesis.
The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot
Kitson, Philip J; Glatzel, Stefan
2016-01-01
An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware) of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic ‘programs’ which can run on similar low cost, user-constructed robotic platforms towards an ‘open-source’ regime in the area of chemical synthesis. PMID:28144350
Robots Save Soldiers' Lives Overseas (MarcBot)
NASA Technical Reports Server (NTRS)
2009-01-01
Marshall Space Flight Center mobile communications platform designs for future lunar missions led to improvements to fleets of tactical robots now being deployed by U.S. Army. The Multi-function Agile Remote Control Robot (MARCbot) helps soldiers search out and identify improvised explosive devices. NASA used the MARCbots to test its mobile communications platform, and in working with it, made the robot faster while adding capabilities -- upgrading to a digital camera, encrypting the controllers and video transmission, as well as increasing the range and adding communications abilities. They also simplified the design, providing more plug-and-play sensors and replacing some of the complex electronics with more trouble-free, low-cost components. Applied Geo Technology, a tribally-owned corporation in Choctaw, Mississippi, was given the task of manufacturing the modified robots. The company is now producing 40 units per month, 300 of which have already been deployed overseas.
Payne, Christopher J; Yang, Guang-Zhong
2014-08-01
Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.
The Affordance Template ROS Package for Robot Task Programming
NASA Technical Reports Server (NTRS)
Hart, Stephen; Dinh, Paul; Hambuchen, Kimberly
2015-01-01
This paper introduces the Affordance Template ROS package for quickly programming, adjusting, and executing robot applications in the ROS RViz environment. This package extends the capabilities of RViz interactive markers by allowing an operator to specify multiple end-effector waypoint locations and grasp poses in object-centric coordinate frames and to adjust these waypoints in order to meet the run-time demands of the task (specifically, object scale and location). The Affordance Template package stores task specifications in a robot-agnostic XML description format such that it is trivial to apply a template to a new robot. As such, the Affordance Template package provides a robot-generic ROS tool appropriate for building semi-autonomous, manipulation-based applications. Affordance Templates were developed by the NASA-JSC DARPA Robotics Challenge (DRC) team and have since successfully been deployed on multiple platforms including the NASA Valkyrie and Robonaut 2 humanoids, the University of Texas Dreamer robot and the Willow Garage PR2. In this paper, the specification and implementation of the affordance template package is introduced and demonstrated through examples for wheel (valve) turning, pick-and-place, and drill grasping, evincing its utility and flexibility for a wide variety of robot applications.
Ando, Noriyasu; Emoto, Shuhei; Kanzaki, Ryohei
2016-12-19
Robotic odor source localization has been a challenging area and one to which biological knowledge has been expected to contribute, as finding odor sources is an essential task for organism survival. Insects are well-studied organisms with regard to odor tracking, and their behavioral strategies have been applied to mobile robots for evaluation. This "bottom-up" approach is a fundamental way to develop biomimetic robots; however, the biological analyses and the modeling of behavioral mechanisms are still ongoing. Therefore, it is still unknown how such a biological system actually works as the controller of a robotic platform. To answer this question, we have developed an insect-controlled robot in which a male adult silkmoth (Bombyx mori) drives a robot car in response to odor stimuli; this can be regarded as a prototype of a future insect-mimetic robot. In the cockpit of the robot, a tethered silkmoth walked on an air-supported ball and an optical sensor measured the ball rotations. These rotations were translated into the movement of the two-wheeled robot. The advantage of this "hybrid" approach is that experimenters can manipulate any parameter of the robot, which enables the evaluation of the odor-tracking capability of insects and provides useful suggestions for robotic odor-tracking. Furthermore, these manipulations are non-invasive ways to alter the sensory-motor relationship of a pilot insect and will be a useful technique for understanding adaptive behaviors.
Research and development of service robot platform based on artificial psychology
NASA Astrophysics Data System (ADS)
Zhang, Xueyuan; Wang, Zhiliang; Wang, Fenhua; Nagai, Masatake
2007-12-01
Some related works about the control architecture of robot system are briefly summarized. According to the discussions above, this paper proposes control architecture of service robot based on artificial psychology. In this control architecture, the robot can obtain the cognition of environment through sensors, and then be handled with intelligent model, affective model and learning model, and finally express the reaction to the outside stimulation through its behavior. For better understanding the architecture, hierarchical structure is also discussed. The control system of robot can be divided into five layers, namely physical layer, drives layer, information-processing and behavior-programming layer, application layer and system inspection and control layer. This paper shows how to achieve system integration from hardware modules, software interface and fault diagnosis. Embedded system GENE-8310 is selected as the PC platform of robot APROS-I, and its primary memory media is CF card. The arms and body of the robot are constituted by 13 motors and some connecting fittings. Besides, the robot has a robot head with emotional facial expression, and the head has 13 DOFs. The emotional and intelligent model is one of the most important parts in human-machine interaction. In order to better simulate human emotion, an emotional interaction model for robot is proposed according to the theory of need levels of Maslom and mood information of Siminov. This architecture has already been used in our intelligent service robot.
2015-10-01
to improving the capabilities of humanitarian rescue robotics. 15. SUBJECT TERMS Robotics, Mobility , Platform Dexterity, Supervised Autonomy...38 3.2.3.1. Planning Backend ...55 4.1.6. Build and Test Infrastructure
Computing Optic Flow with ArduEye Vision Sensor
2013-01-01
processing algorithm that can be applied to the flight control of other robotic platforms. 15. SUBJECT TERMS Optical flow, ArduEye, vision based ...2 Figure 2. ArduEye vision chip on Stonyman breakout board connected to Arduino Mega (8) (left) and the Stonyman vision chips (7...robotic platforms. There is a significant need for small, light , less power-hungry sensors and sensory data processing algorithms in order to control the
Robot-assisted surgery: an emerging platform for human neuroscience research
Jarc, Anthony M.; Nisky, Ilana
2015-01-01
Classic studies in human sensorimotor control use simplified tasks to uncover fundamental control strategies employed by the nervous system. Such simple tasks are critical for isolating specific features of motor, sensory, or cognitive processes, and for inferring causality between these features and observed behavioral changes. However, it remains unclear how these theories translate to complex sensorimotor tasks or to natural behaviors. Part of the difficulty in performing such experiments has been the lack of appropriate tools for measuring complex motor skills in real-world contexts. Robot-assisted surgery (RAS) provides an opportunity to overcome these challenges by enabling unobtrusive measurements of user behavior. In addition, a continuum of tasks with varying complexity—from simple tasks such as those in classic studies to highly complex tasks such as a surgical procedure—can be studied using RAS platforms. Finally, RAS includes a diverse participant population of inexperienced users all the way to expert surgeons. In this perspective, we illustrate how the characteristics of RAS systems make them compelling platforms to extend many theories in human neuroscience, as well as, to develop new theories altogether. PMID:26089785
Review on design and control aspects of ankle rehabilitation robots.
Jamwal, Prashant K; Hussain, Shahid; Xie, Sheng Q
2015-03-01
Ankle rehabilitation robots can play an important role in improving outcomes of the rehabilitation treatment by assisting therapists and patients in number of ways. Consequently, few robot designs have been proposed by researchers which fall under either of the two categories, namely, wearable robots or platform-based robots. This paper presents a review of both kinds of ankle robots along with a brief analysis of their design, actuation and control approaches. While reviewing these designs it was observed that most of them are undesirably inspired by industrial robot designs. Taking note of the design concerns of current ankle robots, few improvements in the ankle robot designs have also been suggested. Conventional position control or force control approaches, being used in the existing ankle robots, have been reviewed. Apparently, opportunities of improvement also exist in the actuation as well as control of ankle robots. Subsequently, a discussion on most recent research in the development of novel actuators and advanced controllers based on appropriate physical and cognitive human-robot interaction has also been included in this review. Implications for Rehabilitation Ankle joint functions are restricted/impaired as a consequence of stroke or injury during sports or otherwise. Robots can help in reinstating functions faster and can also work as tool for recording rehabilitation data useful for further analysis. Evolution of ankle robots with respect to their design and control aspects has been discussed in the present paper and a novel design with futuristic control approach has been proposed.
Konstantinidis, Konstantinos M; Hirides, Petros; Hirides, Savas; Chrysocheris, Pericles; Georgiou, Michael
2012-09-01
The aim of this work was to study the feasibility, safety, and efficacy of single-incision robotic cholecystectomy using a novel platform from Intuitive Surgical. All operations were performed by the same surgeon. Parameters assessed included patient history, indication for surgery, operation time, complication rate, conversion rate, robot-related issues, length of hospital stay, postoperative pain, and time to return to work. All patients were followed for a 2-month period postoperatively. Forty-five patients (22 women, 23 men) underwent single-incision robotic cholecystectomy from March 1 to July 15, 2011. There were no conversions to either conventional laparoscopy or laparotomy, although in three cases a second trocar was used. There were no major complications apart from a single case of postoperative hemorrhage. Average patient age was 47 ± 12 years (range = 27-80 years) and average BMI was 30 kg/m(2) (mean = 28.8 ± 4 kg/m(2), range = 18.4-46.7 kg/m(2)). The primary indication for surgery was gallstones. The mean operation time (skin-to-skin) was 84.5 ± 25.5 min (range = 51-175 min), docking time was 5.8 ± 1.5 min (range = 4-11 min), and console time (net surgical time) was 43 ± 21.9 min (range = 21-121 min). Intraoperative blood loss was negligible. There were no collisions between the robotic arms and no other robot-related problems. Average postoperative length of stay was less than 24 h. The mean Visual Analog Pain Scale Score 6 h after the operation was 2.2 ± 1.51 (range = 0-6) and patients returned to normal activities in 4.48 ± 2.3 days (range = 1-9 days). Single-Site(®) is a new platform offering a potentially more stable and reliable environment to perform single-port cholecystectomy. Both simple and complicated cholecystectomies can be performed with safety. The technique is possible in patients with a high BMI. The induction of pneumoperitoneum using the new port and the docking process require additional training.
Brief Report: Development of a Robotic Intervention Platform for Young Children with ASD
ERIC Educational Resources Information Center
Warren, Zachary; Zheng, Zhi; Das, Shuvajit; Young, Eric M.; Swanson, Amy; Weitlauf, Amy; Sarkar, Nilanjan
2015-01-01
Increasingly researchers are attempting to develop robotic technologies for children with autism spectrum disorder (ASD). This pilot study investigated the development and application of a novel robotic system capable of dynamic, adaptive, and autonomous interaction during imitation tasks with embedded real-time performance evaluation and…
Introduction to Autonomous Mobile Robotics Using "Lego Mindstorms" NXT
ERIC Educational Resources Information Center
Akin, H. Levent; Meriçli, Çetin; Meriçli, Tekin
2013-01-01
Teaching the fundamentals of robotics to computer science undergraduates requires designing a well-balanced curriculum that is complemented with hands-on applications on a platform that allows rapid construction of complex robots, and implementation of sophisticated algorithms. This paper describes such an elective introductory course where the…
Multidisciplinary unmanned technology teammate (MUTT)
NASA Astrophysics Data System (ADS)
Uzunovic, Nenad; Schneider, Anne; Lacaze, Alberto; Murphy, Karl; Del Giorno, Mark
2013-01-01
The U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) held an autonomous robot competition called CANINE in June 2012. The goal of the competition was to develop innovative and natural control methods for robots. This paper describes the winning technology, including the vision system, the operator interaction, and the autonomous mobility. The rules stated only gestures or voice commands could be used for control. The robots would learn a new object at the start of each phase, find the object after it was thrown into a field, and return the object to the operator. Each of the six phases became more difficult, including clutter of the same color or shape as the object, moving and stationary obstacles, and finding the operator who moved from the starting location to a new location. The Robotic Research Team integrated techniques in computer vision, speech recognition, object manipulation, and autonomous navigation. A multi-filter computer vision solution reliably detected the objects while rejecting objects of similar color or shape, even while the robot was in motion. A speech-based interface with short commands provided close to natural communication of complicated commands from the operator to the robot. An innovative gripper design allowed for efficient object pickup. A robust autonomous mobility and navigation solution for ground robotic platforms provided fast and reliable obstacle avoidance and course navigation. The research approach focused on winning the competition while remaining cognizant and relevant to real world applications.
Maurice, Matthew J; Kaouk, Jihad H
2017-12-01
To assess the feasibility of radical perineal cystoprostatectomy using the latest generation purpose-built single-port robotic surgical system. In two male cadavers the da Vinci ® SP1098 Surgical System (Intuitive Surgical, Sunnyvale, CA, USA) was used to perform radical perineal cystoprostatectomy and bilateral extended pelvic lymph node dissection (ePLND). New features in this model include enhanced high-definition three-dimensional optics, improved instrument manoeuvrability, and a real-time instrument tracking and guidance system. The surgery was accomplished through a 3-cm perineal incision via a novel robotic single-port system, which accommodates three double-jointed articulating robotic instruments, an articulating camera, and an accessory laparoscopic instrument. The primary outcomes were technical feasibility, intraoperative complications, and total robotic operative time. The cases were completed successfully without conversion. There were no accidental punctures or lacerations. The robotic operative times were 197 and 202 min. In this preclinical model, robotic radical perineal cystoprostatectomy and ePLND was feasible using the SP1098 robotic platform. Further investigation is needed to assess the feasibility of urinary diversion using this novel approach and new technology. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.
From decimeter- to centimeter-sized mobile microrobots: the development of the MINIMAN system
NASA Astrophysics Data System (ADS)
Woern, Heinz; Schmoeckel, Ferdinand; Buerkle, Axel; Samitier, Josep; Puig-Vidal, Manel; Johansson, Stefan A. I.; Simu, Urban; Meyer, Joerg-Uwe; Biehl, Margit
2001-10-01
Based on small mobile robots the presented MINIMAN system provides a platform for micro-manipulation tasks in very different kinds of applications. Three exemplary applications demonstrate the capabilities of the system. Both the high precision assembly of an optical system consisting of three millimeter-sized parts and the positioning of single 20-μm-cells under the light microscope as well as the handling of tiny samples inside the scanning electron microscope are done by the same kind of robot. For the different tasks, the robot is equipped with appropriate tools such as micro-pipettes or grippers with force and tactile sensors. For the extension to a multi-robot system, it is necessary to further reduce the size of robots. For the above mentioned robot prototypes a slip-stick driving principle is employed. While this design proves to work very well for the described decimeter-sized robots, it is not suitable for further miniaturized robots because of their reduced inertia. Therefore, the developed centimeter-sized robot is driven by multilayered piezoactuators performing defined steps without a slipping phase. To reduce the number of connecting wires the microrobot has integrated circuits on board. They include high voltage drivers and a serial communication interface for a minimized number of wires.
Autonomous Robotic Inspection in Tunnels
NASA Astrophysics Data System (ADS)
Protopapadakis, E.; Stentoumis, C.; Doulamis, N.; Doulamis, A.; Loupos, K.; Makantasis, K.; Kopsiaftis, G.; Amditis, A.
2016-06-01
In this paper, an automatic robotic inspector for tunnel assessment is presented. The proposed platform is able to autonomously navigate within the civil infrastructures, grab stereo images and process/analyse them, in order to identify defect types. At first, there is the crack detection via deep learning approaches. Then, a detailed 3D model of the cracked area is created, utilizing photogrammetric methods. Finally, a laser profiling of the tunnel's lining, for a narrow region close to detected crack is performed; allowing for the deduction of potential deformations. The robotic platform consists of an autonomous mobile vehicle; a crane arm, guided by the computer vision-based crack detector, carrying ultrasound sensors, the stereo cameras and the laser scanner. Visual inspection is based on convolutional neural networks, which support the creation of high-level discriminative features for complex non-linear pattern classification. Then, real-time 3D information is accurately calculated and the crack position and orientation is passed to the robotic platform. The entire system has been evaluated in railway and road tunnels, i.e. in Egnatia Highway and London underground infrastructure.
Robotic vehicle mobility and task performance: A flexible control modality for manned systems
NASA Technical Reports Server (NTRS)
Eldredge, Frederick
1994-01-01
In the early 1980's, a number of concepts were developed for applying robotics to ground systems. The majority of these early application concepts envisioned robotics technology embedded in dedicated unmanned systems; i.e., unmanned systems with no provision for direct manned control of the platform. Although these concepts offered advantages peculiar to platforms designed from the outset exclusively for unmanned operation--i.e., no crew compartment--their findings would require costs and support for a new class of unmanned systems. The current era of reduced budgets and increasing focus on rapid force projection has created new opportunities to examine the value of an alternative concept: the use of existing manned platforms with an ability to quickly shift from normal manned operation to unmanned should a particularly harzardous situation arise. The author of this paper addresses the evolution of robotic vehicle concepts and technology testbeds from exclusively unmanned systems to a variety of 'optionally manned' systems which have been designed with minimum intrusion actuator and control equipment to minimize degradation of vehicle performance in manned modes of operation.
Initial experience with the new da Vinci single-port robot-assisted platform.
Ballestero Diego, R; Zubillaga Guerrero, S; Truan Cacho, D; Carrion Ballardo, C; Velilla Diez, G; Calleja Hermosa, P; Gutiérrez Baños, J L
2017-06-01
To describe our experience in the first cases of urological surgeries performed with the da Vinci single-port robot-assisted platform. We performed 5 single-port robot-assisted surgeries (R-LESS) between May and October 2014. We performed 3 ureteral reimplant surgeries, one ureteropyeloplasty in an inverted kidney and 1 partial nephrectomy. The perioperative and postoperative results were collected, as well as a report of the complications according to the Clavien classification system. Of the 5 procedures, 4 were performed completely by LESS, while 1 procedure was reconverted to multiport robot-assisted surgery. There were no intraoperative complications. We observed perioperative complications in 4 patients, all of which were grade 1 or 2. The mean surgical time was 262minutes (range, 230-300). In our initial experience with the da Vinci device, R-LESS surgery was feasible and safe. There are still a number of limitations in its use, which require new and improved R-LESS platforms. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
Performance Evaluation and Benchmarking of Next Intelligent Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
del Pobil, Angel; Madhavan, Raj; Bonsignorio, Fabio
Performance Evaluation and Benchmarking of Intelligent Systems presents research dedicated to the subject of performance evaluation and benchmarking of intelligent systems by drawing from the experiences and insights of leading experts gained both through theoretical development and practical implementation of intelligent systems in a variety of diverse application domains. This contributed volume offers a detailed and coherent picture of state-of-the-art, recent developments, and further research areas in intelligent systems. The chapters cover a broad range of applications, such as assistive robotics, planetary surveying, urban search and rescue, and line tracking for automotive assembly. Subsystems or components described in this bookmore » include human-robot interaction, multi-robot coordination, communications, perception, and mapping. Chapters are also devoted to simulation support and open source software for cognitive platforms, providing examples of the type of enabling underlying technologies that can help intelligent systems to propagate and increase in capabilities. Performance Evaluation and Benchmarking of Intelligent Systems serves as a professional reference for researchers and practitioners in the field. This book is also applicable to advanced courses for graduate level students and robotics professionals in a wide range of engineering and related disciplines including computer science, automotive, healthcare, manufacturing, and service robotics.« less
Robonaut 2 and You: Specifying and Executing Complex Operations
NASA Technical Reports Server (NTRS)
Baker, William; Kingston, Zachary; Moll, Mark; Badger, Julia; Kavraki, Lydia
2017-01-01
Crew time is a precious resource due to the expense of trained human operators in space. Efficient caretaker robots could lessen the manual labor load required by frequent vehicular and life support maintenance tasks, freeing astronaut time for scientific mission objectives. Humanoid robots can fluidly exist alongside human counterparts due to their form, but they are complex and high-dimensional platforms. This paper describes a system that human operators can use to maneuver Robonaut 2 (R2), a dexterous humanoid robot developed by NASA to research co-robotic applications. The system includes a specification of constraints used to describe operations, and the supporting planning framework that solves constrained problems on R2 at interactive speeds. The paper is developed in reference to an illustrative, typical example of an operation R2 performs to highlight the challenges inherent to the problems R2 must face. Finally, the interface and planner is validated through a case-study using the guiding example on the physical robot in a simulated microgravity environment. This work reveals the complexity of employing humanoid caretaker robots and suggest solutions that are broadly applicable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xavier, Patrick Gordon; Feddema, John Todd; Little, Charles Quentin
2010-03-01
Hopping robots provide the possibility of breaking the link between the size of a ground vehicle and the largest obstacle that it can overcome. For more than a decade, DARPA and Sandia National Laboratories have been developing small-scale hopping robot technology, first as part of purely hopping platforms and, more recently, as part of platforms that are capable of both wheeled and hopping locomotion. In this paper we introduce the Urban Hopper robot and summarize its capabilities. The advantages of hopping for overcoming certain obstacles are discussed. Several configurations of the Urban Hopper are described, as are intelligent capabilities ofmore » the system. Key challenges are discussed.« less
The dynamics and control of a spherical robot with an internal omniwheel platform
NASA Astrophysics Data System (ADS)
Karavaev, Yury L.; Kilin, Alexander A.
2015-03-01
This paper deals with the problem of a spherical robot propelled by an internal omniwheel platform and rolling without slipping on a plane. The problem of control of spherical robot motion along an arbitrary trajectory is solved within the framework of a kinematic model and a dynamic model. A number of particular cases of motion are identified, and their stability is investigated. An algorithm for constructing elementary maneuvers (gaits) providing the transition from one steady-state motion to another is presented for the dynamic model. A number of experiments have been carried out confirming the adequacy of the proposed kinematic model.
FLEXnav: a fuzzy logic expert dead-reckoning system for the Segway RMP
NASA Astrophysics Data System (ADS)
Ojeda, Lauro; Raju, Mukunda; Borenstein, Johann
2004-09-01
Most mobile robots use a combination of absolute and relative sensing techniques for position estimation. Relative positioning techniques are generally known as dead-reckoning. Many systems use odometry as their only dead-reckoning means. However, in recent years fiber optic gyroscopes have become more affordable and are being used on many platforms to supplement odometry, especially in indoor applications. Still, if the terrain is not level (i.e., rugged or rolling terrain), the tilt of the vehicle introduces errors into the conversion of gyro readings to vehicle heading. In order to overcome this problem vehicle tilt must be measured and factored into the heading computation. A unique new mobile robot is the Segway Robotics Mobility Platform (RMP). This functionally close relative of the innovative Segway Human Transporter (HT) stabilizes a statically unstable single-axle robot dynamically, based on the principle of the inverted pendulum. While this approach works very well for human transportation, it introduces as unique set of challenges to navigation equipment using an onboard gyro. This is due to the fact that in operation the Segway RMP constantly changes its forward tilt, to prevent dynamically falling over. This paper introduces our new Fuzzy Logic Expert rule-based navigation (FLEXnav) method for fusing data from multiple gyroscopes and accelerometers in order to estimate accurately the attitude (i.e., heading and tilt) of a mobile robot. The attitude information is then further fused with wheel encoder data to estimate the three-dimensional position of the mobile robot. We have further extended this approach to include the special conditions of operation on the Segway RMP. The paper presents experimental results of a Segway RMP equipped with our system and running over moderately rugged terrain.
Task Adaptive Walking Robots for Mars Surface Exploration
NASA Technical Reports Server (NTRS)
Huntsberger, Terry; Hickey, Gregory; Kennedy, Brett; Aghazarian, Hrand
2000-01-01
There are exciting opportunities for robot science that lie beyond the reach of current manipulators, rovers, balloons, penetrators, etc. Examples include mobile explorations of the densely cratered Mars highlands, of asteroids, and of moons. These sites are believed to be rich in geologic history and mineralogical detail, but are difficult to robotically access and sample. The surface terrains are rough and changeable, with variable porosity and dust layering; and the small bodies present further challenges of low-temperature, micro-gravity environments. Even the more benign areas of Mars are highly variegated in character (>VL2 rock densities), presenting significant risk to conventional rovers. The development of compact walking robots would have applications to the current mission set for Mars surface exploration, as well as enabling future Mars Outpost missions, asteroid rendezvous missions for the Solar System Exploration Program (SSE) and the mechanical assembly/inspection of large space platforms for the Human Exploration and Development of Spaces (HEDS).
Human-like robots as platforms for electroactive polymers (EAP)
NASA Astrophysics Data System (ADS)
Bar-Cohen, Yoseph
2008-03-01
Human-like robots, which have been a science fiction for many years, are increasingly becoming an engineering reality thanks to many technology advances in recent years. Humans have always sought to imitate the human appearance, functions and intelligence and as the capability progresses they may become our household appliance or even companion. Biomimetic technologies are increasingly becoming common tools to support the development of such robots. As artificial muscles, electroactive polymers (EAP) are offering important actuation capability for making such machines lifelike. The current limitations of EAP are hampering the possibilities that can be adapted in such robots but progress is continually being made. As opposed to other human made machines and devices, this technology raises various questions and concerns that need to be addressed. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper the state-of-the-art and the challenges will be reviewed.
Computing Dynamics Of A Robot Of 6+n Degrees Of Freedom
NASA Technical Reports Server (NTRS)
Quiocho, Leslie J.; Bailey, Robert W.
1995-01-01
Improved formulation speeds and simplifies computation of dynamics of robot arm of n rotational degrees of freedom mounted on platform having three translational and three rotational degrees of freedom. Intended for use in dynamical modeling of robotic manipulators attached to such moving bases as spacecraft, aircraft, vessel, or land vehicle. Such modeling important part of simulation and control of robotic motions.
Simulation of cooperating robot manipulators on a mobile platform
NASA Technical Reports Server (NTRS)
Murphy, Steve H.; Wen, John T.; Saridis, George N.
1990-01-01
The dynamic equations of motion for two manipulators holding a common object on a freely moving mobile platform are developed. The full dynamic interactions from arms to platform and arm-tip to arm-tip are included in the formulation. The development of the closed chain dynamics allows for the use of any solution for the open topological tree of base and manipulator links. In particular, because the system has 18 degrees of freedom, recursive solutions for the dynamic simulation become more promising for efficient calculations of the motion. Simulation of the system is accomplished through a MATLAB program, and the response is visualized graphically using the SILMA Cimstation.
Simulator platform for fast reactor operation and safety technology demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilim, R. B.; Park, Y. S.; Grandy, C.
2012-07-30
A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe responsemore » to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.« less
The NIST SPIDER, A Robot Crane
Albus, James; Bostelman, Roger; Dagalakis, Nicholas
1992-01-01
The Robot Systems Division of the National Institute of Standards and Technology has been experimenting for several years with new concepts for robot cranes. These concepts utilize the basic idea of the Stewart Platform parallel link manipulator. The unique feature of the NIST approach is to use cables as the parallel links and to use winches as the actuators. So long as the cables are all in tension, the load is kinematically constrained, and the cables resist perturbing forces and moments with equal stiffness to both positive and negative loads. The result is that the suspended load is constrained with a mechanical stiffness determined by the elasticity of the cables, the suspended weight, and the geometry of the mechanism. Based on these concepts, a revolutionary new type of robot crane, the NIST SPIDER (Stewart Platform Instrumented Drive Environmental Robot) has been developed that can control the position, velocity, and force of tools and heavy machinery in all six degrees of freedom (x, y, z, roll, pitch, and yaw). Depending on what is suspended from its work platform, the SPIDER can perform a variety of tasks. Examples are: cutting, excavating and grading, shaping and finishing, lifting and positioning. A 6 m version of the SPIDER has been built and critical performance characteristics analyzed. PMID:28053439
The NIST SPIDER, A Robot Crane.
Albus, James; Bostelman, Roger; Dagalakis, Nicholas
1992-01-01
The Robot Systems Division of the National Institute of Standards and Technology has been experimenting for several years with new concepts for robot cranes. These concepts utilize the basic idea of the Stewart Platform parallel link manipulator. The unique feature of the NIST approach is to use cables as the parallel links and to use winches as the actuators. So long as the cables are all in tension, the load is kinematically constrained, and the cables resist perturbing forces and moments with equal stiffness to both positive and negative loads. The result is that the suspended load is constrained with a mechanical stiffness determined by the elasticity of the cables, the suspended weight, and the geometry of the mechanism. Based on these concepts, a revolutionary new type of robot crane, the NIST SPIDER (Stewart Platform Instrumented Drive Environmental Robot) has been developed that can control the position, velocity, and force of tools and heavy machinery in all six degrees of freedom ( x, y, z , roll, pitch, and yaw). Depending on what is suspended from its work platform, the SPIDER can perform a variety of tasks. Examples are: cutting, excavating and grading, shaping and finishing, lifting and positioning. A 6 m version of the SPIDER has been built and critical performance characteristics analyzed.
Smart SPHERES: A Telerobotic Free-Flyer for Intravehicular Activities in Space
NASA Technical Reports Server (NTRS)
Fong, Terrence; Micire, Mark J.; Morse, Ted; Park, Eric; Provencher, Chris; To, Vinh; Wheeler, D. W.; Mittman, David; Torres, R. Jay; Smith, Ernest
2013-01-01
Smart SPHERES is a prototype free-flying space robot based on the SPHERES platform. Smart SPHERES can be remotely operated by astronauts inside a spacecraft, or by mission controllers on the ground. We developed Smart SPHERES to perform a variety of intravehicular activities (IVA), such as operations inside the International Space Station (ISS). These IVA tasks include environmental monitoring surveys (radiation, sound levels, etc.), inventory, and mobile camera work. In this paper, we first discuss the motivation for free-flying space robots. We then describe the development of the Smart SPHERES prototype, including avionics, software, and data communications. Finally, we present results of initial flight tests on-board the ISS.
Smart SPHERES: A Telerobotic Free-Flyer for Intravehicular Activities in Space
NASA Technical Reports Server (NTRS)
Fong, Terrence; Micire, Mark J.; Morse, Ted; Park, Eric; Provencher, Chris
2013-01-01
Smart SPHERES is a prototype free-flying space robot based on the SPHERES platform. Smart SPHERES can be remotely operated by astronauts inside a spacecraft, or by mission controllers on the ground. We developed Smart SPHERES to perform a variety of intravehicular activities (IVA), such as operations inside the International Space Station (ISS). These IVA tasks include environmental monitoring surveys (radiation, sound levels, etc.), inventory, and mobile camera work. In this paper, we first discuss the motivation for free- flying space robots. We then describe the development of the Smart SPHERES prototype, including avionics, software, and data communications. Finally, we present results of initial flight tests on-board the ISS.
Mobile Robotics Activities in DOE Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ron Lujan; Jerry Harbour; John T. Feddema
This paper will briefly outline major activities in Department of Energy (DOE) Laboratories focused on mobile platforms, both Unmanned Ground Vehicles (UGV’s) as well as Unmanned Air Vehicles (UAV’s). The activities will be discussed in the context of the science and technology construct used by the DOE Technology Roadmap for Robotics and Intelligent Machines (RIM)1 published in 1998; namely, Perception, Reasoning, Action, and Integration. The activities to be discussed span from research and development to deployment in field operations. The activities support customers in other agencies. The discussion of "perception" will include hyperspectral sensors, complex patterns discrimination, multisensor fusion andmore » advances in LADAR technologies, including real-world perception. "Reasoning" activities to be covered include cooperative controls, distributed systems, ad-hoc networks, platform-centric intelligence, and adaptable communications. The paper will discuss "action" activities such as advanced mobility and various air and ground platforms. In the RIM construct, "integration" includes the Human-Machine Integration. Accordingly the paper will discuss adjustable autonomy and the collaboration of operator(s) with distributed UGV’s and UAV’s. Integration also refers to the applications of these technologies into systems to perform operations such as perimeter surveillance, large-area monitoring and reconnaissance. Unique facilities and test beds for advanced mobile systems will be described. Given that this paper is an overview, rather than delve into specific detail in these activities, other more exhaustive references and sources will be cited extensively.« less
2010-03-01
and charac- terize the actions taken by the soldier (e.g., running, walking, climbing stairs ). Real-time image capture and exchange N The ability of...multimedia information sharing among soldiers in the field, two-way speech translation systems, and autonomous robotic platforms. Key words: Emerging...soldiers in the field, two-way speech translation systems, and autonomous robotic platforms. It has been the foundation for 10 technology evaluations
Laser assisted robotic surgery in cornea transplantation
NASA Astrophysics Data System (ADS)
Rossi, Francesca; Micheletti, Filippo; Magni, Giada; Pini, Roberto; Menabuoni, Luca; Leoni, Fabio; Magnani, Bernardo
2017-03-01
Robotic surgery is a reality in several surgical fields, such as in gastrointestinal surgery. In ophthalmic surgery the required high spatial precision is limiting the application of robotic system, and even if several attempts have been designed in the last 10 years, only some application in retinal surgery were tested in animal models. The combination of photonics and robotics can really open new frontiers in minimally invasive surgery, improving the precision, reducing tremor, amplifying scale of motion, and automating the procedure. In this manuscript we present the preliminary results in developing a vision guided robotic platform for laser-assisted anterior eye surgery. The robotic console is composed by a robotic arm equipped with an "end effector" designed to deliver laser light to the anterior corneal surface. The main intended application is for laser welding of corneal tissue in laser assisted penetrating keratoplasty and endothelial keratoplasty. The console is equipped with an integrated vision system. The experiment originates from a clear medical demand in order to improve the efficacy of different surgical procedures: when the prototype will be optimized, other surgical areas will be included in its application, such as neurosurgery, urology and spinal surgery.
Robotic-assisted surgery in ophthalmology.
de Smet, Marc D; Naus, Gerrit J L; Faridpooya, Koorosh; Mura, Marco
2018-05-01
Provide an overview of the current landscape of robotics in ophthalmology, including the pros and cons of system designs, the clinical development path, and the likely future direction of the field. Robots designed for eye surgery should meet certain basic requirements. Three designs are currently being developed: smart surgical tools such as the steady hand, comanipulation devices and telemanipulators using either a fixed or virtual remote center of motion. Successful human intraocular surgery is being performed using the Preceyes surgical system. Another telemanipulation robot, the da Vinci Surgical System, has been used to perform a pterygium repair in humans and was successful in ex-vivo corneal surgery despite its nonophthalmic design. Apart from Preceyes' BV research platform, none of the currently eye-specific systems has reached a commercial stage. Systems are likely to evolve from robotic assistance during specific procedural steps to semiautonomous surgery, as smart sensors are introduced to enhance the basic functionalities of robotic systems. Robotics is still in its infancy in ophthalmology but is rapidly reaching a stage wherein it will be introduced into everyday ophthalmic practice. It will most likely be introduced first for demanding vitreo-retinal procedures, followed by anterior segment applications.
Ereso, Alexander Q; Garcia, Pablo; Tseng, Elaine; Gauger, Grant; Kim, Hubert; Dua, Monica M; Victorino, Gregory P; Guy, T Sloane
2010-09-01
Certain clinical environments, including military field hospitals or rural medical centers, lack readily available surgical subspecialists. We hypothesized that telementoring by a surgical subspecialist using a robotic platform is feasible and can convey subspecialty knowledge and skill to a remotely located general surgeon. Eight general surgery residents evaluated the effect of remote surgical telementoring by performing 3 operative procedures, first unproctored and then again when teleproctored by a surgical subspecialist. The clinical scenarios consisted of a penetrating right ventricular injury requiring suture repair, an open tibial fracture requiring external fixation, and a traumatic subdural hematoma requiring craniectomy. A robotic platform consisting of a pan-and-tilt camera with laser pointer attached to an overhead surgical light with integrated audio allowed surgical subspecialists the ability to remotely teleproctor residents. Performance was evaluated using an Operative Performance Scale. Satisfaction surveys were given after performing the scenario unproctored and again after proctoring. Overall mean performance scores were superior in all scenarios when residents were proctored than when they were not (4.30 +/- 0.25 versus 2.43 +/- 0.20; p < 0.001). Mean performance scores for individual metrics, including tissue handling, instrument handling, speed of completion, and knowledge of anatomy, were all superior when residents were proctored (p < 0.001). Satisfaction surveys showed greater satisfaction and comfort among residents when proctored. Proctored residents believed the robotic platform facilitated learning and would be feasible if used clinically. This study supports the use of surgical teleproctoring in guiding remote general surgeons by a surgical subspecialist in the care of a wounded patient in need of an emergency subspecialty operation. Copyright 2010. Published by Elsevier Inc.
Muecas: A Multi-Sensor Robotic Head for Affective Human Robot Interaction and Imitation
Cid, Felipe; Moreno, Jose; Bustos, Pablo; Núñez, Pedro
2014-01-01
This paper presents a multi-sensor humanoid robotic head for human robot interaction. The design of the robotic head, Muecas, is based on ongoing research on the mechanisms of perception and imitation of human expressions and emotions. These mechanisms allow direct interaction between the robot and its human companion through the different natural language modalities: speech, body language and facial expressions. The robotic head has 12 degrees of freedom, in a human-like configuration, including eyes, eyebrows, mouth and neck, and has been designed and built entirely by IADeX (Engineering, Automation and Design of Extremadura) and RoboLab. A detailed description of its kinematics is provided along with the design of the most complex controllers. Muecas can be directly controlled by FACS (Facial Action Coding System), the de facto standard for facial expression recognition and synthesis. This feature facilitates its use by third party platforms and encourages the development of imitation and of goal-based systems. Imitation systems learn from the user, while goal-based ones use planning techniques to drive the user towards a final desired state. To show the flexibility and reliability of the robotic head, the paper presents a software architecture that is able to detect, recognize, classify and generate facial expressions in real time using FACS. This system has been implemented using the robotics framework, RoboComp, which provides hardware-independent access to the sensors in the head. Finally, the paper presents experimental results showing the real-time functioning of the whole system, including recognition and imitation of human facial expressions. PMID:24787636
Development of the Research Platform of Small Autonomous Blimp Robot
NASA Astrophysics Data System (ADS)
Takaya, Toshihiko; Kawamura, Hidenori; Yamamoto, Masahito; Ohuchi, Azuma
A blimp robot is attractive as an small flight robot and can float in the air by buoyancy and realize safe to the crash small flight with low energy and can movement for a long time compared with other flight robots with low energy and can movement for a long time compared with other flight robots. However, control of an airplane robot is difficult for the nonlinear characteristic exposed to inertia by the air flow in response to influence. Therefore, the applied research which carried out the maximum use of such in recent years a blimp robot's feature is prosperous. In this paper, we realized development of blimp robot for research which can be used general-purpose by carrying out clue division of the blimp robot body at a unit, and constituting and building for research of blimp robot, and application development. On the other hand, by developing a general-purpose blimp robot research platform, improvement in the research efficiency of many researchers can be attained, and further, research start of blimp robot becomes easy and contributes to development of research. We performed the experiments for the above-mentioned proof. 1. Checked basic keeping position performance and that various orbital operation was possible. And the unit exchange ease of software unit was checked by the experiment which exchanges the control layer of software for learning control from PID control, and carries out comparison of operation. 2. In order to check the exchange ease of hardware unit, the sensor was exchanged for the microphon from the camera, and control of operation was checked. 3. For the unit addition ease, the microphon which carries out sound detection with the picture detection with a camera was added, and control of operation was verified. 4. The unit exchange was carried out for the check of a function addition and the topological map generation experiment by addition of an ultrasonic sensor was conducted. Developed blimp robot for research mounted the exchange ease and the additional ease of a unit in hardware using an analog and digital I/F fomenting realized in the combination of the software module of a layered structure in software was performed. Consequently, an addition and exchange of a function were able to become easy and were able to realize the research platform of blimp robot.
Myers, Christopher G; Kudsi, Omar Yusef; Ghaferi, Amir A
2018-02-01
: In response to technological advances and growing dispersion of surgical practice around the globe, social media platforms have emerged in recent years as channels for surgeons to share experiences, ask questions, and learn from one another. To better understand surgeons' engagement with these platforms, we analyzed data from a closed-membership Facebook group for robotic surgeons. Our analysis revealed that surgeons posted more frequently on midweek days, and further that text posts received significantly more comments, and significantly fewer "likes," than posts containing links, photos, or videos. We discuss the implications of these use and engagement patterns for the viability of social media platforms as tools for surgeons to learn vicariously from their peers' experiences and expertise.
Robot dynamics in reduced gravity environment
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Grisham, Tollie; Hinman, Elaine; Coker, Cindy
1990-01-01
Robot dynamics and control will become an important issue for productive platforms in space. Robotic operations will be necessary for both man tended stations and for the efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to safety concerns and an anticipated increase in acceleration levels due to manipulator motion. The robot used for the initial studies was a UMI RTX robot, which was adapted to operate in a materials processing workcell to simulate sample changing in a microgravity environment. The robotic cell was flown several times on the KC-135 aircraft at Ellington Field. The primary objective of the initial flights was to determine operating characteristics of both the robot and the operator in the variable gravity of the KC-135 during parabolic maneuvers. It was demonstrated that the KC-135 aircraft can be used for observing dynamics of robotic manipulators. The difficulties associated with humans performing teleoperation tasks during varying G levels were also observed and can provide insight into some areas in which the use of artificial techniques would provide improved system performance. Additionally a graphic simulation of the workcell was developed on a Silicon Graphics Workstation using the IGRIP simulation language from Deneb Robotics. The simulation is intended to be used for predictive displays of the robot operating on the aircraft. It is also anticipated that this simulation can be useful for off-line programming of tasks in the future.
Model of a training program in robotic surgery and its initial results.
Madureira, Fernando Athayde Veloso; Varela, José Luís Souza; Madureira, Delta; D'Almeida, Luis Alfredo Vieira; Madureira, Fábio Athayde Veloso; Duarte, Alexandre Miranda; Vaz, Otávio Pires; Ramos, José Reinan
2017-01-01
to describe the implementation of a training program in robotic surgery and to point the General Surgery procedures that can be performed with advantages using the robotic platform. we conducted a retrospective analysis of data collected prospectively from the robotic surgery group in General and Colo-Retal Surgery at the Samaritan Hospital (Rio de Janeiro, Brazil), from October 2012 to December 2015. We describe the training stages and particularities. two hundred and ninety three robotic operations were performed in general surgery: 108 procedures for morbid obesity, 59 colorectal surgeries, 55 procedures in the esophago-gastric transition area, 16 cholecystectomies, 27 abdominal wall hernioplasties, 13 inguinal hernioplasties, two gastrectomies with D2 lymphadenectomy, one vagotomy, two diaphragmatic hernioplasties, four liver surgeries, two adrenalectomies, two splenectomies, one pancreatectomy and one bilio-digestive anastomosis. The complication rate was 2.4%, with no major complications. the robotic surgery program of the Samaritan Hospital was safely implemented and with initial results better than the ones described in the current literature. There seems to be benefits in using the robotic platform in super-obese patients, re-operations of obesity surgery and hiatus hernias, giant and paraesophageal hiatus hernias, ventral hernias with multiple defects and rectal resections.
Regolith Advanced Surface Systems Operations Robot Excavator
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Smith, Jonathan D.; Ebert, Thomas; Cox, Rachel; Rahmatian, Laila; Wood, James; Schuler, Jason; Nick, Andrew
2013-01-01
The Regolith Advanced Surface Systems Operations Robot (RASSOR) excavator robot is a teleoperated mobility platform with a space regolith excavation capability. This more compact, lightweight design (<50 kg) has counterrotating bucket drums, which results in a net-zero reaction horizontal force due to the self-cancellation of the symmetrical, equal but opposing, digging forces.
D.R.O.P: The Durable Reconnaissance and Observation Platform
NASA Technical Reports Server (NTRS)
McKenzie, Clifford; Parness, Aaron
2011-01-01
Robots can provide a remote presence in areas that are either inaccessible or too dangerous for humans. However, robots are often limited by their ability to adapt to the terrain or resist environmental factors. The Durable Reconnaissance and Observation Platform (DROP) is a lightweight robot that addresses these challenges with the capability to survive falls from significant heights, carry a useable payload, and traverse a variety of surfaces, including climbing vertical surfaces like wood, stone, and concrete. DROP is manufactured using a combination of rapid prototyping and shape deposition manufacturing. It uses microspine technology to create a new wheel-like design for vertical climbing. To date, DROP has successfully engaged several vertical surfaces, hanging statically without assistance, and traversed horizontal surfaces at approximately 30 cm/s. Unassisted vertical climbing is capable on surfaces up to 85deg at a rate of approximately 25cm*s(sup -1). DROP can also survive falls from up to 3 meters and has the ability to be thrown off of and onto rooftops. Future efforts will focus on improving the microspine wheels, selecting more resilient materials, customizing the controls, and performing more rigorous and quantifiable testing.
The development of a lightweight modular compliant surface bio-inspired robot
NASA Astrophysics Data System (ADS)
Stone, David L.; Cranney, John
2004-09-01
The DARPA Sponsored Compliant Surface Robotics (CSR) program pursues development of a high mobility, lightweight, modular, morphable robot for military forces in the field and for other industrial uses. The USTLAB effort builds on proof of concept feasibility studies and demonstration of a 4, 6, or 8 wheeled modular vehicle with articulated leg-wheel assemblies. In Phase I, basic open plant stability was proven for climbing over obstacles of ~18 inches high and traversing ~75 degree inclines (up, down, or sideways) in a platform of approximately 15 kilograms. At the completion of Phase II, we have completed mechanical and electronics engineering design and achieved changes which currently enable future work in active articulation, enabling autonomous reconfiguration for a wide variety of terrains, including upside down operations (in case of flip over), and we have reduced platform weight by one third. Currently the vehicle weighs 10 kilograms and will grow marginally as additional actuation, MEMS based organic sensing, payload, and autonomous processing is added. The CSR vehicle"s modular spider-like configuration facilitates adaptation to many uses and compliance over rugged terrain. The developmental process and the vehicle characteristics will be discussed.
Primate-inspired vehicle navigation using optic flow and mental rotations
NASA Astrophysics Data System (ADS)
Arkin, Ronald C.; Dellaert, Frank; Srinivasan, Natesh; Kerwin, Ryan
2013-05-01
Robot navigation already has many relatively efficient solutions: reactive control, simultaneous localization and mapping (SLAM), Rapidly-Exploring Random Trees (RRTs), etc. But many primates possess an additional inherent spatial reasoning capability: mental rotation. Our research addresses the question of what role, if any, mental rotations can play in enhancing existing robot navigational capabilities. To answer this question we explore the use of optical flow as a basis for extracting abstract representations of the world, comparing these representations with a goal state of similar format and then iteratively providing a control signal to a robot to allow it to move in a direction consistent with achieving that goal state. We study a range of transformation methods to implement the mental rotation component of the architecture, including correlation and matching based on cognitive studies. We also include a discussion of how mental rotations may play a key role in understanding spatial advice giving, particularly from other members of the species, whether in map-based format, gestures, or other means of communication. Results to date are presented on our robotic platform.
250 Robotic Pancreatic Resections: Safety and Feasibility
Zureikat, Amer H.; Moser, A. James; Boone, Brian A.; Bartlett, David L.; Zenati, Mazen; Zeh, Herbert J.
2015-01-01
Background and Objectives Computer Assisted Robotic Surgery allows complex resections and anastomotic reconstructions to be performed with nearly identical standards to open surgery. We applied this technology to a variety of pancreatic resections to assess the safety, feasibility, versatility and reliability of this technology. Methods A retrospective review of a prospective database of robotic pancreatic resections at a single institution between August 2008 and November 2012 was performed. Peri-operative outcomes were analyzed. Results 250 consecutive robotic pancreatic resections were analyzed; pancreaticoduodenectomy (PD =132), distal pancreatectomy (DP=83), central pancreatectomy (CP=13), pancreatic enucleation (10), total pancreatectomy (TP=5), Appleby resection (4), and Frey procedure (3). Thirty day and 90 day mortality was 0.8 % and 2.0%. Rate of Clavien 3 and 4 complications was 14 and 6 %. The ISGPF grade C fistula rate was 4%. Mean operative time for the two most common procedures was 529 ± 103 mins for PD, and 257 ± 93 mins for DP. Continuous improvement in operative times was observed over the course of the experience. Conversion to open procedure was required in 16 patients (6%);(11 PD, 2 DP, 2 CP, 1 TP) for failure to progress (14) and bleeding (2). Conclusions This represents to our knowledge the largest series of robotic pancreatic resections. Safety and feasibility metrics including the low incidence of conversion support the robustness of this platform and suggest no unanticipated risks inherent to this new technology. By defining these early outcome metrics this report begins to establish a framework for comparative effectiveness studies of this platform. PMID:24002300
Lateral specialization in unilateral spatial neglect: a cognitive robotics model.
Conti, Daniela; Di Nuovo, Santo; Cangelosi, Angelo; Di Nuovo, Alessandro
2016-08-01
In this paper, we present the experimental results of an embodied cognitive robotic approach for modelling the human cognitive deficit known as unilateral spatial neglect (USN). To this end, we introduce an artificial neural network architecture designed and trained to control the spatial attentional focus of the iCub robotic platform. Like the human brain, the architecture is divided into two hemispheres and it incorporates bio-inspired plasticity mechanisms, which allow the development of the phenomenon of the specialization of the right hemisphere for spatial attention. In this study, we validate the model by replicating a previous experiment with human patients affected by the USN and numerical results show that the robot mimics the behaviours previously exhibited by humans. We also simulated recovery after the damage to compare the performance of each of the two hemispheres as additional validation of the model. Finally, we highlight some possible advantages of modelling cognitive dysfunctions of the human brain by means of robotic platforms, which can supplement traditional approaches for studying spatial impairments in humans.
Experiments with an EVA Assistant Robot
NASA Technical Reports Server (NTRS)
Burridge, Robert R.; Graham, Jeffrey; Shillcutt, Kim; Hirsh, Robert; Kortenkamp, David
2003-01-01
Human missions to the Moon or Mars will likely be accompanied by many useful robots that will assist in all aspects of the mission, from construction to maintenance to surface exploration. Such robots might scout terrain, carry tools, take pictures, curate samples, or provide status information during a traverse. At NASA/JSC, the EVA Robotic Assistant (ERA) project has developed a robot testbed for exploring the issues of astronaut-robot interaction. Together with JSC's Advanced Spacesuit Lab, the ERA team has been developing robot capabilities and testing them with space-suited test subjects at planetary surface analog sites. In this paper, we describe the current state of the ERA testbed and two weeks of remote field tests in Arizona in September 2002. A number of teams with a broad range of interests participated in these experiments to explore different aspects of what must be done to develop a program for robotic assistance to surface EVA. Technologies explored in the field experiments included a fuel cell, new mobility platform and manipulator, novel software and communications infrastructure for multi-agent modeling and planning, a mobile science lab, an "InfoPak" for monitoring the spacesuit, and delayed satellite communication to a remote operations team. In this paper, we will describe this latest round of field tests in detail.
The role of laser technology in materials processing and nondestructive testing in the 21st century
NASA Astrophysics Data System (ADS)
Sheinberg, B. M.
Some of the potential applications of laser technology in the 21st century are explored, and the proposed role of this technology in relation to materials processing, nondestructive testing, and quality control are discussed. Examples illustrating the implementation of this techology include the proposed construction of vehicles and platforms in near and deep space, and construction of underwater platforms. The direction in which today's technology should evolve to pursue the achievement of such goals is indicated. Included in the discussion is an evaluation of laser, robotics, and fiber optics technologies with respect to their ability to achieve a synergistic level of operation.
Task driven optimal leg trajectories in insect-scale legged microrobots
NASA Astrophysics Data System (ADS)
Doshi, Neel; Goldberg, Benjamin; Jayaram, Kaushik; Wood, Robert
Origami inspired layered manufacturing techniques and 3D-printing have enabled the development of highly articulated legged robots at the insect-scale, including the 1.43g Harvard Ambulatory MicroRobot (HAMR). Research on these platforms has expanded its focus from manufacturing aspects to include design optimization and control for application-driven tasks. Consequently, the choice of gait selection, body morphology, leg trajectory, foot design, etc. have become areas of active research. HAMR has two controlled degrees-of-freedom per leg, making it an ideal candidate for exploring leg trajectory. We will discuss our work towards optimizing HAMR's leg trajectories for two different tasks: climbing using electroadhesives and level ground running (5-10 BL/s). These tasks demonstrate the ability of single platform to adapt to vastly different locomotive scenarios: quasi-static climbing with controlled ground contact, and dynamic running with un-controlled ground contact. We will utilize trajectory optimization methods informed by existing models and experimental studies to determine leg trajectories for each task. We also plan to discuss how task specifications and choice of objective function have contributed to the shape of these optimal leg trajectories.
Designing and implementing nervous system simulations on LEGO robots.
Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph
2013-05-25
We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.(1) The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum.
A population-based study comparing laparoscopic and robotic outcomes in colorectal surgery.
Tam, Michael S; Kaoutzanis, Christodoulos; Mullard, Andrew J; Regenbogen, Scott E; Franz, Michael G; Hendren, Samantha; Krapohl, Greta; Vandewarker, James F; Lampman, Richard M; Cleary, Robert K
2016-02-01
Current data addressing the role of robotic surgery for the management of colorectal disease are primarily from single-institution and case-matched comparative studies as well as administrative database analyses. The purpose of this study was to compare minimally invasive surgery outcomes using a large regional protocol-driven database devoted to surgical quality, improvement in patient outcomes, and cost-effectiveness. This is a retrospective cohort study from the prospectively collected Michigan Surgical Quality Collaborative registry designed to compare outcomes of patients who underwent elective laparoscopic, hand-assisted laparoscopic, and robotic colon and rectal operations between July 1, 2012 and October 7, 2014. We adjusted for differences in baseline covariates between cases with different surgical approaches using propensity score quintiles modeled on patient demographics, general health factors, diagnosis, and preoperative co-morbidities. The primary outcomes were conversion rates and hospital length of stay. Secondary outcomes included operative time, and postoperative morbidity and mortality. A total of 2735 minimally invasive colorectal operations met inclusion criteria. Conversion rates were lower with robotic as compared to laparoscopic operations, and this was statistically significant for rectal resections (colon 9.0 vs. 16.9%, p < 0.06; rectum 7.8 vs. 21.2%, p < 0.001). The adjusted length of stay for robotic colon operations (4.00 days, 95% CI 3.63-4.40) was significantly shorter compared to laparoscopic (4.41 days, 95% CI 4.17-4.66; p = 0.04) and hand-assisted laparoscopic cases (4.44 days, 95% CI 4.13-4.78; p = 0.008). There were no significant differences in overall postoperative complications among groups. When compared to conventional laparoscopy, the robotic platform is associated with significantly fewer conversions to open for rectal operations, and significantly shorter length of hospital stay for colon operations, without increasing overall postoperative morbidity. These findings and the recent upgrades in minimally invasive technology warrant continued evaluation of the role of the robotic platform in colorectal surgery.
NASA Technical Reports Server (NTRS)
Utz, Hans Heinrich
2011-01-01
This talk gives an overview of the the Robot Applications Programmers Interface Delegate (RAPID) as well as the distributed systems middleware Data Distribution Service (DDS). DDS is an open software standard, RAPID is cleared for open-source release under NOSA. RAPID specifies data-structures and semantics for high-level telemetry published by NASA robotic software. These data-structures are supported by multiple robotic platforms at Johnson Space Center (JSC), Jet Propulsion Laboratory (JPL) and Ames Research Center (ARC), providing high-level interoperability between those platforms. DDS is used as the middleware for data transfer. The feature set of the middleware heavily influences the design decision made in the RAPID specification. So it is appropriate to discuss both in this introductory talk.
Tracey, Andrew T; Eun, Daniel D; Stifelman, Michael D; Hemal, Ashok K; Stein, Robert J; Mottrie, Alexandre; Cadeddu, Jeffrey A; Stolzenburg, J Uwe; Berger, Andre K; Buffi, Niccolò; Zhao, Lee C; Lee, Ziho; Hampton, Lance; Porpiglia, Francesco; Autorino, Riccardo
2018-06-01
Iatrogenic ureteral injuries represent a common surgical problem encountered by practicing urologists. With the rapidly expanding applications of robotic-assisted laparoscopic surgery, ureteral reconstruction has been an important field of recent advancement. This collaborative review sought to provide an evidence-based analysis of the latest surgical techniques and outcomes for robotic-assisted repair of ureteral injury. A systematic review of the literature up to December 2017 using PubMed/Medline was performed to identify relevant articles. Those studies included in the systematic review were selected according to Preferred Reporting Items for Systematic Reviews and Meta-analysis criteria. Additionally, expert opinions were included from study authors in order to critique outcomes and elaborate on surgical techniques. A cumulative outcome analysis was conducted analyzing comparative studies on robotic versus open ureteral repair. Thirteen case series have demonstrated the feasibility, safety, and success of robotic ureteral reconstruction. The surgical planning, timing of intervention, and various robotic reconstructive techniques need to be tailored to the specific case, depending on the location and length of the injury. Fluorescence imaging can represent a useful tool in this setting. Recently, three studies have shown the feasibility and technical success of robotic buccal mucosa grafting for ureteral repair. Soon, additional novel and experimental robotic reconstructive approaches might become available. The cumulative analysis of the three available comparative studies on robotic versus open ureteral repair showed no difference in operative time or complication rate, with a decreased blood loss and hospital length of stay favoring the robotic approach. Current evidence suggests that the robotic surgical platform facilitates complex ureteral reconstruction in a minimally invasive fashion. High success rates of ureteral repair using the robotic approach mirror those of open surgery, with the additional advantage of faster recovery. Novel techniques in development and surgical adjuncts show promise as the role of robotic surgery evolves.
Kan, Hung-Cheng; Pang, See-Tong; Wu, Chun-Te; Chang, Ying-Hsu; Liu, Chung-Yi; Chuang, Cheng-Keng; Lin, Po-Hung
2017-12-01
Laparoscopic adrenalectomy is currently the standard of care for adrenal lesion. Minimal invasive laparoscopic surgery such as laparoendoscopic single site surgery (LESS) and natural orifice transluminal endoscopic surgery (NOTES) have been developed to improve cosmetic outcomes and reduce postoperative pain. However, there are still some problems related to instruments and port limitation during LESS surgery. Robot-assisted laparoscopic surgery may help to overcome these problems, and port platforms selection is an important issue. Three cases received robot-assisted LESS adrenalectomy due to adrenal tumor were enrolled. Blood loss, hospital stay, and analgesia injection were compared. Preoperative evaluations were done in a usual manner. Benign tumors were suspect for two patients, while metastatic tumor could not be excluded for the other patient with prior malignancy history. The pathology reports were all benign adrenal cortical adenoma after operation. Three different port platforms, Da Vinci Single-Site Surgical Platform, GelPOINT, and homemade glove port were used. Trans-peritoneal approach was used for two patients, while the other one received trans-retroperitoneal approach. The advantage and disadvantage of different port platforms were discussed. All patients underwent the operation smoothly without major complications or conversion to open surgery. Blood loss amount was small, hospital stay was short, and only one patient received one single dose of opioid analgesia injection after the surgery. The main problems of LESS are the loss of a working triangle and the limitations of the instruments. Robot-assisted LESS may help surgeons overcome part of these problems. Many different port platforms are available, and based on our initial experience, we believe that the GelPoint may be a more suitable platform, for it maintains the endo-wrist function of the Da Vinci instruments, and allows the surgeon to design the position of ports freely to minimize external and internal collision. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Marcus, Hani J; Seneci, Carlo A; Payne, Christopher J; Nandi, Dipankar; Darzi, Ara; Yang, Guang-Zhong
2014-03-01
Over the past decade, advances in image guidance, endoscopy, and tube-shaft instruments have allowed for the further development of keyhole transcranial endoscope-assisted microsurgery, utilizing smaller craniotomies and minimizing exposure and manipulation of unaffected brain tissue. Although such approaches offer the possibility of shorter operating times, reduced morbidity and mortality, and improved long-term outcomes, the technical skills required to perform such surgery are inevitably greater than for traditional open surgical techniques, and they have not been widely adopted by neurosurgeons. Surgical robotics, which has the ability to improve visualization and increase dexterity, therefore has the potential to enhance surgical performance. To evaluate the role of surgical robots in keyhole transcranial endoscope-assisted microsurgery. The technical challenges faced by surgeons utilizing keyhole craniotomies were reviewed, and a thorough appraisal of presently available robotic systems was performed. Surgical robotic systems have the potential to incorporate advances in augmented reality, stereoendoscopy, and jointed-wrist instruments, and therefore to significantly impact the field of keyhole neurosurgery. To date, over 30 robotic systems have been applied to neurosurgical procedures. The vast majority of these robots are best described as supervisory controlled, and are designed for stereotactic or image-guided surgery. Few telesurgical robots are suitable for keyhole neurosurgical approaches, and none are in widespread clinical use in the field. New robotic platforms in minimally invasive neurosurgery must possess clear and unambiguous advantages over conventional approaches if they are to achieve significant clinical penetration.
SyRoTek--Distance Teaching of Mobile Robotics
ERIC Educational Resources Information Center
Kulich, M.; Chudoba, J.; Kosnar, K.; Krajnik, T.; Faigl, J.; Preucil, L.
2013-01-01
E-learning is a modern and effective approach for training in various areas and at different levels of education. This paper gives an overview of SyRoTek, an e-learning platform for mobile robotics, artificial intelligence, control engineering, and related domains. SyRoTek provides remote access to a set of fully autonomous mobile robots placed in…
Pyro: A Python-Based Versatile Programming Environment for Teaching Robotics
ERIC Educational Resources Information Center
Blank, Douglas; Kumar, Deepak; Meeden, Lisa; Yanco, Holly
2004-01-01
In this article we describe a programming framework called Pyro, which provides a set of abstractions that allows students to write platform-independent robot programs. This project is unique because of its focus on the pedagogical implications of teaching mobile robotics via a top-down approach. We describe the background of the project, its…
Passive Maple-Seed Robotic Fliers for Education, Research and Entrepreneurship
ERIC Educational Resources Information Center
Aslam, D. M.; Abu-Ageel, A.; Alfatlawi, M.; Varney, M. W.; Thompson, C. M.; Aslam, S. K.
2014-01-01
As inspirations from flora and fauna have led to many advances in modern technology, the concept of drawing ideas from nature for design should be reflected in engineering education. This paper focuses on a maple-seed robotic flier (MRF) with various complexities, a robotic platform modeled after the samaras of maple or ash trees, to teach STEM…
Ground robotic measurement of aeolian processes
NASA Astrophysics Data System (ADS)
Qian, Feifei; Jerolmack, Douglas; Lancaster, Nicholas; Nikolich, George; Reverdy, Paul; Roberts, Sonia; Shipley, Thomas; Van Pelt, R. Scott; Zobeck, Ted M.; Koditschek, Daniel E.
2017-08-01
Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These devices are often cumbersome and logistically difficult to set up and maintain, especially near steep or vegetated dune surfaces. Significant advances in instrumentation are needed to provide the datasets that are required to validate and improve mechanistic models of aeolian sediment transport. Recent advances in robotics show great promise for assisting and amplifying scientists' efforts to increase the spatial and temporal resolution of many environmental measurements governing sediment transport. The emergence of cheap, agile, human-scale robotic platforms endowed with increasingly sophisticated sensor and motor suites opens up the prospect of deploying programmable, reactive sensor payloads across complex terrain in the service of aeolian science. This paper surveys the need and assesses the opportunities and challenges for amassing novel, highly resolved spatiotemporal datasets for aeolian research using partially-automated ground mobility. We review the limitations of existing measurement approaches for aeolian processes, and discuss how they may be transformed by ground-based robotic platforms, using examples from our initial field experiments. We then review how the need to traverse challenging aeolian terrains and simultaneously make high-resolution measurements of critical variables requires enhanced robotic capability. Finally, we conclude with a look to the future, in which robotic platforms may operate with increasing autonomy in harsh conditions. Besides expanding the completeness of terrestrial datasets, bringing ground-based robots to the aeolian research community may lead to unexpected discoveries that generate new hypotheses to expand the science itself.
Astrobee: Space Station Robotic Free Flyer
NASA Technical Reports Server (NTRS)
Provencher, Chris; Bualat, Maria G.; Barlow, Jonathan; Fong, Terrence W.; Smith, Marion F.; Smith, Ernest E.; Sanchez, Hugo S.
2016-01-01
Astrobee is a free flying robot that will fly inside the International Space Station and primarily serve as a research platform for robotics in zero gravity. Astrobee will also provide mobile camera views to ISS flight and payload controllers, and collect various sensor data within the ISS environment for the ISS Program. Astrobee consists of two free flying robots, a dock, and ground data system. This presentation provides an overview, high level design description, and project status.
US Army TARDEC Ground Vehicle Mobility: Dynamics Modeling, Simluation, and Research
2011-10-24
DRIVEN. WARFIGHTER FOCUSED. For official use only Stair Climbing of a Small Robot Robotic Vehicle Step Climbing UNCLASSIFIED For official use only...NOTES NASA Jet Propulsion Laboratory, mobility, and robotics section. Briefing to the jet propulsion lab. 14. ABSTRACT N/A 15. SUBJECT TERMS 16...JLTV GCV M2 M915 ASV FTTS HMMWV Platforms Supported APDSmall Robot UNCLASSIFIED For official use only Mobility Events • Vehicle stability • Ride
Assembly Platform For Use In Outer Space
NASA Technical Reports Server (NTRS)
Rao, Niranjan S.; Buddington, Patricia A.
1995-01-01
Report describes conceptual platform or framework for use in assembling other structures and spacecraft in outer space. Consists of three fixed structural beams comprising central beam and two cross beams. Robotic manipulators spaced apart on platform to provide telerobotic operation of platform by either space-station or ground crews. Platform and attached vehicles function synergistically to achieve maximum performance for intended purposes.
Towards multi-platform software architecture for Collaborative Teleoperation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domingues, Christophe; Otmane, Samir; Davesne, Frederic
2009-03-05
Augmented Reality (AR) can provide to a Human Operator (HO) a real help in achieving complex tasks, such as remote control of robots and cooperative teleassistance. Using appropriate augmentations, the HO can interact faster, safer and easier with the remote real world. In this paper, we present an extension of an existing distributed software and network architecture for collaborative teleoperation based on networked human-scaled mixed reality and mobile platform. The first teleoperation system was composed by a VR application and a Web application. However the 2 systems cannot be used together and it is impossible to control a distant robotmore » simultaneously. Our goal is to update the teleoperation system to permit a heterogeneous collaborative teleoperation between the 2 platforms. An important feature of this interface is based on the use of different Virtual Reality platforms and different Mobile platforms to control one or many robots.« less
NASA Astrophysics Data System (ADS)
Xu, Weidong; Lei, Zhu; Yuan, Zhang; Gao, Zhenqing
2018-03-01
The application of visual recognition technology in industrial robot crawling and placing operation is one of the key tasks in the field of robot research. In order to improve the efficiency and intelligence of the material sorting in the production line, especially to realize the sorting of the scattered items, the robot target recognition and positioning crawling platform based on binocular vision is researched and developed. The images were collected by binocular camera, and the images were pretreated. Harris operator was used to identify the corners of the images. The Canny operator was used to identify the images. Hough-chain code recognition was used to identify the images. The target image in the image, obtain the coordinates of each vertex of the image, calculate the spatial position and posture of the target item, and determine the information needed to capture the movement and transmit it to the robot control crawling operation. Finally, In this paper, we use this method to experiment the wrapping problem in the express sorting process The experimental results show that the platform can effectively solve the problem of sorting of loose parts, so as to achieve the purpose of efficient and intelligent sorting.
D.R.O.P. The Durable Reconnaissance and Observation Platform
NASA Technical Reports Server (NTRS)
McKenzie, Clifford; Parness, Aaron
2012-01-01
The Durable Reconnaissance and Observation Platform (DROP) is a prototype robotic platform with the ability to climb concrete surfaces up to 85deg at a rate of 25cm/s, make rapid horizontal to vertical transitions, carry an audio/visual reconnaissance payload, and survive impacts from 3 meters. DROP is manufactured using a combination of selective laser sintering (SLS) and shape deposition manufacturing (SDM) techniques. The platform uses a two-wheel, two-motor design that delivers high mobility with low complexity. DROP extends microspine climbing technology from linear to rotary applications, providing improved transition ability, increased speeds, and simpler body mechanics while maintaining microspines ability to opportunistically grip rough surfaces. Various aspects of prototype design and performance are discussed, including the climbing mechanism, body design, and impact survival.
Coordinating teams of autonomous vehicles: an architectural perspective
NASA Astrophysics Data System (ADS)
Czichon, Cary; Peterson, Robert W.; Mettala, Erik G.; Vondrak, Ivo
2005-05-01
In defense-related robotics research, a mission level integration gap exists between mission tasks (tactical) performed by ground, sea, or air applications and elementary behaviors enacted by processing, communications, sensors, and weaponry resources (platform specific). The gap spans ensemble (heterogeneous team) behaviors, automatic MOE/MOP tracking, and tactical task modeling/simulation for virtual and mixed teams comprised of robotic and human combatants. This study surveys robotic system architectures, compares approaches for navigating problem/state spaces by autonomous systems, describes an architecture for an integrated, repository-based modeling, simulation, and execution environment, and outlines a multi-tiered scheme for robotic behavior components that is agent-based, platform-independent, and extendable via plug-ins. Tools for this integrated environment, along with a distributed agent framework for collaborative task performance are being developed by a U.S. Army funded SBIR project (RDECOM Contract N61339-04-C-0005).
An Outdoor Navigation Platform with a 3D Scanner and Gyro-assisted Odometry
NASA Astrophysics Data System (ADS)
Yoshida, Tomoaki; Irie, Kiyoshi; Koyanagi, Eiji; Tomono, Masahiro
This paper proposes a light-weight navigation platform that consists of gyro-assisted odometry, a 3D laser scanner and map-based localization for human-scale robots. The gyro-assisted odometry provides highly accurate positioning only by dead-reckoning. The 3D laser scanner has a wide field of view and uniform measuring-point distribution. The map-based localization is robust and computationally inexpensive by utilizing a particle filter on a 2D grid map generated by projecting 3D points on to the ground. The system uses small and low-cost sensors, and can be applied to a variety of mobile robots in human-scale environments. Outdoor navigation experiments were conducted at the Tsukuba Challenge held in 2009 and 2010, which is an open proving ground for human-scale robots. Our robot successfully navigated the assigned 1-km courses in a fully autonomous mode multiple times.
Design of a Single Motor Based Leg Structure with the Consideration of Inherent Mechanical Stability
NASA Astrophysics Data System (ADS)
Taha Manzoor, Muhammad; Sohail, Umer; Noor-e-Mustafa; Nizami, Muhammad Hamza Asif; Ayaz, Yasar
2017-07-01
The fundamental aspect of designing a legged robot is constructing a leg design that is robust and presents a simple control problem. In this paper, we have successfully designed a robotic leg based on a unique four bar mechanism with only one motor per leg. The leg design parameters used in our platform are extracted from design principles used in biological systems, multiple iterations and previous research findings. These principles guide a robotic leg to have minimal mechanical passive impedance, low leg mass and inertia, a suitable foot trajectory utilizing a practical balance between leg kinematics and robot usage, and the resultant inherent mechanical stability. The designed platform also exhibits the key feature of self-locking. Theoretical tools and software iterations were used to derive these practical features and yield an intuitive sense of the required leg design parameters.
Research and implementation of a new 6-DOF light-weight robot
NASA Astrophysics Data System (ADS)
Tao, Zihang; Zhang, Tao; Qi, Mingzhong; Ji, Junhui
2017-06-01
Traditional industrial robots have some weaknesses such as low payload-weight, high power consumption and high cost. These drawbacks limit their applications in such areas, special application, service and surgical robots. To improve these shortcomings, a new kind 6-DOF light-weight robot was designed based on modular joints and modular construction. This paper discusses the general requirements of the light-weight robots. Based on these requirements the novel robot is designed. The new robot is described from two aspects, mechanical design and control system. A prototype robot had developed and a joint performance test platform had designed. Position and velocity tests had conducted to evaluate the performance of the prototype robot. Test results showed that the prototype worked well.
Architectural design and support for knowledge sharing across heterogeneous MAST systems
NASA Astrophysics Data System (ADS)
Arkin, Ronald C.; Garcia-Vergara, Sergio; Lee, Sung G.
2012-06-01
A novel approach for the sharing of knowledge between widely heterogeneous robotic agents is presented, drawing upon Gardenfors Conceptual Spaces approach [4]. The target microrobotic platforms considered are computationally, power, sensor, and communications impoverished compared to more traditional robotics platforms due to their small size. This produces novel challenges for the system to converge on an interpretation of events within the world, in this case specifically focusing on the task of recognizing the concept of a biohazard in an indoor setting.
Tele-Supervised Adaptive Ocean Sensor Fleet
NASA Technical Reports Server (NTRS)
Lefes, Alberto; Podnar, Gregg W.; Dolan, John M.; Hosler, Jeffrey C.; Ames, Troy J.
2009-01-01
The Tele-supervised Adaptive Ocean Sensor Fleet (TAOSF) is a multi-robot science exploration architecture and system that uses a group of robotic boats (the Ocean-Atmosphere Sensor Integration System, or OASIS) to enable in-situ study of ocean surface and subsurface characteristics and the dynamics of such ocean phenomena as coastal pollutants, oil spills, hurricanes, or harmful algal blooms (HABs). The OASIS boats are extended- deployment, autonomous ocean surface vehicles. The TAOSF architecture provides an integrated approach to multi-vehicle coordination and sliding human-vehicle autonomy. One feature of TAOSF is the adaptive re-planning of the activities of the OASIS vessels based on sensor input ( smart sensing) and sensorial coordination among multiple assets. The architecture also incorporates Web-based communications that permit control of the assets over long distances and the sharing of data with remote experts. Autonomous hazard and assistance detection allows the automatic identification of hazards that require human intervention to ensure the safety and integrity of the robotic vehicles, or of science data that require human interpretation and response. Also, the architecture is designed for science analysis of acquired data in order to perform an initial onboard assessment of the presence of specific science signatures of immediate interest. TAOSF integrates and extends five subsystems developed by the participating institutions: Emergent Space Tech - nol ogies, Wallops Flight Facility, NASA s Goddard Space Flight Center (GSFC), Carnegie Mellon University, and Jet Propulsion Laboratory (JPL). The OASIS Autonomous Surface Vehicle (ASV) system, which includes the vessels as well as the land-based control and communications infrastructure developed for them, controls the hardware of each platform (sensors, actuators, etc.), and also provides a low-level waypoint navigation capability. The Multi-Platform Simulation Environment from GSFC is a surrogate for the OASIS ASV system and allows for independent development and testing of higher-level software components. The Platform Communicator acts as a proxy for both actual and simulated platforms. It translates platform-independent messages from the higher control systems to the device-dependent communication protocols. This enables the higher-level control systems to interact identically with heterogeneous actual or simulated platforms.
NASA Astrophysics Data System (ADS)
Bagheri, Zahra M.; Cazzolato, Benjamin S.; Grainger, Steven; O'Carroll, David C.; Wiederman, Steven D.
2017-08-01
Objective. Many computer vision and robotic applications require the implementation of robust and efficient target-tracking algorithms on a moving platform. However, deployment of a real-time system is challenging, even with the computational power of modern hardware. Lightweight and low-powered flying insects, such as dragonflies, track prey or conspecifics within cluttered natural environments, illustrating an efficient biological solution to the target-tracking problem. Approach. We used our recent recordings from ‘small target motion detector’ neurons in the dragonfly brain to inspire the development of a closed-loop target detection and tracking algorithm. This model exploits facilitation, a slow build-up of response to targets which move along long, continuous trajectories, as seen in our electrophysiological data. To test performance in real-world conditions, we implemented this model on a robotic platform that uses active pursuit strategies based on insect behaviour. Main results. Our robot performs robustly in closed-loop pursuit of targets, despite a range of challenging conditions used in our experiments; low contrast targets, heavily cluttered environments and the presence of distracters. We show that the facilitation stage boosts responses to targets moving along continuous trajectories, improving contrast sensitivity and detection of small moving targets against textured backgrounds. Moreover, the temporal properties of facilitation play a useful role in handling vibration of the robotic platform. We also show that the adoption of feed-forward models which predict the sensory consequences of self-movement can significantly improve target detection during saccadic movements. Significance. Our results provide insight into the neuronal mechanisms that underlie biological target detection and selection (from a moving platform), as well as highlight the effectiveness of our bio-inspired algorithm in an artificial visual system.
Bayón, C; Lerma, S; Ramírez, O; Serrano, J I; Del Castillo, M D; Raya, R; Belda-Lois, J M; Martínez, I; Rocon, E
2016-11-14
Cerebral Palsy (CP) is a disorder of posture and movement due to a defect in the immature brain. The use of robotic devices as alternative treatment to improve the gait function in patients with CP has increased. Nevertheless, current gait trainers are focused on controlling complete joint trajectories, avoiding postural control and the adaptation of the therapy to a specific patient. This paper presents the applicability of a new robotic platform called CPWalker in children with spastic diplegia. CPWalker consists of a smart walker with body weight and autonomous locomotion support and an exoskeleton for joint motion support. Likewise, CPWalker enables strategies to improve postural control during walking. The integrated robotic platform provides means for testing novel gait rehabilitation therapies in subjects with CP and similar motor disorders. Patient-tailored therapies were programmed in the device for its evaluation in three children with spastic diplegia for 5 weeks. After ten sessions of personalized training with CPWalker, the children improved the mean velocity (51.94 ± 41.97 %), cadence (29.19 ± 33.36 %) and step length (26.49 ± 19.58 %) in each leg. Post-3D gait assessments provided kinematic outcomes closer to normal values than Pre-3D assessments. The results show the potential of the novel robotic platform to serve as a rehabilitation tool. The autonomous locomotion and impedance control enhanced the children's participation during therapies. Moreover, participants' postural control was substantially improved, which indicates the usefulness of the approach based on promoting the patient's trunk control while the locomotion therapy is executed. Although results are promising, further studies with bigger sample size are required.
Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study
NASA Astrophysics Data System (ADS)
D'Souza, Warren D.; Naqvi, Shahid A.; Yu, Cedric X.
2005-09-01
Significant differences between planned and delivered treatments may occur due to respiration-induced tumour motion, leading to underdosing of parts of the tumour and overdosing of parts of the surrounding critical structures. Existing methods proposed to counter tumour motion include breath-holds, gating and MLC-based tracking. Breath-holds and gating techniques increase treatment time considerably, whereas MLC-based tracking is limited to two dimensions. We present an alternative solution in which a robotic couch moves in real time in response to organ motion. To demonstrate proof-of-principle, we constructed a miniature adaptive couch model consisting of two movable platforms that simulate tumour motion and couch motion, respectively. These platforms were connected via an electronic feedback loop so that the bottom platform responded to the motion of the top platform. We tested our model with a seven-field step-and-shoot delivery case in which we performed three film-based experiments: (1) static geometry, (2) phantom-only motion and (3) phantom motion with simulated couch motion. Our measurements demonstrate that the miniature couch was able to compensate for phantom motion to the extent that the dose distributions were practically indistinguishable from those in static geometry. Motivated by this initial success, we investigated a real-time couch compensation system consisting of a stereoscopic infra-red camera system interfaced to a robotic couch known as the Hexapod™, which responds in real time to any change in position detected by the cameras. Optical reflectors placed on a solid water phantom were used as surrogates for motion. We tested the effectiveness of couch-based motion compensation for fixed fields and a dynamic arc delivery cases. Due to hardware limitations, we performed film-based experiments (1), (2) and (3), with the robotic couch at a phantom motion period and dose rate of 16 s and 100 MU min-1, respectively. Analysis of film measurements showed near-equivalent dose distributions (<=2 mm agreement of corresponding isodose lines) for static geometry and motion-synchronized real-time robotic couch tracking-based radiation delivery.
Robotic-assisted surgery in gynecologic oncology.
Sinno, Abdulrahman K; Fader, Amanda N
2014-10-01
The quest for improved patient outcomes has been a driving force for adoption of novel surgical innovations across surgical subspecialties. Gynecologic oncology is one such surgical discipline in which minimally invasive surgery has had a robust and evolving role in defining standards of care. Robotic-assisted surgery has developed during the past two decades as a more technologically advanced form of minimally invasive surgery in an effort to mitigate the limitations of conventional laparoscopy and improved patient outcomes. Robotically assisted technology offers potential advantages that include improved three-dimensional stereoscopic vision, wristed instruments that improve surgeon dexterity, and tremor canceling software that improves surgical precision. These technological advances may allow the gynecologic oncology surgeon to perform increasingly radical oncologic surgeries in complex patients. However, the platform is not without limitations, including high cost, lack of haptic feedback, and the requirement for additional training to achieve competence. This review describes the role of robotic-assisted surgery in the management of endometrial, cervical, and ovarian cancer, with an emphasis on comparison with laparotomy and conventional laparoscopy. The literature on novel robotic innovations, special patient populations, cost effectiveness, and fellowship training is also appraised critically in this regard. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Single-Port Surgery: Laboratory Experience with the daVinci Single-Site Platform
Haber, Georges-Pascal; Kaouk, Jihad; Kroh, Matthew; Chalikonda, Sricharan; Falcone, Tommaso
2011-01-01
Background and Objectives: The purpose of this study was to evaluate the feasibility and validity of a dedicated da Vinci single-port platform in the porcine model in the performance of gynecologic surgery. Methods: This pilot study was conducted in 4 female pigs. All pigs had a general anesthetic and were placed in the supine and flank position. A 2-cm umbilical incision was made, through which a robotic single-port device was placed and pneumoperitoneum obtained. A data set was collected for each procedure and included port placement time, docking time, operative time, blood loss, and complications. Operative times were compared between cases and procedures by use of the Student t test. Results: A total of 28 surgical procedures (8 oophorectomies, 4 hysterectomies, 8 pelvic lymph node dissections, 4 aorto-caval nodal dissections, 2 bladder repairs, 1 uterine horn anastomosis, and 1 radical cystectomy) were performed. There was no statistically significant difference in operating times for symmetrical procedures among animals (P=0.3215). Conclusions: This animal study demonstrates that single-port robotic surgery using a dedicated single-site platform allows performing technically challenging procedures within acceptable operative times and without complications or insertion of additional trocars. PMID:21902962
DLR HABLEG- High Altitude Balloon Launched Experimental Glider
NASA Astrophysics Data System (ADS)
Wlach, S.; Schwarzbauch, M.; Laiacker, M.
2015-09-01
The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.
Single-port robotic cholecystectomy. Initial and pioneer experience in Brazil
Schraibman, Vladimir; Epstein, Marina Gabrielle; Maccapani, Gabriel Naman; Macedo, Antônio Luiz de Vasconcellos
2015-01-01
The technique of a single-port laparoscopy was developed over the last years as an attempt to lower surgical aggression and improve the aesthetic results of the minimally invasive surgery. A new robotic platform used with the da Vinci® Robotic System Single-Site System® (Intuitive Surgical, Sunnyvale, California, United States) was recently launched on the global market and is still not documented in Brazil. The authors report on the first four robotic single-port cholecystectomies performed with this da Vinci® Robotic System in Brazil. PMID:26398360
2015-04-30
an named lecture/oration "Present and future of Urologic Robotic Surgery ". Co-PI Popescu described project goals and results to computer science... robotic surgery : a case study’, International Journal of Social Robotics , 5(1):75–88. Darcy, A. E., Hancock, L. E. & Ware, E. J. (2008) ‘A descriptive...Journal of Robotic Surgery , 6(1):53–63. Jacob, M. G., Li, Y. T. & Wachs, J. P. (2012) Gestonurse: a multimodal robotic scrub nurse. In Proceedings
Semi-autonomous exploration of multi-floor buildings with a legged robot
NASA Astrophysics Data System (ADS)
Wenger, Garrett J.; Johnson, Aaron M.; Taylor, Camillo J.; Koditschek, Daniel E.
2015-05-01
This paper presents preliminary results of a semi-autonomous building exploration behavior using the hexapedal robot RHex. Stairwells are used in virtually all multi-floor buildings, and so in order for a mobile robot to effectively explore, map, clear, monitor, or patrol such buildings it must be able to ascend and descend stairwells. However most conventional mobile robots based on a wheeled platform are unable to traverse stairwells, motivating use of the more mobile legged machine. This semi-autonomous behavior uses a human driver to provide steering input to the robot, as would be the case in, e.g., a tele-operated building exploration mission. The gait selection and transitions between the walking and stair climbing gaits are entirely autonomous. This implementation uses an RGBD camera for stair acquisition, which offers several advantages over a previously documented detector based on a laser range finder, including significantly reduced acquisition time. The sensor package used here also allows for considerable expansion of this behavior. For example, complete automation of the building exploration task driven by a mapping algorithm and higher level planner is presently under development.
Brain Computer Interfaces for Enhanced Interaction with Mobile Robot Agents
2016-07-27
synergistic and complementary way. This project focused on acquiring a mobile robotic agent platform that can be used to explore these interfaces...providing a test environment where the human control of a robot agent can be experimentally validated in 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...Distribution Unlimited UU UU UU UU 27-07-2016 17-Sep-2013 16-Sep-2014 Final Report: Brain Computer Interfaces for Enhanced Interactions with Mobile Robot
Biomimetic vibrissal sensing for robots
Pearson, Martin J.; Mitchinson, Ben; Sullivan, J. Charles; Pipe, Anthony G.; Prescott, Tony J.
2011-01-01
Active vibrissal touch can be used to replace or to supplement sensory systems such as computer vision and, therefore, improve the sensory capacity of mobile robots. This paper describes how arrays of whisker-like touch sensors have been incorporated onto mobile robot platforms taking inspiration from biology for their morphology and control. There were two motivations for this work: first, to build a physical platform on which to model, and therefore test, recent neuroethological hypotheses about vibrissal touch; second, to exploit the control strategies and morphology observed in the biological analogue to maximize the quality and quantity of tactile sensory information derived from the artificial whisker array. We describe the design of a new whiskered robot, Shrewbot, endowed with a biomimetic array of individually controlled whiskers and a neuroethologically inspired whisking pattern generation mechanism. We then present results showing how the morphology of the whisker array shapes the sensory surface surrounding the robot's head, and demonstrate the impact of active touch control on the sensory information that can be acquired by the robot. We show that adopting bio-inspired, low latency motor control of the rhythmic motion of the whiskers in response to contact-induced stimuli usefully constrains the sensory range, while also maximizing the number of whisker contacts. The robot experiments also demonstrate that the sensory consequences of active touch control can be usefully investigated in biomimetic robots. PMID:21969690
Converging the capabilities of EAP artificial muscles and the requirements of bio-inspired robotics
NASA Astrophysics Data System (ADS)
Hanson, David F.; White, Victor
2004-07-01
The characteristics of Electro-actuated polymers (EAP) are typically considered inadequate for applications in robotics. But in recent years, there has been both dramatic increases in EAP technological capbilities and reductions in power requirements for actuating bio-inspired robotics. As the two trends continue to converge, one may anticipate that dramatic breakthroughs in biologically inspired robotic actuation will result due to the marraige of these technologies. This talk will provide a snapshot of how EAP actuator scientists and roboticists may work together on a common platform to accelerate the growth of both technologies. To demonstrate this concept of a platform to accelerate this convergence, the authors will discuss their work in the niche application of robotic facial expression. In particular, expressive robots appear to be within the range of EAP actuation, thanks to their low force requirements. Several robots will be shown that demonstrate realistic expressions with dramatically decreased force requirements. Also, detailed descriptions will be given of the engineering innovations that have enabled these robotics advancements-most notably, Structured-Porosity Elastomer Materials (SPEMs). SPEM manufacturing techniques create delicate cell-structures in a variety of elastomers that maintain the high elongation characteristics of the mother material, but because of the porisity, behave as sponge-materials, thus lower the force required to emulate facial expressions to levels output by several extant EAP actuators.
Biomimetic vibrissal sensing for robots.
Pearson, Martin J; Mitchinson, Ben; Sullivan, J Charles; Pipe, Anthony G; Prescott, Tony J
2011-11-12
Active vibrissal touch can be used to replace or to supplement sensory systems such as computer vision and, therefore, improve the sensory capacity of mobile robots. This paper describes how arrays of whisker-like touch sensors have been incorporated onto mobile robot platforms taking inspiration from biology for their morphology and control. There were two motivations for this work: first, to build a physical platform on which to model, and therefore test, recent neuroethological hypotheses about vibrissal touch; second, to exploit the control strategies and morphology observed in the biological analogue to maximize the quality and quantity of tactile sensory information derived from the artificial whisker array. We describe the design of a new whiskered robot, Shrewbot, endowed with a biomimetic array of individually controlled whiskers and a neuroethologically inspired whisking pattern generation mechanism. We then present results showing how the morphology of the whisker array shapes the sensory surface surrounding the robot's head, and demonstrate the impact of active touch control on the sensory information that can be acquired by the robot. We show that adopting bio-inspired, low latency motor control of the rhythmic motion of the whiskers in response to contact-induced stimuli usefully constrains the sensory range, while also maximizing the number of whisker contacts. The robot experiments also demonstrate that the sensory consequences of active touch control can be usefully investigated in biomimetic robots.
Do laparoscopic skills transfer to robotic surgery?
Panait, Lucian; Shetty, Shohan; Shewokis, Patricia A; Sanchez, Juan A
2014-03-01
Identifying the set of skills that can transfer from laparoscopic to robotic surgery is an important consideration in designing optimal training curricula. We tested the degree to which laparoscopic skills transfer to a robotic platform. Fourteen medical students and 14 surgery residents with no previous robotic but varying degrees of laparoscopic experience were studied. Three fundamentals of laparoscopic surgery tasks were used on the laparoscopic box trainer and then the da Vinci robot: peg transfer (PT), circle cutting (CC), and intracorporeal suturing (IS). A questionnaire was administered for assessing subjects' comfort level with each task. Standard fundamentals of laparoscopic surgery scoring metric were used and higher scores indicate a superior performance. For the group, PT and CC scores were similar between robotic and laparoscopic modalities (90 versus 90 and 52 versus 47; P > 0.05). However, for the advanced IS task, robotic-IS scores were significantly higher than laparoscopic-IS (80 versus 53; P < 0.001). Subgroup analysis of senior residents revealed a lower robotic-PT score when compared with laparoscopic-PT (92 versus 105; P < 0.05). Scores for CC and IS were similar in this subgroup (64 ± 9 versus 69 ± 15 and 95 ± 3 versus 92 ± 10; P > 0.05). The robot was favored over laparoscopy for all drills (PT, 66.7%; CC, 88.9%; IS, 94.4%). For simple tasks, participants with preexisting skills perform worse with the robot. However, with increasing task difficulty, robotic performance is equal or better than laparoscopy. Laparoscopic skills appear to readily transfer to a robotic platform, and difficult tasks such as IS are actually enhanced, even in subjects naive to the technology. Copyright © 2014 Elsevier Inc. All rights reserved.
From Leonardo to da Vinci: the history of robot-assisted surgery in urology.
Yates, David R; Vaessen, Christophe; Roupret, Morgan
2011-12-01
What's known on the subject? and What does the study add? Numerous urological procedures can now be performed with robotic assistance. Though not definitely proven to be superior to conventional laparoscopy or traditional open surgery in the setting of a randomised trial, in experienced centres robot-assisted surgery allows for excellent surgical outcomes and is a valuable tool to augment modern surgical practice. Our review highlights the depth of history that underpins the robotic surgical platform we utilise today, whilst also detailing the current place of robot-assisted surgery in urology in 2011. The evolution of robots in general and as platforms to augment surgical practice is an intriguing story that spans cultures, continents and centuries. A timeline from Yan Shi (1023-957 bc), Archytas of Tarentum (400 bc), Aristotle (322 bc), Heron of Alexandria (10-70 ad), Leonardo da Vinci (1495), the Industrial Revolution (1790), 'telepresence' (1950) and to the da Vinci(®) Surgical System (1999), shows the incredible depth of history and development that underpins the modern surgical robot we use to treat our patients. Robot-assisted surgery is now well-established in Urology and although not currently regarded as a 'gold standard' approach for any urological procedure, it is being increasingly used for index operations of the prostate, kidney and bladder. We perceive that robotic evolution will continue infinitely, securing the place of robots in the history of Urological surgery. Herein, we detail the history of robots in general, in surgery and in Urology, highlighting the current place of robot-assisted surgery in radical prostatectomy, partial nephrectomy, pyeloplasty and radical cystectomy. © 2011 THE AUTHORS. BJU INTERNATIONAL © 2011 BJU INTERNATIONAL.
Employing Omnidirectional Visual Control for Mobile Robotics.
ERIC Educational Resources Information Center
Wright, J. R., Jr.; Jung, S.; Steplight, S.; Wright, J. R., Sr.; Das, A.
2000-01-01
Describes projects using conventional technologies--incorporation of relatively inexpensive visual control with mobile robots using a simple remote control vehicle platform, a camera, a mirror, and a computer. Explains how technology teachers can apply them in the classroom. (JOW)
Mobility platform coupling device and method for coupling mobility platforms
Shirey, David L.; Hayward, David R.; Buttz, James H.
2002-01-01
A coupling device for connecting a first mobility platform to a second mobility platform in tandem. An example mobility platform is a robot. The coupling device has a loose link mode for normal steering conditions and a locking position, tight link mode for navigation across difficult terrain and across obstacles, for traversing chasms, and for navigating with a reduced footprint in tight steering conditions.
Research on Kinematic Trajectory Simulation System of KUKA Arc Welding Robot System
NASA Astrophysics Data System (ADS)
Hu, Min
2017-10-01
In this paper, the simulation trajectory simulation of KUKA arc welding robot system is realized by means of VC platform. It is used to realize the teaching of professional training of welding robot in middle school. It provides teaching resources for the combination of work and study and integration teaching, which enriches the content of course teaching.
Scrape on Endeavour's robotic arm during oxygen leak repairs
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Robotic arm experts begin inspection of a scrape on the surface of the honeycomb shell on Endeavour's robotic arm. The scrape occurred while work platforms were being installed to gain access to repair the oxygen leak in the Shuttle's mid-body. Launch of Endeavour on mission STS-113 has been postponed until no earlier than Nov. 22..
Scrape on Endeavour's robotic arm during oxygen leak repairs
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Robotic arm experts get ready for ultrasound testing on Endeavour's robotic arm. A scrape of the honeycomb shell around the arm occurred while work platforms were being installed to gain access to repair the oxygen leak in the Shuttle's mid-body. Launch of Endeavour on mission STS-113 has been postponed until no earlier than Nov. 22.
Scrape on Endeavour's robotic arm during oxygen leak repairs
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Robotic arm experts begin inspection of a scrape on the surface of the honeycomb shell on Endeavour's robotic arm. The scrape occurred while work platforms were being installed to gain access to repair the oxygen leak in the Shuttle's mid-body. Launch of Endeavour on mission STS-113 has been postponed until no earlier than Nov. 22.
NASA Technical Reports Server (NTRS)
Wood, Nathan A.
2005-01-01
Planetary Surface Robot Work Crews (RWC) represent a new class of construction robots for future deployment in planetary exploration. Rovers currently being used for the RWC platform lack the load carrying capabilities required in regular work. Two new rovers, dubbed CrewBots, being designed in JPL's Planetary Robotics Lab specifically for RWC applications greatly increase the load carrying capabilities of the platform. A major component of the rover design was the design of the rocker type suspension, which increases rover mobility. The design of the suspension for the Crewbots departed from the design of recent rovers. While many previous rovers have used internal bevel gear differentials, the increased load requirements of the Crewbots calls for a more robust system. The solution presented is the use of an external modified three-bar, slider-linkage, rocker-style suspension that increases the moment arm of the differential. The final product is a suspension system capable of supporting the extreme loading cases the RWC platform presents, without consuming a large portion of the Crewbots' internal space.
Sessa, Luca; Perrenot, Cyril; Xu, Song; Hubert, Jacques; Bresler, Laurent; Brunaud, Laurent; Perez, Manuela
2018-03-01
In robotic surgery, the coordination between the console-side surgeon and bed-side assistant is crucial, more than in standard surgery or laparoscopy where the surgical team works in close contact. Xperience™ Team Trainer (XTT) is a new optional component for the dv-Trainer ® platform and simulates the patient-side working environment. We present preliminary results for face, content, and the workload imposed regarding the use of the XTT virtual reality platform for the psychomotor and communication skills training of the bed-side assistant in robot-assisted surgery. Participants were categorized into "Beginners" and "Experts". They tested a series of exercises (Pick & Place Laparoscopic Demo, Pick & Place 2 and Team Match Board 1) and completed face validity questionnaires. "Experts" assessed content validity on another questionnaire. All the participants completed a NASA Task Load Index questionnaire to assess the workload imposed by XTT. Twenty-one consenting participants were included (12 "Beginners" and 9 "Experts"). XTT was shown to possess face and content validity, as evidenced by the rankings given on the simulator's ease of use and realism parameters and on the simulator's usefulness for training. Eight out of nine "Experts" judged the visualization of metrics after the exercises useful. However, face validity has shown some weaknesses regarding interactions and instruments. Reasonable workload parameters were registered. XTT demonstrated excellent face and content validity with acceptable workload parameters. XTT could become a useful tool for robotic surgery team training.
A Segway RMP-based robotic transport system
NASA Astrophysics Data System (ADS)
Nguyen, Hoa G.; Kogut, Greg; Barua, Ripan; Burmeister, Aaron; Pezeshkian, Narek; Powell, Darren; Farrington, Nathan; Wimmer, Matt; Cicchetto, Brett; Heng, Chana; Ramirez, Velia
2004-12-01
In the area of logistics, there currently is a capability gap between the one-ton Army robotic Multifunction Utility/Logistics and Equipment (MULE) vehicle and a soldier"s backpack. The Unmanned Systems Branch at Space and Naval Warfare Systems Center (SPAWAR Systems Center, or SSC), San Diego, with the assistance of a group of interns from nearby High Tech High School, has demonstrated enabling technologies for a solution that fills this gap. A small robotic transport system has been developed based on the Segway Robotic Mobility Platform (RMP). We have demonstrated teleoperated control of this robotic transport system, and conducted two demonstrations of autonomous behaviors. Both demonstrations involved a robotic transporter following a human leader. In the first demonstration, the transporter used a vision system running a continuously adaptive mean-shift filter to track and follow a human. In the second demonstration, the separation between leader and follower was significantly increased using Global Positioning System (GPS) information. The track of the human leader, with a GPS unit in his backpack, was sent wirelessly to the transporter, also equipped with a GPS unit. The robotic transporter traced the path of the human leader by following these GPS breadcrumbs. We have additionally demonstrated a robotic medical patient transport capability by using the Segway RMP to power a mock-up of the Life Support for Trauma and Transport (LSTAT) patient care platform, on a standard NATO litter carrier. This paper describes the development of our demonstration robotic transport system and the various experiments conducted.
Integration of robotic resources into FORCEnet
NASA Astrophysics Data System (ADS)
Nguyen, Chinh; Carroll, Daniel; Nguyen, Hoa
2006-05-01
The Networked Intelligence, Surveillance, and Reconnaissance (NISR) project integrates robotic resources into Composeable FORCEnet to control and exploit unmanned systems over extremely long distances. The foundations are built upon FORCEnet-the U.S. Navy's process to define C4ISR for net-centric operations-and the Navy Unmanned Systems Common Control Roadmap to develop technologies and standards for interoperability, data sharing, publish-and-subscribe methodology, and software reuse. The paper defines the goals and boundaries for NISR with focus on the system architecture, including the design tradeoffs necessary for unmanned systems in a net-centric model. Special attention is given to two specific scenarios demonstrating the integration of unmanned ground and water surface vehicles into the open-architecture web-based command-and-control information-management system of Composeable FORCEnet. Planned spiral development for NISR will improve collaborative control, expand robotic sensor capabilities, address multiple domains including underwater and aerial platforms, and extend distributive communications infrastructure for battlespace optimization for unmanned systems in net-centric operations.
Performance measures from the explorer platform berthing experiment
NASA Technical Reports Server (NTRS)
Leake, Stephen
1993-01-01
The Explorer Platform is a Modular Mission Spacecraft: it has several subunits that are designed to be replaced on orbit. The Goddard Space Flight Center Robotics Lab undertook an experiment to evaluate various robotic approaches to replacing one of the units; a large (approximately 1 meter by 1 meter by 0.5 meter) power box. The hardware consists of a Robotics Research Corporation K-1607 (RRC) manipulator mounted on a large gantry robot, a Kraft handcontroller for teleoperation of RRC, a Lightweight Servicing Tool (LST) mounted on the RRC, and an Explorer Platform mockup (EP) with a removable box (MMS) that has fixtures that mate with the LST. Sensors include a wrist wrench sensor on the RRC and Capaciflectors mounted on the LST and the MMS. There are also several cameras, but no machine vision is used. The control system for the RRC is entirely written by Goddard; it consists of Ada code on three Multibus I 386/387 CPU boards doing the real-time robot control, and C on a 386 PC processing Capaciflector data. The gantry is not moved during this experiment. The task is the exchange of the MMS; it is removed and replaced. This involves four basic steps: mating the LST to the MMS, demating the MMS from the EP, mating the MMS to the EP, and demating the LST form the MMS. Each of the mating steps must be preceeded by an alignment to bring the mechanical fixtures within their capture range. Two basic approaches to alignment are explored: teleoperation with the operator viewing thru cameras, and Capaciflector based autonomy. To evaluate the two alignment approaches, several runs were run with each approach and the final pose was recorded. Comparing this to the ideal alignment pose gives accuracy and repeatability data. In addition the wrenches exerted during the mating tasks were recorded; this gives information on how the alignment step affects the mating step. There are also two approaches to mating; teleoperation, and impedance based autonomy. The wrench data taken during mating using these two approaches is used to evaluate them. Section 2 describes the alignment results, section 3 describes the mating results, and finally Section 4 gives some conclusions.
Designing and Implementing Nervous System Simulations on LEGO Robots
Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph
2013-01-01
We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.1 The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum. PMID:23728477
Evolving technologies in robotic surgery for minimally invasive treatment of gynecologic cancers.
Levinson, Kimberly L; Auer, Melinda; Escobar, Pedro F
2013-09-01
Since the introduction of robotic technology, there have been significant changes to the field of gynecologic oncology. The number of minimally invasive procedures has drastically increased, with robotic procedures rising remarkably. With recent evidence suggesting that minimally invasive techniques should be the standard of care for early endometrial and cervical cancers, the push for new technology and advancements has continued. Several emerging robotic technologies have significant potential in the field of gynecologic oncology. The single-site robotic platform enables robotic surgery through a single incision; the Firefly camera detects the fluorescent dye indocyanine green, which may improve sensitivity in sentinel lymph node biopsy; and a robotic vessel-sealing device and stapler will continue to improve efficiency of the robotic surgeon.
Robotic surgery: new robots and finally some real competition!
Rao, Pradeep P
2018-04-01
For the last 20 years, the predominant robot used in laparoscopic surgery has been Da Vinci by Intuitive Surgical. This monopoly situation has led to rising costs and relatively slow innovation. This article aims to discuss the two new robotic devices for laparoscopic surgery which have received regulatory approval for human use in different parts of the world. A short description of the Senhance Surgical Robotic System and the REVO-I Robot Platform and their pros and cons compared to the Da Vinci system is presented. A discussion about the differences between the three robotic systems now in the market is presented, as well as a short review of the present state of robotic assistance in surgery and where we are headed.
Development of a StandAlone Surgical Haptic Arm.
Jones, Daniel; Lewis, Andrew; Fischer, Gregory S
2011-01-01
When performing telesurgery with current commercially available Minimally Invasive Robotic Surgery (MIRS) systems, a surgeon cannot feel the tool interactions that are inherent in traditional laparoscopy. It is proposed that haptic feedback in the control of MIRS systems could improve the speed, safety and learning curve of robotic surgery. To test this hypothesis, a standalone surgical haptic arm (SASHA) capable of manipulating da Vinci tools has been designed and fabricated with the additional ability of providing information for haptic feedback. This arm was developed as a research platform for developing and evaluating approaches to telesurgery, including various haptic mappings between master and slave and evaluating the effects of latency.
NIITEK-NVESD AMDS program and interim field-ready system
NASA Astrophysics Data System (ADS)
Hibbard, Mark W.; Etebari, Ali
2010-04-01
NIITEK (Non-Intrusive Inspection Technology, Inc) develops and fields vehicle-mounted mine and buried threat detection systems. Since 2003, the NIITEK has developed and tested a remote robot-mounted mine detection system for use in the NVESD AMDS program. This paper will discuss the road map of development since the outset of the program, including transition from a data collection platform towards a militarized field-ready system for immediate use as a remote countermine and buried threat detection solution with real-time autonomous threat classification. The detection system payload has been integrated on both the iRobot Packbot and the Foster-Miller Talon robot. This brief will discuss the requirements for a successful near-term system, the progressive development of the system, our current real-time capabilities, and our planned upgrades for moving into and supporting field testing, evaluation, and ongoing operation.
Enhanced control & sensing for the REMOTEC ANDROS Mk VI robot. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spelt, P.F.; Harvey, H.W.
1997-08-01
This Cooperative Research and Development Agreement (CRADA) between Lockheed Marietta Energy Systems, Inc., and REMOTEC, Inc., explored methods of providing operator feedback for various work actions of the ANDROS Mk VI teleoperated robot. In a hazardous environment, an extremely heavy workload seriously degrades the productivity of teleoperated robot operators. This CRADA involved the addition of computer power to the robot along with a variety of sensors and encoders to provide information about the robot`s performance in and relationship to its environment. Software was developed to integrate the sensor and encoder information and provide control input to the robot. ANDROS Mkmore » VI robots are presently used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists, as well as in a variety of other hazardous environments. Further, this platform has potential for use in a number of environmental restoration tasks, such as site survey and detection of hazardous waste materials. The addition of sensors and encoders serves to make the robot easier to manage and permits tasks to be done more safely and inexpensively (due to time saved in the completion of complex remote tasks). Prior research on the automation of mobile platforms with manipulators at Oak Ridge National Laboratory`s Center for Engineering Systems Advanced Research (CESAR, B&R code KC0401030) Laboratory, a BES-supported facility, indicated that this type of enhancement is effective. This CRADA provided such enhancements to a successful working teleoperated robot for the first time. Performance of this CRADA used the CESAR laboratory facilities and expertise developed under BES funding.« less
Speech to Text Translation for Malay Language
NASA Astrophysics Data System (ADS)
Al-khulaidi, Rami Ali; Akmeliawati, Rini
2017-11-01
The speech recognition system is a front end and a back-end process that receives an audio signal uttered by a speaker and converts it into a text transcription. The speech system can be used in several fields including: therapeutic technology, education, social robotics and computer entertainments. In most cases in control tasks, which is the purpose of proposing our system, wherein the speed of performance and response concern as the system should integrate with other controlling platforms such as in voiced controlled robots. Therefore, the need for flexible platforms, that can be easily edited to jibe with functionality of the surroundings, came to the scene; unlike other software programs that require recording audios and multiple training for every entry such as MATLAB and Phoenix. In this paper, a speech recognition system for Malay language is implemented using Microsoft Visual Studio C#. 90 (ninety) Malay phrases were tested by 10 (ten) speakers from both genders in different contexts. The result shows that the overall accuracy (calculated from Confusion Matrix) is satisfactory as it is 92.69%.
Oddsson, Lars I E; Radomski, Mary V; White, Matthew; Nilsson, Daniel
2009-01-01
Well-known difficulties of making patients adhere to assigned treatments have made engineers and clinicians look towards technology for possible solutions. Recent studies have found that cell phone-based text messaging can help drive positive changes in patients' disease management and preventive health behavior. Furthermore, work in the area of assistive robotics indicates benefits for patients although robotic solutions tend to become expensive. However, continued improvement in sensor, computer and wireless technologies combined with decreases in cost is paving the way for development of affordable robotic systems that can help improve patient care and potentially add value to the healthcare system. This paper provides a high-level design overview of SKOTEE, the Sister Kenny hOme ThErapy systEm, an inexpensive robotic platform system designed to provide adherence support for home exercise programs, taking medication, appointment reminders and clinician communication. SKOTEE will also offer companionship as well as entertainment and social networking opportunities to the patient in their home. A video of the system is presented at the conference.
Reflections on the EPSRC Principles of Robotics from the new far-side of the law
NASA Astrophysics Data System (ADS)
Voiculescu, Aurora
2017-04-01
The thought-provoking EPSRC Principles of Robotics stem largely from the reflection on the extent to which robots can affect our lives. These comments highlight the fact that, while the principles may address to a good extent the present technological challenges, they appear to be less immediately suited for future technological and conceptual dares. The first part of the paper is dedicated to the search of the definition of what a robot is. Such a definition should offer the basic conceptual platform on which a normative endeavour, aiming to regulate robots in society, should be based. Concluding that the Principles offer no clear yet flexible insight into such a (meta-) definition, which would allow one to take into account the parameters of informed technological imagination and of envisaged social transformation, the second half of the paper highlights a number of regulatory points of tension. Such tensions, it is argued, stem largely from the absence of an appropriate conceptual platform, influencing negatively the extent to which the principles can be effective in guiding social, ethical, legal and scientific conduct.
Alessandrini, Marco; Pavone, Isabella; Micarelli, Alessandro; Caporale, Claudio
2017-09-13
Considering the emerging advantages related to da Vinci Xi robotic platform, the aim of this study is to compare for the first time the operative outcomes of this tool to the previous da Vinci Si during transoral robotic surgery (TORS), both performed for squamous cell carcinomas (SCC) of the base of tongue (BOT). Intra- and peri-operative outcomes of eight patients with early stage (T1-T2) of the BOT carcinoma and undergoing TORS by means of the da Vinci Xi robotic platform (Xi-TORS) are compared with the da Vinci Si group ones (Si-TORS). With respect to Si-TORS group, Xi-TORS group demonstrated a significantly shorter overall operative time, console time, and intraoperative blood loss, as well as peri-operative pain intensity and length of mean hospital stays and nasogastric tube positioning. Considering recent advantages offered by surgical robotic techniques, the da Vinci Xi Surgical System preliminary outcomes could suggest its possible future routine implementation in BOT squamous cell carcinoma procedures.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... Robotics International, Inc., Cell Wireless Corp., Cellcom Corporation (n/k/a Cellcom I Corp.), and Central... securities of Cell Robotics International, Inc. because it has not filed any periodic reports since the...
Extensible Hardware Architecture for Mobile Robots
NASA Technical Reports Server (NTRS)
Park, Eric; Kobayashi, Linda; Lee, Susan Y.
2005-01-01
The Intelligent Robotics Group at NASA Ames Research Center has developed a new mobile robot hardware architecture designed for extensibility and reconfigurability. Currently implemented on the k9 rover. and won to be integrated onto the K10 series of human-robot collaboration research robots, this architecture allows for rapid changes in instrumentation configuration and provides a high degree of modularity through a synergistic mix of off-the-shelf and custom designed components, allowing eased transplantation into a wide vane6 of mobile robot platforms. A component level overview of this architecture is presented along with a description of the changes required for implementation on K10 , followed by plans for future work.
A mobile robots experimental environment with event-based wireless communication.
Guinaldo, María; Fábregas, Ernesto; Farias, Gonzalo; Dormido-Canto, Sebastián; Chaos, Dictino; Sánchez, José; Dormido, Sebastián
2013-07-22
An experimental platform to communicate between a set of mobile robots through a wireless network has been developed. The mobile robots get their position through a camera which performs as sensor. The video images are processed in a PC and a Waspmote card sends the corresponding position to each robot using the ZigBee standard. A distributed control algorithm based on event-triggered communications has been designed and implemented to bring the robots into the desired formation. Each robot communicates to its neighbors only at event times. Furthermore, a simulation tool has been developed to design and perform experiments with the system. An example of usage is presented.
Embedded mobile farm robot for identification of diseased plants
NASA Astrophysics Data System (ADS)
Sadistap, S. S.; Botre, B. A.; Pandit, Harshavardhan; Chandrasekhar; Rao, Adesh
2013-07-01
This paper presents the development of a mobile robot used in farms for identification of diseased plants. It puts forth two of the major aspects of robotics namely automated navigation and image processing. The robot navigates on the basis of the GPS (Global Positioning System) location and data obtained from IR (Infrared) sensors to avoid any obstacles in its path. It uses an image processing algorithm to differentiate between diseased and non-diseased plants. A robotic platform consisting of an ARM9 processor, motor drivers, robot mechanical assembly, camera and infrared sensors has been used. Mini2440 microcontroller has been used wherein Embedded linux OS (Operating System) is implemented.
Development of RT-components for the M-3 Strawberry Harvesting Robot
NASA Astrophysics Data System (ADS)
Yamashita, Tomoki; Tanaka, Motomasa; Yamamoto, Satoshi; Hayashi, Shigehiko; Saito, Sadafumi; Sugano, Shigeki
We are now developing the strawberry harvest robot called “M-3” prototype robot system under the 4th urgent project of MAFF. In order to develop the control software of the M-3 robot more efficiently, we innovated the RT-middleware “OpenRTM-aist” software platform. In this system, we developed 9 kind of RT-Components (RTC): Robot task sequence player RTC, Proxy RTC for image processing software, DC motor controller RTC, Arm kinematics RTC, and so on. In this paper, we discuss advantages of RT-middleware developing system and problems about operating the RTC-configured robotic system by end-users.
NASA Astrophysics Data System (ADS)
Zhao, Ming-fu; Hu, Xin-Yu; Shao, Yun; Luo, Bin-bin; Wang, Xin
2008-10-01
This article analyses nowadays in common use of football robots in China, intended to improve the football robots' hardware platform system's capability, and designed a football robot which based on DSP core controller, and combined Fuzzy-PID control algorithm. The experiment showed, because of the advantages of DSP, such as quickly operation, various of interfaces, low power dissipation etc. It has great improvement on the football robot's performance of movement, controlling precision, real-time performance.
Control Algorithms for a Shape-shifting Tracked Robotic Vehicle Climbing Obstacles
2008-12-01
robot be- havioural skills. The Swiss Federal Institute of Technology is developing the shape-shifting robotic platform Octopus [6] (Figure l(b...and traverse steep (a) Lurker (b) Octopus (c) NUGV (d) Chaos (e) STRV Figure 1: Shape-shifting robotic vehicles in different research labs. DRDC...situations. The system is assumed stuck when vv?; + v~ + v’i) < 0.01 mls or Vx < O. Only forward movements are considered in this work, for this reason
Self mobile space manipulator project
NASA Technical Reports Server (NTRS)
Brown, H. Ben; Friedman, Mark; Xu, Yangsheng; Kanade, Takeo
1992-01-01
A relatively simple, modular, low mass, low cost robot is being developed for space EVA that is large enough to be independently mobile on a space station or platform exterior, yet versatile enough to accomplish many vital tasks. The robot comprises two long flexible links connected by a rotary joint, with 2-DOF 'wrist' joints and grippers at each end. It walks by gripping pre-positioned attachment points, such as trusswork nodes, and alternately shifting its base of support from one foot (gripper) to the other. The robot can perform useful tasks such as visual inspection, material transport, and light assembly by manipulating objects with one gripper, while stabilizing itself with the other. At SOAR '90, we reported development of 1/3 scale robot hardware, modular trusswork to serve as a locomotion substrate, and a gravity compensation system to allow laboratory tests of locomotion strategies on the horizontal face of the trusswork. In this paper, we report on project progress including the development of: (1) adaptive control for automatic adjustment to loads; (2) enhanced manipulation capabilities; (3) machine vision, including the use of neural nets, to guide autonomous locomotion; (4) locomotion between orthogonal trusswork faces; and (5) improved facilities for gravity compensation and telerobotic control.
Glyco-Immune Diagnostic Signatures and Therapeutic Targets of Mesothelioma
2015-09-01
Immunoprofiles; Robotic Arrayer 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT: UU 18. NUMBER OF PAGES 19 19a. NAME OF RESPONSIBLE...General Comments: This project involved novel technology in which biochemically synthesized glycans were robotically printed on glass slides...glycans and the platform was known as the PGA-400. (Figure 1) A standard robotic technology for printing a large range of aminefunctionalized
Natural Tasking of Robots Based on Human Interaction Cues
2005-06-01
MIT. • Matthew Marjanovic , researcher, ITA Software. • Brian Scasselatti, Assistant Professor of Computer Science, Yale. • Matthew Williamson...2004. 25 [74] Charlie C. Kemp. Shoes as a platform for vision. 7th IEEE International Symposium on Wearable Computers, 2004. [75] Matthew Marjanovic ...meso: Simulated muscles for a humanoid robot. Presentation for Humanoid Robotics Group, MIT AI Lab, August 2001. [76] Matthew J. Marjanovic . Teaching
Lunar rovers and local positioning system
NASA Astrophysics Data System (ADS)
Avery, James; Su, Renjeng
1991-11-01
Telerobotic rovers equipped with adequate actuators and sensors are clearly necessary for extraterrestrial construction. They will be employed as substitutes for humans, to perform jobs like surveying, sensing, signaling, manipulating, and the handling of small materials. Important design criteria for these rovers include versatility and robustness. They must be easily programmed and reprogrammed to perform a wide variety of different functions, and they must be robust so that construction work will not be jeopardized by parts failures. The key qualities and functions necessary for these rovers to achieve the required versatility and robustness are modularity, redundancy, and coordination. Three robotic rovers are being built by CSC as a test bed to implement the concepts of modularity and coordination. The specific goal of the design and construction of these robots is to demonstrate the software modularity and multirobot control algorithms required for the physical manipulation of constructible elements. Each rover consists of a transporter platform, bus manager, simple manipulator, and positioning receivers. These robots will be controlled from a central control console via a radio-frequency local area network (LAN). To date, one prototype transporter platform frame was built with batteries, motors, a prototype single-motor controller, and two prototype internal LAN boards. Software modules were developed in C language for monitor functions, i/o, and parallel port usage in each computer board. Also completed are the fabrication of half of the required number of computer boards, the procurement of 19.2 Kbaud RF modems for inter-robot communications, and the simulation of processing requirements for positioning receivers. In addition to the robotic platform, the fabrication of a local positioning system based on infrared signals is nearly completed. This positioning system will make the rovers into a moving reference system capable of performing site surveys. In addition, a four degree mechanical manipulator especially suited for coordinated teleoperation was conceptually designed and is currently being analyzed. This manipulator will be integrated into the rovers as their end effector. Twenty internal LAN cards fabricated by a commercial firm are being used, a prototype manipulator and a range finder for a positioning system were built, a prototype two-motor controller was designed, and one of the robots is performing its first telerobotic motion. In addition, the robots' internal LAN's were coordinated and tested, hardware design upgrades based on fabrication and fit experience were completed, and the positioning system is running.
Lunar rovers and local positioning system
NASA Technical Reports Server (NTRS)
Avery, James; Su, Renjeng
1991-01-01
Telerobotic rovers equipped with adequate actuators and sensors are clearly necessary for extraterrestrial construction. They will be employed as substitutes for humans, to perform jobs like surveying, sensing, signaling, manipulating, and the handling of small materials. Important design criteria for these rovers include versatility and robustness. They must be easily programmed and reprogrammed to perform a wide variety of different functions, and they must be robust so that construction work will not be jeopardized by parts failures. The key qualities and functions necessary for these rovers to achieve the required versatility and robustness are modularity, redundancy, and coordination. Three robotic rovers are being built by CSC as a test bed to implement the concepts of modularity and coordination. The specific goal of the design and construction of these robots is to demonstrate the software modularity and multirobot control algorithms required for the physical manipulation of constructible elements. Each rover consists of a transporter platform, bus manager, simple manipulator, and positioning receivers. These robots will be controlled from a central control console via a radio-frequency local area network (LAN). To date, one prototype transporter platform frame was built with batteries, motors, a prototype single-motor controller, and two prototype internal LAN boards. Software modules were developed in C language for monitor functions, i/o, and parallel port usage in each computer board. Also completed are the fabrication of half of the required number of computer boards, the procurement of 19.2 Kbaud RF modems for inter-robot communications, and the simulation of processing requirements for positioning receivers. In addition to the robotic platform, the fabrication of a local positioning system based on infrared signals is nearly completed. This positioning system will make the rovers into a moving reference system capable of performing site surveys. In addition, a four degree mechanical manipulator especially suited for coordinated teleoperation was conceptually designed and is currently being analyzed. This manipulator will be integrated into the rovers as their end effector. Twenty internal LAN cards fabricated by a commercial firm are being used, a prototype manipulator and a range finder for a positioning system were built, a prototype two-motor controller was designed, and one of the robots is performing its first telerobotic motion. In addition, the robots' internal LAN's were coordinated and tested, hardware design upgrades based on fabrication and fit experience were completed, and the positioning system is running. The rover system is able to perform simple tasks such as sensing and signaling; coordination systems which allow construction tasks to begin were established, and soon coordinated teams of robots in the laboratory will be able to manipulate common objects.
Simulation tools for robotics research and assessment
NASA Astrophysics Data System (ADS)
Fields, MaryAnne; Brewer, Ralph; Edge, Harris L.; Pusey, Jason L.; Weller, Ed; Patel, Dilip G.; DiBerardino, Charles A.
2016-05-01
The Robotics Collaborative Technology Alliance (RCTA) program focuses on four overlapping technology areas: Perception, Intelligence, Human-Robot Interaction (HRI), and Dexterous Manipulation and Unique Mobility (DMUM). In addition, the RCTA program has a requirement to assess progress of this research in standalone as well as integrated form. Since the research is evolving and the robotic platforms with unique mobility and dexterous manipulation are in the early development stage and very expensive, an alternate approach is needed for efficient assessment. Simulation of robotic systems, platforms, sensors, and algorithms, is an attractive alternative to expensive field-based testing. Simulation can provide insight during development and debugging unavailable by many other means. This paper explores the maturity of robotic simulation systems for applications to real-world problems in robotic systems research. Open source (such as Gazebo and Moby), commercial (Simulink, Actin, LMS), government (ANVEL/VANE), and the RCTA-developed RIVET simulation environments are examined with respect to their application in the robotic research domains of Perception, Intelligence, HRI, and DMUM. Tradeoffs for applications to representative problems from each domain are presented, along with known deficiencies and disadvantages. In particular, no single robotic simulation environment adequately covers the needs of the robotic researcher in all of the domains. Simulation for DMUM poses unique constraints on the development of physics-based computational models of the robot, the environment and objects within the environment, and the interactions between them. Most current robot simulations focus on quasi-static systems, but dynamic robotic motion places an increased emphasis on the accuracy of the computational models. In order to understand the interaction of dynamic multi-body systems, such as limbed robots, with the environment, it may be necessary to build component-level computational models to provide the necessary simulation fidelity for accuracy. However, the Perception domain remains the most problematic for adequate simulation performance due to the often cartoon nature of computer rendering and the inability to model realistic electromagnetic radiation effects, such as multiple reflections, in real-time.
Multiquadrant robotic colorectal surgery: the da Vinci Xi vs Si comparison.
Protyniak, Bogdan; Jorden, Jeffrey; Farmer, Russell
2018-03-01
The newly introduced da Vinci Xi Surgical System hopes to address the shortcomings of its predecessor, specifically robotic arm restrictions and difficulty working in multiple quadrants. We compare the two robot platforms in multiquadrant surgery at a major colorectal referral center. Forty-four patients in the da Vinci Si group and 26 patients in the Xi group underwent sigmoidectomy or low anterior resection between 2014 and 2016. Patient demographics, operative variables, and postoperative outcomes were compared using descriptive statistics. Both groups were similar in age, sex, BMI, pelvic surgeries, and ASA class. Splenic flexure was mobilized in more (p = 0.045) da Vinci Xi cases compared to da Vinci Si both for sigmoidectomy (50 vs 15.4%) and low anterior resection (60 vs 29%). There was no significant difference in operative time (219.9 vs 224.7 min; p = 0.640), blood loss (170.0 vs 188.1 mL; p = 0.289), length of stay (5.7 vs 6 days; p = 0.851), or overall complications (26.9 vs 22.7%; p = 0.692) between the da Vinci Xi and Si groups, respectively. Single-dock multiquadrant robotic surgery, measured by splenic flexure mobilization with concomitant pelvic dissection, was more frequently performed using the da Vinci Xi platform with no increase in operative time, bleeding, or postoperative complications. The new platform provides surgeons an easier alternative to the da Vinci Si dual docking or combined robotic/laparoscopic multiquadrant surgery.
From Illusion to Reality: A Brief History of Robotic Surgery.
Marino, Marco Vito; Shabat, Galyna; Gulotta, Gaspare; Komorowski, Andrzej Lech
2018-06-01
Robotic surgery is currently employed for many surgical procedures, yielding interesting results. We performed an historical review of robots and robotic surgery evaluating some critical phases of its evolution, analyzing its impact on our life and the steps completed that gave the robotics its current popularity. The origins of robotics can be traced back to Greek mythology. Different aspects of robotics have been explored by some of the greatest inventors like Leonardo da Vinci, Pierre Jaquet-Droz, and Wolfgang Von-Kempelen. Advances in many fields of science made possible the development of advanced surgical robots. Over 3000 da Vinci robotic platforms are installed worldwide, and more than 200 000 robotic procedures are performed every year. Despite some potential adverse events, robotic technology seems safe and feasible. It is strictly linked to our life, leading surgeons to a new concept of surgery and training.
A Modular Robotic System with Applications to Space Exploration
NASA Technical Reports Server (NTRS)
Hancher, Matthew D.; Hornby, Gregory S.
2006-01-01
Modular robotic systems offer potential advantages as versatile, fault-tolerant, cost-effective platforms for space exploration, but a sufficiently mature system is not yet available. We describe the possible applications of such a system, and present prototype hardware intended as a step in the right direction. We also present elements of an automated design and optimization framework aimed at making modular robots easier to design and use, and discuss the results of applying the system to a gait optimization problem. Finally, we discuss the potential near-term applications of modular robotics to terrestrial robotics research.
The development of a biomimetic acoustic direction finding system for use on multiple platforms
NASA Astrophysics Data System (ADS)
Deligeorges, Socrates; Anderson, David; Browning, Cassandra A.; Cohen, Howard; Freedman, David; Gore, Tyler; Karl, Christian; Kelsall, Sarah; Mountain, David; Nourzad, Marianne; Pu, Yirong; Sandifer, Matt; Xue, Shuwan; Ziph-Schatzberg, Leah; Hubbard, Allyn
2008-04-01
This paper describes the flow of scientific and technological achievements beginning with a stationary "small, smart, biomimetic acoustic processor" designed for DARPA that led to a program aimed at acoustic characterization and direction finding for multiple, mobile platforms. ARL support and collaboration has allowed us to adapt the core technology to multiple platforms including a Packbot robotic platform, a soldier worn platform, as well as a vehicle platform. Each of these has varying size and power requirements, but miniaturization is an important component of the program for creating practical systems which we address further in companion papers. We have configured the system to detect and localize gunfire and tested system performance with live fire from numerous weapons such as the AK47, the Dragunov, and the AR15. The ARL-sponsored work has led to connections with Natick Labs and the Future Force Warrior program, and in addition, the work has many and obvious applications to homeland defense, police, and civilian needs.
Zeng, Xiangfeng; Zhu, Guoli; Zhang, Mingming; Xie, Sheng Q
2018-01-01
This review aims to provide a systematical investigation of clinical effectiveness of active training strategies applied in platform-based ankle robots. English-language studies published from Jan 1980 to Aug 2017 were searched from four databases using key words of "Ankle ∗ " AND "Robot ∗ " AND "Effect ∗ OR Improv ∗ OR Increas ∗ ." Following an initial screening, three rounds of discrimination were successively conducted based on the title, the abstract, and the full paper. A total of 21 studies were selected with 311 patients involved; of them, 13 studies applied a single group while another eight studies used different groups for comparison to verify the therapeutic effect. Virtual-reality (VR) game training was applied in 19 studies, while two studies used proprioceptive neuromuscular facilitation (PNF) training. Active training techniques delivered by platform ankle rehabilitation robots have been demonstrated with great potential for clinical applications. Training strategies are mostly combined with one another by considering rehabilitation schemes and motion ability of ankle joints. VR game environment has been commonly used with active ankle training. Bioelectrical signals integrated with VR game training can implement intelligent identification of movement intention and assessment. These further provide the foundation for advanced interactive training strategies that can lead to enhanced training safety and confidence for patients and better treatment efficacy.
Vasilyev, Nikolay V.; Gosline, Andrew H.; Butler, Evan; Lang, Nora; Codd, Patrick J.; Yamauchi, Haruo; Feins, Eric N.; Folk, Chris R.; Cohen, Adam L.; Chen, Richard; Zurakowski, David; del Nido, Pedro J.; Dupont, Pierre E
2013-01-01
Background Beating-heart image-guided intracardiac interventions have been evolving rapidly. To extend the domain of catheter-based and transcardiac interventions into reconstructive surgery, a new robotic tool delivery platform (TDP) and tissue approximation device have been developed. Initial results employing these tools to perform patent foramen ovale (PFO) closure are described. Methods and Results A robotic TDP comprised of superelastic metal tubes provides the capability of delivering and manipulating tools and devices inside the beating heart. A new device technology is also presented that utilizes a metal-based MicroElectroMechanical Systems (MEMS) manufacturing process to produce fully-assembled and fully-functional millimeter-scale tools. As a demonstration of both technologies, a PFO creation and closure was performed in a swine model. In the first group of animals (N=10), a preliminary study was performed. The procedural technique was validated with a transcardiac handheld delivery platform and epicardial echocardiography, video-assisted cardioscopy and fluoroscopy. In the second group (N=9), the procedure was performed percutaneously using the robotic TDP under epicardial echocardiography and fluoroscopy imaging. All PFO’s were completely closed in the first group. In the second group, the PFO was not successfully created in 1 animal, and the defects were completely closed in 6 of the 8 remaining animals. Conclusions In contrast to existing robotic catheter technologies, the robotic TDP utilizes a combination of stiffness and active steerability along its length to provide the positioning accuracy and force application capability necessary for tissue manipulation. In combination with a MEMS tool technology, it can enable reconstructive procedures inside the beating heart. PMID:23899870
A novel optimal coordinated control strategy for the updated robot system for single port surgery.
Bai, Weibang; Cao, Qixin; Leng, Chuntao; Cao, Yang; Fujie, Masakatsu G; Pan, Tiewen
2017-09-01
Research into robotic systems for single port surgery (SPS) has become widespread around the world in recent years. A new robot arm system for SPS was developed, but its positioning platform and other hardware components were not efficient. Special features of the developed surgical robot system make good teleoperation with safety and efficiency difficult. A robot arm is combined and used as new positioning platform, and the remote center motion is realized by a new method using active motion control. A new mapping strategy based on kinematics computation and a novel optimal coordinated control strategy based on real-time approaching to a defined anthropopathic criterion configuration that is referred to the customary ease state of human arms and especially the configuration of boxers' habitual preparation posture are developed. The hardware components, control architecture, control system, and mapping strategy of the robotic system has been updated. A novel optimal coordinated control strategy is proposed and tested. The new robot system can be more dexterous, intelligent, convenient and safer for preoperative positioning and intraoperative adjustment. The mapping strategy can achieve good following and representation for the slave manipulator arms. And the proposed novel control strategy can enable them to complete tasks with higher maneuverability, lower possibility of self-interference and singularity free while teleoperating. Copyright © 2017 John Wiley & Sons, Ltd.
Development of Live-working Robot for Power Transmission Lines
NASA Astrophysics Data System (ADS)
Yan, Yu; Liu, Xiaqing; Ren, Chengxian; Li, Jinliang; Li, Hui
2017-07-01
Dream-I, the first reconfigurable live-working robot for power transmission lines successfully developed in China, has the functions of autonomous walking on lines and accurately positioning. This paper firstly described operation task and object of the robot; then designed a general platform, an insulator replacement end and a drainage plate bolt fastening end of the robot, presented a control system of the robot, and performed simulation analysis on operation plan of the robot; and finally completed electrical field withstand voltage tests in a high voltage hall as well as online test and trial on actual lines. Experimental results show that by replacing ends of manipulators, the robot can fulfill operation tasks of live replacement of suspension insulators and live drainage plate bolt fastening.
Walker, Peter A; May, Audriene C; Mo, Jiandi; Cherla, Deepa V; Santillan, Monica Rosales; Kim, Steven; Ryan, Heidi; Shah, Shinil K; Wilson, Erik B; Tsuda, Shawn
2018-04-01
The utilization of robotic platforms for general surgery procedures such as hernia repair is growing rapidly in the United States. A limited amount of data are available evaluating operative outcomes in comparison to standard laparoscopic surgery. We completed a retrospective review comparing robotic and laparoscopic ventral hernia repair to provide safety and outcomes data to help design a future prospective trial design. A retrospective review of 215 patients undergoing ventral hernia repair (142 robotic and 73 laparoscopic) was completed at two large academic centers. Primary outcome measure evaluated was recurrence. Secondary outcomes included incidence of primary fascial closure, and surgical site occurrences. Propensity for treatment match comparison demonstrated that robotic repair was associated with a decreased incidence of recurrence (2.1 versus 4.2%, p < 0.001) and surgical site occurrence (4.2 versus 18.8%, p < 0.001). This may be because robotic repair was associated with increased incidence of primary fascial closure (77.1 versus 66.7%, p < 0.01). Analysis of baseline patient populations showed that robotic repairs were completed on patients with lower body mass index (28.1 ± 3.6 versus 34.2 ± 6.4, p < 0.001) and fewer comorbidities. Our retrospective data show that robotic repair was associated with decreased recurrence and surgical site occurrence. However, the differences noted in the patient populations limit the interpretability of these results. As adoption of robotic ventral hernia repair increases, prospective trials need to be designed in order to investigate the efficacy, safety, and cost effectiveness of this evolving technique.
Measuring information transfer in a soft robotic arm.
Nakajima, K; Schmidt, N; Pfeifer, R
2015-05-13
Soft robots can exhibit diverse behaviors with simple types of actuation by partially outsourcing control to the morphological and material properties of their soft bodies, which is made possible by the tight coupling between control, body, and environment. In this paper, we present a method that will quantitatively characterize these diverse spatiotemporal dynamics of a soft body based on the information-theoretic approach. In particular, soft bodies have the ability to propagate the effect of actuation through the entire body, with a certain time delay, due to their elasticity. Our goal is to capture this delayed interaction in a quantitative manner based on a measure called momentary information transfer. We extend this measure to soft robotic applications and demonstrate its power using a physical soft robotic platform inspired by the octopus. Our approach is illustrated in two ways. First, we statistically characterize the delayed actuation propagation through the body as a strength of information transfer. Second, we capture this information propagation directly as local information dynamics. As a result, we show that our approach can successfully characterize the spatiotemporal dynamics of the soft robotic platform, explicitly visualizing how information transfers through the entire body with delays. Further extension scenarios of our approach are discussed for soft robotic applications in general.
Enhanced control and sensing for the REMOTEC ANDROS Mk VI robot. CRADA final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spelt, P.F.; Harvey, H.W.
1998-08-01
This Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc., and REMOTEC, Inc., explored methods of providing operator feedback for various work actions of the ANDROS Mk VI teleoperated robot. In a hazardous environment, an extremely heavy workload seriously degrades the productivity of teleoperated robot operators. This CRADA involved the addition of computer power to the robot along with a variety of sensors and encoders to provide information about the robot`s performance in and relationship to its environment. Software was developed to integrate the sensor and encoder information and provide control input to the robot. ANDROS Mkmore » VI robots are presently used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists, as well as in a variety of other hazardous environments. Further, this platform has potential for use in a number of environmental restoration tasks, such as site survey and detection of hazardous waste materials. The addition of sensors and encoders serves to make the robot easier to manage and permits tasks to be done more safely and inexpensively (due to time saved in the completion of complex remote tasks). Prior research on the automation of mobile platforms with manipulators at Oak Ridge National Laboratory`s Center for Engineering Systems Advanced Research (CESAR, B&R code KC0401030) Laboratory, a BES-supported facility, indicated that this type of enhancement is effective. This CRADA provided such enhancements to a successful working teleoperated robot for the first time. Performance of this CRADA used the CESAR laboratory facilities and expertise developed under BES funding.« less
From Autonomous Robots to Artificial Ecosystems
NASA Astrophysics Data System (ADS)
Mastrogiovanni, Fulvio; Sgorbissa, Antonio; Zaccaria, Renato
During the past few years, starting from the two mainstream fields of Ambient Intelligence [2] and Robotics [17], several authors recognized the benefits of the socalled Ubiquitous Robotics paradigm. According to this perspective, mobile robots are no longer autonomous, physically situated and embodied entities adapting themselves to a world taliored for humans: on the contrary, they are able to interact with devices distributed throughout the environment and get across heterogeneous information by means of communication technologies. Information exchange, coupled with simple actuation capabilities, is meant to replace physical interaction between robots and their environment. Two benefits are evident: (i) smart environments overcome inherent limitations of mobile platforms, whereas (ii) mobile robots offer a mobility dimension unknown to smart environments.
A Mobile Robots Experimental Environment with Event-Based Wireless Communication
Guinaldo, María; Fábregas, Ernesto; Farias, Gonzalo; Dormido-Canto, Sebastián; Chaos, Dictino; Sánchez, José; Dormido, Sebastián
2013-01-01
An experimental platform to communicate between a set of mobile robots through a wireless network has been developed. The mobile robots get their position through a camera which performs as sensor. The video images are processed in a PC and a Waspmote card sends the corresponding position to each robot using the ZigBee standard. A distributed control algorithm based on event-triggered communications has been designed and implemented to bring the robots into the desired formation. Each robot communicates to its neighbors only at event times. Furthermore, a simulation tool has been developed to design and perform experiments with the system. An example of usage is presented. PMID:23881139
Neural network-based multiple robot simultaneous localization and mapping.
Saeedi, Sajad; Paull, Liam; Trentini, Michael; Li, Howard
2011-12-01
In this paper, a decentralized platform for simultaneous localization and mapping (SLAM) with multiple robots is developed. Each robot performs single robot view-based SLAM using an extended Kalman filter to fuse data from two encoders and a laser ranger. To extend this approach to multiple robot SLAM, a novel occupancy grid map fusion algorithm is proposed. Map fusion is achieved through a multistep process that includes image preprocessing, map learning (clustering) using neural networks, relative orientation extraction using norm histogram cross correlation and a Radon transform, relative translation extraction using matching norm vectors, and then verification of the results. The proposed map learning method is a process based on the self-organizing map. In the learning phase, the obstacles of the map are learned by clustering the occupied cells of the map into clusters. The learning is an unsupervised process which can be done on the fly without any need to have output training patterns. The clusters represent the spatial form of the map and make further analyses of the map easier and faster. Also, clusters can be interpreted as features extracted from the occupancy grid map so the map fusion problem becomes a task of matching features. Results of the experiments from tests performed on a real environment with multiple robots prove the effectiveness of the proposed solution.
Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery.
Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell
2011-06-01
This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information.
The MITy micro-rover: Sensing, control, and operation
NASA Technical Reports Server (NTRS)
Malafeew, Eric; Kaliardos, William
1994-01-01
The sensory, control, and operation systems of the 'MITy' Mars micro-rover are discussed. It is shown that the customized sun tracker and laser rangefinder provide internal, autonomous dead reckoning and hazard detection in unstructured environments. The micro-rover consists of three articulated platforms with sensing, processing and payload subsystems connected by a dual spring suspension system. A reactive obstacle avoidance routine makes intelligent use of robot-centered laser information to maneuver through cluttered environments. The hazard sensors include a rangefinder, inclinometers, proximity sensors and collision sensors. A 486/66 laptop computer runs the graphical user interface and programming environment. A graphical window displays robot telemetry in real time and a small TV/VCR is used for real time supervisory control. Guidance, navigation, and control routines work in conjunction with the mapping and obstacle avoidance functions to provide heading and speed commands that maneuver the robot around obstacles and towards the target.
Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery
Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell
2013-01-01
This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information. PMID:24398557
NASA Technical Reports Server (NTRS)
Jain, Abhinandan
2011-01-01
Ndarts software provides algorithms for computing quantities associated with the dynamics of articulated, rigid-link, multibody systems. It is designed as a general-purpose dynamics library that can be used for the modeling of robotic platforms, space vehicles, molecular dynamics, and other such applications. The architecture and algorithms in Ndarts are based on the Spatial Operator Algebra (SOA) theory for computational multibody and robot dynamics developed at JPL. It uses minimal, internal coordinate models. The algorithms are low-order, recursive scatter/ gather algorithms. In comparison with the earlier Darts++ software, this version has a more general and cleaner design needed to support a larger class of computational dynamics needs. It includes a frames infrastructure, allows algorithms to operate on subgraphs of the system, and implements lazy and deferred computation for better efficiency. Dynamics modeling modules such as Ndarts are core building blocks of control and simulation software for space, robotic, mechanism, bio-molecular, and material systems modeling.
HERMIES-3: A step toward autonomous mobility, manipulation, and perception
NASA Technical Reports Server (NTRS)
Weisbin, C. R.; Burks, B. L.; Einstein, J. R.; Feezell, R. R.; Manges, W. W.; Thompson, D. H.
1989-01-01
HERMIES-III is an autonomous robot comprised of a seven degree-of-freedom (DOF) manipulator designed for human scale tasks, a laser range finder, a sonar array, an omni-directional wheel-driven chassis, multiple cameras, and a dual computer system containing a 16-node hypercube expandable to 128 nodes. The current experimental program involves performance of human-scale tasks (e.g., valve manipulation, use of tools), integration of a dexterous manipulator and platform motion in geometrically complex environments, and effective use of multiple cooperating robots (HERMIES-IIB and HERMIES-III). The environment in which the robots operate has been designed to include multiple valves, pipes, meters, obstacles on the floor, valves occluded from view, and multiple paths of differing navigation complexity. The ongoing research program supports the development of autonomous capability for HERMIES-IIB and III to perform complex navigation and manipulation under time constraints, while dealing with imprecise sensory information.
Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration
NASA Technical Reports Server (NTRS)
Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita
2007-01-01
Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,
Visual and tactile interfaces for bi-directional human robot communication
NASA Astrophysics Data System (ADS)
Barber, Daniel; Lackey, Stephanie; Reinerman-Jones, Lauren; Hudson, Irwin
2013-05-01
Seamless integration of unmanned and systems and Soldiers in the operational environment requires robust communication capabilities. Multi-Modal Communication (MMC) facilitates achieving this goal due to redundancy and levels of communication superior to single mode interaction using auditory, visual, and tactile modalities. Visual signaling using arm and hand gestures is a natural method of communication between people. Visual signals standardized within the U.S. Army Field Manual and in use by Soldiers provide a foundation for developing gestures for human to robot communication. Emerging technologies using Inertial Measurement Units (IMU) enable classification of arm and hand gestures for communication with a robot without the requirement of line-of-sight needed by computer vision techniques. These devices improve the robustness of interpreting gestures in noisy environments and are capable of classifying signals relevant to operational tasks. Closing the communication loop between Soldiers and robots necessitates them having the ability to return equivalent messages. Existing visual signals from robots to humans typically require highly anthropomorphic features not present on military vehicles. Tactile displays tap into an unused modality for robot to human communication. Typically used for hands-free navigation and cueing, existing tactile display technologies are used to deliver equivalent visual signals from the U.S. Army Field Manual. This paper describes ongoing research to collaboratively develop tactile communication methods with Soldiers, measure classification accuracy of visual signal interfaces, and provides an integration example including two robotic platforms.
A Mobile Service Robot for Life Science Laboratories
NASA Astrophysics Data System (ADS)
Schulenburg, Erik; Elkmann, Norbert; Fritzsche, Markus; Teutsch, Christian
In this paper we presents a project that is developing a mobile service robot to assist users in biological and pharmaceutical laboratories by executing routine jobs such as filling and transporting microplates. A preliminary overview of the design of the mobile platform with a robotic arm is provided. Safety aspects are one focus of the project since the robot and humans will share a common environment. Hence, several safety sensors such as laser scanners, thermographie components and artificial skin are employed. These are described along with the approaches to object recognition.
Mobile Agents: A Distributed Voice-Commanded Sensory and Robotic System for Surface EVA Assistance
NASA Technical Reports Server (NTRS)
Clancey, William J.; Sierhuis, Maarten; Alena, Rick; Crawford, Sekou; Dowding, John; Graham, Jeff; Kaskiris, Charis; Tyree, Kim S.; vanHoof, Ronnie
2003-01-01
A model-based, distributed architecture integrates diverse components in a system designed for lunar and planetary surface operations: spacesuit biosensors, cameras, GPS, and a robotic assistant. The system transmits data and assists communication between the extra-vehicular activity (EVA) astronauts, the crew in a local habitat, and a remote mission support team. Software processes ("agents"), implemented in a system called Brahms, run on multiple, mobile platforms, including the spacesuit backpacks, all-terrain vehicles, and robot. These "mobile agents" interpret and transform available data to help people and robotic systems coordinate their actions to make operations more safe and efficient. Different types of agents relate platforms to each other ("proxy agents"), devices to software ("comm agents"), and people to the system ("personal agents"). A state-of-the-art spoken dialogue interface enables people to communicate with their personal agents, supporting a speech-driven navigation and scheduling tool, field observation record, and rover command system. An important aspect of the engineering methodology involves first simulating the entire hardware and software system in Brahms, and then configuring the agents into a runtime system. Design of mobile agent functionality has been based on ethnographic observation of scientists working in Mars analog settings in the High Canadian Arctic on Devon Island and the southeast Utah desert. The Mobile Agents system is developed iteratively in the context of use, with people doing authentic work. This paper provides a brief introduction to the architecture and emphasizes the method of empirical requirements analysis, through which observation, modeling, design, and testing are integrated in simulated EVA operations.
Rahimy, E; Wilson, J; Tsao, T-C; Schwartz, S; Hubschman, J-P
2013-01-01
Purpose The aim of this study is to develop a novel robotic surgical platform, the IRISS (Intraocular Robotic Interventional and Surgical System), capable of performing both anterior and posterior segment intraocular surgery, and assess its performance in terms of range of motion, speed of motion, accuracy, and overall capacities. Patients and methods To test the feasibility of performing ‘bimanual' intraocular surgical tasks using the IRISS, we defined four steps out of typical anterior (phacoemulsification) and posterior (pars plana vitrectomy (PPV)) segment surgery. Selected phacoemulsification steps included construction of a continuous curvilinear capsulorhexis and cortex removal in infusion–aspiration (I/A) mode. Vitrectomy steps consisted of performing a core PPV, followed by aspiration of the posterior hyaloid with the vitreous cutter to induce a posterior vitreous detachment (PVD) assisted with triamcinolone, and simulation of the microcannulation of a temporal retinal vein. For each evaluation, the duration and the successful completion of the task with or without complications or involuntary events was assessed. Results Intraocular procedures were successfully performed on 16 porcine eyes. Four eyes underwent creation of a round, curvilinear anterior capsulorhexis without radialization. Four eyes had I/A of lens cortical material completed without posterior capsular tear. Four eyes completed 23-gauge PPV followed by successful PVD induction without any complications. Finally, simulation of microcannulation of a temporal retinal vein was successfully achieved in four eyes without any retinal tears/perforations noted. Conclusion Robotic-assisted intraocular surgery with the IRISS may be technically feasible in humans. Further studies are pending to improve this particular surgical platform. PMID:23722720
Vinobot and Vinoculer: Two Robotic Platforms for High-Throughput Field Phenotyping
Shafiekhani, Ali; Kadam, Suhas; Fritschi, Felix B.; DeSouza, Guilherme N.
2017-01-01
In this paper, a new robotic architecture for plant phenotyping is being introduced. The architecture consists of two robotic platforms: an autonomous ground vehicle (Vinobot) and a mobile observation tower (Vinoculer). The ground vehicle collects data from individual plants, while the observation tower oversees an entire field, identifying specific plants for further inspection by the Vinobot. The advantage of this architecture is threefold: first, it allows the system to inspect large areas of a field at any time, during the day and night, while identifying specific regions affected by biotic and/or abiotic stresses; second, it provides high-throughput plant phenotyping in the field by either comprehensive or selective acquisition of accurate and detailed data from groups or individual plants; and third, it eliminates the need for expensive and cumbersome aerial vehicles or similarly expensive and confined field platforms. As the preliminary results from our algorithms for data collection and 3D image processing, as well as the data analysis and comparison with phenotype data collected by hand demonstrate, the proposed architecture is cost effective, reliable, versatile, and extendable. PMID:28124976
A Soft Parallel Kinematic Mechanism.
White, Edward L; Case, Jennifer C; Kramer-Bottiglio, Rebecca
2018-02-01
In this article, we describe a novel holonomic soft robotic structure based on a parallel kinematic mechanism. The design is based on the Stewart platform, which uses six sensors and actuators to achieve full six-degree-of-freedom motion. Our design is much less complex than a traditional platform, since it replaces the 12 spherical and universal joints found in a traditional Stewart platform with a single highly deformable elastomer body and flexible actuators. This reduces the total number of parts in the system and simplifies the assembly process. Actuation is achieved through coiled-shape memory alloy actuators. State observation and feedback is accomplished through the use of capacitive elastomer strain gauges. The main structural element is an elastomer joint that provides antagonistic force. We report the response of the actuators and sensors individually, then report the response of the complete assembly. We show that the completed robotic system is able to achieve full position control, and we discuss the limitations associated with using responsive material actuators. We believe that control demonstrated on a single body in this work could be extended to chains of such bodies to create complex soft robots.
Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †
Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob
2017-01-01
Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms. PMID:28208697
Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control.
Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob
2017-02-08
Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant's intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.
Small Dog-Like Quadruped Robot Powered With McKibben Air Muscles
NASA Technical Reports Server (NTRS)
Lacy, John M.
2005-01-01
Planetary surface robotic exploration is typically done by wheeled robots, which are limited to traveling on relatively flat terrain. The goal of this project was to design a bio-inspired robot to mimic the movements and agility of animals to navigate in various types of natural terrain, such as found on Mars. My objective for the summer was to design and construct a quadruped robot with a locomotion gait similar to a small dog. The design includes four legs and an actuated flexible spine for added mobility and performance; each leg has three joints - hip, knee, and ankle. I created 3D CAD models and machined the pieces for the assemblies of each part. One of the key areas of concern is weight vs. power issues for the driving force of locomotion. To maximize the power-to-weight ratio, I used McKibben air muscles to drive the motion of the quadruped. The prototype went through several iterations to analyze performance, with adjustments made to each assembly. We expect the final working prototype will be capable of standing unassisted and pronking into the air without active control. It will serve as a research platform for future bio-inspired control algorithms.
Space robotics: Recent accomplishments and opportunities for future research
NASA Technical Reports Server (NTRS)
Montgomery, Raymond C.; Buttrill, Carey S.; Dorsey, John T.; Juang, Jer-Nan; Lallman, Frederick J.; Moerder, Daniel D.; Scott, Michael A.; Troutman, Patrick; Williams, Robert L., II
1992-01-01
The Langley Guidance, Navigation, and Control Technical Committee (GNCTC) was one of six technical committees created in 1991 by the Chief Scientist, Dr. Michael F. Card. During the kickoff meeting Dr. Card charged the chairmen to: (1) establish a cross-Center committee; (2) support at least one workshop in a selected discipline; and (3) prepare a technical paper on recent accomplishments in the discipline and on opportunities for future research. The Guidance, Navigation, and Control Committee was formed and selected for focus on the discipline of Space robotics. This report is a summary of the committee's assessment of recent accomplishments and opportunities for future research. The report is organized as follows. First is an overview of the data sources used by the committee. Next is a description of technical needs identified by the committee followed by recent accomplishments. Opportunities for future research ends the main body of the report. It includes the primary recommendation of the committee that NASA establish a national space facility for the development of space automation and robotics, one element of which is a telerobotic research platform in space. References 1 and 2 are the proceedings of two workshops sponsored by the committee during its June 1991, through May 1992 term. The focus of the committee for the June 1992 - May 1993 term will be to further define to the recommended platform in space and to add an additional discipline which includes aircraft related GN&C issues. To the latter end members performing aircraft related research will be added to the committee. (A preliminary assessment of future opportunities in aircraft-related GN&C research has been included as appendix A.)
Moore, Lee J; Wilson, Mark R; McGrath, John S; Waine, Elizabeth; Masters, Rich S W; Vine, Samuel J
2015-09-01
Research has demonstrated the benefits of robotic surgery for the patient; however, research examining the benefits of robotic technology for the surgeon is limited. This study aimed to adopt validated measures of workload, mental effort, and gaze control to assess the benefits of robotic surgery for the surgeon. We predicted that the performance of surgical training tasks on a surgical robot would require lower investments of workload and mental effort, and would be accompanied by superior gaze control and better performance, when compared to conventional laparoscopy. Thirty-two surgeons performed two trials on a ball pick-and-drop task and a rope-threading task on both robotic and laparoscopic systems. Measures of workload (the surgery task load index), mental effort (subjective: rating scale for mental effort and objective: standard deviation of beat-to-beat intervals), gaze control (using a mobile eye movement recorder), and task performance (completion time and number of errors) were recorded. As expected, surgeons performed both tasks more quickly and accurately (with fewer errors) on the robotic system. Self-reported measures of workload and mental effort were significantly lower on the robotic system compared to the laparoscopic system. Similarly, an objective cardiovascular measure of mental effort revealed lower investment of mental effort when using the robotic platform relative to the laparoscopic platform. Gaze control distinguished the robotic from the laparoscopic systems, but not in the predicted fashion, with the robotic system associated with poorer (more novice like) gaze control. The findings highlight the benefits of robotic technology for surgical operators. Specifically, they suggest that tasks can be performed more proficiently, at a lower workload, and with the investment of less mental effort, this may allow surgeons greater cognitive resources for dealing with other demands such as communication, decision-making, or periods of increased complexity in the operating room.
A study of space-rated connectors using a robot end-effector
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.
1995-01-01
The main research activities have been directed toward the study of the Robot Operated Materials Processing System (ROMPS), developed at GSFC under a flight project to investigate commercially promising in-space material processes and to design reflyable robot automated systems to be used in the above processes for low-cost operations. The research activities can be divided into two phases. Phase 1 dealt with testing of ROMPS robot mechanical interfaces and compliant device using a Stewart Platform testbed and Phase 2 with computer simulation study of the ROMPS robot control system. This report provides a summary of the results obtained in Phase 1 and Phase 2.
A novel robotic platform for laser-assisted transurethral surgery of the prostate.
Russo, S; Dario, P; Menciassi, A
2015-02-01
Benign prostatic hyperplasia (BPH) is the most common pathology afflicting ageing men. The gold standard for the surgical treatment of BPH is transurethral resection of the prostate. The laser-assisted transurethral surgical treatment of BPH is recently emerging as a valid clinical alternative. Despite this, there are still some issues that hinder the outcome of laser surgery, e.g., distal dexterity is strongly reduced by the current endoscopic instrumentation and contact between laser and prostatic tissue cannot be monitored and optimized. This paper presents a novel robotic platform for laser-assisted transurethral surgery of BPH. The system, designed to be compatible with the traditional endoscopic instrumentation, is composed of a catheter-like robot provided with a fiber optic-based sensing system and a cable-driven actuation mechanism. The sensing system allows contact monitoring between the laser and the hypertrophic tissue. The actuation mechanism allows steering of the laser fiber inside the prostatic urethra of the patient, when contact must be reached. The design of the proposed robotic platform along with its preliminary testing and evaluation is presented in this paper. The actuation mechanism is tested in in vitro experiments to prove laser steering performances according to the clinical requirements. The sensing system is calibrated in experiments aimed to evaluate the capability of discriminating the contact forces, between the laser tip and the prostatic tissue, from the pulling forces exerted on the cables, during laser steering. These results have been validated demonstrating the robot's capability of detecting sub-Newton contact forces even in combination with actuation.
Robust Agent Control of an Autonomous Robot with Many Sensors and Actuators
1993-05-01
Overview 22 3.1 Issues of Controller Design ........................ 22 3.2 Robot Behavior Control Philosophy .................. 23 3.3 Overview of the... designed and built by our lab as an 9 Figure 1.1- Hannibal. 10 experimental platform to explore planetary micro-rover control issues (Angle 1991). When... designing the robot, careful consideration was given to mobility, sensing, and robustness issues. Much has been said concerning the advan- tages of
Referees check robots after qualifying match at regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
Referees check the robots on the floor of the playing field after a qualifying match of the 1999 Southeastern Regional robotic competition at Kennedy Space Center Visitor Complex . Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow- like disks from the floor, as well as climb onto the platform (with flags) and raise the cache of pillows to a height of eight feet. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
A self-assembled nanoscale robotic arm controlled by electric fields
NASA Astrophysics Data System (ADS)
Kopperger, Enzo; List, Jonathan; Madhira, Sushi; Rothfischer, Florian; Lamb, Don C.; Simmel, Friedrich C.
2018-01-01
The use of dynamic, self-assembled DNA nanostructures in the context of nanorobotics requires fast and reliable actuation mechanisms. We therefore created a 55-nanometer–by–55-nanometer DNA-based molecular platform with an integrated robotic arm of length 25 nanometers, which can be extended to more than 400 nanometers and actuated with externally applied electrical fields. Precise, computer-controlled switching of the arm between arbitrary positions on the platform can be achieved within milliseconds, as demonstrated with single-pair Förster resonance energy transfer experiments and fluorescence microscopy. The arm can be used for electrically driven transport of molecules or nanoparticles over tens of nanometers, which is useful for the control of photonic and plasmonic processes. Application of piconewton forces by the robot arm is demonstrated in force-induced DNA duplex melting experiments.
Technology for robotic surface inspection in space
NASA Technical Reports Server (NTRS)
Volpe, Richard; Balaram, J.
1994-01-01
This paper presents on-going research in robotic inspection of space platforms. Three main areas of investigation are discussed: machine vision inspection techniques, an integrated sensor end-effector, and an orbital environment laboratory simulation. Machine vision inspection utilizes automatic comparison of new and reference images to detect on-orbit induced damage such as micrometeorite impacts. The cameras and lighting used for this inspection are housed in a multisensor end-effector, which also contains a suite of sensors for detection of temperature, gas leaks, proximity, and forces. To fully test all of these sensors, a realistic space platform mock-up has been created, complete with visual, temperature, and gas anomalies. Further, changing orbital lighting conditions are effectively mimicked by a robotic solar simulator. In the paper, each of these technology components will be discussed, and experimental results are provided.
NASA Astrophysics Data System (ADS)
McIlvenny, J.; Campuzano, F.; Goddijn-Murphy, L.
2016-02-01
Surface autonomous marine robots allow the collection of environmental data for weeks or months at a time in difficult to reach or extreme oceanic environments. Wave glider technology has improved in recent years and is now capable of carrying instruments from different manufacturers1, such as ADCP, wave modules, and acoustic sensors2. Here we investigate the suitability of surface based robotic platforms for the collection of environmental data for the renewable energy industry. The Waveglider robotic platform was chosen for this study, representing one of the most advanced platforms in its class. Two sites were chosen: Farr point in North Scotland and Nazare in Portugal. Both study sites are potential locations for wave energy development. We present the results of two simultaneous field campaigns using Waveglider technology. Of particular importance to the study were data integrity and accuracy, platform ability, performance and durability and risk. The project's main aims were to test the platform's capabilities and collect wave data from two wave energy lease sites. The wave data from the Waveglider are compared to nearshore wave height and period data from simultaneous overhead passes by the altimeter satellite AltiKa3. In addition, Waverider buoys were also deployed and recording wave characteristics at both sites visited by the Waveglider. We present the preliminary inter-comparison between the three wave datasets at both sites and assess the performance of the Waveglider technology.
Increasing Students' Interest with Low-Cost CellBots
ERIC Educational Resources Information Center
Aroca, R. V.; Gomes, R. B.; Tavares, D. M.; Souza, A. A. S; Burlamaqui, A. M. F.; Caurin, G. A. P.; Goncalves, L. M. G.
2013-01-01
This paper introduces the use of a flexible and affordable educational robot specifically developed for the practical experimentation inherent to technological disciplines. The robot has been designed to be reconfigurable and extendible, serving as an experimental platform across several undergraduate courses. As most students have a mobile cell…
SUBTLE: Situation Understanding Bot through Language and Environment
2016-01-06
a 4 day “hackathon” by Stuart Young’s small robots group which successfully ported the SUBTLE MURI NLP robot interface to the Packbot platform they...null element restoration, a step typically ig- nored in NLP systems, allows for correct parsing of im- peratives and questions, critical structures
Clinical application of a modular ankle robot for stroke rehabilitation.
Forrester, Larry W; Roy, Anindo; Goodman, Ronald N; Rietschel, Jeremy; Barton, Joseph E; Krebs, Hermano Igo; Macko, Richard F
2013-01-01
Advances in our understanding of neuroplasticity and motor learning post-stroke are now being leveraged with the use of robotics technology to enhance physical rehabilitation strategies. Major advances have been made with upper extremity robotics, which have been tested for efficacy in multi-site trials across the subacute and chronic phases of stroke. In contrast, use of lower extremity robotics to promote locomotor re-learning has been more recent and presents unique challenges by virtue of the complex multi-segmental mechanics of gait. Here we review a programmatic effort to develop and apply the concept of joint-specific modular robotics to the paretic ankle as a means to improve underlying impairments in distal motor control that may have a significant impact on gait biomechanics and balance. An impedance controlled ankle robot module (anklebot) is described as a platform to test the idea that a modular approach can be used to modify training and measure the time profile of treatment response. Pilot studies using seated visuomotor anklebot training with chronic patients are reviewed, along with results from initial efforts to evaluate the anklebot's utility as a clinical tool for assessing intrinsic ankle stiffness. The review includes a brief discussion of future directions for using the seated anklebot training in the earliest phases of sub-acute therapy, and to incorporate neurophysiological measures of cerebro-cortical activity as a means to reveal underlying mechanistic processes of motor learning and brain plasticity associated with robotic training. Finally we conclude with an initial control systems strategy for utilizing the anklebot as a gait training tool that includes integrating an Internal Model-based adaptive controller to both accommodate individual deficit severities and adapt to changes in patient performance.
Clinical application of a modular ankle robot for stroke rehabilitation
Forrester, Larry W.; Roy, Anindo; Goodman, Ronald N.; Rietschel, Jeremy; Barton, Joseph E.; Krebs, Hermano Igo; Macko, Richard F.
2015-01-01
Background Advances in our understanding of neuroplasticity and motor learning post-stroke are now being leveraged with the use of robotics technology to enhance physical rehabilitation strategies. Major advances have been made with upper extremity robotics, which have been tested for efficacy in multi-site trials across the subacute and chronic phases of stroke. In contrast, use of lower extremity robotics to promote locomotor re-learning has been more recent and presents unique challenges by virtue of the complex multi-segmental mechanics of gait. Objectives Here we review a programmatic effort to develop and apply the concept of joint-specific modular robotics to the paretic ankle as a means to improve underlying impairments in distal motor control that may have a significant impact on gait biomechanics and balance. Methods An impedance controlled ankle robot module (anklebot) is described as a platform to test the idea that a modular approach can be used to modify training and measure the time profile of treatment response. Results Pilot studies using seated visuomotor anklebot training with chronic patients are reviewed, along with results from initial efforts to evaluate the anklebot's utility as a clinical tool for assessing intrinsic ankle stiffness. The review includes a brief discussion of future directions for using the seated anklebot training in the earliest phases of sub-acute therapy, and to incorporate neurophysiological measures of cerebro-cortical activity as a means to reveal underlying mechanistic processes of motor learning and brain plasticity associated with robotic training. Conclusions Finally we conclude with an initial control systems strategy for utilizing the anklebot as a gait training tool that includes integrating an Internal Model-based adaptive controller to both accommodate individual deficit severities and adapt to changes in patient performance. PMID:23949045
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, T; Rella, J; Yang, J
Purpose: Recent development of an MLC for robotic external beam radiotherapy has the potential of new clinical application in conventionally fractionated radiation therapy. This study offers a dosimetric comparison of IMRT plans using Cyberknife with MLC versus conventional linac plans. Methods: Ten prostate cancer patients treated on a traditional linac with IMRT to 7920cGy at 180cGy/fraction were randomly selected. GTVs were defined as prostate plus proximal seminal vesicles. PTVs were defined as GTV+8mm in all directions except 5mm posteriorly. Conventional IMRT planning was performed on Philips Pinnacle and delivered on a standard linac with CBCT and 10mm collimator leaf width.more » For each case a Cyberknife plan was created using Accuray Multiplan with same CT data set, contours, and dose constraints. All dosimetric data was transferred to third party software for independent computation of contour volumes and DVH. Delivery efficiency was evaluated using total MU, treatment time, number of beams, and number of segments. Results: Evaluation criteria including percent target coverage, homogeneity index, and conformity index were found to be comparable. All dose constraints from QUANTEC were found to be statistically similar except rectum V50Gy and bladder V65Gy. Average rectum V50Gy was lower for robotic IMRT (30.07%±6.57) versus traditional (34.73%±3.62, p=0.0130). Average bladder V65Gy was lower for robotic (17.87%±12.74) versus traditional (21.03%±11.93, p=0.0405). Linac plans utilized 9 coplanar beams, 48.9±3.8 segments, and 19381±2399MU. Robotic plans utilized 38.4±9.0 non-coplanar beams, 85.5±21.0 segments and 42554.71±16381.54 MU. The average treatment was 15.02±0.60 minutes for traditional versus 20.90±2.51 for robotic. Conclusion: The robotic IMRT plans were comparable to the traditional IMRT plans in meeting the target volume dose objectives. Critical structure dose constraints were largely comparable although statistically significant differences were found in favor of the robotic platform in terms of rectum V50Gy and bladder V65Gy at a cost of 25% longer treatment time.« less
Laser-Camera Vision Sensing for Spacecraft Mobile Robot Navigation
NASA Technical Reports Server (NTRS)
Maluf, David A.; Khalil, Ahmad S.; Dorais, Gregory A.; Gawdiak, Yuri
2002-01-01
The advent of spacecraft mobile robots-free-flyng sensor platforms and communications devices intended to accompany astronauts or remotely operate on space missions both inside and outside of a spacecraft-has demanded the development of a simple and effective navigation schema. One such system under exploration involves the use of a laser-camera arrangement to predict relative positioning of the mobile robot. By projecting laser beams from the robot, a 3D reference frame can be introduced. Thus, as the robot shifts in position, the position reference frame produced by the laser images is correspondingly altered. Using normalization and camera registration techniques presented in this paper, the relative translation and rotation of the robot in 3D are determined from these reference frame transformations.
Student teams practice for regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
During practice rounds of the 1999 Southeastern Regional robotic competition at Kennedy Space Center Visitor Complex, team members adjust components of their robot on the floor. Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow-like disks from the floor, as well as climb onto a platform and raise the cache of pillows to a height of eight feet. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
Can Robotic Interaction Improve Joint Attention Skills?
Zheng, Zhi; Swanson, Amy R.; Bekele, Esubalew; Zhang, Lian; Crittendon, Julie A.; Weitlauf, Amy F.; Sarkar, Nilanjan
2013-01-01
Although it has often been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorder (ASD), relatively few investigations have indexed the impact of intervention and feedback approaches. This pilot study investigated the application of a novel robotic interaction system capable of administering and adjusting joint attention prompts to a small group (n = 6) of children with ASD. Across a series of four sessions, children improved in their ability to orient to prompts administered by the robotic system and continued to display strong attention toward the humanoid robot over time. The results highlight both potential benefits of robotic systems for directed intervention approaches as well as potent limitations of existing humanoid robotic platforms. PMID:24014194
Can Robotic Interaction Improve Joint Attention Skills?
Warren, Zachary E; Zheng, Zhi; Swanson, Amy R; Bekele, Esubalew; Zhang, Lian; Crittendon, Julie A; Weitlauf, Amy F; Sarkar, Nilanjan
2015-11-01
Although it has often been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorder (ASD), relatively few investigations have indexed the impact of intervention and feedback approaches. This pilot study investigated the application of a novel robotic interaction system capable of administering and adjusting joint attention prompts to a small group (n = 6) of children with ASD. Across a series of four sessions, children improved in their ability to orient to prompts administered by the robotic system and continued to display strong attention toward the humanoid robot over time. The results highlight both potential benefits of robotic systems for directed intervention approaches as well as potent limitations of existing humanoid robotic platforms.
Untethered Recyclable Tubular Actuators with Versatile Locomotion for Soft Continuum Robots.
Qian, Xiaojie; Chen, Qiaomei; Yang, Yang; Xu, Yanshuang; Li, Zhen; Wang, Zhenhua; Wu, Yahe; Wei, Yen; Ji, Yan
2018-05-27
Stimuli-responsive materials offer a distinguished platform to build tether-free compact soft robots, which can combine sensing and actuation without a linked power supply. In the past, tubular soft robots have to be made by multiple components with various internal channels or complex cavities assembled together. Moreover, robust processing, complex locomotion, simple structure, and easy recyclability represent major challenges in this area. Here, it is shown that those challenges can be tackled by liquid crystalline elastomers with allyl sulfide functional groups. The light-controlled exchange reaction between allyl sulfide groups allows flexible processing of tubular soft robots/actuators, which does not need any assisting materials. Complex locomotion demonstrated here includes reversible simultaneous bending and elongation; reversible diameter expansion; and omnidirectional bending via remote infrared light control. Different modes of actuation can be programmed into the same tube without the routine assembly of multiple tubes as used in the past. In addition, the exchange reaction also makes it possible to use the same single tube repeatedly to perform different functions by erasing and reprogramming. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling and control of tissue compression and temperature for automation in robot-assisted surgery.
Sinha, Utkarsh; Li, Baichun; Sankaranarayanan, Ganesh
2014-01-01
Robotic surgery is being used widely due to its various benefits that includes reduced patient trauma and increased dexterity and ergonomics for the operating surgeon. Making the whole or part of the surgical procedure autonomous increases patient safety and will enable the robotic surgery platform to be used in telesurgery. In this work, an Electrosurgery procedure that involves tissue compression and application of heat such as the coaptic vessel closure has been automated. A MIMO nonlinear model characterizing the tissue stiffness and conductance under compression was feedback linearized and tuned PID controllers were used to control the system to achieve both the displacement and temperature constraints. A reference input for both the constraints were chosen as a ramp and hold trajectory which reflect the real constraints that exist in an actual surgical procedure. Our simulations showed that the controllers successfully tracked the reference trajectories with minimal deviation and in finite time horizon. The MIMO system with controllers developed in this work can be used to drive a surgical robot autonomously and perform electrosurgical procedures such as coaptic vessel closures.
Real-time detection of moving objects from moving vehicles using dense stereo and optical flow
NASA Technical Reports Server (NTRS)
Talukder, Ashit; Matthies, Larry
2004-01-01
Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time, dense stereo system to include realtime, dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify & other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6-DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop, computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.
Real-time detection of moving objects from moving vehicles using dense stereo and optical flow
NASA Technical Reports Server (NTRS)
Talukder, Ashit; Matthies, Larry
2004-01-01
Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time, dense stereo system to include real-time, dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identity other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6-DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop, computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.
Real-time Detection of Moving Objects from Moving Vehicles Using Dense Stereo and Optical Flow
NASA Technical Reports Server (NTRS)
Talukder, Ashit; Matthies, Larry
2004-01-01
Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time. dense stereo system to include realtime. dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop. computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.
NASA Astrophysics Data System (ADS)
Fink, Wolfgang; Brooks, Alexander J.-W.; Tarbell, Mark A.; Dohm, James M.
2017-05-01
Autonomous reconnaissance missions are called for in extreme environments, as well as in potentially hazardous (e.g., the theatre, disaster-stricken areas, etc.) or inaccessible operational areas (e.g., planetary surfaces, space). Such future missions will require increasing degrees of operational autonomy, especially when following up on transient events. Operational autonomy encompasses: (1) Automatic characterization of operational areas from different vantages (i.e., spaceborne, airborne, surface, subsurface); (2) automatic sensor deployment and data gathering; (3) automatic feature extraction including anomaly detection and region-of-interest identification; (4) automatic target prediction and prioritization; (5) and subsequent automatic (re-)deployment and navigation of robotic agents. This paper reports on progress towards several aspects of autonomous C4ISR systems, including: Caltech-patented and NASA award-winning multi-tiered mission paradigm, robotic platform development (air, ground, water-based), robotic behavior motifs as the building blocks for autonomous tele-commanding, and autonomous decision making based on a Caltech-patented framework comprising sensor-data-fusion (feature-vectors), anomaly detection (clustering and principal component analysis), and target prioritization (hypothetical probing).
Towards a real-time interface between a biomimetic model of sensorimotor cortex and a robotic arm
Dura-Bernal, Salvador; Chadderdon, George L; Neymotin, Samuel A; Francis, Joseph T; Lytton, William W
2015-01-01
Brain-machine interfaces can greatly improve the performance of prosthetics. Utilizing biomimetic neuronal modeling in brain machine interfaces (BMI) offers the possibility of providing naturalistic motor-control algorithms for control of a robotic limb. This will allow finer control of a robot, while also giving us new tools to better understand the brain’s use of electrical signals. However, the biomimetic approach presents challenges in integrating technologies across multiple hardware and software platforms, so that the different components can communicate in real-time. We present the first steps in an ongoing effort to integrate a biomimetic spiking neuronal model of motor learning with a robotic arm. The biomimetic model (BMM) was used to drive a simple kinematic two-joint virtual arm in a motor task requiring trial-and-error convergence on a single target. We utilized the output of this model in real time to drive mirroring motion of a Barrett Technology WAM robotic arm through a user datagram protocol (UDP) interface. The robotic arm sent back information on its joint positions, which was then used by a visualization tool on the remote computer to display a realistic 3D virtual model of the moving robotic arm in real time. This work paves the way towards a full closed-loop biomimetic brain-effector system that can be incorporated in a neural decoder for prosthetic control, to be used as a platform for developing biomimetic learning algorithms for controlling real-time devices. PMID:26709323
ROBOCAL: Gamma-ray isotopic hardware/software interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurd, J.R.; Bonner, C.A.; Ostenak, C.A.
1989-01-01
ROBOCAL, presently being developed at the Los Alamos National Laboratory, is a full-scale prototypical robotic system for remotely performing calorimetric and gamma-ray isotopics measurements of nuclear materials. It features a fully automated vertical stacker-retriever for storing and retrieving packaged nuclear materials from a multi-drawer system, and a fully automated, uniquely integrated gantry robot for programmable selection and transfer of nuclear materials to calorimetric and gamma-ray isotopic measurement stations. Since ROBOCAL is to require almost no operator intervention, a mechanical control system is required in addition to a totally automated assay system. The assay system must be a completely integrated datamore » acquisition and isotopic analysis package fully capable of performing state-of-the-art homogeneous and heterogeneous analyses on many varied matrices. The TRIFID assay system being discussed at this conference by J. G. Fleissner of the Rocky Flats Plant has been adopted because of its many automated features. These include: MCA/ADC setup and acquisition; spectral storage and analysis utilizing an expert system formalism; report generation with internal measurement control printout; user friendly screens and menus. The mechanical control portion consists primarily of two detector platforms and a sample platform, each with independent movement. Some minor modifications and additions are needed with TRIFID to interface the assay and mechanical portions with the CimRoc 4000 software controlling the robot. 6 refs., 5 figs., 3 tabs.« less
Autonomous self-organizing resource manager for multiple networked platforms
NASA Astrophysics Data System (ADS)
Smith, James F., III
2002-08-01
A fuzzy logic based expert system for resource management has been developed that automatically allocates electronic attack (EA) resources in real-time over many dissimilar autonomous naval platforms defending their group against attackers. The platforms can be very general, e.g., ships, planes, robots, land based facilities, etc. Potential foes the platforms deal with can also be general. This paper provides an overview of the resource manager including the four fuzzy decision trees that make up the resource manager; the fuzzy EA model; genetic algorithm based optimization; co-evolutionary data mining through gaming; and mathematical, computational and hardware based validation. Methods of automatically designing new multi-platform EA techniques are considered. The expert system runs on each defending platform rendering it an autonomous system requiring no human intervention. There is no commanding platform. Instead the platforms work cooperatively as a function of battlespace geometry; sensor data such as range, bearing, ID, uncertainty measures for sensor output; intelligence reports; etc. Computational experiments will show the defending networked platform's ability to self- organize. The platforms' ability to self-organize is illustrated through the output of the scenario generator, a software package that automates the underlying data mining problem and creates a computer movie of the platforms' interaction for evaluation.
Magnetic air capsule robotic system: proof of concept of a novel approach for painless colonoscopy.
Valdastri, P; Ciuti, G; Verbeni, A; Menciassi, A; Dario, P; Arezzo, A; Morino, M
2012-05-01
Despite being considered the most effective method for colorectal cancer diagnosis, colonoscopy take-up as a mass-screening procedure is limited mainly due to invasiveness, patient discomfort, fear of pain, and the need for sedation. In an effort to mitigate some of the disadvantages associated with colonoscopy, this work provides a preliminary assessment of a novel endoscopic device consisting in a softly tethered capsule for painless colonoscopy under robotic magnetic steering. The proposed platform consists of the endoscopic device, a robotic unit, and a control box. In contrast to the traditional insertion method (i.e., pushing from behind), a "front-wheel" propulsion approach is proposed. A compliant tether connecting the device to an external box is used to provide insufflation, passing a flexible operative tool, enabling lens cleaning, and operating the vision module. To assess the diagnostic and treatment ability of the platform, 12 users were asked to find and remove artificially implanted beads as polyp surrogates in an ex vivo model. In vivo testing consisted of a qualitative study of the platform in pigs, focusing on active locomotion, diagnostic and therapeutic capabilities, safety, and usability. The mean percentage of beads identified by each user during ex vivo trials was 85 ± 11%. All the identified beads were removed successfully using the polypectomy loop. The mean completion time for accomplishing the entire procedure was 678 ± 179 s. No immediate mucosal damage, acute complications such as perforation, or delayed adverse consequences were observed following application of the proposed method in vivo. Use of the proposed platform in ex vivo and preliminary animal studies indicates that it is safe and operates effectively in a manner similar to a standard colonoscope. These studies served to demonstrate the platform's added advantages of reduced size, front-wheel drive strategy, and robotic control over locomotion and orientation.
Feasibility of robotic inguinal hernia repair, a single-institution experience.
Escobar Dominguez, Jose E; Ramos, Michael Gonzalez; Seetharamaiah, Rupa; Donkor, Charan; Rabaza, Jorge; Gonzalez, Anthony
2016-09-01
With the growth of the discipline of laparoscopic surgery, technology has been further developed to facilitate the performance of minimally invasive hernia repair. Most of the published literature regarding robotic inguinal hernia repair has been performed by urologists who have dealt with this entity in a concomitant way during radical prostatectomies. General surgeons, who perform the vast majority of inguinal herniorrhaphies worldwide, have yet to describe the role of robotic inguinal hernia repair. Here, we describe our initial experience and create the foundation for future research questions regarding robotic inguinal hernia repair. A retrospective chart review was performed in 78 patients who underwent robotic transabdominal preperitoneal TAPP inguinal hernia repair with a prosthetic mesh using the da Vinci platform (Intuitive Surgical Inc). Data collected included patient demographics, past medical history, previous surgeries, details related to the surgical procedure, perioperative outcomes and complications. A total of 123 hernias were repaired. Forty-five patients had bilateral robotic inguinal herniorrhaphies, and the mean age was 55.1 years (SD 15.1), with a mean BMI of 27.6 (SD 6.1). There were 71 male and 7 female patients. Surgical complications included hematoma in three patients (3.9 %), two seromas (2.6 %) and one superficial surgical site infection at a trocar site (1.3 %), which resolved with oral antibiotics. Chronic postoperative complications (>30 days post-surgery) included the persistence of hematomas in two patients (2.6 %). Same day discharge was achieved in 60 patients (76.9 %) with a mean length of stay of 8 h (SD 2.65). Neither mortality nor conversion to open surgery occurred. Our early experience has demonstrated that the robotic transabdominal preperitoneal (TAPP) inguinal hernia repair is a safe and versatile approach that allows the general surgeon to perform this procedure in more complex cases such as those involving incarcerated and/or recurrent hernias.
A Robotic Solution for Assisting People with MCI at Home: Preliminary Tests of the ENRICHME System.
Salatino, Claudia; Pigini, Lucia; Van Kol, Marlies Maria Elisabeth; Gower, Valerio; Andrich, Renzo; Munaro, Giulia; Rosso, Roberto; Castellani, Angelo P; Farina, Elisabetta
2017-01-01
Robots have the potential to support care and independence of older adults. The ENRICHME project is developing an integrated system composed of a robot, sensors and a networking care platform, aiming at assisting older adults with MCI in their home environment. This paper reports findings of the tests performed on a sample of MCI users and their caregivers, with the first version of the ENRICHME system, in a controlled environment.
Ascending Stairway Modeling: A First Step Toward Autonomous Multi-Floor Exploration
2012-10-01
Many robotics platforms are capable of ascending stairways, but all existing approaches for autonomous stair climbing use stairway detection as a...the rich potential of an autonomous ground robot that can climb stairs while exploring a multi-floor building. Our proposed solution to this problem is...over several steps. However, many ground robots are not capable of traversing tight spiral stairs , and so we do not focus on these types. The stairway is
Scrape on Endeavour's robotic arm during oxygen leak repairs
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- One of a team of robotic experts prepares the site scraped on the robotic arm for removal. The scrape occurred while work platforms were being installed to gain access to repair the oxygen leak in the Shuttle's mid-body. The site will be cut out and ultrasound testing will be done on the structure underneath. Launch of Endeavour on mission STS-113 has been postponed until no earlier than Nov. 22.
NASA Astrophysics Data System (ADS)
Allegra Mascaro, Anna Letizia; Conti, Emilia; Lai, Stefano; Spalletti, Cristina; Di Giovanna, Antonino Paolo; Alia, Claudia; Panarese, Alessandro; Sacconi, Leonardo; Micera, Silvestro; Caleo, Matteo; Pavone, Francesco S.
2017-02-01
Neurorehabilitation protocols based on the use of robotic devices provide a highly repeatable therapy and have recently shown promising clinical results. Little is known about how rehabilitation molds the brain to promote motor recovery of the affected limb. We used a custom-made robotic platform that provides quantitative assessment of forelimb function in a retraction test. Complementary imaging techniques allowed us to access to the multiple facets of robotic rehabilitation-induced cortical plasticity after unilateral photothrombotic stroke in mice Primary Motor Cortex (Caudal Forelimb Area - CFA). First, we analyzed structural features of vasculature and dendritic reshaping in the peri-infarct area with two-photon fluorescence microscopy. Longitudinal analysis of dendritic branches and spines of pyramidal neurons suggests that robotic rehabilitation promotes the stabilization of peri-infarct cortical excitatory circuits, which is not accompanied by consistent vascular reorganization towards pre-stroke conditions. To investigate if this structural stabilization was linked to functional remapping, we performed mesoscale wide-field imaging on GCaMP6 mice while performing the motor task on the robotic platform. We revealed temporal and spatial features of the motor-triggered cortical activation, shining new light on rehabilitation-induced functional remapping of the ipsilesional cortex. Finally, by using an all-optical approach that combines optogenetic activation of the contralesional hemisphere and wide-field functional imaging of peri-infarct area, we dissected the effect of robotic rehabilitation on inter-hemispheric cortico-cortical connectivity.
Morphological computation of multi-gaited robot locomotion based on free vibration.
Reis, Murat; Yu, Xiaoxiang; Maheshwari, Nandan; Iida, Fumiya
2013-01-01
In recent years, there has been increasing interest in the study of gait patterns in both animals and robots, because it allows us to systematically investigate the underlying mechanisms of energetics, dexterity, and autonomy of adaptive systems. In particular, for morphological computation research, the control of dynamic legged robots and their gait transitions provides additional insights into the guiding principles from a synthetic viewpoint for the emergence of sensible self-organizing behaviors in more-degrees-of-freedom systems. This article presents a novel approach to the study of gait patterns, which makes use of the intrinsic mechanical dynamics of robotic systems. Each of the robots consists of a U-shaped elastic beam and exploits free vibration to generate different locomotion patterns. We developed a simplified physics model of these robots, and through experiments in simulation and real-world robotic platforms, we show three distinctive mechanisms for generating different gait patterns in these robots.
Object Detection Techniques Applied on Mobile Robot Semantic Navigation
Astua, Carlos; Barber, Ramon; Crespo, Jonathan; Jardon, Alberto
2014-01-01
The future of robotics predicts that robots will integrate themselves more every day with human beings and their environments. To achieve this integration, robots need to acquire information about the environment and its objects. There is a big need for algorithms to provide robots with these sort of skills, from the location where objects are needed to accomplish a task up to where these objects are considered as information about the environment. This paper presents a way to provide mobile robots with the ability-skill to detect objets for semantic navigation. This paper aims to use current trends in robotics and at the same time, that can be exported to other platforms. Two methods to detect objects are proposed, contour detection and a descriptor based technique, and both of them are combined to overcome their respective limitations. Finally, the code is tested on a real robot, to prove its accuracy and efficiency. PMID:24732101
Smith, James Andrew; Jivraj, Jamil; Wong, Ronnie; Yang, Victor
2016-04-01
This review provides an examination of contemporary neurosurgical robots and the developments that led to them. Improvements in localization, microsurgery and minimally invasive surgery have made robotic neurosurgery viable, as seen by the success of platforms such as the CyberKnife and neuromate. Neurosurgical robots can now perform specific surgical tasks such as skull-base drilling and craniotomies, as well as pedicle screw and cochlear electrode insertions. Growth trends in neurosurgical robotics are likely to continue but may be tempered by concerns over recent surgical robot recalls, commercially-driven surgeon training, and studies that show operational costs for surgical robotic procedures are often higher than traditional surgical methods. We point out that addressing performance issues related to navigation-related registration is an active area of research and will aid in improving overall robot neurosurgery performance and associated costs.
State-of-the-art robotic devices for ankle rehabilitation: Mechanism and control review.
Hussain, Shahid; Jamwal, Prashant K; Ghayesh, Mergen H
2017-12-01
There is an increasing research interest in exploring use of robotic devices for the physical therapy of patients suffering from stroke and spinal cord injuries. Rehabilitation of patients suffering from ankle joint dysfunctions such as drop foot is vital and therefore has called for the development of newer robotic devices. Several robotic orthoses and parallel ankle robots have been developed during the last two decades to augment the conventional ankle physical therapy of patients. A comprehensive review of these robotic ankle rehabilitation devices is presented in this article. Recent developments in the mechanism design, actuation and control are discussed. The study encompasses robotic devices for treadmill and over-ground training as well as platform-based parallel ankle robots. Control strategies for these robotic devices are deliberated in detail with an emphasis on the assist-as-needed training strategies. Experimental evaluations of the mechanism designs and various control strategies of these robotic ankle rehabilitation devices are also presented.
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
The University of Waterloo Robotics Team, from Canada, prepares to place their robot on the start platform during the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
Student teams maneuver robots in qualifying match at regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
All four robots, maneuvered by student teams behind protective walls, converge on a corner of the playing field during qualifying matches of the 1999 Southeastern Regional robotic competition at Kennedy Space Center Visitor Complex . Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow- like disks from the floor, as well as climb onto the platform (with flags) and raise the cache of pillows to a height of eight feet. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
NASA Astrophysics Data System (ADS)
Dima, M.; Francu, C.
2016-08-01
This paper presents a way to expand the field of use of the laser tracker and SmartTrack sensor localization device used in lately for the localisation of the end effector of the industrial robots to the localization of the mobile construction robots. The research paper presents the equipment along with its characteristics, determines the relationships for the localization coordinates by comparison to the forward kinematics of the industrial robot's spherical arm (positioning mechanism in spherical coordinates) and the orientation mechanism with three revolute axes. In the end of the paper the accuracy of the mobile robot's localization is analysed.
Small UGV platforms for unattended sensors
NASA Astrophysics Data System (ADS)
Smuda, Bill; Gerhart, Grant
2005-10-01
The wars in Iraq and Afghanistan have shown the importance of sensor and robotic technology as a force multiplier and a tool for moving soldiers out of harms way. Situations on the ground make soldiers easy targets for snipers and suicide bombers. Sensors and robotics technology reduces risk to soldiers and other personnel at checkpoints, in access areas and on convoy routes. Early user involvement in innovative and aggressive acquisition and development strategies are the key to moving sensor and robotic and associated technology into the hands of the user, the soldier on the ground. This paper discusses activity associated with rapid development of the robotics, sensors and our field experience with robotics in Iraq and Afghanistan.
Rice-obot 1: An intelligent autonomous mobile robot
NASA Technical Reports Server (NTRS)
Defigueiredo, R.; Ciscon, L.; Berberian, D.
1989-01-01
The Rice-obot I is the first in a series of Intelligent Autonomous Mobile Robots (IAMRs) being developed at Rice University's Cooperative Intelligent Mobile Robots (CIMR) lab. The Rice-obot I is mainly designed to be a testbed for various robotic and AI techniques, and a platform for developing intelligent control systems for exploratory robots. Researchers present the need for a generalized environment capable of combining all of the control, sensory and knowledge systems of an IAMR. They introduce Lisp-Nodes as such a system, and develop the basic concepts of nodes, messages and classes. Furthermore, they show how the control system of the Rice-obot I is implemented as sub-systems in Lisp-Nodes.
2008-11-01
systems must be evaluated at the platform level as well ( regenerative braking and similar systems). 4.4.4 The Important Gaps Several gaps on robot...in three main categories : • Mobility function: • Obstacle avoidance and negotiation; • Terrain modelling and classification; and • Transport in
NASA Technical Reports Server (NTRS)
Young, L. A.; Aiken, E. W.; Gulick, V.; Mancinelli, R.; Briggs, G. A.; Rutkowski, Michael (Technical Monitor)
2002-01-01
A new approach for the robotic exploration of Mars is detailed in this paper: the use of small, ultralightweight, autonomous rotary-wing aerial platforms. Missions based on robotic rotorcraft could make excellent candidates for NASA Mars Scout program. The paper details the work to date and future planning required for the development of such 'Mars rotorcraft.'
Human-Robot Emergency Response - Experimental Platform and Preliminary Dataset
2014-07-28
Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium, May 16–21 1998, pp. 3715–3720. [13] itseez, “ Opencv ,” http...function and camshift function in OpenCV [13]. In each image obtained form cameras, we first calculate back projection of a histogram model of a human. In
Configuration Control of a Mobile Dextrous Robot: Real-Time Implementation and Experimentation
NASA Technical Reports Server (NTRS)
Lim, David; Seraji, Homayoun
1996-01-01
This paper describes the design and implementation of a real-time control system with multiple modes of operation for a mobile dexterous manipulator. The manipulator under study is a kinematically redundant seven degree-of-freedom arm from Robotics Research Corporation, mounted on a one degree-of-freedom motorized platform.
Teaching Robotics Software with the Open Hardware Mobile Manipulator
ERIC Educational Resources Information Center
Vona, M.; Shekar, N. H.
2013-01-01
The "open hardware mobile manipulator" (OHMM) is a new open platform with a unique combination of features for teaching robotics software and algorithms. On-board low- and high-level processors support real-time embedded programming and motor control, as well as higher-level coding with contemporary libraries. Full hardware designs and…
Cardiac ultrasonography over 4G wireless networks using a tele-operated robot
Panayides, Andreas S.; Jossif, Antonis P.; Christoforou, Eftychios G.; Vieyres, Pierre; Novales, Cyril; Voskarides, Sotos; Pattichis, Constantinos S.
2016-01-01
This Letter proposes an end-to-end mobile tele-echography platform using a portable robot for remote cardiac ultrasonography. Performance evaluation investigates the capacity of long-term evolution (LTE) wireless networks to facilitate responsive robot tele-manipulation and real-time ultrasound video streaming that qualifies for clinical practice. Within this context, a thorough video coding standards comparison for cardiac ultrasound applications is performed, using a data set of ten ultrasound videos. Both objective and subjective (clinical) video quality assessment demonstrate that H.264/AVC and high efficiency video coding standards can achieve diagnostically-lossless video quality at bitrates well within the LTE supported data rates. Most importantly, reduced latencies experienced throughout the live tele-echography sessions allow the medical expert to remotely operate the robot in a responsive manner, using the wirelessly communicated cardiac ultrasound video to reach a diagnosis. Based on preliminary results documented in this Letter, the proposed robotised tele-echography platform can provide for reliable, remote diagnosis, achieving comparable quality of experience levels with in-hospital ultrasound examinations. PMID:27733929
Developing a successful robotics program.
Luthringer, Tyler; Aleksic, Ilija; Caire, Arthur; Albala, David M
2012-01-01
Advancements in the robotic surgical technology have revolutionized the standard of care for many surgical procedures. The purpose of this review is to evaluate the important considerations in developing a new robotics program at a given healthcare institution. Patients' interest in robotic-assisted surgery has and continues to grow because of improved outcomes and decreased periods of hospitalization. Resulting market forces have created a solid foundation for the implementation of robotic surgery into surgical practice. Given proper surgeon experience and an efficient system, robotic-assisted procedures have been cost comparable to open surgical alternatives. Surgeon training and experience is closely linked to the efficiency of a new robotics program. Formally trained robotic surgeons have better patient outcomes and shorter operative times. Training in robotics has shown no negative impact on patient outcomes or mentor learning curves. Individual economic factors of local healthcare settings must be evaluated when planning for a new robotics program. The high cost of the robotic surgical platform is best offset with a large surgical volume. A mature, experienced surgeon is integral to the success of a new robotics program.
a Distributed Online 3D-LIDAR Mapping System
NASA Astrophysics Data System (ADS)
Schmiemann, J.; Harms, H.; Schattenberg, J.; Becker, M.; Batzdorfer, S.; Frerichs, L.
2017-08-01
In this paper we are presenting work done within the joint development project ANKommEn. It deals with the development of a highly automated robotic system for fast data acquisition in civil disaster scenarios. One of the main requirements is a versatile system, hence the concept embraces a machine cluster consisting of multiple fundamentally different robotic platforms. To cover a large variety of potential deployment scenarios, neither the absolute amount of participants, nor the precise individual layout of each platform shall be restricted within the conceptual design. Thus leading to a variety of special requirements, like onboard and online data processing capabilities for each individual participant and efficient data exchange structures, allowing reliable random data exchange between individual robots. We are demonstrating the functionality and performance by means of a distributed mapping system evaluated with real world data in a challenging urban and rural indoor/outdoor scenarios.
On the Use of a Low-Cost Thermal Sensor to Improve Kinect People Detection in a Mobile Robot
Susperregi, Loreto; Sierra, Basilio; Castrillón, Modesto; Lorenzo, Javier; Martínez-Otzeta, Jose María; Lazkano, Elena
2013-01-01
Detecting people is a key capability for robots that operate in populated environments. In this paper, we have adopted a hierarchical approach that combines classifiers created using supervised learning in order to identify whether a person is in the view-scope of the robot or not. Our approach makes use of vision, depth and thermal sensors mounted on top of a mobile platform. The set of sensors is set up combining the rich data source offered by a Kinect sensor, which provides vision and depth at low cost, and a thermopile array sensor. Experimental results carried out with a mobile platform in a manufacturing shop floor and in a science museum have shown that the false positive rate achieved using any single cue is drastically reduced. The performance of our algorithm improves other well-known approaches, such as C4 and histogram of oriented gradients (HOG). PMID:24172285
NASA Astrophysics Data System (ADS)
Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R.
2011-09-01
Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells.
Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R.
2011-01-01
Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells. PMID:21974603
Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R
2011-09-01
Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells. © 2011 American Institute of Physics
Coordinating with Humans by Adjustable-Autonomy for Multirobot Pursuit (CHAMP)
NASA Astrophysics Data System (ADS)
Dumond, Danielle; Ayers, Jeanine; Schurr, Nathan; Carlin, Alan; Burke, Dustin; Rousseau, Jeffrey
2012-06-01
One of the primary challenges facing the modern small-unit tactical team is the ability of the unit to safely and effectively search, explore, clear and hold urbanized terrain that includes buildings, streets, and subterranean dwellings. Buildings provide cover and concealment to an enemy and restrict the movement of forces while diminishing their ability to engage the adversary. The use of robots has significant potential to reduce the risk to tactical teams and dramatically force multiply the small unit's footprint. Despite advances in robotic mobility, sensing capabilities, and human-robot interaction, the use of robots in room clearing operations remains nascent. CHAMP is a software system in development that integrates with a team of robotic platforms to enable them to coordinate with a human operator performing a search and pursuit task. In this way, the human operator can either give control to the robots to search autonomously, or can retain control and direct the robots where needed. CHAMP's autonomy is built upon a combination of adversarial pursuit algorithms and dynamic function allocation strategies that maximize the team's resources. Multi-modal interaction with CHAMP is achieved using novel gesture-recognition based capabilities to reduce the need for heads-down tele-operation. The Champ Coordination Algorithm addresses dynamic and limited team sizes, generates a novel map of the area, and takes into account mission goals, user preferences and team roles. In this paper we show results from preliminary simulated experiments and find that the CHAMP system performs faster than traditional search and pursuit algorithms.
2003-06-09
KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew take a look at the Japanese Experiment Module (JEM) pressure module in the Space Station Processing Facility. A research laboratory, the pressurized module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo and is Japan's primary contribution to the Station. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
Biobotic insect swarm based sensor networks for search and rescue
NASA Astrophysics Data System (ADS)
Bozkurt, Alper; Lobaton, Edgar; Sichitiu, Mihail; Hedrick, Tyson; Latif, Tahmid; Dirafzoon, Alireza; Whitmire, Eric; Verderber, Alexander; Marin, Juan; Xiong, Hong
2014-06-01
The potential benefits of distributed robotics systems in applications requiring situational awareness, such as search-and-rescue in emergency situations, are indisputable. The efficiency of such systems requires robotic agents capable of coping with uncertain and dynamic environmental conditions. For example, after an earthquake, a tremendous effort is spent for days to reach to surviving victims where robotic swarms or other distributed robotic systems might play a great role in achieving this faster. However, current technology falls short of offering centimeter scale mobile agents that can function effectively under such conditions. Insects, the inspiration of many robotic swarms, exhibit an unmatched ability to navigate through such environments while successfully maintaining control and stability. We have benefitted from recent developments in neural engineering and neuromuscular stimulation research to fuse the locomotory advantages of insects with the latest developments in wireless networking technologies to enable biobotic insect agents to function as search-and-rescue agents. Our research efforts towards this goal include development of biobot electronic backpack technologies, establishment of biobot tracking testbeds to evaluate locomotion control efficiency, investigation of biobotic control strategies with Gromphadorhina portentosa cockroaches and Manduca sexta moths, establishment of a localization and communication infrastructure, modeling and controlling collective motion by learning deterministic and stochastic motion models, topological motion modeling based on these models, and the development of a swarm robotic platform to be used as a testbed for our algorithms.
Hybrid Exploration Agent Platform and Sensor Web System
NASA Technical Reports Server (NTRS)
Stoffel, A. William; VanSteenberg, Michael E.
2004-01-01
A sensor web to collect the scientific data needed to further exploration is a major and efficient asset to any exploration effort. This is true not only for lunar and planetary environments, but also for interplanetary and liquid environments. Such a system would also have myriad direct commercial spin-off applications. The Hybrid Exploration Agent Platform and Sensor Web or HEAP-SW like the ANTS concept is a Sensor Web concept. The HEAP-SW is conceptually and practically a very different system. HEAP-SW is applicable to any environment and a huge range of exploration tasks. It is a very robust, low cost, high return, solution to a complex problem. All of the technology for initial development and implementation is currently available. The HEAP Sensor Web or HEAP-SW consists of three major parts, The Hybrid Exploration Agent Platforms or HEAP, the Sensor Web or SW and the immobile Data collection and Uplink units or DU. The HEAP-SW as a whole will refer to any group of mobile agents or robots where each robot is a mobile data collection unit that spends most of its time acting in concert with all other robots, DUs in the web, and the HEAP-SWs overall Command and Control (CC) system. Each DU and robot is, however, capable of acting independently. The three parts of the HEAP-SW system are discussed in this paper. The Goals of the HEAP-SW system are: 1) To maximize the amount of exploration enhancing science data collected; 2) To minimize data loss due to system malfunctions; 3) To minimize or, possibly, eliminate the risk of total system failure; 4) To minimize the size, weight, and power requirements of each HEAP robot; 5) To minimize HEAP-SW system costs. The rest of this paper discusses how these goals are attained.
Brief Report: Development of a Robotic Intervention Platform for Young Children with ASD.
Warren, Zachary; Zheng, Zhi; Das, Shuvajit; Young, Eric M; Swanson, Amy; Weitlauf, Amy; Sarkar, Nilanjan
2015-12-01
Increasingly researchers are attempting to develop robotic technologies for children with autism spectrum disorder (ASD). This pilot study investigated the development and application of a novel robotic system capable of dynamic, adaptive, and autonomous interaction during imitation tasks with embedded real-time performance evaluation and feedback. The system was designed to incorporate both a humanoid robot and a human examiner. We compared child performance within system across these conditions in a sample of preschool children with ASD (n = 8) and a control sample of typically developing children (n = 8). The system was well-tolerated in the sample, children with ASD exhibited greater attention to the robotic system than the human administrator, and for children with ASD imitation performance appeared superior during the robotic interaction.
System Design and Locomotion of Superball, an Untethered Tensegrity Robot
NASA Technical Reports Server (NTRS)
Sabelhaus, Andrew P.; Bruce, Jonathan; Caluwaerts, Ken; Manovi, Pavlo; Firoozi, Roya Fallah; Dobi, Sarah; Agogino, Alice M.; Sunspiral, Vytas
2015-01-01
The Spherical Underactuated Planetary Exploration Robot ball (SUPERball) is an ongoing project within NASA Ames Research Center's Intelligent Robotics Group and the Dynamic Tensegrity Robotics Lab (DTRL). The current SUPERball is the first full prototype of this tensegrity robot platform, eventually destined for space exploration missions. This work, building on prior published discussions of individual components, presents the fully-constructed robot. Various design improvements are discussed, as well as testing results of the sensors and actuators that illustrate system performance. Basic low-level motor position controls are implemented and validated against sensor data, which show SUPERball to be uniquely suited for highly dynamic state trajectory tracking. Finally, SUPERball is shown in a simple example of locomotion. This implementation of a basic motion primitive shows SUPERball in untethered control.
Pilot clinical application of an adaptive robotic system for young children with autism
Bekele, Esubalew; Crittendon, Julie A; Swanson, Amy; Sarkar, Nilanjan; Warren, Zachary E
2013-01-01
It has been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders. This pilot feasibility study evaluated the application of a novel adaptive robot-mediated system capable of both administering and automatically adjusting joint attention prompts to a small group of preschool children with autism spectrum disorders (n = 6) and a control group (n = 6). Children in both groups spent more time looking at the humanoid robot and were able to achieve a high level of accuracy across trials. However, across groups, children required higher levels of prompting to successfully orient within robot-administered trials. The results highlight both the potential benefits of closed-loop adaptive robotic systems as well as current limitations of existing humanoid-robotic platforms. PMID:24104517
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
The team AERO robot drives off the starting platform during the level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
Team Cephal's robot is seen on the starting platform during a rerun of the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-12
The team survey robot is seen on the starting platform before begging it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
Evaluation of the power consumption of a high-speed parallel robot
NASA Astrophysics Data System (ADS)
Han, Gang; Xie, Fugui; Liu, Xin-Jun
2018-06-01
An inverse dynamic model of a high-speed parallel robot is established based on the virtual work principle. With this dynamic model, a new evaluation method is proposed to measure the power consumption of the robot during pick-and-place tasks. The power vector is extended in this method and used to represent the collinear velocity and acceleration of the moving platform. Afterward, several dynamic performance indices, which are homogenous and possess obvious physical meanings, are proposed. These indices can evaluate the power input and output transmissibility of the robot in a workspace. The distributions of the power input and output transmissibility of the high-speed parallel robot are derived with these indices and clearly illustrated in atlases. Furtherly, a low-power-consumption workspace is selected for the robot.
Student teams practice for regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
Student teams (right and left) behind protective walls maneuver their robots on the playing field during practice rounds of the 1999 Southeastern Regional robotic competition at Kennedy Space Center Visitor Complex . Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow-like disks from the floor, as well as climb onto the platform (foreground) and raise the cache of pillows to a height of eight feet. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
Characterization of Robotic Tail Orientation as a Function of Platform Position for Surf-Zone Robots
2009-06-01
components. The basic components for Robster’s power supply and distribution system were taken from the Bigfoot robot developed by John Herkamp [5...18MAR2009 Changes: Eliminated all references to Bigfoot Arm and Thermopile Commented out sonar II. AGBOT Code v2.1 - 20MAR2009 Changes: Added...anaOutVolts(rt_ch, PW_STOP); anaOutVolts(lt_ch, PW_STOP); //Stops Bigfoot for (i = 0; i < 10; i++) 69
Autonomous Navigation, Dynamic Path and Work Flow Planning in Multi-Agent Robotic Swarms Project
NASA Technical Reports Server (NTRS)
Falker, John; Zeitlin, Nancy; Leucht, Kurt; Stolleis, Karl
2015-01-01
Kennedy Space Center has teamed up with the Biological Computation Lab at the University of New Mexico to create a swarm of small, low-cost, autonomous robots, called Swarmies, to be used as a ground-based research platform for in-situ resource utilization missions. The behavior of the robot swarm mimics the central-place foraging strategy of ants to find and collect resources in an unknown environment and return those resources to a central site.
Scrape on Endeavour's robotic arm during oxygen leak repairs
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- One of a team of robotic experts looks at the site of the scrape on the surface of the honeycomb shell on the robotic arm that occurred while work platforms were being installed to gain access to repair the oxygen leak in the Shuttle's mid-body. The site will be cut out and ultrasound testing will be done on the structure underneath. Launch of Endeavour on mission STS-113 has been postponed until no earlier than Nov. 22.
Scrape on Endeavour's robotic arm during oxygen leak repairs
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- One of a team of robotic experts looks at the site of the scrape on the surface of the the robotic arm's honeycomb shell. The scrape occurred while work platforms were being installed to gain access to repair the oxygen leak in Endeavour's mid-body. The site will be cut out and ultrasound testing will be done on the structure underneath. Launch of Endeavour on mission STS-113 has been postponed until no earlier than Nov. 22.
Robot-assisted surgery for gastric cancer
Procopiuc, Livia; Tudor, Ştefan; Mănuc, Mircea; Diculescu, Mircea; Vasilescu, Cătălin
2016-01-01
Minimally invasive surgery for gastric cancer is a relatively new research field, with convincing results mostly stemming from Asian countries. The use of the robotic surgery platform, thus far assessed as a safe procedure, which is also easier to learn, sets the background for a wider spread of minimally invasive technique in the treatment of gastric cancer. This review will cover the literature published so far, analyzing the pros and cons of robotic surgery and highlighting the remaining study questions. PMID:26798433
Elnady, Ahmed Mohamed; Zhang, Xin; Xiao, Zhen Gang; Yong, Xinyi; Randhawa, Bubblepreet Kaur; Boyd, Lara; Menon, Carlo
2015-01-01
Traditional, hospital-based stroke rehabilitation can be labor-intensive and expensive. Furthermore, outcomes from rehabilitation are inconsistent across individuals and recovery is hard to predict. Given these uncertainties, numerous technological approaches have been tested in an effort to improve rehabilitation outcomes and reduce the cost of stroke rehabilitation. These techniques include brain-computer interface (BCI), robotic exoskeletons, functional electrical stimulation (FES), and proprioceptive feedback. However, to the best of our knowledge, no studies have combined all these approaches into a rehabilitation platform that facilitates goal-directed motor movements. Therefore, in this paper, we combined all these technologies to test the feasibility of using a BCI-driven exoskeleton with FES (robotic training device) to facilitate motor task completion among individuals with stroke. The robotic training device operated to assist a pre-defined goal-directed motor task. Because it is hard to predict who can utilize this type of technology, we considered whether the ability to adapt skilled movements with proprioceptive feedback would predict who could learn to control a BCI-driven robotic device. To accomplish this aim, we developed a motor task that requires proprioception for completion to assess motor-proprioception ability. Next, we tested the feasibility of robotic training system in individuals with chronic stroke (n = 9) and found that the training device was well tolerated by all the participants. Ability on the motor-proprioception task did not predict the time to completion of the BCI-driven task. Both participants who could accurately target (n = 6) and those who could not (n = 3), were able to learn to control the BCI device, with each BCI trial lasting on average 2.47 min. Our results showed that the participants' ability to use proprioception to control motor output did not affect their ability to use the BCI-driven exoskeleton with FES. Based on our preliminary results, we show that our robotic training device has potential for use as therapy for a broad range of individuals with stroke.
Elnady, Ahmed Mohamed; Zhang, Xin; Xiao, Zhen Gang; Yong, Xinyi; Randhawa, Bubblepreet Kaur; Boyd, Lara; Menon, Carlo
2015-01-01
Traditional, hospital-based stroke rehabilitation can be labor-intensive and expensive. Furthermore, outcomes from rehabilitation are inconsistent across individuals and recovery is hard to predict. Given these uncertainties, numerous technological approaches have been tested in an effort to improve rehabilitation outcomes and reduce the cost of stroke rehabilitation. These techniques include brain–computer interface (BCI), robotic exoskeletons, functional electrical stimulation (FES), and proprioceptive feedback. However, to the best of our knowledge, no studies have combined all these approaches into a rehabilitation platform that facilitates goal-directed motor movements. Therefore, in this paper, we combined all these technologies to test the feasibility of using a BCI-driven exoskeleton with FES (robotic training device) to facilitate motor task completion among individuals with stroke. The robotic training device operated to assist a pre-defined goal-directed motor task. Because it is hard to predict who can utilize this type of technology, we considered whether the ability to adapt skilled movements with proprioceptive feedback would predict who could learn to control a BCI-driven robotic device. To accomplish this aim, we developed a motor task that requires proprioception for completion to assess motor-proprioception ability. Next, we tested the feasibility of robotic training system in individuals with chronic stroke (n = 9) and found that the training device was well tolerated by all the participants. Ability on the motor-proprioception task did not predict the time to completion of the BCI-driven task. Both participants who could accurately target (n = 6) and those who could not (n = 3), were able to learn to control the BCI device, with each BCI trial lasting on average 2.47 min. Our results showed that the participants’ ability to use proprioception to control motor output did not affect their ability to use the BCI-driven exoskeleton with FES. Based on our preliminary results, we show that our robotic training device has potential for use as therapy for a broad range of individuals with stroke. PMID:25870554
Bae, Sung Uk; Jeong, Woon Kyung
2016-01-01
The concept of complete mesocolic excision and central vascular ligation for colonic cancer has been recently introduced. The paper describes a technique of right-sided complete mesocolic excision and intracorporeal anastomosis by using a single-port robotic approach with an additional conventional robotic port. We performed a single-port plus an additional port robotic surgery using the Da Vinci Single-Site platform via the Pfannenstiel incision and the wristed robotic instruments via an additional robotic port in the left lower quadrant. The total operative and docking times were 280 and 25 minutes, respectively. The total number of lymph nodes harvested was 36 and the proximal and distal resection margins were 31 and 50 cm, respectively. Single-port plus an additional port robotic surgery for right-sided complete mesocolic excision and intracorporeal anastomosis appears to be feasible and safe. This system can overcome certain limitations of the previous robotic systems and conventional single-port laparoscopic surgery. PMID:27757400
Bae, Sung Uk; Jeong, Woon Kyung; Baek, Seong Kyu
2016-10-01
The concept of complete mesocolic excision and central vascular ligation for colonic cancer has been recently introduced. The paper describes a technique of right-sided complete mesocolic excision and intracorporeal anastomosis by using a single-port robotic approach with an additional conventional robotic port. We performed a single-port plus an additional port robotic surgery using the Da Vinci Single-Site platform via the Pfannenstiel incision and the wristed robotic instruments via an additional robotic port in the left lower quadrant. The total operative and docking times were 280 and 25 minutes, respectively. The total number of lymph nodes harvested was 36 and the proximal and distal resection margins were 31 and 50 cm, respectively. Single-port plus an additional port robotic surgery for right-sided complete mesocolic excision and intracorporeal anastomosis appears to be feasible and safe. This system can overcome certain limitations of the previous robotic systems and conventional single-port laparoscopic surgery.
A Human Machine Interface for EVA
NASA Astrophysics Data System (ADS)
Hartmann, L.
EVA astronauts work in a challenging environment that includes high rate of muscle fatigue, haptic and proprioception impairment, lack of dexterity and interaction with robotic equipment. Currently they are heavily dependent on support from on-board crew and ground station staff for information and robotics operation. They are limited to the operation of simple controls on the suit exterior and external robot controls that are difficult to operate because of the heavy gloves that are part of the EVA suit. A wearable human machine interface (HMI) inside the suit provides a powerful alternative for robot teleoperation, procedure checklist access, generic equipment operation via virtual control panels and general information retrieval and presentation. The HMI proposed here includes speech input and output, a simple 6 degree of freedom (dof) pointing device and a heads up display (HUD). The essential characteristic of this interface is that it offers an alternative to the standard keyboard and mouse interface of a desktop computer. The astronaut's speech is used as input to command mode changes, execute arbitrary computer commands and generate text. The HMI can respond with speech also in order to confirm selections, provide status and feedback and present text output. A candidate 6 dof pointing device is Measurand's Shapetape, a flexible "tape" substrate to which is attached an optic fiber with embedded sensors. Measurement of the modulation of the light passing through the fiber can be used to compute the shape of the tape and, in particular, the position and orientation of the end of the Shapetape. It can be used to provide any kind of 3d geometric information including robot teleoperation control. The HUD can overlay graphical information onto the astronaut's visual field including robot joint torques, end effector configuration, procedure checklists and virtual control panels. With suitable tracking information about the position and orientation of the EVA suit, the overlaid graphical information can be registered with the external world. For example, information about an object can be positioned on or beside the object. This wearable HMI supports many applications during EVA including robot teleoperation, procedure checklist usage, operation of virtual control panels and general information or documentation retrieval and presentation. Whether the robot end effector is a mobile platform for the EVA astronaut or is an assistant to the astronaut in an assembly or repair task, the astronaut can control the robot via a direct manipulation interface. Embedded in the suit or the astronaut's clothing, Shapetape can measure the user's arm/hand position and orientation which can be directly mapped into the workspace coordinate system of the robot. Motion of the users hand can generate corresponding motion of the robot end effector in order to reposition the EVA platform or to manipulate objects in the robot's grasp. Speech input can be used to execute commands and mode changes without the astronaut having to withdraw from the teleoperation task. Speech output from the system can provide feedback without affecting the user's visual attention. The procedure checklist guiding the astronaut's detailed activities can be presented on the HUD and manipulated (e.g., move, scale, annotate, mark tasks as done, consult prerequisite tasks) by spoken command. Virtual control panels for suit equipment, equipment being repaired or arbitrary equipment on the space station can be displayed on the HUD and can be operated by speech commands or by hand gestures. For example, an antenna being repaired could be pointed under the control of the EVA astronaut. Additionally arbitrary computer activities such as information retrieval and presentation can be carried out using similar interface techniques. Considering the risks, expense and physical challenges of EVA work, it is appropriate that EVA astronauts have considerable support from station crew and ground station staff. Reducing their dependence on such personnel may under many circumstances, however, improve performance and reduce risk. For example, the EVA astronaut is likely to have the best viewpoint at a robotic worksite. Direct access to the procedure checklist can help provide temporal context and continuity throughout an EVA. Access to station facilities through an HMI such as the one described here could be invaluable during an emergency or in a situation in which a fault occurs. The full paper will describe the HMI operation and applications in the EVA context in more detail and will describe current laboratory prototyping activities.
Initial validation of a virtual-reality robotic simulator.
Lendvay, Thomas S; Casale, Pasquale; Sweet, Robert; Peters, Craig
2008-09-01
Robotic surgery is an accepted adjunct to minimally invasive surgery, but training is restricted to console time. Virtual-reality (VR) simulation has been shown to be effective for laparoscopic training and so we seek to validate a novel VR robotic simulator. The American Urological Association (AUA) Office of Education approved this study. Subjects enrolled in a robotics training course at the 2007 AUA annual meeting underwent skills training in a da Vinci dry-lab module and a virtual-reality robotics module which included a three-dimensional (3D) VR robotic simulator. Demographic and acceptability data were obtained, and performance metrics from the simulator were compared between experienced and nonexperienced roboticists for a ring transfer task. Fifteen subjects-four with previous robotic surgery experience and 11 without-participated. Nine subjects were still in urology training and nearly half of the group had reported playing video games. Overall performance of the da Vinci system and the simulator were deemed acceptable by a Likert scale (0-6) rating of 5.23 versus 4.69, respectively. Experienced subjects outperformed nonexperienced subjects on the simulator on three metrics: total task time (96 s versus 159 s, P < 0.02), economy of motion (1,301 mm versus 2,095 mm, P < 0.04), and time the telemanipulators spent outside of the center of the platform's workspace (4 s versus 35 s, P < 0.02). This is the first demonstration of face and construct validity of a virtual-reality robotic simulator. Further studies assessing predictive validity are ultimately required to support incorporation of VR robotic simulation into training curricula.
Salzmann-Erikson, Martin; Eriksson, Henrik
2018-02-01
Technology in the healthcare sector is undergoing rapid development. One of the most prominent areas of healthcare in which robots are implemented is nursing homes. However, nursing and technology are often considered as being contradictory, an attitude originating in the view of "the natural" versus "the artificial". Social media mirror this view, including in attitudes and societal debates regarding nursing and care robots. However, little is known about this topic in previous research. To examine user behaviour in social media platforms on the topic of nursing and care robots. A retrospective and cross-sectional observation study design was applied. Data were collected via the Alchemy streaming application programming interface. Data from social media were collected from 1 January 2014 to 5 January 2016. The data set consisted of 12,311 mentions in total. Nursing and care robots are a small-scale topic of discussion in social media. Twitter was found to be the largest channel in terms of volume, followed by Tumblr. News channels had the highest percentage of visibility, while forums and Tumblr had the least. It was found in the data that 67.9% of the mentions were positive, 24.4% were negative and 7.8% were neutral. The volume and visibility of the data on nursing robots found in social media, as well as the attitudes to nursing robots found there, indicate that nursing care robots, which are seen as representing a next step in technological development in healthcare, are a topic on the rise in social media. These findings are likely to be related to the idea that nursing care robots are on the breakthrough of replacing human labour in healthcare worldwide.
Autonomous mobile robot research using the HERMIES-III robot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pin, F.G.; Beckerman, M.; Spelt, P.F.
1989-01-01
This paper reports on the status and future directions in the research, development and experimental validation of intelligent control techniques for autonomous mobile robots using the HERMIES-III robot at the Center for Engineering Systems Advanced research (CESAR) at Oak Ridge National Laboratory (ORNL). HERMIES-III is the fourth robot in a series of increasingly more sophisticated and capable experimental test beds developed at CESAR. HERMIES-III is comprised of a battery powered, onmi-directional wheeled platform with a seven degree-of-freedom manipulator arm, video cameras, sonar range sensors, laser imaging scanner and a dual computer system containing up to 128 NCUBE nodes in hypercubemore » configuration. All electronics, sensors, computers, and communication equipment required for autonomous operation of HERMIES-III are located on board along with sufficient battery power for three to four hours of operation. The paper first provides a more detailed description of the HERMIES-III characteristics, focussing on the new areas of research and demonstration now possible at CESAR with this new test-bed. The initial experimental program is then described with emphasis placed on autonomous performance of human-scale tasks (e.g., valve manipulation, use of tools), integration of a dexterous manipulator and platform motion in geometrically complex environments, and effective use of multiple cooperating robots (HERMIES-IIB and HERMIES- III). The paper concludes with a discussion of the integration problems and safety considerations necessarily arising from the set-up of an experimental program involving human-scale, multi-autonomous mobile robots performance. 10 refs., 3 figs.« less
Counter tunnel exploration, mapping, and localization with an unmanned ground vehicle
NASA Astrophysics Data System (ADS)
Larson, Jacoby; Okorn, Brian; Pastore, Tracy; Hooper, David; Edwards, Jim
2014-06-01
Covert, cross-border tunnels are a security vulnerability that enables people and contraband to illegally enter the United States. All of these tunnels to-date have been constructed for the purpose of drug smuggling, but they may also be used to support terrorist activity. Past robotic tunnel exploration efforts have had limited success in aiding law enforcement to explore and map the suspect cross-border tunnels. These efforts have made use of adapted explosive ordnance disposal (EOD) or pipe inspection robotic systems that are not ideally suited to the cross-border tunnel environment. The Counter Tunnel project was sponsored by the Office of Secretary of Defense (OSD) Joint Ground Robotics Enterprise (JGRE) to develop a prototype robotic system for counter-tunnel operations, focusing on exploration, mapping, and characterization of tunnels. The purpose of this system is to provide a safe and effective solution for three-dimensional (3D) localization, mapping, and characterization of a tunnel environment. The system is composed of the robotic mobility platform, the mapping sensor payload, and the delivery apparatus. The system is able to deploy and retrieve the robotic mobility platform through a 20-cm-diameter borehole into the tunnel. This requirement posed many challenges in order to design and package the sensor and robotic system to fit through this narrow opening and be able to perform the mission. This paper provides a short description of a few aspects of the Counter Tunnel system such as mobility, perception, and localization, which were developed to meet the unique challenges required to access, explore, and map tunnel environments.
Concrete bridge deck early problem detection and mitigation using robotics
NASA Astrophysics Data System (ADS)
Gucunski, Nenad; Yi, Jingang; Basily, Basily; Duong, Trung; Kim, Jinyoung; Balaguru, Perumalsamy; Parvardeh, Hooman; Maher, Ali; Najm, Husam
2015-04-01
More economical management of bridges can be achieved through early problem detection and mitigation. The paper describes development and implementation of two fully automated (robotic) systems for nondestructive evaluation (NDE) and minimally invasive rehabilitation of concrete bridge decks. The NDE system named RABIT was developed with the support from Federal Highway Administration (FHWA). It implements multiple NDE technologies, namely: electrical resistivity (ER), impact echo (IE), ground-penetrating radar (GPR), and ultrasonic surface waves (USW). In addition, the system utilizes advanced vision to substitute traditional visual inspection. The RABIT system collects data at significantly higher speeds than it is done using traditional NDE equipment. The associated platform for the enhanced interpretation of condition assessment in concrete bridge decks utilizes data integration, fusion, and deterioration and defect visualization. The interpretation and visualization platform specifically addresses data integration and fusion from the four NDE technologies. The data visualization platform facilitates an intuitive presentation of the main deterioration due to: corrosion, delamination, and concrete degradation, by integrating NDE survey results and high resolution deck surface imaging. The rehabilitation robotic system was developed with the support from National Institute of Standards and Technology-Technology Innovation Program (NIST-TIP). The system utilizes advanced robotics and novel materials to repair problems in concrete decks, primarily early stage delamination and internal cracking, using a minimally invasive approach. Since both systems use global positioning systems for navigation, some of the current efforts concentrate on their coordination for the most effective joint evaluation and rehabilitation.
Design and implementation of self-balancing coaxial two wheel robot based on HSIC
NASA Astrophysics Data System (ADS)
Hu, Tianlian; Zhang, Hua; Dai, Xin; Xia, Xianfeng; Liu, Ran; Qiu, Bo
2007-12-01
This thesis has studied the control problem concerning position and orientation control of self-balancing coaxial two wheel robot based on the human simulated intelligent control (HSIC) theory. Adopting Lagrange equation, the dynamic model of self-balancing coaxial two-wheel Robot is built up, and the Sensory-motor Intelligent Schemas (SMIS) of HSIC controller for the robot is designed by analyzing its movement and simulating the human controller. In robot's motion process, by perceiving position and orientation of the robot and using multi-mode control strategy based on characteristic identification, the HSIC controller enables the robot to control posture. Utilizing Matlab/Simulink, a simulation platform is established and a motion controller is designed and realized based on RT-Linux real-time operating system, employing high speed ARM9 processor S3C2440 as kernel of the motion controller. The effectiveness of the new design is testified by the experiment.
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-12
Russel Howe of team Survey, center, works on a laptop to prepare the team's robot for a demonstration run after the team's robot failed to leave the starting platform during it's attempt at the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-12
Russel Howe of team Survey speaks with Sample Return Robot Challenge staff members after the team's robot failed to leave the starting platform during it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
The debate over robotics in benign gynecology.
Rardin, Charles R
2014-05-01
The debate over the role of the da Vinci surgical robotic platform in benign gynecology is raging with increasing fervor and, as product liability issues arise, greater financial stakes. Although the best currently available science suggests that, in the hands of experts, robotics offers little in surgical advantage over laparoscopy, at increased expense, the observed decrease in laparotomy for hysterectomy is almost certainly, at least in part, attributable to the availability of the robot. In this author's opinion, the issue is not whether the robot has any role but rather to define the role in an institutional environment that also supports the safe use of vaginal and laparoscopic approaches in an integrated minimally invasive surgery program. Programs engaging robotic surgery should have a clear and self-determined regulatory process and should resist pressures in place that may preferentially support robotics over other forms of minimally invasive surgery. Copyright © 2014 Mosby, Inc. All rights reserved.
Microbiorobots for Manipulation and Sensing
2016-04-19
integrated into microscale robotics and biosensor systems. The objective of the proposed program is to develop a platform that integrates bacteria with...information represent enormous potential that can be harnessed and integrated into microscale robotics and biosensor systems. The objective of the...applicable in microscale assembly systems and biosensors that require autonomous coordination of bacteria. (a) Papers published in peer-reviewed
Using LEGO NXT Mobile Robots with LabVIEW for Undergraduate Courses on Mechatronics
ERIC Educational Resources Information Center
Gomez-de-Gabriel, J. M.; Mandow, A.; Fernandez-Lozano, J.; Garcia-Cerezo, A.
2011-01-01
The paper proposes lab work and student competitions based on the LEGO NXT Mindstorms kits and standard LabVIEW. The goal of this combination is to stimulate design and experimentation with real hardware and representative software in courses where mobile robotics is adopted as a motivating platform to introduce mechatronics competencies. Basic…
Autonomous Fault Detection for Performance Bugs in Component Based Robotic Systems
2016-12-01
platform performs a modified version of the restaurant task from the RoboCup@Home competition 2015 [20]. Here, an operator first guides the robot around a...Control. Berlin: Springer, 2008. DOI: 10.1007/ 978-3-540-76304-8. [18] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net
2002-11-15
KENNEDY SPACE CENTER, FLA. -- Robotic arm experts get ready for ultrasound testing on Endeavour's robotic arm. A scrape of the honeycomb shell around the arm occurred while work platforms were being installed to gain access to repair the oxygen leak in the Shuttle's mid-body. Launch of Endeavour on mission STS-113 has been postponed until no earlier than Nov. 22.
2002-11-15
KENNEDY SPACE CENTER, FLA. -- Robotic arm experts get ready for ultrasound testing on Endeavour's robotic arm. A scrape of the honeycomb shell around the arm occurred while work platforms were being installed to gain access to repair the oxygen leak in the Shuttle's mid-body. Launch of Endeavour on mission STS-113 has been postponed until no earlier than Nov. 22.
Brachytherapy next generation: robotic systems
Popescu, Tiberiu; Kacsó, Alex Cristian; Pisla, Doina
2015-01-01
In a field dominated by external beam radiation therapy (EBRT), both the therapeutic and technical possibilities of brachytherapy (BT) are underrated, shadowed by protons and intensity modulated radiotherapy. Decreasing expertise and indications, as well as increasing lack of specific BT training for radiation therapy (RT) residents led to the real need of shortening its learning curve and making it more popular. Developing robotic BT devices can be a way to mitigate the above issues. There are many teams working at custom-made robotic BT platforms to perfect and overcome the limitations of the existing systems. This paper provides a picture of the current state-of-the-art in robotic assisted BT, as it also conveys the author's solution to the problem, a parallel robot that uses CT-guidance. PMID:26816510
Robotics in Colorectal Surgery
Weaver, Allison; Steele, Scott
2016-01-01
Over the past few decades, robotic surgery has developed from a futuristic dream to a real, widely used technology. Today, robotic platforms are used for a range of procedures and have added a new facet to the development and implementation of minimally invasive surgeries. The potential advantages are enormous, but the current progress is impeded by high costs and limited technology. However, recent advances in haptic feedback systems and single-port surgical techniques demonstrate a clear role for robotics and are likely to improve surgical outcomes. Although robotic surgeries have become the gold standard for a number of procedures, the research in colorectal surgery is not definitive and more work needs to be done to prove its safety and efficacy to both surgeons and patients. PMID:27746895
1999-03-05
Referees check the robots on the floor of the playing field after a qualifying match of the 1999 Southeastern Regional robotic competition at Kennedy Space Center Visitor Complex . Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow-like disks from the floor, as well as climb onto the platform (with flags) and raise the cache of pillows to a height of eight feet. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers
Modelling and Control of Robotic Leg as Assistive Device
NASA Astrophysics Data System (ADS)
Jingye, Yee; Zain, Badrul Aisham bin Md
2017-10-01
The ageing population (people older than 60 years old) is expected to constitute 21.8% of global population by year 2050. When human ages, bodily function including locomotors will deteriorate. Besides, there are hundreds of thousands of victims who suffer from multiple health conditions worldwide that leads to gait impairment. A promising solution will be the lower limb powered-exoskeleton. This study is to be a start-up platform to design a lower limb powered-exoskeleton for a normal Malaysian male, by designing and simulating the dynamic model of a 2-link robotic leg to observe its behaviour under different input conditions with and without a PID controller. Simulink in MATLAB software is used as the dynamic modelling and simulation software for this study. It is observed that the 2-links robotic leg behaved differently under different input conditions, and perform the best when it is constrained and controlled by PID controller. Simulink model is formed as a foundation for the upcoming researches and can be modified and utilised by the future researchers.
Advantages of robotics in benign gynecologic surgery.
Truong, Mireille; Kim, Jin Hee; Scheib, Stacey; Patzkowsky, Kristin
2016-08-01
The purpose of this article is to review the literature and discuss the advantages of robotics in benign gynecologic surgery. Minimally invasive surgery has become the preferred route over abdominal surgery. The laparoscopic or robotic approach is recommended when vaginal surgery is not feasible. Thus far, robotic gynecologic surgery data have demonstrated feasibility, safety, and equivalent clinical outcomes in comparison with laparoscopy and better clinical outcomes compared with laparotomy. Robotics was developed to overcome challenges of laparoscopy and has led to technological advantages such as improved ergonomics, visualization with three-dimensional capabilities, dexterity and range of motion with instrument articulation, and tremor filtration. To date, applications of robotics in benign gynecology include hysterectomy, myomectomy, endometriosis surgery, sacrocolpopexy, adnexal surgery, tubal reanastomosis, and cerclage. Though further data are needed, robotics may provide additional benefits over other approaches in the obese patient population and in higher complexity cases. Challenges that arose in the earlier adoption stage such as the steep learning curve, costs, and operative times are becoming more optimized with greater experience, with implementation of robotics in high-volume centers and with improved training of surgeons and robotic teams. Robotic laparoendoscopic single-site surgery, albeit still in its infancy where technical advantages compared with laparoscopic single-site surgery are still unclear, may provide a cost-reducing option compared with multiport robotics. The cost may even approach that of laparoscopy while still conferring similar perioperative outcomes. Advances in robotic technology such as the single-site platform and telesurgery, have the potential to revolutionize the field of minimally invasive gynecologic surgery. Higher quality evidence is needed to determine the advantages and disadvantages of robotic surgery in benign gynecologic surgery. Conclusions on the benefits and risks of robotic surgery should be made with caution given limited data, especially when compared with other routes. Route of surgery selection should take into consideration the surgeons' skill and comfort level that allows for the highest level of safety and efficiency. Ultimately, the robotic device is an additional minimally invasive surgical tool that can further the goal of minimizing laparotomy in gynecology.
ISS Robotic Student Programming
NASA Technical Reports Server (NTRS)
Barlow, J.; Benavides, J.; Hanson, R.; Cortez, J.; Le Vasseur, D.; Soloway, D.; Oyadomari, K.
2016-01-01
The SPHERES facility is a set of three free-flying satellites launched in 2006. In addition to scientists and engineering, middle- and high-school students program the SPHERES during the annual Zero Robotics programming competition. Zero Robotics conducts virtual competitions via simulator and on SPHERES aboard the ISS, with students doing the programming. A web interface allows teams to submit code, receive results, collaborate, and compete in simulator-based initial rounds and semi-final rounds. The final round of each competition is conducted with SPHERES aboard the ISS. At the end of 2017 a new robotic platform called Astrobee will launch, providing new game elements and new ground support for even more student interaction.
Swarmie User Manual: A Rover Used for Multi-agent Swarm Research
NASA Technical Reports Server (NTRS)
Montague, Gilbert
2014-01-01
The ability to create multiple functional yet cost effective robots is crucial for conducting swarming robotics research. The Center Innovation Fund (CIF) swarming robotics project is a collaboration among the KSC Granular Mechanics and Regolith Operations (GMRO) group, the University of New Mexico Biological Computation Lab, and the NASA Ames Intelligent Robotics Group (IRG) that uses rovers, dubbed "Swarmies", as test platforms for genetic search algorithms. This fall, I assisted in the development of the software modules used on the Swarmies and created this guide to provide thorough instructions on how to configure your workspace to operate a Swarmie both in simulation and out in the field.
Development of a force-reflecting robotic platform for cardiac catheter navigation.
Park, Jun Woo; Choi, Jaesoon; Pak, Hui-Nam; Song, Seung Joon; Lee, Jung Chan; Park, Yongdoo; Shin, Seung Min; Sun, Kyung
2010-11-01
Electrophysiological catheters are used for both diagnostics and clinical intervention. To facilitate more accurate and precise catheter navigation, robotic cardiac catheter navigation systems have been developed and commercialized. The authors have developed a novel force-reflecting robotic catheter navigation system. The system is a network-based master-slave configuration having a 3-degree of freedom robotic manipulator for operation with a conventional cardiac ablation catheter. The master manipulator implements a haptic user interface device with force feedback using a force or torque signal either measured with a sensor or estimated from the motor current signal in the slave manipulator. The slave manipulator is a robotic motion control platform on which the cardiac ablation catheter is mounted. The catheter motions-forward and backward movements, rolling, and catheter tip bending-are controlled by electromechanical actuators located in the slave manipulator. The control software runs on a real-time operating system-based workstation and implements the master/slave motion synchronization control of the robot system. The master/slave motion synchronization response was assessed with step, sinusoidal, and arbitrarily varying motion commands, and showed satisfactory performance with insignificant steady-state motion error. The current system successfully implemented the motion control function and will undergo safety and performance evaluation by means of animal experiments. Further studies on the force feedback control algorithm and on an active motion catheter with an embedded actuation mechanism are underway. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks.
Wang, Zhijun; Mirdamadi, Reza; Wang, Qing
2016-01-01
Intelligent agents such as robots can form ad hoc networks and replace human being in many dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer simulator to simulate robot kinetics, unsupervised learning using Kohonen networks, as well as group intelligence when an ad hoc network is formed. Each robot is modeled using an object with a simple set of attributes and methods that define its internal states and possible actions it may take under certain circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under scenarios with different complexities. The simulation results show that a group of robots could demonstrate highly collaborative behavior on a complex terrain. This study could potentially provide a software simulation platform for testing individual and group capability of robots before the design process and manufacturing of robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot design and building.
Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks
Wang, Zhijun; Mirdamadi, Reza; Wang, Qing
2016-01-01
Intelligent agents such as robots can form ad hoc networks and replace human being in many dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer simulator to simulate robot kinetics, unsupervised learning using Kohonen networks, as well as group intelligence when an ad hoc network is formed. Each robot is modeled using an object with a simple set of attributes and methods that define its internal states and possible actions it may take under certain circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under scenarios with different complexities. The simulation results show that a group of robots could demonstrate highly collaborative behavior on a complex terrain. This study could potentially provide a software simulation platform for testing individual and group capability of robots before the design process and manufacturing of robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot design and building. PMID:28540284
Pilot clinical application of an adaptive robotic system for young children with autism.
Bekele, Esubalew; Crittendon, Julie A; Swanson, Amy; Sarkar, Nilanjan; Warren, Zachary E
2014-07-01
It has been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders. This pilot feasibility study evaluated the application of a novel adaptive robot-mediated system capable of both administering and automatically adjusting joint attention prompts to a small group of preschool children with autism spectrum disorders (n = 6) and a control group (n = 6). Children in both groups spent more time looking at the humanoid robot and were able to achieve a high level of accuracy across trials. However, across groups, children required higher levels of prompting to successfully orient within robot-administered trials. The results highlight both the potential benefits of closed-loop adaptive robotic systems as well as current limitations of existing humanoid-robotic platforms. © The Author(s) 2013.
Knowledge based systems for intelligent robotics
NASA Technical Reports Server (NTRS)
Rajaram, N. S.
1982-01-01
It is pointed out that the construction of large space platforms, such as space stations, has to be carried out in the outer space environment. As it is extremely expensive to support human workers in space for large periods, the only feasible solution appears to be related to the development and deployment of highly capable robots for most of the tasks. Robots for space applications will have to possess characteristics which are very different from those needed by robots in industry. The present investigation is concerned with the needs of space robotics and the technologies which can be of assistance to meet these needs, giving particular attention to knowledge bases. 'Intelligent' robots are required for the solution of arising problems. The collection of facts and rules needed for accomplishing such solutions form the 'knowledge base' of the system.
Axel Robotic Platform for Crater and Extreme Terrain Exploration
NASA Technical Reports Server (NTRS)
Nesnas, Issa A.; Matthews, Jaret B.; Edlund, Jeffrey A.; Burdick, Joel W.; Abad-Manterola, Pablo
2012-01-01
To be able to conduct science investigations on highly sloped and challenging terrains, it is necessary to deploy science payloads to such locations and collect and process in situ samples. A tethered robotic platform has been developed that is capable of exploring very challenging terrain. The Axel rover is a symmetrical rover that is minimally actuated, can traverse arbitrary paths, and operate upside-down or right-side up. It can be deployed from a larger platform (rover, lander, or aerobot) or from a dual Axel configuration. Axel carries and manages its own tether, reducing damage to the tether during operations. Fundamentally, Axel is a two-wheeled rover with a symmetric body and a trailing link. Because the primary goal is minimal complexity, this version of the Axel rover uses only four primary actuators to control its wheels, tether, and a trailing link. A fifth actuator is used for level winding of tether onto Axel s spool.
Assistant Personal Robot (APR): Conception and Application of a Tele-Operated Assisted Living Robot.
Clotet, Eduard; Martínez, Dani; Moreno, Javier; Tresanchez, Marcel; Palacín, Jordi
2016-04-28
This paper presents the technical description, mechanical design, electronic components, software implementation and possible applications of a tele-operated mobile robot designed as an assisted living tool. This robotic concept has been named Assistant Personal Robot (or APR for short) and has been designed as a remotely telecontrolled robotic platform built to provide social and assistive services to elderly people and those with impaired mobility. The APR features a fast high-mobility motion system adapted for tele-operation in plain indoor areas, which incorporates a high-priority collision avoidance procedure. This paper presents the mechanical architecture, electrical fundaments and software implementation required in order to develop the main functionalities of an assistive robot. The APR uses a tablet in order to implement the basic peer-to-peer videoconference and tele-operation control combined with a tactile graphic user interface. The paper also presents the development of some applications proposed in the framework of an assisted living robot.
da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety.
Marcus, Hani J; Hughes-Hallett, Archie; Cundy, Thomas P; Yang, Guang-Zhong; Darzi, Ara; Nandi, Dipankar
2015-04-01
The goal of this cadaver study was to evaluate the feasibility and safety of da Vinci robot-assisted keyhole neurosurgery. Several keyhole craniotomies were fashioned including supraorbital subfrontal, retrosigmoid and supracerebellar infratentorial. In each case, a simple durotomy was performed, and the flap was retracted. The da Vinci surgical system was then used to perform arachnoid dissection towards the deep-seated intracranial cisterns. It was not possible to simultaneously pass the 12-mm endoscope and instruments through the keyhole craniotomy in any of the approaches performed, limiting visualization. The articulated instruments provided greater dexterity than existing tools, but the instrument arms could not be placed in parallel through the keyhole craniotomy and, therefore, could not be advanced to the deep cisterns without significant clashing. The da Vinci console offered considerable ergonomic advantages over the existing operating room arrangement, allowing the operating surgeon to remain non-sterile and seated comfortably throughout the procedure. However, the lack of haptic feedback was a notable limitation. In conclusion, while robotic platforms have the potential to greatly enhance the performance of transcranial approaches, there is strong justification for research into next-generation robots, better suited to keyhole neurosurgery.
Towards an SEMG-based tele-operated robot for masticatory rehabilitation.
Kalani, Hadi; Moghimi, Sahar; Akbarzadeh, Alireza
2016-08-01
This paper proposes a real-time trajectory generation for a masticatory rehabilitation robot based on surface electromyography (SEMG) signals. We used two Gough-Stewart robots. The first robot was used as a rehabilitation robot while the second robot was developed to model the human jaw system. The legs of the rehabilitation robot were controlled by the SEMG signals of a tele-operator to reproduce the masticatory motion in the human jaw, supposedly mounted on the moving platform, through predicting the location of a reference point. Actual jaw motions and the SEMG signals from the masticatory muscles were recorded and used as output and input, respectively. Three different methods, namely time-delayed neural networks, time delayed fast orthogonal search, and time-delayed Laguerre expansion technique, were employed and compared to predict the kinematic parameters. The optimal model structures as well as the input delays were obtained for each model and each subject through a genetic algorithm. Equations of motion were obtained by the virtual work method. Fuzzy method was employed to develop a fuzzy impedance controller. Moreover, a jaw model was developed to demonstrate the time-varying behavior of the muscle lengths during the rehabilitation process. The three modeling methods were capable of providing reasonably accurate estimations of the kinematic parameters, although the accuracy and training/validation speed of time-delayed fast orthogonal search were higher than those of the other two aforementioned methods. Also, during a simulation study, the fuzzy impedance scheme proved successful in controlling the moving platform for the accurate navigation of the reference point in the desired trajectory. SEMG has been widely used as a control command for prostheses and exoskeleton robots. However, in the current study by employing the proposed rehabilitation robot the complete continuous profile of the clenching motion was reproduced in the sagittal plane. Copyright © 2016. Published by Elsevier Ltd.
OzBot and haptics: remote surveillance to physical presence
NASA Astrophysics Data System (ADS)
Mullins, James; Fielding, Mick; Nahavandi, Saeid
2009-05-01
This paper reports on robotic and haptic technologies and capabilities developed for the law enforcement and defence community within Australia by the Centre for Intelligent Systems Research (CISR). The OzBot series of small and medium surveillance robots have been designed in Australia and evaluated by law enforcement and defence personnel to determine suitability and ruggedness in a variety of environments. Using custom developed digital electronics and featuring expandable data busses including RS485, I2C, RS232, video and Ethernet, the robots can be directly connected to many off the shelf payloads such as gas sensors, x-ray sources and camera systems including thermal and night vision. Differentiating the OzBot platform from its peers is its ability to be integrated directly with haptic technology or the 'haptic bubble' developed by CISR. Haptic interfaces allow an operator to physically 'feel' remote environments through position-force control and experience realistic force feedback. By adding the capability to remotely grasp an object, feel its weight, texture and other physical properties in real-time from the remote ground control unit, an operator's situational awareness is greatly improved through Haptic augmentation in an environment where remote-system feedback is often limited.
Scrape on Endeavour's robotic arm during oxygen leak repairs
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- A piece of the honeycomb shell around Endeavour's robotic arm has been cut to inspect the arm. A scrape of the shell occurred while work platforms were being installed to gain access to repair the oxygen leak in the Shuttle's mid-body. Launch of Endeavour on mission STS-113 has been postponed until no earlier than Nov. 22.
A real-time spiking cerebellum model for learning robot control.
Carrillo, Richard R; Ros, Eduardo; Boucheny, Christian; Coenen, Olivier J-M D
2008-01-01
We describe a neural network model of the cerebellum based on integrate-and-fire spiking neurons with conductance-based synapses. The neuron characteristics are derived from our earlier detailed models of the different cerebellar neurons. We tested the cerebellum model in a real-time control application with a robotic platform. Delays were introduced in the different sensorimotor pathways according to the biological system. The main plasticity in the cerebellar model is a spike-timing dependent plasticity (STDP) at the parallel fiber to Purkinje cell connections. This STDP is driven by the inferior olive (IO) activity, which encodes an error signal using a novel probabilistic low frequency model. We demonstrate the cerebellar model in a robot control system using a target-reaching task. We test whether the system learns to reach different target positions in a non-destructive way, therefore abstracting a general dynamics model. To test the system's ability to self-adapt to different dynamical situations, we present results obtained after changing the dynamics of the robotic platform significantly (its friction and load). The experimental results show that the cerebellar-based system is able to adapt dynamically to different contexts.
Electroactive polymer and shape memory alloy actuators in biomimetics and humanoids
NASA Astrophysics Data System (ADS)
Tadesse, Yonas
2013-04-01
There is a strong need to replicate natural muscles with artificial materials as the structure and function of natural muscle is optimum for articulation. Particularly, the cylindrical shape of natural muscle fiber and its interconnected structure promote the critical investigation of artificial muscles geometry and implementation in the design phase of certain platforms. Biomimetic robots and Humanoid Robot heads with Facial Expressions (HRwFE) are some of the typical platforms that can be used to study the geometrical effects of artificial muscles. It has been shown that electroactive polymer and shape memory alloy artificial muscles and their composites are some of the candidate materials that may replicate natural muscles and showed great promise for biomimetics and humanoid robots. The application of these materials to these systems reveals the challenges and associated technologies that need to be developed in parallel. This paper will focus on the computer aided design (CAD) models of conductive polymer and shape memory alloys in various biomimetic systems and Humanoid Robot with Facial Expressions (HRwFE). The design of these systems will be presented in a comparative manner primarily focusing on three critical parameters: the stress, the strain and the geometry of the artificial muscle.
Coordinated perception by teams of aerial and ground robots
NASA Astrophysics Data System (ADS)
Grocholsky, Benjamin P.; Swaminathan, Rahul; Kumar, Vijay; Taylor, Camillo J.; Pappas, George J.
2004-12-01
Air and ground vehicles exhibit complementary capabilities and characteristics as robotic sensor platforms. Fixed wing aircraft offer broad field of view and rapid coverage of search areas. However, minimum operating airspeed and altitude limits, combined with attitude uncertainty, place a lower limit on their ability to detect and localize ground features. Ground vehicles on the other hand offer high resolution sensing over relatively short ranges with the disadvantage of slow coverage. This paper presents a decentralized architecture and solution methodology for seamlessly realizing the collaborative potential of air and ground robotic sensor platforms. We provide a framework based on an established approach to the underlying sensor fusion problem. This provides transparent integration of information from heterogeneous sources. An information-theoretic utility measure captures the task objective and robot inter-dependencies. A simple distributed solution mechanism is employed to determine team member sensing trajectories subject to the constraints of individual vehicle and sensor sub-systems. The architecture is applied to a mission involving searching for and localizing an unknown number of targets in an user specified search area. Results for a team of two fixed wing UAVs and two all terrain UGVs equipped with vision sensors are presented.
Coaxial twin-shaft magnetic fluid seals applied in vacuum wafer-handling robot
NASA Astrophysics Data System (ADS)
Cong, Ming; Wen, Haiying; Du, Yu; Dai, Penglei
2012-07-01
Compared with traditional mechanical seals, magnetic fluid seals have unique characters of high airtightness, minimal friction torque requirements, pollution-free and long life-span, widely used in vacuum robots. With the rapid development of Integrate Circuit (IC), there is a stringent requirement for sealing wafer-handling robots when working in a vacuum environment. The parameters of magnetic fluid seals structure is very important in the vacuum robot design. This paper gives a magnetic fluid seal device for the robot. Firstly, the seal differential pressure formulas of magnetic fluid seal are deduced according to the theory of ferrohydrodynamics, which indicate that the magnetic field gradient in the sealing gap determines the seal capacity of magnetic fluid seal. Secondly, the magnetic analysis model of twin-shaft magnetic fluid seals structure is established. By analyzing the magnetic field distribution of dual magnetic fluid seal, the optimal value ranges of important parameters, including parameters of the permanent magnetic ring, the magnetic pole tooth, the outer shaft, the outer shaft sleeve and the axial relative position of two permanent magnetic rings, which affect the seal differential pressure, are obtained. A wafer-handling robot equipped with coaxial twin-shaft magnetic fluid rotary seals and bellows seal is devised and an optimized twin-shaft magnetic fluid seals experimental platform is built. Test result shows that when the speed of the two rotational shafts ranges from 0-500 r/min, the maximum burst pressure is about 0.24 MPa. Magnetic fluid rotary seals can provide satisfactory performance in the application of wafer-handling robot. The proposed coaxial twin-shaft magnetic fluid rotary seal provides the instruction to design high-speed vacuum robot.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Robert J.
2011-01-01
Improvised Explosive Device (IED) defeat (IEDD) operations can involve intricate operations that exceed the current capabilities of the grippers on board current bombsquad robots. The Shadow Dexterous Hand from the Shadow Robot Company or 'ShadowHand' for short (www.shadowrobot.com) is the first commercially available robot hand that realistically replicates the motion, degrees-of-freedom and dimensions of a human hand (Figure 1). In this study we evaluate the potential for the ShadowHand to perform potential IED defeat tasks on a mobile platform.
Acquisition of Basic Behaviors through Teleoperation using Robonaut
NASA Technical Reports Server (NTRS)
Campbell, Christina
2004-01-01
My area of research is in artificial intelligence and robotics. The major platform of this research is NASA's Robonaut. This humanoid robot is located at the Johnson Space Center. Prior to receiving this grant, I was able to spend two summers in Houston working with the Robonaut team, which is headed by Rob Ambrose. My work centered on teaching Robonaut to grasp a wrench based on data gathered as a human teleoperated the robot. I tried to make the procedure as general as possible so that many different motions could be taught using this method.
ISS Expedition 18 Sandra Magnus at Robotics Work Station (RWS)
2008-12-05
ISS018-E-010555 (5 Dec. 2008) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, operates the Canadarm2 from the robotics work station in the Destiny laboratory of the International Space Station. Using the station's robotic arm, Magnus and astronaut Michael Fincke (out of frame), commander, relocated the ESP-3 from the Mobile Base System back to the Cargo Carrier Attachment System on the P3 truss. The ESP-3 spare parts platform was temporarily parked on the MBS to clear the path for the spacewalks during STS-126.
ISS Expedition 18 Robotics Work Station (RWS) in the US Laboratory
2008-12-05
ISS018-E-010564 (5 Dec. 2008) --- Astronaut Michael Fincke, Expedition 18 commander, uses a computer at the robotics work station in the Destiny laboratory of the International Space Station. Using the station's robotic arm, Fincke and astronaut Sandra Magnus (out of frame), flight engineer, relocated the ESP-3 from the Mobile Base System back to the Cargo Carrier Attachment System on the P3 truss. The ESP-3 spare parts platform was temporarily parked on the MBS to clear the path for the spacewalks during STS-126.
Feasibility and Learning Curve of Robotic Laparoendoscopic Single-Site Surgery in Gynecology.
Buckley de Meritens, Alexandre; Kim, Julia; Dinkelspiel, Helen; Chapman-Davis, Eloise; Caputo, Thomas; Holcomb, Kevin M
2017-02-01
Single-site laparoscopy has proven to be a desirable option for patients undergoing gynecologic surgery, with some studies indicating improved cosmesis and less perioperative pain compared with standard approaches. This study describes the safety and feasibility of a novel robotic laparoendoscopic single-site surgery (R-LESS) platform as it is incorporated into a surgeon's practice with extensive multiport robotic surgical experience but limited LESS experience. We reviewed 83 women undergoing R-LESS by a single surgeon from September 2013 through August 2015. Operative times (total operative time, console time, docking time) were collected prospectively for the first 53 cases, and total operative time was collected retrospectively for the next 30 cases. Clinical parameters, including age, estimated blood loss, body mass index (BMI), prior abdominal surgeries, conversion to laparotomy, procedure type, uterine weight, length of hospital stay, and complications, were retrospectively collected from medical charts. Eighty-two of 83 surgeries were completed successfully with a single incision. One surgery was converted to multiport robotics for para-aortic lymph node dissection. Twelve surgeries were performed for cancer (ovary 1, uterus 8, and cervix 3). Eight patients underwent pelvic lymph node biopsy. The median total operative time for hysterectomies was 128 minutes (range, 60-275). After the first 13 hysterectomies the total operative time and the console time decreased significantly from 165.3 to 131.1 minutes (p = .032) and from 84.9 to 57.1 minutes (p = .028), respectively. Mean docking time halved from 7.8 minutes to 3.4 minutes comparing the first 10 cases to the last 10 cases. Surgical times were longer with larger BMIs, but the console time decreased with experience regardless of BMI. The mean uterine weight was 164 g (range, 30-460). Complications included 2 umbilical hernias (2.4%) and 1 conversion to multiport. In conclusion, R-LESS is a feasible and safe surgical platform for gynecologic procedures. A small number of cases are needed to significantly improve operative times when it is introduced on a surgeon's practice with limited experience in LESS but familiar with robotic surgery. Further study is needed to investigate the cost, benefits, and long-term outcomes of R-LESS. Published by Elsevier Inc.
Liborg: a lidar-based robot for efficient 3D mapping
NASA Astrophysics Data System (ADS)
Vlaminck, Michiel; Luong, Hiep; Philips, Wilfried
2017-09-01
In this work we present Liborg, a spatial mapping and localization system that is able to acquire 3D models on the y using data originated from lidar sensors. The novelty of this work is in the highly efficient way we deal with the tremendous amount of data to guarantee fast execution times while preserving sufficiently high accuracy. The proposed solution is based on a multi-resolution technique based on octrees. The paper discusses and evaluates the main benefits of our approach including its efficiency regarding building and updating the map and its compactness regarding compressing the map. In addition, the paper presents a working prototype consisting of a robot equipped with a Velodyne Lidar Puck (VLP-16) and controlled by a Raspberry Pi serving as an independent acquisition platform.
Special Weapons Observation Remote recon Direct Action System (SWORDS)
2007-11-01
platform, the Talon, is equipped with a lithium - ion battery which provides a four hour operating life. The SWORDS has been used in military experiments...a four inch curb. The unmanned armed robot weights approximately 200 pounds. The robot’s platform, the Talon, is equipped with a lithium - ion battery which
Structuring Formal Control Systems Specifications for Reuse: Surviving Hardware Changes
NASA Technical Reports Server (NTRS)
Thompson, Jeffrey M.; Heimdahl, Mats P. E.; Erickson, Debra M.
2000-01-01
Formal capture and analysis of the required behavior of control systems have many advantages. For instance, it encourages rigorous requirements analysis, the required behavior is unambiguously defined, and we can assure that various safety properties are satisfied. Formal modeling is, however, a costly and time consuming process and if one could reuse the formal models over a family of products, significant cost savings would be realized. In an ongoing project we are investigating how to structure state-based models to achieve a high level of reusability within product families. In this paper we discuss a high-level structure of requirements models that achieves reusability of the desired control behavior across varying hardware platforms in a product family. The structuring approach is demonstrated through a case study in the mobile robotics domain where the desired robot behavior is reused on two diverse platforms-one commercial mobile platform and one build in-house. We use our language RSML (-e) to capture the control behavior for reuse and our tool NIMBUS to demonstrate how the formal specification can be validated and used as a prototype on the two platforms.
An Effective Construction Method of Modular Manipulator 3D Virtual Simulation Platform
NASA Astrophysics Data System (ADS)
Li, Xianhua; Lv, Lei; Sheng, Rui; Sun, Qing; Zhang, Leigang
2018-06-01
This work discusses about a fast and efficient method of constructing an open 3D manipulator virtual simulation platform which make it easier for teachers and students to learn about positive and inverse kinematics of a robot manipulator. The method was carried out using MATLAB. In which, the Robotics Toolbox, MATLAB GUI and 3D animation with the help of modelling using SolidWorks, were fully applied to produce a good visualization of the system. The advantages of using quickly build is its powerful function of the input and output and its ability to simulate a 3D manipulator realistically. In this article, a Schunk six DOF modular manipulator was constructed by the author's research group to be used as example. The implementation steps of this method was detailed described, and thereafter, a high-level open and realistic visualization manipulator 3D virtual simulation platform was achieved. With the graphs obtained from simulation, the test results show that the manipulator 3D virtual simulation platform can be constructed quickly with good usability and high maneuverability, and it can meet the needs of scientific research and teaching.
Final matches of the FIRST regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
Students cheer their team during final matches at the 1999 Southeastern Regional robotic competition at the KSC Visitor Complex. Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow-like disks from the floor, climb onto a platform (with flags), as well as raise the cache of pillows, maneuvered by student teams behind protective walls. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers by pairing engineers and corporations with student teams.
Toward a framework for levels of robot autonomy in human-robot interaction.
Beer, Jenay M; Fisk, Arthur D; Rogers, Wendy A
2014-07-01
A critical construct related to human-robot interaction (HRI) is autonomy, which varies widely across robot platforms. Levels of robot autonomy (LORA), ranging from teleoperation to fully autonomous systems, influence the way in which humans and robots may interact with one another. Thus, there is a need to understand HRI by identifying variables that influence - and are influenced by - robot autonomy. Our overarching goal is to develop a framework for levels of robot autonomy in HRI. To reach this goal, the framework draws links between HRI and human-automation interaction, a field with a long history of studying and understanding human-related variables. The construct of autonomy is reviewed and redefined within the context of HRI. Additionally, the framework proposes a process for determining a robot's autonomy level, by categorizing autonomy along a 10-point taxonomy. The framework is intended to be treated as guidelines to determine autonomy, categorize the LORA along a qualitative taxonomy, and consider which HRI variables (e.g., acceptance, situation awareness, reliability) may be influenced by the LORA.
A tracked robot with novel bio-inspired passive "legs".
Sun, Bo; Jing, Xingjian
2017-01-01
For track-based robots, an important aspect is the suppression design, which determines the trafficability and comfort of the whole system. The trafficability limits the robot's working capability, and the riding comfort limits the robot's working effectiveness, especially with some sensitive instruments mounted on or operated. To these aims, a track-based robot equipped with a novel passive bio-inspired suspension is designed and studied systematically in this paper. Animal or insects have very special leg or limb structures which are good for motion control and adaptable to different environments. Inspired by this, a new track-based robot is designed with novel "legs" for connecting the loading wheels to the robot body. Each leg is designed with passive structures and can achieve very high loading capacity but low dynamic stiffness such that the robot can move on rough ground similar to a multi-leg animal or insect. Therefore, the trafficability and riding comfort can be significantly improved without losing loading capacity. The new track-based robot can be well applied to various engineering tasks for providing a stable moving platform of high mobility, better trafficability and excellent loading capacity.
NASA Technical Reports Server (NTRS)
Martin, William Campbell
2011-01-01
The Jet Propulsion Laboratory (JPL) is developing the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) to assist in manned space missions. One of the proposed targets for this robotic vehicle is a near-Earth asteroid (NEA), which typically exhibit a surface gravity of only a few micro-g. In order to properly test ATHLETE in such an environment, the development team has constructed an inverted Stewart platform testbed that acts as a robotic motion simulator. This project focused on creating physical simulation software that is able to predict how ATHLETE will function on and around a NEA. The corresponding platform configurations are calculated and then passed to the testbed to control ATHLETE's motion. In addition, imitation attitude, imitation attitude control thrusters were designed and fabricated for use on ATHLETE. These utilize a combination of high power LEDs and audio amplifiers to provide visual and auditory cues that correspond to the physics simulation.
NASA Astrophysics Data System (ADS)
Gurbani, Saumya S.; Wilkening, Paul; Zhao, Mingtao; Gonenc, Berk; Cheon, Gyeong Woo; Iordachita, Iulian I.; Chien, Wade; Taylor, Russell H.; Niparko, John K.; Kang, Jin U.
2014-05-01
Cochlear implantation offers the potential to restore sensitive hearing in patients with severe to profound deafness. However, surgical placement of the electrode array within the cochlea can produce trauma to sensorineural components, particularly if the initial turn of the cochlea is not successfully navigated as the array is advanced. In this work, we present a robot-mounted common-path swept-source optical coherence tomography endoscopic platform for three-dimensional (3-D) optical coherence tomography (OCT) registration and preoperative surgical planning for cochlear implant surgery. The platform is composed of a common-path 600-μm diameter fiber optic rotary probe attached to a five degrees of freedom robot capable of 1 μm precision movement. The system is tested on a dry fixed ex vivo human temporal bone, and we demonstrate the feasibility of a 3-D OCT registration of the cochlea to accurately describe the spatial and angular profiles of the canal formed by the scala tympani into the first cochlear turn.
Final matches of the FIRST regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
During final matches at the 1999 Southeastern Regional robotic competition at the KSC Visitor Complex, referees in opposite corners and student teams watch as two robots raise their pillow disks to a height of eight feet, one of the goals of the competition. Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve the pillow disks from the floor, climb onto a platform (with flags), as well as raise the cache of pillows, maneuvered by student teams behind protective walls. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers by pairing engineers and corporations with student teams.
An advanced rehabilitation robotic system for augmenting healthcare.
Hu, John; Lim, Yi-Je; Ding, Ye; Paluska, Daniel; Solochek, Aaron; Laffery, David; Bonato, Paolo; Marchessault, Ronald
2011-01-01
Emerging technologies such as rehabilitation robots (RehaBot) for retraining upper and lower limb functions have shown to carry tremendous potential to improve rehabilitation outcomes. Hstar Technologies is developing a revolutionary rehabilitation robot system enhancing healthcare quality for patients with neurological and muscular injuries or functional impairments. The design of RehaBot is a safe and robust system that can be run at a rehabilitation hospital under the direct monitoring and interactive supervision control and at a remote site via telepresence operation control. RehaBot has a wearable robotic structure design like exoskeleton, which employs a unique robotic actuation--Series Elastic Actuator. These electric actuators provide robotic structural compliance, safety, flexibility, and required strength for upper extremity dexterous manipulation rehabilitation training. RehaBot also features a novel non-treadmill paddle platform capable of haptics feedback locomotion rehabilitation training. In this paper, we concern mainly about the motor incomplete patient and rehabilitation applications.