Science.gov

Sample records for robot-driven gait orthosis

  1. Effects of robot-driven gait orthosis treadmill training on the autonomic response in rehabilitation-responsive stroke and cervical spondylotic myelopathy patients.

    PubMed

    Magagnin, Valentina; Bo, Ivano; Turiel, Maurizio; Fornari, Maurizio; Caiani, Enrico G; Porta, Alberto

    2010-06-01

    Body weight supported treadmill training (BWSTT) assisted with a robotic-driven gait orthosis is utilized in rehabilitation of individuals with lost motor skills. A typical rehabilitation session included: sitting, standing, suspension, robotic-assisted walking at 1.5 and 2.5km/h, respectively with 50% body weight support and recovery. While the effects of robotic-assisted BWSTT on motor performances were deeply studied, the influences on the cardiovascular control are still unknown. The aim of the study was to evaluate in stroke (ST) and cervical spondylotic myelopathy (CSM) patients: (1) the autonomic response during a traditional robotic-assisted BWSTT session of motor rehabilitation; (2) the effects of 30 daily sessions of BWSTT on cardiovascular regulation. The autonomic response was assessed through symbolic analysis of short-term heart rate variability in 11 pathologic subjects (5 ST and 6 CSM patients) whose motor skills were improved as a result of the rehabilitation therapy. Results showed variable individual responses to the rehabilitation session in ST patients at the beginning of the therapy. At the end of the rehabilitation process, the responses of ST patients were less variable and more similar to those previously observed in healthy subjects. CSM patients exhibited an exaggerated vagal response to the fastest walking phase during the first rehabilitative session. This abnormal response was limited after the last rehabilitative session. We conclude that robotic-assisted BWSTT is helpful in restoring cardiovascular control in rehabilitation-responsive ST patients and limiting vagal responses in rehabilitation-responsive CSM patients.

  2. Effects of orthosis on balance and gait in healthy adults

    PubMed Central

    Kim, Myung-Joon; Choi, Yeong-Deok; Lee, Jung-Ho

    2015-01-01

    [Purpose] This study evaluated the effects of an oral orthosis that can change body alignment on the balance ability and gait of healthy adults. [Subjects and Methods] The subjects of this study were 21 University students. A gait analyzer was used to analyze the subjects’ balance ability and gait quality. Two walking speeds were used: 2 km/h, a comfortable speed, and 4 km/h, a slightly faster walking speed. [Results] The step length, and base of gait at 2 km/h differed significantly after the intervention. The total step time and step length increased significantly after the intervention. Furthermore, the total base of gait decreased significantly after the intervention. The step times of the left lower limb at 4 km/h differed significantly after the intervention. [Conclusion] The oral orthosis tested positively affects the balance ability and gait of healthy adults. PMID:26180365

  3. How does wearing a lumbar orthosis interfere with gait initiation?

    PubMed

    Cusin, Etienne; Do, Manh-C; Rougier, Patrice R

    2017-06-01

    The interaction between medical devices and the human body must be evaluated in standardised laboratory tests. Since wearing a lumbar orthosis is assumed to reduce lower back mobility and reinforce trunk movement control through imposed lordosis, this device is expected to affect gait initiation which requires trunk and pelvic rotations. Thirteen healthy subjects were asked to initiate gait without orthosis (control) and orthosis with or without lordosis constraints. The biomechanical parameters usually reported for gait initiation were studied and no statistically significant effects were found. Indeed, the duration of the anticipation, and execution phases and maximal instantaneous velocity of centre of gravity at the end of the first step were not modified by the experimental conditions. The lack of interference underlines the robustness of the gait initiation parameters, which therefore may lead subjects to adopt adaptive strategies to retain this invariance. Future experiments should be conducted to highlight these strategies. Practitioner Summary: The aim of this study was to investigate the effect of various lumbar orthosis characteristics on gait initiation organisation. The results, based on a dynamic analysis of balance strategies, showed that the medical device had no repercussions on movement control. Several explanations are proposed, which should be validated by future studies.

  4. Adaptive impedance control of a robotic orthosis for gait rehabilitation.

    PubMed

    Hussain, Shahid; Xie, Sheng Q; Jamwal, Prashant K

    2013-06-01

    Intervention of robotic devices in the field of physical gait therapy can help in providing repetitive, systematic, and economically viable training sessions. Interactive or assist-as-needed (AAN) gait training encourages patient voluntary participation in the robotic gait training process which may aid in rapid motor function recovery. In this paper, a lightweight robotic gait training orthosis with two actuated and four passive degrees of freedom (DOFs) is proposed. The actuated DOFs were powered by pneumatic muscle actuators. An AAN gait training paradigm based on adaptive impedance control was developed to provide interactive robotic gait training. The proposed adaptive impedance control scheme adapts the robotic assistance according to the disability level and voluntary participation of human subjects. The robotic orthosis was operated in two gait training modes, namely, inactive mode and active mode, to evaluate the performance of the proposed control scheme. The adaptive impedance control scheme was evaluated on ten neurologically intact subjects. The experimental results demonstrate that an increase in voluntary participation of human subjects resulted in a decrease of the robotic assistance and vice versa. Further clinical evaluations with neurologically impaired subjects are required to establish the therapeutic efficacy of the adaptive-impedance-control-based AAN gait training strategy.

  5. Pneumatic interactive gait rehabilitation orthosis: design and preliminary testing.

    PubMed

    Belforte, G; Eula, G; Appendino, S; Sirolli, S

    2011-02-01

    Motor rehabilitation techniques based on passive movement of the lower limbs have been developed over the past 15 years. Gait training automation is the latest innovation in these techniques. This paper describes the design and development of a pneumatic interactive gait rehabilitation orthosis (PIGRO), as well as the first experimental results obtained with healthy subjects. PIGRO consists of a modular and size-adaptable exoskeleton, pneumatic actuation systems for the six actuated degrees of freedom (DoF), and a control unit. The foot orthosis and ankle actuation can be removed and/or replaced with orthopaedic shoes so as to permit gait rehabilitation while advancing between parallel bars with ground contact and partial body weight support (i.e. not walking in place). Control logic provides closed-loop position control independently on each joint, with position feedback for each joint in real time. Imposed curves are physiological joint angles: it is also possible to choose between activating one or both legs and to modify curves to obtain different gait patterns if required. The paper concludes with a presentation of experimental results for the device's performance.

  6. Virtual gait training for children with cerebral palsy using the Lokomat gait orthosis.

    PubMed

    Koenig, Alexander; Wellner, Mathias; Köneke, Susan; Meyer-Heim, Andreas; Lünenburger, Lars; Riener, Robert

    2008-01-01

    The Lokomat gait orthosis was developed in the Spinal Cord Injury Center at the University Hospital Balgrist Zurich and provides automatic gait training for patients with neurological gait impairments, such as Cerebral Palsy (CP). Each patient undergoes a task-oriented Lokomat rehabilitation training program via a virtual reality setup. In four virtual scenarios, the patient is able to exercise tasks such as wading through water, playing soccer, overstepping obstacles or training in a street scenario, each task offering varying levels of difficulty. Patients provided positive feedback in reference to the utilized haptic method, specifically addressing the sufficient degree of realism. In a single case study, we verified the task difficulty.

  7. Gait generation for powered Hip-Ankle-Linkage-Orthosis.

    PubMed

    Jaeryoung Lee; Mizumoto, Ryota; Obinata, Goro; Genda, Eiichi; Stefanov, Dimitar; Aoki, Hirofumi; Yanling Pei

    2015-08-01

    A hip-knee-ankle-foot orthotic system called `HALO'(Hip and Ankle Linked Orthosis) for paraplegic walking has been developed in our previous study. Each ankle joint of the HALO system is linked with a medial single joint via a wire which allows both feet of the orthosis to stay always parallel to the floor during walking and assists swinging the leg. The tests of the HALO system demonstrated that it allows smoother walking and easy don/doff. In order to improve further the characteristics of the previous design, we started a new project called pHALO aiming at further reducing of the energy expenditure during walking. As a difference from the previous solution where ankle joints were restrained, the new solution will incorporate two actuators to control the ankle joints angles. As an intermediate step from the development of the pHALO system, in this study we added to the existing system a feedback PI controller to control the ankle joint angle of the right foot in the push-off phase and conducted an experiment to evaluate the effect of the new design on the walking patterns and energy efficiency. The results showed longer stride length, faster gait speed, smaller variation of the CoG, and less energy consumption.

  8. Assessment of the Chignon dynamic ankle-foot orthosis using instrumented gait analysis in hemiparetic adults.

    PubMed

    Bleyenheuft, C; Caty, G; Lejeune, T; Detrembleur, C

    2008-04-01

    In the hemiplegic adult, gait is frequently perturbed by lack of ankle dorsiflexion at toe-off and may prompt prescription of an ankle-foot orthosis (AFO). Our objective was to evaluate the effect on gait of a dynamic AFO (the Chignon orthosis) in comparison with a prefabricated AFO (PAFO). Ten chronic hemiplegic patients performed a 10 m gait test and then underwent an instrumented treadmill gait test under three different sets of conditions (without an orthosis, with a PAFO and with a Chignon orthosis). The energy cost was calculated by measuring the oxygen consumption during gait. The patients' free-walking speed was higher with the Chignon orthosis (0.81+/-0.25 ms(-1)) than without it (0.64+/-0.25 ms(-1); p<0.001). The ankle's segmental kinematics were better with the Chignon orthosis than without an orthosis, notably in terms of ankle position at heel strike (-0.8 degrees +/-4.6 versus -7.9 degrees +/-8.3; p=0.009) and ankle dorsiflexion at toe-off (1.7 degrees +/-4.6 versus -5.5 degrees +/-7.2; p=0.006). External mechanical work was lower with both the PAFO (0.61+/-0.2 J kg(-1)m(-1)) and the Chignon orthosis (0.61+/-0.23 J kg(-1)m(-1)), relative to gait without an orthosis (0.73+/-0.25 J kg(-1)m(-1); p=0.003). Total mechanical work was also lower with the PAFO (0.9+/-0.25 J kg(-1)m(-1)) and the Chignon orthosis (0.87+/-0.25 J kg(-1)m(-1)), relative to gait without an orthosis (1.09+/-0.37 J kg(-1)m(-1); p=0.001), whereas the reduction in energy cost with orthosis use was borderline-significant (p=0.06). Mechanical work was similarly improved by the two orthoses. The Chignon orthosis improved the free-walking speed and the ankle's segmental kinematics.

  9. Ergonomy of paraplegic patients working with a reciprocating gait orthosis.

    PubMed

    Bernardi, M; Canale, I; Felici, F; Macaluso, A; Marchettoni, P; Sproviero, E

    1995-08-01

    A reciprocating gait orthosis (RGO) is, among others, the most widely adopted device to restore the standing and walking capability of paraplegic patients. The aim of the present study was the evaluation of the energy demand (VO2), and cardiopulmonary load (HR and VE) imposed on the subject by different working tasks while sitting in a wheelchair or standing using a RGO. In addition, a comparison with the performance of normal subjects was also attempted. The RGO use allowed a dramatic improvement of patients' mobility and reach space in the workplace. A further advantage provided by the use of the RGO was represented by the increased mobility of the subjects with respect to the wheelchair confined situation. The energy demand and the cardiorespiratory load imposed on the subjects by the use of the RGO were not different from those observed both in the same subjects sitting in a wheelchair and in the controls. The energy demand slightly exceeded the values typical of light work and was, thus, compatible with the normal duration of a working day. On the other hand, the cardiac load corresponded to that typical of moderate activity, thus limiting the duration of the working task to 5-8 h. Based on the ergometry test, all of the working activities considered can be classified as aerobic activities, energy demand being under the ventilatory threshold.

  10. A two-degree-of-freedom motor-powered gait orthosis for spinal cord injury patients.

    PubMed

    Ohta, Y; Yano, H; Suzuki, R; Yoshida, M; Kawashima, N; Nakazawa, K

    2007-08-01

    A number of orthoses have been developed to restore stance and walking in paraplegic subjects. Compliance, however, has been limited, mainly owing to walking effort. Use of the forces produced by actuators is an effective way to solve the problem of the considerable effort required for orthotic gait, namely high muscular effort and high energy expenditure. The purpose of the present study was to investigate the effects of assistance by external actuators on the orthotic gait of spinal cord injury (SCI) patients. Two kinds of linear actuator were developed by using direct current (d.c.) motors for assisting the knee and hip joint of a gait orthosis. They were mounted on the knee and hip joint of a commercial advanced reciprocating gait orthosis (ARGO), and a new two-degree-of-freedom externally powered gait orthosis was thus developed. The orthosis was assessed through inter-subject experiments on five male adult complete SCI patients. Owing to the short training period available for the assisted gait, simultaneous operation of both joint actuators was not conducted: either the knee actuation or the hip actuation was executed only. Thus, the knee actuator and the hip actuator were assessed with a T12 subject and with subjects for T5, T8, T11, and T12 respectively. The motions of the gaits, assisted by the linear actuators, were measured by a Vicon 370 system, and the general gait parameters and compensatory motions were evaluated. Results demonstrated that (a) all subjects could walk without falling, assisted either by the knee or the hip actuator; (b) both the knee and hip joint actuator increased the gait speed and the step length; (c) the knee flexion produced by the orthosis improved the dynamic cosmesis of walking; and (d) lateral compensatory motions as well as vertical ones tended to decrease when the hip joint was assisted, which could contribute to a reduction in walking effort.

  11. Design and simulation of a pneumatic, stored-energy, hybrid orthosis for gait restoration.

    PubMed

    Durfee, William K; Rivard, Adam

    2005-11-01

    Loss of mobility due to lower limb paralysis is a common result of thoracic level spinal cord injury. Functional electrical stimulation (FES) can restore primitive gait in the vicinity of a wheelchair by using electrical stimulation to generate muscle contractions. A new concept for FES-assisted gait is presented that combines electrical stimulation with an orthosis that contains a fluid power system to store and transfer energy during the gait cycle. The energy storage orthosis (ESO) can be driven through a complete gait cycle using only stimulation of the quadriceps muscles. The conceptual design of the ESO was completed and implemented in a dynamic simulation model and in a benchtop prototype for engineering measurements. No studies were conducted with human subjects. The results demonstrate the potential of the ESO concept for a feasible gait-assist system and the validity of the simulation model as a means for designing the system.

  12. Evaluation of gait symmetry in poliomyelitis subjects: Comparison of a conventional knee-ankle-foot orthosis and a new powered knee-ankle-foot orthosis.

    PubMed

    Arazpour, Mokhtar; Ahmadi, Fardin; Bahramizadeh, Mahmood; Samadian, Mohammad; Mousavi, Mohammad Ebrahim; Bani, Monireh Ahmadi; Hutchins, Stephen W

    2016-12-01

    Compared to able-bodied subjects, subjects with post-polio syndrome and poliomyelitis demonstrate a preference for weight-bearing on the non-paretic limb, causing gait asymmetry. The purpose of this study was to evaluate the gait symmetry of the poliomyelitis subjects when ambulating with either a drop-locked knee-ankle-foot orthosis or a newly developed powered knee-ankle-foot orthosis. Quasi experimental study. Seven subjects with poliomyelitis who routinely wore conventional knee-ankle-foot orthoses participated in this study and received training to enable them to ambulate with the powered knee-ankle-foot orthosis on level ground, prior to gait analysis. There were no significant differences in the gait symmetry index of step length (p = 0.085), stance time (p = 0.082), double-limb support time (p = 0.929), or speed of walking (p = 0.325) between the two test conditions. However, using the new powered knee-ankle-foot orthosis improved the symmetry index in step width (p = 0.037), swing time (p = 0.014), stance phase percentage (p = 0.008), and knee flexion during swing phase (p ⩽ 0.001) compared to wearing the drop-locked knee-ankle-foot orthosis. The use of a powered knee-ankle-foot orthosis for ambulation by poliomyelitis subjects affects gait symmetry in the base of support, swing time, stance phase percentage, and knee flexion during swing phase. A new powered knee-ankle-foot orthosis can improve gait symmetry for poliomyelitis subjects by influencing step width, swing time, stance time percentage, and knee flexion during swing phase when compared to ambulating with a drop-locked knee-ankle-foot orthosis. © The International Society for Prosthetics and Orthotics 2015.

  13. Brain-computer interface controlled robotic gait orthosis.

    PubMed

    Do, An H; Wang, Po T; King, Christine E; Chun, Sophia N; Nenadic, Zoran

    2013-12-09

    Excessive reliance on wheelchairs in individuals with tetraplegia or paraplegia due to spinal cord injury (SCI) leads to many medical co-morbidities, such as cardiovascular disease, metabolic derangements, osteoporosis, and pressure ulcers. Treatment of these conditions contributes to the majority of SCI health care costs. Restoring able-body-like ambulation in this patient population can potentially reduce the incidence of these medical co-morbidities, in addition to increasing independence and quality of life. However, no biomedical solution exists that can reverse this loss of neurological function, and hence novel methods are needed. Brain-computer interface (BCI) controlled lower extremity prostheses may constitute one such novel approach. One able-bodied subject and one subject with paraplegia due to SCI underwent electroencephalogram (EEG) recordings while engaged in alternating epochs of idling and walking kinesthetic motor imagery (KMI). These data were analyzed to generate an EEG prediction model for online BCI operation. A commercial robotic gait orthosis (RoGO) system (suspended over a treadmill) was interfaced with the BCI computer to allow for computerized control. The subjects were then tasked to perform five, 5-min-long online sessions where they ambulated using the BCI-RoGO system as prompted by computerized cues. The performance of this system was assessed with cross-correlation analysis, and omission and false alarm rates. The offline accuracy of the EEG prediction model averaged 86.30% across both subjects (chance: 50%). The cross-correlation between instructional cues and the BCI-RoGO walking epochs averaged across all subjects and all sessions was 0.812 ± 0.048 (p-value <10(-4)). Also, there were on average 0.8 false alarms per session and no omissions. These results provide preliminary evidence that restoring brain-controlled ambulation after SCI is feasible. Future work will test the function of this system in a population of subjects with

  14. Passive-dynamic ankle-foot orthosis replicates soleus but not gastrocnemius muscle function during stance in gait: Insights for orthosis prescription.

    PubMed

    Arch, Elisa S; Stanhope, Steven J; Higginson, Jill S

    2016-10-01

    Passive-dynamic ankle-foot orthosis characteristics, including bending stiffness, should be customized for individuals. However, while conventions for customizing passive-dynamic ankle-foot orthosis characteristics are often described and implemented in clinical practice, there is little evidence to explain their biomechanical rationale. To develop and combine a model of a customized passive-dynamic ankle-foot orthosis with a healthy musculoskeletal model and use simulation tools to explore the influence of passive-dynamic ankle-foot orthosis bending stiffness on plantar flexor function during gait. Dual case study. The customized passive-dynamic ankle-foot orthosis characteristics were integrated into a healthy musculoskeletal model available in OpenSim. Quasi-static forward dynamic simulations tracked experimental gait data under several passive-dynamic ankle-foot orthosis conditions. Predicted muscle activations were calculated through a computed muscle control optimization scheme. Simulations predicted that the passive-dynamic ankle-foot orthoses substituted for soleus but not gastrocnemius function. Induced acceleration analyses revealed the passive-dynamic ankle-foot orthosis acts like a uniarticular plantar flexor by inducing knee extension accelerations, which are counterproductive to natural knee kinematics in early midstance. These passive-dynamic ankle-foot orthoses can provide plantar flexion moments during mid and late stance to supplement insufficient plantar flexor strength. However, the passive-dynamic ankle-foot orthoses negatively influenced knee kinematics in early midstance. Identifying the role of passive-dynamic ankle-foot orthosis stiffness during gait provides biomechanical rationale for how to customize passive-dynamic ankle-foot orthoses for patients. Furthermore, these findings can be used in the future as the basis for developing objective prescription models to help drive the customization of passive-dynamic ankle-foot orthosis

  15. Engineering evaluation of the energy-storing orthosis FES gait system.

    PubMed

    Kangude, Abhijit; Burgstahler, Brett; Durfee, William

    2010-01-01

    A system to restore walking in the vicinity of a wheelchair for people with paraplegia resulting from spinal cord injury is under development. The approach combines single channel surface electrical stimulation with an orthosis. The orthosis is spring loaded and contains a pneumatic system that stores energy during knee extension caused by quadriceps stimulation and transfers it to hip joint for hip extension. A laboratory version of the prototype of the gait system has been fabricated and engineering bench tests were performed. The paper presents the design of the wearable prototype and results of bench testing.

  16. Preliminary evaluation of a controlled-brake orthosis for FES-aided gait.

    PubMed

    Goldfarb, Michael; Korkowski, Kurt; Harrold, Brent; Durfee, William

    2003-09-01

    A hybrid functional-electrical stimulation (FES) gait system that incorporates a computer-controlled orthosis system has been developed to address the problems of rapid muscle fatigue and poor movement control that are characteristic of FES-aided gait. The orthosis is a long-leg brace that contains controllable friction brakes at both hip and knee joints. The system achieves desirable limb trajectories by utilizing the stimulated muscles as a source of unregulated power and regulating the power at each joint by computer control of the friction brakes. Muscle fatigue is reduced by locking the controllable brakes to provide the isometric joint torques necessary during stance. The hybrid gait system was evaluated and compared to conventional four channel FES-aided gait using four subjects with paraplegia. The results demonstrated significant reduction in muscle fatigue and improvement in trajectory control when using the orthosis combined with FES compared to using FES alone. Results for distance and speed improvements varied across subjects. Considerable work remains in the design of the hardware before the system is feasible for use outside the laboratory.

  17. A prototype of an adjustable advanced reciprocating gait orthosis (ARGO) for spinal cord injury (SCI).

    PubMed

    Scivoletto, G; Mancini, M; Fiorelli, E; Morganti, B; Molinari, M

    2003-03-01

    To develop a reciprocating gait orthosis which could be used in different sized patients. Clinical trial and orthotic development. A large rehabilitation hospital in Rome, Italy To carry out this project normal reciprocating gait orthosis parts were used. The device was modified to adjust the hip-ankle height, and the hip-hip distance. It was tested, by five patients already walking with standard ARGO, to evaluate the performances of the orthosis. The device has been tested on seven newly injured patients fulfilling specific criteria of different height and weight. Prototype suitability; patients appreciation. The device can be used for persons between 1.60 m and 1.85 m tall, weighing up to 100 kg. The orthosis allows an upright position without the use of the hands, and walking with a walker or with two canes. The foot orthosis cover sizes 36-40 (British 3-7) and 41-45 (British 7-11). With the exception of donning, doffing and lifting, the walking performances of the prototype and the general appreciation is comparable with those of a standard device. After a short period of training all seven patients were able to walk in the parallel bars. All of them expressed general appreciation for the device; despite this only four patients wanted the orthosis, two refused it and one has not decided yet. The prototype allows the same standing and walking performances of normal ARGO. It could be used in spinal cord injury patients to let them test the potential of the device and thus be useful in the effort to reduce the percentage of ARGO rejection.

  18. Effects of altering heel wedge properties on gait with the Intrepid Dynamic Exoskeletal Orthosis.

    PubMed

    Ikeda, Andrea J; Fergason, John R; Wilken, Jason M

    2017-09-01

    The Intrepid Dynamic Exoskeletal Orthosis is a custom-made dynamic response carbon fiber device. A heel wedge, which sits in the shoe, is an integral part of the orthosis-heel wedge-shoe system. Because the device restricts ankle movement, the system must compensate to simulate plantarflexion and allow smooth forward progression during gait. To determine the influence of wedge height and durometer on the walking gait of individuals using the Intrepid Dynamic Exoskeletal Orthosis. Repeated measures. Twelve individuals walked over level ground with their Intrepid Dynamic Exoskeletal Orthosis and six different heel wedges of soft or firm durometer and 1, 2, or 3 cm height. Center of pressure velocity, joint moments, and roll-over shape were calculated for each wedge. Height and durometer significantly affected time to peak center of pressure velocity, time to peak internal dorsiflexion and knee extension moments, time to ankle moment zero crossing, and roll-over shape center of curvature anterior-posterior position. Wedge height had a significant influence on peak center of pressure velocity, peak dorsiflexion moment, time to peak knee extension moment, and roll-over shape radius and vertical center of curvature. Changes in wedge height and durometer systematically affected foot loading. Participants preferred wedges which produced ankle moment zero crossing timing, peak internal knee extension moment timing, and roll-over shape center of curvature anterior-posterior position close to that of able-bodied individuals. Clinical relevance Adjusting the heel wedge is a simple, straightforward way to adjust the orthosis-heel wedge-shoe system. Changing wedge height and durometer significantly alters loading of the foot and has great potential to improve an individual's gait.

  19. Single channel hybrid FES gait system using an energy storing orthosis: preliminary design.

    PubMed

    Kangude, Abhijit; Burgstahler, Brett; Kakastys, Jesse; Durfee, William

    2009-01-01

    A new system for paraplegic gait by electrical stimulation is presented. The system combines electrical stimulation of the paralyzed quadriceps muscle with a hip-knee orthosis. The orthosis is spring-loaded and contains pneumatic components that store and transfer the energy from knee extension caused by quadriceps stimulation to a pneumatic actuator that drives hip motion. In this manner, cyclic hip and knee motion with arbitrary timing can be achieved using a single channel of surface stimulation. Previous work developed a dynamic model and bench top prototype of the energy storing system. Simulation and design prototypes are presented with the eventual goal of developing a wearable version of the complete gait system.

  20. The Effects of Foot Orthosis on the Gait Ability of College Students in Their 20s with Flat Feet

    PubMed Central

    Seo, Kyo Chul; Park, Kwang Yong

    2014-01-01

    [Purpose] This study examined the effects of foot orthosis on the gait ability of college students in their 20s with flat feet. [Subjects and Methods] The subjects were 20 college students who had been diagnosed with flat feet. The subjects’ step time, step length, stride time, stride length, and gait velocity were measured using the VICON Motion System (Vicon, Oxford, UK) prior to and while wearing foot orthoses. The resulting data were analyzed using SPSS v. 12.0. [Results] The subject’s step time and stride time significantly decreased for both feet after they began using foot orthosis, and stride length and gait velocity significantly increased in both feet orthosis; however, step length did not significantly increase on either side. [Conclusions] College students with flat feet saw an improvement in elements of their gait while using the foot orthosis. The results of this study verified that students with flat feet might walk more efficiently if they received active gait training via long-term use of foot orthosis. PMID:25364114

  1. The Influence of Rocker Bar Ankle Foot Orthosis on Gait in Patients with Chronic Hemiplegia.

    PubMed

    Farmani, Farzad; Mohseni-Bandpei, Mohammad-Ali; Bahramizadeh, Mahmood; Aminian, Gholamreza; Abdoli, Ali; Sadeghi-Goghari, Mohammad

    2016-08-01

    This study aimed to evaluate the effect of rocker bar ankle foot orthosis (RAFO) on the spatiotemporal characteristics of gait in chronic hemiplegic patients compared with the effect of solid ankle foot orthosis (SAFO). Following ethical approval, 18 patients with chronic hemiplegia, at least 6 months post stroke, were investigated in barefoot condition, with SAFO and RAFO in random sequences. Their spatiotemporal characteristics were examined by 2 force platforms and a Vicon motion analysis system. There were significant changes in spatiotemporal outcome measures between barefoot condition and using SAFO and RAFO (P < .05). Compared with SAFO, RAFO resulted in significantly more step length, faster gait velocity, and less preswing time (P < .05), although no significant differences were seen regarding step width and cadence (P > .05). Furthermore, RAFO led to significant increases in hip extension and knee flexion at toe-off, whereas SAFO did not change these parameters (P < .05). Findings of the present study showed that RAFO further improves gait abilities in chronic hemiplegic patients compared with SAFO, which could be due to the positive effect of added rocker bar on push-off function during the late stance phase of gait. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  2. Orthosis Effects on the Gait of a Child with Infantile Tibia Vara

    PubMed Central

    Alsancak, Serap

    2015-01-01

    Infantile tibia vara (ITV) is an acquired form of tibial deformity associated with tibial varus and internal torsion. As there is currently insufficient data available on the effects of orthotics on gait parameters, this study aimed to document the influence of orthosis on walking. A male infant with bilateral tibia vara used orthoses for five months. Gait evaluations were performed pre- and posttreatment for both legs. The kinematic parameters were collected by using a motion analysis system. The orthotic design principle was used to correct the femur and tibia. Posttreatment gait parameters were improved compared to pretreatment parameters. After 5 months, there was remarkable change in the stance-phase degrees of frontal plane hip joint abduction and knee joint varus. We found that orthoses were an effective treatment for the infantile tibia vara gait characteristics in this patient. Full-time use of single, upright knee-ankle-foot orthosis with a drop lock knee joint and application of corrective forces at five points along the full length of the limb were effective. PMID:26078903

  3. Performance of spinal cord injury individuals while standing with the Mohammad Taghi Karimi reciprocal gait orthosis (MTK-RGO).

    PubMed

    Karimi, Mohammad Taghi; Amiri, Pouya; Esrafilian, Amir; Sedigh, Jafar; Fatoye, Francis

    2013-03-01

    Most patients with spinal cord injury use a wheelchair to transfer from place to place, however they need to stand and walk with orthosis to improve their health status. Although many orthoses have been designed for paraplegic patients, they have experienced various problems while in use. A new type of reciprocal gait orthosis was designed in the Bioengineering Unit of Strathclyde University to solve the problems of the available orthoses. Since there was no research undertaken regarding testing of the new orthosis on paraplegic subjects, this study was aimed to evaluate the new orthosis during standing of paraplegic subjects. Five paraplegic patients with lesion level between T12 and L1 and aged matched normal subjects were recruited into this study. The stability of subjects was evaluated during quiet standing and while undertaking hand tasks during standing with the new orthosis and the knee ankle foot orthosis (KAFO). The difference between the performances of paraplegic subjects while standing with both orthoses, and between the function of normal and paraplegic subjects were compared using the paired t test and independent sample t test, respectively. The stability of paraplegic subjects in standing with the new orthosis was better than that of the KAFO orthosis (p < 0.05). Moreover, the force applied on the crutch differed between the orthoses. The functional performance of paraplegic subjects was better with the new orthosis compared with normal subjects. The performance of paraplegic subjects while standing with the new orthosis was better than the KAFO. Therefore, the new orthosis may be useful to improve standing and walking in patients with paraplegia.

  4. Reduced knee hyperextension after wearing a robotic knee orthosis during gait training--a case study.

    PubMed

    Mao, Yurong; Lo, Wai Leung; Xu, Guangqing; Li, Leonard Sheungwai; Li, Le; Huang, Dongfeng

    2015-01-01

    This case study describes the effects of a wearable dynamic knee orthosis to supplement walking training in a patient suffering knee hyperextension. The subject was a 57-year old female who was 3.5 years post-brain tumor surgery. She was presented with impaired right lower extremity muscle performance, increased lower extremity muscle tension, and right knee hyperextension. She reported pain at the right knee joint and tibialis anterior after 10 minutes of over-ground walk. Fifteen one-hour sessions of gait training with robotic knee orthosis (RKO) were provided an over 3 weeks period. The subject demonstrated improvement with right lower limb kinematic and kinetic measures of gait. Peak flexion degree and moment increased (from -4.99° to 13.47°, and from 0.18 Nm/kg to 0.20 Nm/kg respectively).Extension peak moment decreased from 1.03 Nm/kg to 0.53 Nm/kg. Knee joint force decreased from 0.68 N to 0.45 N. Ground reaction force (GRF) reduced from 11.06N to 10.11N. Berg Balance Scale (BBS) improved from 45/56 to 51/56. No difference was observed in Fugl-Meyer Assessment of the Lower limb (FMA-LE) scores. Gait training that integrates an intention-based RKO for correcting knee hyperextension can be clinically effective. The persistence and generalizability of these results need to be further investigated.

  5. Limb Salvage With Intrepid Dynamic Exoskeletal Orthosis Versus Transtibial Amputation: A Comparison of Functional Gait Outcomes.

    PubMed

    Mangan, Katharine I; Kingsbury, Trevor D; Mazzone, Brittney N; Wyatt, Marilynn P; Kuhn, Kevin M

    2016-12-01

    To determine if there is a difference in functional gait outcomes between patients with limb injuries treated with either transtibial amputation or limb preservation with the Intrepid Dynamic Exoskeletal Orthosis. Retrospective prognostic study. Tertiary referral military hospital. This study included 10 transtibial amputees and 10 limb preservation patients using the Intrepid Dynamic Exoskeletal Orthosis who were matched by body mass index after excluding for nontraumatic, proximal ipsilateral, contralateral, spine, or traumatic brain injuries. Transtibial amputation patients were also excluded if they did not have a gait study between 6 and 12 months after independent ambulation. Limb preservation were excluded if they did not complete the "Return to Run" program. An observational study of functional outcomes using instrumented gait analysis. Spatiotemporal, kinetic (vertical ground reaction force), unified deformable power, work, and efficiency. Limb preservation patients walked with a significantly slower cadence (P = 0.036) and spent less time on their affected limb in stance (P = 0.045), and longer in swing (P = 0.019). Amputees had significantly increased maximum positive power in both limbs (P = 0.004 and P = 0.029) and increased maximum negative power on the unaffected limb (P = 0.035). Amputees had significantly increased positive and negative work in the affected limb (P = 0.0009 and P = 0.014) and positive work in the unaffected limb (P = 0.042). There was no significant difference in the kinetic data or efficiency. Limb preservation patients spend less time on their affected limb as a percentage of the gait cycle. The unified deformable power demonstrated more dynamic gait in amputees, with peak values closer to normative data. Therapeutic level III. See Instructions for Authors for a complete description of levels of evidence.

  6. Effects of plantar flexion resistive moment generated by an ankle-foot orthosis with an oil damper on the gait of stroke patients: a pilot study.

    PubMed

    Yamamoto, Sumiko; Tomokiyo, Naoki; Yasui, Tadashi; Kawaguchi, Toshikazu

    2013-06-01

    An ankle-foot orthosis with an oil damper was previously developed to assist the first rocker function during gait, but the effects of the amount of resistive moment generated on gait have not been clarified. To measure the amount of resistive moment generated by the ankle-foot orthosis with an oil damper during gait and determine its effect on the gait of patients with stroke. Preliminary cross-sectional study. The gait of four patients with stroke in the chronic phase was measured in four conditions: without an ankle-foot orthosis and with the ankle-foot orthosis with an oil damper generating three different amounts of resistive moment. Measurements were taken with a three-dimensional motion analysis system and a specially designed device to determine the resistive moment. The resistive moment was observed in the former half in stance of the paretic limb, and its magnitude was less than 10 N m. Some gait parameters related to terminal stance and preswing were affected by the amount of resistive moment. The forward component of floor reaction force and the shank vertical angle showed peak values when the patients reported feeling most comfortable during gait. Although the resistive moment generated by the ankle-foot orthosis with an oil damper was small, it was sufficient to alter gait. To maximize the effectiveness of ankle-foot orthoses, it is necessary to know the effects of resistive moment on the gait of patients with stroke. The ankle-foot orthosis with an oil damper assists the first rocker function in gait and also affects the gait in a later phase in stance. The peak values of some gait parameters coincided with patients reporting gait to be most comfortable. It is important to know that ankle-foot orthosis with an oil damper assistance in the first rocker alters the weight acceptance on the paretic limb and affects the gait parameters related to propulsion ability in stance.

  7. Gait evaluation of an automatic stance-control knee orthosis in a patient with postpoliomyelitis.

    PubMed

    Hebert, Jackie S; Liggins, Adrian B

    2005-08-01

    To determine gait differences in a subject ambulating with a knee-ankle-foot orthosis (KAFO) with a locked knee joint versus an automatic stance-control knee joint. Single-subject crossover design. Tertiary rehabilitation facility with a motion analysis laboratory. A 61-year-old ambulatory male volunteer with postpoliomyelitis walking with a stance-control KAFO. Instrumented gait analysis and Physiological Cost Index in the locked knee and stance-control modes. Differences in gait parameters. On the braced limb, stance-control mode showed a near-normal knee flexion wave in swing, reduced pelvic retraction and rotational excursion, and improved hip power generation. On the nonbraced limb, the stance-control mode allowed elimination of vaulting, reduction in abnormal ankle and hip power generation, increased knee power absorption, and more typical quadriceps activation. There was a trend toward improved energy efficiency in the stance-control mode. Use of a stance-control knee joint in a KAFO appears to improve gait biomechanics and improve energy efficiency compared with a locked knee.

  8. Evaluation of the performance of paraplegic subjects during walking with a new design of reciprocal gait orthosis.

    PubMed

    Karimi, Mohammad Taghi; Fatoye, Francis

    2016-01-01

    Spinal cord injury (SCI) influences a person's ability to stand and walk. Various orthoses have been developed to solve these standing and walking problems, however, patients still experience high energy consumption during walking and high forces on the upper limbs. A new reciprocal gait orthosis (RGO) was designed to address these problems. The aim of this study was to evaluate the performance of the new orthosis design with paraplegic subjects. Three paraplegic subjects with the lesion at level T12 and three able-bodied subjects were included in this study. Hip and pelvis range of motion and vertical ground reaction force were evaluated using the Qualysis motion analyzer system and a Kistler force plate. Energy consumption was measured with the Polar heart rate monitoring system. The differences between SCI individuals when walking with a Knee Ankle Foot Orthosis (KAFO) and the new RGO, and the differences between able-bodied and paraplegic subjects were evaluated by the use of paired sample and two sample t test, respectively. The results showed that energy consumption and gait analysis outcomes with new RGO orthosis were better than the KAFO. However, there was a large difference between paraplegic and able-bodied subjects while walking with the new orthosis. The new RGO design performed better than a KAFO in terms of energy consumption, walking style and vertical ground reaction force. Therefore, it appears that RGO may be a useful orthosis for patients with paraplegia. Implications for Rehabilitation Walking and standing of the subjects with spinal cord injury (SCI) improve their physiological and physiological health. This study introduces a new type of orthosis design in order to improve the abilities of SCI subjects during walking and standing. It seems that the new design works better than available orthoses (KAFO).

  9. Effects of a dynamic-ankle-foot orthosis (Liberté®) on kinematics and electromyographic activity during gait in hemiplegic patients with spastic foot equinus.

    PubMed

    Boudarham, J; Pradon, D; Roche, N; Bensmail, D; Zory, R

    2014-01-01

    A dynamic-ankle-foot orthosis has recently emerged and consists of an elastic band allowing the variation of stiffness degree and adjusts dorsiflexion assistance in swing. The aim of this study was to quantify the biomechanical adaptations induced by this orthosis during gait in hemiplegic patients. Twelve hemiplegic patients performed two gait analyses (without and with the ankle-foot orthosis). Spatiotemporal, kinematic, kinetic and electromyographic gait parameters were quantified using an instrumented gait analysis system during the stance and swing phases. During swing, peak ankle dorsiflexion was greater with the orthosis and associated with a decrease of pelvic obliquity angle. In stance, peak ankle plantarflexion and dorsiflexion were greater with the orthosis and associated with an increase of ankle angle at heel strike and toe-off. Electromyographic activities of both the tibialis anterior and the medial gastrocnemius were greater with the orthosis. This dynamic-ankle-foot orthosis improved gait in hemiplegic patients with spastic foot equinus. The spatiotemporal adaptations seem to be caused mainly by the increase of ankle dorsiflexion during stance and swing phases. The changes in electromyographic activity were related to an active dorsiflexion in stance and swing phases and an active plantarflexion in stance phase.

  10. Comparison of spatiotemporal gait parameters with a spinal orthosis and without a spinal orthosis on level ground and stairs

    PubMed Central

    Song, Hyeon-Nam; Kim, Young Mi; Kim, Kyoung

    2016-01-01

    [Purpose] This study attempted to examine the impact on the pattern of walking on both level ground and stairs after restricting the movement of the spine and the trunk of the body by using a spinal orthosis. [Subjects and Methods] Forty healthy males in their 20s were selected as the sample, which was randomly and evenly divided into two groups: (1) the WT group (with a thoracolumbosacral orthosis group) and (2) the WOT group (Without a thoracolumbosacral orthosis group). The spinal orthosis used in this study was a thoracolumbosacral orthosis called a plastic body jacket. [Results] In walking on level ground, step width showed a significant difference, but no statistically significant difference was found between the WT group and the WOT group with respect to the other variables. In walking on stairs, the double stance phase showed a statistically significant difference during stair descent in the WT group compared with the WOT group. [Conclusion] It was proven that wearing a TLSO increased walking stability in the case of walking on level ground and stairs. Hence, it is believed that proper use of a spinal orthosis can play an ancillary role in daily life and therapeutic interventions. PMID:27512285

  11. Comparison of spatiotemporal gait parameters with a spinal orthosis and without a spinal orthosis on level ground and stairs.

    PubMed

    Song, Hyeon-Nam; Kim, Young Mi; Kim, Kyoung

    2016-07-01

    [Purpose] This study attempted to examine the impact on the pattern of walking on both level ground and stairs after restricting the movement of the spine and the trunk of the body by using a spinal orthosis. [Subjects and Methods] Forty healthy males in their 20s were selected as the sample, which was randomly and evenly divided into two groups: (1) the WT group (with a thoracolumbosacral orthosis group) and (2) the WOT group (Without a thoracolumbosacral orthosis group). The spinal orthosis used in this study was a thoracolumbosacral orthosis called a plastic body jacket. [Results] In walking on level ground, step width showed a significant difference, but no statistically significant difference was found between the WT group and the WOT group with respect to the other variables. In walking on stairs, the double stance phase showed a statistically significant difference during stair descent in the WT group compared with the WOT group. [Conclusion] It was proven that wearing a TLSO increased walking stability in the case of walking on level ground and stairs. Hence, it is believed that proper use of a spinal orthosis can play an ancillary role in daily life and therapeutic interventions.

  12. Application of a paraplegic gait orthosis in thoracolumbar spinal cord injury

    PubMed Central

    Shuai, Lang; Yu, Guo-hua; Feng, Zhen; Wang, Wan-song; Sun, Wei-ming; Zhou, Lu; Yan, Yin

    2016-01-01

    Paraplegic gait orthosis has been shown to help paraplegic patients stand and walk, although this method cannot be individualized for patients with different spinal cord injuries and functional recovery of the lower extremities. There is, however, a great need to develop individualized paraplegic orthosis to improve overall quality of life for paraplegic patients. In the present study, 36 spinal cord (below T4) injury patients were equally and randomly divided into control and observation groups. The control group received systematic rehabilitation training, including maintenance of joint range of motion, residual muscle strength training, standing training, balance training, and functional electrical stimulation. The observation group received an individualized paraplegic locomotion brace and functional training according to the various spinal cord injury levels and muscle strength based on comprehensive systematic rehabilitation training. After 3 months of rehabilitation training, the observation group achieved therapeutic locomotion in 8 cases, family-based locomotion in 7 cases, and community-based locomotion in 3 cases. However, locomotion was not achieved in any of the control group patients. These findings suggest that individualized paraplegic braces significantly improve activity of daily living and locomotion in patients with thoracolumbar spinal cord injury. PMID:28197198

  13. Design and evaluation of a prototype gait orthosis for early rehabilitation of walking.

    PubMed

    Fang, Juan; Vuckovic, Aleksandra; Galen, Sujay; Cossar, Calum; Conway, Bernard A; Hunt, Kenneth J

    2014-01-01

    Rehabilitation of walking should start early after injury to maximise the beneficial effects of gait restoration. Most current gait robotic systems are not suitable for patients who cannot maintain an upright position. This study aimed to develop a prototype to test a supine-stepping system for early rehabilitation of walking. Based on the pendulum model of walking, a supine-stepping system was designed through control of the toe and the ankle trajectories. This study implemented the pendulum concept of walking in a functional prototype including a bar-cam mechanism and a foot platform that makes it possible to perform stepping while lying in a supine position. The kinematics of supine stepping produced by the bar-cam prototype were firstly simulated by a corresponding bar-cam model in Matlab/Simmechanics, then investigated through a preliminary test using an empty leg frame, and lastly by tests on three able-bodied subjects. The experimental results from the bar-cam prototype were compared with the computer simulation results. Furthermore, supine stepping of one subject was compared with his performance during overground walking. The lower extremity kinematics produced while performing stepping using the prototype matched the corresponding simulation results as well as the performance during overground walking. This study demonstrated the technical feasibility of implementing the pendulum concept in a gait orthosis for early rehabilitation of walking.

  14. A wearable robotic knee orthosis for gait training: a case-series of hemiparetic stroke survivors.

    PubMed

    Wong, Christopher Kevin; Bishop, Lauri; Stein, Joel

    2012-03-01

    Until recently, robotic devices for stroke rehabilitation had multi-joint designs that were often tethered to a treadmill for gait training. A new single-joint wearable robotic knee orthosis (RKO) has been designed that provides patient-initiated powered-assistance in untethered functional mobility. This case-series documents application of the wearable RKO in untethered functional training with stroke survivors. Three ambulatory adult stroke survivors used a wearable RKO during 18 one-hour sessions within a six-week physical therapy programme. Subjects were assessed with a variety of balance, gait and functional tests including the Berg Balance Scale (BBS); six-minute walk test (6MWT); and Emory Functional Ambulation Profile (EFAP) at pre-treatment, post-treatment, one-month and three-month follow-up. All subjects improved balance, gait and functional performances with mean individual improvements of 12.6% for BBS, 12.0% for 6MWT and 16.7% for EFAP post-treatment. No adverse events occurred. These three stroke survivors may have benefited from the task-specific functional training programme augmented by RKO use.

  15. "Limb Salvage With Intrepid Dynamic Exoskeleton Orthosis Versus Transtibial Amputation: A Comparison of Functional Gait Outcomes".

    PubMed

    Mangan, Katharine I; Kingsbury, Trevor D; Mazzone, Brittney N; Wyatt, Marilynn P; Kuhn, Kevin M

    2016-08-23

    To determine if there is a difference in functional gait outcomes between patients with limb injuries treated with either transtibial amputation or limb preservation with Intrepid Dynamic Exoskeletal Orthosis (IDEO). Retrospective prognostic study. Tertiary referral military hospital. This study included 10 transtibial amputees and ten limb preservation patients using the IDEO who were matched by body mass index after excluding for non-traumatic, proximal ipsilateral, contralateral, spine or traumatic brain injuries. Transtibial amputation patients were also excluded if they did not have a gait study between 6 and 12 months after independent ambulation and limb preservation were excluded if they did not complete the "Return to Run" program. An observational study of functional outcomes utilizing instrumented gait analysis. Spatiotemporal, kinetic (vertical ground reaction force), unified deformable (UD) power, work, and efficiency. Limb preservation patients walked with a significantly slower cadence (p=0.036) and spent less time on their affected limb in stance (p=0.045), and longer in swing (p=0.019). Amputees had significantly increased maximum positive power in both limbs (p=0.004 and p= 0.029) and increased maximum negative power on the unaffected limb (p= 0.035). Amputees had significantly increased positive and negative work in the affected limb (p=0.0009 and p=0.014) and positive work in the unaffected limb (p=0.042).There was no significant difference in the kinetic data or efficiency. Limb preservation patients spend less time on their affected limb as a percentage of the gait cycle. The UD power demonstrated more dynamic gait in amputees, with peak values closer to normative data. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.

  16. Effect of an unrestricted knee-ankle-foot orthosis on the stance phase of gait in healthy persons.

    PubMed

    Cerny, K; Perry, J; Walker, J M

    1990-10-01

    Twenty healthy women (mean age: 25 +/- 3.6 years) were studied for postural adaptations produced when walking with unrestricted knee-ankle-foot orthoses. Stride characteristics, motion, floor reaction forces and their torques, and indwelling electromyographic activity of the lower gluteus maximus, as well as the long head of the biceps femoris, vastus lateralis, and soleus muscles were all measured during barefoot and orthosis walking. Wearing a knee-ankle-foot orthosis increased stride length and decreased cadence and stance duration. The subjects walked in slightly more plantar flexion, knee flexion, and hip flexion, while increasing the duration of the corresponding floor reaction torques, resulting in an activity increase of the vastus lateralis, soleus, and biceps femoris muscles. These results, obtained in healthy subjects, show a definite effect of an unrestricted knee-ankle-foot orthosis on gait.

  17. Changes of Plantar Pressure and Gait Parameters in Children with Mild Cerebral Palsy Who Used a Customized External Strap Orthosis: A Crossover Study

    PubMed Central

    Chang, Wen-Dien; Chang, Nai-Jen; Lin, Hung-Yu; Lai, Ping-Tung

    2015-01-01

    Toe-in gait and crouch gait can make children with mild cerebral palsy fall and suffer improper balance during walking or ambulation training. A customized external strap orthosis for correcting leg alignment was used to resolve this problem. The purpose of this study was to research the immediate effects while wearing the customized external strap orthosis. Pressure platform was used to assess the plantar pressure through static and dynamic assessments and to record the changes in path of pressure trajectory. Motion image analysis system was used to record the gait parameters, which included gait speed, stride length, and cadence. The influence of both wearing and removing the orthosis on the dominant leg of children with mild cerebral palsy was analyzed. Nine children with mild cerebral palsy, who all had a dominant right leg, were recruited. After wearing the orthosis, all gait parameters improved, and foot motion changed in the stance phase of the gait cycle. The path of pressure trajectory closing to the midline was also observed during dynamic assessment. Changes in plantar pressure and path of pressure trajectory were observed and the orthosis device could provide immediate assistance to correct the leg alignment and improve the gait performance in children with mild cerebral palsy. PMID:26640796

  18. Changes of Plantar Pressure and Gait Parameters in Children with Mild Cerebral Palsy Who Used a Customized External Strap Orthosis: A Crossover Study.

    PubMed

    Chang, Wen-Dien; Chang, Nai-Jen; Lin, Hung-Yu; Lai, Ping-Tung

    2015-01-01

    Toe-in gait and crouch gait can make children with mild cerebral palsy fall and suffer improper balance during walking or ambulation training. A customized external strap orthosis for correcting leg alignment was used to resolve this problem. The purpose of this study was to research the immediate effects while wearing the customized external strap orthosis. Pressure platform was used to assess the plantar pressure through static and dynamic assessments and to record the changes in path of pressure trajectory. Motion image analysis system was used to record the gait parameters, which included gait speed, stride length, and cadence. The influence of both wearing and removing the orthosis on the dominant leg of children with mild cerebral palsy was analyzed. Nine children with mild cerebral palsy, who all had a dominant right leg, were recruited. After wearing the orthosis, all gait parameters improved, and foot motion changed in the stance phase of the gait cycle. The path of pressure trajectory closing to the midline was also observed during dynamic assessment. Changes in plantar pressure and path of pressure trajectory were observed and the orthosis device could provide immediate assistance to correct the leg alignment and improve the gait performance in children with mild cerebral palsy.

  19. Modeling effects of sagittal-plane hip joint stiffness on reciprocating gait orthosis-assisted gait.

    PubMed

    Johnson, William Brett; Fatone, Stefania; Gard, Steven A

    2013-01-01

    Upright ambulation is believed to improve quality of life for persons with lower-limb paralysis (LLP). However, ambulatory orthoses for persons with LLP, like reciprocating gait orthoses (RGOs), result in a slow, exhausting gait. Increasing the hip joint stiffness of these devices may improve the efficiency of RGO-assisted gait. The small, diverse population of RGO users makes subject recruitment challenging for clinical investigations. Therefore, we developed a lower-limb paralysis simulator (LLPS) that enabled nondisabled persons to exhibit characteristics of RGO-assisted gait, thereby serving as surrogate models for research. For this study, tests were conducted to determine the effects of increased hip joint stiffness on gait of nondisabled persons walking with the LLPS. A motion capture system, force plates, and spirometer were used to measure the hip flexion, crutch ground reaction forces (GRFs), and oxygen consumption of subjects as they walked with four different hip joint stiffness settings. Increasing the hip joint stiffness decreased hip flexion during ambulation but did not appear to affect the crutch GRFs. Walking speed was observed to initially increase with increases in hip joint stiffness, and then decrease. These findings suggest that increasing hip joint stiffness may increase walking speed for RGO users.

  20. Gait evaluation of a new electromechanical stance-control knee-ankle-foot orthosis.

    PubMed

    Yakimovich, Terris; Lemaire, Edwrad D; Kofman, Jonathan

    2006-01-01

    Commercial versions of a stance-control knee-ankle-foot orthosis (SCKAFO) have emerged to improve gait over conventional knee-ankle-foot orthoses (KAFOs), which lock the knee in full extension in individuals with quadriceps muscle weakness. A new electromechanical SCKAFO was recently designed to address the functional, structural, and cost limitations of these commercial SCKAFOs. This paper presents an evaluation of the new SCKAFO conducted to determine its functional and clinical effectiveness during gait. Three healthy adults (100% male; age, 35.3 +/- 19.7y) and three KAFO users with knee extensor weakness in at least one limb (100% male; mean age, 56.3 +/- 4.0y) participated in the study. The SCKAFO had a minimal effect, as desired, on the kinematics of the able-bodied subjects. KAFO users had a mean increase in knee flexion of 21.1 degrees (sd=8.2) during swing, and a greater total knee range of motion when walking with the new SCKAFO compared to their prescribed KAFO. Two KAFO users experienced a reduction in pelvic obliquity and hip abduction angle abnormalities when walking with the SCKAFO compared to their prescribed KAFO.

  1. Effect of treadmill walking with ankle stretching orthosis on ankle flexibility and gait

    PubMed Central

    Cho, Young-ki; Kim, Si-hyun; Jeon, In-cheol; Ahn, Sun-hee; Kwon, Oh-yun

    2015-01-01

    [Purpose] The purpose of this study was to evaluate the kinematics of the ankle in the lunge to estabilish effectiveness of an ankle stretching orthosis (ASO) on the ankle dorsiflexion range of motion (ROM) of individuals with limited dorsiflexion ROM. [Subjects and Methods] Forty ankles with decreased dorsiflexion ROM of 20 participants were evaluated in this study. After wearing the ASO, participants walked on a treadmill for 15 minutes. Participants walked on the treadmill at a self-selected comfortable speed. Ankle dorsiflexion ROM, maximum dorsiflexion ROM before heel-off, and time to heel-off during the stance phase of gait were measured before and after 15 minutes of treadmill walking with the ASO. The differences in all variables between before and after treadmill walking with ASO were analyzed using the paired t-test. [Results] Ankle active and passive ROM, and dorsiflexion ROM during lunge increased significantly after treadmill walking with ASO. Treadmill walking with the ASO significantly increased the angle of maximal dorsiflexion before heel-off and time to heel-off during the stance phase. [Conclusion] The results of this study show that treadmill walking with the ASO effectively improved ankle flexibility and restored the normal gait pattern of the ankle joint by increasing dorsiflexion ROM, maximal angle of dorsiflexion, and time to heel-off in the stance phase. PMID:25995601

  2. Modulation of anticipatory postural adjustments of gait using a portable powered ankle-foot orthosis.

    PubMed

    Petrucci, Matthew N; MacKinnon, Colum D; Hsiao-Wecksler, Elizabeth T

    2013-06-01

    Prior to taking a step, properly coordinated anticipatory postural adjustments (APAs) are generated to control posture and balance as the body is propelled forward. External cues (audio, visual, somatosensory) have been shown to facilitate gait initiation by improving the magnitude and timing of APAs in Parkinson's disease (PD), but the efficacy of these cueing strategies has been limited by their inability to produce the forces required to generate an appropriate APA. To date, mechanical cueing paradigms have been relatively underexplored. Using healthy young adults, we investigated the use of a portable powered ankle-foot orthosis (PPAFO) to provide a modest torque at the ankle as a mechanical cue to initiate gait. Subjects were instructed to initiate gait in five test conditions: (1) self-initiated in running shoes [baseline-shoe], (2) self-initiated trial in unpowered passive PPAFO [baseline-passive], (3) with acoustic go-cue in passive PPAFO [acoustic-passive], (4) acoustic go-cue and simultaneous mechanical assist from powered PPAFO [acoustic-assist], and (5) mechanical assist cue only [assist]. APA characteristics were quantified using ground reaction force (GRF), center of pressure (COP), and electromyography (EMG) data. Mechanical cueing significantly increased medial-lateral COP and GRF peak amplitude, and decreased GRF time to peak amplitude, COP and GRF onset times, and time to toe off. Mechanical cueing conditions also demonstrated consistent bimodal EMG behaviors across all subjects. Overall, these data suggest that the mechanical assist from the PPAFO can significantly improve APA timing parameters and increase APA force production in healthy young adults.

  3. The influence of an ankle-foot orthosis on the spatiotemporal gait parameters and functional balance in chronic stroke patients

    PubMed Central

    Bouchalová, Vendula; Houben, Els; Tancsik, Dorine; Schaekers, Lotte; Meuws, Leni; Feys, Peter

    2016-01-01

    [Purpose] Observational study investigating the influence of various ankle-foot orthoses on the spatiotemporal gait parameters and functional balance in chronic stroke patients. [Subjects and Methods] Fifteen chronic stroke patients participated in this study after providing informed consent. Two groups of patients were differentiated based on the Timed Up and Go Test. Patients were tested in three different conditions: with standard prefabricated ankle-foot orthosis (Maramed), with individualized ankle-foot orthosis (Y-tech), and without any ankle-foot orthrosis. Spatiotemporal gait parameters were obtained by walking on an instrumented walkway (GAITRite®) at usual and fastest speed. Balance was assessed with Timed Up and Go Test, Step Test, and Four Square Step Test. [Results] Maramed and Y-tech significantly improved the spatiotemporal parameters while walking at usual and maximal speed (single support time affected side; double support time affected side and step length unaffected side). The Y-tech in addition improved velocity and cadence. Among the balance tests, only the Timed Up and Go test showed improvements in favor of Maramed and Y-tech. [Conclusion] Patients benefited from wearing orthosis at both usual and maximal speed, irrespective of whether they wore Maramed or Y-tech. Only severe stroke patients benefited from wearing an orthoses compared to mild impaired group. PMID:27313385

  4. Gait of stance control orthosis users: the dynamic knee brace system.

    PubMed

    Irby, Steven E; Bernhardt, Kathie A; Kaufman, Kenton R

    2005-12-01

    Individuals with weak or absent quadriceps who wish to walk independently are prescribed knee-ankle-foot orthoses (KAFOs). New stance control orthosis (SCO) designs automatically release the knee to allow swing phase flexion and extension while still locking the joint during stance. Twenty-one participants were fitted unilaterally with the Dynamic Knee Brace System (DKBS), a non-commercial SCO. Thirteen subjects were experienced KAFO users (average 28 +/- 18 years of experience) while eight were novice users. Novice users demonstrated increased velocity (55 vs. 71 cm/sec, p = 0.048) and cadence (77 vs. 85 steps/min, p < 0.05) when using the DKBS over the traditional locked KAFO. Experienced KAFO users tended to have reduced velocity and cadence measures when using the SCO (p < 0.10). Knee range of motion was significantly greater for the novice group than for the experienced group (55.2 +/- 4.8 vs. 42.6 +/- 3.8 degrees, p = 0.05). Peak knee extension moments tended to be greater for the experienced group (0.29 +/- 0.21 vs. 0.087 +/- 0.047 Nm/kg, p = 0.09). This report describes gait changes during the introductory phase of DKBS adoption. Experienced KAFO users undoubtedly had ingrained gait patterns designed to compensate for walking with a standard locked KAFO. These patterns may have limited the ability of those users from taking full and immediate advantage of the SCO capabilities. Also, alternate SCO systems may engender different results. Comparison studies and longer term field studies are needed to clarify benefits of the various bracing options.

  5. Development of body weight support gait training system using pneumatic Mckibben actuators -control of lower extremity orthosis.

    PubMed

    Mat Dzahir, M A; Nobutomo, T; Yamamoto, S I

    2013-01-01

    Recently, robot assisted therapy devices are increasingly used for spinal cord injury (SCI) rehabilitation in assisting handicapped patients to regain their impaired movements. Assistive robotic systems may not be able to cure or fully compensate impairments, but it should be able to assist certain impaired functions and ease movements. In this study, the control system of lower extremity orthosis for the body weight support gait training system which implements pneumatic artificial muscle (PAM) is proposed. The hip and knee joint angles of the gait orthosis system are controlled based on the PAM coordinates information from the simulation. This information provides the contraction data for the mono- and bi-articular PAMs that are arranged as posterior and anterior actuators to simulate the human walking motion. The proposed control system estimates the actuators' contraction as a function of hip and knee joint angles. Based on the contraction model obtained, input pressures for each actuators are measured. The control system are performed at different gait cycles and two PMA settings for the mono- and bi-articular actuators are evaluated in this research. The results showed that the system was able to achieve the maximum muscle moment at the joints, and able to perform the heel contact movement. This explained that the antagonistic mono- and bi-articular actuators worked effectively.

  6. Immediate effects of a controllable knee ankle foot orthosis for functional compensation of gait in patients with proximal leg weakness.

    PubMed

    Moreno, Juan C; Brunetti, Fernando; Rocon, Eduardo; Pons, José L

    2008-01-01

    Application of intermittent control of the knee joint stiffness in a knee ankle foot orthosis (KAFO) during gait is proposed. The approach combines inertial sensors and an actuator system in order to apply compensation in quadriceps weakness with a wearable device. Two methods, segment-angular rotation based and segment-angular velocity based, are analysed for the control of the knee joint state (intermittent stiffness) based on the inertial sensors signals. Protocolled tests are developed with two post-polio syndrome patients (PPS). In this study, the cases of gait with free-swinging leg and safe stance with the orthotic system are presented in terms of quantified kinematics (average peak angle of knee flexion of 50 degrees ) and evidences of reduction of frequent compensations (e.g. leg lateral movement) in post-polio syndrome patients. The results from immediate inspection indicate an important improvement of the gait patterns in two patients with proximal leg weakness by means of compensations applied by the wearable orthosis.

  7. Influence of modified solid ankle-foot orthosis to be used with and without shoe on dynamic balance and gait characteristic in asymptomatic people.

    PubMed

    Arvin, Mina; Kamyab, Mojtaba; Moradi, Vahideh; Hajiaghaei, Behnam; Maroufi, Nader

    2013-04-01

    Ankle-foot orthoses are usually used in combination with footwear. Shoe design can have a significant effect on kinematics of the lower limb joints and line of action of the ground reaction force during walking. But, ankle-foot orthosis-footwear combination is not appropriate for indoor barefoot walking in some Asian cultures. In this study, we have modified a solid ankle-foot orthosis in order to set it in the same position as a solid ankle-foot orthosis-footwear combination. To investigate the effect of a modified solid ankle-foot orthosis; a solid ankle-foot orthosis which can be locked in different positions on gait and balance performance in comparison with a conventional solid ankle-foot orthosis, a common solid ankle-foot orthosis-shoe combination in asymptomatic adults. Cross sectional. Two standard solid ankle-foot orthoses were manufactured with the ankle joint in neutral position. Then, one of these solid ankle-foot orthoses was modified in order to allow locking in a different alignment. Walk across, limit of stability, and sit-to-stand tests of the balance master system were performed while participants wore the modified solid ankle-foot orthosis aligned in 5°-7° anterior inclination without a shoe and a conventional solid ankle-foot orthosis-shoe combination. There was no significant change in walking speed, step length, and step width with the conventional and modified solid ankle-foot orthoses. In addition, movement velocity and maximum excursion of the center of gravity during the limit of stability test were not different, although the maximal forward excursion of the center of gravity was longer when wearing the modified solid ankle-foot orthosis compared to the conventional solid ankle-foot orthosis-shoe combination (P = 0.000). Sway velocity of the center of gravity did not change during the sit-to-stand test. The results demonstrated that the modified solid ankle-foot orthosis had the same effects as the conventional solid ankle

  8. Association between improved trunk stability and walking capacity using ankle-foot orthosis in hemiparetic patients with stroke: evidence from three-dimensional gait analysis.

    PubMed

    Lan, Yue; Xu, Guang-qing; Huang, Dong-feng; Mao, Yu-rong; Chen, Shao-zhen; Pei, Zhong; Zeng, Jin-sheng

    2013-10-01

    Restoration of both normal movement of the pelvis and centre of mass is a primary goal of walking rehabilitation in post-stroke patients because these movements are essential components of effective gait. The aim of this study is to quantitatively analyze the effect of ankle-foot orthosis on walking ability, and to investigate the correlation between improvements in trunk motion and walking capacity. Walking speed, centre of mass displacement, and pelvic movements were examined in 20 post-stroke hemiparetic patients with and without ankle-foot orthosis using three-dimensional motion analysis. Using ankle-foot orthosis improved walking speed, pelvic rotation and tilt, and lateral and vertical displacements of the centre of mass (P < 0.01). Moreover, the gait asymmetry index was significantly decreased (P < 0.01), and the Functional Ambulation Categories score improved significantly when patients used an ankle-foot orthosis (P < 0.05). There was significant correlation between improvements in the walking capacity and the displacement of the centre of mass in both vertical and lateral directions (P < 0.01). Using ankle-foot orthosis improves the walking capacity by improving the stability and concordant of the trunk in hemiplegic patients. The improvement in the walking capacity from using an ankle-foot orthosis may be attributed to its prevention of foot drop and compensation for the instability of the ankle joint.

  9. Energy consumption in children with myelomeningocele: a comparison between reciprocating gait orthosis and hip-knee-ankle-foot orthosis ambulators.

    PubMed

    Cuddeford, T J; Freeling, R P; Thomas, S S; Aiona, M D; Rex, D; Sirolli, H; Elliott, J; Magnusson, M

    1997-04-01

    This study compared the differences in energy efficiency (energy cost) in children with myelomeningocele ambulating with either reciprocating gait orthoses (RGOs) or hip-knee-ankle-foot orthoses (HKAFOs). There were 15 children who ambulated with RGOs and 11 children braced and ambulating in HKAFOs. Velocity was measured in m/s, energy consumption was measured in mL/kg/min, and energy cost (energy consumption/velocity) was measured in mL/kg/m. Children in HKAFOs had a significantly higher energy consumption rate than children in RGOs. However, children who swing through in a HKAFO have a significantly faster velocity than children who ambulate with the RGO using a reciprocating pattern. The increased energy cost in the RGO group is influenced by their slower velocity, just as the decreased energy cost in the HKAFO group is influenced by their increased velocity. Therefore it appears that children in HKAFOs are more energy efficient than children in RGOs.

  10. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait.

    PubMed

    Blaya, Joaquin A; Herr, Hugh

    2004-03-01

    An active ankle-foot orthoses (AAFO) is presented where the impedance of the orthotic joint is modulated throughout the walking cycle to treat drop-foot gait. During controlled plantar flexion, a biomimetic torsional spring control is applied where orthotic joint stiffness is actively adjusted to minimize forefoot collisions with the ground. Throughout late stance, joint impedance is minimized so as not to impede powered plantar flexion movements, and during the swing phase, a torsional spring-damper control lifts the foot to provide toe clearance. To assess the clinical effects of variable-impedance control, kinetic and kinematic gait data were collected on two drop-foot participants wearing the AAFO. For each participant, zero, constant, and variable impedance control strategies were evaluated and the results were compared to the mechanics of three age, weight, and height matched normals. We find that actively adjusting joint impedance reduces the occurrence of slap foot allows greater powered plantar flexion and provides for less kinematic difference during swing when compared to normals. These results indicate that a variable-impedance orthosis may have certain clinical benefits for the treatment of drop-foot gait compared to conventional ankle-foot orthoses having zero or constant stiffness joint behaviors.

  11. Detection of Gait Modes Using an Artificial Neural Network during Walking with a Powered Ankle-Foot Orthosis

    PubMed Central

    2016-01-01

    This paper presents an algorithm, for use with a Portable Powered Ankle-Foot Orthosis (i.e., PPAFO) that can automatically detect changes in gait modes (level ground, ascent and descent of stairs or ramps), thus allowing for appropriate ankle actuation control during swing phase. An artificial neural network (ANN) algorithm used input signals from an inertial measurement unit and foot switches, that is, vertical velocity and segment angle of the foot. Output from the ANN was filtered and adjusted to generate a final data set used to classify different gait modes. Five healthy male subjects walked with the PPAFO on the right leg for two test scenarios (walking over level ground and up and down stairs or a ramp; three trials per scenario). Success rate was quantified by the number of correctly classified steps with respect to the total number of steps. The results indicated that the proposed algorithm's success rate was high (99.3%, 100%, and 98.3% for level, ascent, and descent modes in the stairs scenario, respectively; 98.9%, 97.8%, and 100% in the ramp scenario). The proposed algorithm continuously detected each step's gait mode with faster timing and higher accuracy compared to a previous algorithm that used a decision tree based on maximizing the reliability of the mode recognition. PMID:28070188

  12. Stress distribution in the ankle-foot orthosis used to correct pathological gait.

    PubMed

    Chu, T M; Reddy, N P

    1995-11-01

    Abnormal motion of the ankle-foot complex presents a major problem in the rehabilitation of stroke patients. These patients often develop drop foot, a problem involving excessive and uncontrolled plantar flexion. An ankle-foot orthosis (AFO) is prescribed to constrain and inhibit this abnormal motion. The purpose of this investigation was to simulate the drop foot problem to determine the stress distribution in the orthosis. A quasi-static 3-D finite element analysis of the AFO complex was conducted using ADINA. Results confirmed the hypotheses that the maximum peak stress occurs in the neck, heel, and side-arc region of the AFO. However, the neck region of the AFO experienced the largest amount of stress. High stress concentration in the neck region observed in the present analysis is consistent with the common clinical observation that AFOs break down in the neck region.

  13. Preliminary design of an energy storing orthosis for providing gait to people with spinal cord injury.

    PubMed

    Boughner, Kyle J; Durfee, William K

    2014-01-01

    A new design is proposed for an energy storing orthosis (ESO) that restores walking to people with spinal cord injury by combining functional electrical stimulation of the quadriceps muscle with a mechanical brace that uses elastic elements to store and transfer energy between hip and knee joints. The new ESO is a variation of a previous design and uses constant force springs for energy storage. Based on the detailed design and on dynamic simulations, the concept has demonstrated preliminary technical feasibility.

  14. Effect of ankle-foot orthosis alignment and foot-plate length on the gait of adults with poststroke hemiplegia.

    PubMed

    Fatone, Stefania; Gard, Steven A; Malas, Bryan S

    2009-05-01

    To investigate the effect of ankle-foot orthosis (AFO) alignment and foot-plate length on sagittal plane knee kinematics and kinetics during gait in adults with poststroke hemiplegia. Repeated measures, quasi-experimental study. Motion analysis laboratory. Volunteer sample of adults with poststroke hemiplegia (n=16) and able-bodied adults (n=12) of similar age. Subjects with hemiplegia were measured walking with standardized footwear in 4 conditions: (1) no AFO (shoes only); (2) articulated AFO with 90 degrees plantar flexion stop and full-length foot-plate-conventionally aligned AFO (CAFO); (3) the same AFO realigned with the tibia vertical in the shoe-heel-height compensated AFO (HHCAFO); and (4) the same AFO (tibia vertical) with 3/4 length foot-plate-3/4 AFO. Gait of able-bodied control subjects was measured on a single occasion to provide a normal reference. Sagittal plane ankle and knee kinematics and kinetics. In adults with hemiplegia, walking speed was unaffected by the different conditions (P=.095). Compared with the no AFO condition, all AFOs decreased plantar flexion at initial contact and mid-swing (P<.001) and changed the peak knee moment in early stance from flexor to extensor (P<.000). Both AFOs with full-length foot-plates significantly increased the peak stance phase plantar flexor moment compared with no AFO and resulted in a peak knee extensor moment in early stance that was significantly greater than control subjects, whereas the AFO with three-quarter length foot-plate resulted in ankle dorsiflexion during stance and swing that was significantly less than control subjects. These findings suggest that when an articulated AFO is to be used, a full-length foot-plate in conjunction with a plantar flexion stop may be considered to improve early stance knee moments for people with poststroke hemiplegia.

  15. The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis.

    PubMed

    Arazpour, Mokhtar; Chitsazan, Ahmad; Bani, Monireh Ahmadi; Rouhi, Gholamreza; Ghomshe, Farhad Tabatabai; Hutchins, Stephen W

    2013-10-01

    The aim of this case study was to identify the effect of a powered stance control knee ankle foot orthosis on the kinematics and temporospatial parameters of walking by a person with poliomyelitis when compared to a knee ankle foot orthosis. A knee ankle foot orthosis was initially manufactured by incorporating drop lock knee joints and custom molded ankle foot orthoses and fitted to a person with poliomyelitis. The orthosis was then adapted by adding electrically activated powered knee joints to provide knee extension torque during stance and also flexion torque in swing phase. Lower limb kinematic and kinetic data plus data for temporospatial parameters were acquired from three test walks using each orthosis. Walking speed, step length, and vertical and horizontal displacement of the pelvis decreased when walking with the powered stance control knee ankle foot orthosis compared to the knee ankle foot orthosis. When using the powered stance control knee ankle foot orthosis, the knee flexion achieved during swing and also the overall pattern of walking more closely matched that of normal human walking. The reduced walking speed may have caused the smaller compensatory motions detected when the powered stance control knee ankle foot orthosis was used. The new powered SCKAFO facilitated controlled knee flexion and extension during ambulation for a volunteer poliomyelitis person.

  16. Evaluation of a dynamic ankle foot orthosis in hemiplegic gait: A case report.

    PubMed

    Nolan, Karen J; Savalia, Krupa K; Yarossi, Mathew; Elovic, Elie P

    2010-01-01

    This investigation utilized a single case design to evaluate the effects of a dynamic AFO on ambulation in post stroke hemiplegia. A single patient with stroke related hemiplegia using a dynamic AFO underwent gait analysis while walking on level ground. Outcome measures included temporal-spatial gait parameters and bilateral kinematic joint angles at the ankle, knee, and hip with and without AFO. Walking speed, stride length, step length and cadence increased with the dynamic AFO. Step width and double support decreased, while single support remained unchanged on the affected limb with the dynamic AFO. With the dynamic AFO there was increased hip flexion at foot strike and toe-off, increased hip sagittal plane angular velocity during swing, and decreased abduction. The dynamic AFO had a positive effect on the participant's overall gait which included improved temporal-spatial parameters and gait velocity which is likely due to a decrease in the overall energy cost of walking. Kinematic angles at the hip were most notably affected by brace utilization and this effect should be more fully explored. Further research with a larger sample utilizing dynamic AFOs is indicated to explore the generalizability of these findings and to determine the potential utility of these braces as an alternative to the traditionally prescribed solid AFO.

  17. Prediction of gait outcome with the knee-ankle-foot orthosis with medial hip joint in patients with spinal cord injuries: a study using recursive partitioning analysis.

    PubMed

    Suzuki, T; Sonoda, S; Saitoh, E; Onogi, K; Fujino, H; Teranishi, T; Oyobe, T; Katoh, M; Ohtsuka, K

    2007-01-01

    Retrospective study of the degree of gait independence achieved by persons with spinal cord injury (SCI) using knee-ankle-foot orthosis with a medial single hip joint (MSH-KAFO). To examine the effects of the neurological level, degree of paresis, age, and inhibitory physical/other factors on the gait with a MSH-KAFO in patients with SCIs. Three university hospitals and two rehabilitation hospitals in Japan. The 45 patients (36 men, nine women) examined included 10 with injuries in the cervical cord between C6 and C8 (group C), 20 with injuries in the upper-middle thoracic cord between T4 and T10 (group UT), and 15 with injuries in the lower thoracic-lumbar cord between T12 and L1 (group TL). Mean age was 34.0 years (range 16-68 years). Of these patients, 13 used the Walkabout, four used the gear joint, and 28 used the Primewalk as the medial hip joint. Recursive partitioning, which predicted the final status of gait from the level, degree of paresis, age, and inhibitory factors, was performed, and a decision tree for gait was constructed. Inhibitory factors were spasticity, involuntary spasms or muscle contractions, pain, contracture, weakness of the upper extremities, and decreased motivation to perform gait exercise. The degree of gait independence was rated on the following five-point scale: outdoor independent gait (5 points), indoor independent gait (4 points), indoor supervised gait (3 points), indoor assisted gait (2 points), and gait within parallel bars (1 point). New branches were added to the decision tree for gait based on the clinical experience, thereby constructing a new decision tree. The coincident ratio between the value predicted on the basis of the decision tree of gait and the value actually observed was 53.3%. The coincident ratio between the value predicted on the basis of the modified decision tree of gait and the actually observed value was 68.9%. The results provide valuable information to medical teams that may assist prescription of

  18. Motivation, expectations, and usability of a driven gait orthosis in stroke patients and their therapists.

    PubMed

    Swinnen, Eva; Lefeber, Nina; Willaert, Ward; De Neef, Fallon; Bruyndonckx, Lyn; Spooren, Annemie; Michielsen, Marc; Ramon, Tine; Kerckhofs, Eric

    2017-05-01

    In the development of efficacious driven gait orthoses (DGO), it is an added value to consider patients' and therapists' perspectives concerning robot-assisted gait training (RAGT). A better understanding of these issues may improve the process of care and outcome. This study aimed to examine stroke patients' motivation and expectations of RAGT, and therapists' expectations and perspectives on the usability of RAGT. Additionally, the differences in expectations between stroke patients and their therapists were analyzed. A cross sectional, multi-center, three-group trial was conducted. Included were (1) stroke patients who have experience with RAGT (i.e. the stroke user group), (2) stroke patients who have no experience with RAGT (i.e. the stroke non-user group), and (3) therapists who have experience with RAGT (i.e. the therapist user group). The Intrinsic Motivation Inventory (IMI), Credibility/Expectancy Questionnaire (CEQ), and Usefulness, Satisfaction and Ease of Use Questionnaire (USE) were used. Descriptive statistics and non-parametric Kruskal-Wallis tests were conducted. In total, 46 subjects were assessed (stroke user group: n = 23, stroke non-user group: n = 14, therapist user group: n = 9). IMI subscale scores ranged from 42 to 88%. Mean credibility and expectancy ranged from 80 to 85% and 57 to 72%, respectively, with no significant differences between groups. USE subscale scores ranged from 61 to 72%. Stroke user group patients seem quite motivated to train with the DGO and both patients and therapists reasonably believe that this training could improve gait functioning. Therapists are moderately satisfied with the usability of the DGO, but there is room for improvement with respect to usefulness and ease of use.

  19. The influence of passive-dynamic ankle-foot orthosis bending axis location on gait performance in individuals with lower-limb impairments.

    PubMed

    Ranz, Ellyn C; Russell Esposito, Elizabeth; Wilken, Jason M; Neptune, Richard R

    2016-08-01

    Passive-dynamic ankle-foot orthoses are commonly prescribed to augment impaired ankle muscle function, however their design and prescription are largely qualitative. One design includes a footplate and cuff, and flexible strut connecting the two. During gait, deflection occurs along the strut, with the greatest deflection at a central bending axis. The vertical location of the axis can affect lower extremity biomechanics. The goal of this study was to investigate the influence of bending axis location on gait performance. For thirteen participants with unilateral ankle muscle weakness, an additive manufacturing framework was used to fabricate passive-dynamic ankle-foot orthosis struts with central and off-center bending axes. Participants walked overground while electromyographic, kinetic and kinematic data were collected for three different bending axes: proximal (high), central (middle) and distal (low), and the participants indicated their order of bending axis preference after testing. Gait measures and preference effect sizes were examined during six regions of the gait cycle. A few differences between bending axes were observed: in the first double-leg support peak plantarflexion angle, peak dorsiflexion moment and positive hip work, in the early single-leg support peak knee extension moment and positive ankle and knee work, and in the late single-leg support gastrocnemius activity and vertical ground reaction force impulse. In addition, preference was strongly related to various gait measures. Despite the observed statistical differences, altering bending axis location did not produce large and consistent changes in gait performance. Thus, individual preference and comfort may be more important factors guiding prescription. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Longitudinal assessment of oxygen cost and velocity in children with myelomeningocele: comparison of the hip-knee-ankle-foot orthosis and the reciprocating gait orthosis.

    PubMed

    Thomas, S S; Buckon, C E; Melchionni, J; Magnusson, M; Aiona, M D

    2001-01-01

    Oxygen consumption and cost and velocity were evaluated over time in 23 children with myelomeningocele to determine whether differences exist when children walk with hip-knee-ankle-foot orthoses (HKAFOs) versus reciprocating gait orthoses (RGOs). Children using HKAFOs had similar oxygen cost as children using RGOs while achieving a faster velocity. Children walking with HKAFOs into adolescence had a faster velocity and lower oxygen cost than children who discontinued use of their HKAFOs. No significant differences in velocity or oxygen cost were found between children who continued to walk with RGOs and those who discontinued use of their RGOs. Upright ambulation may progress from ambulation with an RGO, when the child's upper extremity strength to mass ratio is low, to an HKAFO when upper extremity strength improves and velocity or keeping up with peers is of concern. Wheelchair mobility should be offered when speed and an energy-efficient method of community mobility are desired.

  1. Change in the Mechanical Energy of the Body Center of Mass in Hemiplegic Gait after Continuous Use of a Plantar Flexion Resistive Ankle-foot Orthosis.

    PubMed

    Haruna, Hirokazu; Sugihara, Shunichi; Kon, Keisuke; Miyasaka, Tomoya; Hayakawa, Yasuyuki; Nosaka, Toshiya; Kimura, Kazuyuki

    2013-11-01

    [Purpose] The aim of this study was to investigate the changes in mechanical energy due to continuous use of a plantar flexion resistive ankle-foot orthosis (AFO) of subjects with chronic hemiplegia. [Subjects and Methods] The subjects were 5 hemiplegic patients using AFOs without a plantar flexion resistive function in their daily lives. We analyzed the gait of the subjects using a 3D motion capture system under three conditions: patients' use of their own AFOs; after being fitted with a plantar flexion resistive AFO; and after continuous use of the device. The gait efficiency was determined by calculating the mutual exchange of kinetic and potential energy of the center of mass. [Results] An increased exchange rate of the kinetic and potential energy was found for all subjects. A larger increase of energy exchange was shown on the non-paralyzed side, and after continuous use of the plantar flexion resistive AFO. [Conclusion] We found that continuous use of a plantar flexion resistive AFO increased the rate of mutual exchange between kinetic energy and potential energy. The change in the rate was closely related to the role of the non-paretic side, showing that the subjects needed a certain amount of time to adapt to the plantar flexion resistive AFO.

  2. Oxygen costs using a reciprocating gait orthosis in a paraplegic (T9) patient with a bilateral below-knee amputation: case report.

    PubMed

    Smith, W E; Clark, P F; MacArthur, D; Allatt, R D; Hayes, K C; Cunningham, D A

    1997-02-01

    The Reciprocating Gait Orthosis (RGO) is a useful aid to ambulation for patients with paraplegia. Its use has been described previously though not in conjunction with limb prostheses. We report here the energy costs of ambulation of a patient, disabled by paraplegia at T9 and bilateral below-knee amputations, walking at her preferred rate using an RGO while gas exchange was measured by the Douglas bag method. Oxygen uptake (VO2) rose from 0.198 1 min-1 at rest to 0.582 1 min-1 in the last minute of exercise, representing a VO2 of 14.3 ml kg-1 min-1. During the fourth minute of ambulation, energy consumption was 30.44 J kg-1 s-1 with an energy cost of 4.17 J kg-1 m-1 at a velocity of 0.13 m s-1, Ambulation with this combination of disability is possible with the aid of limb prostheses and an RGO though it is slow and the energy expenditure as consumption per second and cost per metre are high.

  3. Evaluating the Effects of Ankle-Foot Orthosis Mechanical Property Assumptions on Gait Simulation Muscle Force Results.

    PubMed

    Hegarty, Amy K; Petrella, Anthony J; Kurz, Max J; Silverman, Anne K

    2017-03-01

    Musculoskeletal modeling and simulation techniques have been used to gain insights into movement disabilities for many populations, such as ambulatory children with cerebral palsy (CP). The individuals who can benefit from these techniques are often limited to those who can walk without assistive devices, due to challenges in accurately modeling these devices. Specifically, many children with CP require the use of ankle-foot orthoses (AFOs) to improve their walking ability, and modeling these devices is important to understand their role in walking mechanics. The purpose of this study was to quantify the effects of AFO mechanical property assumptions, including rotational stiffness, damping, and equilibrium angle of the ankle and subtalar joints, on the estimation of lower-limb muscle forces during stance for children with CP. We analyzed two walking gait cycles for two children with CP while they were wearing their own prescribed AFOs. We generated 1000-trial Monte Carlo simulations for each of the walking gait cycles, resulting in a total of 4000 walking simulations. We found that AFO mechanical property assumptions influenced the force estimates for all the muscles in the model, with the ankle muscles having the largest resulting variability. Muscle forces were most sensitive to assumptions of AFO ankle and subtalar stiffness, which should therefore be measured when possible. Muscle force estimates were less sensitive to estimates of damping and equilibrium angle. When stiffness measurements are not available, limitations on the accuracy of muscle force estimates for all the muscles in the model, especially the ankle muscles, should be acknowledged.

  4. Effects of implantable peroneal nerve stimulation on gait quality, energy expenditure, participation and user satisfaction in patients with post-stroke drop foot using an ankle-foot orthosis.

    PubMed

    Schiemanck, Sven; Berenpas, Frank; van Swigchem, Roos; van den Munckhof, Pepijn; de Vries, Joost; Beelen, Anita; Nollet, Frans; Geurts, Alexander C

    2015-01-01

    To investigate whether an implantable functional electrical stimulation (FES) system of the common peroneal nerve (ActiGait®) improves relevant aspects of gait in chronic stroke patients with a drop foot typically using an ankle-foot orthosis (AFO). Ten community-dwelling patients participated, of whom eight patients could be analysed. Gait quality (kinematic, kinetic, and spatiotemporal characteristics) during a 10-meter comfortable walk test, normalised net energy expenditure during a 6-minute walk test, participation (physical activity and stroke impact) and user satisfaction were tested before implantation and at various moments after FES-system activation up to 26 weeks. Walking with FES yielded increased maximum paretic ankle plantarflexion (FES: -0.12; AFO: -4.79°, p <  0.01), higher paretic peak ankle power (FES: 1.46; AFO: 0.98 W/kg, p <  0.05) and better step length symmetry (FES: 14.90; AFO: 21.45% , p <  0.05). User satisfaction was higher for FES, but was unrelated to objective gait improvements. Energy expenditure and participation did not change. Implantable FES improved the use of residual ankle plantarflexion motion, ankle power of the paretic leg and step length symmetry compared to using an AFO, however, not resulting in decreased energy expenditure or improved participation. User satisfaction was highest with FES, but this was not related to the observed gait improvements.

  5. A novel mechanotronic orthosis enables symmetrical gait kinematics in a patient with a femoral nerve palsy - a case study.

    PubMed

    Hobusch, G M; Hasenöhrl, T; Pieber, K; Schmalz, T; Dana, S; Ambrozy, C; Pohlig, K; Dietl, H; Crevenna, R; Skrbensky, G von; Hofer, C; Auberger, R; Windhager, R

    2017-04-01

    The usage of stance- and swing-phase control orthoses (SSCOs) is a good option in patients with neuromuscular insufficiency of the quadriceps muscle in a broad range of musculo-skeletal disorders. The subjective sensation of improved mobility in daily life and walking comfort could be objectively confirmed by the ability to walk without crutches and by harmonization of the gait patterns in hip and knee. They could also be a considered mobility device after limb salvage surgery, which may even have an impact on preoperative decision making. IMPLICATIONS FOR REHABILITATION Symmetric gate in spite of femoral nerve palsy. Early gate improvements even after hours. High patient?s motivation to use the device.

  6. A data driven model for optimal orthosis selection in children with cerebral palsy.

    PubMed

    Ries, Andrew J; Novacheck, Tom F; Schwartz, Michael H

    2014-09-01

    A statistical orthosis selection model was developed using the Random Forest Algorithm (RFA). The model's performance and potential clinical benefit was evaluated. The model predicts which of five orthosis designs - solid (SAFO), posterior leaf spring (PLS), hinged (HAFO), supra-malleolar (SMO), or foot orthosis (FO) - will provide the best gait outcome for individuals with diplegic cerebral palsy (CP). Gait outcome was defined as the change in Gait Deviation Index (GDI) between walking while wearing an orthosis compared to barefoot (ΔGDI=GDIOrthosis-GDIBarefoot). Model development was carried out using retrospective data from 476 individuals who wore one of the five orthosis designs bilaterally. Clinical benefit was estimated by predicting the optimal orthosis and ΔGDI for 1016 individuals (age: 12.6 (6.7) years), 540 of whom did not have an existing orthosis prescription. Among limbs with an orthosis, the model agreed with the prescription only 14% of the time. For 56% of limbs without an orthosis, the model agreed that no orthosis was expected to provide benefit. Using the current standard of care orthosis (i.e. existing orthosis prescriptions), ΔGDI is only +0.4 points on average. Using the orthosis prediction model, average ΔGDI for orthosis users was estimated to improve to +5.6 points. The results of this study suggest that an orthosis selection model derived from the RFA can significantly improve outcomes from orthosis use for the diplegic CP population. Further validation of the model is warranted using data from other centers and a prospective study.

  7. An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles

    PubMed Central

    Ferris, Daniel P.; Czerniecki, Joseph M.; Hannaford, Blake

    2005-01-01

    We developed a pneumatically powered orthosis for the human ankle joint. The orthosis consisted of a carbon fiber shell, hinge joint, and two artificial pneumatic muscles. One artificial pneumatic muscle provided plantar flexion torque and the second one provided dorsiflexion torque. Computer software adjusted air pressure in each artificial muscle independently so that artificial muscle force was proportional to rectified low-pass-filtered electromyography (EMG) amplitude (i.e., proportional myoelectric control). Tibialis anterior EMG activated the artificial dorsiflexor and soleus EMG activated the artificial plantar flexor. We collected joint kinematic and artificial muscle force data as one healthy participant walked on a treadmill with the orthosis. Peak plantar flexor torque provided by the orthosis was 70 Nm, and peak dorsiflexor torque provided by the orthosis was 38 Nm. The orthosis could be useful for basic science studies on human locomotion or possibly for gait rehabilitation after neurological injury. PMID:16082019

  8. An intrinsically compliant robotic orthosis for treadmill training.

    PubMed

    Hussain, Shahid; Xie, Sheng Quan; Jamwal, Prashant K; Parsons, John

    2012-12-01

    A new intrinsically compliant robotic orthosis powered by pneumatic muscle actuators (PMA) was developed for treadmill training of neurologically impaired subjects. The robotic orthosis has hip and knee sagittal plane rotations actuated by antagonistic configuration of PMA. The orthosis has passive mechanisms to allow vertical and lateral translations of the trunk and a passive hip abduction/adduction joint. A foot lifter having a passive spring mechanism was used to ensure sufficient foot clearance during swing phase. A trajectory tracking controller was implemented to evaluate the performance of the robotic orthosis on a healthy subject. The results show that the robotic orthosis is able to perform the treadmill training task by providing sufficient torques to achieve physiological gait patterns and a realistic stepping experience. The orthosis is a new addition to the rapidly advancing field of robotic orthoses for treadmill training.

  9. An ankle-foot orthosis powered by artificial pneumatic muscles.

    PubMed

    Ferris, Daniel P; Czerniecki, Joseph M; Hannaford, Blake

    2005-05-01

    We developed a pneumatically powered orthosis for the human ankle joint. The orthosis consisted of a carbon fiber shell, hinge joint, and two artificial pneumatic muscles. One artificial pneumatic muscle provided plantar flexion torque and the second one provided dorsiflexion torque. Computer software adjusted air pressure in each artificial muscle independently so that artificial muscle force was proportional to rectified low-pass-filtered electromyography (EMG) amplitude (i.e., proportional myoelectric control). Tibialis anterior EMG activated the artificial dorsiflexor and soleus EMG activated the artificial plantar flexor. We collected joint kinematic and artificial muscle force data as one healthy participant walked on a treadmill with the orthosis. Peak plantar flexor torque provided by the orthosis was 70 Nm, and peak dorsiflexor torque provided by the orthosis was 38 Nm. The orthosis could be useful for basic science studies on human locomotion or possibly for gait rehabilitation after neurological injury.

  10. Artificial annelid robot driven by soft actuators.

    PubMed

    Jung, Kwangmok; Koo, Ja Choon; Nam, Jae-do; Lee, Young Kwan; Choi, Hyouk Ryeol

    2007-06-01

    The annelid provides a biological solution of effective locomotion adaptable to a large variety of unstructured environmental conditions. The undulated locomotion of the segmented body in the annelid is characterized by the combination of individual motion of the muscles distributed along the body, which has been of keen interest in biomimetic investigation. In this paper, we present an annelid-like robot driven by soft actuators based on dielectric elastomer. To mimic the unique motion of the annelid, a novel actuation method employing dielectric elastomer is developed. By using the actuator, a three-degree-of-freedom actuator module is presented, which can provide up-down translational motion, and two rotational degree-of-freedom motion. The proposed actuation method provides advantageous features of reduction in size, fast response and ruggedness in operation. By serially connecting the actuator modules, a micro-robot mimicking the motion of the annelid is developed and its effectiveness is experimentally demonstrated.

  11. Ankle-foot orthosis function in low-level myelomeningocele.

    PubMed

    Hullin, M G; Robb, J E; Loudon, I R

    1992-01-01

    Six children with low-level myelomeningocele underwent gait analysis. All showed excessive ankle dorsiflexion and knee flexion when walking barefoot. A rigid thermoplastic ankle-foot orthosis (AFO) improved gait by preventing ankle dorsiflexion and reducing knee flexion. Biomechanically, the AFO caused a reduction in external knee moment by aligning the knee with the ground reaction force. Small changes in the foot-shank angle of the orthosis had profound effects on knee mechanics. Knee hyperextension could be controlled by a rocker sole. Kinetic gait analysis permits understanding of the biomechanical effects of orthoses.

  12. The influence of a powered knee-ankle-foot orthosis on walking in poliomyelitis subjects: A pilot study.

    PubMed

    Arazpour, Mokhtar; Moradi, Alireza; Samadian, Mohammad; Bahramizadeh, Mahmood; Joghtaei, Mahmoud; Ahmadi Bani, Monireh; Hutchins, Stephen W; Mardani, Mohammad A

    2016-06-01

    Traditionally, the anatomical knee joint is locked in extension when walking with a conventional knee-ankle-foot orthosis. A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. The purpose of this study was to determine differences of the powered knee-ankle-foot orthosis compared to a locked knee-ankle-foot orthosis in kinematic data and temporospatial parameters during ambulation. Quasi-experimental design. Subjects with poliomyelitis (n = 7) volunteered for this study and undertook gait analysis with both the powered and the conventional knee-ankle-foot orthoses. Three trials per orthosis were collected while each subject walked along a 6-m walkway using a calibrated six-camera three-dimensional video-based motion analysis system. Walking with the powered knee-ankle-foot orthosis resulted in a significant reduction in both walking speed and step length (both 18%), but a significant increase in stance phase percentage compared to walking with the conventional knee-ankle-foot orthosis. Cadence was not significantly different between the two test conditions (p = 0.751). There was significantly higher knee flexion during swing phase and increased hip hiking when using the powered orthosis. The new powered orthosis permitted improved knee joint kinematic for knee-ankle-foot orthosis users while providing knee support in stance and active knee motion in swing in the gait cycle. Therefore, the new powered orthosis provided more natural knee flexion during swing for orthosis users compared to the locked knee-ankle-foot orthosis. This orthosis has the potential to improve knee joint kinematics and gait pattern in poliomyelitis subjects during walking activities. © The International Society for Prosthetics and Orthotics 2015.

  13. Kinematic effects on gait of a newly designed ankle-foot orthosis with oil damper resistance: a case series of 2 patients with hemiplegia.

    PubMed

    Yokoyama, Osamu; Sashika, Hironobu; Hagiwara, Akiyoshi; Yamamoto, Sumiko; Yasui, Tadashi

    2005-01-01

    The ankle joint of ankle-foot orthoses (AFOs) should restrict plantarflexion to prevent foot drop during the swing phase. However, excessive plantarflexion resistance causes excessive knee flexion during the stance phase. Plantarflexion resistive moment should be easily adjustable according to the gait ability of patients with hemiplegia. Because it is difficult to adjust plantarflexion resistive moment exactly, we developed an AFO with an oil damper. It is a small shock absorber that utilizes hydraulic resistance. The oil damper generates a resistive moment to the plantarflexion rotation of the ankle joint at the initial stance phase. The magnitude of the plantarflexion resistive moment at the heel strike can be easily adjusted to accommodate each patient's condition by simply turning an adjustment screw. We used a gait analysis system to compare the gait of 2 hemiplegic patients while they were wearing either the AFO with the oil damper or the AFO with the plantarflexion stop. The AFO with the oil damper achieved sufficient plantarflexion of the ankle and mild flexion of the knee by adjusting a proper plantarflexion resistive moment during initial stance phase, and provided a more comfortable gait than did the AFOs with a plantarflexion stop.

  14. Three point dynamic orthosis.

    PubMed

    Chalmers, D D; Hamer, G P

    1985-08-01

    The present method of static three point bracing is unsatisfactory. The static type orthosis becomes ineffectual in reducing flexion deformities in upper and lower extremities and requires constant adjustment as the contractures are reduced. A three point dynamic orthosis using a flexible rod construction has been designed to contain and reduce flexion deformities. This orthosis has certain advantages over the static type and has been used successfully in children with contractures due to cerebral palsy and burns.

  15. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion

    PubMed Central

    Kerkum, Yvette L.; Buizer, Annemieke I.; van den Noort, Josien C.; Becher, Jules G.; Harlaar, Jaap; Brehm, Merel-Anne

    2015-01-01

    Introduction Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP). While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off power. A spring-like AFO may enhance push-off power, which may come at the cost of reducing the knee flexion less effectively. Optimizing this trade-off between enhancing push-off power and normalizing knee flexion in stance is expected to maximize gait efficiency. This study investigated the effects of varying AFO stiffness on gait biomechanics and efficiency in children with CP who walk with excessive knee flexion in stance. Fifteen children with spastic CP (11 boys, 10±2 years) were prescribed with a ventral shell spring-hinged AFO (vAFO). The hinge was set into a rigid, or spring-like setting, using both a stiff and flexible performance. At baseline (i.e. shoes-only) and for each vAFO, a 3D-gait analysis and 6-minute walk test with breath-gas analysis were performed at comfortable speed. Lower limb joint kinematics and kinetics were calculated. From the 6-minute walk test, walking speed and the net energy cost were determined. A generalized estimation equation (p<0.05) was used to analyze the effects of different conditions. Compared to shoes-only, all vAFOs improved the knee angle and net moment similarly. Ankle power generation and work were preserved only by the spring-like vAFOs. All vAFOs decreased the net energy cost compared to shoes-only, but no differences were found between vAFOs, showing that the effects of spring-like vAFOs to promote push-off power did not lead to greater reductions in walking energy cost. These findings suggest that, in this specific group of children with spastic CP, the vAFO stiffness that maximizes gait efficiency is primarily determined by its effect on knee kinematics and kinetics rather than by its effect on push-off power. Trial

  16. Towards more effective robotic gait training for stroke rehabilitation: a review.

    PubMed

    Pennycott, Andrew; Wyss, Dario; Vallery, Heike; Klamroth-Marganska, Verena; Riener, Robert

    2012-09-07

    Stroke is the most common cause of disability in the developed world and can severely degrade walking function. Robot-driven gait therapy can provide assistance to patients during training and offers a number of advantages over other forms of therapy. These potential benefits do not, however, seem to have been fully realised as of yet in clinical practice. This review determines ways in which robot-driven gait technology could be improved in order to achieve better outcomes in gait rehabilitation. The literature on gait impairments caused by stroke is reviewed, followed by research detailing the different pathways to recovery. The outcomes of clinical trials investigating robot-driven gait therapy are then examined. Finally, an analysis of the literature focused on the technical features of the robot-based devices is presented. This review thus combines both clinical and technical aspects in order to determine the routes by which robot-driven gait therapy could be further developed. Active subject participation in robot-driven gait therapy is vital to many of the potential recovery pathways and is therefore an important feature of gait training. Higher levels of subject participation and challenge could be promoted through designs with a high emphasis on robotic transparency and sufficient degrees of freedom to allow other aspects of gait such as balance to be incorporated.

  17. Towards more effective robotic gait training for stroke rehabilitation: a review

    PubMed Central

    2012-01-01

    Background Stroke is the most common cause of disability in the developed world and can severely degrade walking function. Robot-driven gait therapy can provide assistance to patients during training and offers a number of advantages over other forms of therapy. These potential benefits do not, however, seem to have been fully realised as of yet in clinical practice. Objectives This review determines ways in which robot-driven gait technology could be improved in order to achieve better outcomes in gait rehabilitation. Methods The literature on gait impairments caused by stroke is reviewed, followed by research detailing the different pathways to recovery. The outcomes of clinical trials investigating robot-driven gait therapy are then examined. Finally, an analysis of the literature focused on the technical features of the robot-based devices is presented. This review thus combines both clinical and technical aspects in order to determine the routes by which robot-driven gait therapy could be further developed. Conclusions Active subject participation in robot-driven gait therapy is vital to many of the potential recovery pathways and is therefore an important feature of gait training. Higher levels of subject participation and challenge could be promoted through designs with a high emphasis on robotic transparency and sufficient degrees of freedom to allow other aspects of gait such as balance to be incorporated. PMID:22953989

  18. Biomechanical response to ankle-foot orthosis stiffness during running.

    PubMed

    Russell Esposito, Elizabeth; Choi, Harmony S; Owens, Johnny G; Blanck, Ryan V; Wilken, Jason M

    2015-12-01

    The Intrepid Dynamic Exoskeletal Orthosis (IDEO) is an ankle-foot orthosis developed to address the high rates of delayed amputation in the military. Its use has enabled many wounded Service Members to run again. During running, stiffness is thought to influence an orthosis' energy storage and return mechanical properties. This study examined the effect of orthosis stiffness on running biomechanics in patients with lower limb impairments who had undergone unilateral limb salvage. Ten patients with lower limb impairments underwent gait analysis at a self-selected running velocity. 1. Nominal (clinically-prescribed), 2. Stiff (20% stiffer than nominal), and 3. Compliant (20% less stiff than nominal) ankle-foot orthosis stiffnesses were tested. Ankle joint stiffness was greatest in the stiffest strut and lowest in the compliant strut, however ankle mechanical work remained unchanged. Speed, stride length, cycle time, joint angles, moments, powers, and ground reaction forces were not significantly different among stiffness conditions. Ankle joint kinematics and ankle, knee and hip kinetics were different between limbs. Ankle power, in particular, was lower in the injured limb. Ankle-foot orthosis stiffness affected ankle joint stiffness but did not influence other biomechanical parameters of running in individuals with unilateral limb salvage. Foot strike asymmetries may have influenced the kinetics of running. Therefore, a range of stiffness may be clinically appropriate when prescribing ankle-foot orthoses for active individuals with limb salvage. Published by Elsevier Ltd.

  19. A new hybrid spring brake orthosis for controlling hip and knee flexion in the swing phase.

    PubMed

    Gharooni, S; Heller, B; Tokhi, M O

    2001-03-01

    In this study it is proposed that active contraction of muscles might be artificially replaced by a spring brake orthosis (SBO) to provide near-natural knee and hip swing phase trajectories for gait in spinal cord injured subjects. The SBO is a new gait restoration system in which stored spring elastic energy and potential energy of limb segments are utilized to aid gait. It is also shown that hip flexion can be produced without the need for withdrawal reflex, hip flexor stimulus or any mechanical actuator at the hip. A hip flexion angle of 21 degrees was achieved by a nonimpaired subject wearing a prototype orthosis.

  20. Locomotor adaptation to a powered ankle-foot orthosis depends on control method

    PubMed Central

    Cain, Stephen M; Gordon, Keith E; Ferris, Daniel P

    2007-01-01

    Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Methods Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. Results During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. Conclusion These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control. PMID:18154649

  1. Soft mobile robots driven by foldable dielectric elastomer actuators

    SciTech Connect

    Sun, Wenjie; Liu, Fan; Ma, Ziqi; Li, Chenghai; Zhou, Jinxiong

    2016-08-28

    A cantilever beam with elastic hinge pulled antagonistically by two dielectric elastomer (DE) membranes in tension forms a foldable actuator if one DE membrane is subject to a voltage and releases part of tension. Simply placing parallel rigid bars on the prestressed DE membranes results in enhanced actuators working in a pure shear state. We report design, analysis, fabrication, and experiment of soft mobile robots that are moved by such foldable DE actuators. We describe systematic measurement of the foldable actuators and perform theoretical analysis of such actuators based on minimization of total energy, and a good agreement is achieved between model prediction and measurement. We develop two versions of prototypes of soft mobile robots driven either by two sets of DE membranes or one DE membrane and elastic springs. We demonstrate locomotion of these soft mobile robots and highlight several key design parameters that influence locomotion of the robots. A 45 g soft robot driven by a cyclic triangle voltage with amplitude 7.4 kV demonstrates maximal stroke 160 mm or maximal rolling velocity 42 mm/s. The underlying mechanics and physics of foldable DE actuators can be leveraged to develop other soft machines for various applications.

  2. Soft mobile robots driven by foldable dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Sun, Wenjie; Liu, Fan; Ma, Ziqi; Li, Chenghai; Zhou, Jinxiong

    2016-08-01

    A cantilever beam with elastic hinge pulled antagonistically by two dielectric elastomer (DE) membranes in tension forms a foldable actuator if one DE membrane is subject to a voltage and releases part of tension. Simply placing parallel rigid bars on the prestressed DE membranes results in enhanced actuators working in a pure shear state. We report design, analysis, fabrication, and experiment of soft mobile robots that are moved by such foldable DE actuators. We describe systematic measurement of the foldable actuators and perform theoretical analysis of such actuators based on minimization of total energy, and a good agreement is achieved between model prediction and measurement. We develop two versions of prototypes of soft mobile robots driven either by two sets of DE membranes or one DE membrane and elastic springs. We demonstrate locomotion of these soft mobile robots and highlight several key design parameters that influence locomotion of the robots. A 45 g soft robot driven by a cyclic triangle voltage with amplitude 7.4 kV demonstrates maximal stroke 160 mm or maximal rolling velocity 42 mm/s. The underlying mechanics and physics of foldable DE actuators can be leveraged to develop other soft machines for various applications.

  3. A new ankle foot orthosis for running.

    PubMed

    Bishop, David; Moore, Allan; Chandrashekar, Naveen

    2009-09-01

    Traumatic knee injuries in automobile accidents and sports often lead to damage of the peroneal nerve. A lack of control of muscles innervated by the peroneal nerve due to this damage, results in the inability to dorsiflex and evert the foot and to extend the toes. This condition is commonly known as foot drop. Foot drop reduces the stability in the body while walking and running and may also cause injury due to lack of foot clearance during the swing phase of the gait. Traditionally, an ankle foot orthosis (AFO), comprised of a moulded sheet of plastic that conforms around the posterior calf and distally contains all or part of the calcaneous as well as the plantar foot, is used to treat foot drop. The intent of this orthosis is to dorsiflex the foot to provide clearance during the swing phase of walking and running. Traditional AFO results in increased pressures due to a decrease in dorsiflexion range of motion at the ankle and make the orthosis increasingly uncomfortable to wear. Several other existing designs of foot drop AFO suffer from similar inadequacies. To address these issues, a new AFO was developed. The device was successfully used by one person with foot drop without issues for more than one year. This new design conforms to the lower anterior shin and dorsum of the foot using dorsiassist Tamarack ankle joints to allow for greater plantar and dorsiflexion range of motion. While still limiting ankle inversion it does allow for more ankle eversion. This orthosis can be discretely worn inside shoes due to its smaller size, and can be worn for a longer period of time without discomfort.

  4. Joint Contracture Orthosis (JCO)

    NASA Technical Reports Server (NTRS)

    Lunsford, Thomas R.; Parsons, Ken; Krouskop, Thomas; McGee, Kevin

    1997-01-01

    The purpose of this project was to develop an advanced orthosis which is effective in reducing upper and lower limb contractures in significantly less time than currently required with conventional methods. The team that developed the JCO consisted of an engineer, orthotist, therapist, and physician.

  5. Compliant gait assistance triggered by user intention.

    PubMed

    Rajasekaran, Vijaykumar; Aranda, Joan; Casals, Alicia

    2015-01-01

    An automatic gait initialization strategy based on user intention sensing in the context of rehabilitation with a lower-limb wearable robot is proposed and evaluated. The proposed strategy involves monitoring the human-orthosis interaction torques and initial position deviation to determine the gait initiation instant and to modify orthosis operation for gait assistance, when needed. During gait, the compliant control algorithm relies on the adaptation of the joints' stiffness in function of their interaction torques and their deviation from the desired trajectories, while maintaining the dynamic stability. As a reference input, the average of a set of recorded gaits obtained from healthy subjects is used. The algorithm has been tested with five healthy subjects showing its efficient behavior in initiating the gait and maintaining the equilibrium while walking in presence of external forces. The work is performed as a preliminary study to assist patients suffering from incomplete Spinal cord injury and Stroke.

  6. How to improve walking, balance and social participation following stroke: a comparison of the long term effects of two walking aids--canes and an orthosis TheraTogs--on the recovery of gait following acute stroke. A study protocol for a multi-centre, single blind, randomised control trial.

    PubMed

    Maguire, Clare; Sieben, Judith M; Erzer, Florian; Goepfert, Beat; Frank, Matthias; Ferber, Georg; Jehn, Melissa; Schmidt-Trucksäss, Arno; de Bie, Robert A

    2012-03-30

    Annually, some 9000 people in Switzerland suffer a first time stroke. Of these 60% are left with moderate to severe walking disability. Evidence shows that rehabilitation techniques which emphasise activity of the hemiplegic side increase ipsilesional cortical plasticity and improve functional outcomes. Canes are commonly used in gait rehabilitation although they significantly reduce hemiplegic muscle activity. We have shown that an orthosis "TheraTogs" (a corset with elasticated strapping) significantly increases hemiplegic muscle activity during gait. The aim of the present study is to investigate the long term effects on the recovery of gait, balance and social participation of gait rehabilitation with TheraTogs compared to gait rehabilitation with a cane following first time acute stroke. Multi-centre, single blind, randomised trial with 120 patients after first stroke. When subjects have reached Functional Ambulation Category 3 they will be randomly allocated into TheraTogs or cane group. TheraTogs will be applied to support hip extensor and abductor musculature according to a standardised procedure. Cane walking held at the level of the radial styloid of the sound wrist. Subjects will walk throughout the day with only the assigned walking aid. Standard therapy treatments and usual care will remain unchanged and documented. The intervention will continue for five weeks or until patients have reached Functional Ambulation category 5. Outcome measures will be assessed the day before begin of intervention, the day after completion, 3 months, 6 months and 2 years. Timed "up and go" test, secondary outcomes: peak surface EMG of gluteus maximus and gluteus medius, activation patterns of hemiplegic leg musculature, temporo-spatial gait parameters, hemiplegic hip kinematics in the frontal and sagittal planes, dynamic balance, daily activity measured by accelerometry, Stroke Impact Scale. Significance levels will be 5% with 95% CI's. IntentionToTreat analyses will be

  7. How to improve walking, balance and social participation following stroke: a comparison of the long term effects of two walking aids--canes and an orthosis TheraTogs--on the recovery of gait following acute stroke. A study protocol for a multi-centre, single blind, randomised control trial

    PubMed Central

    2012-01-01

    Background Annually, some 9000 people in Switzerland suffer a first time stroke. Of these 60% are left with moderate to severe walking disability. Evidence shows that rehabilitation techniques which emphasise activity of the hemiplegic side increase ipsilesional cortical plasticity and improve functional outcomes. Canes are commonly used in gait rehabilitation although they significantly reduce hemiplegic muscle activity. We have shown that an orthosis "TheraTogs" (a corset with elasticated strapping) significantly increases hemiplegic muscle activity during gait. The aim of the present study is to investigate the long term effects on the recovery of gait, balance and social participation of gait rehabilitation with TheraTogs compared to gait rehabilitation with a cane following first time acute stroke. Methods/Design Multi-centre, single blind, randomised trial with 120 patients after first stroke. When subjects have reached Functional Ambulation Category 3 they will be randomly allocated into TheraTogs or cane group. TheraTogs will be applied to support hip extensor and abductor musculature according to a standardised procedure. Cane walking held at the level of the radial styloid of the sound wrist. Subjects will walk throughout the day with only the assigned walking aid. Standard therapy treatments and usual care will remain unchanged and documented. The intervention will continue for five weeks or until patients have reached Functional Ambulation category 5. Outcome measures will be assessed the day before begin of intervention, the day after completion, 3 months, 6 months and 2 years. Primary outcome: Timed "up and go" test, secondary outcomes: peak surface EMG of gluteus maximus and gluteus medius, activation patterns of hemiplegic leg musculature, temporo-spatial gait parameters, hemiplegic hip kinematics in the frontal and sagittal planes, dynamic balance, daily activity measured by accelerometry, Stroke Impact Scale. Significance levels will be 5% with 95

  8. Preliminary Evaluation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals

    PubMed Central

    Farris, Ryan J.; Quintero, Hugo A.; Goldfarb, Michael

    2012-01-01

    This paper describes a powered lower-limb orthosis that is intended to provide gait assistance to spinal cord injured (SCI) individuals by providing assistive torques at both hip and knee joints. The orthosis has a mass of 12 kg and is capable of providing maximum joint torques of 40 Nm with hip and knee joint ranges of motion from 105° flexion to 30° extension and 105° flexion to 10° hyperextension, respectively. A custom distributed embedded system controls the orthosis with power being provided by a lithium polymer battery which provides power for one hour of continuous walking. In order to demonstrate the ability of the orthosis to assist walking, the orthosis was experimentally implemented on a paraplegic subject with a T10 complete injury. Data collected during walking indicates a high degree of step-to-step repeatability of hip and knee trajectories (as enforced by the orthosis) and an average walking speed of 0.8 km/hr. The electrical power required at each hip and knee joint during gait was approximately 25 and 27 W, respectively, contributing to the 117 W overall electrical power required by the device during walking. A video of walking corresponding to the aforementioned data is included in the supplemental material. PMID:21968791

  9. The physiological cost index of walking with a powered knee-ankle-foot orthosis in subjects with poliomyelitis: A pilot study.

    PubMed

    Arazpour, Mokhtar; Ahmadi Bani, Monireh; Samadian, Mohammad; Mousavi, Mohammad E; Hutchins, Stephen W; Bahramizadeh, Mahmood; Curran, Sarah; Mardani, Mohammad A

    2016-08-01

    A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. The purpose of this study was to determine its effect on the physiological cost index, walking speed and the distance walked in people with poliomyelitis compared to when walking with a knee-ankle-foot orthosis with drop lock knee joints. Quasi experimental study. Seven subjects with poliomyelitis volunteered for the study and undertook gait analysis with both types of knee-ankle-foot orthosis. Walking with the powered knee-ankle-foot orthosis significantly reduced walking speed (p = 0.015) and the distance walked (p = 0.004), and also, it did not improve physiological cost index values (p = 0.009) compared to walking with the locked knee-ankle-foot orthosis. Using a powered knee-ankle-foot orthosis did not significantly improve any of the primary outcome measures during walking for poliomyelitis subjects. This powered knee-ankle-foot orthosis design did not improve the physiological cost index of walking for people with poliomyelitis when compared to walking with a knee-ankle-foot orthosis with drop lock knee joints. This may have been due to the short training period used or the bulky design and additional weight of the powered orthosis. Further research is therefore warranted. © The International Society for Prosthetics and Orthotics 2015.

  10. Control and Implementation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals

    PubMed Central

    Quintero, Hugo A.; Farris, Ryan J.; Goldfarb, Michael

    2012-01-01

    This paper describes a powered lower-limb orthosis that is intended to provide gait assistance to spinal cord injured (SCI) individuals by providing assistive torques at both hip and knee joints, along with a user interface and control structure that enables control of the powered orthosis via upper-body influence. The orthosis and control structure was experimentally implemented on a paraplegic subject (T10 complete) in order to provide a preliminary characterization of its capability to provide basic walking. Data and video is presented from these initial trials, which indicates that the orthosis and controller are able to effectively provide walking within parallel bars at an average speed of 0.8 km/hr. PMID:22275679

  11. Control and implementation of a powered lower limb orthosis to aid walking in paraplegic individuals.

    PubMed

    Quintero, Hugo A; Farris, Ryan J; Goldfarb, Michael

    2011-01-01

    This paper describes a powered lower-limb orthosis that is intended to provide gait assistance to spinal cord injured (SCI) individuals by providing assistive torques at both hip and knee joints, along with a user interface and control structure that enables control of the powered orthosis via upper-body influence. The orthosis and control structure was experimentally implemented on a paraplegic subject (T10 complete) in order to provide a preliminary characterization of its capability to provide basic walking. Data and video is presented from these initial trials, which indicates that the orthosis and controller are able to effectively provide walking within parallel bars at an average speed of 0.8 km/hr. © 2011 IEEE

  12. Design of a quasi-passive 3 DOFs ankle-foot wearable rehabilitation orthosis.

    PubMed

    Zhang, Chao; Zhu, Yanhe; Fan, Jizhuang; Zhao, Jie; Yu, Hongying

    2015-01-01

    Muscular rigidity and atrophy caused by long-term underactivity usually lead to foot drop, strephenopodia, foot extorsion or some other complications for the lower limb movement disorders or lower limb surgery sufferers. The ankle-foot orthosis can help patients conduct the right ankle motion mode training, inhibit spasm and prevent ankle complications. In this paper, a quasi-passive 3 DOFs ankle-foot wearable orthosis was designed on the basis of kinematics and dynamics analysis of the ankle joint. Ankle joint trajectory and dynamic characteristics similar to those of natural gait can be obtained by the combination of passive energy storage and additional power complement. In terms of function, the orthosis has shock absorption and low energy consumption. Given its excellent characteristics of comfortableness, lightweight, and anthropomorphic construction, the orthosis can be used in medical institutions for rehabilitation training or as a daily-walking auxiliary equipment for surgery sufferers.

  13. The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study.

    PubMed

    Bregman, D J J; van der Krogt, M M; de Groot, V; Harlaar, J; Wisse, M; Collins, S H

    2011-11-01

    In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot Orthoses are frequently prescribed. However, it is unknown what Ankle Foot Orthoses stiffness should be used to obtain the most efficient gait. The aim of this simulation study was to gain insights into the effect of variation in Ankle Foot Orthosis stiffness on the amount of energy stored in the Ankle Foot Orthosis and the energy cost of walking. We developed a two-dimensional forward-dynamic walking model with a passive spring at the ankle representing the Ankle Foot Orthosis and two constant torques at the hip for propulsion. We varied Ankle Foot Orthosis stiffness while keeping speed and step length constant. We found an optimal stiffness, at which the energy delivered at the hip joint was minimal. Energy cost decreased with increasing energy storage in the ankle foot orthosis, but the most efficient gait did not occur with maximal energy storage. With maximum storage, push-off occurred too late to reduce the impact of the contralateral leg with the floor. Maximum return prior to foot strike was also suboptimal, as push-off occurred too early and its effects were subsequently counteracted by gravity. The optimal Ankle Foot Orthosis stiffness resulted in significant push-off timed just prior to foot strike and led to greater ankle plantar-flexion velocity just before contralateral foot strike. Our results suggest that patient energy cost might be reduced by the proper choice of Ankle Foot Orthosis stiffness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Design and functional evaluation of a quasi-passive compliant stance control knee-ankle-foot orthosis.

    PubMed

    Shamaei, Kamran; Napolitano, Paul C; Dollar, Aaron M

    2014-03-01

    In this paper, we present the mechanical design, control algorithm, and functional evaluation of a quasi-passive compliant stance control knee-ankle-foot orthosis. The orthosis implements a spring in parallel with the knee joint during the stance phase of the gait and allows free rotation during the swing phase. The design is inspired by the moment-angle analysis of the knee joint revealing that the knee function approximates that of a linear torsional spring in the stance phase of the gait. Our orthosis aims to restore the natural function of a knee that is impaired by injury, stroke, post-polio, multiple sclerosis, spinal cord injury, patellofemoral pain syndrome, osteoarthritis, and others. Compared with state-of-the-art stance control orthoses, which rigidly lock the knee during the stance phase, the described orthosis intends to provide the natural shock absorption function of the knee in order to reduce compensatory movements both in the affected and unaffected limbs. Preliminary testing on three unimpaired subjects showed that compliant support of the knee provided by the orthosis explained here results in higher gait speed as well as more natural kinematic profiles for the lower extremities when compared with rigid support of the knee provided by an advanced commercial stance control orthosis.

  15. Energy Expenditure of Trotting Gait Under Different Gait Parameters

    NASA Astrophysics Data System (ADS)

    Chen, Xian-Bao; Gao, Feng

    2017-07-01

    Robots driven by batteries are clean, quiet, and can work indoors or in space. However, the battery endurance is a great problem. A new gait parameter design energy saving strategy to extend the working hours of the quadruped robot is proposed. A dynamic model of the robot is established to estimate and analyze the energy expenditures during trotting. Given a trotting speed, optimal stride frequency and stride length can minimize the energy expenditure. However, the relationship between the speed and the optimal gait parameters is nonlinear, which is difficult for practical application. Therefore, a simplified gait parameter design method for energy saving is proposed. A critical trotting speed of the quadruped robot is found and can be used to decide the gait parameters. When the robot is travelling lower than this speed, it is better to keep a constant stride length and change the cycle period. When the robot is travelling higher than this speed, it is better to keep a constant cycle period and change the stride length. Simulations and experiments on the quadruped robot show that by using the proposed gait parameter design approach, the energy expenditure can be reduced by about 54% compared with the 100 mm stride length under 500 mm/s speed. In general, an energy expenditure model based on the gait parameter of the quadruped robot is built and the trotting gait parameters design approach for energy saving is proposed.

  16. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis.

    PubMed

    Gordon, Keith E; Sawicki, Gregory S; Ferris, Daniel P

    2006-01-01

    We developed a powered ankle-foot orthosis that uses artificial pneumatic muscles to produce active plantar flexor torque. The purpose of this study was to quantify the mechanical performance of the orthosis during human walking. Three subjects walked at a range of speeds wearing ankle-foot orthoses with either one or two artificial muscles working in parallel. The orthosis produced similar total peak plantar flexor torque and network across speeds independent of the number of muscles used. The orthosis generated approximately 57% of the peak ankle plantar flexor torque during stance and performed approximately 70% of the positive plantar flexor work done during normal walking. Artificial muscle bandwidth and force-length properties were the two primary factors limiting torque production. The lack of peak force and work differences between single and double muscle conditions can be explained by force-length properties. Subjects altered their ankle kinematics between conditions resulting in changes in artificial muscle length. In the double muscle condition greater plantar flexion yielded shorter artificial muscles lengths and decreased muscle forces. This finding emphasizes the importance of human testing in the design and development of robotic exoskeleton devices for assisting human movement. The results of this study outline the mechanical performance limitations of an ankle-foot orthosis powered by artificial pneumatic muscles. This orthosis could be valuable for gait rehabilitation and for studies investigating neuromechanical control of human walking.

  17. Modification of spastic gait through mechanical damping.

    PubMed

    Maki, B E; Rosen, M J; Simon, S R

    1985-01-01

    The effect of dissipative mechanical loads on spastic gait has been studied, to evaluate the feasibility of using mechanically damped orthoses to effect functional improvements in the gait of spastic patients. This concept is based on a hypothesis citing uninhibited, velocity-dependent stretch reflexes as a possible causal factor in spastic gait abnormalities, such as equinus and back-kneeing. In order to screen potential experimental subjects and to quantify velocity-dependent reflex behaviour, ankle rotation experiments and filmed gait analysis were performed. The results supported the existence of a velocity threshold. Orthosis simulation experiments were performed with one spastic subject, using a wearable, computer-controlled, electromechanical, below-knee orthosis simulator to apply a variety of damping loads to the ankle as the subject walked. Results indicated that appropriate damping can improve local joint kinematics. The damping causes a reduction in muscle stretch velocity which apparently results in reduced spastic reflex activity.

  18. Weight transfer analysis in adults with hemiplegia using ankle foot orthosis.

    PubMed

    Nolan, Karen J; Yarossi, Mathew

    2011-03-01

    Identifying and understanding the changes in transfer of momentum that are directly affected by orthotic intervention are significant factors related to the improvement of mobility in individuals with hemiplegia. The purpose of this investigation was to use a novel analysis technique to objectively measure weight transfer during double support (DS) in healthy individuals and individuals with hemiplegia secondary to stroke with and without an ankle foot orthosis. Prospective, Repeated measures, case-controlled trial. Participants included 25 adults with stroke-related hemiplegia >6 months using a prescribed ankle foot orthosis and 12 age-matched healthy controls. Main outcome measures included the weight transfer point timing (WTP, %DS), maximum total force timing (MTF, %DS), timing difference between WTP and MTF (MTF-WTP, %DS) and the linearity of loading (LOL, R(2)) during the DS phase of the gait cycle. The WTP and LOL were significantly different between conditions with and without the ankle foot orthosis for the affected and unaffected limb in post-stroke individuals, p ≤ 0.01. The MTF and difference in timing between MTF-WTP were significantly different during affected limb loading with and without the ankle foot orthosis in the stroke group, p ≤ 0.0001 and p = 0.03, respectively. MTF, MTF-WTP and LOL were significantly different between individuals with stroke (during affected limb loading) and healthy controls (during right limb loading). This research established a systematic method for analysing weight transfer during walking to evaluate the effect of an ankle foot orthosis on loading during double support in hemiplegic gait. This novel method can be used to elucidate biomechanical mechanisms behind orthosis-mediated changes in gait patterns and quantify functional mobility outcomes in rehabilitation. This novel approach to orthotic assessment will provide the clinician with needed objective evidence to select the most effective orthotic

  19. Effect of Pneumatic Compressing Powered Orthosis in Stroke Patients: Preliminary Study

    PubMed Central

    Kim, Eun Sil; Sohn, Min Kyun; Kwak, Soo-Hyun; Choi, Jong Ho; Oh, Ji Sun

    2015-01-01

    Objective To evaluate the feasibility and effectiveness of a knee-ankle-foot orthosis powered by artificial pneumatic muscles (PKAFO). Methods Twenty-three hemiplegic patients (age, 59.6±13.7 years) were assessed 19.7±36.6 months after brain lesion. The 10-m walking time was measured as a gait parameter while the individual walked on a treadmill. Walking speed (m/s), step cycle (cycle/s), and step length (m) were also measured on a treadmill with and without PKAFO, and before and after gait training. Clinical parameters measured before and after gait training included Korean version of Modified Bathel Index (K-MBI), manual muscle test (MMT), and Modified Ashworth Scale (MAS) of hemiplegic ankle. Gait training comprised treadmill walking for 20 minutes, 5 days a week for 3 weeks at a comfortable speed. Results The 10-m walking time, walking speed, step length, and step cycle were significantly greater with PKAFO than without PKAFO, and after gait training (both p<0.05). K-MBI was improved after gait training (p<0.05), but MMT and MAS were not. Conclusion PKAFO may improve gait function in hemiplegic patients. It can be a useful orthosis for gait training in hemiplegic patients. PMID:25932419

  20. The influence of walking with an orthosis on bone mineral density by determination of the absolute values of the loads applied on the limb.

    PubMed

    Karimi, Mohammad Taghi

    2012-03-01

    Spinal cord injury is damage to the spinal cord that results in loss of mobility and sensation below the level of injury. Most patients use various types of orthoses to stand and walk. It has been claimed that walking and standing with orthosis reduces bone osteoporosis, improves joint range of motion and decreases muscle spasm. Unfortunately, there are discrepancies regarding the clinical effects of walking and standing on bone mineral density. The aim of this research was to find the absolute values of the loads transmitted by body and orthosis in walking with use of an orthosis. 5 normal subjects were recruited to stand and walk with a new design of reciprocal gait orthosis. The loads transmitted through the orthosis and anatomy was measured by use of strain gauge and motion analysis systems. It has been shown that the loads applied on the anatomy were significantly more than that transmitted through the orthosis. Moreover, the patterns of the forces and moments of the orthosis and body completely differed from each other. As the most part of the loads applied on the complex transmitted by anatomy in walking with an orthosis, walking with orthosis can influence bone mineral density.

  1. Design, construction and evaluation of an electromechanical stance-control knee-ankle-foot orthosis.

    PubMed

    Yakimovich, Terris; Kofman, Jonathan; Lemaire, Edward

    2005-01-01

    A new electromechanical Stance-Control Knee-Ankle-Foot Orthosis (SCKAFO) was designed to provide improved gait for people with knee-extensor weakness. This SCKAFO inhibits knee flexion at any knee angle while allowing knee extension during weight bearing. During swing or other non-weight bearing activities, the SCKAFO allows free knee motion. A prototype joint was mechanically tested to determine the moment at failure, loading behaviour, and device safety. Quantitative kinematic gait analysis of three able-bodied subjects and three knee-ankle-foot-orthosis (KAFO) users showed that the new SCKAFO had a desired minimal effect on able-bodied walking gait. The SCKAFO permitted a mean increase in sagittal knee motion (488%) during swing for the three KAFO users and a reduction in pelvic obliquity and hip abduction angle abnormalities during terminal stance and swing for two KAFO users.

  2. Design, construction and evaluation of an electromechanical stance-control knee-ankle-foot orthosis.

    PubMed

    Yakimovich, Terris; Kofman, Jonathan; Lemaire, Edward

    2005-01-01

    A new electromechanical Stance-Control Knee-Ankle-Foot Orthosis (SCKAFO) was designed to provide improved gait for people with knee-extensor weakness. This SCKAFO inhibits knee flexion at any knee angle while allowing knee extension during weight bearing. During swing or other non-weight bearing activities, the SCKAFO allows free knee motion. A prototype joint was mechanically tested to determine the moment at failure, loading behaviour, and device safety. Quantitative kinematic gait analysis of three able-bodied subjects and three knee-anklefoot-orthosis (AFO) users showed that the new SCKAFO had a desired minimal effect on able-bodied walking gait. The SCKAFO permitted a mean increase in sagittal knee motion (488%) during swing for the three KAFO users and a reduction in pelvic obliquity and hip abduction angle abnormalities during terminal stance and swing for two KAFO users.

  3. Biomechanics of an orthosis-managed cranial cruciate ligament-deficient canine stifle joint predicted by use of a computer model.

    PubMed

    Bertocci, Gina E; Brown, Nathan P; Mich, Patrice M

    2017-01-01

    OBJECTIVE To evaluate effects of an orthosis on biomechanics of a cranial cruciate ligament (CrCL)-deficient canine stifle joint by use of a 3-D quasistatic rigid-body pelvic limb computer model simulating the stance phase of gait and to investigate influences of orthosis hinge stiffness (durometer). SAMPLE A previously developed computer simulation model for a healthy 33-kg 5-year-old neutered Golden Retriever. PROCEDURES A custom stifle joint orthosis was implemented in the CrCL-deficient pelvic limb computer simulation model. Ligament loads, relative tibial translation, and relative tibial rotation in the orthosis-stabilized stifle joint (baseline scenario; high-durometer hinge]) were determined and compared with values for CrCL-intact and CrCL-deficient stifle joints. Sensitivity analysis was conducted to evaluate the influence of orthosis hinge stiffness on model outcome measures. RESULTS The orthosis decreased loads placed on the caudal cruciate and lateral collateral ligaments and increased load placed on the medial collateral ligament, compared with loads for the CrCL-intact stifle joint. Ligament loads were decreased in the orthosis-managed CrCL-deficient stifle joint, compared with loads for the CrCL-deficient stifle joint. Relative tibial translation and rotation decreased but were not eliminated after orthosis management. Increased orthosis hinge stiffness reduced tibial translation and rotation, whereas decreased hinge stiffness increased internal tibial rotation, compared with values for the baseline scenario. CONCLUSIONS AND CLINICAL RELEVANCE Stifle joint biomechanics were improved following orthosis implementation, compared with biomechanics of the CrCL-deficient stifle joint. Orthosis hinge stiffness influenced stifle joint biomechanics. An orthosis may be a viable option to stabilize a CrCL-deficient canine stifle joint.

  4. Efficacy of a trunk orthosis with joints providing resistive force on low back load during level walking in elderly persons

    PubMed Central

    Katsuhira, Junji; Matsudaira, Ko; Oka, Hiroyuki; Iijima, Shinno; Ito, Akihiro; Yasui, Tadashi; Yozu, Arito

    2016-01-01

    Purpose The effects of lumbosacral and spinal orthoses on low back pain and gait are not exactly clear. We previously developed a trunk orthosis with joints providing resistive force on low back load to decrease such load, and confirmed its positive effects during level walking in healthy young adults. Therefore, we aimed to determine the efficacy of this trunk orthosis during level walking in healthy elderly subjects. Methods Fifteen community-dwelling elderly subjects performed level walking at a self-selected speed without an orthosis, with our orthosis, and with a lumbosacral orthosis. Kinematic and kinetic data were recorded using a three-dimensional motion analysis system, and erector spinae activity was recorded by electromyography. Results When comparing the three conditions, our orthosis showed the following effects: it decreased the peak extension moment, increased the peak flexion moment, decreased the lateral bending angle, increased the peak thoracic extension angle, and had significantly lower erector spinae activity and significantly larger peak pelvic forward tilt angles. Conclusion Our orthosis with joints providing resistive force decreased low back load and modified trunk and pelvis alignments during level walking in healthy elderly people. PMID:27877028

  5. 21 CFR 882.5970 - Cranial orthosis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cranial orthosis. 882.5970 Section 882.5970 Food... DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5970 Cranial orthosis. (a) Identification. A cranial orthosis is a device that is intended for medical purposes to apply pressure...

  6. 21 CFR 882.5970 - Cranial orthosis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cranial orthosis. 882.5970 Section 882.5970 Food... DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5970 Cranial orthosis. (a) Identification. A cranial orthosis is a device that is intended for medical purposes to apply pressure...

  7. 21 CFR 882.5970 - Cranial orthosis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cranial orthosis. 882.5970 Section 882.5970 Food... DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5970 Cranial orthosis. (a) Identification. A cranial orthosis is a device that is intended for medical purposes to apply pressure...

  8. 21 CFR 882.5970 - Cranial orthosis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cranial orthosis. 882.5970 Section 882.5970 Food... DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5970 Cranial orthosis. (a) Identification. A cranial orthosis is a device that is intended for medical purposes to apply pressure...

  9. 21 CFR 882.5970 - Cranial orthosis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cranial orthosis. 882.5970 Section 882.5970 Food... DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5970 Cranial orthosis. (a) Identification. A cranial orthosis is a device that is intended for medical purposes to apply pressure...

  10. Gastrocnemius tendon strain in a dog treated with autologous mesenchymal stem cells and a custom orthosis.

    PubMed

    Case, J Brad; Palmer, Ross; Valdes-Martinez, Alex; Egger, Erick L; Haussler, Kevin K

    2013-05-01

    To report clinical findings and outcome in a dog with gastrocnemius tendon strain treated with autologous mesenchymal stem cells and a custom orthosis. Clinical report. A 4-year-old spayed female Border Collie. Bone-marrow derived, autologous mesenchymal stem cells were transplanted into the tendon core lesion. A custom, progressive, dynamic orthosis was fit to the tarsus. Serial orthopedic examinations and ultrasonography as well as long-term force-plate gait analysis were utilized for follow up. Lameness subjectively resolved and peak vertical force increased from 43% to 92% of the contralateral pelvic limb. Serial ultrasonographic examinations revealed improved but incomplete restoration of normal linear fiber pattern of the gastrocnemius tendon. Findings suggest that autologous mesenchymal stem cell transplantation with custom, progressive, dynamic orthosis may be a viable, minimally invasive technique for treatment of calcaneal tendon injuries in dogs. © Copyright 2013 by The American College of Veterinary Surgeons.

  11. A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition

    PubMed Central

    Sawicki, Gregory S; Ferris, Daniel P

    2009-01-01

    Background The goal of this study was to test the mechanical performance of a prototype knee-ankle-foot orthosis (KAFO) powered by artificial pneumatic muscles during human walking. We had previously built a powered ankle-foot orthosis (AFO) and used it effectively in studies on human motor adaptation, locomotion energetics, and gait rehabilitation. Extending the previous AFO to a KAFO presented additional challenges related to the force-length properties of the artificial pneumatic muscles and the presence of multiple antagonistic artificial pneumatic muscle pairs. Methods Three healthy males were fitted with custom KAFOs equipped with artificial pneumatic muscles to power ankle plantar flexion/dorsiflexion and knee extension/flexion. Subjects walked over ground at 1.25 m/s under four conditions without extensive practice: 1) without wearing the orthosis, 2) wearing the orthosis with artificial muscles turned off, 3) wearing the orthosis activated under direct proportional myoelectric control, and 4) wearing the orthosis activated under proportional myoelectric control with flexor inhibition produced by leg extensor muscle activation. We collected joint kinematics, ground reaction forces, electromyography, and orthosis kinetics. Results The KAFO produced ~22%–33% of the peak knee flexor moment, ~15%–33% of the peak extensor moment, ~42%–46% of the peak plantar flexor moment, and ~83%–129% of the peak dorsiflexor moment during normal walking. With flexor inhibition produced by leg extensor muscle activation, ankle (Pearson r-value = 0.74 ± 0.04) and knee ( r = 0.95 ± 0.04) joint kinematic profiles were more similar to the without orthosis condition compared to when there was no flexor inhibition (r = 0.49 ± 0.13 for ankle, p = 0.05, and r = 0.90 ± 0.03 for knee, p = 0.17). Conclusion The proportional myoelectric control with flexor inhibition allowed for a more normal gait than direct proportional myoelectric control. The current orthosis design

  12. A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition.

    PubMed

    Sawicki, Gregory S; Ferris, Daniel P

    2009-06-23

    The goal of this study was to test the mechanical performance of a prototype knee-ankle-foot orthosis (KAFO) powered by artificial pneumatic muscles during human walking. We had previously built a powered ankle-foot orthosis (AFO) and used it effectively in studies on human motor adaptation, locomotion energetics, and gait rehabilitation. Extending the previous AFO to a KAFO presented additional challenges related to the force-length properties of the artificial pneumatic muscles and the presence of multiple antagonistic artificial pneumatic muscle pairs. Three healthy males were fitted with custom KAFOs equipped with artificial pneumatic muscles to power ankle plantar flexion/dorsiflexion and knee extension/flexion. Subjects walked over ground at 1.25 m/s under four conditions without extensive practice: 1) without wearing the orthosis, 2) wearing the orthosis with artificial muscles turned off, 3) wearing the orthosis activated under direct proportional myoelectric control, and 4) wearing the orthosis activated under proportional myoelectric control with flexor inhibition produced by leg extensor muscle activation. We collected joint kinematics, ground reaction forces, electromyography, and orthosis kinetics. The KAFO produced approximately 22%-33% of the peak knee flexor moment, approximately 15%-33% of the peak extensor moment, approximately 42%-46% of the peak plantar flexor moment, and approximately 83%-129% of the peak dorsiflexor moment during normal walking. With flexor inhibition produced by leg extensor muscle activation, ankle (Pearson r-value = 0.74 +/- 0.04) and knee ( r = 0.95 +/- 0.04) joint kinematic profiles were more similar to the without orthosis condition compared to when there was no flexor inhibition (r = 0.49 +/- 0.13 for ankle, p = 0.05, and r = 0.90 +/- 0.03 for knee, p = 0.17). The proportional myoelectric control with flexor inhibition allowed for a more normal gait than direct proportional myoelectric control. The current orthosis

  13. Foot loading with an ankle-foot orthosis: the accuracy of an integrated physical strain trainer.

    PubMed

    Pauser, Johannes; Jendrissek, Andreas; Brem, Matthias; Gelse, Kolja; Swoboda, Bernd; Carl, Hans-Dieter

    2012-07-01

    To investigate the value of a built-in physical strain trainer for the monitoring of partial weight bearing with an ankle-foot orthosis. 12 healthy volunteers were asked to perform three trials. Plantar peak pressure values from normal gait (trial one) were defined as 100% (baseline). The following trials were performed with the Vacoped® dynamic vacuum ankle orthosis worn in a neutral position with full weight bearing (trial two) and a restriction to 10% body weight (BW) (trial three), as monitored with an integrated physical strain trainer. Peak plantar pressure values were obtained using the pedar® X system. Peak pressure values were statistically significantly reduced wearing the Vacoped® shoe with full weight bearing for the hindfoot to 68% of the baseline (normal gait) and for the midfoot and forefoot to 83% and 60%, respectively. Limited weight bearing with 10% BW as controlled by physical strain trainer further reduced plantar peak pressure values for the hindfoot to 19%, for the midfoot to 43% of the baseline and the forefoot to 22% of the baseline. The Vacoped® vacuum ankle orthosis significantly reduces plantar peak pressure. The integrated physical strain trainer seems unsuitable to monitor a limitation to 10% BW adequately for the total foot. The concept of controlling partial weight bearing with the hindfoot-addressing device within the orthosis seems debatable but may be useful when the hindfoot in particular must be off-loaded.

  14. Dynamic Optimization of FES and Orthosis-Based Walking Using Simple Models.

    PubMed

    Sharma, Nitin; Mushahwar, Vivian; Stein, Richard

    2014-01-01

    Computation of an analytical control solution for functional electrical stimulation (FES) and orthosis-based walking is a daunting task due to the inherent nonlinear structure of the human muscle and walking dynamics. Furthermore, since muscle fatigue and available muscle force are major limiting issues, we explored the domains of numerical optimal control methods to address these issues. We first focused on the development of simple models to represent walking movement. These models account for walking produced via a limited number of activated muscles using FES along with a novel orthosis, and an assistive device such as a walker. Using dynamic optimization, the lower limb joint angle trajectories and control inputs were computed by minimizing the cost function comprising muscle stimulation variables and forces required to push a walker. Computer simulations for optimizations were performed across a range of step lengths to find the optimal step length (minimum cost per distance). Then, the optimal steady-state initial angular velocity (for optimal step length) was computed from a range of angular velocities of the lower-limb segments. We found considerable differences between able-bodied walking trajectories and the optimal walking trajectories for FES and orthosis-based walking. Based on this computer simulation study, we recommend that instead of arbitrary selection of stimulation profiles or gait parameters, dynamic optimization can be utilized to compute gait parameters such as step length, steady state velocity, and joint angle trajectories in future clinical implementation of FES and orthosis-based walking.

  15. Long-term outcomes of a dynamic ankle-foot orthosis on gait characteristics of a service member with incomplete nerve injury to the lower extremity: a case report.

    PubMed

    Presuto, Melanie M; Stickley, Christopher D; Perlsweig, Katherine A; Kimura, Iris F; Antoine, Gerard M

    2013-07-01

    This case study reports a 5-year follow-up of a 32-year-old male service member who suffered polytrauma in 2007 following a Humvee rollover in Afghanistan. The service member's injured left lower extremity was salvaged, but severe damage to the lumbosacral plexus and significant injuries to the pelvis, hip, and femur resulted in near total paralysis and foot drop of the left lower limb. Two years of multiple substandard ankle-foot orthotic devices pushed him to investigate a dynamic ankle-foot orthotic (DAFO) with energy storing capability, which allowed him to remain on active duty and deploy for a second tour while wearing the device. The anecdotal improvements described by this service member prompted a biomechanical analysis of walking and running gait, comparing a shoes only condition to the DAFO. Results of gait analysis demonstrated an improvement in spatial-temporal parameters in both walking and running, improved sagittal angles and moments at the ankle, knee, and hip, greater ankle stability through decreased dorsiflexion excursion, and a marked increase in ankle power while running. Most notably, the service member credits this device for substantial improvement in quality of life including total cessation of pain medication and return to regular vigorous activity. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  16. An Exotendon Orthosis to Improve Mobility for Military Personnel Recovering from Combat-Related Injuries

    DTIC Science & Technology

    2011-12-01

    individuals for whom walking is very difficult. 15. SUBJECT TERMS Exotendon, orthosis, biomechanics , gait 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...impairments. Borrowed from equine anatomy where large muscle groups exist proximally and articulate joints via long tendons (Fig 1)[3], exotendons are...Eight healthy volunteer performed six-minute-walk tests, oxygen consumption, and 3-D biomechanics tests with and without the exotendon system

  17. The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-limb impairments.

    PubMed

    Harper, Nicole G; Esposito, Elizabeth Russell; Wilken, Jason M; Neptune, Richard R

    2014-09-01

    Passive-dynamic ankle-foot orthoses utilize stiffness to improve gait performance through elastic energy storage and return. However, the influence of ankle-foot orthosis stiffness on gait performance has not been systematically investigated, largely due to the difficulty of manufacturing devices with precisely controlled stiffness levels. Additive manufacturing techniques such as selective laser sintering have been used to successfully manufacture ankle-foot orthoses with controlled stiffness levels. The purpose of this study was to use passive-dynamic ankle-foot orthoses manufactured with selective laser sintering to identify the influence of orthosis stiffness on walking performance in patients with lower-limb neuromuscular and musculoskeletal impairments. Thirteen subjects with unilateral impairments were enrolled in this study. For each subject, one passive-dynamic ankle-foot orthosis with stiffness equivalent to the subject's clinically prescribed carbon fiber orthosis, one 20% more compliant and one 20% more stiff, were manufactured using selective laser sintering. Three-dimensional kinematic and kinetic data and electromyographic data were collected from each subject while they walked overground with each orthosis at their self-selected velocity and a controlled velocity. As the orthosis stiffness decreased, ankle range of motion and medial gastrocnemius activity increased while the knee became more extended throughout stance. Minimal changes in other kinematic, kinetic and electromyographic quantities were observed. Subjects effectively compensated for changes in ankle-foot orthosis stiffness with altered gastrocnemius activity, and the stiffness levels analyzed in this study had a minimal effect on overall walking performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Modeling of Two-Wheeled Self-Balancing Robot Driven by DC Gearmotors

    NASA Astrophysics Data System (ADS)

    Frankovský, P.; Dominik, L.; Gmiterko, A.; Virgala, I.; Kurylo, P.; Perminova, O.

    2017-08-01

    This paper is aimed at modelling a two-wheeled self-balancing robot driven by the geared DC motors. A mathematical model consists of two main parts, the model of robot's mechanical structure and the model of the actuator. Linearized equations of motion are derived and the overall model of the two-wheeled self-balancing robot is represented in state-space realization for the purpose of state feedback controller design.

  19. The efficacy of the floor-reaction ankle-foot orthosis in children with cerebral palsy.

    PubMed

    Rogozinski, Benjamin M; Davids, Jon R; Davis, Roy B; Jameson, Gene G; Blackhurst, Dawn W

    2009-10-01

    The floor-reaction ankle-foot orthosis is commonly prescribed for children with cerebral palsy who walk with excessive ankle dorsiflexion and excessive knee flexion during the stance phase of gait. The purposes of this study were to evaluate the efficacy of this orthosis objectively and to identify clinical parameters that may compromise its function. All children with cerebral palsy who had comprehensive gait analyses in both barefoot and braced walking conditions during a single visit to our Motion Analysis Laboratory between January 2001 and August 2007 were identified. Kinematic study parameters included mean sagittal dynamic range of motion of the ankle in stance, peak ankle dorsiflexion in stance, peak knee extension in midstance, and mean foot progression angle in stance. The minimum sagittal knee moment in midstance was also examined in this study for subjects who walked without assistive devices. Range-of-motion and skeletal alignment data obtained from the physical examination record of each subject included knee flexion contracture, popliteal angle, hip flexion contracture, and thigh-foot angle. Twenty-seven children had quantitative gait analyses (barefoot and with the orthoses in the same visit). The mean sagittal plane dynamic range of motion of the ankle in stance was reduced from 23 degrees +/- 9 degrees when walking barefoot to 10 degrees +/- 3 degrees when the orthosis was worn (p < 0.001), and the mean peak knee extension in midstance improved from 29 degrees +/- 14 degrees of flexion to 18 degrees +/- 14 degrees of flexion (p = 0.013). Strong negative linear correlations were found between the magnitude of knee and hip flexion contractures on physical examination and the amount of peak knee extension in midstance (r = -0.784 and r = -0.705, respectively). A strong positive correlation was found between the mean minimum sagittal knee moment in midstance and the amount of peak knee extension in midstance (r = 0.820). Our investigation did not

  20. 21 CFR 890.3475 - Limb orthosis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Limb orthosis. 890.3475 Section 890.3475 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3475 Limb orthosis. (a)...

  1. 21 CFR 890.3475 - Limb orthosis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Limb orthosis. 890.3475 Section 890.3475 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3475 Limb orthosis. (a)...

  2. 21 CFR 890.3490 - Truncal orthosis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Truncal orthosis. 890.3490 Section 890.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3490 Truncal orthosis....

  3. 21 CFR 890.3490 - Truncal orthosis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Truncal orthosis. 890.3490 Section 890.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3490 Truncal orthosis....

  4. 21 CFR 890.3475 - Limb orthosis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Limb orthosis. 890.3475 Section 890.3475 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3475 Limb orthosis. (a)...

  5. 21 CFR 890.3490 - Truncal orthosis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Truncal orthosis. 890.3490 Section 890.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3490 Truncal orthosis....

  6. 21 CFR 890.3475 - Limb orthosis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Limb orthosis. 890.3475 Section 890.3475 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3475 Limb orthosis. (a)...

  7. 21 CFR 890.3490 - Truncal orthosis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Truncal orthosis. 890.3490 Section 890.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3490 Truncal orthosis....

  8. 21 CFR 890.3490 - Truncal orthosis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Truncal orthosis. 890.3490 Section 890.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3490 Truncal orthosis....

  9. 21 CFR 890.3475 - Limb orthosis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Limb orthosis. 890.3475 Section 890.3475 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3475 Limb orthosis. (a)...

  10. Adaptive control of an actuated-ankle-foot-orthosis.

    PubMed

    Arnez-Paniagua, Victor; Rifai, Hala; Amirat, Yacine; Mohammed, Samer

    2017-07-01

    This paper deals with the control of an active ankle foot orthosis (AAFO) to assist the gait of paretic patients. The AAFO system is driven by both, the residual human torque delivered by the muscles spanning the ankle joint and the AAFO's actuator's torque. A projection-based model reference adaptive control is proposed to assist dorsiflexion and plantar-flexion of the ankle joint during daily living walking activities. Unlike most classical model-based controllers, the proposed one does not require any prior estimation of the system's (foot-AAFO) parameters. The ankle reference trajectory was extracted from healthy subjects gait activities in a clinical environment. The input-to-state stability of the foot-AAFO system with respect to a bounded human muscular torque is proved in closed-loop based on a Lyapunov analysis. Preliminary experimental results with a healthy subject walking on a treadmill, show satisfactory results in terms of tracking performance and ankle assistance throughout the gait cycle.

  11. Oxygen consumption, oxygen cost and physiological cost index in polio survivors: a comparison of walking without orthosis, with an ordinary or a carbon-fibre reinforced plastic knee-ankle-foot orthosis.

    PubMed

    Hachisuka, Kenji; Makino, Kenichiro; Wada, Futoshi; Saeki, Satoru; Yoshimoto, Nami

    2007-10-01

    To examine, for polio survivors, whether walking with a carbon-fibre reinforced plastic knee-ankle-foot orthosis (carbon KAFO) is more efficient than walking with an ordinary KAFO or without an orthosis. Consecutive sample. Post-polio clinic, University Hospital of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan. Eleven polio survivors who had a carbon KAFO prescribed at the post-polio clinic. A carbon KAFO was prescribed, fabricated and inspected. Oxygen consumption, oxygen cost and physiological cost index. An ordinary KAFO weighed 1403 g (standard deviation(SD) 157 g), whereas a carbon KAFO weighed 992 g (SD 168 g). Subjects walking with a carbon KAFO showed a tendency to increase step length, and to increase speed significantly compared with walking without an orthosis and with an ordinary KAFO (paired t-test, p < 0.05). Oxygen consumption per body weight, oxygen cost (O2 consumption for 1-m walk divided by body weight) and physiological cost index ((heart rate at 3-min walk - heart rate at rest) /speed) were significantly lower than those walking without an orthosis (-16%, -35%, -33%; paired t-test, p < 0.05) and were lower than those walking with an ordinary KAFO (-9%, -14%, -15%; paired t-test, p < 0.05). The gait efficiency of polio survivors with a carbon KAFO was objectively better than those without an orthosis or with an ordinary KAFO.

  12. Optimal Control Based Stiffness Identification of an Ankle-Foot Orthosis Using a Predictive Walking Model.

    PubMed

    Sreenivasa, Manish; Millard, Matthew; Felis, Martin; Mombaur, Katja; Wolf, Sebastian I

    2017-01-01

    Predicting the movements, ground reaction forces and neuromuscular activity during gait can be a valuable asset to the clinical rehabilitation community, both to understand pathology, as well as to plan effective intervention. In this work we use an optimal control method to generate predictive simulations of pathological gait in the sagittal plane. We construct a patient-specific model corresponding to a 7-year old child with gait abnormalities and identify the optimal spring characteristics of an ankle-foot orthosis that minimizes muscle effort. Our simulations include the computation of foot-ground reaction forces, as well as the neuromuscular dynamics using computationally efficient muscle torque generators and excitation-activation equations. The optimal control problem (OCP) is solved with a direct multiple shooting method. The solution of this problem is physically consistent synthetic neural excitation commands, muscle activations and whole body motion. Our simulations produced similar changes to the gait characteristics as those recorded on the patient. The orthosis-equipped model was able to walk faster with more extended knees. Notably, our approach can be easily tuned to simulate weakened muscles, produces physiologically realistic ground reaction forces and smooth muscle activations and torques, and can be implemented on a standard workstation to produce results within a few hours. These results are an important contribution toward bridging the gap between research methods in computational neuromechanics and day-to-day clinical rehabilitation.

  13. Influence of orthosis on the foot progression angle in children with spastic cerebral palsy.

    PubMed

    Danino, Barry; Erel, Snir; Kfir, Meital; Khamis, Sam; Batt, Reuven; Hemo, Yoram; Wientroub, Shlomo; Hayek, Shlomo

    2015-10-01

    We retrospectively assessed the effect of ankle-foot orthosis (AFO) on the foot progression angle (FPA) of 97 children with spastic cerebral palsy (CP) who had undergone comprehensive computer-based gait analysis both barefoot and with their orthosis, during the same session. The physical examination results and the gait study temporal and kinematic parameters comprise the study data. We focused on the peak FPA reached during stance and swing phases and at mid-stance and mid-swing, and also measured the transverse rotations of the pelvis, the femur and the tibia. AFOs improved gait, as reflected by improved temporal parameters, but they also increased internal rotation of the feet in diplegic CP children by 4.29 degrees for mid-stance, and by 3.72 degrees for mid-swing. The correlation between components of the rotational profile and FPA was significant for the diplegic group. AFOs did not produce any noteworthy differences between walking barefoot and walking with the brace in the hemiplegic group in what concerns FPA. Children with diplegic CP who use AFOs walk with increased internal FPAs in their orthoses. These findings might be explained by anatomical attributes as well as dynamic features during gait.

  14. Optimal Control Based Stiffness Identification of an Ankle-Foot Orthosis Using a Predictive Walking Model

    PubMed Central

    Sreenivasa, Manish; Millard, Matthew; Felis, Martin; Mombaur, Katja; Wolf, Sebastian I.

    2017-01-01

    Predicting the movements, ground reaction forces and neuromuscular activity during gait can be a valuable asset to the clinical rehabilitation community, both to understand pathology, as well as to plan effective intervention. In this work we use an optimal control method to generate predictive simulations of pathological gait in the sagittal plane. We construct a patient-specific model corresponding to a 7-year old child with gait abnormalities and identify the optimal spring characteristics of an ankle-foot orthosis that minimizes muscle effort. Our simulations include the computation of foot-ground reaction forces, as well as the neuromuscular dynamics using computationally efficient muscle torque generators and excitation-activation equations. The optimal control problem (OCP) is solved with a direct multiple shooting method. The solution of this problem is physically consistent synthetic neural excitation commands, muscle activations and whole body motion. Our simulations produced similar changes to the gait characteristics as those recorded on the patient. The orthosis-equipped model was able to walk faster with more extended knees. Notably, our approach can be easily tuned to simulate weakened muscles, produces physiologically realistic ground reaction forces and smooth muscle activations and torques, and can be implemented on a standard workstation to produce results within a few hours. These results are an important contribution toward bridging the gap between research methods in computational neuromechanics and day-to-day clinical rehabilitation. PMID:28450833

  15. [Feasibility of the construction of a magnetorheological joint for a lower limb orthosis in valve configuration].

    PubMed

    Galván Duque-Gastélum, Carlos; Quiñones-Uriostegui, Ivett; Mendoza, Felipe; Rodríguez, Gerardo

    2014-07-01

    Ortheses are devices that assist in the function of the limbs, contributing with stability and support to the involved joints. KAFOs (knee-ankle-foot orthosis) are mainly indicated for people with muscular or neural diseases that affect the lower limbs. The actual designs of knee hinges for KAFOs compromise the stability and mobility of the limb. In this work, it was tested the feasibility of a design for a knee hinge for KAFO that should be able to modify its mechanical resistance depending on the gait phase. Orthotics biomechanical criteria and gait biomechanical requirements were considered. It was proposed an electromagnetic system in order to modify the hinge damping. In the future, the system will be interacting with a magnetorheological fluid (MR) which can change its rheological properties when a magnetic field is applied, thus, reaching different damping constants with the designed hinge. The diameter of the internal pipes required for the MR fluid to freely circulate within the orthosis was established. It was observed that the original design of the proposed orthotic hinge is feasible; however, some proposals are presented in order to achieve a better performance of the orthosis.

  16. Effect of an ankle-foot orthosis on knee joint mechanics: a novel conservative treatment for knee osteoarthritis.

    PubMed

    Fantini Pagani, Cynthia H; Willwacher, Steffen; Benker, Rita; Brüggemann, Gert-Peter

    2014-12-01

    Several conservative treatments for medial knee osteoarthritis such as knee orthosis and laterally wedged insoles have been shown to reduce the load in the medial knee compartment. However, those treatments also present limitations such as patient compliance and inconsistent results regarding the treatment success. To analyze the effect of an ankle-foot orthosis on the knee adduction moment and knee joint alignment in the frontal plane in subjects with knee varus alignment. Controlled laboratory study, repeated measurements. In total, 14 healthy subjects with knee varus alignment were analyzed in five different conditions: without orthotic, with laterally wedged insoles, and with an ankle-foot orthosis in three different adjustments. Three-dimensional kinetic and kinematic data were collected during gait analysis. Significant decreases in knee adduction moment, knee lever arm, and joint alignment in the frontal plane were observed with the ankle-foot orthosis in all three different adjustments. No significant differences could be found in any parameter while using the laterally wedged insoles. The ankle-foot orthosis was effective in reducing the knee adduction moment. The decreases in this parameter seem to be achieved by changing the knee joint alignment and thereby reducing the knee lever arm in the frontal plane. This study presents a novel approach for reducing the load in the medial knee compartment, which could be developed as a new treatment option for patients with medial knee osteoarthritis. © The International Society for Prosthetics and Orthotics 2013.

  17. Use of a temporary supramalleolar orthosis to manage foot pain in a patient with rheumatoid arthritis: A case report.

    PubMed

    Weber, Nicholas J; McPoil, Thomas G

    2016-06-01

    Rheumatoid arthritis is a chronic inflammatory condition characterized by joint pain, stiffness, and functional disability. Approximately 90% of patients will report symptoms in the foot or ankle during the course of their disease. A case of a 40-year-old woman with a 12-year history of rheumatoid arthritis referred to outpatient physical therapy with a chief complaint of pain in the lateral rearfoot and forefoot is presented. At the time of the initial examination, the patient reported persistent pain ranging from 3 to 9/10, aggravated when standing and walking during activities of daily living. Treatment consisted of the fabrication of a supramalleolar orthosis that incorporated an in-shoe foot orthosis to address functional limitations and abnormal foot and ankle posture. A home exercise program was prescribed to address potential balance deficits and strength loss following the application of the orthosis. Clinically significant improvements were seen in pain, gait speed, and on the Foot Function Index following the implementation of the orthotic device. The patient returned to standing and walking with minimal symptom limitations. This case report highlights the short-term clinical outcomes when using a supramalleolar orthosis in conjunction with an in-shoe foot orthosis to manage lateral rearfoot and forefoot pain in a patient with rheumatoid arthritis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effects of constrained trunk movement on frontal plane gait kinematics.

    PubMed

    Arvin, Mina; van Dieën, Jaap H; Bruijn, Sjoerd M

    2016-09-06

    Previously it has been shown that constraining step width in gait coincides with decreased trunk displacements. Conversely, external stabilization of the upper body in gait coincides with decreased step width, but this may in part be due to changes in passive dynamics of the leg. In the present study, trunk kinematics during gait were constrained without external stabilization by using an orthosis, to investigate whether step width and dynamic gait stability in the ML direction are changed in relation to trunk kinematics. Nine healthy young adults walked on a treadmill at three different speeds with no intervention and while wearing a thoracolumbar orthosis. Based on marker trajectories, trunk COM displacement, body COM displacement and velocity, step width, and margin-of-stability in ML direction were calculated. The results showed that the orthosis significantly reduced trunk and body COM displacements. As hypothesized, the restriction of trunk movement coincided with significantly decreased step width, while the margin-of-stability was not affected. These findings indicate that, when trunk movements are constrained, humans narrow step width, while maintaining a constant margin-of-stability. In conclusion, the present results in combination with previous work imply that in gait a reciprocal coupling between trunk kinematics and foot placement in the frontal plane subserves control of stability in the frontal plane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Clinical evaluation of a new orthosis, the 'walkabout', for restoration of functional standing and short distance mobility in spinal paralysed individuals.

    PubMed

    Middleton, J W; Yeo, J D; Blanch, L; Vare, V; Peterson, K; Brigden, K

    1997-09-01

    The Walkabout orthosis is a relatively new device for assisted standing and mobility in spinal paralysed individuals. The design, with a medially-mounted single-axis hinge joint linking two knee-ankle-foot orthoses, is quite different to other currently available orthoses which have laterally positioned hip joints such as the Reciprocal Gait Orthosis or Hip Guidance Orthosis. Twenty-five spinal cord injured patients were fitted and trained with the Walkabout orthosis and followed up regularly for just under 2 years on average. Sixty percent of all the patients fitted have incorporated use of the Walkabout orthosis into their lifestyles. Maintenance of joint mobility and psychological benefits were the most important outcomes of Walkabout usage. Loss of thoraco-lumbar mobility was found to be a limiting factor in successful use of the Walkabout orthosis in patients without active hip flexion. Patient selection criteria should include demonstrated spinal stability without significant deformity, controlled muscle spasm, less than 5 degrees of hip or knee flexion contracture, achievable neutral ankle position, mobility of the thoraco-lumbar spine into lateral flexion, good upper limb strength, and motivation with realistic expectations.

  20. Cerebral Palsy Gait, Clinical Importance

    PubMed Central

    TUGUI, Raluca Dana; ANTONESCU, Dinu

    2013-01-01

    ABSTRACT Cerebral palsy refers to a lesion on an immature brain, that determines permanent neurological disorders. Knowing the exact cause of the disease does not alter the treatment management. The etiology is 2-2.5/1000 births and the rate is constant in the last 40-50 years because advances in medical technologies have permitted the survival of smaller and premature new born children. Gait analysis has four directions: kinematics (represents body movements analysis without calculating the forces), kinetics (represents body moments and forces), energy consumption (measured by oximetry), and neuromuscular activity (measured by EMG). Gait analysis can observe specific deviations in a patient, allowing us to be more accurate in motor diagnoses and treatment solutions: surgery intervention, botulinum toxin injection, use of orthosis, physical kinetic therapy, oral medications, baclofen pump. PMID:24790675

  1. A pilot study to investigate the combined use of Botulinum toxin type-a and ankle foot orthosis for the treatment of spastic foot in chronic hemiplegic patients.

    PubMed

    Pradon, Didier; Hutin, Emilie; Khadir, Simon; Taiar, Redha; Genet, François; Roche, Nicolas

    2011-10-01

    Botulinum toxin is commonly used to treat spastic equinus foot. This treatment seems to improve gait in hemiplegic patients when used alone or combined with an ankle-foot orthosis. However, the nature and effects of this improvement have until now rarely been studied. The aim of this study was to quantify the impact of a Botulinum toxin injection in the triceps surae of hemiplegic patients with equinus foot, used either alone or in combination with an ankle-foot orthosis, on the kinematics and dynamics of the paretic lower limb, and to determine the advantage of combining an ankle-foot orthosis with this pharmacological treatment. Patients were assessed using gait analysis to measure spatio-temporal, kinematic and dynamic parameters of the gait cycle before Botulinum toxin injection and then 3 and 6weeks after injection. Eight chronic hemiplegics following central nervous system lesion were included. Botulinum toxin injection led to an increase in velocity, peak ankle dorsiflexion during stance phase, and peak knee flexion during swing phase. It also resulted in an increased peak plantarflexion moment. Use of ankle-foot orthosis led to a specific increase in peak ankle dorsiflexion during swing phase and also increased peak plantarflexion moment. The results indicate that combined Botulinum toxin injection of the triceps surae and wearing an ankle-foot orthosis is more effective than the use of Botulinum toxin only. Use of an ankle-foot orthosis increases ankle dorsiflexion during the swing phase and does not reduce the benefits gained by the use of Botulinum toxin in stance phase. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. The effect of different shoes on functional mobility and energy expenditure in post-stroke hemiplegic patients using ankle-foot orthosis.

    PubMed

    Farmani, Farzad; Mohseni Bandpei, Mohammad Ali; Bahramizadeh, Mahmood; Aminian, Gholamreza; Nikoo, Mohammad Reza; Sadeghi-Goghari, Mohammad

    2016-10-01

    Ankle-foot orthoses could be utilized both with and without shoes. While several studies have shown that ankle-foot orthoses improve gait abilities in hemiplegic patients, it remains unclear whether they should be used with shoes or without. The study purpose was to compare the effect of standard shoes and rocker shoes on functional mobility in post-stroke hemiplegic patients utilizing ankle-foot orthosis. Randomized clinical study. Thirty post-stroke hemiplegic patients participated in this study randomly assigned to two groups. Group I received standard shoes + ankle-foot orthosis and group II were provided with rocker shoes + ankle-foot orthosis. Their functional mobility and energy expenditure parameters including timed up and go, timed up stairs, timed down stairs, preferred walking speed, and oxygen (O2) cost (mL/kg/m) were measured. In group I, no significant changes were seen in outcome measures after wearing standard shoes. While in group II, O2 cost and timed up and go time significantly decreased, and preferred walking speed increased when patients wore rocker shoes. Also, there was a significant difference between rocker shoes and standard shoes in improvement of timed up and go, preferred walking speed, and O2 cost. When patients using ankle-foot orthosis wore rocker shoes, their functional mobility improved and oxygen cost diminished. Also, rocker shoes was significantly more effective than standard shoes in improving functional mobility parameters. This study suggests that in post-stroke hemiplegic patients using ankle-foot orthosis, wearing rocker shoes can lead to much more improved functional mobility and decreased energy expenditure compared to ankle-foot orthosis only. Thus, in stroke patients, the combination of ankle-foot orthosis-rocker shoes is recommended for both rehabilitation programs and ankle-foot orthosis efficacy investigations. © The International Society for Prosthetics and Orthotics 2015.

  3. Carbon Modular Orthosis (Ca.M.O.): An innovative hybrid modular ankle-foot orthosis to tune the variable rehabilitation needs in hemiplegic cerebral palsy.

    PubMed

    Tavernese, E; Petrarca, M; Rosellini, G; Di Stanislao, E; Pisano, A; Di Rosa, G; Castelli, E

    2017-01-01

    Hemiplegic Celebral Palsy (CP) children commonly use AFO orthoses as walking aids. It is known that AFOs may have a detrimental effect on gait. To enhance mechanical properties of AFOs we developed an innovative, custom-made, carbon, ankle-foot orthosis (Ca.M.O) which offers the opportunity to tune its response to the patient's gait characteristics and/or functional maturity. To assess the efficacy of Ca.M.O. in improving gait in a group of hemiplegic CP children and to compare its performances with those of commonly prescribed AFO. A clinical and instrumental gait analysis was performed on a group of 15 spastic hemiplegic children (WINTERS-GAGE type I-II) walking barefoot, with commonly prescribed AFOs and with Ca.M.O.Temporal, kinematic and kinetic data were collected with an 8 cameras optoelectronic system and 2 force plates. Studied variables were comparable walking with Ca.M.O. and with the commonly prescribed AFO and are significantly different (p < 0.01) with respect to barefoot condition. Both types of orthoses normalize the kinematics of the first and second ankle rocker. The main advantage of Ca.M.O. is its modularity that allows to tune its effect on gait in relationship with the progress or involution of the child's functional development.

  4. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Nguyen, Canh Toan; Phung, Hoa; Dat Nguyen, Tien; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Nam, Jae-do; Ryeol Choi, Hyouk

    2014-06-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators.

  5. Gait changes over time in stance control orthosis users.

    PubMed

    Irby, Steven E; Bernhardt, Kathie A; Kaufman, Kenton R

    2007-12-01

    This report presents objective motion analysis measurements of 14 stance control orthoses (SCO) users during a prospective open-enrollment 6-month clinical field trial. Participants were fitted with a Dynamic Knee Brace System (DKBS) which is a novel electromechanical SCO developed by the authors. Seven of the 14 subjects that had been prescribed but did not use a KAFO at the time of enrollment were defined as novice users. Those subjects who at the time of enrollment were using a locked KAFO for ambulation were defined as experienced users. Results showed that all subjects significantly increased peak knee flexion from 49.0 +/- 15.5 degrees to 55.9 +/- 11.4 degrees between the initial and six month tests (p = 0.02). They also tended to increase peak hip flexion from 39.6 +/- 13.4 degrees to 46.0 +/- 14.5 degrees between the 3 month and 6 month tests (p = 0.09). Novice users significantly increased velocity from 74.7 +/- 19.4 cm/s to 81.2 +/- 19.0 cm/sec between the initial and 3-month tests (p = 0.005). These same users increased stride length from 109 +/- 15.3 cm to 112 +/- 16.6 cm over the same time period (p = 0.008). Experienced KAFO users, however, tended to increase velocity from 68.8 +/- 20.5 cm/s to 83.2 +/- 16.8 cm/s at 3 months (p = 0.06). This was combined with a significant increase in cadence from 76.2 +/- 14.1 steps/min to 83.9 +/- 8.3 steps/min between the initial and 3 month tests (p = 0.05). Joint kinetics showed no changes for users over the duration of the testing period. These results indicate that KAFO users make significant gains in temporodistance measures, while changes in joint kinematics take longer to develop.

  6. A portable powered ankle-foot orthosis for rehabilitation.

    PubMed

    Shorter, K Alex; Kogler, Géza F; Loth, Eric; Durfee, William K; Hsiao-Wecksler, Elizabeth T

    2011-01-01

    Innovative technological advancements in the field of orthotics, such as portable powered orthotic systems, could create new treatment modalities to improve the functional out come of rehabilitation. In this article, we present a novel portable powered ankle-foot orthosis (PPAFO) to provide untethered assistance during gait. The PPAFO provides both plantar flexor and dorsiflexor torque assistance by way of a bidirectional pneumatic rotary actuator. The system uses a portable pneumatic power source (compressed carbon dioxide bottle) and embedded electronics to control the actuation of the foot. We collected pilot experimental data from one impaired and three nondisabled subjects to demonstrate design functionality. The impaired subject had bilateral impairment of the lower legs due to cauda equina syndrome. We found that data from nondisabled walkers demonstrated the PPAFO's capability to provide correctly timed plantar flexor and dorsiflexor assistance during gait. Reduced activation of the tibialis anterior during stance and swing was also seen during assisted nondisabled walking trials. An increase in the vertical ground reaction force during the second half of stance was present during assisted trials for the impaired subject. Data from nondisabled walkers demonstrated functionality, and data from an impaired walker demonstrated the ability to provide functional plantar flexor assistance.

  7. Upper body movements in children with hemiplegic cerebral palsy walking with and without an ankle-foot orthosis.

    PubMed

    Schweizer, Katrin; Brunner, Reinald; Romkes, Jacqueline

    2014-04-01

    It has previously been discussed that treatment of the hemiplegic arm in patients with cerebral palsy can improve gait parameters in the lower body. Our question was whether improving the ankle rocker with an orthosis has an effect on the upper body during walking. The main aim was to investigate, which trunk and arm kinematics of toe walking children with hemiplegic cerebral palsy are changed by wearing a hinged ankle-foot orthosis, restoring an initial heel contact. Specific parameters of the pelvis, thorax, and arm kinematics were investigated. Differences in the hemiplegic side between the barefoot and the orthotic condition were calculated by Students t-tests. Additionally, the 95% confidence intervals were used to explore clinically relevant differences between the controls and the patients and asymmetries within the patients' affected and unaffected sides. Pelvic tilt range of motion (barefoot: 7.5° (6.1-9.0°), orthosis: 6.6° (5.1-8.1) P=0.040) and mean shoulder abduction (barefoot: 14.3° (10.2-18.4°), orthosis: 12.1° (8.4-15.8) P=0.027) were the only two parameters with statistically significant differences, although not clinically relevant, between the barefoot and orthotic conditions. Abnormalities in all three planes were explored between the patients and controls. The entire trunk was more externally rotated, the pelvis stood lower, and the elbow was more flexed on the hemiplegic side compared to the unaffected side. A hinged ankle-foot orthosis, restoring the first ankle rocker, had no clinically relevant effects on trunk kinematics. None of the observed upper body gait deviations seemed to be secondary to or caused by toe walking. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A kinematic analysis of the lower limb with regard to restricted spinal motion during gait

    PubMed Central

    Song, Hyeon-Nam; Kim, Young Mi; Kim, Kyoung

    2017-01-01

    [Purpose] The purpose of this study was to investigate the effect of restricted spinal motion on kinematic changes in the lower extremities using a rigid thoracolumbosacral orthosis. [Subjects and Methods] Forty healthy males in their 20s were selected as the sample, which was randomly and evenly divided into two groups: (1) the WT group (with a thoracolumbosacral orthosis) and (2) the WOT group (without a thoracolumbosacral orthosis). The spinal orthosis used in this study was a thoracolumbosacral orthosis called a plastic body jacket. [Results] The sagittal plane; in the level ground walking measurements, significance differences were found at the H2 (Hip maximum flexion/extension in midstance phase) and K2 (Knee maximum flexion/extension in midstance phase) between the WT group and the WOT group. [Conclusion] It can be concluded that a spinal orthosis is useful in stabilizing the lower extremities during stair gaiting, and that appropriate application of the orthosis plays a supporting role in the activities of daily life and therapeutic intervention. PMID:28210045

  9. A kinematic analysis of the lower limb with regard to restricted spinal motion during gait.

    PubMed

    Song, Hyeon-Nam; Kim, Young Mi; Kim, Kyoung

    2017-01-01

    [Purpose] The purpose of this study was to investigate the effect of restricted spinal motion on kinematic changes in the lower extremities using a rigid thoracolumbosacral orthosis. [Subjects and Methods] Forty healthy males in their 20s were selected as the sample, which was randomly and evenly divided into two groups: (1) the WT group (with a thoracolumbosacral orthosis) and (2) the WOT group (without a thoracolumbosacral orthosis). The spinal orthosis used in this study was a thoracolumbosacral orthosis called a plastic body jacket. [Results] The sagittal plane; in the level ground walking measurements, significance differences were found at the H2 (Hip maximum flexion/extension in midstance phase) and K2 (Knee maximum flexion/extension in midstance phase) between the WT group and the WOT group. [Conclusion] It can be concluded that a spinal orthosis is useful in stabilizing the lower extremities during stair gaiting, and that appropriate application of the orthosis plays a supporting role in the activities of daily life and therapeutic intervention.

  10. The influence of new medial linkage orthosis on walking and independence in spinal cord injury patients: a pilot study

    PubMed Central

    Bani, Monireh Ahmadi; Arazpour, Mokhtar; Farahmand, Farzam; Mousavi, Mohammad Ebrahim; Samadian, Mohammad; Kashani, Reza Vahab; Hutchins, Stephen William

    2016-01-01

    In an effort to overcome the disadvantages of reciprocating gait orthoses (RGOs) and medial linkage orthoses (MLOs), a new design of MLO was developed. Therefore the aim of this study was comparison effect of a new reciprocating MLO and traditional isocentric RGO on gait parameters and functional independence (orthosis donning and doffing time) in spinal cord injury (SCI) subjects to provide more evidence of its efficacy. Four people with motor incomplete SCI participated in this study. Each participant was fitted with an MLO and isocentric reciprocating gait orthosis (IRGO) to enable a comparison of walking speed, cadence and endurance to be performed. There were no statistically significant differences demonstrated in temporal–spatial parameters between the orthotic walking conditions in this study, but walking with the MLO improved the stride length and speed of walking by 28.57 and 40.9% compared with walking with an IRGO as a control condition. Hip flexion occurred predominantly during single-support phases, with negligible motion during double-support phases. The first and second Subjects had hip kinematic pattern more near normal when they walked with medial linkage reciprocal gait orthosis (MLRGO) in comparison with IRGO. There was significant difference between donning and doffing in two conditions (P=0.046) but there was not significant difference between two conditions in standing and sitting although these two conditions improved by new MLO. The new MLO provided a quicker and more independent gait compared with IRGO, in addition the new MLO made it easier for subjects to get from sitting to standing and from standing to sitting. PMID:28053735

  11. The influence of new medial linkage orthosis on walking and independence in spinal cord injury patients: a pilot study.

    PubMed

    Bani, Monireh Ahmadi; Arazpour, Mokhtar; Farahmand, Farzam; Mousavi, Mohammad Ebrahim; Samadian, Mohammad; Kashani, Reza Vahab; Hutchins, Stephen William

    2016-01-01

    In an effort to overcome the disadvantages of reciprocating gait orthoses (RGOs) and medial linkage orthoses (MLOs), a new design of MLO was developed. Therefore the aim of this study was comparison effect of a new reciprocating MLO and traditional isocentric RGO on gait parameters and functional independence (orthosis donning and doffing time) in spinal cord injury (SCI) subjects to provide more evidence of its efficacy. Four people with motor incomplete SCI participated in this study. Each participant was fitted with an MLO and isocentric reciprocating gait orthosis (IRGO) to enable a comparison of walking speed, cadence and endurance to be performed. There were no statistically significant differences demonstrated in temporal-spatial parameters between the orthotic walking conditions in this study, but walking with the MLO improved the stride length and speed of walking by 28.57 and 40.9% compared with walking with an IRGO as a control condition. Hip flexion occurred predominantly during single-support phases, with negligible motion during double-support phases. The first and second Subjects had hip kinematic pattern more near normal when they walked with medial linkage reciprocal gait orthosis (MLRGO) in comparison with IRGO. There was significant difference between donning and doffing in two conditions (P=0.046) but there was not significant difference between two conditions in standing and sitting although these two conditions improved by new MLO. The new MLO provided a quicker and more independent gait compared with IRGO, in addition the new MLO made it easier for subjects to get from sitting to standing and from standing to sitting.

  12. Gait failure.

    PubMed

    Sudarsky, L

    1987-11-01

    Gait failure is a common presentation in the Emergency Department, and one that may herald an acute neurologic episode. This article reviews the mechanisms of gait failure, some of their causes, and the appropriate examination techniques for determining possible diagnoses.

  13. The Effect of Different Foot Orthosis Inverted Angles on Plantar Pressure in Children with Flexible Flatfeet

    PubMed Central

    Lee, Hyunkeun; Ahn, Soyoung; Song, Youngshin; Park, Insik

    2016-01-01

    Although orthotic modification using the inverted technique is available for the treatment of flatfoot, empirical evidence for the biomechanical effects of inverted-angle foot orthoses (FOs) is lacking. The aim of this study was to evaluate the effects of different FO inversion angles on plantar pressure during gait in children with flatfoot. Twenty-one children with flexible flatfeet (mean age 9.9 years) were enrolled in this study. The plantar pressures were measured for the rearfoot; medial and lateral midfoot; and medial, central, and lateral forefoot as participants walked on a treadmill while wearing shoes only and shoes with the following 3 orthotic conditions: (i) orthosis with no inverted angle, (ii) orthosis with a 15° inverted angle, and (iii) orthosis with a 30° inverted angle. A one-way repeated measures analysis of variance (ANOVA) with the Bonferroni-adjusted post-hoc test was used to compare the mean values of each orthotic condition. Compared with the shoe only condition, the peak pressure decreased significantly under the medial forefoot and rearfoot with all FOs (p <0.05). However, no significant differences in the peak pressure under the medial forefoot and rearfoot were observed between the FOs. The peak pressure under the medial midfoot increased significantly with all FOs, and a maximal increase in the peak pressure was obtained with a 30° inverted angle orthosis. Furthermore, the contact area under the medial midfoot and rearfoot increased significantly with all FOs, compared with the shoe only condition (p <0.05). Again, no significant differences were observed between the FOs. For plantar pressure redistribution, a FO with a low inverted angle could be effective, accommodative, and convenient for children with flatfoot. PMID:27458719

  14. The effect of changing plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments while walking in patients post stroke

    PubMed Central

    Kobayashi, Toshiki; Singer, Madeline L.; Orendurff, Michael S.; Gao, Fan; Daly, Wayne K.; Foreman, K. Bo

    2015-01-01

    Background The adjustment of plantarflexion resistive moment of an articulated ankle-foot orthosis is considered important in patients post stroke, but the evidence is still limited. Therefore, the aim of this study was to investigate the effect of changing the plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments in patients post stroke. Methods Gait analysis was performed on 10 subjects post stroke under four different plantarflexion resistive moment conditions using a newly designed articulated ankle-foot orthosis. Data were recorded using a Bertec split-belt instrumented treadmill in a 3-dimensional motion analysis laboratory. Findings The ankle and knee sagittal joint angles and moments were significantly affected by the amount of plantarflexion resistive moment of the ankle-foot orthosis. Increasing the plantarflexion resistive moment of the ankle-foot orthosis induced significant decreases both in the peak ankle plantarflexion angle (P<0.01) and the peak knee extension angle (P<0.05). Also, the increase induced significant increases in the internal dorsiflexion moment of the ankle joint (P<0.01) and significantly decreased the internal flexion moment of the knee joint (P<0.01). Interpretation These results suggest an important link between the kinematic/kinetic parameters of the lower-limb joints and the plantarflexion resistive moment of an articulated ankle-foot orthosis. A future study should be performed to clarify their relationship further so that the practitioners may be able to use these parameters as objective data to determine an optimal plantarflexion resistive moment of an articulated ankle-foot orthosis for improved orthotic care in individual patients. PMID:26149007

  15. Dosimetric evaluation of intrafractional tumor motion by means of a robot driven phantom.

    PubMed

    Richter, Anne; Wilbert, Jurgen; Flentje, Michael

    2011-10-01

    The aim of the work was to investigate the influence of intrafractional tumor motion to the accumulated (absorbed) dose. The accumulated dose was determined by means of calculations and measurements with a robot driven motion phantom. Different motion scenarios and compensation techniques were realized in a phantom study to investigate the influence of motion on image acquisition, dose calculation, and dose measurement. The influence of motion on the accumulated dose was calculated by employing two methods (a model based and a voxel based method). Tumor motion resulted in a blurring of steep dose gradients and a reduction of dose at the periphery of the target. A systematic variation of motion parameters allowed the determination of the main influence parameters on the accumulated dose. The key parameters with the greatest influence on dose were the mean amplitude and the pattern of motion. Investigations on necessary safety margins to compensate for dose reduction have shown that smaller safety margins are sufficient, if the developed concept with optimized margins (OPT concept) was used instead of the standard internal target volume (ITV) concept. Both calculation methods were a reasonable approximation of the measured dose with the voxel based method being in better agreement with the measurements. Further evaluation of available systems and algorithms for dose accumulation are needed to create guidelines for the verification of the accumulated dose.

  16. Dosimetric evaluation of intrafractional tumor motion by means of a robot driven phantom

    SciTech Connect

    Richter, Anne; Wilbert, Juergen; Flentje, Michael

    2011-10-15

    Purpose: The aim of the work was to investigate the influence of intrafractional tumor motion to the accumulated (absorbed) dose. The accumulated dose was determined by means of calculations and measurements with a robot driven motion phantom. Methods: Different motion scenarios and compensation techniques were realized in a phantom study to investigate the influence of motion on image acquisition, dose calculation, and dose measurement. The influence of motion on the accumulated dose was calculated by employing two methods (a model based and a voxel based method). Results: Tumor motion resulted in a blurring of steep dose gradients and a reduction of dose at the periphery of the target. A systematic variation of motion parameters allowed the determination of the main influence parameters on the accumulated dose. The key parameters with the greatest influence on dose were the mean amplitude and the pattern of motion. Investigations on necessary safety margins to compensate for dose reduction have shown that smaller safety margins are sufficient, if the developed concept with optimized margins (OPT concept) was used instead of the standard internal target volume (ITV) concept. Both calculation methods were a reasonable approximation of the measured dose with the voxel based method being in better agreement with the measurements. Conclusions: Further evaluation of available systems and algorithms for dose accumulation are needed to create guidelines for the verification of the accumulated dose.

  17. What Are the Next Steps in Designing an Orthosis for Paraplegic Subjects?

    PubMed Central

    Karimi, Mohammad Taghi

    2012-01-01

    Background: Over the years, various types of orthoses have been designed to assist subjects with spinal cord injury (SCI) to stand and walk. However, the functional performance of the orthoses has not been adequate, that is, patients experience stability problems, consume excessive energy during ambulation, and generally require assistance in donning and doffing the devices. This research is aimed at categorizing the available orthoses designed specifically for SCI patients and to compare the available orthoses according to the energy consumption, stability analysis, and gait parameters. Methods: An electronic search was done in PubMed, Embase, and ISI Web of Knowledge databases to extract data related to 1960 – 2010. The available orthoses were characterized based on the level of stabilization they provided and the source of power used. The orthoses were compared based on the stability, energy consumption, and gait performance parameters, according to the results of various studies collected from the literature review. Results: Among various orthoses designed for paraplegic subjects, the mechanical orthoses seemed to have a better performance. Moreover, donning and doffing of the mechanical orthosis was easier for the subjects. Conclusion: Although the HGO has better functional performance than other available orthoses, the subjects are more willing to use the RGO. The new design of orthoses must allow easy donning and doffing by the users, have enough stability during walking and standing, and enable the patients to change the alignment of the orthosis to suit their needs. PMID:22448307

  18. Development and Feasibility Assessment of a Rotational Orthosis for Walking with Arm Swing

    PubMed Central

    Fang, Juan; Xie, Qing; Yang, Guo-Yuan; Xie, Le

    2017-01-01

    Interlimb neural coupling might underlie human bipedal locomotion, which is reflected in the fact that people swing their arms synchronously with leg movement in normal gait. Therefore, arm swing should be included in gait training to provide coordinated interlimb performance. The present study aimed to develop a Rotational Orthosis for Walking with Arm Swing (ROWAS), and evaluate its feasibility from the perspectives of implementation, acceptability and responsiveness. We developed the mechanical structures of the ROWAS system in SolidWorks, and implemented the concept in a prototype. Normal gait data were used as the reference performance of the shoulder, hip, knee and ankle joints of the prototype. The ROWAS prototype was tested for function assessment and further evaluated using five able-bodied subjects for user feedback. The ROWAS prototype produced coordinated performance in the upper and lower limbs, with joint profiles similar to those occurring in normal gait. The subjects reported a stronger feeling of walking with arm swing than without. The ROWAS system was deemed feasible according to the formal assessment criteria. PMID:28203142

  19. Development and Feasibility Assessment of a Rotational Orthosis for Walking with Arm Swing.

    PubMed

    Fang, Juan; Xie, Qing; Yang, Guo-Yuan; Xie, Le

    2017-01-01

    Interlimb neural coupling might underlie human bipedal locomotion, which is reflected in the fact that people swing their arms synchronously with leg movement in normal gait. Therefore, arm swing should be included in gait training to provide coordinated interlimb performance. The present study aimed to develop a Rotational Orthosis for Walking with Arm Swing (ROWAS), and evaluate its feasibility from the perspectives of implementation, acceptability and responsiveness. We developed the mechanical structures of the ROWAS system in SolidWorks, and implemented the concept in a prototype. Normal gait data were used as the reference performance of the shoulder, hip, knee and ankle joints of the prototype. The ROWAS prototype was tested for function assessment and further evaluated using five able-bodied subjects for user feedback. The ROWAS prototype produced coordinated performance in the upper and lower limbs, with joint profiles similar to those occurring in normal gait. The subjects reported a stronger feeling of walking with arm swing than without. The ROWAS system was deemed feasible according to the formal assessment criteria.

  20. Development of an automatic rotational orthosis for walking with arm swing.

    PubMed

    Fang, Juan; Yang, Guo-Yuan; Xie, Le

    2017-07-01

    Interlimb neural coupling is often observed during normal gait and is postulated to be important for gait restoration. In order to provide a testbed for investigation of interlimb neural coupling, we previously developed a rotational orthosis for walking with arm swing (ROWAS). The present study aimed to develop and evaluate the feasibility of a new system, viz. an automatic ROWAS (aROWAS). We developed the mechanical structures of aROWAS in SolidWorks, and implemented the concept in a prototype. Normal gait data from walking at various speeds were used as reference trajectories of the shoulder, hip, knee and ankle joints. The aROWAS prototype was tested in three able-bodied subjects. The prototype could automatically adjust to size and height, and automatically produced adaptable coordinated performance in the upper and lower limbs, with joint profiles similar to those occurring in normal gait. The subjects reported better acceptance in aROWAS than in ROWAS. The aROWAS system was deemed feasible among able-bodied subjects.

  1. Effect of wearing a dorsiflexion assist orthosis on mobility, perceived fatigue and exertion during the six-minute walk test in people with multiple sclerosis: a randomised cross-over protocol.

    PubMed

    McLoughlin, James; Barr, Christopher; Sturnieks, Daina; Lord, Stephen; Crotty, Maria

    2012-05-25

    Fatigue in combination with gait and balance impairments can severely limit daily activities in people with multiple sclerosis (PWMS). Generalised fatigue has a major impact on walking ability, with moderately disabled PWMS experiencing difficulty in walking extended distances. Localised motor fatigue in the ankle dorsiflexors can lead to foot drop, further reducing functional ambulation. The aim of this study is to evaluate the effect of a simple dynamic dorsiflexion assist orthosis on walking-induced fatigue, gait, balance and functional mobility in PWMS. A randomised cross-over trial will be conducted with 40 community dwelling PWMS with mild to moderate mobility disability. Participants will initially be screened for disease severity, balance, strength, depression and fatigue at the South Australian Motion Analysis Centre. On two non-consecutive occasions, within two weeks, participants will undergo either the 6-minute walk test (6MWT) or the 6MWT while wearing a dorsiflexion ankle orthosis (with a randomised condition order). Distance walked, perceived exertion, perceived fatigue and the physiological cost of walking (the primary outcome measures) will be compared between the two walking conditions. Additional pre- and post-6MWT assessments for the two conditions will include tests of strength, reaction time, gait and balance. This study will increase our understanding of motor fatigue on gait and balance control in PWMS and elucidate the effect of a Dynamic Ankle Orthosis on fatigue-related balance and gait in PWMS. It will also examine relationships between mobility and balance performance with perceived fatigue levels in this group. ACTRN12612000218897.

  2. Hardware Development and Locomotion Control Strategy for an Over-Ground Gait Trainer: NaTUre-Gaits

    PubMed Central

    Low, Kin Huat; Qu, Xingda; Lim, Hup Boon; Hoon, Kay Hiang

    2014-01-01

    Therapist-assisted body weight supported (TABWS) gait rehabilitation was introduced two decades ago. The benefit of TABWS in functional recovery of walking in spinal cord injury and stroke patients has been demonstrated and reported. However, shortage of therapists, labor-intensiveness, and short duration of training are some limitations of this approach. To overcome these deficiencies, robotic-assisted gait rehabilitation systems have been suggested. These systems have gained attentions from researchers and clinical practitioner in recent years. To achieve the same objective, an over-ground gait rehabilitation system, NaTUre-gaits, was developed at the Nanyang Technological University. The design was based on a clinical approach to provide four main features, which are pelvic motion, body weight support, over-ground walking experience, and lower limb assistance. These features can be achieved by three main modules of NaTUre-gaits: 1) pelvic assistance mechanism, mobile platform, and robotic orthosis. Predefined gait patterns are required for a robotic assisted system to follow. In this paper, the gait pattern planning for NaTUre-gaits was accomplished by an individual-specific gait pattern prediction model. The model generates gait patterns that resemble natural gait patterns of the targeted subjects. The features of NaTUre-gaits have been demonstrated by walking trials with several subjects. The trials have been evaluated by therapists and doctors. The results show that 10-m walking trial with a reduction in manpower. The task-specific repetitive training approach and natural walking gait patterns were also successfully achieved. PMID:27170876

  3. Effects of rigid and dynamic ankle-foot orthoses on normal gait.

    PubMed

    Guillebastre, Bastien; Calmels, Paul; Rougier, Patrice

    2009-01-01

    As shown through posturographic data, wearing an ankle-foot orthosis (AFO) causes a backward shift in healthy subjects of the mean position of the center of pressure under the limb wearing it, and difficulty in controlling these displacements. This study evaluated whether this particular positioning influenced gait independent of a neurological disorder. Two AFO models, with different mechanical concepts (a rigid-AFO (R-AFO) and dynamic-AFO (D-AFO)), were worn by 11 healthy subjects required to walk on a 12-m electronic mat. Velocity, step time and step length were assessed for each of the five conditions where subjects walked barefoot, and wearing R-AFO or D-AFO (without and with slight and greater stiffness at the elastic band). Spatial and temporal characteristics of each support were also analyzed. Although wearing R-AFO disturbed velocity, step length and time with an asymmetry between sides, wearing the D-AFO only affected a support characteristic (midline length: length between the pivot points of the two dimensional sensor structure of heel and toe area). No effect was seen when modifying the stiffness of the D-AFO model. Even though the posturographic data might partly explain this behavior, wearing an orthosis caused different effects on normal gait parameters. These features should be useful when prescribing an ankle-foot orthosis by differentiating what alterations are due to the orthosis and which are due to the gait disorder.

  4. a Study on the Structural Stress Analysis of Plastic Ankle Foot Orthosis (afo) Under Dorsiflexion and Plantarflextion Conditions

    NASA Astrophysics Data System (ADS)

    Lee, Young-Shin; Choi, Young-Jin; Kim, Hyun-Soo; Lee, Hyun-Seung; Cho, Kang-Hee

    The ankle foot orthosis (AFO) is used as the gait assistive tool for hemiplegic patients. The structural characteristics of the AFO are applied to the state of the patient. However, the prescription guide for hemiplegic patients is not well established. The purpose of this study is to develop design guide to find out the structural characteristics of polypropylene of AFO used for hemiplegics. In this study, the rigidities of dorsiflexion and plantarflexion of the AFO with varied types of ankle widths are investigated and performed by using FEM code.

  5. Overground robot assisted gait trainer for the treatment of drug-resistant freezing of gait in Parkinson disease.

    PubMed

    Pilleri, Manuela; Weis, Luca; Zabeo, Letizia; Koutsikos, Konstantinos; Biundo, Roberta; Facchini, Silvia; Rossi, Simonetta; Masiero, Stefano; Antonini, Angelo

    2015-08-15

    Freezing of Gait (FOG) is a frequent and disabling feature of Parkinson disease (PD). Gait rehabilitation assisted by electromechanical devices, such as training on treadmill associated with sensory cues or assisted by gait orthosis have been shown to improve FOG. Overground robot assisted gait training (RGT) has been recently tested in patients with PD with improvement of several gait parameters. We here evaluated the effectiveness of RGT on FOG severity and gait abnormalities in PD patients. Eighteen patients with FOG resistant to dopaminergic medications were treated with 15 sessions of RGT and underwent an extensive clinical evaluation before and after treatment. The main outcome measures were FOG questionnaire (FOGQ) global score and specific tasks for gait assessment, namely 10 meter walking test (10 MWT), Timed Up and Go test (TUG) and 360° narrow turns (360 NT). Balance was also evaluated through Fear of Falling Efficacy Scale (FFES), assessing self perceived stability and Berg Balance Scale (BBS), for objective examination. After treatment, FOGQ score was significantly reduced (P=0.023). We also found a significant reduction of time needed to complete TUG, 10 MWT, and 360 NT (P=0.009, 0.004 and 0.04, respectively). By contrast the number of steps and the number of freezing episodes recorded at each gait task did not change. FFES and BBS scores also improved, with positive repercussions on performance on daily activity and quality of life. Our results indicate that RGT is a useful strategy for the treatment of drug refractory FOG.

  6. Use of a static progressive stretch orthosis to treat post-traumatic ankle stiffness

    PubMed Central

    2012-01-01

    Background Chronic ankle stiffness can develop for numerous reasons after traumatic injury, and may adversely affect patient gait, mobility, and function. Although standard physical therapeutic techniques typically resolve this stiffness, some cases may be recalcitrant to these measures, making it difficult to restore range-of-motion. The purpose of this study was to evaluate a static progressive stretch orthosis for the treatment of chronic ankle stiffness. Methods Twenty-six patients (26 ankles) who had chronic post-traumatic ankle stiffness were studied. The patients began treatment at a mean of 47 weeks (range, 6 to 272 weeks) following their initial injury using a static progressive stretch orthosis. A patient-directed protocol was used for 30 minutes per day, 1 to 3 times per day, until the range-of-motion was considered to have plateaued. Mean treatment time was 10 weeks (range, 3 to 19 weeks). Treatment duration, range-of-motion, and complications with the device were assessed. Results The overall mean improvement in motion (combined dorsiflexion and plantar flexion) was 17 degrees (range, 2 to 44 degrees). There was a mean improvement in dorsiflexion of 9 degrees (range, -2 to 20 degrees), and a mean improvement of 8 degrees of plantar flexion (range, -10 to 35 degrees). There were no reports of numbness or skin problems. Conclusions The outcomes of this study suggest that a patient-directed treatment protocol using a static progressive stretch orthosis was an effective ancillary method for the treatment of chronic post-traumatic ankle stiffness that was refractory to standard physical therapy techniques. PMID:22762507

  7. Clinical experiences with a convertible thermoplastic knee-ankle-foot orthosis for post-stroke hemiplegic patients.

    PubMed

    Kakurai, S; Akai, M

    1996-12-01

    As rehabilitation for post-stroke hemiplegic patients has become widely accepted practice, there has been an increase in patients who are more difficult to treat. In the prescription rationale of orthoses for hemiplegics, the knee-ankle-foot orthosis (KAFO) for the lower limb has generally been underestimated because of its inhibitory effect on the normal walking pattern and also its interference with gait training. The authors had an experience of 28 hemiplegics with severe physical impairments who were fitted with a convertible plastic KAFO. Among these patients, there were 11 cases in which the KAFO was replaced by an ankle-foot orthosis (AFO) within 1.5 to 8 months (average 4 months) following initial prescription when they were able to control their knee actively. Ambulatory capability in these patients was superior to that of the remaining KAFO group. The Barthel index of the AFO group patients was higher than the KAFO group (p < 0.01). However neither age, sex, severity of hemiplegia, starting time of rehabilitation following onset of stroke, time of fitting with the orthosis, nor the functional recovery stage were critical factors between the two groups, only the incidence of major complications affected ambulatory capability.

  8. Gait analysis.

    PubMed

    Chester, Victoria L; Biden, Edmund N; Tingley, Maureen

    2005-01-01

    Gait analysis, or the study of locomotion, has changed dramatically over the last few decades. Advances in computer technology and data analysis techniques have contributed greatly to the progress of this field. Gait analysis has become a valuable tool in the clinical setting. The ability to objectively quantify motion is essential to our understanding of normal and abnormal movement patterns and the evaluation of treatment effectiveness. This paper will discuss the various experimental and analytical techniques currently used for performing clinical gait analyses at the University of New Brunswick, Fredericton, New Brunswick, Canada.

  9. Consumer opinions of a stance control knee orthosis.

    PubMed

    Bernhardt, Kathie A; Irby, Steven E; Kaufman, Kenton R

    2006-12-01

    Stance control knee orthoses (SCOs) have become very popular recently. However, there is little information regarding opinions of actual orthosis users. The purpose of this study was to quantify the users' opinions of a SCO, and see whether factors found important for knee orthoses in past studies hold true for a stance control orthosis as well. A standardized survey was employed as part of a larger field trial study of the Dynamic Knee Brace System, a SCO developed by the authors. The Dynamic Knee Brace System scored well in areas of effectiveness, operability, and dependability, but areas in need of improvement included weight, cosmesis, and donning and doffing. These findings match well with previous knee orthosis studies. This study shows that wearing a stance control knee orthosis can be a positive experience for an orthosis user.

  10. Design and Evaluation of a New Type of Knee Orthosis to Align the Mediolateral Angle of the Knee Joint with Osteoarthritis

    PubMed Central

    Esrafilian, Amir; Karimi, Mohammad Taghi; Eshraghi, Arezoo

    2012-01-01

    Background. Osteoarthritis (OA) is a disease which influences the performance of the knee joint. Moreover, the force and moments applied on the joint increase in contrast to normal subjects. Various types of knee orthoses have been designed to solve the mentioned problems. However, there are other problems in terms of distal migration during walking and the alignment of the orthosis which cannot be changed following the use of brace. Therefore, the main aim of the research was to design an orthosis to solve the aforementioned problems. Method. A new type of knee orthosis was designed with a modular structure. Two patients with knee OA participated in this research project. The force applied on the foot, moment transmitted through the knee joint, and spatiotemporal gait parameters were measured by use of a motion analysis system. Results. The results of the research showed that the adduction moment applied on the knee joint decreased while subjects walked with the new knee orthosis (P-value < 0.05). Conclusion. The new design of the knee brace can be used as an effective treatment to decrease the loads applied on the knee joint and to improve the alignment whilst walking. PMID:22577565

  11. Loads on the uprights of a knee-ankle-foot orthosis.

    PubMed

    Bernhardt, K A; Kaufman, K R

    2011-03-01

    Objective design criteria for orthotic components is lacking. This paucity of data results in prescription guidelines based on assumptions or practitioners' past experience, and the potential for incorrectly designed components. The purpose of this study was to directly measure loads on the knee joint of a knee-ankle-foot orthosis. Case series. Three subjects who had been prescribed a knee-ankle-foot orthosis for quadriceps weakness underwent gait analysis and orthotic upright load data collection. A load sensor to measure the three force and three moment components was used in place of the lateral knee joint while the subjects walked in three knee flexion positions. Forces were highest in compression and moments were greatest in the sagittal plane. The kinetics did not increase solely with patient weight. There was substantial variability between subjects. This data will help guide orthotic component design and prescription guidelines. Knowledge of loading conditions will lead to more optimal orthotic intervention for patients and increased patient satisfaction. This study is one of the first to directly measure loads on the upright of a KAFO. These data provide objective targets for engineering design. The data from this small case series can also be used to establish guidelines for patient device selection.

  12. From swimming to walking with a salamander robot driven by a spinal cord model.

    PubMed

    Ijspeert, Auke Jan; Crespi, Alessandro; Ryczko, Dimitri; Cabelguen, Jean-Marie

    2007-03-09

    The transition from aquatic to terrestrial locomotion was a key development in vertebrate evolution. We present a spinal cord model and its implementation in an amphibious salamander robot that demonstrates how a primitive neural circuit for swimming can be extended by phylogenetically more recent limb oscillatory centers to explain the ability of salamanders to switch between swimming and walking. The model suggests neural mechanisms for modulation of velocity, direction, and type of gait that are relevant for all tetrapods. It predicts that limb oscillatory centers have lower intrinsic frequencies than body oscillatory centers, and we present biological data supporting this.

  13. Development of control model for intelligently controllable ankle-foot orthosis.

    PubMed

    Kikuchi, Takehito; Tanida, Sousuke; Yasuda, Takashi; Fujikawa, Takamitsu

    2013-01-01

    We have developed an intelligently controllable ankle-foot orthosis (i-AFO). In this paper, we formulated a new control method for the i-AFO. In the method the sensor system of the i-AFO estimates walking speed of user and decide optimal drop speed of foot at the duration between initial contact and foot flat. We conducted the pretest for eight healthy subjects to make a control rule for the drop speed. Then we conducted the modeling test for one patient to make an estimation rule for walking speed. Finally we conducted the evaluation test for the proposed method. Despite the walking speed estimation show errors, the i-AFO successfully controlled the foot motion depending on the gait states.

  14. Motor adaptation during dorsiflexion-assisted walking with a powered orthosis

    PubMed Central

    Kao, Pei-Chun; Ferris, Daniel P.

    2009-01-01

    A robotic ankle-foot orthosis (AFO) that provides powered assistance could adjust to varying gait dynamics much better than a rigid AFO. To provide insight into how humans would adapt to a powered AFO, we studied the response of neurologically intact subjects walking with an active dorsiflexion assist orthosis proportionally controlled by tibialis anterior electromyography (EMG). We examined the two mechanical functions of ankle dorsiflexors in gait (power absorption at heel strike and power generation at toe-off) by recruiting two groups of healthy subjects: Group One, called Continuous Control, (n=5) had dorsiflexion assistance both at the initial heel contact and during swing; Group Two, called Swing Control, (n=5) had the assistance only during swing. We hypothesized both groups of subjects would reduce tibialis anterior EMG amplitude with practice walking with the powered dorsiflexion assist. Ten healthy subjects were fitted with custom-made orthoses that included an artificial pneumatic muscle providing dorsiflexor torque. We collected lower body kinematics, EMG, and artificial muscle force while subjects walked on a treadmill for two 30-minute training sessions. We found that subjects walked with increased ankle dorsiflexion by 9 degrees but showed different adaptation responses of the two tibialis anterior EMG bursts. The first EMG burst around heel strike had ~28% lower amplitudes (p<0.05) but the second EMG burst during swing had similar amplitudes. These results provide baseline data of EMG controlled dorsiflexion assist in neurologically intact humans that can be used to guide future studies on neurologically impaired individuals. PMID:18838269

  15. Design of active orthoses for a robotic gait rehabilitation system

    NASA Astrophysics Data System (ADS)

    Villa-Parra, A. C.; Broche, L.; Delisle-Rodríguez, D.; Sagaró, R.; Bastos, T.; Frizera-Neto, A.

    2015-09-01

    An active orthosis (AO) is a robotic device that assists both human gait and rehabilitation therapy. This work proposes portable AOs, one for the knee joint and another for the ankle joint. Both AOs will be used to complete a robotic system that improves gait rehabilitation. The requirements for actuator selection, the biomechanical considerations during the AO design, the finite element method, and a control approach based on electroencephalographic and surface electromyographic signals are reviewed. This work contributes to the design of AOs for users with foot drop and knee flexion impairment. However, the potential of the proposed AOs to be part of a robotic gait rehabilitation system that improves the quality of life of stroke survivors requires further investigation.

  16. Effectiveness of an innovative hip energy storage walking orthosis for improving paraplegic walking: A pilot randomized controlled study.

    PubMed

    Yang, Mingliang; Li, Jianjun; Guan, Xinyu; Gao, Lianjun; Gao, Feng; Du, Liangjie; Zhao, Hongmei; Yang, Degang; Yu, Yan; Wang, Qimin; Wang, Rencheng; Ji, Linhong

    2017-09-01

    The high energy cost of paraplegic walking using a reciprocating gait orthosis (RGO) is attributed to limited hip motion and excessive upper limb loading for support. To address the limitation, we designed the hip energy storage walking orthosis (HESWO) which uses a spring assembly on the pelvic shell to store energy from the movements of the healthy upper limbs and flexion-extension of the lumbar spine and hip and returns this energy to lift the pelvis and lower limb to assist with the swing and stance components of a stride. Our aim was to evaluate gait and energy cost indices for the HESWO compared to the RGO in patients with paraplegia. The cross-over design was used in the pilot study. Twelve patients with a complete T4-L5 chronic spinal cord injury underwent gait training using the HESWO and RGO. Gait performance (continuous walking distance, as well as the maximum and comfortable walking speeds) and energy expenditure (at a walking speed of 3.3m/min on a treadmill) were measured at the end of the 4-week training session. Compared to the RGO, the HESWO increased continuous walking distance by 24.7% (P<0.05), maximum walking speed by 20.4% (P<0.05) and the comfortable walking speed by 15.3% (P<0.05), as well as decreasing energy expenditure by 13.9% (P<0.05). Our preliminary results provide support for the use of the HESWO as an alternative support for paraplegic walking. Copyright © 2017. Published by Elsevier B.V.

  17. Custom-Molded Foot-Orthosis Intervention and Multisegment Medial Foot Kinematics During Walking

    PubMed Central

    Cobb, Stephen C.; Tis, Laurie L.; Johnson, Jeffrey T.; Wang, Yong “Tai”; Geil, Mark D.

    2011-01-01

    Context: Foot-orthosis (FO) intervention to prevent and treat numerous lower extremity injuries is widely accepted clinically. However, the results of quantitative gait analyses have been equivocal. The foot models used, participants receiving intervention, and orthoses used might contribute to the variability. Objective: To investigate the effect of a custom-molded FO intervention on multisegment medial foot kinematics during walking in participants with low-mobile foot posture. Design: Crossover study. Setting: University biomechanics and ergonomics laboratory. Patients or Other Participants: Sixteen participants with low-mobile foot posture (7 men, 9 women) were assigned randomly to 1 of 2 FO groups. Interventions : After a 2-week period to break in the FOs, individuals participated in a gait analysis that consisted of 5 successful walking trials (1.3 to 1.4 m/s) during no-FO and FO conditions. Main Outcome Measure(s): Three-dimensional displacements during 4 subphases of stance (loading response, mid-stance, terminal stance, preswing) were computed for each multisegment foot model articulation. Results: Repeated-measures analyses of variance (ANOVAs) revealed that rearfoot complex dorsiflexion displacement during midstance was greater in the FO than the no-FO condition (F1,14 = 5.24, P = .04, partial η2 = 0.27). Terminal stance repeated-measures ANOVA results revealed insert-by-insert condition interactions for the first metatarsophalangeal joint complex (F1,14 = 7.87, P = .01, partial η2 = 0.36). However, additional follow-up analysis did not reveal differences between the no-FO and FO conditions for the balanced traditional orthosis (F1,14 = 4.32, P = .08, partial η2 = 0.38) or full-contact orthosis (F1,14 = 4.10, P = .08, partial η2 = 0.37). Conclusions: Greater rearfoot complex dorsiflexion during midstance associated with FO intervention may represent improved foot kinematics in people with low-mobile foot postures. Furthermore, FO intervention might

  18. Noninvasive brain-computer interface driven hand orthosis.

    PubMed

    King, Christine E; Wang, Po T; Mizuta, Masato; Reinkensmeyer, David J; Do, An H; Moromugi, Shunji; Nenadic, Zoran

    2011-01-01

    Neurological conditions, such as stroke, can leave the affected individual with hand motor impairment despite intensive treatments. Novel technologies, such as brain-computer interface (BCI), may be able to restore or augment impaired motor behaviors by engaging relevant cortical areas. Here, we developed and tested an electroencephalogram (EEG) based BCI system for control of hand orthosis. An able-bodied subject performed contralateral hand grasping to achieve continuous online control of the hand orthosis, suggesting that the integration of a noninvasive BCI with a hand orthosis is feasible. The adoption of this technology to stroke survivors may provide a novel neurorehabilitation therapy for hand motor impairment in this population.

  19. Effects of robot-assisted gait training on spatiotemporal gait parameters and balance in patients with chronic stroke: A randomized controlled pilot trial.

    PubMed

    Bang, Dae-Hyouk; Shin, Won-Seob

    2016-04-06

    Body weight-supported treadmill training assisted by a robotic gait orthosis is a helpful tool for restoring a symmetrical gait pattern in people with gait discrepancies. This study's aim was to compare the effects of robot-assisted gait training (RAGT) versus treadmill gait training (TGT) on spatiotemporal gait parameters, balance, and activities-specific balance confidence with stroke patients. Eighteen participants with stroke were randomly assigned to RAGT or TGT. Each group underwent twenty sessions (1 h/d, 5 d/wk for 4 weeks). Patients were assessed with gait parameters (gait speed, cadence, step length, and double limb support period) using the GAITRite, the Berg Balance Scale (BBS) score, and the activities-specific balance confidence (ABC) score before and after the intervention. Gait speed (P = 0.003), cadence (P = 0.002), step length (P = 0.004), the BBS score (P = 0.048), and the ABC score (P = 0.017) were significantly higher in the RAGT group than in the TGT group, while the double limb support period was significantly lower in the RAGT group (P = 0.043). RAGT using Lokomat may be more effective than TGT in improving waking ability, balance, and balance confidence in patients with chronic stroke.

  20. A dynamic pronation orthosis for the C6 tetraplegic arm.

    PubMed

    Hokken, W; Kalkman, S; Blanken, W C; van Asbeck, F W

    1993-01-01

    Tetraplegic arms of patients with spinal cord injury at C5 or C6 level are often held in a flexed supinated position. In supination the function of the hand is limited. This report presents a newly developed orthosis giving active pronation of the forearm for a C6 complete tetraplegic. The orthosis consists of a pretightened coiled spring that gives a torque around the longitudinal axis of the forearm. The distal part of the spring is connected to a cuff around the wrist, and the proximal part to two fitting planes on the upper arm. With the orthosis, a 27-year-old patient with a C5-C6 spinal cord injury was able to participate in activities of daily living and to perform table top activities. This new orthosis provides pronation and markedly increases the patient's degree of independence.

  1. A new dynamic foot abduction orthosis for clubfoot treatment.

    PubMed

    Chen, Ryan C; Gordon, J Eric; Luhmann, Scott J; Schoenecker, Perry L; Dobbs, Matthew B

    2007-01-01

    Recurrent clubfoot deformity after successful initial correction with the use of the Ponseti method continues to be a common problem and is often caused by noncompliance with wear of the traditional foot abduction brace. The purpose of this study was to assess the results of a newly designed dynamic foot abduction orthosis in terms of (1) parental compliance and (2) effectiveness in preventing recurrent clubfoot deformities. Twenty-eight patients (49 clubfeet) who were treated with a dynamic foot abduction orthosis in accordance with the Ponseti method were included in this study. Of the 28 patients, 18 had idiopathic clubfeet (31 clubfeet), 2 had complex idiopathic clubfeet (4 clubfeet), 5 had myelodysplasia (8 clubfeet), and 3 were syndromic (6 clubfeet). The mean duration of follow-up was 29 months (range, 24-36 months). Noncompliance was reported in only 2 (7.1%) of the 28 patients in the new orthosis compared with the authors' previously reported 41% (21/51) noncompliance rate in patients treated with the use of the traditional foot abduction brace. The two patients in this study, in which parents were noncompliant with orthosis wear, developed recurrent deformities. There were 2 patients (7%) who experienced skin blistering in the new orthosis compared with 12 (23.5%) of 51 patients who experienced blistering with the use of traditional abduction brace in the authors' previously reported study. Logistic regression modeling compliance and recurrence revealed that noncompliance with the foot abduction orthosis was most predictive of recurrence of deformity (odds ratio, 27; 95% confidence interval, 2.2-326; P = 0.01). The articulating foot abduction orthosis is well tolerated by patients and parents and results in a higher compliance rate and a lower complication rate than what were observed with the traditional foot abduction orthosis.

  2. Virtual reality for enhancement of robot-assisted gait training in children with central gait disorders.

    PubMed

    Brütsch, Karin; Koenig, Alexander; Zimmerli, Lukas; Mérillat-Koeneke, Susan; Riener, Robert; Jäncke, Lutz; van Hedel, Hubertus J A; Meyer-Heim, Andreas

    2011-05-01

    To examine the effect of various forms of training interventions, with and without virtual reality, on the initiation and maintenance of active participation during robot-assisted gait training. Intervention study at the Rehabilitation Centre Affoltern a. A., University Children's Hospital, Zurich. Ten patients (5 males, mean age 12.47 years, standard deviation 1.84 years) with different neurological gait disorders and 14 healthy children (7 males, mean age 11.76 years, standard deviation 2.75 years). All participants walked in the driven gait orthosis Lokomat® in 4 different randomly-assigned conditions. Biofeedback values calculated during swing phases were the primary outcome measure and secondary outcomes were derived from a questionnaire assessing the participant's motivation. Findings revealed a significant main effect for training condition in all participants (p < 0.001), for patients (p < 0.05) and for healthy controls (p < 0.01). Overall, both virtual reality-assisted therapy approaches were equally the most effective in initiating the desired active participation in all children, compared with conventional training conditions. Motivation was very high and differed between the groups only in the virtual navigation condition. Novel virtual reality-based training conditions represent a valuable approach to enhance active participation during robot-assisted gait training in patients and healthy controls.

  3. User experience of lower-limb orthosis.

    PubMed

    Yang, Bing-Shiang; Chen, Yen-Wan; Tong, Ji-Rou

    2017-06-09

    If an assistive device is not acceptable to the user, it will not achieve efficacy and would be resource-wasting. This study employed in-depth interviews to understand what users' individual activities of daily living, problems of using orthoses, and considerations for selecting orthoses are. We conducted qualitative interviews with 35 lower-limb orthosis users, and semi-structured interviews were applied in this study. We analyzed the interview data from transcripts, through coding and concepts, to theories based on grounded theory. The results showed that problems of using orthoses are mostly related to activities of daily living of the user and user's expectation. Therefore, in order to enhance its efficacy and use intention, the design and prescribing process of orthoses need to address the problems in the light of activities of daily living and user education.

  4. Effect of ankle-foot orthosis on postural control after stroke: a systematic review.

    PubMed

    Guerra Padilla, M; Molina Rueda, F; Alguacil Diego, I M

    2014-09-01

    Stroke is currently the main cause of permanent disability in adults. The impairments are a combination of sensory, motor, cognitive and emotional changes that result in restrictions on the ability to perform basic activities of daily living (BADL). Postural control is affected and causes problems with static and dynamic balance, thus increasing the risk of falls and secondary injuries. The purpose of this review was to compile the literature to date, and assess the impact of ankle-foot orthosis (AFO) on postural control and gait in individuals who have suffered a stroke. The review included randomised and controlled trials that examined the effects of AFO in stroke patients between 18 and 80 years old, with acute or chronic evolution. No search limits on the date of the studies were included, and the search lasted until April 2011. The following databases were used: Pubmed, Trip Database, Cochrane library, Embase, ISI Web Knowledge, CINHAL and PEDro. Intervention succeeded in improving some gait parameters, such as speed and cadence. However it is not clear if there was improvement in the symmetry, postural sway or balance. Because of the limitations of this systematic review, due to the clinical diversity of the studies and the methodological limitations, 0these results should be considered with caution. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  5. Design of a gait training device for control of pelvic obliquity.

    PubMed

    Pietrusinski, Maciej; Severini, Giacomo; Cajigas, Iahn; Mavroidis, Constantinos; Bonato, Paolo

    2012-01-01

    This paper presents the design and testing of a novel device for the control of pelvic obliquity during gait. The device, called the Robotic Gait Rehabilitation (RGR) Trainer, consists of a single actuator system designed to target secondary gait deviations, such as hip-hiking, affecting the movement of the pelvis. Secondary gait deviations affecting the pelvis are generated in response to primary gait deviations (e.g. limited knee flexion during the swing phase) in stroke survivors and contribute to the overall asymmetrical gait pattern often observed in these patients. The proposed device generates a force field able to affect the obliquity of the pelvis (i.e. the rotation of the pelvis around the anteroposterior axis) by using an impedance controlled single linear actuator acting on a hip orthosis. Tests showed that the RGR Trainer is able to induce changes in pelvic obliquity trajectories (hip-hiking) in healthy subjects. These results suggest that the RGR Trainer is suitable to test the hypothesis that has motivated our efforts toward developing the system, namely that addressing both primary and secondary gait deviations during robotic-assisted gait training may help promote a physiologically-sound gait behavior more effectively than when only primary deviations are addressed.

  6. Development of Meal Assistance Orthosis and Its Controller for Challenged Persons

    NASA Astrophysics Data System (ADS)

    Kushida, Daisuke; Nakamura, Masatoshi

    Disable persons, motor functional disorder, can not take meal by their arms. Meal assistance orthosis, which assists to take meal, is developed for them. Meal assistance orthosis is actuated by use of human will which is analized based on EOG˜(Electroocurogram) signal. Besides, control theory for meal assistance orthosis is designed with safety policy. Effectiveness of the proposed meal assistace orthosis is assured by simulation and experimental work on normal person.

  7. Novel Use of Orthosis in a Case of Burn Contracture Microstomia.

    PubMed

    Soumya, S V; Daniel, S S; Ashish, K G; Santosh, K

    2016-06-01

    To prevent cicatrical scar formation of the oral commissure post commissuroplasty. Bilateral commisuroplasty followed by tooth borne static orthosis and then after dynamic orthosis for a period of one year. The use of both static and dynamic orthosis in appropriate sequence resulted in good scar outcome.

  8. A pneumatic power harvesting ankle-foot orthosis to prevent foot-drop

    PubMed Central

    Chin, Robin; Hsiao-Wecksler, Elizabeth T; Loth, Eric; Kogler, Géza; Manwaring, Scott D; Tyson, Serena N; Shorter, K Alex; Gilmer, Joel N

    2009-01-01

    Background A self-contained, self-controlled, pneumatic power harvesting ankle-foot orthosis (PhAFO) to manage foot-drop was developed and tested. Foot-drop is due to a disruption of the motor control pathway and may occur in numerous pathologies such as stroke, spinal cord injury, multiple sclerosis, and cerebral palsy. The objectives for the prototype PhAFO are to provide toe clearance during swing, permit free ankle motion during stance, and harvest the needed power with an underfoot bellow pump pressurized during the stance phase of walking. Methods The PhAFO was constructed from a two-part (tibia and foot) carbon composite structure with an articulating ankle joint. Ankle motion control was accomplished through a cam-follower locking mechanism actuated via a pneumatic circuit connected to the bellow pump and embedded in the foam sole. Biomechanical performance of the prototype orthosis was assessed during multiple trials of treadmill walking of an able-bodied control subject (n = 1). Motion capture and pressure measurements were used to investigate the effect of the PhAFO on lower limb joint behavior and the capacity of the bellow pump to repeatedly generate the required pneumatic pressure for toe clearance. Results Toe clearance during swing was successfully achieved during all trials; average clearance 44 ± 5 mm. Free ankle motion was observed during stance and plantarflexion was blocked during swing. In addition, the bellow component repeatedly generated an average of 169 kPa per step of pressure during ten minutes of walking. Conclusion This study demonstrated that fluid power could be harvested with a pneumatic circuit built into an AFO, and used to operate an actuated cam-lock mechanism that controls ankle-foot motion at specific periods of the gait cycle. PMID:19527526

  9. Improved gait recognition by gait dynamics normalization.

    PubMed

    Liu, Zongyi; Sarkar, Sudeep

    2006-06-01

    Potential sources for gait biometrics can be seen to derive from two aspects: gait shape and gait dynamics. We show that improved gait recognition can be achieved after normalization of dynamics and focusing on the shape information. We normalize for gait dynamics using a generic walking model, as captured by a population Hidden Markov Model (pHMM) defined for a set of individuals. The states of this pHMM represent gait stances over one gait cycle and the observations are the silhouettes of the corresponding gait stances. For each sequence, we first use Viterbi decoding of the gait dynamics to arrive at one dynamics-normalized, averaged, gait cycle of fixed length. The distance between two sequences is the distance between the two corresponding dynamics-normalized gait cycles, which we quantify by the sum of the distances between the corresponding gait stances. Distances between two silhouettes from the same generic gait stance are computed in the linear discriminant analysis space so as to maximize the discrimination between persons, while minimizing the variations of the same subject under different conditions. The distance computation is constructed so that it is invariant to dilations and erosions of the silhouettes. This helps us handle variations in silhouette shape that can occur with changing imaging conditions. We present results on three different, publicly available, data sets. First, we consider the HumanlD Gait Challenge data set, which is the largest gait benchmarking data set that is available (122 subjects), exercising five different factors, i.e., viewpoint, shoe, surface, carrying condition, and time. We significantly improve the performance across the hard experiments involving surface change and briefcase carrying conditions. Second, we also show improved performance on the UMD gait data set that exercises time variations for 55 subjects. Third, on the CMU Mobo data set, we show results for matching across different walking speeds. It is worth

  10. Therapeutic Experience on Stance Control Knee-Ankle-Foot Orthosis With Electromagnetically Controlled Knee Joint System in Poliomyelitis

    PubMed Central

    Kim, Jung-Hwan; Ji, Sang-Goo; Jung, Kang-Jae

    2016-01-01

    A 54-year-old man with poliomyelitis had been using a conventional, passive knee-ankle-foot orthosis (KAFO) with a drop ring lock knee joint for about 40 years. A stance control KAFO (SCKAFO) with an electromagnetically controlled (E-MAG) knee joint system was prescribed. To correct his gait pattern, he also underwent rehabilitation therapy, which included muscle re-education, neuromuscular electrical stimulation, strengthening exercises for the lower extremities, and balance training twice a week for about 4 months. Both before and after rehabilitation, we conducted a gait analysis and assessed the physiological cost index in energy expended during walking in a locked-knee state and while he wore a SCKAFO with E-MAG. When compared with the pre-rehabilitation data, the velocity, step length, stride length, and knee kinematic data were improved after rehabilitation. Although the SCKAFO with E-MAG system facilitated the control of knee motion during ambulation, appropriate rehabilitative therapy was also needed to achieve a normal gait pattern. PMID:27152288

  11. Therapeutic Experience on Stance Control Knee-Ankle-Foot Orthosis With Electromagnetically Controlled Knee Joint System in Poliomyelitis.

    PubMed

    Kim, Jung-Hwan; Ji, Sang-Goo; Jung, Kang-Jae; Kim, Jae-Hyung

    2016-04-01

    A 54-year-old man with poliomyelitis had been using a conventional, passive knee-ankle-foot orthosis (KAFO) with a drop ring lock knee joint for about 40 years. A stance control KAFO (SCKAFO) with an electromagnetically controlled (E-MAG) knee joint system was prescribed. To correct his gait pattern, he also underwent rehabilitation therapy, which included muscle re-education, neuromuscular electrical stimulation, strengthening exercises for the lower extremities, and balance training twice a week for about 4 months. Both before and after rehabilitation, we conducted a gait analysis and assessed the physiological cost index in energy expended during walking in a locked-knee state and while he wore a SCKAFO with E-MAG. When compared with the pre-rehabilitation data, the velocity, step length, stride length, and knee kinematic data were improved after rehabilitation. Although the SCKAFO with E-MAG system facilitated the control of knee motion during ambulation, appropriate rehabilitative therapy was also needed to achieve a normal gait pattern.

  12. A Comparative Study Between Total Contact Cast and Pressure-Relieving Ankle Foot Orthosis in Diabetic Neuropathic Foot Ulcers

    PubMed Central

    Chakraborty, Partha Pratim; Ray, Sayantan; Biswas, Dibakar; Baidya, Arjun; Bhattacharjee, Rana; Mukhopadhyay, Pradip; Ghosh, Sujoy; Mukhopadhyay, Satinath; Chowdhury, Subhankar

    2014-01-01

    Background: Off-loading of the ulcer area is extremely important for the healing of plantar ulcers. Off-loading with total contact cast (TCC) may be superior to other off-loading strategies studied so far, but practical limitations can dissuade clinicians from using this modality. This study was conducted to evaluate the efficacy of TCC compared with that of a pressure-relieving ankle foot orthosis (PRAFO) in healing of diabetic neuropathic foot ulcers and their effect on gait parameters. Methods: Thirty adult diabetic patients attending the foot clinic with neuropathic plantar ulcers irrespective of sex, age, duration and type of diabetes were randomly assigned to 1 of 2 off-loading modalities (TCC and PRAFO). Main outcome measures were ulcer healing after 4 weeks of randomization and effect of each of the modalities on various gait parameters. Results: The percentage reduction of the ulcer surface area at 4 weeks from baseline was 75.75 ± 9.25 with TCC and 34.72 ± 13.07 with PRAFO, which was significantly different (P < .001). The results of this study however, showed that most of the gait parameters were better with PRAFO than with TCC. Conclusions: This study comprehensively evaluated the well known advantages and disadvantages of a removable (PRAFO) and a nonremovable device (TCC) in the treatment of diabetic neuropathic foot ulcer. Further studies are needed involving larger subjects and using 3D gait analysis to collect more accurate data on gait parameters and wound healing with different off-loading devices. PMID:25452635

  13. A randomized controlled trial studying efficacy and tolerance of a knee-ankle-foot orthosis used to prevent equinus in children with spastic cerebral palsy.

    PubMed

    Maas, Jc; Dallmeijer, Aj; Huijing, Pa; Brunstrom-Hernandez, Je; van Kampen, Pj; Bolster, Eam; Dunn, C; Herndon, K; Jaspers, Rt; Becher, Jg

    2014-10-01

    To examine whether using a knee-ankle-foot orthosis helps maintain ankle-foot dorsiflexion range of motion over time. A multicentre randomized controlled trial. Two hospitals and one rehabilitation centre in the Netherlands and the USA. Children (4-16 years old) with spastic cerebral palsy who were able to walk. Use of a knee-ankle-foot orthosis, equipped with an Ultraflex ankle power unit, for at least 6 hours every other night for one year. ankle-foot dorsiflexion range of motion. ankle-foot and knee angle in gait and gross motor function. Wearing time was also measured. Measurements were taken at baseline and at 3, 6, 9 and 12 months. 28 children (experimental group: n=15, control group: n=13) participated in the study. 11 participants (experimental: n=4, control: n=7) did not complete all five measurements, as they needed additional treatment. No significant difference was found in the decrease of ankle-foot dorsiflexion range of motion between the experimental and control groups (difference: -1.05°, 95% confidence interval: -4.71° - 2.61°). In addition, secondary outcome measures did not show differences between groups. Despite good motivation, knee-ankle-foot orthosis wearing time was limited to a mean±SD of 3.2±1.9 hours per prescribed night due to discomfort. Knee-ankle-foot orthosis with dynamic ankle and fixed knee are poorly tolerated and are not beneficial in preventing a reduction in ankle-foot dorsiflexion range of motion in children with spastic cerebral palsy, at least with limited use. © The Author(s) 2014.

  14. Gait characteristics of post-poliomyelitis patients: standardization of quantitative data reporting.

    PubMed

    Portnoy, S; Schwartz, I

    2013-10-01

    To evaluate the differences in gait characteristics and gait symmetry of post-polio syndrome (PPS) patients ambulating with or without shoes and between subgroups walking with different walking aids and orthoses, study the correlation of these data with personal data, illness condition, physical health, frequency of using aids and orthotics and frequency of falls, and derive recommendations for standardization of reporting these data. Twenty-six PPS subjects ambulated with their own walking devices. We calculated spatio-temporal parameters and symmetry indices (SI) of gait using a data acquired by a motion capture system. We compared inter-subject differences in gait pattern for PPS groups that differed by questionnaire-obtained data of demographics, physical activity, polio history, falls and walking aids. Additional inter-subject comparisons were performed between normal subjects (n=16), PPS patients walking with shoes with/without an ankle-foot-orthosis (n=11), PPS patients walking with knee-ankle-foot-orthosis (n=5), and PPS patients walking with a walker/crutches (n=10). We also compared intra-subject variability in PPS subjects who were able to repeat the trials barefoot. Our main results show that subjects who reported participating in physical activity twice a week or more had significantly better step time and double support symmetry. Subjects who use walking aids on a daily basis had significantly higher gait cadence and shorter stride time. Also, subjects that do not require knee-ankle-foot orthoses and/or walking aids walked with a smaller base width and better symmetry in stance and swing durations than PPS subjects who require these aids. The gait pattern of PPS patients is related to numerous intrinsic and extrinsic factors. Standardization of the reporting protocol of gait-related data of PPS patients is crucial for patient evaluation and treatment design. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. 'MYNI's orthosis': a self-adjustable, dynamic knee extension orthosis for quadriceps weakness in haemophilia rehabilitation.

    PubMed

    Manigandan, C; Bedford, E; Kumar, S; Nathan, V; Peter, B K; Premkumar, J Charles

    2004-11-01

    In developing countries like India, where walking is the primary, preferred and feasible mode of transport, the implications following quadriceps weakness poses a serious threat to ones functional independence. This has been a challenge for professionals while ambulating individuals with haemophilia, where quadriceps weakness is very common. Although external splinting has been understood for many years, as a means of support in haemophilia, there is still a dearth of knowledge in making an appropriate splint to assist or to take over the weak quadriceps during ambulation. This newly designed 'MYNI's orthosis' helps in versatile ways in addition to assisting the weak quadriceps. It provides prolonged stretch to contracted tissue, allows for being used as a serial cast in improving the knee range and is cosmetically acceptable. Above all, it is user-friendly, thus enhancing compliance and superior outcome in haemophilic knee rehabilitation.

  16. 21 CFR 890.3610 - Rigid pneumatic structure orthosis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rigid pneumatic structure orthosis. 890.3610 Section 890.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3610 Rigid...

  17. 21 CFR 890.3610 - Rigid pneumatic structure orthosis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigid pneumatic structure orthosis. 890.3610 Section 890.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3610...

  18. 21 CFR 888.3050 - Spinal interlaminal fixation orthosis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (a dislocation of the spinal column), and lower back syndrome. (b) Classification. Class II. ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Spinal interlaminal fixation orthosis. 888.3050... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3050 Spinal interlaminal...

  19. 21 CFR 888.3050 - Spinal interlaminal fixation orthosis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (a dislocation of the spinal column), and lower back syndrome. (b) Classification. Class II. ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Spinal interlaminal fixation orthosis. 888.3050... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3050 Spinal interlaminal...

  20. 21 CFR 888.3050 - Spinal interlaminal fixation orthosis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (a dislocation of the spinal column), and lower back syndrome. (b) Classification. Class II. ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Spinal interlaminal fixation orthosis. 888.3050... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3050 Spinal interlaminal...

  1. 21 CFR 888.3050 - Spinal interlaminal fixation orthosis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (a dislocation of the spinal column), and lower back syndrome. (b) Classification. Class II. ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Spinal interlaminal fixation orthosis. 888.3050... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3050 Spinal interlaminal...

  2. 21 CFR 888.3050 - Spinal interlaminal fixation orthosis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (a dislocation of the spinal column), and lower back syndrome. (b) Classification. Class II. ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Spinal interlaminal fixation orthosis. 888.3050... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3050 Spinal interlaminal...

  3. The freedom to heal: nonrigid immobilization by a halo orthosis.

    PubMed

    Genin, Guy M; Rosenberg, Stuart P; Seger, Laura M; Tran, Elizabeth L; Rivet, Dennis J; Leuthardt, Eric C

    2014-11-01

    Halo orthoses present a paradox. On the one hand, the nominally rigid immobilization they provide to the head aims to remove loads on the cervical spine following injury or surgery, and the devices are retightened routinely to maintain this. On the other hand, bone growth and remodeling are well known to require mechanical stressing. How are these competing needs balanced? To understand this trade-off in an effective, commercial halo orthosis, the authors quantified the response of a commercial halo orthosis to physiological loading levels, applied symmetrically about the sagittal plane. They showed for the first time that after a few cycles of loading analogous to a few steps taken by a patient, the support presented by a standard commercial halo orthosis becomes nonlinear. When analyzed through straightforward structural modeling, these data revealed that the nonlinearity permits mild head motion while severely restricting larger motion. These observations are useful because they open the possibility that halo orthosis installation could be optimized to transfer mild spinal loads that support healing while blocking pathological loads.

  4. Evaluation of the effectiveness of the Minerva cervicothoracic orthosis.

    PubMed

    Sharpe, K P; Rao, S; Ziogas, A

    1995-07-01

    This study evaluated a lightweight Minerva cervicothoracic orthosis with an occipital flare and forehead strap. The orthosis was evaluated for its ability to immobilize the cervical spine in normal healthy volunteers. Previous studies have been performed to evaluate cervical orthoses. Exception for the halo brace, none have controlled the upper cervical spine very well. The brace tested in the present report incorporates an occipital flare and forehead strap to better control the upper cervical spine. Sixteen healthy male volunteers were evaluated in and out of the orthosis in three planes of motion. Maximal active cervical flexion, extension, and lateral bending were recorded and measured radiographically. Rotation was measured from overhead photographs. In a comparison of the present results with those of similar previous studies, improvement in control of flexion/extension of the upper cervical spine and in control of rotation was found. The occiput to C1 level, however, remained poorly controlled. This orthosis provides good control of the cervical spine below C1.

  5. 21 CFR 890.3610 - Rigid pneumatic structure orthosis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rigid pneumatic structure orthosis. 890.3610 Section 890.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... for medical purposes to provide whole body support by means of a pressurized suit to help...

  6. 21 CFR 890.3610 - Rigid pneumatic structure orthosis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rigid pneumatic structure orthosis. 890.3610 Section 890.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... for medical purposes to provide whole body support by means of a pressurized suit to help...

  7. 21 CFR 890.3610 - Rigid pneumatic structure orthosis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rigid pneumatic structure orthosis. 890.3610 Section 890.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3610...

  8. Hand orthosis as a writing aid in writer's cramp.

    PubMed

    Taş, N; Karataş, G K; Sepici, V

    2001-11-01

    Writer's cramp is a focal, task-specific dystonia of the hand and wrist. It primarily affects people who do a significant amount of writing, and causes difficulties in writing. We present five cases with writer's cramp who showed improvement in their writing ability with an applied hand orthosis.

  9. Can an Ankle-Foot Orthosis Change Hearts and Minds?

    DTIC Science & Technology

    2011-01-01

    techniques and technology resulting from cerebral palsy , stroke, and amputation research, the Intrepid Dynamic Exoskeletal Orthosis was created. To...neuromuscular dysfunction, particularly chil- dren with cerebral palsy or myelomeningocoele (14–16). In the case of plantarflexion weakness, the goal of the

  10. A Kinematic and Dynamic Analysis on Orthotic Gait of Paraplegics

    NASA Astrophysics Data System (ADS)

    Kagawa, Takahiro; Fukuda, Hiroshi; Uno, Yoji

    In this study, we address to quantify the relationship between the significant arm-clutch loading, leg restriction and motor paralysis, and analyze lumbar joint trajectories in the orthotic gait of paraplegic subjects and the ordinary and orthotic gaits of a normal subject using an inverted pendulum model. For the leg restriction, the trajectories are located in front of an equilibrium point of the inverted pendulum, and the loading is higher due to the influence of gravity moment. Comparing the trajectory of paraplegic and normal gait with orthosis in horizontal plane, the trajectory in the paraplegic subjects was rectilinear shape, while that in normal subject was curved in the direction to the equilibrium point. The loading is lower in the curved trajectory than in the straight trajectory because of the trade-off between gravity and inertia. These results suggest that the increase of the distance between the trunk movement and the equilibrium point of the inverted pendulum result in the significant loading due to the leg restriction and motor paralysis in orthotic gait of paraplegics.

  11. Stair ascent and descent biomechanical adaptations while using a custom ankle-foot orthosis.

    PubMed

    Aldridge Whitehead, Jennifer M; Russell Esposito, Elizabeth; Wilken, Jason M

    2016-09-06

    The ability to navigate stairs step-over-step is an important functional outcome following severe lower leg injury and is difficult for many patients. Ankle-foot orthoses, such as the Intrepid Dynamic Exoskeletal Orthosis (IDEO), are often prescribed to improve function. This study compared stair climbing mechanics between IDEO users and able-bodied control participants. Thirteen IDEO users who sustained severe lower leg injury and 13 controls underwent biomechanical gait analysis. Participants ascended and descended a 16-step instrumented staircase without handrail use at a controlled cadence of 80 steps/min. Peak joint angles, moments, powers, and ground reaction forces, and integrated mechanical work were calculated. Independent t-tests with Bonferroni-Holm corrections were used to compare controls to IDEO and sound limbs. Reduced ankle range of motion on the IDEO limb resulted in compensatory strategies while ascending or descending stairs. During ascent, IDEO users had greater bilateral hip power during pull-up (p<0.007) to compensate for the IDEO limb׳s reduced ankle dorsiflexion (p<0.001) and knee extensor moment (p=0.001) while it was leading, and reduced ankle plantarflexor power while it was trailing (p<0.001). During stair descent, when the IDEO limb had was trailing, it had less ankle dorsiflexion during controlled lowering (p<0.001), resulting in greater vertical ground reaction force (p=0.005) and greater ankle and knee power absorption (p<0.001). Reduced IDEO limb ankle power absorption during weight acceptance (p<0.001) resulted in a large knee extensor moment (p<0.001) on the trailing sound limb to lower the body. Despite gait deviations, IDEO users were able to climb stairs step-over-step unassisted. Published by Elsevier Ltd.

  12. Experimental Implementation of Underactuated Potential Energy Shaping on a Powered Ankle-Foot Orthosis

    PubMed Central

    Lv, Ge; Zhu, Hanqi; Elery, Toby; Li, Luwei; Gregg, Robert D.

    2016-01-01

    Traditional control methodologies of rehabilitation orthoses/exoskeletons aim at replicating normal kinematics and thus fall into the category of kinematic control. This control paradigm depends on pre-defined reference trajectories, which can be difficult to adjust between different locomotor tasks and human subjects. An alternative control category, kinetic control, enforces kinetic goals (e.g., torques or energy) instead of kinematic trajectories, which could provide a flexible learning environment for the user while freeing up therapists to make corrections. We propose that the theory of underactuated potential energy shaping, which falls into the category of kinetic control, could be used to generate virtual body-weight support for stroke gait rehabilitation. After deriving the nonlinear control law and simulating it on a human-like biped model, we implemented this controller on a powered ankle-foot orthosis that was designed specifically for testing torque control strategies. Experimental results with an able-bodied human subject demonstrate the feasibility of the control approach for both positive and negative virtual body-weight augmentation. PMID:27390625

  13. Simulation of fluid environment using a robotic orthosis on human lower extremity for therapeutic purposes.

    PubMed

    Ertop, Tayfun Efe; Yuksel, Tolga; Konukseven, Erhan Ilhan

    2016-08-01

    Rehabilitation under water is a viable physical rehabilitation option, but it has some limitations in terms of adapting to needs of each patient. In addition, its facility requirements are relatively high. Simulating the fluid environment using a robotic system would enable therapists adjust various parameters so that the therapy is tailored to the patient's unique state. Also, using a robotic system instead might be less costly and easily reachable. In this study, human lower extremity movement in fluids is modeled. This model is verified by comparing computer simulations with the results of previous experimental studies. Then, the model is used to create a control scheme which is implemented on a robotic gait trainer. Output torques are measured to check the effectiveness of the controller in simulating the fluid environment while compensating for weight and friction of the robotic system. Measurements showed that the desired joint torques were achieved and the controller was able to make the orthosis transparent to the patient. A hip extension exercise used in aquatic therapy was performed with the robotic system while varying drag coefficient, fluid density and flow velocity, and the data collected is presented.

  14. Ankle-Foot Orthosis Made by 3D Printing Technique and Automated Design Software.

    PubMed

    Cha, Yong Ho; Lee, Keun Ho; Ryu, Hong Jong; Joo, Il Won; Seo, Anna; Kim, Dong-Hyeon; Kim, Sang Jun

    2017-01-01

    We described 3D printing technique and automated design software and clinical results after the application of this AFO to a patient with a foot drop. After acquiring a 3D modelling file of a patient's lower leg with peroneal neuropathy by a 3D scanner, we loaded this file on the automated orthosis software and created the "STL" file. The designed AFO was printed using a fused filament fabrication type 3D printer, and a mechanical stress test was performed. The patient alternated between the 3D-printed and conventional AFOs for 2 months. There was no crack or damage, and the shape and stiffness of the AFO did not change after the durability test. The gait speed increased after wearing the conventional AFO (56.5 cm/sec) and 3D-printed AFO (56.5 cm/sec) compared to that without an AFO (42.2 cm/sec). The patient was more satisfied with the 3D-printed AFO than the conventional AFO in terms of the weight and ease of use. The 3D-printed AFO exhibited similar functionality as the conventional AFO and considerably satisfied the patient in terms of the weight and ease of use. We suggest the possibility of the individualized AFO with 3D printing techniques and automated design software.

  15. Ankle-Foot Orthosis Made by 3D Printing Technique and Automated Design Software

    PubMed Central

    Cha, Yong Ho; Lee, Keun Ho; Ryu, Hong Jong; Joo, Il Won; Seo, Anna; Kim, Dong-Hyeon

    2017-01-01

    We described 3D printing technique and automated design software and clinical results after the application of this AFO to a patient with a foot drop. After acquiring a 3D modelling file of a patient's lower leg with peroneal neuropathy by a 3D scanner, we loaded this file on the automated orthosis software and created the “STL” file. The designed AFO was printed using a fused filament fabrication type 3D printer, and a mechanical stress test was performed. The patient alternated between the 3D-printed and conventional AFOs for 2 months. There was no crack or damage, and the shape and stiffness of the AFO did not change after the durability test. The gait speed increased after wearing the conventional AFO (56.5 cm/sec) and 3D-printed AFO (56.5 cm/sec) compared to that without an AFO (42.2 cm/sec). The patient was more satisfied with the 3D-printed AFO than the conventional AFO in terms of the weight and ease of use. The 3D-printed AFO exhibited similar functionality as the conventional AFO and considerably satisfied the patient in terms of the weight and ease of use. We suggest the possibility of the individualized AFO with 3D printing techniques and automated design software. PMID:28827977

  16. Neurologic disorders of gait.

    PubMed

    Sudarsky, L

    2001-07-01

    Gait disorders are important because of their prevalence, particularly among the elderly, and the associated risk of falls and injury. Neural networks that organize locomotion and maintain balance are briefly reviewed. Gait disorders can be classified based on observational features or by etiology. Several common disorders are discussed in more detail. Recent progress includes use of botulinum toxin for spastic gait in cerebral palsy, neurosurgical treatment of Parkinson's disease, and newer rehabilitation approaches to gait and balance training.

  17. Effects of a dynamic orthosis in an individual with claw deformity.

    PubMed

    Sousa, Gudson G Q; de Macêdo, Marilu Pereira

    2015-01-01

    These authors describe their utilization of a dynamic orthosis to correct a strong claw deformity in a patient with a median and ulnar laceration. After 4 weeks of wearing the dynamic orthosis, these authors noted that the patient was able to actively extend all his fingers orthosis-free, with no evidence of claw.--Victoria Priganc, PhD, OTR, CHT, CLT, Practice Forum Editor. Copyright © 2015 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  18. A Powered Lower Limb Orthosis for Providing Legged Mobility in Paraplegic Individuals

    PubMed Central

    Quintero, Hugo A.; Farris, Ryan J.; Hartigan, Clare; Clesson, Ismari; Goldfarb, Michael

    2012-01-01

    This paper presents preliminary results on the development of a powered lower limb orthosis intended to provide legged mobility (with the use of a stability aid, such as forearm crutches) to paraplegic individuals. The orthosis contains electric motors at both hip and both knee joints, which in conjunction with ankle-foot orthoses, provides appropriate joint kinematics for legged locomotion. The paper describes the orthosis and the nature of the controller that enables the SCI patient to command the device, and presents data from preliminary trials that indicate the efficacy of the orthosis and controller in providing legged mobility. PMID:22707874

  19. Gait Phase Estimation Based on Noncontact Capacitive Sensing and Adaptive Oscillators.

    PubMed

    Zheng, Enhao; Manca, Silvia; Yan, Tingfang; Parri, Andrea; Vitiello, Nicola; Wang, Qining

    2017-02-23

    This paper presents a novel strategy aiming to acquire an accurate and walking-speed-adaptive estimation of the gait phase through noncontact capacitive sensing and adaptive oscillators (AOs). The capacitive sensing system is designed with two sensing cuffs that can measure the leg muscle shape changes during walking. The system can be dressed above the clothes and free human skin from contacting to electrodes. In order to track the capacitance signals, the gait phase estimator is designed based on the AOs dynamic system due to its ability of synchronizing with quasi-periodic signals. After the implementation of the whole system, we firstly evaluated the off-line estimation performance by experiments with twelve healthy subjects walking on treadmill with changing speeds. The strategy achieved an accurate and consistent gait phase estimation with only one channel of capacitance signal. The average root mean square errors in one stride were 0.19 rad (3.0% of one gait cycle) for constant walking speeds and 0.31 rad (4.9% of one gait cycle) for speed transitions even after the subjects re-wore the sensing cuffs. We then validated our strategy in a real-time gait phase estimation task with three subjects walking with changing speeds. Our study indicates that the strategy based on capacitive sensing and AOs is a promising alternative for the control of exoskeleton/orthosis.

  20. Development and validation of tools for evaluation of orthosis fabrication.

    PubMed

    Stefanovich, Andonia; Williams, Camille; McKee, Pat; Hagemann, Eric; Carnahan, Heather

    2012-01-01

    This study is the first phase of research aimed at developing new educational approaches to enhance occupational therapy students' orthosis fabrication skills. Before the effectiveness of training can be determined, a method for evaluating performance must be established. Using the Delphi method, we developed a global rating scale and checklist for evaluating technical competence when fabricating metacarpophalangeal (MCP) joint-stabilizing orthoses. To determine the reliability and validity of these tools, three evaluators used them to assess and score orthotic fabrication performance by experienced and student occupational therapists. The results suggest that these measurement tools are valid and reliable indicators of the technical skills involved in fabricating an MCP joint-stabilizing orthosis. Future studies should focus on building on these tools to evaluate communication skills, technical skills for making other types of orthoses, and effectiveness of training programs. Copyright © 2012 by the American Occupational Therapy Association, Inc.

  1. Reduction of digital plantar pressure by debridement and silicone orthosis.

    PubMed

    Slater, R A; Hershkowitz, I; Ramot, Y; Buchs, A; Rapoport, M J

    2006-12-01

    The lesser digits are frequent sites of elevated plantar pressure and ulceration in the diabetic foot. We sought to determine whether debridement of callus and the wearing of a custom molded digital orthosis could significantly reduce digital plantar pressure. Fourteen patients with distal digital callus were studied. For each patient, the toe with the highest plantar pressure was selected. A computerized pressure mat was used to record the plantar pressure before and after debridement with and without a moldable silicone digital orthosis. Mean peak plantar digital pressures before treatment were 2.80+/-0.7 kg/cm2 for the entire group. The digital orthosis alone reduced plantar pressure to a mean of 1.95+/-0.65 kg/cm2 p < 0.05. Treatment by debridement similarly reduced pressure to 1.99+/-0.76 kg/cm2 p < 0.05. The most effective reduction of pressure for all patients, as well as the most statistically significant, occurred when both treatments were given, with mean peak plantar pressure falling to 1.28+/-0.61 kg/cm2 p < 0.01. Debridement and custom molded digital orthoses alleviate distal digital plantar pressure. Since elevated plantar pressure increases the risk of neuropathic ulceration, these treatments should be considered in the prophylactic care of appropriate patients.

  2. Effects of vibratory orthosis on balance in idiopathic Parkinson's disease.

    PubMed

    Ghoseiri, Kamiar; Forogh, Bijan; Sanjari, Mohammad Ali; Bavi, Ahlam

    2009-01-01

    It was hypothesised that lumbar vibration stimulation applied by a vibratory orthosis improves balance in people with Parkinson's disease (PD). The overall stability index and the percent of elapsed time in different zones and quadrants on the platform of Biodex balance system were evaluated. General conditions of eyes-open and eyes-close, each with two situations of motors On and motors Off of vibratory orthosis were considered. Balance in PD patients improved in eyes-open condition rather than eyes-close. The balance also improved in eyes-open condition with motors On rather than that in motors Off. In eyes-close condition, balance was lesser in motors On than that in motors Off situation. The results also suggest that in PD patients, body trajectories on the platform of Biodex balance system follow a random-like chaotic behaviour. A new orthosis in rehabilitation of PD patients was introduced to enhance balance and decrease risk of fall. It promotes new ideas for rehabilitation of similar neurological diseases. The possibility of enhancing balance in PD patients in a short-term setting was evaluated. Results showed balance enhancement in PD patients in eyes-open condition. However, in eyes-close condition, we are not sure of its effectiveness.

  3. Determinants of gait performance following spinal cord injury.

    PubMed

    Waters, R L; Yakura, J S; Adkins, R; Barnes, G

    1989-11-01

    Measurement of lower extremity muscle strength and the energy expenditure during walking was taken in 36 spinal cord injury patients to assess functional mobility. Patients were categorized according to the type of orthotic prescription (knee-ankle-foot orthosis [KAFO] or ankle-foot orthosis [AFO]) or upper extremity assistive device (cane, crutches, or walker) used during gait. The rates of O2 consumption per minute, O2 cost per meter, heart rate, respiratory quotient, velocity, cadence, and peak axial load exerted by the arms on upper extremity assistive devices were measured. The Ambulatory Motor Index (AMI), derived from the manual muscle grades of both lower limbs, was used as the indicator of the degree of paralysis. The AMI was strongly correlated with the percentage increase in the rate of O2 consumption above normal (p less than .0001), O2 cost per meter (p less than .0001), peak axial load (p less than .0001), velocity (p less than .0001), and cadence (p less than .0001). Differences in these parameters among patient groups categorized according to the type of orthotic prescription (no KAFO, one KAFO, two KAFOs) or upper extremity assistive device (no device, cane or one crutch, two crutches, or walker) were attributable to differences in the AMI. The AMI, therefore, could be used as a reliable clinical indicator of functional mobility after spinal cord injury.

  4. How Does Ankle-foot Orthosis Stiffness Affect Gait in Patients With Lower Limb Salvage?

    DTIC Science & Technology

    2014-05-10

    noninjured control subjects? Methods Thirteen patients with lower limb salvage (ankle arthrodesis, neuropathy , foot/ankle reconstruction, etc) after major...characteristics Group Age (years) Height Mass Months of IDEO use Diagnosis IDEO 1 28 1.92 96.4 3.9 R LE neuropathy 2 21 1.79 95.7 11.3 R paresis 3 30...11.0 L LE neuropathy , crushed tibia/fibula 7 36 1.78 75.5 4.4 L LE talar fracture, multiple fractures 8 22 1.64 80.3 9.0 R LE tissue loss/trauma 9 27

  5. Comparative effect of orthosis design on functional performance.

    PubMed

    Patzkowski, Jeanne C; Blanck, Ryan V; Owens, Johnny G; Wilken, Jason M; Kirk, Kevin L; Wenke, Joseph C; Hsu, Joseph R

    2012-03-21

    High-energy extremity trauma is common in combat. Orthotic options for patients whose lower extremities have been salvaged are limited. A custom energy-storing ankle-foot orthosis, the Intrepid Dynamic Exoskeletal Orthosis (IDEO), was created and used with high-intensity rehabilitation as part of the Return to Run clinical pathway. We hypothesized that the IDEO would improve functional performance compared with a non-custom carbon fiber orthosis (BlueRocker), a posterior leaf spring orthosis, and no brace. Eighteen subjects with unilateral dorsiflexion and/or plantar flexion weakness were evaluated with six functional tests while they were wearing the IDEO, BlueRocker, posterior leaf spring, or no brace. The brace order was randomized, and five trials were completed for each of the functional measures, which included a four-square step test, a sit-to-stand five times test, tests of self-selected walking velocity over level and rocky terrain, and a timed stair ascent. They also completed one trial of a forty-yard (37-m) dash, filled out a satisfaction questionnaire, and indicated whether they had ever considered an amputation and, if so, whether they still intended to proceed with it. Performance was significantly better with the IDEO with respect to all functional measures compared with all other bracing conditions (p < 0.004), with the exception of the sit-to-stand five times test, in which there was a significant improvement only as compared with the BlueRocker (p = 0.014). The forty-yard dash improved by approximately 35% over the values for the posterior leaf spring and no-brace conditions, and by 28% over the BlueRocker. The BlueRocker demonstrated a significant improvement in the forty-yard dash compared with no brace (p = 0.033), and a significant improvement in self-selected walking velocity on level terrain compared with no brace and the posterior leaf spring orthosis (p < 0.028). However, no significant difference was found among the posterior leaf spring

  6. Tolerance and effectiveness of a new dynamic hand-wrist orthosis in chronic stroke patients.

    PubMed

    Andringa, Aukje S; Van de Port, Ingrid G L; Meijer, Jan-Willem G

    2013-01-01

    To evaluate tolerance of a new dynamic hand-wrist orthosis and effectiveness on the prevention of progressive wrist contracture and spasticity after stroke. Chronic stroke patients (N = 6) with upper limb spasticity, who had not been able to endure a static orthosis, were provided with a custom-made dynamic orthosis. Tolerance of the orthosis was evaluated by the daily wearing time, and self-reported pain and spasticity. Effectiveness was measured by contracture of wrist and finger flexor muscles, upper limb spasticity and use of spasticity treatment. Outcome measures were collected at time of fitting of the dynamic orthosis (baseline) and after three and six months. Five patients could endure the dynamic orthosis without discomfort for 6 hours daily during the 6-month period. Self-reported spasticity and pain decreased significantly (p < 0.05) compared to wearing the static orthosis. In comparison to baseline, the maximum passive wrist extension increased significantly from -29° to -12° (p < 0.05). Although, no significant change in spasticity was measured, the use of Botulinum Toxin injections decreased for two patients. The majority of the included chronic stroke patients tolerated the new dynamic orthosis for at least 6 hours daily and the use significantly reduced wrist contractures in a 6-month period.

  7. Gait analysis: clinical facts.

    PubMed

    Baker, Richard; Esquenazi, Alberto; Benedetti, Maria G; Desloovere, Kaat

    2016-08-01

    Gait analysis is a well-established tool for the quantitative assessment of gait disturbances providing functional diagnosis, assessment for treatment planning, and monitoring of disease progress. There is a large volume of literature on the research use of gait analysis, but evidence on its clinical routine use supports a favorable cost-benefit ratio in a limited number of conditions. Initially gait analysis was introduced to clinical practice to improve the management of children with cerebral palsy. However, there is good evidence to extend its use to patients with various upper motor neuron diseases, and to lower limb amputation. Thereby, the methodology for properly conducting and interpreting the exam is of paramount relevance. Appropriateness of gait analysis prescription and reliability of data obtained are required in the clinical environment. This paper provides an overview on guidelines for managing a clinical gait analysis service and on the principal clinical domains of its application: cerebral palsy, stroke, traumatic brain injury and lower limb amputation.

  8. Clinical improvement in functional hallux limitus using a cut-out orthosis.

    PubMed

    Becerro de Bengoa Vallejo, Ricardo; Sanchez Gómez, Rubén; Losa Iglesias, Marta Elena

    2016-04-01

    Functional hallux limitus (FHL) has been implicated in the development of metatarsophalangeal joint osteoarthritis. To determine whether cut-out orthosis treatment increases plantarflexion of the first metatarsal by increasing its declination angle. Cross-sectional study. A total of 46 female volunteers with an average age of 25.66 ± 5.70 years (range: 19-42 years) and FHL participated in the study. We assessed the degrees of movement of the first metatarsal and proximal phalanx bones at the first metatarsophalangeal joint without and while wearing the cut-out orthosis using the 3Space Fastrak® via sensors. The movement of the plantarflexión declination angle of the first metatarsal bone was higher using the orthosis 29.84° ± 5.98° versus without orthosis 27.69° ± 5.91° (p < 0.031°). Use of sandals may have minimized the magnitude of movement changes associated with orthosis versus non-orthosis use. The cut-out orthosis demonstrated a beneficial effect on non-fixed first metatarsophalangeal and metatarsal cuneiform joints affected by FHL, significantly increasing the declination of the metatarsal angle. Furthermore, use of the cut-out orthosis significantly reduced adduction movement of the first metatarsal bone in the transverse plane. The cut-out orthosis demonstrated a beneficial effect on non-fixed first metatarsophalangeal and metatarsal cuneiform joints affected by FHL, significantly increasing the declination of the metatarsal angle. Furthermore, use of the cut-out orthosis significantly reduced adduction movement of the first metatarsal bone in the transverse plane. © The International Society for Prosthetics and Orthotics 2014.

  9. A randomized controlled trial of the effect of 2-step orthosis treatment for a mallet finger of tendinous origin.

    PubMed

    Saito, Kazuo; Kihara, Hitoshi

    A randomized clinical trial, with patients treated either by new 2-step orthosis or by the figure-eight-type orthosis with the distal interphalangeal (DIP) joint extended. To report on our new orthosis and to evaluate the treatment efficacy of using a 2-step orthosis for the treatment of a mallet finger of tendinous origin compared with a conventional orthosis. Forty-four patients were randomized into the 2-step or conventional orthosis groups. Primary outcomes were active DIP joint flexion and extensor lag, pain, and the Abouna-Brown criteria. The 2-step orthosis was associated with a smaller active DIP extensor lag, compared with the conventional orthosis (-7.5 ± 4.5° vs -16.4 ± 6.9°, P = .001), combined with a significantly higher Abouna-Brown criteria (χ(2) = 14.57, P = .01). No other between-group differences were identified. The therapeutic effectiveness of the 2-step orthosis, over a conventional orthosis, was supported by a large effect size of the treatment in improving residual active extensor lag at the DIP and overall Abouna-Brown criteria. Our study thus suggested that the initial immobilization involved in new 2-step orthosis and is thus a good immobilization technique. Ib. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  10. Effect of cadence regulation on muscle activation patterns during robot assisted gait: a dynamic simulation study.

    PubMed

    Hussain, Shahid; Xie, Sheng Q; Jamwal, Prashant K

    2013-03-01

    Cadence or stride frequency is an important parameter being controlled in gait training of neurologically impaired subjects. The aim of this study was to examine the effects of cadence variation on muscle activation patterns during robot assisted unimpaired gait using dynamic simulations. A twodimensional (2-D) musculoskeletal model of human gait was developed considering eight major muscle groups along with existing ground contact force (GCF) model. A 2-D model of a robotic orthosis was also developed which provides actuation to the hip, knee and ankle joints in the sagittal plane to guide subjects limbs on reference trajectories. A custom inverse dynamics algorithm was used along with a quadratic minimization algorithm to obtain a feasible set of muscle activation patterns. Predicted patterns of muscle activations during slow, natural and fast cadence were compared and the mean muscle activations were found to be increasing with an increase in cadence. The proposed dynamic simulation provide important insight into the muscle activation variations with change in cadence during robot assisted gait and provide the basis for investigating the influence of cadence regulation on neuromuscular parameters of interest during robot assisted gait.

  11. Effect of body weight support variation on muscle activities during robot assisted gait: a dynamic simulation study.

    PubMed

    Hussain, Shahid; Jamwal, Prashant K; Ghayesh, Mergen H

    2017-05-01

    While body weight support (BWS) intonation is vital during conventional gait training of neurologically challenged subjects, it is important to evaluate its effect during robot assisted gait training. In the present research we have studied the effect of BWS intonation on muscle activities during robotic gait training using dynamic simulations. Two dimensional (2-D) musculoskeletal model of human gait was developed conjointly with another 2-D model of a robotic orthosis capable of actuating hip, knee and ankle joints simultaneously. The musculoskeletal model consists of eight major muscle groups namely; soleus (SOL), gastrocnemius (GAS), tibialis anterior (TA), hamstrings (HAM), vasti (VAS), gluteus maximus (GLU), uniarticular hip flexors (iliopsoas, IP), and Rectus Femoris (RF). BWS was provided at levels of 0, 20, 40 and 60% during the simulations. In order to obtain a feasible set of muscle activities during subsequent gait cycles, an inverse dynamics algorithm along with a quadratic minimization algorithm was implemented. The dynamic parameters of the robot assisted human gait such as joint angle trajectories, ground contact force (GCF), human limb joint torques and robot induced torques at different levels of BWS were derived. The patterns of muscle activities at variable BWS were derived and analysed. For most part of the gait cycle (GC) the muscle activation patterns are quite similar for all levels of BWS as is apparent from the mean of muscle activities for the complete GC. Effect of BWS variation during robot assisted gait on muscle activities was studied by developing dynamic simulation. It is expected that the proposed dynamic simulation approach will provide important inferences and information about the muscle function variations consequent upon a change in BWS during robot assisted gait. This information shall be quite important while investigating the influence of BWS intonation on neuromuscular parameters of interest during robotic gait training.

  12. Creating a custom fabricated neoprene orthosis for optimal thumb positioning.

    PubMed

    Trujillo, Leonard G; Amini, Debbie

    2013-01-01

    Neoprene orthoses are used extensively in treating conditions of the hand when flexibility and support are sought. Devices such as these may be prefabricated from Neoprene alone or may include a thermoplastic or metal stay. Neoprene devices can also be custom fabricated by a practitioner in a time effective manner and at low cost. The custom fabricated orthosis described in this article is designed to support the thumb in a position of palmar abduction and opposition while maintaining CMC extension and an adequately open web space to prevent soft tissue contracture.

  13. Simulation of human walking with powered orthosis for designing practical assistive device.

    PubMed

    Uchiyama, Yoshiho; Nagai, Chikara; Obinata, Goro

    2012-01-01

    To design a powered assistive orthosis for human walking, we have simulated walking motion with an orthosis. The model dynamics of the coupled human-orthosis is represented by a 10-rigid-link system. In this model there exist rotational joints at lumbar, both thighs and both legs for orthosis, and each joints are controlled by a couple of central pattern generators (CPG) which imitates neuronal system in the spinal cord of mammals. The CPG controller modeled by 18 oscillators which have the sensory feedbacks and generates the joint torques to move the skeletal model of the coupled human-orthosis. This means that we use five actuators for controlling orthosis in the both of sagittal and frontal plane. The parameters of the CPG and the connecting gains are optimized by using a genetic algorithm. We have achieved the successful simulation of stable walking against disturbances with this model. The simulation results indicate the possibility of a practical assistive orthosis with five active joints for stable walking.

  14. Animal Gaits and Symmetry

    NASA Astrophysics Data System (ADS)

    Golubitsky, Martin

    2012-04-01

    Many gaits of four-legged animals are described by symmetry. For example, when a horse paces it moves both left legs in unison and then both right legs and so on. The motion is described by two symmetries: Interchange front and back legs, and swap left and right legs with a half-period phase shift. Biologists postulate the existence of a central pattern generator (CPG) in the neuronal system that sends periodic signals to the legs. CPGs can be thought of as electrical circuits that produce periodic signals and can be modeled by systems with symmetry. In this lecture we discuss animal gaits; use gait symmetries to construct a simplest CPG architecture that naturally produces quadrupedal gait rhythms; and make several testable predictions about gaits.

  15. [Antibiotics and gait disorders].

    PubMed

    Gomez-Porro, P; Vinagre-Aragon, A; Zabala-Goiburu, J A

    2016-12-01

    The neurological toxicity of many antibiotics has been reported in a number of articles and clinical notes. In this review antibiotics are classified according to the physiopathogenic mechanism that can give rise to a gait disorder, taking both clinical and experimental data into account. An exhaustive search was conducted in Google Scholar and PubMed with the aim of finding reviews, articles and clinical cases dealing with gait disorders secondary to different antibiotics. The different antibiotics were separated according to the physiopathogenic mechanism that could cause them to trigger a gait disorder. They were classified into antibiotics capable of producing cerebellar ataxia, vestibular ataxia, sensitive ataxia or an extrapyramidal gait disorder. The main aim was to group all the drugs that can give rise to a gait disorder, in order to facilitate the clinical suspicion and, consequently, the management of patients.

  16. Recognition using gait.

    SciTech Connect

    Koch, Mark William

    2007-09-01

    Gait or an individual's manner of walking, is one approach for recognizing people at a distance. Studies in psychophysics and medicine indicate that humans can recognize people by their gait and have found twenty-four different components to gait that taken together make it a unique signature. Besides not requiring close sensor contact, gait also does not necessarily require a cooperative subject. Using video data of people walking in different scenarios and environmental conditions we develop and test an algorithm that uses shape and motion to identify people from their gait. The algorithm uses dynamic time warping to match stored templates against an unknown sequence of silhouettes extracted from a person walking. While results under similar constraints and conditions are very good, the algorithm quickly degrades with varying conditions such as surface and clothing.

  17. Comparison of Extension Orthosis Versus Percutaneous Pinning of the Distal Interphalangeal Joint for Closed Mallet Injuries.

    PubMed

    Renfree, Kevin J; Odgers, Ryan A; Ivy, Cynthia C

    2016-05-01

    We compared a static extension orthosis with percutaneous pinning of the distal interphalangeal joint (DIPJ) for treatment of closed mallet injuries. After receiving counsel about treatment options, 44 patients (25 women and 19 men; mean age, 57 years) freely chose orthosis and 18 patients (5 women and 13 men; mean age, 51 years) chose pinning. Both the extension orthosis and the pin remained in place for 6 weeks; the pin then was removed, and the care in both groups was transitioned to nighttime orthosis use for an additional 6 weeks. The patients in the pin group were allowed to immediately resume unrestricted activity postoperatively. The mean follow-up was 32 months in the orthosis group and 19 months in the pin group. Final residual extensor lag was better in the pin group (5 vs 10 degrees, P = 0.048). Improvement between the groups was in favor of percutaneous pinning (36 vs 17 degrees, P = 0.001). No correlation was seen between time to treatment (≤14 vs >14 days from injury) and final extensor lag in either group (P = 0.85). The final mean DIPJ flexion was 53 degrees for orthosis and 46 degrees for pinning. Among the patients, 93% of the orthosis group and 100% of the pin group said that they would choose the same treatment again. Both groups had a mean of 5 hand therapy visits during treatment. Two complications occurred in the orthosis group (5%) and 3 (17%) occurred in the pin group. Extension orthotics and pinning are both well-tolerated, effective treatments of mallet injury. The techniques produce satisfactory correction of extensor lag and have high patient satisfaction. Pinning allows better correction of DIPJ extensor lag and results in a smaller degree of final extensor lag. Pinning is more expensive and may result in more DIPJ stiffness (ie, loss of active flexion), but it may be justified in certain patients (eg, medical professionals, food service workers) who would have difficulty working with an orthosis.

  18. Adaptations during the stance phase of gait for simulated flexion contractures at the knee.

    PubMed

    Cerny, K; Perry, J; Walker, J M

    1994-06-01

    Adaptations in the stance phase of gait to knee flexion contractures simulated by a knee-ankle-foot orthosis were studied in 20 healthy women (mean age: 25 +/- 3.6 years). Stride characteristics, joint postures, floor reactions, and indwelling electromyographic activity of the lower gluteus maximus, vastus lateralis, long head of the biceps femoris, and soleus muscles were measured during walking with the orthosis, with and without contracture simulation. Simulated knee flexion contracture resulted in decreased stride length and velocity and increased forefoot weight bearing and flexion posture in stance. Increases were also seen in magnitude and/or duration of flexion floor reaction torques and gluteus maximus, vastus lateralis, and soleus muscle activity. The addition of a restriction of plantar flexion resulted in a further decrease in velocity and stride length and a small increase in hip extension posture. These results show that knee flexion contractures, simulated in healthy subjects, cause a decrease in gait function with a simultaneous increase in muscular demand.

  19. SCRIPT passive orthosis: design and technical evaluation of the wrist and hand orthosis for rehabilitation training at home.

    PubMed

    Ates, Serdar; Lobo-Prat, Joan; Lammertse, Piet; van der Kooij, Herman; Stienen, Arno H A

    2013-06-01

    In this paper, a new hand and wrist exoskeleton design, the SCRIPT Passive Orthosis (SPO), for the rehabilitation after stroke is presented. The SPO is a wrist, hand, and finger orthosis that assists individuals after stroke that suffer from impairments caused by spasticity and abnormal synergies. These impairments are characterized in the wrist and hand by excessive involuntary flexion torques that make the hand unable to be used for many activities in daily life. The SPO can passively offset these undesired torques, but it cannot actively generate or control movements. The user needs to use voluntary muscle activation to perform movements and thus needs to have some residual muscle control to successfully use the SPO. The SPO offsets the excessive internal flexion by applying external extension torques to the joints of the wrist and fingers. The SPO physically interacts with the users using the forearm shell, the hand plate and the digit caps from the Saebo Flex, but is otherwise a completely novel design. It applies the external extension torques via passive leaf springs and elastic tension cords. The amount of this support can be adjusted to provide more or less offset force to wrist, finger, or thumb extension, manually. The SPO is equipped with sensors that can give a rough estimate of the joint rotations and applied torques, sufficient to make the orthosis interact with our interactive gaming environment. Integrated inertial and gyroscopic sensors provide limited information on the user's forearm posture. The first home-based patient experiences have already let to several issues being resolved, but have also made it clear that many improvement are still to be made.

  20. Restoration of ankle movements with the ActiGait implantable drop foot stimulator: a safe and reliable treatment option for permanent central leg palsy.

    PubMed

    Martin, Klaus Daniel; Polanski, Witold Henryk; Schulz, Anne-Kathrin; Jöbges, Michael; Hoff, Hansjoerg; Schackert, Gabriele; Pinzer, Thomas; Sobottka, Stephan B

    2016-01-01

    OBJECT The ActiGait drop foot stimulator is a promising technique for restoration of lost ankle function by an implantable hybrid stimulation system. It allows ankle dorsiflexion by active peroneal nerve stimulation during the swing phase of gait. In this paper the authors report the outcome of the first prospective study on a large number of patients with stroke-related drop foot. METHODS Twenty-seven patients who experienced a stroke and with persisting spastic leg paresis received an implantable ActiGait drop foot stimulator for restoration of ankle movement after successful surface test stimulation. After 3 to 5 weeks, the stimulator was activated, and gait speed, gait endurance, and activation time of the system were evaluated and compared with preoperative gait tests. In addition, patient satisfaction was assessed using a questionnaire. RESULTS Postoperative gait speed significantly improved from 33.9 seconds per 20 meters to 17.9 seconds per 20 meters (p < 0.0001), gait endurance from 196 meters in 6 minutes to 401 meters in 6 minutes (p < 0.0001), and activation time from 20.5 seconds to 10.6 seconds on average (p < 0.0001). In 2 patients with nerve injury, surgical repositioning of the electrode cuff became necessary. One patient showed a delayed wound healing, and in another patient the system had to be removed because of a wound infection. Marked improvement in mobility, social participation, and quality of life was confirmed by 89% to 96% of patients. CONCLUSIONS The ActiGait implantable drop foot stimulator improves gait speed, endurance, and quality of life in patients with stroke-related drop foot. Regarding gait speed, the ActiGait system appears to be advantageous compared with foot orthosis or surface stimulation devices. Randomized trials with more patients and longer observation periods are needed to prove the long-term benefit of this device.

  1. Efficacy of stepwise application of orthosis and kinesiology tape for treating thumb metacarpophalangeal joint hyperextension injury.

    PubMed

    Lee, Sun-Min; Lee, Jung-Hoon

    2015-08-01

    [Purpose] The purpose of this study was to investigate on the effects of the stepwise application of orthosis and kinesiology tape on a patient with thumb metacarpophalangeal joint hyperextension injury. [Subject] The patient was a 43-year-old man with severe thumb MCP pain and extremely limited thumb movement. [Methods] Stepwise application of orthosis and kinesiology taping were performed for 3 weeks and 4 weeks, respectively. [Results] After stepwise treatment, the patient was able to power grip, precision pinch, turn a key, and hold a pen without pain. [Conclusion] Stepwise application of thumb orthosis and kinesiology tape is a safe and effective treatment for thumb MCP joint hyperextension injury.

  2. Efficacy of stepwise application of orthosis and kinesiology tape for treating thumb metacarpophalangeal joint hyperextension injury

    PubMed Central

    Lee, Sun-Min; Lee, Jung-Hoon

    2015-01-01

    [Purpose] The purpose of this study was to investigate on the effects of the stepwise application of orthosis and kinesiology tape on a patient with thumb metacarpophalangeal joint hyperextension injury. [Subject] The patient was a 43-year-old man with severe thumb MCP pain and extremely limited thumb movement. [Methods] Stepwise application of orthosis and kinesiology taping were performed for 3 weeks and 4 weeks, respectively. [Results] After stepwise treatment, the patient was able to power grip, precision pinch, turn a key, and hold a pen without pain. [Conclusion] Stepwise application of thumb orthosis and kinesiology tape is a safe and effective treatment for thumb MCP joint hyperextension injury. PMID:26355325

  3. A wearable robotic orthosis with a spring-assist actuator.

    PubMed

    Seungmin Jung; Chankyu Kim; Jisu Park; Dongyoub Yu; Jaehwan Park; Junho Choi

    2016-08-01

    This paper introduces a wearable robotic orthosis with spring-assist actuators, which is designed to assist people who have difficulty in walking. The spring-assist actuator consists of an electrical motor and a spring, which are attached to a rotational axis in parallel to each other. The spring-assist actuator is developed based on the analysis on the stiffness of the knee and hip joints during walking. "COWALK-Mobile," which is a wearable robotic orthosis, is developed using the spring-assist actuators to reduce the required motor torque during walking. The COWALK-Mobile has active hip and knee joints and passive ankle joints to provide assistive torque to the wearer. The required joint torque is generated by the spring as well as the electrical motor, which results in a decrease of maximum required torque for the motor. In order to evaluate the performance of the spring-assist actuator, experiments are carried out. The experiments show that the spring-assist actuators reduced the required motor torque during walking.

  4. Can an ankle-foot orthosis change hearts and minds?

    PubMed

    Patzkowski, Jeanne C; Blanck, Ryan V; Owens, Johnny G; Wilken, Jason M; Blair, James A; Hsu, Joseph R

    2011-01-01

    The current military conflicts of Operation Enduring Freedom and Operation Iraqi Freedom have been characterized by high-energy explosive wounding patterns, with the majority affecting the extremities. While many injuries have resulted in amputation, surgical advances have allowed the orthopaedic surgeon to pursue limb salvage in the face of injuries once considered unsalvageable. The military limb salvage patient is frequently highly active and motivated and expresses significant frustration with the slow nature of limb salvage rehabilitation and continued functional deficits. Inspired by these patients, efforts at this institution began to provide them with a more dynamic orthosis. Utilizing techniques and technology resulting from cerebral palsy, stroke, and amputation research, the Intrepid Dynamic Exoskeletal Orthosis was created. To date, this device has significantly improved the functional capabilities of the limb salvage wounded warrior population when combined with a high-intensity rehabilitation program. Clinical and biomechanical research is currently underway at this institution in order to fully characterize the device, its effect on patients, and what can be done to modify future generations of the device to best serve the combat-wounded limb salvage population.

  5. Stability analysis of paraplegic standing while wearing an orthosis.

    PubMed

    Kagawa, Takahiro; Fukuda, Hiroshi; Hiroshi, Fukuda; Uno, Yoji; Yoji, Uno

    2006-10-01

    Paraplegics can maintain a standing posture, called the "C-posture", while wearing an orthosis. The significant feature of the C-posture is that the body's center of mass is located behind the hip joint. In this study, we investigate the C-posture mechanism and assess the relationship between posture and stability, the aim being to restore standing function. We first measured the standing postures of paraplegic subjects wearing an orthosis. The subjects maintained the standing posture for 30 s. Next, assuming the C-posture to be an equilibrium attractor in the musculoskeletal system, we used a dynamic model of the musculoskeletal system to analyze the relationship between posture and stability, and also to assess the influence of ankle stiffness. We calculated the standing posture on the basis of a return map. The calculated standing postures show some features of the C-posture. The stability analysis revealed that, despite a limitation in the range of stable postures, the C-posture is more stable than the postures of normal people. The results suggest that although the C-posture is an appropriate posture for paraplegic standing, sufficient ankle stiffness and an appropriate alignment of ankle angle are necessary and preventing hip flexion movements is desirable.

  6. Embracing additive manufacture: implications for foot and ankle orthosis design

    PubMed Central

    2012-01-01

    Background The design of foot and ankle orthoses is currently limited by the methods used to fabricate the devices, particularly in terms of geometric freedom and potential to include innovative new features. Additive manufacturing (AM) technologies, where objects are constructed via a series of sub-millimetre layers of a substrate material, may present the opportunity to overcome these limitations and allow novel devices to be produced that are highly personalised for the individual, both in terms of fit and functionality. Two novel devices, a foot orthosis (FO) designed to include adjustable elements to relieve pressure at the metatarsal heads, and an ankle foot orthosis (AFO) designed to have adjustable stiffness levels in the sagittal plane, were developed and fabricated using AM. The devices were then tested on a healthy participant to determine if the intended biomechanical modes of action were achieved. Results The adjustable, pressure relieving FO was found to be able to significantly reduce pressure under the targeted metatarsal heads. The AFO was shown to have distinct effects on ankle kinematics which could be varied by adjusting the stiffness level of the device. Conclusions The results presented here demonstrate the potential design freedom made available by AM, and suggest that it may allow novel personalised orthotic devices to be produced which are beyond the current state of the art. PMID:22642941

  7. Differences in Tibia Morphology between the Sound and Affected Sides in Ankle Foot Orthosis using Survivors of Stroke

    PubMed Central

    Sherk, Kyle A; Sherk, Vanessa D; Anderson, Mark A; Bemben, Debra A; Bemben, Michael G

    2014-01-01

    Objective To examine differences between the affected and sound limbs in ankle-foot orthosis (AFO)-using survivors of stroke. AFOs and gait aids are commonly used to allow survivors of stroke to ambulate. Previous investigations of bone mineral density (BMD) in stroke survivors cite gait aid use, but have not controlled for their use when presenting outcomes. Design Observational study. Setting University of Oklahoma Bone Density laboratory. Participants Nine ambulatory, AFO-using survivors of stroke (ages 55-74 years, 13.5±4.4 years post-stroke, 6.5±1.4 years of AFO use). Interventions Not applicable. Main Outcome Measures Total body and hip areal BMD (aBMD) and bone mineral content (BMC) were assessed by DXA. The 4%, 38% and 66% sites of both tibiae were measured with peripheral Quantitative Computed Tomography (pQCT) for total, cortical and trabecular volumetric BMD (vBMD) and BMC. Bone geometry, bone strength index (BSI), strength strain index (SSI) and moments of inertia (Imin, Imax) were determined. Results Total hip and trochanter BMC and aBMD were 7%-19% greater on the sound side (p<0.05). Total BMC and vBMD were 2%-21% (p<0.05) on the sound limb, depending on site. Trabecular BMC and vBMD and BSI values were 19%, 21%, and 31% higher (p<0.05) on sound limb at the 4% site. Cortical BMC and vBMD (p<0.05), and cortical thickness (p<0.01) were greater on the sound side at the 38% and 66% sites. Cortical area and bone strength (SSI, Imin) were greater (p<0.05) at the 66% site. Endosteal circumferences were greater on the affected side (p<0.01). Conclusion Interlimb differences in bone characteristics following a stroke persist despite returning to ambulatory status with AFO use. PMID:23123505

  8. Effect of a hybrid ankle foot orthosis made of polypropylene and fabric in chronic hemiparetic stroke patients.

    PubMed

    Do, Kyung Hee; Song, Jun-chan; Kim, Jang Hwan; Jung, Gil Su; Seo, Sang Wan; Kim, Yeung Ki; Son, Su Min; Jang, Sung Ho

    2014-02-01

    The ankle foot orthosis (AFO) has been used for control of ankle motion in stroke patients for a long time. However, studies on the materials used in construction of AFOs have been limited. In this study, the authors attempted to investigate the effect of a hybrid AFO made with polypropylene and fabric in comparison with a conventional plastic AFO in terms of convenience and effect in patients with chronic hemiparetic stroke. Seventeen patients with chronic hemiparetic stroke who have used plastic AFOs were recruited for this study. Two types of AFOs were used: plastic AFO made with polypropylene and hybrid AFO made with polypropylene covered with canvas fabric, which were individually molded and fitted. Convenience was evaluated using a self-developed questionnaire on patients' satisfaction and weights of AFO, and effect was evaluated using gait analysis. On the satisfaction questionnaire, satisfaction was greater for the hybrid AFO, and it was lighter in weight than the plastic AFO (P < 0.05). In gait analysis, faster walking speed, larger mean and peak ankle dorsiflexion angles, and ankle dorsiflexion angles at heel strike and toe off were observed for the hybrid and plastic AFOs compared with barefoot (P < 0.05). No significant difference was observed between the two orthoses, except for ankle dorsiflexion angle at heel strike, in which the plastic AFO showed higher ankle dorsiflexion angle than did the hybrid AFO. According to the results of this study, the hybrid AFO showed a similar effect in function, except for ankle dorsiflexion angle at heel strike, and was superior with regard to convenience compared with the conventional plastic AFO in chronic hemiparetic stroke patients. Therefore, it seems that, in general, the hybrid AFO can be recommended for hemiparetic stroke patients who require an AFO.

  9. Effects of custom-made rigid foot orthosis on pes planus in children over 6 years old.

    PubMed

    Bok, Soo-Kyung; Kim, Bong-Ok; Lim, Jun-Ho; Ahn, So-Young

    2014-06-01

    To identify the effects of a custom-made rigid foot orthosis (RFO) in children over six years old with pes planus. The medical records of 39 children (mean age, 10.3±4.09 years) diagnosed with pes planus, fitted with RFOs, and had who more than two consecutive radiological studies were reviewed. The resting calcaneal stance position (RCSP), anteroposterior talocalcaneal angle (APTCA), lateral talocalcaneal angle (LTTCA), the lateral talometatarsal angle (LTTMA), and calcaneal pitch (CP) of both feet were measured to evaluate foot alignment. After diagnosis, children were fitted with a pair of RFOs and recommended to walk with heel strike and reciprocal arm swing to normalize the gait pattern. A follow-up clinical evaluation with radiological measurements was performed after 12-18 months and after 24 months of RFO application. Post-hoc analysis was used to test for significant differences between the radiological indicators and RCSP. With RFOs, all radiological indicators changed in the corrective direction except LTTCA. RCSP and CP in the third measurement showed significant improvement in comparison with the second and baseline measurements. Additionally, APTCA and LTTMA revealed improvements at the third measurement versus the baseline measurements. This study revealed that radiological indicators improved significantly after 24 months of RFO application. A prospective long-term controlled study with radiographical evaluation is necessary to confirm the therapeutic effects of RFOs and to determine the optimal duration of wear in children with pes planus.

  10. Effects of Custom-Made Rigid Foot Orthosis on Pes Planus in Children Over 6 Years Old

    PubMed Central

    Bok, Soo-Kyung; Kim, Bong-Ok; Lim, Jun-Ho

    2014-01-01

    Objective To identify the effects of a custom-made rigid foot orthosis (RFO) in children over six years old with pes planus. Methods The medical records of 39 children (mean age, 10.3±4.09 years) diagnosed with pes planus, fitted with RFOs, and had who more than two consecutive radiological studies were reviewed. The resting calcaneal stance position (RCSP), anteroposterior talocalcaneal angle (APTCA), lateral talocalcaneal angle (LTTCA), the lateral talometatarsal angle (LTTMA), and calcaneal pitch (CP) of both feet were measured to evaluate foot alignment. After diagnosis, children were fitted with a pair of RFOs and recommended to walk with heel strike and reciprocal arm swing to normalize the gait pattern. A follow-up clinical evaluation with radiological measurements was performed after 12-18 months and after 24 months of RFO application. Post-hoc analysis was used to test for significant differences between the radiological indicators and RCSP. Results With RFOs, all radiological indicators changed in the corrective direction except LTTCA. RCSP and CP in the third measurement showed significant improvement in comparison with the second and baseline measurements. Additionally, APTCA and LTTMA revealed improvements at the third measurement versus the baseline measurements. Conclusion This study revealed that radiological indicators improved significantly after 24 months of RFO application. A prospective long-term controlled study with radiographical evaluation is necessary to confirm the therapeutic effects of RFOs and to determine the optimal duration of wear in children with pes planus. PMID:25024961

  11. [Mental activity hand orthosis control using the EEG: a case study].

    PubMed

    Pfurtscheller, G; Müller, G; Korisek, G

    2002-02-01

    A report is given on the realization of a steering mechanism of a hand orthosis for a patient with paraplegia. An EEG-based Brain-Computer Interface (BCI) was used here for the first time, transferring purely mental activity to a control signal. This means that the patient has the capability to open or close the hand orthosis only by imagination of a movement. At this time, after a training period of about four months, the patient is able to move the hand orthosis with a certainty of almost hundred percent. The restored grasp function was verified by a grasp function test. Results are compared to those obtained using a conventional EMG-controlled orthosis.

  12. Importance of Gait Training

    MedlinePlus

    ... that the prosthetist and therapist remain in close communication when gait train- ing is occurring since any ... of these strategies to get the best outcome. Communication and teamwork between prosthetists and physical thera- pists ...

  13. Gait or Walking Problems

    MedlinePlus

    Gait or Walking Problems the basic facts multiple sclerosis Many people with MS will experience difficulty with walking, which is also called ambulation. The term “gait” refers more specifically to the manner ...

  14. Symmetrical gait descriptions

    NASA Astrophysics Data System (ADS)

    Dunajewski, Adam; Dusza, Jacek J.; Rosado Muñoz, Alfredo

    2014-11-01

    The article presents a proposal for the description of human gait as a periodic and symmetric process. Firstly, the data for researches was obtained in the Laboratory of Group SATI in the School of Engineering of University of Valencia. Then, the periodical model - Mean Double Step (MDS) was made. Finally, on the basis of MDS, the symmetrical models - Left Mean Double Step and Right Mean Double Step (LMDS and RMDS) could be created. The method of various functional extensions was used. Symmetrical gait models can be used to calculate the coefficients of asymmetry at any time or phase of the gait. In this way it is possible to create asymmetry, function which better describes human gait dysfunction. The paper also describes an algorithm for calculating symmetric models, and shows exemplary results based on the experimental data.

  15. Pneumatically-Powered Orthosis and Electronic Control System for Stroke Patient Rehabilitation

    DTIC Science & Technology

    1993-01-01

    designed to manipulate the upper extremity of stroke patients suffering from hemiplegia . The orthosis, an aluminum structure built to be strapped onto a...the development of a system designed to manipulate the upper extremity of stroke patients suffering from hemiplegia . The orthosis, an aluminum...benefit from such therapy in varying degrees. Stroke often leaves it’s victim suffering from hemiplegia , paralysis of one half of the body. Current

  16. Gait Analysis Using Wearable Sensors

    PubMed Central

    Tao, Weijun; Liu, Tao; Zheng, Rencheng; Feng, Hutian

    2012-01-01

    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications. PMID:22438763

  17. Gait analysis using wearable sensors.

    PubMed

    Tao, Weijun; Liu, Tao; Zheng, Rencheng; Feng, Hutian

    2012-01-01

    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications.

  18. View Invariant Gait Recognition

    NASA Astrophysics Data System (ADS)

    Seely, Richard D.; Goffredo, Michela; Carter, John N.; Nixon, Mark S.

    Recognition by gait is of particular interest since it is the biometric that is available at the lowest resolution, or when other biometrics are (intentionally) obscured. Gait as a biometric has now shown increasing recognition capability. There are many approaches and these show that recognition can achieve excellent performance on current large databases. The majority of these approaches are planar 2D, largely since the early large databases featured subjects walking in a plane normal to the camera view. To extend deployment capability, we need viewpoint invariant gait biometrics. We describe approaches where viewpoint invariance is achieved by 3D approaches or in 2D. In the first group, the identification relies on parameters extracted from the 3D body deformation during walking. These methods use several video cameras and the 3D reconstruction is achieved after a camera calibration process. On the other hand, the 2D gait biometric approaches use a single camera, usually positioned perpendicular to the subject’s walking direction. Because in real surveillance scenarios a system that operates in an unconstrained environment is necessary, many of the recent gait analysis approaches are orientated toward view-invariant gait recognition.

  19. Psychogenic gait disorders.

    PubMed

    Sudarsky, Lewis

    2006-07-01

    Psychogenic disorders of posture and gait are common and are the major manifestation in 8 to 10% of patients with psychogenic movement disorders. The colorful history of these disorders is reviewed. Anxiety and depression are the commonest psychological accompaniments of functional gait disorder in contemporary practice. The particular case of the cautious gait and its flip side, "fear of falling," are considered in more detail. Common presentations for somatoform disorders and malingering are also described. It is often possible to make this diagnosis based on recognition features and gait observation. Incongruous neurologic signs are commonly found, and several features are so typical as to be nearly diagnostic. Caveats and pitfalls in diagnosis based on observational features are noted. In particular, the cautious gait is often the presenting feature of an older patient with an organic balance impairment. An approach to the patient with psychogenic gait disorder is described. Although the nature of the problem is often quickly apparent in such patients, the optimal management is a challenge. Dramatic cures still occur, and some patients respond quickly to psychological management and rehabilitation therapies, but persistence for more than 6 to 12 months is frequently associated with an unfavorable prognosis and long-term disability. The outcome studies are reviewed.

  20. Inhibition of soleus Hoffmann reflex by ankle-foot orthosis application in healthy volunteers.

    PubMed

    Larsen, Lars E; Jakobsen, Lydia A; Jensen, Anne; Lambden, Benjamin M; Sørensen, Morten R; Ellrich, Jens

    2015-12-01

    An ankle-foot orthosis is suggested to actively assist dorsiflexion of the foot by induction of a positive proprioceptive impact to ankle dorsiflexor muscles. However, an objective proof is missing. To assess the proprioceptive impact of an ankle-foot orthosis application by Hoffmann reflex recordings of the soleus muscle under static conditions. It was hypothesized that the use of an ankle-foot orthosis facilitated dorsiflexor motor function and thus a decreased the soleus Hoffmann reflex. Experimental study in healthy volunteers, pre-post test design. In all, 20 healthy volunteers were enrolled in order to assess the proprioceptive impact of orthosis application. The Hoffmann reflex was recorded before, during, and after orthosis application. Under orthosis application, the Hoffmann reflex significantly decreased as compared to before (p < 0.05) and after application (p < 0.05). Findings indicate an inhibition of plantarflexors probably induced by facilitation of ankle dorsiflexors under static conditions. At first glance, it seems that foot orthoses primarily have a stabilizing effect on ankle joints in terms of simple mechanical bandages. However, the present results suggest an additional active impact on proprioceptive control. The putative neuromodulatory effect on motor control may support the application of such ankle-foot orthoses in, for example, drop foot. Furthermore, the objective assessment of a neurophysiological mode of action of orthoses by Hoffmann reflex recordings might be an appropriate primary outcome parameter in clinical trials. © The International Society for Prosthetics and Orthotics 2014.

  1. Design optimization of a magnetorheological brake in powered knee orthosis

    NASA Astrophysics Data System (ADS)

    Ma, Hao; Liao, Wei-Hsin

    2015-04-01

    Magneto-rheological (MR) fluids have been utilized in devices like orthoses and prostheses to generate controllable braking torque. In this paper, a flat shape rotary MR brake is designed for powered knee orthosis to provide adjustable resistance. Multiple disk structure with interior inner coil is adopted in the MR brake configuration. In order to increase the maximal magnetic flux, a novel internal structure design with smooth transition surface is proposed. Based on this design, a parameterized model of the MR brake is built for geometrical optimization. Multiple factors are considered in the optimization objective: braking torque, weight, and, particularly, average power consumption. The optimization is then performed with Finite Element Analysis (FEA), and the optimal design is obtained among the Pareto-optimal set considering the trade-offs in design objectives.

  2. Climbing favours the tripod gait over alternative faster insect gaits

    NASA Astrophysics Data System (ADS)

    Ramdya, Pavan; Thandiackal, Robin; Cherney, Raphael; Asselborn, Thibault; Benton, Richard; Ijspeert, Auke Jan; Floreano, Dario

    2017-02-01

    To escape danger or catch prey, running vertebrates rely on dynamic gaits with minimal ground contact. By contrast, most insects use a tripod gait that maintains at least three legs on the ground at any given time. One prevailing hypothesis for this difference in fast locomotor strategies is that tripod locomotion allows insects to rapidly navigate three-dimensional terrain. To test this, we computationally discovered fast locomotor gaits for a model based on Drosophila melanogaster. Indeed, the tripod gait emerges to the exclusion of many other possible gaits when optimizing fast upward climbing with leg adhesion. By contrast, novel two-legged bipod gaits are fastest on flat terrain without adhesion in the model and in a hexapod robot. Intriguingly, when adhesive leg structures in real Drosophila are covered, animals exhibit atypical bipod-like leg coordination. We propose that the requirement to climb vertical terrain may drive the prevalence of the tripod gait over faster alternative gaits with minimal ground contact.

  3. Balance and gait performance of scoliotic subjects: A review of the literature.

    PubMed

    Karimi, Mohammad Taghi; Kavyani, Mahsa; Kamali, Mostafa

    2016-08-10

    Scoliosis is one of the common spinal deformities and considered as lateral curvature of the spine. Scoliosis lead to changes in the synergy between body segments, spinal anatomy, left-right trunk symmetry and cause pathological gait pattern [1,4,5-7]. Scoliosis is a structural deformity, so it can alter center of mass (COM) position and weight distribution on lower limbs. This suggests that scoliotic patients show the poorer stability rather aged match normal group. It was controversial that scoliosis influences the balance and gait performances, and also the effects of brace on these parameters. Therefore, it was aimed to evaluate the available literatures on balance and gait of scoliotic subjects. We conducted a search via PubMed, Google scholar and ISI web of knowledge to identify studies on scoliosis field and the effect of this deformity on kinetic and kinematic parameters as well as the influence of bracing on mentioned parameters. Some key words such as kinetic, kinematic, gait, stability, and walking were used in combination with scoliosis. The publication dates of the full-length articles were between 1998 and 2014. Down and Black tool was used to evaluate the quality of the articles. Our multiple Medline searches led to the find out 54 papers that 26 of which were relevant based on title and abstract. Based on their references, we retrieved 6 more articles. We ultimately included 31 articles in this literature review. The number of studies regarding the influence of brace on kinetic and kinematic parameters in scoliotic subject was small. Based on the results of various studies, there is no correlation between gait pathology and scoliotic curve direction, no difference between stability of scoliotic and normal subjects and no difference between range of motions of lower limb joints in scoliotic subjects while walking with and without orthosis. There was a not sufficient robust evidence to judge about the influence of scoliosis deformity on kinetic and

  4. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children.

    PubMed

    Brütsch, Karin; Schuler, Tabea; Koenig, Alexander; Zimmerli, Lukas; -Koeneke, Susan Mérillat; Lünenburger, Lars; Riener, Robert; Jäncke, Lutz; Meyer-Heim, Andreas

    2010-04-22

    Virtual reality (VR) offers powerful therapy options within a functional, purposeful and motivating context. Several studies have shown that patients' motivation plays a crucial role in determining therapy outcome. However, few studies have demonstrated the potential of VR in pediatric rehabilitation. Therefore, we developed a VR-based soccer scenario, which provided interactive elements to engage patients during robotic assisted treadmill training (RAGT). The aim of this study was to compare the immediate effect of different supportive conditions (VR versus non-VR conditions) on motor output in patients and healthy control children during training with the driven gait orthosis Lokomat*. A total of 18 children (ten patients with different neurological gait disorders, eight healthy controls) took part in this study. They were instructed to walk on the Lokomat in four different, randomly-presented conditions: (1) walk normally without supporting assistance, (2) with therapists' instructions to promote active participation, (3) with VR as a motivating tool to walk actively and (4) with the VR tool combined with therapists' instructions. The Lokomat gait orthosis is equipped with sensors at hip and knee joint to measure man-machine interaction forces. Additionally, subjects' acceptance of the RAGT with VR was assessed using a questionnaire. The mixed ANOVA revealed significant main effects for the factor CONDITIONS (p < 0.001) and a significant interaction CONDITIONS x GROUP (p = 0.01). Tests of between-subjects effects showed no significant main effect for the GROUP (p = 0.592). Active participation in patients and control children increased significantly when supported and motivated either by therapists' instructions or by a VR scenario compared with the baseline measurement "normal walking" (p < 0.001). The VR scenario used here induces an immediate effect on motor output to a similar degree as the effect resulting from verbal instructions by the therapists. Further

  5. Experimental evaluation of a portable powered ankle-foot orthosis.

    PubMed

    Shorter, Kenneth A; Li, Yifan; Morris, Emily A; Kogler, Géza F; Hsiao-Wecksler, Elizabeth T

    2011-01-01

    Ankle-foot orthoses (AFOs) ameliorate the impact of impairments to the lower limb neuromuscular motor system that affect gait. Emerging technologies provide a vision for fully powered, untethered AFOs. The portable powered AFO (PPAFO) provides both plantarflexor and dorsiflexor torque assistance via a bi-directional pneumatic rotary actuator. The system uses a portable pneumatic power source (bottle of compressed CO(2)) and embedded electronics to control foot motion during level walking. Experimental data were collected to demonstrate functionality from two subjects with bilateral impairments to the lower legs. These data demonstrated the PPAFO's ability to provide functional assistance during gait. The stringent design requirements of light weight, small size, high efficiency and low noise make the creation of daily wear assist devices challenging; but once such devices appear, they will present new opportunities for clinical treatment of gait abnormalities.

  6. Exercises to Improve Gait Abnormalities

    MedlinePlus

    ... Home About iChip Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner ...

  7. Voluntary-Driven Elbow Orthosis with Speed-Controlled Tremor Suppression

    PubMed Central

    Herrnstadt, Gil; Menon, Carlo

    2016-01-01

    Robotic technology is gradually becoming commonplace in the medical sector and in the service of patients. Medical conditions that have benefited from significant technological development include stroke, for which rehabilitation with robotic devices is administered, and surgery assisted by robots. Robotic devices have also been proposed for assistance of movement disorders. Pathological tremor, among the most common movement disorders, is one such example. In practice, the dissemination and availability of tremor suppression robotic systems has been limited. Devices in the marketplace tend to either be non-ambulatory or to target specific functions, such as eating and drinking. We have developed a one degree-of-freedom (DOF) elbow orthosis that could be worn by an individual with tremor. A speed-controlled, voluntary-driven suppression approach is implemented with the orthosis. Typically tremor suppression methods estimate the tremor component of the signal and produce a canceling counterpart signal. The suggested approach instead estimates the voluntary component of the motion. A controller then actuates the orthosis based on the voluntary signal, while simultaneously rejecting the tremorous motion. In this work, we tested the suppressive orthosis using a one DOF robotic system that simulates the human arm. The suggested suppression approach does not require a model of the human arm. Moreover, the human input along with the orthosis forearm gravitational forces, of non-linear nature, are considered as part of the disturbance to the suppression system. Therefore, the suppression system can be modeled linearly. Nevertheless, the orthosis forearm gravitational forces can be compensated by the suppression system. The electromechanical design of the orthosis is presented, and data from an essential tremor patient is used as the human input. Velocity tracking results demonstrate an RMS error of 0.31 rad/s, and a power spectral density shows a reduction of the tremor

  8. Surgical Therapy by Sandwich Transplantation using a Dermal Collagen-Elastin Matrix and Full Thickness Split Grafts and Gait Rehabilitation with Individualized Orthesis

    PubMed Central

    Wollina, Uwe; Heinig, Birgit

    2012-01-01

    Painful callosities of the feet (PCOF) are a rare complaint in children with severe impairment of mobility and quality of life. There is no medical treatment available. We investigated the usefulness of a recently developed combined transplant technique-the sandwich transplantation with dermal collagen-elastin template in this rare condition. A 14-year-old boy suffered from PCOF for several years without any improvement by topical therapy, dermabrasion, and oral retinoids. He was unable to walk normally and suffered from severe pain. We performed a complete deep excision of the hyperkeratotic plantar tissue in general anaesthesia in combination with sandwich transplantation in the same setting. Dry sheets of collagen-elastin matrix (1 mm thickness) were placed on the soft tissue defects and covered by full-thickness mesh graft transplants from the upper leg. An individualized orthosis was produced for gait rehabilitation. Two weeks after surgery the gait-related pain was reduced remarkably. Using the orthosis, the boy was able to walk pain-free even on staircase. Surgery of PCOF with sandwich transplantation and gait rehabilitation appears to be a promising strategy for this rare condition. PMID:23378711

  9. Scoliosis curve analysis with Milwaukee orthosis based on Open SIMM modeling.

    PubMed

    Karimi, Mohammad; Kavyani, Mahsa

    2015-01-01

    Scoliosis is a three-dimensional spinal deformity characterized by lateral curvature and rotational deformity of the spine. Various methods have been used to investigate the performance of the subjects during walking with an orthosis, but nobody study the biomechanics of orthotic use by understanding the length of the muscles and the force produced by them. Therefore, the aim of this research is to test the effect of the orthosis on the muscular force, tendon length during walking with and without orthosis. A 12-year-old scoliosis subject was recruited in this study. The forces produced by trunk musculature, joint reaction force, length of trunk musculature were some parameters selected in this study. Open SIMM and Visual 3D software were used to model the subject. The results of this research showed that the length of erector spine muscles increased follow the use of orthosis. Moreover, the force produced by trunk muscles differed during walking with and without orthosis and also between right and left sides. It seems that Open SIMM software can be used to predict the length of muscles, active-passive forces produced by muscles in scoliotic subjects. Therefore, it is recommended this research be done on more number of subjects.

  10. Performance assessment of a brain-computer interface driven hand orthosis.

    PubMed

    King, Christine E; Dave, Kunal R; Wang, Po T; Mizuta, Masato; Reinkensmeyer, David J; Do, An H; Moromugi, Shunji; Nenadic, Zoran

    2014-10-01

    Stroke survivors are typically affected by hand motor impairment. Despite intensive rehabilitation and spontaneous recovery, improvements typically plateau a year after a stroke. Therefore, novel approaches capable of restoring or augmenting lost motor behaviors are needed. Brain-computer interfaces (BCIs) may offer one such approach by using neurophysiological activity underlying hand movements to control an upper extremity orthosis. To test the performance of such a system, we developed an electroencephalogram-based BCI controlled electrically actuated hand orthosis. Six able-bodied participants voluntarily grasped/relaxed one hand to elicit BCI-mediated closing/opening of the orthosis mounted on the opposite hand. Following a short training/calibration procedure, participants demonstrated real-time, online control of the orthosis by following computer cues. Their performances resulted in an average of 1.15 (standard deviation: 0.85) false alarms and 0.22 (0.36) omissions per minute. Analysis of signals from electrogoniometers mounted on both hands revealed an average correlation between voluntary and BCI-mediated movements of 0.58 (0.13), with all but one online performance being statistically significant. This suggests that a BCI driven hand orthosis is feasible, and therefore should be tested in stroke individuals with hand weakness. If proven viable, this technology may provide a novel approach to the neuro-rehabilitation of hand function after stroke.

  11. The Effectiveness of a Newly Designed Orthosis on Knee Contact Forces in Subjects with Knee Osteoarthritis.

    PubMed

    Karimi, Mohammad Taghi; Saljoghian, Parastoo; Fatoye, Francis

    2015-01-01

    This study was aimed to assess the effectiveness of a newly designed orthosis on knee contact forces in subjects with knee osteoarthritis (OA). Five patients with OA participated in the study. All had knee OA on the medial side according to the American College of Rheumatology criteria, medial knee pain and radiographic osteophyte on the medial side of knee joint. The knee joint contact forces were determined by the use of Open Simm software under two conditions, namely, walking with and without the orthosis. There was no significant difference between the mean values of walking speed, stride length and cadence during walking with and without the orthosis. The mean and standard deviation (SD) values of the first and second peaks of the knee joint contact force in a vertical direction were 2.83±0.26 and 3.17±1.16 N/BW, respectively, compared to 2.54±0.22 and 2.54±0.958 N/BW in walking with and without the orthosis (p <0.05). The results of this study confirmed that the new design of orthosis decreases the joint contact forces, due to reduction in muscle performance needed to stabilize the knee joint.

  12. Active lower limb orthosis with one degree of freedom for people with paraplegia.

    PubMed

    Gloger, Michal; Obinata, Goro; Genda, Eiichi; Babjak, Jan; Pei, Yanling

    2017-07-01

    The main challenges of designing devices for paraplegic walking can be summarized into three groups, stability and comfort, high efficiency or low energy consumption, dimensions and weight. A new economical device for people with paraplegia which tackles all problems of the three groups is introduced in this paper. The main idea of this device is based on HALO mechanism. HALO is compact passive medial hip joint orthosis with contralateral hip and ankle linkage, which keeps the feet always parallel to the ground and assists swinging the leg. The medial hip joint is equipped with one actuator in the new design and the new orthosis is called @halo. Due to this update, we can achieve more stable and smoother walking patterns with decreased energy consumption of the users, yet maintain its compact and lightweight features. It is proven by the results from preliminary experiments with able-bodied subjects during which the same device with and without actuator was evaluated. Waddling and excessive vertical elevation of the center of gravity were decreased by 40% with significantly smaller standard deviations in case of the active orthosis. There was 52% less energy spent by the user wearing @halo which was calculated from the vertical excursion difference. There was measured 38.5% bigger impulse in crutches while using passive orthosis. The new @halo device is the first active orthosis for lower limbs with just one actuated degree of freedom for users with paraplegia.

  13. Safety and walking ability of KAFO users with the C-Brace® Orthotronic Mobility System, a new microprocessor stance and swing control orthosis

    PubMed Central

    Pröbsting, Eva; Kannenberg, Andreas; Zacharias, Britta

    2016-01-01

    Background: There are clear indications for benefits of stance control orthoses compared to locked knee ankle foot orthoses. However, stance control orthoses still have limited function compared with a sound human leg. Objectives: The aim of this study was to evaluate the potential benefits of a microprocessor stance and swing control orthosis compared to stance control orthoses and locked knee ankle foot orthoses in activities of daily living. Study design: Survey of lower limb orthosis users before and after fitting of a microprocessor stance and swing control orthosis. Methods: Thirteen patients with various lower limb pareses completed a baseline survey for their current orthotic device (locked knee ankle foot orthosis or stance control orthosis) and a follow-up for the microprocessor stance and swing control orthosis with the Orthosis Evaluation Questionnaire, a new self-reported outcome measure devised by modifying the Prosthesis Evaluation Questionnaire for use in lower limb orthotics and the Activities of Daily Living Questionnaire. Results: The Orthosis Evaluation Questionnaire results demonstrated significant improvements by microprocessor stance and swing control orthosis use in the total score and the domains of ambulation (p = .001), paretic limb health (p = .04), sounds (p = .02), and well-being (p = .01). Activities of Daily Living Questionnaire results showed significant improvements with the microprocessor stance and swing control orthosis with regard to perceived safety and difficulty of activities of daily living. Conclusion: The microprocessor stance and swing control orthosis may facilitate an easier, more physiological, and safer execution of many activities of daily living compared to traditional leg orthosis technologies. Clinical relevance This study compared patient-reported outcomes of a microprocessor stance and swing control orthosis (C-Brace) to those with traditional knee ankle foot orthosis and stance control orthosis

  14. Safety and walking ability of KAFO users with the C-Brace(®) Orthotronic Mobility System, a new microprocessor stance and swing control orthosis.

    PubMed

    Pröbsting, Eva; Kannenberg, Andreas; Zacharias, Britta

    2017-02-01

    There are clear indications for benefits of stance control orthoses compared to locked knee ankle foot orthoses. However, stance control orthoses still have limited function compared with a sound human leg. The aim of this study was to evaluate the potential benefits of a microprocessor stance and swing control orthosis compared to stance control orthoses and locked knee ankle foot orthoses in activities of daily living. Survey of lower limb orthosis users before and after fitting of a microprocessor stance and swing control orthosis. Thirteen patients with various lower limb pareses completed a baseline survey for their current orthotic device (locked knee ankle foot orthosis or stance control orthosis) and a follow-up for the microprocessor stance and swing control orthosis with the Orthosis Evaluation Questionnaire, a new self-reported outcome measure devised by modifying the Prosthesis Evaluation Questionnaire for use in lower limb orthotics and the Activities of Daily Living Questionnaire. The Orthosis Evaluation Questionnaire results demonstrated significant improvements by microprocessor stance and swing control orthosis use in the total score and the domains of ambulation ( p = .001), paretic limb health ( p = .04), sounds ( p = .02), and well-being ( p = .01). Activities of Daily Living Questionnaire results showed significant improvements with the microprocessor stance and swing control orthosis with regard to perceived safety and difficulty of activities of daily living. The microprocessor stance and swing control orthosis may facilitate an easier, more physiological, and safer execution of many activities of daily living compared to traditional leg orthosis technologies. Clinical relevance This study compared patient-reported outcomes of a microprocessor stance and swing control orthosis (C-Brace) to those with traditional knee ankle foot orthosis and stance control orthosis devices. The C-Brace offers new functions including controlled

  15. Evaluation of performance and personal satisfaction of the patient with spastic hand after using a volar dorsal orthosis.

    PubMed

    Garros, Danielle dos Santos Cutrim; Gagliardi, Rubens José; Guzzo, Regina Aparecida Rossetto

    2010-06-01

    The performance and the satisfaction of the patient were quantitatively compared with the use of the volar dorsal orthosis in order to position the spastic hand. Thirty patients wearing the orthosis for eight hours daily were evaluated by the Canadian Occupational Performance Measure and the box and blocks test, for a three-month period. Five activities were selected (among daily life activities, productive activities, and leisure activities) by the patients, which were impaired by spasticity. There was an improvement related to performance after use of orthosis, with an average of 1.4 + or - 0.5 to 6.3 + or - 0.8 (p<0.01). Patient satisfaction average after wearing the orthosis was of 1.7 + or - 0.4 to 6.3 + or - 0.6 (p<0.01). In this casuistic, the use of orthosis for wrist and finger spasticity has shown an improvement in the functional performance and patient satisfaction.

  16. Design and fuzzy logic control of an active wrist orthosis.

    PubMed

    Kilic, Ergin; Dogan, Erdi

    2017-08-01

    People who perform excessive wrist movements throughout the day because of their professions have a higher risk of developing lateral and medial epicondylitis. If proper precautions are not taken against these diseases, serious consequences such as job loss and early retirement can occur. In this study, the design and control of an active wrist orthosis that is mobile, powerful and lightweight is presented as a means to avoid the occurrence and/or for the treatment of repetitive strain injuries in an effective manner. The device has an electromyography-based control strategy so that the user's intention always comes first. In fact, the device-user interaction is mainly activated by the electromyography signals measured from the forearm muscles that are responsible for the extension and flexion wrist movements. Contractions of the muscles are detected using surface electromyography sensors, and the desired quantity of the velocity value of the wrist is extracted from a fuzzy logic controller. Then, the actuator system of the device comes into play by conveying the necessary motion support to the wrist. Experimental studies show that the presented device actually reduces the demand on the muscles involved in repetitive strain injuries while performing challenging daily life activities including extension and flexion wrist motions.

  17. Fully embedded myoelectric control for a wearable robotic hand orthosis.

    PubMed

    Ryser, Franziska; Butzer, Tobias; Held, Jeremia P; Lambercy, Olivier; Gassert, Roger

    2017-07-01

    To prevent learned non-use of the affected hand in chronic stroke survivors, rehabilitative training should be continued after discharge from the hospital. Robotic hand orthoses are a promising approach for home rehabilitation. When combined with intuitive control based on electromyography, the therapy outcome can be improved. However, such systems often require extensive cabling, experience in electrode placement and connection to external computers. This paper presents the framework for a stand-alone, fully wearable and real-time myoelectric intention detection system based on the Myo armband. The hard and software for real-time gesture classification were developed and combined with a routine to train and customize the classifier, leading to a unique ease of use. The system including training of the classifier can be set up within less than one minute. Results demonstrated that: (1) the proposed algorithm can classify five gestures with an accuracy of 98%, (2) the final system can online classify three gestures with an accuracy of 94.3% and, in a preliminary test, (3) classify three gestures from data acquired from mildly to severely impaired stroke survivors with an accuracy of over 78.8%. These results highlight the potential of the presented system for electromyography-based intention detection for stroke survivors and, with the integration of the system into a robotic hand orthosis, the potential for a wearable platform for all day robot-assisted home rehabilitation.

  18. The Effect of the Cervical Orthosis on Swallowing Physiology and Cervical Spine Motion During Swallowing.

    PubMed

    Mekata, Kojiro; Takigawa, Tomoyuki; Matsubayashi, Jun; Toda, Kazukiyo; Hasegawa, Yasuhiro; Ito, Yasuo

    2016-02-01

    Cervical orthosis is used to immobilize the neck in various disorders such as trauma and post-operation. However, it is still uncertain how cervical orthosis restricts the degree of movement of the cervical spine during swallowing and how they affect swallowing physiology. The purpose of this study was to evaluate these issues using the Philadelphia(®) Collar. We conducted videofluorography of swallowing in 39 healthy subjects (23 men, 16 women; mean age of 34.3 years) with and without cervical orthosis. To compare the two conditions regarding the cervical spine motion, we determined the angular and positional changes of the occipital bone (C0) and each cervical vertebra (C1-C7) from the oral phase to the pharyngeal phase. Similarly, to compare swallowing physiology, we assessed the start and end times and the durations of soft palate elevation, rapid hyoid anterosuperior movement, epiglottis inversion, closure of the laryngeal vestibule, and pharyngoesophageal segment (PES) opening. Finally, we compared the transit times of contrast agent in the two conditions. The respective extensions of C1, C2, and C3 were 0.31°, 0.07°, and 0.05° (mean) with cervical orthosis, and the respective flexions of C1, C2, and C3 were 0.98°, 1.42°, and 0.85° (mean) without. These results suggested that cervical orthosis restricted the flexion of C1-C3. Analysis of swallowing physiology revealed that the average durations of hyoid anterosuperior elevation, epiglottic inversion, and PES opening were prolonged by 0.09, 0.19, and 0.05 s, respectively. In conclusion, the cervical orthosis restricted the movement of the cervical spine during swallowing and changed swallowing physiology.

  19. Effects of treadmill inclination on the gait of children with Down syndrome.

    PubMed

    Rodenbusch, Thayse L M; Ribeiro, Tatiana S; Simão, Camila R; Britto, Heloisa M J S; Tudella, Eloisa; Lindquist, Ana R

    2013-07-01

    The goal of this study was to analyze the effects of upward treadmill inclination on the gait of children with Down syndrome (DS). Sixteen children with a mean age 8.43 ± 2.25 years, classified at level I of the Gross Motor Function Classification System (GMFCS) and able to walk without personal assistance and/or assistive devices/orthosis were evaluated. Spatial-temporal variables were observed as well as the angular variation of hip, knee and ankle in the sagittal plane, while children walked on the treadmill carried out on 0% and 10% upward inclination. The results showed that children with DS presented changes in spatio-temporal variables (reduced cadence and increased cycle time and swing time) and in angular variables (increased hip, knee and ankle angles at initial contact; increased maximum hip flexion and maximum stance dorsiflexion; and reduced plantarflexion at pre-swing). Treadmill inclination seemed to act positively on the angular and spatio-temporal characteristics of gait in children with DS, demonstrating a possible benefit from the use of this type of surface in the gait rehabilitation of this population.

  20. Does robot-assisted gait rehabilitation improve balance in stroke patients? A systematic review.

    PubMed

    Swinnen, Eva; Beckwée, David; Meeusen, Romain; Baeyens, Jean-Pierre; Kerckhofs, Eric

    2014-01-01

    The aim of this systematic review was to summarize the improvements in balance after robot-assisted gait training (RAGT) in stroke patients. Two databases were searched: PubMed and Web of Knowledge. The most important key words are "stroke," "RAGT," "balance," "Lokomat," and "gait trainer." Studies were included if stroke patients were involved in RAGT protocols, and balance was determined as an outcome measurement. The articles were checked for methodological quality by 2 reviewers (Cohen's κ = 0.72). Nine studies were included (7 true experimental and 2 pre-experimental studies; methodological quality score, 56%-81%). In total, 229 subacute or chronic stroke patients (70.5% male) were involved in RAGT (3 to 5 times per week, 3 to 10 weeks, 12 to 25 sessions). In 5 studies, the gait trainer was used; in 2, the Lokomat was used; in 1 study, a single-joint wearable knee orthosis was used; and in 1 study, the AutoAmbulator was used. Eight studies compared RAGT with other gait rehabilitation methods. Significant improvements (no to large effect sizes, Cohen's d = 0.01 to 3.01) in balance scores measured with the Berg Balance Scale, the Tinetti test, postural sway tests, and the Timed Up and Go test were found after RAGT. No significant differences in balance between the intervention and control groups were reported. RAGT can lead to improvements in balance in stroke patients; however, it is not clear whether the improvements are greater compared with those associated with other gait rehabilitation methods. Because a limited number of studies are available, more specific research (eg, randomized controlled trials with larger, specific populations) is necessary to draw stronger conclusions.

  1. Role of ankle foot orthosis in improving locomotion and functional recovery in patients with stroke: A prospective rehabilitation study

    PubMed Central

    Sankaranarayan, H.; Gupta, Anupam; Khanna, Meeka; Taly, Arun B.; Thennarasu, K.

    2016-01-01

    Objective: To study role of ankle foot orthosis (AFO) in improving locomotion and functional recovery after stroke. Setting: Neurological Rehabilitation Department of a university research tertiary hospital. Patients and Methods: AFO and activity based rehabilitation. Main Outcome Measures: Distance (meters) covered during the 6-minute walk test (6MWT) and speed (meter/second) during the 10-meter walk test. Functional abilities assessed using Functional Independence Measure (FIM®). Results: Twenty-six patients (21 male) with stroke (mean duration 196.7 days, range 45–360 days) and mean age of 41.6 years (range 18–65 years, standard deviation [SD] 12.5) were included. Fourteen had right hemiplegia. The mean length of stay in the unit was 26.5 days (range 18–45 days, SD 5.5). All patients had equinus deformity with spastic foot drop and were provided with AFO. Walking endurance with 6MWT was 90 m on admission (without AFO). At discharge, it improved to 174 m with AFO and 121 m without AFOs (P < 0.001-with and without AFO at discharge). Walking speed improved from 0.4 m/s (admission) to 0.51 m/s with AFO, P = 0.004 and 0.45 m/s without AFO, P = 0.015) at discharge. Nine patients (34.6%) had clinically important difference-minimal clinically important difference (>0.16 m/s speed gain; >50 m endurance gain) at discharge. The mean FIM® score on admission was 84.3 ± 18.6. At discharge FIM® improved to 101.9 ± 13.7 (P < 0.001). Conclusions: Use of AFOs improve gait parameters significantly in only one-third stroke patients in the study when combined with activity-based inpatient-rehabilitation. PMID:27695234

  2. Long-Term Use of a Static Hand-Wrist Orthosis in Chronic Stroke Patients: A Pilot Study

    PubMed Central

    Meijer, Jan-Willem

    2013-01-01

    Background. Long-term splinting, using static orthoses to prevent contractures, is widely accepted in stroke patients with paresis of the upper limb. A number of stroke patients complain about increased pain and spasticity, which leads to the nonuse of the orthosis and a risk of developing a clenched fist. Objectives. Evaluating long-term use of static hand-wrist orthoses and experienced comfort in chronic stroke patients. Methods. Eleven stroke patients who were advised to use a static orthosis for at least one year ago were included. Semistructured telephone interviews were conducted to explore the long-term use and experienced comfort with the orthosis. Data were analyzed using descriptive statistics. Results. After at least one year, seven patients still wore the orthosis for the prescribed hours per day. Two patients were unable to wear the orthosis 8 hours per day, due to poor comfort. Two patients stopped using the orthosis because of an increase in spasticity or pain. Conclusions. These pilot data suggest that a number of stroke patients cannot tolerate a static orthosis over a long-term period because of discomfort. Without appropriate treatment opportunities, these patients will remain at risk of developing a clenched fist and will experience problems with daily activities and hygiene maintenance. PMID:23533961

  3. Advanced Prosthetic Gait Training Tool

    DTIC Science & Technology

    2011-09-01

    AD_________________ Award Number: W81XWH-10-1-0870 TITLE: Advanced Prosthetic Gait Training Tool...Advanced Prosthetic Gait Training Tool 5b. GRANT NUMBER W81XWH-10-1-0870 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Rajankumar...produce a computer-based Advanced Prosthetic Gait Training Tool to aid in the training of clinicians at military treatment facilities providing care for

  4. Gait analysis in amputees.

    PubMed

    Skinner, H B; Effeney, D J

    1985-04-01

    There are marked differences from normal in both AK and BK gait. Forward velocity of walking is significantly lower in the amputee and is lower in the AK than in the BK subjects. Traumatic AK amputees ambulate with time-distance parameters of velocity, cadence, stride length and gait cycle which are all two standard deviations below normal. The same parameters for the traumatic BK amputee are only one standard deviation below normal. The symmetry of walking seen in the normal subject is not present in the lower extremity amputee. Measurements of single limb support times and motion analysis of the lower extremities as well as of the head, arms and trunk bear this out. This asymmetry of motion increases the excursion of the center of mass during each cycle and thereby increases the energy cost of ambulation. Energy cost of amputee gait often places the dysvascular AK amputee at his limits and strains other amputees severely. Further research is necessary to enable amputees to approach the walking capabilities of normal people.

  5. Gait and balance disorders.

    PubMed

    Masdeu, Joseph C

    2016-01-01

    This chapter focuses on one of the most common types of neurologic disorders: altered walking. Walking impairment often reflects disease of the neurologic structures mediating gait, balance or, most often, both. These structures are distributed along the neuraxis. For this reason, this chapter is introduced by a brief description of the neurobiologic underpinning of walking, stressing information that is critical for imaging, namely, the anatomic representation of gait and balance mechanisms. This background is essential not only in order to direct the relevant imaging tools to the regions more likely to be affected but also to interpret correctly imaging findings that may not be related to the walking deficit object of clinical study. The chapter closes with a discussion on how to image some of the most frequent etiologies causing gait or balance impairment. However, it focuses on syndromes not already discussed in other chapters of this volume, such as Parkinson's disease and other movement disorders, already discussed in Chapter 48, or cerebellar ataxia, in Chapter 23, in the previous volume. As regards vascular disease, the spastic hemiplegia most characteristic of brain disease needs little discussion, while the less well-understood effects of microvascular disease are extensively reviewed here, together with the imaging approach.

  6. A custom-made neoprene thumb carpometacarpal orthosis with thermoplastic stabilization: an orthosis that promotes function and improvement in patients with the first carpometacarpal joint osteoarthritis.

    PubMed

    Bani, Monireh Ahmadi; Arazpour, Mokhtar; Hutchins, Stephen William; Layeghi, Fereydoun; Bahramizadeh, Mahmood; Mardani, Mohammad Ali

    2014-02-01

    Patients with mild to moderate first carpometacarpal joint osteoarthritis report pain, a reduction in pinch and grip strength and hand function. The purpose of this study was to analyze the effect of a custom-made neoprene thumb carpometacarpal orthosis with thermoplastic stabilization on pain, function, grip strength, and key pinch in these patients. A total of 11 volunteer patients participated in this study. All the above-mentioned parameters were evaluated at baseline and also 30, 60, and 90 days after using the splint. A decrease in pain was observed after 30 days, and this continued to improve during treatment with the splint. After 90 days of using the splint, grip strength was improved. Function and pinch strength also increased significantly and was maintained during the study period compared to baseline. A custom-made neoprene thumb carpometacarpal orthosis with thermoplastic stabilization may be a suitable conservative approach for the treatment of first carpometacarpal joint osteoarthritis.

  7. Balzac and human gait analysis.

    PubMed

    Collado-Vázquez, S; Carrillo, J M

    2015-05-01

    People have been interested in movement analysis in general, and gait analysis in particular, since ancient times. Aristotle, Hippocrates, Galen, Leonardo da Vinci and Honoré de Balzac all used observation to analyse the gait of human beings. The purpose of this study is to compare Honoré de Balzac's writings with a scientific analysis of human gait. Honoré de Balzac's Theory of walking and other works by that author referring to gait. Honoré de Balzac had an interest in gait analysis, as demonstrated by his descriptions of characters which often include references to their way of walking. He also wrote a treatise entitled Theory of walking (Théorie de la demarche) in which he employed his keen observation skills to define gait using a literary style. He stated that the walking process is divided into phases and listed the factors that influence gait, such as personality, mood, height, weight, profession and social class, and also provided a description of the correct way of walking. Balzac considered gait analysis to be very important and this is reflected in both his character descriptions and Theory of walking, his analytical observation of gait. In our own technology-dominated times, this serves as a reminder of the importance of observation. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  8. Reducing robotic guidance during robot-assisted gait training improves gait function: a case report on a stroke survivor.

    PubMed

    Krishnan, Chandramouli; Kotsapouikis, Despina; Dhaher, Yasin Y; Rymer, William Z

    2013-06-01

    To test the feasibility of patient-cooperative robotic gait training for improving locomotor function of a chronic stroke survivor with severe lower-extremity motor impairments. Single-subject crossover design. Performed in a controlled laboratory setting. A 62-year-old man with right temporal lobe ischemic stroke was recruited for this study. The baseline lower-extremity Fugl-Meyer score of the subject was 10 on a scale of 34, which represented severe impairment in the paretic leg. However, the subject had a good ambulation level (community walker with the aid of a stick cane and ankle-foot orthosis) and showed no signs of sensory or cognitive impairments. The subject underwent 12 sessions (3 times per week for 4wk) of conventional robotic training with the Lokomat, where the robot provided full assistance to leg movements while walking, followed by 12 sessions (3 times per week for 4wk) of patient-cooperative robotic control training, where the robot provided minimal guidance to leg movements during walking. Clinical outcomes were evaluated before the start of the intervention, immediately after 4 weeks of conventional robotic training, and immediately after 4 weeks of cooperative control robotic training. These included: (1) self-selected and fast walking speed, (2) 6-minute walk test, (3) Timed Up & Go test, and (4) lower-extremity Fugl-Meyer score. Results showed that clinical outcomes changed minimally after full guidance robotic training, but improved considerably after 4 weeks of reduced guidance robotic training. The findings from this case study suggest that cooperative control robotic training is superior to conventional robotic training and is a feasible option to restoring locomotor function in ambulatory stroke survivors with severe motor impairments. A larger trial is needed to verify the efficacy of this advanced robotic control strategy in facilitating gait recovery after stroke. Copyright © 2013 American Congress of Rehabilitation Medicine

  9. Analysis, design and development of a carbon fibre reinforced plastic knee-ankle-foot orthosis prototype for myopathic patients.

    PubMed

    Granata, C; De Lollis, A; Campo, G; Piancastelli, L; Merlini, L

    1990-01-01

    A traditional knee-ankle-foot orthosis (KAFO) for myopathic patients has been studied for the assessment of loads and fatigue resistance. Starting from this basis a thermoplastic matrix carbon fibre reinforced plastic composite (CFRP) KAFO has been developed in order to reduce the weight. A finite-element simulation programme for deformation analysis was used to compare the behaviour of conventional and CFRP orthosis. There were no breakages either of the prototype or of its parts. The CFRP orthosis allows a weight reduction of more than 40 per cent.

  10. A new dynamic triceps-driven orthosis (DTDO): achieving elbow flexion in patients with C5 deficits.

    PubMed

    Lawlor, B D; Stolp-Smith, K A

    1998-10-01

    This report describes a unique orthosis designed to assist activities of daily living for a patient with severe proximal upper limb weakness caused by traumatic central cord syndrome. The orthosis-the dynamic triceps-driven orthosis (DTDO)-provides elbow flexion using contralateral elbow extension to move a cable threaded across the shoulders and wrist cuffs bilaterally. The device is a simple, inexpensive design that can be reproduced by any orthotist. The DTDO has been used successfully for other patients with severe weakness in C5- and C6-innervated muscles.

  11. A new powered orthosis with hip and ankle linkage for paraplegics walking.

    PubMed

    Nagai, Chikara; Hisada, Shinnosuke; Obinata, Goro; Genda, Eiichi

    2013-06-01

    Several types of hip-knee-ankle-foot orthotic systems have been proposed for paraplegic walking during these decades. Hip and ankle linked orthosis (HALO) is compact one in those orthoses, which seeks to achieve a smoother-movement and user-easiness on its don/doff in paraplegic walking. The idea of HALO is to link two ankle joints with medial single joint via wires so that the orthosis keeps both feet always parallel to the floor while walking and assist the swinging of the leg. So as to reduce the consumption energy of HALO walking, we have introduced two actuators to control the ankle-joints angles in this paper. The actuators placed at hip joint in HALO allow the orthosis to have more degree-of-freedom and are able to provide a propulsive force the coupled user-orthosis system. The results of preliminary experiments with normal subjects show that the users can walk smoother and the proposed orthotic system will be able to reduce the users' consumption energy while walking.

  12. The influence of dynamic orthosis training on upper extremity function after stroke: a pilot study.

    PubMed

    de Araújo, Rodrigo Cappato; Rocha, Daniel Neves; Pitangui, Ana Carolina Rodarti; Pinotti, Marcos

    2014-01-01

    The goal of this study was to assess the use of a dynamic orthosis on upper extremity function in chronic stroke patients. A case series approach was utilized, with provision of a training program (3x/week, 50 minutes/session for 8 weeks) and employment of a dynamic orthosis. Six volunteers with persistent hemiparesis due to a single, unilateral stroke performed task-oriented movements with the aid of a dynamic orthosis. Tests were administered before and after training. Functional capacity was assessed using the TEMPA (Test d'Évaluation des Membres Supérieurs de Personnes Âgées) test. The Wilcoxon test was used for pre-training and post-training comparisons of TEMPA scores. The volunteers showed significant improvement of upper extremity function in the performance of a bilateral task (p = 0.01) and three unilateral tasks (p = 0.04). This pilot study suggests that the dynamic orthosis associated with the performance of functional tasks can have positive outcomes regarding the improvement of functional capacity of upper extremity.

  13. Night Orthosis After Surgical Correction of Dupuytren Contractures: A Systematic Review.

    PubMed

    Samargandi, Osama A; Alyouha, Sarah; Larouche, Patricia; Corkum, Joseph P; Kemler, Marius A; Tang, David T

    2017-08-31

    To determine the role of night orthosis use after surgical correction of Dupuytren contracture. We searched MEDLINE, EMBASE, CINAHL, AMED, OTSeeker, and CENTRAL for articles published from inception of the databases to August 2015. Assessment was undertaken by 2 independent reviewers (O.A.S. and S.A.). Methodological quality of randomized controlled trials was assessed using the Cochrane risk of bias tool and the Newcastle-Ottawa instrument. Seven studies met the standard for inclusion in this review. A total of 659 patients across these 7 studies were included in the analysis, with follow-up ranging from 3 to 72 months. None of the included studies assessed recurrence. The analysis revealed no significant improvement in range of motion of hand joints for patients who received a static night orthosis after Dupuytren surgery compared with patients without an orthosis. Similarly, no differences were found in patient-reported functional status across the 2 groups. The current literature does not appear to support the use of static night orthosis in addition to hand therapy after surgical correction of Dupuytren contracture. Therapeutic IV. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  14. Evaluation of a wearable orthosis and an associated algorithm for tremor suppression.

    PubMed

    Manto, Mario; Rocon, Eduardo; Pons, Jose; Belda, Juan Manuel; Camut, Stephane

    2007-04-01

    We describe a wearable orthosis and an associated algorithm for the simultaneous assessment and treatment of essential tremor, one of the most common movement disorders in humans involving an overactivity of the olivo-cerebellar pathways. A motor providing effective viscosity is fixed on a wearable orthosis in the upper limbs. The motor is controlled by a personal computer with software processing in real time the position and rate of rotation of the joint detected by a chip gyroscope. The orthosis can be used in a monitoring mode and in an active mode. The range of tremor suppression of the signals above the orthosis operational limit ranges from about 3% (percentile 5) to about 79% (percentile 95) in relation to energy in the monitoring mode. Considering both postural and kinetic, the mean tremor energy decreased from 55.49 +/- 22.93 rad2 s(-3) in the monitoring mode to 15.66 +/- 7.29 rad2 s(-3) in the active mode. Medians of power reduction were below 60% for the wrist and the elbow. In addition to supplying new information on the interactions between kinematics, dynamics and tremor genesis, this non-invasive technique is an alternative to current therapies. This new approach will provide new insights into the understanding of motor control.

  15. Dynamic hinged orthosis following a surgical reattachment and therapy protocol of a distal triceps tendon avulsion.

    PubMed

    Monasterio, Marisol; Longsworth, Kathleen A; Viegas, Steven

    2014-01-01

    Triceps avulsion injuries are not very common injuries. These authors describe an orthosis and protocol they utilized to successfully treat a client following a triceps avulsion injury. - Victoria Priganc, PhD., OTR, CHT, CLT, Practice Forum Editor. Copyright © 2014 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  16. Biomechanical study of a knee-ankle-foot-orthosis for hemiplegic patients.

    PubMed

    Morinaka, Y; Matsuo, Y; Nojima, M; Inami, Y; Nojima, K

    1984-08-01

    A knee-ankle-foot-orthosis (KAFO) has been developed which incorporates a genucentric knee joint and a similarly designed ankle joint. This paper describes a clinical evaluation of its practical use on 120 hemiplegic patients over a six year period from 1979 to 1984.

  17. Three dimensional design, simulation and optimization of a novel, universal diabetic foot offloading orthosis

    NASA Astrophysics Data System (ADS)

    Sukumar, Chand; Ramachandran, K. I.

    2016-09-01

    Leg amputation is a major consequence of aggregated foot ulceration in diabetic patients. A common sense based treatment approach for diabetic foot ulceration is foot offloading where the patient is required to wear a foot offloading orthosis during the entire treatment course. Removable walker is an excellent foot offloading modality compared to the golden standard solution - total contact cast and felt padding. Commercially available foot offloaders are generally customized with huge cost and less patient compliance. This work suggests an optimized 3D model of a new type light weight removable foot offloading orthosis for diabetic patients. The device has simple adjustable features which make this suitable for wide range of patients with weight of 35 to 74 kg and height of 137 to 180 cm. Foot plate of this orthosis is unisexual, with a size adjustability of (US size) 6 to 10. Materials like Aluminum alloy 6061-T6, Acrylonitrile Butadiene Styrene (ABS) and Polyurethane acted as the key player in reducing weight of the device to 0.804 kg. Static analysis of this device indicated that maximum stress developed in this device under a load of 1000 N is only 37.8 MPa, with a small deflection of 0.150 cm and factor of safety of 3.28, keeping the safety limits, whereas dynamic analysis results assures the load bearing capacity of this device. Thus, the proposed device can be safely used as an orthosis for offloading diabetic ulcerated foot.

  18. [Spatial-temporal analysis and clinical findings of gait: comparison of two modalities of treatment in children with cerebral palsy-spastic hemiplegia. Preliminary report].

    PubMed

    Arellano-Martínez, Irma Tamara; Rodríguez-Reyes, Gerardo; Quiñones-Uriostegui, Ivet; Arellano-Saldaña, María Elena

    2013-01-01

    Cerebral palsy is the most common cause of disability among children. Parent's main concerns are the acquisition and improvement of gait. The aim of this study was to compare long term results of the effect of two modalities of gait training. Quantitative measurement of gait and clinical assessment of the gross motor function classification system and Modified Ashworth Scale were perfomed in 14 patients with Cerebral palsy -spastic hemiplegia and randomizedly assigned into two groups of treatment: the first one using a driven gait orthosis (Lokomat(®)) and the second a gait training a long a rail inside a hydrotherapy tank. Measurements and assessments, above described, were performed immediately and one year after the treatment concluded. Significant change was observed in the gross motor function classification system from II to I among children (p=0.042) and a positive correlation between the shape functional of the march and the gross motor function classification system (r = 0.54, p = 0.042). Patients on the Lokomat(®) training improved on gait symmetry over patients on the conventional therapy (p = 0.05). A year after, this intervention showed tendency to kept the gait patterns only on patients treated with the Lokomat(®) Benefit obtained with either modality was evident for both groups. However, residual effects observed on the Lokomat group, either in clinical assessment or gait parameters, were more promising than in the conventional therapy. Due to the size of the sample used in this study the results are not conclusive and more research must be done on this subject in long term time horizon.

  19. Climbing favours the tripod gait over alternative faster insect gaits

    PubMed Central

    Ramdya, Pavan; Thandiackal, Robin; Cherney, Raphael; Asselborn, Thibault; Benton, Richard; Ijspeert, Auke Jan; Floreano, Dario

    2017-01-01

    To escape danger or catch prey, running vertebrates rely on dynamic gaits with minimal ground contact. By contrast, most insects use a tripod gait that maintains at least three legs on the ground at any given time. One prevailing hypothesis for this difference in fast locomotor strategies is that tripod locomotion allows insects to rapidly navigate three-dimensional terrain. To test this, we computationally discovered fast locomotor gaits for a model based on Drosophila melanogaster. Indeed, the tripod gait emerges to the exclusion of many other possible gaits when optimizing fast upward climbing with leg adhesion. By contrast, novel two-legged bipod gaits are fastest on flat terrain without adhesion in the model and in a hexapod robot. Intriguingly, when adhesive leg structures in real Drosophila are covered, animals exhibit atypical bipod-like leg coordination. We propose that the requirement to climb vertical terrain may drive the prevalence of the tripod gait over faster alternative gaits with minimal ground contact. PMID:28211509

  20. A Robotic Exoskeleton for Treatment of Crouch Gait in Children With Cerebral Palsy: Design and Initial Application.

    PubMed

    Lerner, Zachary F; Damiano, Diane L; Park, Hyung-Soon; Gravunder, Andrew J; Bulea, Thomas C

    2017-06-01

    Crouch gait, a pathological pattern of walking characterized by excessive knee flexion, is one of the most common gait disorders observed in children with cerebral palsy (CP). Effective treatment of crouch during childhood is critical to maintain mobility into adulthood, yet current interventions do not adequately alleviate crouch in most individuals. Powered exoskeletons provide an untapped opportunity for intervention. The multiple contributors to crouch, including spasticity, contracture, muscle weakness, and poor motor control make design and control of such devices challenging in this population. To our knowledge, no evidence exists regarding the feasibility or efficacy of utilizing motorized assistance to alleviate knee flexion in crouch gait. Here, we present the design of and first results from a powered exoskeleton for extension assistance as a treatment for crouch gait in children with CP. Our exoskeleton, based on the architecture of a knee-ankle-foot orthosis, is lightweight (3.2 kg) and modular. On board sensors enable knee extension assistance to be provided during distinct phases of the gait cycle. We tested our device on one six-year-old male participant with spastic diplegia from CP. Our results show that the powered exoskeleton improved knee extension during stance by 18.1° while total knee range of motion improved 21.0°. Importantly, we observed no significant decrease in knee extensor muscle activity, indicating the user did not rely solely on the exoskeleton to extend the limb. These results establish the initial feasibility of robotic exoskeletons for treatment of crouch and provide impetus for continued investigation of these devices with the aim of deployment for long term gait training in this population.

  1. Expressing gait-line symmetry in able-bodied gait

    PubMed Central

    Jeleń, Piotr; Wit, Andrzej; Dudziński, Krzysztof; Nolan, Lee

    2008-01-01

    Background Gait-lines, or the co-ordinates of the progression of the point of application of the vertical ground reaction force, are a commonly reported parameter in most in-sole measuring systems. However, little is known about what is considered a "normal" or "abnormal" gait-line pattern or level of asymmetry. Furthermore, no reference databases on healthy young populations are available for this parameter. Thus the aim of this study is to provide such reference data in order to allow this tool to be better used in gait analysis. Methods Vertical ground reaction force data during several continuous gait cycles were collected using a Computer Dyno Graphy in-sole system® for 77 healthy young able-bodied subjects. A curve (termed gait-line) was obtained from the co-ordinates of the progression of the point of application of the force. An Asymmetry Coefficient Curve (AsC) was calculated between the mean gait-lines for the left and right foot for each subject. AsC limits of ± 1.96 and 3 standard deviations (SD) from the mean were then calculated. Gait-line data from 5 individual subjects displaying pathological gait due to disorders relating to the discopathy of the lumbar spine (three with considerable plantarflexor weakness, two with considerable dorsiflexor weakness) were compared to the AsC results from the able-bodied group. Results The ± 1.96 SD limit suggested that non-pathological gait falls within 12–16% asymmetry for gait-lines. Those exhibiting pathological gait fell outside both the ± 1.96 and ± 3SD limits at several points during stance. The subjects exhibiting considerable plantarflexor weakness all fell outside the ± 1.96SD limit from 30–50% of foot length to toe-off while those exhibiting considerable dorsiflexor weakness fell outside the ± 1.96SD limit between initial contact to 25–40% of foot length, and then surpassed the ± 3SD limit after 55–80% of foot length. Conclusion This analysis of gait-line asymmetry provides a reference

  2. The effects of biomechanical foot orthoses on the gait patterns of patients with malalignment syndrome as determined by three dimensional gait analysis

    PubMed Central

    Kim, Soo-Hyun; Ahn, Sang-Ho; Jung, Gil-Su; Kim, Jin-Hyun; Cho, Yun-Woo

    2016-01-01

    [Purpose] The biomechanical effects of foot orthoses on malalignment syndrome have not been fully clarified. This experimental investigation was conducted to evaluate the effects of orthoses on the gait patterns of patients with malalignment syndrome. [Subjects and Methods] Ten patients with malalignment syndrome were recruited. For each participant, kinematic and kinetic data were collected under three test conditions: walking barefoot, walking with flat insoles in shoes, and walking with a biomechanical foot orthosis (BFO) in shoes. Gait patterns were analyzed using a motion analysis system. [Results] Spatiotemporal data showed the step and stride lengths when wearing shoes with flat insoles or BFO were significantly greater than when barefoot, and that the walking speed when wearing shoes with BFO was significantly faster than when walking barefoot or with shoes with flat insoles. Kinetic data, showed peak pelvic tilt and obliquity angle were significantly greater when wearing BFO in shoes than when barefoot, and that peak hip flexion/extension angle and peak knee flexion/extension and rotation angles were significantly greater when wearing BFO and flat insoles in shoes than when barefoot. [Conclusion] BFOs can correct pelvic asymmetry while walking. PMID:27190451

  3. The effects of locomotor training with a robotic-gait orthosis (Lokomat) on neuromuscular properties in persons with chronic SCI.

    PubMed

    Mirbagheri, Mehdi M; Niu, Xun; Kindig, Matt; Varoqui, Deborah

    2012-01-01

    We studied the effects of robotic-assisted locomotor (LOKOMAT) training on neuromuscular abnormality associated with spasticity in persons with incomplete Spinal Cord Injury (SCI). LOKOMAT training was performed 3 days/week for 4 weeks, with up to 45 minutes of training per session. Subjects were evaluated before and after 1, 2, and 4 weeks of training, and the effects of training on the intrinsic (muscular) and reflexive components of the neuromuscular properties were quantified over the ankle range-of-motion. A linear (slope&intercept) regression was fit to the stiffness-angle curve. "Growth mixture" modeling was used to identify recovery classes for these parameters over the training period. Two distinct classes were observed. Class 1 subjects had initially higher reflex stiffness parameters (i.e., intercept and slope vs. ankle position) and reduced significantly over the training period. Class 2 subjects initially had lower reflex stiffness parameters and experienced non-significant reductions. Similar results were observed for the intrinsic stiffness intercept; however, intrinsic slope showed no significant improvement over training for either class. These findings demonstrate that LOKOMAT training is effective in reducing reflex and intrinsic stiffness (which abnormally increase in SCI) and improving the abnormal modulation of reflexes over the ankle range-of-motion.

  4. Robot-assisted gait training improves motor performances and modifies Motor Unit firing in poststroke patients.

    PubMed

    Chisari, C; Bertolucci, F; Monaco, V; Venturi, M; Simonella, C; Micera, S; Rossi, B

    2015-02-01

    Robotics and related technologies are realizing their promise to improve the delivery of rehabilitation therapy but the mechanism by which they enhance recovery is still unknown. The electromechanical-driven gait orthosis Lokomat has demonstrated its utility for gait rehabilitation after stroke. To test the efficacy of Lokomat in gait retraining and to investigate the neurophysiological mechanisms underlying the recovery process. Case series study. Unit of Neurorehabilitation of a University Hospital. Fifteen patients with post-stroke hemiparesis. Patients underwent a six weeks rehabilitative treatment provided by Lokomat. The outcome measures were: Fugl-Meyer Motor Scale (FMMS), Berg Balance Scale (BBS), 10 metres Walking Test (10mWT), Timed Up and Go test (TUG), 6 Minute Walking Test (6MWT). Strength and Motor Unit firing rate of vastus medialis (VM) were analyzed during isometric knee extension through an isokinetic dynamometer and surface EMG recording. An increase of duration and covered distance, a decrease of body weight support and guidance force on the paretic side along the sessions were observed. The FMMS, the BBS, the TUG and the 6MWT demonstrated a significant improvement after the training. No increase of force was observed whereas a significant increase of firing rate of VM was recorded. The evidence that the improvement of walking ability observed in our study determines a significant increase of firing rate of VM not accompanied by an increase of force could suggest an effect of training on motorneuronal firing rate that thus contributes to improve motor control. Given the current wide use of robotics in gait retraining after stroke, our approach can contribute to clarify the mechanisms underlying its rehabilitative impact so as to incorporate the findings of evidence-based practice into appropriate treatment plans for persons poststroke.

  5. The effects of rocker sole and SACH heel on kinematics in gait.

    PubMed

    Wu, Wen-Lan; Rosenbaum, Dieter; Su, Fong-Chin

    2004-10-01

    The rocker sole and solid-ankle cushion-heel (SACH) heels are the most commonly prescribed external shoe modification. Only a limited number of scientific evidence exists to support these interventions in clinical practice. The objective of this study was to determine the effects of rocker soles and SACH heels on kinematics during gait. In this study, we investigated the gait parameters during level walking, stair climbing and stair descending in healthy volunteers and assessed the effects of the modified shoes on the motion of the forefoot and hindfoot compared with the traditional shoes. Eleven normal subjects participated in this study. A six-camera motion analysis system was used to capture motion trajectories. The three-dimensional (3D) coordinates of the markers were used to calculate the angles of flexion-extension, valgus-varus, and internal-external rotation at the hindfoot and forefoot joints in a gait cycle by the custom software for foot kinematic analysis. The results showed that the rocker soles offer several advantages from the viewpoint of gait kinematics. The forefoot joint excursion in sagittal plane while wearing rocker shoes was significantly less than that while wearing traditional shoes during level walking, stair climbing and stair descending. It means that they could mimic the action of the forefoot joint, aid in roll off, and simulate forefoot dorsiflexion. Since the bony structures mechanically link the forefoot joint and hindfoot joint to a triplanar axis of motion, they could be used whenever there is minimal or no motion at the forefoot joint or hindfoot joint, because of, for example, fusion, fracture, cast immobilization, orthosis design, pain, or arthritis.

  6. Robotic-assisted gait training improves walking abilities in diplegic children with cerebral palsy.

    PubMed

    Wallard, L; Dietrich, G; Kerlirzin, Y; Bredin, J

    2017-05-01

    The robotic-assisted gait training therapy (RAGT), based on intensity and repetition of movement, presents beneficial effects on recovery and improvement of postural and locomotor functions of the patient. This study sought to highlight the effect of this RAGT on the dynamic equilibrium control during walking in children with Cerebral Palsy (CP) by analyzing the different postural strategies of the fullbody (upper/lower body) before and after this RAGT in order to generate forward motion while maintaining balance. Data were collected by a motion analysis system (Vicon(®) - Oxford Metrics). Thirty children with bilateral spastic CP were evaluated using a full-body marker set which allows assessing both the lower and upper limb kinematics. The children were divided into two groups in such a way as to obtain a randomized controlled population: i) a group of fourteen children (Treated Group) underwent 20 sessions of RAGT using the driven gait orthosis Lokomat(®)Pediatric (Hocoma) compared to ii) a group of sixteen children without sessions of Lokomat(®)Pediatric (Control Group) receiving only daily physiotherapy. Significant improvements are observed between the TG pre- and post-test values of i) the kinematic data of the full-body in the sagittal and frontal planes and ii) the Gross Motor Function Measure test (D and E). This study shows the usefulness of this RAGT mainly in the balance control in gait. Indeed, the Treated Group use new dynamic strategies of gait that are especially characterized by a more appropriate control of the upper body associated with an improvement of the lower limbs kinematics. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  7. Contributions to the understanding of gait control.

    PubMed

    Simonsen, Erik Bruun

    2014-04-01

    foot to the ground with the heel first. Moreover, they have to increase flexion of the hip joint during the swing phase because the foot hangs in a plantar flexed position. It was shown that the ankle joint plantar flexor moment increased in the healthy leg and that the knee joint extensor moment increased significantly in both the affected and the healthy leg. The latter is most likely due to the patients trying to avoid an asymmetrical gait pattern. It is recommended to use an orthosis with drop-foot patients in order to keep the ankle joint dorsiflexed prior to touchdown, otherwise bone-on-bone forces in both knee joints will increase and probably lead to osteoarthritis. The hip joint moment varies less between individuals. However, both during walking and running an unexplained hip joint flexor moment is present during the last half of the stance phase. The moment appears to oppose the speed of progression and it has been suggested that it serves to balance the upper body. This was investigated in a group of healthy subjects who were asked to walk with their upper body in a reclined, inclined and normal position, respectively. It was shown that the hip joint flexor moment was similar in the reclined and the normal position but lower when walking in the inclined position and it can be concluded that the upper body is not balanced by hip joint flexor muscles but rather by accelerations of the pelvis and activity in abdominal and back muscles. These experiments also showed that the trailing leg is brought forward during the swing phase without activity in the flexor muscles about the hip joint. This was verified by the absence of EMG activity in the iliacus muscle measured by intramuscular wire electrodes. Instead the strong ligaments restricting hip joint extension are stretched during the first half of the swing phase thereby storing elastic energy, which is released during the last half of the stance phase and accelerating the leg into the swing phase. This is

  8. Effects of acceleration on gait measures in three horse gaits.

    PubMed

    Nauwelaerts, Sandra; Zarski, Lila; Aerts, Peter; Clayton, Hilary

    2015-05-01

    Animals switch gaits according to locomotor speed. In terrestrial locomotion, gaits have been defined according to footfall patterns or differences in center of mass (COM) motion, which characterizes mechanisms that are more general and more predictive than footfall patterns. This has generated different variables designed primarily to evaluate steady-speed locomotion, which is easier to standardize in laboratory conditions. However, in the ecology of an animal, steady-state conditions are rare and the ability to accelerate, decelerate and turn is essential. Currently, there are no data available that have tested whether COM variables can be used in accelerative or decelerative conditions. This study used a data set of kinematics and kinetics of horses using three gaits (walk, trot, canter) to evaluate the effects of acceleration (both positive and negative) on commonly used gait descriptors. The goal was to identify variables that distinguish between gaits both at steady state and during acceleration/deceleration. These variables will either be unaffected by acceleration or affected by it in a predictable way. Congruity, phase shift and COM velocity angle did not distinguish between gaits when the dataset included trials in unsteady conditions. Work (positive and negative) and energy recovery distinguished between gaits and showed a clear relationship with acceleration. Hodographs are interesting graphical representations to study COM mechanics, but they are descriptive rather than quantitative. Force angle, collision angle and collision fraction showed a U-shaped relationship with acceleration and seem promising tools for future research in unsteady conditions.

  9. Design and performance characterization of a hand orthosis prototype to aid activities of daily living in a post-stroke population.

    PubMed

    Gasser, Benjamin W; Goldfarb, Michael

    2015-01-01

    This paper presents the design of a hand orthosis prototype intended to assist persons with hand paresis, as a result of stroke, perform activities of daily living. Among its attributes, the orthosis is characterized by a low mass and small profile, while still offering the power assistance of a robotic exoskeleton. Experimental characterization of the orthosis is presented, including its mass, envelope dimensions, motion bandwidth, and joint torque characteristics.

  10. The effect of a powered ankle foot orthosis on walking in a stroke subject: a case study

    PubMed Central

    Pourghasem, Ali; Takamjani, Ismail Ebrahimi; Karimi, Mohammad Taghi; Kamali, Mohammad; Jannesari, Mohammad; Salafian, Iman

    2016-01-01

    [Purpose] Standing and walking are impaired in stroke patients. Therefore, assisted devices are required to restore their walking abilities. The ankle foot orthosis with an external powered source is a new type of orthosis. The aim of this study was to evaluate the performance of a powered ankle foot orthosis compared with unpowered orthoses in a stroke patient. [Subjects and Methods] A single stroke subject participated in this study. The subject was fitted with three types of ankle foot orthosis (powered, posterior leg spring, and carbon ankle foot orthoses). He was asked to walk with and without the three types of orthoses, and kinetic and kinematic parameters were measured. [Results] The results of the study showed that the moments applied on the ankle, knee, and hip joints increased while walking with the powered ankle foot orthosis. [Conclusion] As the powered ankle foot orthosis influences the moments of the ankle, knee, and hip joints, it can increase the standing and walking abilities of stroke patients more than other available orthoses. Therefore, it is recommended to be used in rehabilitation programs for stroke patients. PMID:27942156

  11. GaitKeeper: A System for Measuring Canine Gait.

    PubMed

    Ladha, Cassim; O'Sullivan, Jack; Belshaw, Zoe; Asher, Lucy

    2017-02-08

    It is understood gait has the potential to be used as a window into neurodegenerative disorders, identify markers of subclinical pathology, inform diagnostic algorithms of disease progression and measure the efficacy of interventions. Dogs' gaits are frequently assessed in a veterinary setting to detect signs of lameness. Despite this, a reliable, affordable and objective method to assess lameness in dogs is lacking. Most described canine lameness assessments are subjective, unvalidated and at high risk of bias. This means reliable, early detection of canine gait abnormalities is challenging, which may have detrimental implications for dogs' welfare. In this paper, we draw from approaches and technologies used in human movement science and describe a system for objectively measuring temporal gait characteristics in dogs (step-time, swing-time, stance-time). Asymmetries and variabilities in these characteristics are of known clinical significance when assessing lameness but presently may only be assessed on coarse scales or under highly instrumented environments. The system consists an inertial measurement unit, containing a 3-axis accelerometer and gyroscope coupled with a standardized walking course. The measurement unit is attached to each leg of the dog under assessment before it is walked around the course. The data by the measurement unit is then processed to identify steps and subsequently, micro-gait characteristics. This method has been tested on a cohort of 19 healthy dogs of various breeds ranging in height from 34.2 cm to 84.9 cm. We report the system as capable of making precise step delineations with detections of initial and final contact times of foot-to-floor to a mean precision of 0.011 s and 0.048 s, respectively. Results are based on analysis of 12,678 foot falls and we report a sensitivity, positive predictive value and F-score of 0.81, 0.83 and 0.82 respectively. To investigate the effect of gait on system performance, the approach was tested

  12. Terminology and forensic gait analysis.

    PubMed

    Birch, Ivan; Vernon, Wesley; Walker, Jeremy; Young, Maria

    2015-07-01

    The use of appropriate terminology is a fundamental aspect of forensic gait analysis. The language used in forensic gait analysis is an amalgam of that used in clinical practice, podiatric biomechanics and the wider field of biomechanics. The result can often be a lack of consistency in the language used, the definitions used and the clarity of the message given. Examples include the use of 'gait' and 'walking' as synonymous terms, confusion between 'step' and 'stride', the mixing of anatomical, positional and pathological descriptors, and inability to describe appropriately movements of major body segments such as the torso. The purpose of this paper is to share the well-established definitions of the fundamental parameters of gait, common to all professions, and advocate their use in forensic gait analysis to establish commonality. The paper provides guidance on the selection and use of appropriate terminology in the description of gait in the forensic context. This paper considers the established definitions of the terms commonly used, identifies those terms which have the potential to confuse readers, and suggests a framework of terminology which should be utilised in forensic gait analysis.

  13. Capability of 2 gait measures for detecting response to gait training in stroke survivors: Gait Assessment and Intervention Tool and the Tinetti Gait Scale.

    PubMed

    Zimbelman, Janice; Daly, Janis J; Roenigk, Kristen L; Butler, Kristi; Burdsall, Richard; Holcomb, John P

    2012-01-01

    To characterize the performance of 2 observational gait measures, the Tinetti Gait Scale (TGS) and the Gait Assessment and Intervention Tool (G.A.I.T.), in identifying improvement in gait in response to gait training. In secondary analysis from a larger study of multimodal gait training for stroke survivors, we measured gait at pre-, mid-, and posttreatment according to G.A.I.T. and TGS, assessing their capability to capture recovery of coordinated gait components. Large medical center. Cohort of stroke survivors (N=44) greater than 6 months after stroke. All subjects received 48 sessions of a multimodal gait-training protocol. Treatment consisted of 1.5 hours per session, 4 sessions per week for 12 weeks, receiving these 3 treatment aspects: (1) coordination exercise, (2) body weight-supported treadmill training, and (3) overground gait training, with 46% of subjects receiving functional electrical stimulation. All subjects were evaluated with the G.A.I.T. and TGS before and after completing the 48-session intervention. An additional evaluation was performed at midtreatment (after session 24). For the total subject sample, there were significant pre-/post-, pre-/mid-, and mid-/posttreatment gains for both the G.A.I.T. and the TGS. According to the G.A.I.T., 40 subjects (91%) showed improved scores, 2 (4%) no change, and 2 (4%) a worsening score. According to the TGS, only 26 subjects (59%) showed improved scores, 16 (36%) no change, and 1 (2%) a worsening score. For 1 treatment group of chronic stroke survivors, the TGS failed to identify a significant treatment response to gait training, whereas the G.A.I.T. measure was successful. The G.A.I.T. is more sensitive than the TGS for individual patients and group treatment response in identifying recovery of volitional control of gait components in response to gait training. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. Postural stability in symmetrical gaits.

    PubMed

    Zielińska, Teresa; Trojnacki, Maciej

    2009-01-01

    In this paper the method of stability analysis of dynamic symmetrical gaits is discussed. The problem of dynamic postural equilibrium, taking into account the role of compliant feet, is solved. The equilibrium conditions are split between the foot attachment points and the points within the foot-end area. The present method is useful for motion synthesis, taking into account robot parameters. It also helps in the robot foot design. As an illustrative example a four-legged diagonal gait is considered. The theoretical results were verified by implementing and observing the diagonal gait in four-legged machine with and without feet.

  15. Evaluation of robot-assisted gait training using integrated biofeedback in neurologic disorders.

    PubMed

    Stoller, Oliver; Waser, Marco; Stammler, Lukas; Schuster, Corina

    2012-04-01

    Neurological disorders lead to walking disabilities, which are often treated using robot-assisted gait training (RAGT) devices such as the driven gait-orthosis Lokomat. A novel integrated biofeedback system was developed to facilitate therapeutically desirable activities during walking. The aim of this study was to evaluate the feasibility to detect changes during RAGT by using this novel biofeedback approach in a clinical setting for patients with central neurological disorders. 84 subjects (50 men and 34 women, mean age of 58 ± 13 years) were followed over 8 RAGT sessions. Outcome measures were biofeedback values as weighted averages of torques measured in the joint drives and independent parameters such as guidance force, walking speed, patient coefficient, session duration, time between sessions and total treatment time. Joint segmented analysis showed significant trends for decreasing hip flexion activity (p ≤.003) and increasing knee extension activity (p ≤.001) during RAGT sessions with an intercorrelation of r=-.43 (p ≤.001). Further associations among independent variables were not statistically significant. This is the first study that evaluates the Lokomat integrated biofeedback system in different neurological disorders in a clinical setting. Results suggest that this novel biofeedback approach used in this study is not able to detect progress during RAGT. These findings should be taken into account when refining existing or developing new biofeedback strategies in RAGT relating to appropriate systems to evaluate progress and support therapist feedback in clinical settings. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Biomechanical and electromyographic evaluation of ankle foot orthosis and dynamic ankle foot orthosis in spastic cerebral palsy.

    PubMed

    Lam, W K; Leong, J C Y; Li, Y H; Hu, Y; Lu, W W

    2005-11-01

    This study evaluated the biomechanical and electromyographic effects of conventional ankle foot orthoses (AFOs) and dynamic ankle foot orthoses (DAFOs) on gait in patients with spastic cerebral palsy (CP). Thirteen patients with dynamic equinus underwent motion analysis with electromyography. Both AFOs and DAFOs provided longer stride length, permitted pre-positioning for initial contact, and successfully controlled the excessive plantarflexion during the swing phase. Median frequency (MF) of EMG signal indicated that extremely high firing was found in the patient's lower limbs compared to controls that resulted in tiredness. The DAFOs allowed a significantly larger total ankle range of motion than the AFOs. However, AFOs significantly reduced the MF while DAFOs did not. The reduced MF seen when wearing AFOs suggested an improvement of walking endurance. The DAFO had the advantage of less restriction on ankle movement, which avoids muscular atrophy and improves orthotic compliance.

  17. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children

    PubMed Central

    2010-01-01

    Background Virtual reality (VR) offers powerful therapy options within a functional, purposeful and motivating context. Several studies have shown that patients' motivation plays a crucial role in determining therapy outcome. However, few studies have demonstrated the potential of VR in pediatric rehabilitation. Therefore, we developed a VR-based soccer scenario, which provided interactive elements to engage patients during robotic assisted treadmill training (RAGT). The aim of this study was to compare the immediate effect of different supportive conditions (VR versus non-VR conditions) on motor output in patients and healthy control children during training with the driven gait orthosis Lokomat®. Methods A total of 18 children (ten patients with different neurological gait disorders, eight healthy controls) took part in this study. They were instructed to walk on the Lokomat in four different, randomly-presented conditions: (1) walk normally without supporting assistance, (2) with therapists' instructions to promote active participation, (3) with VR as a motivating tool to walk actively and (4) with the VR tool combined with therapists' instructions. The Lokomat gait orthosis is equipped with sensors at hip and knee joint to measure man-machine interaction forces. Additionally, subjects' acceptance of the RAGT with VR was assessed using a questionnaire. Results The mixed ANOVA revealed significant main effects for the factor CONDITIONS (p < 0.001) and a significant interaction CONDITIONS × GROUP (p = 0.01). Tests of between-subjects effects showed no significant main effect for the GROUP (p = 0.592). Active participation in patients and control children increased significantly when supported and motivated either by therapists' instructions or by a VR scenario compared with the baseline measurement "normal walking" (p < 0.001). Conclusions The VR scenario used here induces an immediate effect on motor output to a similar degree as the effect resulting from

  18. Unilateral compression neuropathy of the hypoglossal nerve due to head suspension orthosis in mitochondriopathy.

    PubMed

    Finsterer, Josef; Hess, Barbara

    2004-12-01

    An 85-year-old woman with multisystem mitochondriopathy experienced tension headache, cervical pain, torque head-posture, and vertigo since 1980 for which she was continuously wearing a head-suspension-orthosis- since 1990. Since 1996 she developed severe left-sided weakness and wasting of the tongue. Needle-EMG of the left genioglossus muscle revealed abnormal spontaneous activity and reduced interference-pattern. No morphological alterations in the anatomical course of the hypoglossal nerve were found. Severe, unilateral weakness and wasting of the tongue was interpreted due to chronic compression of the hypoglossal nerve by long-standing use of a head-suspension-orthosis for cervical pain from cervical muscle weakness and resulting spinal degeneration.

  19. User Evaluation of a Dynamic Arm Orthosis for People With Neuromuscular Disorders.

    PubMed

    Gunn, Margaret; Shank, Tracy M; Eppes, Marissa; Hossain, Jobayer; Rahman, Tariq

    2016-12-01

    This paper presents the results of an online survey conducted with users of a functional upper extremity orthosis called the Wilmington Robotic EXoskeleton (WREX). The WREX is a passive anti-gravity arm orthosis that allows people with neuromuscular disabilities to move their arms in three dimensions. The paper also describes the design of a novel lightweight 3-D printed WREX used for ambulatory children. Three different versions of the WREX are now offered to patients. Two can be mounted on a wheelchair and one to a body jacket for ambulatory patients. An online user survey with 55 patients was conducted to determine the benefits of the various WREXs. The survey asked ten questions related to upper extremity function with and without the WREX as well as subjective impressions of the device. Results show a statistically significant improvement in arm function for everyday tasks with the WREX.

  20. The "baseball cap orthosis": a simple solution for dropped head syndrome.

    PubMed

    Fast, Avital; Thomas, Mark A

    2008-01-01

    Dropped head syndrome (DHS) is a well-recognized condition characterized by gradual sagging of the head. At the extreme, the condition may lead to a "chin on chest deformity" where the chin rests on the chest wall and the patient is unable to look straight ahead. Dropped head syndrome tends to develop in patients with severe weakness of the neck extensors. Various neuromuscular disorders and surgical procedures may compromise the stability of the cervical spine and lead to this disorder. The condition may severely compromise the patient's quality of life and result in significant disability. A simple device-the "baseball cap orthosis"-was developed to help patients maintain their head in the upright position. Two patients with DHS who were provided with the baseball cap orthosis are presented.

  1. Exercises to Improve Gait Abnormalities

    MedlinePlus

    ... are so characteristic that they have been given descriptive names: Propulsive gait; a stooped, rigid posture, with ... you! Champion's Rx Inclusive Fitness Coalition UAB/Lakeshore Research Collaborative Facebook Twitter YouTube The information provided in ...

  2. Giving Them a Hand: Wearing a Myoelectric Elbow-Wrist-Hand Orthosis Reduces Upper Extremity Impairment in Chronic Stroke.

    PubMed

    Peters, Heather T; Page, Stephen J; Persch, Andrew

    2017-09-01

    To determine the immediate effect of a portable, myoelectric elbow-wrist-hand orthosis on paretic upper extremity (UE) impairment in chronic, stable, moderately impaired stroke survivors. Observational cohort study. Outpatient rehabilitation clinic. Participants exhibiting chronic, moderate, stable, poststroke, UE hemiparesis (N=18). Subjects were administered a battery of measures testing UE impairment and function. They then donned a fabricated myoelectric elbow-wrist-hand orthosis and were again tested on the same battery of measures while wearing the device. The primary outcome measure was the UE Section of the Fugl-Meyer Scale. Subjects were also administered a battery of functional tasks and the Box and Block (BB) test. Subjects exhibited significantly reduced UE impairment while wearing the myoelectric elbow-wrist-hand orthosis (FM: t17=8.56, P<.0001) and increased quality in performing all functional tasks while wearing the myoelectric elbow-wrist-hand orthosis, with 3 subtasks showing significant increases (feeding [grasp]: z=2.251, P=.024; feeding [elbow]: z=2.966, P=.003; drinking [grasp]: z=3.187, P=.001). Additionally, subjects showed significant decreases in time taken to grasp a cup (z=1.286, P=.016) and increased gross manual dexterity while wearing a myoelectric elbow-wrist-hand orthosis (BB test: z=3.42, P<.001). Results suggest that UE impairment, as measured by the Fugl-Meyer Scale, is significantly reduced when donning a myoelectric elbow-wrist-hand orthosis, and these changes exceeded the Fugl-Meyer Scale's clinically important difference threshold. Further, utilization of a myoelectric elbow-wrist-hand orthosis significantly increased gross manual dexterity and performance of certain functional tasks. Future work will integrate education sessions to increase subjects' ability to perform multijoint functional movements and attain consistent functional changes. Copyright © 2017. Published by Elsevier Inc.

  3. [Proof of the biomechanical effect of a lumbar spine-relief orthosis for treatment of sacroiliac pain].

    PubMed

    Höfer, S; Siemsen, C H

    2008-01-01

    The use of a spine orthosis for the treatment of low back pain is an approved, but also a disputed therapy method. There have been numerous studies so far that attempt to examine the acceptance and the impact of this treatment method. But up to now there is no biomechanical assessment about the effective level of intervertebral disc decompression while wearing an orthosis. Therefore, the purpose of this study is to measure the reduction of the disc pressure while wearing an orthosis. The pressure between the sensor contact area and the lumbar region was measured with FSR sensors. Two sensors were fixed at the vertical rods of the plastic framework of the orthosis. The pressure sensors underwent a voltage change while a Tigges T-Flex-B orthosis was being worn. These voltage changes were recorded using the connected measurement amplifiers. Different series of measurements were conducted with 3 male test persons. The resulting pressures were recorded under the following test conditions: knees bent, in different flexion angles of the torso and lift of 10/20 kg weights. Back muscle, shear, compressive and resulting forces were computed afterwards with the generally valid biomechanical formulas. The computations showed that the use of the Tigges T-Flex-B orthosis resulted in relief of the intervertebral disc L3-L4 of about approximately 96.91+/-4.68 N. The highest intervertebral disc pressure reduction was measured during the body-far lift of 20 kg weight. For the first time relief of the lumbar spinal column was proven in the present study because the contact pressure was measured between the orthosis and the lumbal body surface.

  4. iGrab: hand orthosis powered by twisted and coiled polymer muscles

    NASA Astrophysics Data System (ADS)

    Saharan, Lokesh; de Andrade, Monica Jung; Saleem, Wahaj; Baughman, Ray H.; Tadesse, Yonas

    2017-10-01

    Several works have been reported in powered hand orthosis in the last ten years for assistive or rehabilitative purposes. However, most of these approaches uses conventional actuators such as servo motors to power orthosis. In this work, we demonstrate the recently reported twisted and coiled polymeric (TCP) muscles to drive a compact, light, inexpensive and wearable upper extremity device, iGrab. A 3D printed orthotic hand module was designed, developed and tested for the performance. The device has six 2-ply muscles of diameter 1.35 mm with a length of 380 mm. We used a single 2-ply muscle for each finger and two 2-ply muscles for the thumb. Pulsed actuation of the muscles at 1.8 A current for 25 s with 7% duty cycle under natural cooling showed full flexion of the fingers within 2 s. Modeling and simulation were performed on the device using standard Euler–Lagrangian equations. Our artificial muscles powered hand orthosis demonstrated the capability of pinching and picking objects of different shapes, weights, and sizes.

  5. Single DoF Hand Orthosis for Rehabilitation of Stroke and SCI Patients

    NASA Astrophysics Data System (ADS)

    Kannan Megalingam, Rajesh; Apuroop, K. G. S.; Boddupalli, Sricharan

    2017-08-01

    Many stroke and spinal cord injury patients suffer from paralysis which range from severe to nominal. Some of them, after therapy, could regain most of the motor control, particularly in hands if the severity level is not so high. In this paper we propose a hand orthosis for such patients whose stroke and spinal cord injury severity is nominal and the motor control in hands can be regained by therapy as part of their rehabilitation process. The patients can wear this orthosis and the therapy can be done with simple Human Computer Interface. The physicians, the physiotherapists and the patients themselves can carry out the therapy with the help of this device. The tests conducted in the lab and the results obtained are very promising that this can be an effective mechanism for stroke and spinal cord injury patients in their rehabilitation process. The hand orthosis is designed and fabricated locally so that it can be made available to such patients at an affordable cost.

  6. Design and testing of a functional arm orthosis in patients with neuromuscular diseases.

    PubMed

    Rahman, Tariq; Sample, Whitney; Seliktar, Rahamim; Scavina, Mena T; Clark, Alisa L; Moran, Kacy; Alexander, Michael A

    2007-06-01

    The objective of this study was to determine the utility of a passive gravity-balanced arm orthosis, the Wilmington robotic exoskeleton (WREX), for patients with neuromuscular diseases. The WREX, a four-degrees-of-freedom functional orthosis, is energized by rubber bands to eliminate gravity and is attached to the wheelchair. The development and clinical testing of WREX is described in this report. Seventeen patients (14 boys and 3 girls) with muscular disabilities participated in the study. Ages ranged from 4 to 20 years. Criteria for inclusion included a weakened arm, use of a wheelchair, the ability to grasp and release objects, and the ability to provide feedback on device use. Testing consisted of administering the Jebsen test of hand function without WREX and then testing again after approximately two weeks of wearing the WREX orthosis. The timed results of each task within the test then were compared. Specific tasks related to vertical movement required less time to perform with the WREX. A large number of subjects were able to perform the Jebsen tasks with the WREX, where they were unable to perform the task without the WREX. Patients can benefit from WREX because it increases their performance in daily living activities and makes many tasks possible. The range-of-motion in the patients' arms increased considerably, while the time required to complete some of the Jebsen test tasks decreased. Most patients were very receptive to WREX, although a few were ambivalent.

  7. Three-dimensional finite element stress analysis of the polypropylene, ankle-foot orthosis: static analysis.

    PubMed

    Chu, T M; Reddy, N P; Padovan, J

    1995-07-01

    An asymmetric 3-dimensional finite element model (FEM) of the ankle-foot orthosis (AFO) together with the ankle-foot complex was developed using the computer aided design (CAD) program PATRAN. Static analysis of normal and pathological motions of the ankle-foot complex such as the "drop-foot" problem were conducted using the FEM program ADINA. A total of 313 three dimensional solid elements and 10 truss elements were used. Heel strike and toe-off condition were simulated. Results revealed that the peak compressive stress (1.6 MPa) in the AFO model occurred in the heel regions of the AFO and the maximum tensile stress (0.8 MPa) occurred in the neck region of the AFO during toe-off. Parametric analyses revealed that the model was sensitive to the elastic moduli of the AFO and of the soft tissue, but was relatively insensitive to the ligament stiffness. The results confirmed the hypothesis that peak stresses in the orthosis occur in the heal and neck regions of the orthosis.

  8. A Critical Analysis of a Hand Orthosis Reverse Engineering and 3D Printing Process

    PubMed Central

    2016-01-01

    The possibility to realize highly customized orthoses is receiving boost thanks to the widespread diffusion of low-cost 3D printing technologies. However, rapid prototyping (RP) with 3D printers is only the final stage of patient personalized orthotics processes. A reverse engineering (RE) process is in fact essential before RP, to digitize the 3D anatomy of interest and to process the obtained surface with suitable modeling software, in order to produce the virtual solid model of the orthosis to be printed. In this paper, we focus on the specific and demanding case of the customized production of hand orthosis. We design and test the essential steps of the entire production process with particular emphasis on the accurate acquisition of the forearm geometry and on the subsequent production of a printable model of the orthosis. The choice of the various hardware and software tools (3D scanner, modeling software, and FDM printer) is aimed at the mitigation of the design and production costs while guaranteeing suitable levels of data accuracy, process efficiency, and design versatility. Eventually, the proposed method is critically analyzed so that the residual issues and critical aspects are highlighted in order to discuss possible alternative approaches and to derive insightful observations that could guide future research activities. PMID:27594781

  9. Kinematics variations after spring-assisted orthosis training in persons with stroke.

    PubMed

    Woo, Youngkeun; Jeon, Hyeseon; Hwang, Sujin; Choi, Boram; Lee, Juwon

    2013-08-01

    Static wrist splinting after stroke was not effective in facilitating distal movement. However, the purpose of this study is to evaluate the efficacy of training using kinematic parameters after a SaeboFlex orthosis training on chronic stroke patients. Five stroke patients participated in 4 weeks of training using a SaeboFlex orthosis for 1 hour per day, five times per week. Fugl-Meyer Assessment, Box and Block Test, Action Research Arm Test, and Kinematics using a three-dimensional motion analysis system were used for evaluating of training effects. The upper extremity score of the Fugl-Meyer Assessment and the Box and Block Test score were increased significantly after the intervention. The jerkiness score of the shoulder and elbow joints at the sagittal plane decreased significantly during the reach-to-grasp task at acromion height, and the jerkiness scores of the wrist joint during the reach-to-grasp task decreased significantly at both elbow and acromion heights. The results of this study indicate that a SaeboFlex training is effective in recovering the movement of the hemiparetic upper extremity of patients after stroke. Using a spring-assisted dynamic hand orthosis is considered to be an effective treatment option for providing repetition, task-oriented training, and real-world activities for the hemiparetic upper extremity, which was impaired hand to perform functional training.

  10. Maximizing functional mobility in an electrical burn patient using a patellar tendon bearing orthosis.

    PubMed

    Pretz, Rachelle; Brown, Cora; Hughes, William B; Altschuler, Eric L

    2016-07-18

    Injury to the foot and ankle without involvement of the knee, requiring a patient to become non-weight-bearing or even needing amputation, is a common problem resulting from diverse causes, including diabetic foot ulcers and trauma. The patellar tendon bearing orthosis may be a good option for patients who would functionally deteriorate, attempting to live their lives without the use of a leg. This brace was introduced 58 years ago; however, it is under-utilized clinically and under-represented in the literature. A 25-year-old man with severe electrical burn injuries resulting in an unstable ankle who, through the use of patellar tendon bearing orthosis and therapeutic rehabilitation, was able to walk at a supervision level without additional assistive devices. The patellar tendon bearing orthosis is recommended, not only for other burn patients who are unable to weight-bear through their ankle-foot complex, but for other patients, such as trauma patients, to allow for ambulation.

  11. A Critical Analysis of a Hand Orthosis Reverse Engineering and 3D Printing Process.

    PubMed

    Baronio, Gabriele; Harran, Sami; Signoroni, Alberto

    2016-01-01

    The possibility to realize highly customized orthoses is receiving boost thanks to the widespread diffusion of low-cost 3D printing technologies. However, rapid prototyping (RP) with 3D printers is only the final stage of patient personalized orthotics processes. A reverse engineering (RE) process is in fact essential before RP, to digitize the 3D anatomy of interest and to process the obtained surface with suitable modeling software, in order to produce the virtual solid model of the orthosis to be printed. In this paper, we focus on the specific and demanding case of the customized production of hand orthosis. We design and test the essential steps of the entire production process with particular emphasis on the accurate acquisition of the forearm geometry and on the subsequent production of a printable model of the orthosis. The choice of the various hardware and software tools (3D scanner, modeling software, and FDM printer) is aimed at the mitigation of the design and production costs while guaranteeing suitable levels of data accuracy, process efficiency, and design versatility. Eventually, the proposed method is critically analyzed so that the residual issues and critical aspects are highlighted in order to discuss possible alternative approaches and to derive insightful observations that could guide future research activities.

  12. Computer simulation of the dynamics of a human arm and orthosis linkage mechanism.

    PubMed

    Buckley, M A; Johnson, G R

    1997-01-01

    This paper describes the use of computer modelling and simulation during the design and development of a motorized upper limb orthotic system to be used to aid the dysfunctional human arm. The orthosis consisted of a three-degree-of-freedom shoulder module and a lower arm module providing movements at the elbow and wrist. Simulation software has been used to model the mechanism created by the connection of the orthosis and the arm. With this model it has been possible to analyse the kinematics and kinetics of both the arm and orthosis during a variety of dynamic loading conditions. In particular, the power requirements of the orthotic joints during the execution of specific tasks have been determined and these data have been used to specify the motors of a working prototype. The effect of misalignment between real and orthotic shoulder joints has also been investigated and a potentially hazardous situation has been highlighted prior to testing of the prototype by a volunteer in the laboratory.

  13. Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern.

    PubMed

    Neckel, Nathan D; Blonien, Natalie; Nichols, Diane; Hidler, Joseph

    2008-09-01

    It is well documented that individuals with chronic stroke often exhibit considerable gait impairments that significantly impact their quality of life. While stroke subjects often walk asymmetrically, we sought to investigate whether prescribing near normal physiological gait patterns with the use of the Lokomat robotic gait-orthosis could help ameliorate asymmetries in gait, specifically, promote similar ankle, knee, and hip joint torques in both lower extremities. We hypothesized that hemiparetic stroke subjects would demonstrate significant differences in total joint torques in both the frontal and sagittal planes compared to non-disabled subjects despite walking under normal gait kinematic trajectories. A motion analysis system was used to track the kinematic patterns of the pelvis and legs of 10 chronic hemiparetic stroke subjects and 5 age matched controls as they walked in the Lokomat. The subject's legs were attached to the Lokomat using instrumented shank and thigh cuffs while instrumented footlifters were applied to the impaired foot of stroke subjects to aid with foot clearance during swing. With minimal body-weight support, subjects walked at 2.5 km/hr on an instrumented treadmill capable of measuring ground reaction forces. Through a custom inverse dynamics model, the ankle, knee, and hip joint torques were calculated in both the frontal and sagittal planes. A single factor ANOVA was used to investigate differences in joint torques between control, unimpaired, and impaired legs at various points in the gait cycle. While the kinematic patterns of the stroke subjects were quite similar to those of the control subjects, the kinetic patterns were very different. During stance phase, the unimpaired limb of stroke subjects produced greater hip extension and knee flexion torques than the control group. At pre-swing, stroke subjects inappropriately extended their impaired knee, while during swing they tended to abduct their impaired leg, both being typical

  14. Experimental and computational analysis of composite ankle-foot orthosis.

    PubMed

    Zou, Dequan; He, Tao; Dailey, Michael; Smith, Kirk E; Silva, Matthew J; Sinacore, David R; Mueller, Michael J; Hastings, Mary K

    2014-01-01

    Carbon fiber (CF) ankle-foot orthoses (AFOs) can improve gait by increasing ankle plantar-flexor power and improving plantar-flexor ankle joint moment and energy efficiency compared with posterior leaf spring AFOs made of thermoplastic. However, fabricating a CF AFO to optimize the performance of the individual user may require multiple AFOs and expensive fabrication costs. Finite element analysis (FEA) models were developed to predict the mechanical behavior of AFOs in this study. Three AFOs, two made of CF composite material and one made of thermoplastic material, were fabricated and then mechanically tested to produce force-displacement data. The FEA models were validated by comparing model predictions with mechanical testing data performed under the same loading and boundary conditions. The actual mechanical testing demonstrated that CF performs better than thermoplastic. The simulation results showed that FEA models produced accurate predictions for both types of orthoses. The relative error of the energy return ratio predicted by the CF AFO FEA model developed in this study is less than 3%. We conclude that highly accurate FEA models will allow orthotists to improve CF AFO fabrication without wasting resources (time and money) on trial and error fabrications that are expensive and do not consistently improve AFO and user performance.

  15. Design and construction of custom-made neoprene thumb carpo-metacarpal orthosis with thermoplastic stabilization for first carpo-metacarpal joint osteoarthritis.

    PubMed

    Bani, Monireh Ahmadi; Arazpour, Mokhtar; Curran, Sarah

    2013-01-01

    Individuals with first carpo-metacarpal (CMC) osteoarthritis (OA) often experience pain and difficulty with functional activities. Thus, designing orthotics to improve function and decrease pain is common practice. These therapists designed an orthosis using a combination of neoprene and thermoplastic materials to create a soft orthosis that provides support to the first CMC joint - Victoria Priganc, PhD, OTR, CHT, CLT.

  16. One- or Two-Legged Standing: What Is the More Suitable Protocol to Assess the Postural Effects of the Rigid Ankle Orthosis?

    ERIC Educational Resources Information Center

    Rougier, Patrice; Genthon, Nicolas; Gallois-Montbrun, Thibault; Brugiere, Steve; Bouvat, Eric

    2009-01-01

    To highlight the capacity of one- and two-legged standing protocols when assessing postural behavior induced by a rigid ankle orthosis, 14 healthy individuals stood upright barefoot and wore either an elastic stocking on the preferred leg or a rigid orthosis with or without additional taping in one- or two-legged (TL) conditions. Traditional…

  17. One- or Two-Legged Standing: What Is the More Suitable Protocol to Assess the Postural Effects of the Rigid Ankle Orthosis?

    ERIC Educational Resources Information Center

    Rougier, Patrice; Genthon, Nicolas; Gallois-Montbrun, Thibault; Brugiere, Steve; Bouvat, Eric

    2009-01-01

    To highlight the capacity of one- and two-legged standing protocols when assessing postural behavior induced by a rigid ankle orthosis, 14 healthy individuals stood upright barefoot and wore either an elastic stocking on the preferred leg or a rigid orthosis with or without additional taping in one- or two-legged (TL) conditions. Traditional…

  18. Gait disturbances in dystrophic hamsters.

    PubMed

    Hampton, Thomas G; Kale, Ajit; Amende, Ivo; Tang, Wenlong; McCue, Scott; Bhagavan, Hemmi N; VanDongen, Case G

    2011-01-01

    The delta-sarcoglycan-deficient hamster is an excellent model to study muscular dystrophy. Gait disturbances, important clinically, have not been described in this animal model. We applied ventral plane videography (DigiGait) to analyze gait in BIO TO-2 dystrophic and BIO F1B control hamsters walking on a transparent treadmill belt. Stride length was ∼13% shorter (P < .05) in TO-2 hamsters at 9 months of age compared to F1B hamsters. Hindlimb propulsion duration, an indicator of muscle strength, was shorter in 9-month-old TO-2 (247 ± 8 ms) compared to F1B hamsters (272 ± 11 ms; P < .05). Braking duration, reflecting generation of ground reaction forces, was delayed in 9-month-old TO-2 (147 ± 6 ms) compared to F1B hamsters (126 ± 8 ms; P < .05). Hindpaw eversion, evidence of muscle weakness, was greater in 9-month-old TO-2 than in F1B hamsters (17.7 ± 1.2° versus 8.7 ± 1.6°; P < .05). Incline and decline walking aggravated gait disturbances in TO-2 hamsters at 3 months of age. Several gait deficits were apparent in TO-2 hamsters at 1 month of age. Quantitative gait analysis demonstrates that dystrophic TO-2 hamsters recapitulate functional aspects of human muscular dystrophy. Early detection of gait abnormalities in a convenient animal model may accelerate the development of therapies for muscular dystrophy.

  19. The short -term effects of an exercise programme as an adjunct to an orthosis in neuromuscular scoliosis.

    PubMed

    Bayar, B; Uygur, F; Bayar, K; Bek, N; Yakut, Y

    2004-12-01

    The purpose of this study was to investigate the effects of a 4 week physiotherapy programme on patients who were given a spinal orthosis for neuromuscular scoliosis. This study was planned as a single group pre- and post-intervention repeated measures design. All patients were given a polyethylene spinal orthosis with an anterior opening. Fifteen (15) patients with neuromuscular diseases and a mean age of 12.46 years were evaluated. An exercises programme consisting of postural training, muscle strengthening and stretching exercises with special emphasis on respiratory exercises was given as an adjunct to orthotic treatment. The degree of impairment in forced vital capacity was 17.56% upon wearing an orthosis, it decreased to 9.28% following therapy (p < 0.05). There was also a statistically significant increase in muscle strength, balance duration and a significant decrease in limitation of range of motion. The results of the study imply that the conservative treatment of neuromuscular scoliosis should include an exercise programme as an adjunct to an orthosis, both to reduce the compromising effect of an orthosis on respiratory function and to support the patient's physical capacities.

  20. A Newly Designed Tennis Elbow Orthosis With a Traditional Tennis Elbow Strap in Patients With Lateral Epicondylitis

    PubMed Central

    Saremi, Hossein; Chamani, Vahid; Vahab-Kashani, Reza

    2016-01-01

    Background Lateral epicondylitis is a common cause of pain and upper limb dysfunction. The use of counterforce straps for treatment of lateral epicondylitis is widespread. This kind of orthosis can be modified to have a greater effect on relieving pain by reducing tension on the origin of the extensor pronator muscles. Objectives To determine the immediate effects of a newly designed orthosis on pain and grip strength in patients with lateral epicondylitis. Materials and Methods Twelve participants (six men and six women) were recruited (mean age = 41 ± 6.7 years) and evaluated for pain and grip strength in three sessions. A 48-hour break was taken between each session. The first session was without any orthosis, the second session was with the new modified tennis elbow orthosis, and the third session was with a conventional tennis elbow strap. Results Both counterforce straps were effective. However, significantly more improvement was observed in pain and grip strength after using the newly modified orthosis (P < 0.05). Conclusions The newly designed strap reduces pain more effectively and improves grip strength by causing greater localized pressure on two regions with different force applications (two component vectors versus one). PMID:28180116

  1. Randomized Controlled Trial Comparing Orthosis Augmented by Either Stretching or Stretching and Strengthening for Stage II Tibialis Posterior Tendon Dysfunction.

    PubMed

    Houck, Jeff; Neville, Christopher; Tome, Josh; Flemister, Adolph

    2015-09-01

    The value of strengthening and stretching exercises combined with orthosis treatment in a home-based program has not been evaluated. The purpose of this study was to compare the effects of augmenting orthosis treatment with either stretching or a combination of stretching and strengthening in participants with stage II tibialis posterior tendon dysfunction (TPTD). Participants included 39 patients with stage II TPTD who were recruited from a medical center and then randomly assigned to a strengthening or stretching treatment group. Excluding 3 dropouts, there were 19 participants in the strengthening group and 17 in the stretching group. The stretching treatment consisted of a prefabricated orthosis used in conjunction with stretching exercises. The strengthening treatment consisted of a prefabricated orthosis used in conjunction with the stretching and strengthening exercises. The main outcome measures were self-report (ie, Foot Function Index and Short Musculoskeletal Function Assessment) and isometric deep posterior compartment strength. Two-way analysis of variance was used to test for differences between groups at 6 and 12 weeks after starting the exercise programs. Both groups significantly improved in pain and function over the 12-week trial period. The self-report measures showed minimal differences between the treatment groups. There were no differences in isometric deep posterior compartment strength. A moderate-intensity, home-based exercise program was minimally effective in augmenting orthosis wear alone in participants with stage II TPTD. Level I, prospective randomized study. © The Author(s) 2015.

  2. Stability in skipping gaits.

    PubMed

    Andrada, Emanuel; Müller, Roy; Blickhan, Reinhard

    2016-11-01

    As an alternative to walking and running, humans are able to skip. However, adult humans avoid it. This fact seems to be related to the higher energetic costs associated with skipping. Still, children, some birds, lemurs and lizards use skipping gaits during daily locomotion. We combined experimental data on humans with numerical simulations to test whether stability and robustness motivate this choice. Parameters for modelling were obtained from 10 male subjects. They locomoted using unilateral skipping along a 12 m runway. We used a bipedal spring loaded inverted pendulum to model and to describe the dynamics of skipping. The subjects displayed higher peak ground reaction forces and leg stiffness in the first landing leg (trailing leg) compared to the second landing leg (leading leg). In numerical simulations, we found that skipping is stable across an amazing speed range from skipping on the spot to fast running speeds. Higher leg stiffness in the trailing leg permits longer strides at same system energy. However, this strategy is at the same time less robust to sudden drop perturbations than skipping with a stiffer leading leg. A slightly higher stiffness in the leading leg is most robust, but might be costlier.

  3. Stability in skipping gaits

    PubMed Central

    Blickhan, Reinhard

    2016-01-01

    As an alternative to walking and running, humans are able to skip. However, adult humans avoid it. This fact seems to be related to the higher energetic costs associated with skipping. Still, children, some birds, lemurs and lizards use skipping gaits during daily locomotion. We combined experimental data on humans with numerical simulations to test whether stability and robustness motivate this choice. Parameters for modelling were obtained from 10 male subjects. They locomoted using unilateral skipping along a 12 m runway. We used a bipedal spring loaded inverted pendulum to model and to describe the dynamics of skipping. The subjects displayed higher peak ground reaction forces and leg stiffness in the first landing leg (trailing leg) compared to the second landing leg (leading leg). In numerical simulations, we found that skipping is stable across an amazing speed range from skipping on the spot to fast running speeds. Higher leg stiffness in the trailing leg permits longer strides at same system energy. However, this strategy is at the same time less robust to sudden drop perturbations than skipping with a stiffer leading leg. A slightly higher stiffness in the leading leg is most robust, but might be costlier. PMID:28018651

  4. Stability in skipping gaits

    NASA Astrophysics Data System (ADS)

    Andrada, Emanuel; Müller, Roy; Blickhan, Reinhard

    2016-11-01

    As an alternative to walking and running, humans are able to skip. However, adult humans avoid it. This fact seems to be related to the higher energetic costs associated with skipping. Still, children, some birds, lemurs and lizards use skipping gaits during daily locomotion. We combined experimental data on humans with numerical simulations to test whether stability and robustness motivate this choice. Parameters for modelling were obtained from 10 male subjects. They locomoted using unilateral skipping along a 12 m runway. We used a bipedal spring loaded inverted pendulum to model and to describe the dynamics of skipping. The subjects displayed higher peak ground reaction forces and leg stiffness in the first landing leg (trailing leg) compared to the second landing leg (leading leg). In numerical simulations, we found that skipping is stable across an amazing speed range from skipping on the spot to fast running speeds. Higher leg stiffness in the trailing leg permits longer strides at same system energy. However, this strategy is at the same time less robust to sudden drop perturbations than skipping with a stiffer leading leg. A slightly higher stiffness in the leading leg is most robust, but might be costlier.

  5. Early rehabilitation treatment combined with equinovarus foot deformity surgical correction in stroke patients: safety and changes in gait parameters.

    PubMed

    Giannotti, Erika; Merlo, Andrea; Zerbinati, Paolo; Longhi, Maria; Prati, Paolo; Masiero, Stefano; Mazzoli, Davide

    2016-06-01

    Equinovarus foot deformity (EVFD) compromises several prerequisites of walking and increases the risk of falling. Guidelines on rehabilitation following EVFD surgery are missing in current literature. The aim of this study was to analyze safety and adherence to an early rehabilitation treatment characterized by immediate weight bearing with an ankle-foot orthosis (AFO) in hemiplegic patients after EVFD surgery and to describe gait changes after EVFD surgical correction combined with early rehabilitation treatment. Retrospective observational cohort study. Inpatient rehabilitation clinic. Forty-seven adult patients with hemiplegia consequent to ischemic or haemorrhagic stroke (L/R 20/27, age 56±15 years, time from lesion 6±5 years). A specific rehabilitation protocol with a non-articulated AFO, used to allow for immediate gait training, started one day after EVFD surgery. Gait analysis (GA) data before and one month after surgery were analyzed. The presence of differences in GA space-time parameters, in ankle dorsiflexion (DF) values and peaks at initial contact (DF at IC), during stance (DF at St) and swing (DF at Sw) were assessed by the Wilcoxon Test while the presence of correlations between pre- and post-operative values by Spearman's correlation coefficient. All patients completed the rehabilitation protocol and no clinical complications occurred in the sample. Ankle DF increased one month after surgery at all investigated gait phases (Wilcoxon Test, P<0.0001), becoming neutral at IC. Significant (P<0.05) variations were found for stride length, stride width, anterior step length of the affected side and for the duration of the double support phase of the contralateral side. The postsurgery ankle DF at St was found to be correlated (R=0.81, P<0.0001) with its pre-surgery value, thus being predictable. Weaker significant correlations were found for DF at Sw and DF at IC, where contribution from the dorsiflexor muscles is required in addition to calf muscle

  6. GaitKeeper: A System for Measuring Canine Gait

    PubMed Central

    Ladha, Cassim; O’Sullivan, Jack; Belshaw, Zoe; Asher, Lucy

    2017-01-01

    It is understood gait has the potential to be used as a window into neurodegenerative disorders, identify markers of subclinical pathology, inform diagnostic algorithms of disease progression and measure the efficacy of interventions. Dogs’ gaits are frequently assessed in a veterinary setting to detect signs of lameness. Despite this, a reliable, affordable and objective method to assess lameness in dogs is lacking. Most described canine lameness assessments are subjective, unvalidated and at high risk of bias. This means reliable, early detection of canine gait abnormalities is challenging, which may have detrimental implications for dogs’ welfare. In this paper, we draw from approaches and technologies used in human movement science and describe a system for objectively measuring temporal gait characteristics in dogs (step-time, swing-time, stance-time). Asymmetries and variabilities in these characteristics are of known clinical significance when assessing lameness but presently may only be assessed on coarse scales or under highly instrumented environments. The system consists an inertial measurement unit, containing a 3-axis accelerometer and gyroscope coupled with a standardized walking course. The measurement unit is attached to each leg of the dog under assessment before it is walked around the course. The data by the measurement unit is then processed to identify steps and subsequently, micro-gait characteristics. This method has been tested on a cohort of 19 healthy dogs of various breeds ranging in height from 34.2 cm to 84.9 cm. We report the system as capable of making precise step delineations with detections of initial and final contact times of foot-to-floor to a mean precision of 0.011 s and 0.048 s, respectively. Results are based on analysis of 12,678 foot falls and we report a sensitivity, positive predictive value and F-score of 0.81, 0.83 and 0.82 respectively. To investigate the effect of gait on system performance, the approach was

  7. Differences in implementation of gait analysis recommendations based on affiliation with a gait laboratory.

    PubMed

    Wren, Tishya A L; Elihu, Koorosh J; Mansour, Shaun; Rethlefsen, Susan A; Ryan, Deirdre D; Smith, Michelle L; Kay, Robert M

    2013-02-01

    This study examined the extent to which gait analysis recommendations are followed by orthopedic surgeons with varying degrees of affiliation with the gait laboratory. Surgical data were retrospectively examined for 95 patients with cerebral palsy who underwent lower extremity orthopedic surgery following gait analysis. Thirty-three patients were referred by two surgeons directly affiliated with the gait laboratory (direct affiliation), 44 were referred by five surgeons from the same institution but not directly affiliated with the gait laboratory (institutional affiliation), and 18 were referred by 10 surgeons from other institutions (no affiliation). Data on specific surgeries were collected from the gait analysis referral, gait analysis report, and operative notes. Adherence to the gait analysis recommendations was calculated by dividing the number of procedures where the surgery followed the gait analysis recommendation (numerator) by the total number of procedures initially planned, recommended by gait analysis, or done (denominator). Adherence with the gait analysis recommendations was 97%, 94%, and 77% for the direct, institutional, and no affiliation groups, respectively. Procedures recommended for additions to the surgical plan were added 98%, 87%, and 77% of the time. Procedures recommended for elimination were dropped 100%, 89%, and 88% of the time. Of 81 patients who had specific surgical plans prior to gait analysis, changes were implemented in 84% (68/81) following gait analysis recommendations. Gait analysis influences the treatment decisions of surgeons regardless of affiliation with the gait laboratory, although the influence is stronger for surgeons who practice within the same institution as the gait laboratory.

  8. Gait analysis in forensic medicine

    NASA Astrophysics Data System (ADS)

    Larsen, Peter K.; Simonsen, Erik B.; Lynnerup, Niels

    2007-01-01

    We have combined the basic human ability to recognize other individuals with functional anatomical and biomechanical knowledge, in order to analyze the gait of perpetrators as recorded on surveillance video. The perpetrators are then compared with similar analyses of suspects. At present we give a statement to the police as to whether the perpetrator has a characteristic gait pattern compared to normal gait, and if a suspect has a comparable gait pattern. We have found agreements such as: limping, varus instability in the knee at heel strike, larger lateral flexion of the spinal column to one side than the other, inverted ankle during stance, pronounced sagittal head-movements, and marked head-shoulder posture. Based on these characteristic features, we state whether suspect and perpetrator could have the same identity but it is not possible to positively identify the perpetrator. Nevertheless, we have been involved in several cases where the court has found that this type of gait analysis, especially combined with photogrammetry, was a valuable tool. The primary requisites are surveillance cameras recording with sufficient frequency, ideally about 15 Hz, which are positioned in frontal and preferably also in profile view.

  9. A mechanical energy analysis of gait initiation

    NASA Technical Reports Server (NTRS)

    Miller, C. A.; Verstraete, M. C.

    1999-01-01

    The analysis of gait initiation (the transient state between standing and walking) is an important diagnostic tool to study pathologic gait and to evaluate prosthetic devices. While past studies have quantified mechanical energy of the body during steady-state gait, to date no one has computed the mechanical energy of the body during gait initiation. In this study, gait initiation in seven normal male subjects was studied using a mechanical energy analysis to compute total body energy. The data showed three separate states: quiet standing, gait initiation, and steady-state gait. During gait initiation, the trends in the energy data for the individual segments were similar to those seen during steady-state gait (and in Winter DA, Quanbury AO, Reimer GD. Analysis of instantaneous energy of normal gait. J Biochem 1976;9:253-257), but diminished in amplitude. However, these amplitudes increased to those seen in steady-state during the gait initiation event (GIE), with the greatest increase occurring in the second step due to the push-off of the foundation leg. The baseline level of mechanical energy was due to the potential energy of the individual segments, while the cyclic nature of the data was indicative of the kinetic energy of the particular leg in swing phase during that step. The data presented showed differences in energy trends during gait initiation from those of steady state, thereby demonstrating the importance of this event in the study of locomotion.

  10. Skeleton-Based Abnormal Gait Detection.

    PubMed

    Nguyen, Trong-Nguyen; Huynh, Huu-Hung; Meunier, Jean

    2016-10-26

    Human gait analysis plays an important role in musculoskeletal disorder diagnosis. Detecting anomalies in human walking, such as shuffling gait, stiff leg or unsteady gait, can be difficult if the prior knowledge of such a gait pattern is not available. We propose an approach for detecting abnormal human gait based on a normal gait model. Instead of employing the color image, silhouette, or spatio-temporal volume, our model is created based on human joint positions (skeleton) in time series. We decompose each sequence of normal gait images into gait cycles. Each human instant posture is represented by a feature vector which describes relationships between pairs of bone joints located in the lower body. Such vectors are then converted into codewords using a clustering technique. The normal human gait model is created based on multiple sequences of codewords corresponding to different gait cycles. In the detection stage, a gait cycle with normality likelihood below a threshold, which is determined automatically in the training step, is assumed as an anomaly. The experimental results on both marker-based mocap data and Kinect skeleton show that our method is very promising in distinguishing normal and abnormal gaits with an overall accuracy of 90.12%.

  11. Skeleton-Based Abnormal Gait Detection

    PubMed Central

    Nguyen, Trong-Nguyen; Huynh, Huu-Hung; Meunier, Jean

    2016-01-01

    Human gait analysis plays an important role in musculoskeletal disorder diagnosis. Detecting anomalies in human walking, such as shuffling gait, stiff leg or unsteady gait, can be difficult if the prior knowledge of such a gait pattern is not available. We propose an approach for detecting abnormal human gait based on a normal gait model. Instead of employing the color image, silhouette, or spatio-temporal volume, our model is created based on human joint positions (skeleton) in time series. We decompose each sequence of normal gait images into gait cycles. Each human instant posture is represented by a feature vector which describes relationships between pairs of bone joints located in the lower body. Such vectors are then converted into codewords using a clustering technique. The normal human gait model is created based on multiple sequences of codewords corresponding to different gait cycles. In the detection stage, a gait cycle with normality likelihood below a threshold, which is determined automatically in the training step, is assumed as an anomaly. The experimental results on both marker-based mocap data and Kinect skeleton show that our method is very promising in distinguishing normal and abnormal gaits with an overall accuracy of 90.12%. PMID:27792181

  12. A mechanical energy analysis of gait initiation

    NASA Technical Reports Server (NTRS)

    Miller, C. A.; Verstraete, M. C.

    1999-01-01

    The analysis of gait initiation (the transient state between standing and walking) is an important diagnostic tool to study pathologic gait and to evaluate prosthetic devices. While past studies have quantified mechanical energy of the body during steady-state gait, to date no one has computed the mechanical energy of the body during gait initiation. In this study, gait initiation in seven normal male subjects was studied using a mechanical energy analysis to compute total body energy. The data showed three separate states: quiet standing, gait initiation, and steady-state gait. During gait initiation, the trends in the energy data for the individual segments were similar to those seen during steady-state gait (and in Winter DA, Quanbury AO, Reimer GD. Analysis of instantaneous energy of normal gait. J Biochem 1976;9:253-257), but diminished in amplitude. However, these amplitudes increased to those seen in steady-state during the gait initiation event (GIE), with the greatest increase occurring in the second step due to the push-off of the foundation leg. The baseline level of mechanical energy was due to the potential energy of the individual segments, while the cyclic nature of the data was indicative of the kinetic energy of the particular leg in swing phase during that step. The data presented showed differences in energy trends during gait initiation from those of steady state, thereby demonstrating the importance of this event in the study of locomotion.

  13. Gait Stability in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Bruijn, Sjoerd M.; Millard, Matthew; van Gestel, Leen; Meyns, Pieter; Jonkers, Ilse; Desloovere, Kaat

    2013-01-01

    Children with unilateral Cerebral Palsy (CP) have several gait impairments, amongst which impaired gait stability may be one. We tested whether a newly developed stability measure (the foot placement estimator, FPE) which does not require long data series, can be used to asses gait stability in typically developing (TD) children as well as…

  14. Gait Stability in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Bruijn, Sjoerd M.; Millard, Matthew; van Gestel, Leen; Meyns, Pieter; Jonkers, Ilse; Desloovere, Kaat

    2013-01-01

    Children with unilateral Cerebral Palsy (CP) have several gait impairments, amongst which impaired gait stability may be one. We tested whether a newly developed stability measure (the foot placement estimator, FPE) which does not require long data series, can be used to asses gait stability in typically developing (TD) children as well as…

  15. Biomechanics of Gait during Pregnancy

    PubMed Central

    Vieira, Filomena

    2014-01-01

    Introduction. During pregnancy women experience several changes in the body's physiology, morphology, and hormonal system. These changes may affect the balance and body stability and can cause discomfort and pain. The adaptations of the musculoskeletal system due to morphological changes during pregnancy are not fully understood. Few studies clarify the biomechanical changes of gait that occur during pregnancy and in postpartum period. Purposes. The purpose of this review was to analyze the available evidence on the biomechanical adaptations of gait that occur throughout pregnancy and in postpartum period, specifically with regard to the temporal, spatial, kinematic, and kinetic parameters of gait. Methods. Three databases were searched and 9 studies with a follow-up design were retrieved for analysis. Results. Most studies performed temporal, spatial, and kinematic analysis. Only three studies performed kinetic analysis. Conclusion. The adaptation strategies to the anatomical and physiological changes throughout pregnancy are still unclear, particularly in a longitudinal perspective and regarding kinetic parameters. PMID:25587566

  16. Nonstandard Gaits in Unsteady Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Fairchild, Michael; Rowley, Clarence

    2016-11-01

    Marine biology has long inspired the design and engineering of underwater vehicles. The literature examining the kinematics and dynamics of fishes, ranging from undulatory anguilliform swimmers to oscillatory ostraciiform ones, is vast. Past numerical studies of these organisms have principally focused on gaits characterized by sinusoidal pitching and heaving motions. It is conceivable that more sophisticated gaits could perform better in some respects, for example as measured by thrust generation or by cost of transport. This work uses an unsteady boundary-element method to numerically investigate the hydrodynamics and propulsive efficiency of high-Reynolds-number swimmers whose gaits are encoded by Fourier series or by Jacobi elliptic functions. Numerical results are presented with an emphasis on identifying particular wake structures and modes of motion that are associated with optimal swimming. This work was supported by the Office of Naval Research through MURI Grant N00014-14-1-0533.

  17. Development and reliability of a measure evaluating dynamic proprioception during walking with a robotized ankle-foot orthosis, and its relation to dynamic postural control.

    PubMed

    Fournier Belley, Amélie; Bouffard, Jason; Brochu, Karine; Mercier, Catherine; Roy, Jean-Sébastien; Bouyer, Laurent

    2016-09-01

    Proprioception is important for proper motor control. As the central nervous system modulates how sensory information is processed during movement (sensory gating), proprioceptive tests performed at rest do not correlate well with performance during dynamic tasks such as walking. Proprioception therefore needs to be assessed during movement execution. 1) To develop a test evaluating the ability to detect movement errors during walking, and its test-retest reliability; 2) to quantify the relationship between proprioceptive threshold (obtained with this new test) and performance in a standardized dynamic balance task. Thirty healthy subjects walked on a treadmill while wearing a robotized ankle-foot orthosis (rAFO) for 2 bouts of 6min on 2 evaluation sessions (test-retest reliability). Force perturbations resisting ankle dorsiflexion during swing were applied to the ankle via the rAFO (150ms duration, variable amplitude). Participants pushed a button when they detected the perturbations. The Star Excursion Balance Test (SEBT) was used to evaluate dynamic balance. Angular differences between perturbed and non-perturbed gait cycles were used to quantify movement error. Detection threshold was defined as the minimal movement error at which 50% of the perturbations were perceived. Intraclass correlation coefficients (ICCs) estimated test-retest reliability, and Pearson coefficients were used to determine the correlation between detection threshold and SEBT. Detection threshold was 5.31±2.12°. Good reliability (ICC=0.70) and a moderate to strong correlation to SEBT (r=-0.57 to -0.76) were found. Force perturbations produced by the robotized AFO provides a reliable way of evaluating proprioception during walking. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Phase dependent modulation of soleus H-reflex in healthy, non-injured individuals while walking with an ankle foot orthosis.

    PubMed

    Nair, Preeti M; Phadke, Chetan P; Behrman, Andrea L

    2014-04-01

    To examine the dynamic modulation of the soleus H-reflex while walking with a posterior leaf spring ankle foot orthosis (PAFO). Soleus H-reflexes were evoked on randomly chosen lower limb of fourteen healthy individuals (age range of 22-36 years, 7 women) while walking on a treadmill with and without a PAFO. In order to capture excitability across the duration of the gait cycle, H-reflexes were evoked at heel strike (HS), HS+100ms, HS+200ms, HS+300ms, HS+400ms in the stance phase and at toe-off (TO), TO+100ms, TO+200ms, TO+300ms, TO+400ms in the swing phase respectively. H-reflex excitability was significantly higher in the form of greater slope of the rise in H-reflex amplitude across the swing phase (p=0.024) and greater mean H-reflex amplitude (p=0.014) in the swing phase of walking with a PAFO. There was no change in the slope (p=0.25) or the mean amplitude of H-reflexes (p=0.22) in the stance phase of walking with a PAFO. Mean background EMG activity between the two walking conditions was not significantly different for both the tibialis anterior (p=0.69) and soleus muscles (p=0.59). PAFO increased reflex excitability in the swing phase of walking in healthy individuals. Altered sensory input originating from joint, muscle and cutaneous receptors may be the underlying mechanism for greater reflex excitability. The neurophysiological effect of PAFOs on reflex modulation during walking needs to be tested in persons with neurological injury. The relationship between the sensory input and the reflex output during walking may assist in determining if there exists a neurological disadvantage of using a compensatory device such as a PAFO. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. [Gait Analysis in Patients with Hip Disorders].

    PubMed

    Urbášek, K; Poul, J

    2016-01-01

    Recent studies have shown that the evaluation of both conservative and surgical therapy cannot do without gait analysis. Orthopaedic textbooks, with some exceptions, deal in great detail with a thorough clinical examination of the patient but gait assessment is mentioned only marginally. More attention is paid to gait analysis in rehabilitation medicine. Motion and gait analysis laboratories equipped with optoelectronic cameras and force platforms were first developed for cerebral palsy children. Recently, several studies have been published on the use of these methods in disorders of hip and knee joints or spine diseases. Key words: gait analysis, hip joint.

  20. Powered orthosis and attachable power-assist device with Hydraulic Bilateral Servo System.

    PubMed

    Ohnishi, Kengo; Saito, Yukio; Oshima, Toru; Higashihara, Takanori

    2013-01-01

    This paper discusses the developments and control strategies of exoskeleton-type robot systems for the application of an upper limb powered orthosis and an attachable power-assist device for care-givers. Hydraulic Bilateral Servo System, which consist of a computer controlled motor, parallel connected hydraulic actuators, position sensors, and pressure sensors, are installed in the system to derive the joint motion of the exoskeleton arm. The types of hydraulic component structure and the control strategy are discussed in relation to the design philosophy and target joints motions.

  1. A bio-robotic leg orthosis for rehabilitation and mobility enhancement.

    PubMed

    Horst, Robert W

    2009-01-01

    This paper describes a wearable powered leg orthosis that includes a high-torque actuator, electronics, sensors, and embedded firmware. The device provides multiple modes of operation including automatic assistance, manual assistance, continuous passive motion and robotic therapy. Patients affected by neurological conditions including stroke, MS, and Parkinson's disease may benefit from robotic therapy and from the improved mobility provided by this portable, lightweight device. A preliminary study of chronic stroke patients has shown retained improvement in walking speed for patients undergoing rehabilitation with the device.

  2. Clinical evaluation of a knee-ankle-foot-orthosis for hemiplegic patients.

    PubMed

    Morinaka, Y; Matsuo, Y; Nojima, M; Morinaka, S

    1982-08-01

    The KAFO described provides hemiplegics with effective and dynamic ambulation, because of its light weight, easy application, reasonably located genucentric knee and ankle joints, together with the flexibility of thigh and lower leg cuffs and arch support. The flexibility of this orthosis permits proper torsion of thigh and lower leg cuff. After application of the KAFO, hemiplegics become able to extend or flex their hip or knee joints in a wide range of motion. As the result of these characteristics, hemiplegics can ambulate smoothly and effectively in the KAFO as described in the results and practical investigations.

  3. Balance and gait problems in the elderly.

    PubMed

    Viswanathan, Anand; Sudarsky, Lewis

    2012-01-01

    Gait and balance problems are common with advancing age. Disorders of balance and gait are particularly important in the elderly because they compromise independence and contribute to the risk of falls and injury. Although they are considered as separate clinical entities, balance and gait disturbance are often intertwined. Here, we discuss the principal anatomical and physiologic mechanisms responsible for balance and gait. We also review the different types of fall patterns commonly seen in subjects and a classification scheme for various gait disorders. Furthermore, we consider the relationship between balance and gait disorders and subcortical vascular disease. Potential interventions and therapies in those individuals with balance and gait disorders are also discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Nonlinear dynamical model of human gait

    NASA Astrophysics Data System (ADS)

    West, Bruce J.; Scafetta, Nicola

    2003-05-01

    We present a nonlinear dynamical model of the human gait control system in a variety of gait regimes. The stride-interval time series in normal human gait is characterized by slightly multifractal fluctuations. The fractal nature of the fluctuations becomes more pronounced under both an increase and decrease in the average gait. Moreover, the long-range memory in these fluctuations is lost when the gait is keyed on a metronome. Human locomotion is controlled by a network of neurons capable of producing a correlated syncopated output. The central nervous system is coupled to the motocontrol system, and together they control the locomotion of the gait cycle itself. The metronomic gait is simulated by a forced nonlinear oscillator with a periodic external force associated with the conscious act of walking in a particular way.

  5. Time-dependent response of scoliotic curvature to orthotic intervention: when should a radiograph be obtained after putting on or taking off a spinal orthosis?

    PubMed

    Li, Meng; Wong, M S; Luk, Keith D K; Wong, Kenneth W H; Cheung, Kenneth M C

    2014-08-01

    A prospective study; 2-group design. This study aims to assess the time response of scoliotic spines to orthotic intervention using clinical ultrasound. Patients with moderate adolescent idiopathic scoliosis are generally advised orthotic treatment. However, the time to reach maximum correction after donning spinal orthosis or the time to return to pretreatment curvature after doffing spinal orthosis is not fully understood. Subjects were divided into 2 groups, the don-orthosis group and the doff-orthosis group where the time reaching maximum correction and the time returning to pretreatment curvature were investigated accordingly. To avoid excessive radiation exposure via obtaining repeated radiographs, a validated method of estimating Cobb angle using radiation-free clinical ultrasound was applied at an interval of every 30 minutes up to 180 minutes. The spinal flexibility (estimated from supine radiographs) and body mass index were collected from the subjects for analyses. Nine female patients with adolescent idiopathic scoliosis were recruited. There was no immediate change in the Cobb angles. A change of more than 5° could be observed in both groups only after 30 minutes and maximum change was found at/after 120 minutes. In the doff-orthosis group, the subject with the lowest body mass index took the longest time to increase more than 5° after doffing spinal orthosis. In the don-orthosis group, the subject with the highest body mass index took the longest time to achieve curve correction more than 5°. This investigation demonstrated that there is a time lag between application of spinal orthosis and its effect on scoliotic curvature. This is likely due to the low-stiff and viscoelastic properties of the spine. The clinical relevance of this study is that for patients with scoliosis undergoing orthotic treatment, radiograph should not be obtained within 2 hours of putting on or taking off spinal orthosis because it may not show the maximum effect. 4.

  6. The effects of ankle-foot orthoses on the ankle and knee in persons with myelomeningocele: an evaluation using three-dimensional gait analysis.

    PubMed

    Thomson, J D; Ounpuu, S; Davis, R B; DeLuca, P A

    1999-01-01

    The purpose of this study was to determine the effects of the ankle-foot orthosis (AFO) on gait patterns in patients with low-level myelomeningocele and to identify any abnormal gait patterns that may lead to future knee instability and pain. A total of 28 children (26 L4-level sides, 18 L5-level sides, and 10 S1-2-level sides) underwent a three-dimensional gait analysis when ambulating barefoot and with AFOs. Results show significant improvements in sagittal plane function with reductions in excessive ankle dorsiflexion, increases in peak plantar flexor moment, and reductions in crouch and knee extensor moment in the L4 and L5 groups. The only improvement in the S1-2 group was a reduction in excessive dorsiflexion, but there was a reduction in power generation at the ankle. The S1-2 group had normal transverse plane knee motion in stance during barefoot walking that increased significantly (p < 0.01) with the AFO. Both the L5 and L4 groups showed greater-than-normal transverse plane knee motion in stance during barefoot walking that also increased significantly (p < 0.01) with the AFO. The results suggest that excessive knee transverse plane rotation may contribute to knee instability more than coronal plane abnormalities. The AFO in S1-2-level patients may be more detrimental for the knee than barefoot walking.

  7. The Influence of a Prefabricated Foot Orthosis on Lower Extremity Mechanics During Running in Individuals With Varying Dynamic Foot Motion.

    PubMed

    Almonroeder, Thomas G; Benson, Lauren C; O'Connor, Kristian M

    2016-09-01

    Study Design Controlled laboratory study, cross-sectional. Background Orthotic prescription is often based on the premise that the mechanical effects will be more prominent in individuals with greater calcaneal eversion. Objective To compare the effects of a prefabricated foot orthosis on lower extremity kinematics and kinetics between recreational athletes with high and low calcaneal eversion during running. Methods Thirty-one recreational athletes were included in this study. Three-dimensional kinematic and kinetic data were collected while running with and without a foot orthosis. Participants were grouped based on the degree of calcaneal eversion during the running trials relative to a standing trial (dynamic foot motion). The effects of the orthosis on the frontal and transverse plane angles and moments of the hip and knee were compared between the 10 participants with the greatest and least amount of dynamic foot motion. Results There were no significant interactions (group by orthotic condition) for any of the kinematic or kinetic variables of interest. Conclusion The effects of an orthosis on the mechanics of the hip and knee do not appear to be dependent on an individual's dynamic foot motion. J Orthop Sports Phys Ther 2016;46(9):749-755. Epub 5 Aug 2016. doi:10.2519/jospt.2016.6253.

  8. Diffusion tensor MR imaging of the pyramidal tract can predict the need for orthosis in hemiplegic patients with hemorrhagic stroke.

    PubMed

    Maeshima, Shinichiro; Osawa, Aiko; Nishio, Daisuke; Hirano, Yoshitake; Kigawa, Hiroshi; Takeda, Hidetaka

    2013-10-01

    Diffusion tensor magnetic resonance (MR) imaging was used to evaluate motor functions in stroke patients. The aim of this study was to clarify whether imaging can be used to predict orthotic needs in patients with hemiplegia. We studied 25 patients (age range, 16-78 years) with intracerebral hemorrhages (putamen 15, thalamus 7, frontal subcortex 3). Diffusion tensor MR imaging was undertaken on admission at rehabilitation hospital for stroke patients. The fractional anisotropy (FA) value of the pyramidal tract was calculated. We compared the FA value in the ROI of the cerebral peduncle with the necessity for orthosis at discharge from the rehabilitation hospital. As a result, the FA values of the affected side in patients who needed orthosis at discharge were lower than those in patients who did not need orthosis. There was no significant difference in the FA values of the unaffected side. We concluded that the need for orthosis in patients with hemiplegia after stroke rehabilitation could be predicted using the diffusion tensor MR images of corticospinal tractography.

  9. Efficacy, usability and tolerability of a dynamic elbow orthosis after collateral ligament reconstruction: a prospective randomized study.

    PubMed

    Merolla, G; Bianchi, P; Porcellini, G

    2014-12-01

    To assess the efficacy, usability and tolerability of a dynamic orthosis compared with a standard plaster splint after the reconstruction of elbow medial or lateral collateral ligaments (MCL, LCL). Twenty-six subjects undergoing MCL (n = 23) or LCL (n = 3) reconstruction were randomly assigned to immobilization with an orthosis (n = 13; group A "Innovator X") or with a plaster splint (n = 13; group B "Plaster splint"). Outcome measures were visual analogue scale pain score, mid-arm (MA) circumference, grip strength, Oxford elbow score (OES) and range of motion (ROM). Patients were assessed at baseline and at 2, 6, 12 and 24 weeks. Significant pain reduction was reported by all patients at 6, 12 and 24 weeks (p < 0.05). Mean MA circumference was significantly higher in group A at all time points (all p < 0.05). Mean grip strength was greater in group A on weeks 2 and 6 (p < 0.05), whereas the difference found on weeks 12 and 24 was not significant. The OES and passive ROM values of the two groups were not significantly different at any time point. The dynamic orthosis and the plaster splint both provided effective and safe elbow immobilization after MCL or LCL reconstruction. The orthosis provided greater pain reduction, faster recovery of muscle trophism and grip strength, and was better tolerated.

  10. [Efficacy of a dynamic orthosis on the upper limbs in the chronic phase of strokes. A longitudinal study].

    PubMed

    Gonzalez-Bernal, J; de la Fuente-Anuncibay, R; Gonzalez-Santos, J; Cuesta-Gomez, J L; Cubo, E

    2017-09-01

    Stroke is the most important medical condition leading to permanent disability in adults. The aim of this study is to evaluate the efficacy of dynamic orthoses in the rehabilitation of the upper limbs in patients who have had a stroke. We conducted a longitudinal case-control study. The sample used in the study consisted of patients from rehabilitation centres who presented hemiparesis secondary to an ischaemic or haemorrhagic stroke. The patients were randomly distributed into a study group, whose members received a dynamic orthosis on an upper limb for a six-month period, and a control group. Appraisals were performed pre- and post-treatment with the orthosis with Fugl-Meyer Assessment Scale and with Wolf Motor Function to measure their command over body functions and activities. Differences between pre- and post-test were compared using ANCOVA and Student's t. The sample included 40 patients (65% males) who presented chronic hemiparesis secondary to ischaemic (n = 28) or haemorrhagic stroke (n = 12), with a mean age of 58.43 ± 8.67 years. After the six-month follow-up, improved motor function was observed in both groups, according to both scales. The use of a dynamic orthosis was associated with a tendency towards improved strength in the upper limb. Rehabilitation following a stroke improves strength and body activities in the upper limb. The use of a dynamic orthosis can further improve the strength in this limb, but additional research is needed to confirm our results.

  11. Development Aspects of a Robotised Gait Trainer for Neurological Rehabilitation

    DTIC Science & Technology

    2001-10-25

    of the robotised gait training machine. Keywords - gait rehabilitation, gait trainer, gait analysis , robot, compliance control I. INTRODUCTION...pp. 423-428, 2000. [6] D.A. Winter, Biomechanics and motor control of human movement, 2 nd ed., John Wiley & Sons, 1990. [7] J. Perry, Gait Analysis , Slack

  12. The smart Peano fluidic muscle: a low profile flexible orthosis actuator that feels pain

    NASA Astrophysics Data System (ADS)

    Veale, Allan J.; Anderson, Iain A.; Xie, Shane Q.

    2015-03-01

    Robotic orthoses have the potential to provide effective rehabilitation while overcoming the availability and cost constraints of therapists. These orthoses must be characterized by the naturally safe, reliable, and controlled motion of a human therapist's muscles. Such characteristics are only possible in the natural kingdom through the pain sensing realized by the interaction of an intelligent nervous system and muscles' embedded sensing organs. McKibben fluidic muscles or pneumatic muscle actuators (PMAs) are a popular orthosis actuator because of their inherent compliance, high force, and muscle-like load-displacement characteristics. However, the circular cross-section of PMA increases their profile. PMA are also notoriously unreliable and difficult to control, lacking the intelligent pain sensing systems of their biological muscle counterparts. Here the Peano fluidic muscle, a new low profile yet high-force soft actuator is introduced. This muscle is smart, featuring bioinspired embedded pressure and soft capacitive strain sensors. Given this pressure and strain feedback, experimental validation shows that a lumped parameter model based on the muscle geometry and material parameters can be used to predict its force for quasistatic motion with an average error of 10 - 15N. Combining this with a force threshold pain sensing algorithm sets a precedent for flexible orthosis actuation that uses embedded sensors to prevent damage to the actuator and its environment.

  13. OrthoJacket: an active FES-hybrid orthosis for the paralysed upper extremity.

    PubMed

    Schill, Oliver; Wiegand, Roland; Schmitz, Bastian; Matthies, Richard; Eck, Ute; Pylatiuk, Christian; Reischl, Markus; Schulz, Stefan; Rupp, Rüdiger

    2011-02-01

    The loss of the grasp function in cervical spinal cord injured (SCI) patients leads to life-long dependency on caregivers and to a tremendous decrease of the quality of life. This article introduces the novel non-invasive modular hybrid neuro-orthosis OrthoJacket for the restoration of the restricted or completely lost hand and arm functions in high tetraplegic SCI individuals. The primary goal of the wearable orthosis is to improve the paralysed upper extremity function and, thus, to enhance a patient's independence in activities of daily living. The system combines the advantage of orthotics in mechanically stabilising joints together with the possibilities of functional electrical stimulation for activation of paralysed muscles. In patients with limited capacity, for force generation, flexible fluidic actuators are used to support the movement. Thus, the system is not only intended for functional restoration but also for training. Several sensor systems together with an intelligent signal processing allow for automatic adaptation to the anatomical and neurological individualities of SCI patients. The integration of novel user interfaces based on residual muscle activities and detection of movement intentions by real-time data mining methods will enable the user to autonomously control the system in a natural and cooperative way.

  14. Outcomes Associated With the Intrepid Dynamic Exoskeletal Orthosis (IDEO): A Systematic Review of the Literature.

    PubMed

    Highsmith, M Jason; Nelson, Leif M; Carbone, Neil T; Klenow, Tyler D; Kahle, Jason T; Hill, Owen T; Maikos, Jason T; Kartel, Mike S; Randolph, Billie J

    2016-11-01

    High-energy lower extremity trauma is a consequence of modern war and it is unclear if limb amputation or limb salvage enables greater recovery. To improve function in the injured extremity, a passive dynamic ankle-foot orthosis, the Intrepid Dynamic Exoskeletal Orthosis (IDEO), was introduced with specialized return to run (RTR) therapy program. Recent research suggests, these interventions may improve function and return to duty rates. This systematic literature review sought to rate available evidence and formulate empirical evidence statements (EESs), regarding outcomes associated with IDEO utilization. PubMed, CINAHL, and Google Scholar were systematically searched for pertinent articles. Articles were screened and rated. EESs were formulated based upon data and conclusions from included studies. Twelve studies were identified and rated. Subjects (n = 487, 6 females, mean age 29.4 year) were studied following limb trauma and salvage. All included studies had high external validity, whereas internal validity was mixed because of reporting issues. Moderate evidence supported development of four EESs regarding IDEO use with specialized therapy. Following high-energy lower extremity trauma and limb salvage, use of IDEO with RTR therapy can enable return to duty, return to recreation and physical activity, and decrease pain in some high-functioning patients. In higher functioning patients following limb salvage or trauma, IDEO use improved agility, power and speed, compared with no-brace or conventional bracing alternatives. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  15. Design and evaluation of a hybrid passive and active gravity neutral orthosis (GNO).

    PubMed

    Koo, Benjamin; Montes, Jacqueline; Gamarnik, Viktor; Yeager, Keith; Marra, Jonathan; Dunaway, Sally; Montgomery, Megan; De Vivo, Darryl C; Strauss, Nancy; Konofagou, Elisa; Kaufmann, Petra; Morrison, Barclay

    2009-01-01

    Neuromuscular diseases (NMD), including Spinal Muscular Atrophy (SMA) and Duchenne Muscular Dystrophy (DMD), result in progressive muscular weakness that often leaves patients functionally dependent on caregivers for many activities of daily living (ADL) such as eating, bathing, grooming (touching the face and head), reaching (grabbing for objects), and dressing. In severe cases, patients are unable to perform even the simplest of activities from exploring their 3D space to touching their own face. The ability to move and initiate age appropriate tasks, such as playing and exploration, are considered to be of vital importance to both their physical and cognitive development. Therefore, to improve quality of life and reduce dependence on caregivers in children and young adults with NMD, we designed, built and evaluated an assistive, active orthosis to support arm function. The goal of this project is the development and evaluation of a mechanical arm orthosis to both encourage and assist functional arm movement while providing the user a sense of independence and control over one's own body.

  16. Biofeedback for robotic gait rehabilitation

    PubMed Central

    Lünenburger, Lars; Colombo, Gery; Riener, Robert

    2007-01-01

    Background Development and increasing acceptance of rehabilitation robots as well as advances in technology allow new forms of therapy for patients with neurological disorders. Robot-assisted gait therapy can increase the training duration and the intensity for the patients while reducing the physical strain for the therapist. Optimal training effects during gait therapy generally depend on appropriate feedback about performance. Compared to manual treadmill therapy, there is a loss of physical interaction between therapist and patient with robotic gait retraining. Thus, it is difficult for the therapist to assess the necessary feedback and instructions. The aim of this study was to define a biofeedback system for a gait training robot and test its usability in subjects without neurological disorders. Methods To provide an overview of biofeedback and motivation methods applied in gait rehabilitation, previous publications and results from our own research are reviewed. A biofeedback method is presented showing how a rehabilitation robot can assess the patients' performance and deliver augmented feedback. For validation, three subjects without neurological disorders walked in a rehabilitation robot for treadmill training. Several training parameters, such as body weight support and treadmill speed, were varied to assess the robustness of the biofeedback calculation to confounding factors. Results The biofeedback values correlated well with the different activity levels of the subjects. Changes in body weight support and treadmill velocity had a minor effect on the biofeedback values. The synchronization of the robot and the treadmill affected the biofeedback values describing the stance phase. Conclusion Robot-aided assessment and feedback can extend and improve robot-aided training devices. The presented method estimates the patients' gait performance with the use of the robot's existing sensors, and displays the resulting biofeedback values to the patients and

  17. Impaired Foot Plantar Flexor Muscle Performance in Individuals With Plantar Heel Pain and Association With Foot Orthosis Use.

    PubMed

    McClinton, Shane; Collazo, Christopher; Vincent, Ebonie; Vardaxis, Vassilios

    2016-08-01

    Study Design Controlled laboratory study. Background Plantar heel pain is one of the most common foot and ankle conditions seen in clinical practice, and many individuals continue to have persisting or recurrent pain after treatment. Impaired foot plantar flexor muscle performance is a factor that may contribute to limited treatment success, but reliable methods to identify impairments in individuals with plantar heel pain are needed. In addition, foot orthoses are commonly used to treat this condition, but the implications of orthosis use on muscle performance have not been assessed. Objectives To assess ankle plantar flexor and toe flexor muscle performance in individuals with plantar heel pain using clinically feasible measures and to examine the relationship between muscle performance and duration of foot orthosis use. Methods The rocker-board plantar flexion test (RBPFT) and modified paper grip test for the great toe (mPGTGT) and lesser toes (mPGTLT) were used to assess foot plantar flexor muscle performance in 27 individuals with plantar heel pain and compared to 27 individuals without foot pain who were matched according to age, sex, and body mass. Pain ratings were obtained before and during testing, and self-reported duration of foot orthosis use was recorded. Results Compared to the control group, individuals with plantar heel pain demonstrated lower performance on the RBPFT (P = .001), the mPGTGT (P = .022), and the mPGTLT (P = .037). Longer duration of foot orthosis use was moderately correlated to lower performance on the RBPFT (r = -0.52, P = .02), the mPGTGT (r = -0.54, P = .01), and the mPGTLT (r = -0.43, P = .03). Conclusion Ankle plantar flexor and toe flexor muscle performance was impaired in individuals with plantar heel pain and associated with longer duration of self-reported foot orthosis use. J Orthop Sports Phys Ther 2016;46(8):681-688. Epub 3 Jul 2016. doi:10.2519/jospt.2016.6482.

  18. A new shoulder orthosis for paralysis of the trapezius muscle after radical neck dissection: a preliminary report.

    PubMed

    Kizilay, Ahmet; Kalcioglu, M Tayyar; Saydam, Levent; Ersoy, Yuksel

    2006-05-01

    Despite recent advances using more conservative approaches, standard classical radical neck dissection is still one of the most frequently performed procedures in head and neck cancer patients who have advanced metastatic neck disease. The trapezius muscle paralysis following division of the spinal accessory nerve results in severe pain and cosmetic disturbance related to malalignment of the shoulder joint. The objective of this study is to report our results with a newly developed orthosis to prevent and correct shoulder dysfunction following standard radical neck dissection. Thirty-four patients who underwent standard radical neck dissection as a part of their surgical treatment from 1997-2002 were rehabilitated by the shoulder orthosis. Beginning 2 weeks after surgery, the patients were allowed to use their orthosis. By using a standard questionnaire, the pain and activity scores were recorded at the 1st, 3rd, 6th and 12th months postoperatively. Six patients were excluded from the study, of whom two succumbed to their disease and four discontinued the use of the orthosis. Of 28 patients included in the study, 20 (72%) were completely pain free within 3 months following the surgery. Four patients (14%) noted their pain level as tolerable, and four patients (14%) reported no considerable gain in the pain threshold and/or physical activity levels. Despite the fact that the active abduction range increased only 5 to 20 degrees , the relief of pain and improved malalignment of the scapula and consequently clavicle and humerus led to functional gains, which increased the patients' endurance. At the end of the study, 23 patients (82%) were able to return to their previous jobs or activity levels. Current preliminary reports suggest that this orthosis can be recommended to prevent significant disability in patients with trapezius palsy due to ablative cancer surgery or other reasons.

  19. Advanced Prosthetic Gait Training Tool

    DTIC Science & Technology

    2014-10-01

    capture sequences was provided by MPL to CCAD and OGAL. CCAD’s work focused on imposing these sequences on the SantosTM digital human avatar . An...capture sequences was provided by MPL to CCAD and OGAL. CCAD’s work focused on imposing these sequences on the Santos digital human avatar . An initial...levels of the patients. In addition, the differences in ability to detect variations in gait conditions for skinned avatar vs. line-skeletal avatar

  20. Lever arm dysfunction in cerebral palsy gait.

    PubMed

    Theologis, Tim

    2013-11-01

    Skeletal structures act as lever arms during walking. Muscle activity and the ground reaction against gravity exert forces on the skeleton, which generate torque (moments) around joints. These lead to the sequence of movements which form normal human gait. Skeletal deformities in cerebral palsy (CP) affect the function of bones as lever arms and compromise gait. Lever arm dysfunction should be carefully considered when contemplating treatment to improve gait in children with CP.

  1. The Pathomechanics Of Calcaneal Gait

    NASA Astrophysics Data System (ADS)

    Sutherland, David H.; Cooper, Les

    1980-07-01

    The data acquisition system employed in our laboratory includes optical, electronic and computer subsystems. Three movie camera freeze the motion for analysis. The film is displayed on a motion analyzer, and the body segment positions are recorded in a three dimensional coordinate system with Graf/pen sonic digitizer. The angular rotations are calculated by computer and automatically plotted. The force plate provides measurements of vertical force, foreaft shear, medial-lateral shear, torque, and center of pressure. Electromyograms are superimposed upon gait movies to permit measurement of muscle phasic activity. The Hycam movie camera si-multaneously films (through separate lens) the subject and oscilloscope. Movement measurements, electromyograms, and floor reaction forces provide the data base for analysis. From a study of the gait changes in five normal subjects following tibial nerve block, and from additional studies of patients with paralysis of the ankle plantar flexors, the pathomechanics of calcaneal gait can be described. Inability to transfer weight to the forward part of the foot produces ankle instability and reduction of contralateral step length. Excessive drop of the center of mass necessitates com-pensatory increased lift energy output through the sound limb to restore the height of the center of mass. Excessive stance phase ankle dorsiflexion produces knee instability requiring prolonged quadriceps muscle phasic activity.

  2. Study of gait using weighted vests on balance with paraplegic patients.

    PubMed

    Choi, Hyuk-Jae; Kang, Hyun-Joo

    2017-06-01

    The aims of this study were to identify static and dynamic balance with the addition of weighted vests for the rehabilitation of paraplegic patients. The study was conducted using weighted vest exercises with applied optimal weight ratios. Ten paraplegic patients who use custom orthosis were enrolled for experiments including static standing and dynamic gait with a weighted vest. We set weight ratios as 0%, 10%, and 15% of the patients' weight. A plantar pressure device was used for static balance tests for excursion and velocity of center of pressure and we identified dynamic balance through the tool of Timed Up and Go (TUG) test. The results of static and dynamic balance in 0%, 10%, and 15% weight ratios did not have statistically significant differences, but we found an increasing tendency of sway excursion from nonweight (0%) to weight ratios (10%, 15%) in static balance when weight is applied. Sway excursion in anteroposterior direction is greater than mediolateral sway. In dynamic balance, the TUG results showed a more delayed time when weight ratios were applied. In conclusion, we have to focus on balance training with anteroposterior direction to upgrade a patient's balance and prevent falls. Exercises with weighed vests are more useful than nonweighted but there is no difference between 10% and 15% weight ratios. Weighted vest exercises may play a role in the rehabilitation of balance in those with paraplegia.

  3. Optics in gait analysis and anthropometry

    NASA Astrophysics Data System (ADS)

    Silva Moreno, Alejandra Alicia

    2013-11-01

    Since antiquity, human gait has been studied to understand human movement, the kind of gait, in some cases, can cause musculoskeletal disorders or other health problems; in addition, also from antiquity, anthropometry has been important for the design of human items such as workspaces, tools, garments, among others. Nowadays, thanks to the development of optics and electronics, more accurate studies of gait and anthropometry can be developed. This work will describe the most important parameters for gait analysis, anthropometry and the optical systems used.

  4. Mixed gaits in small avian terrestrial locomotion

    PubMed Central

    Andrada, Emanuel; Haase, Daniel; Sutedja, Yefta; Nyakatura, John A.; M. Kilbourne, Brandon; Denzler, Joachim; Fischer, Martin S.; Blickhan, Reinhard

    2015-01-01

    Scientists have historically categorized gaits discretely (e.g. regular gaits such as walking, running). However, previous results suggest that animals such as birds might mix or regularly or stochastically switch between gaits while maintaining a steady locomotor speed. Here, we combined a novel and completely automated large-scale study (over one million frames) on motions of the center of mass in several bird species (quail, oystercatcher, northern lapwing, pigeon, and avocet) with numerical simulations. The birds studied do not strictly prefer walking mechanics at lower speeds or running mechanics at higher speeds. Moreover, our results clearly display that the birds in our study employ mixed gaits (such as one step walking followed by one step using running mechanics) more often than walking and, surprisingly, maybe as often as grounded running. Using a bio-inspired model based on parameters obtained from real quails, we found two types of stable mixed gaits. In the first, both legs exhibit different gait mechanics, whereas in the second, legs gradually alternate from one gait mechanics into the other. Interestingly, mixed gaits parameters mostly overlap those of grounded running. Thus, perturbations or changes in the state induce a switch from grounded running to mixed gaits or vice versa. PMID:26333477

  5. Mixed gaits in small avian terrestrial locomotion.

    PubMed

    Andrada, Emanuel; Haase, Daniel; Sutedja, Yefta; Nyakatura, John A; Kilbourne, Brandon M; Denzler, Joachim; Fischer, Martin S; Blickhan, Reinhard

    2015-09-03

    Scientists have historically categorized gaits discretely (e.g. regular gaits such as walking, running). However, previous results suggest that animals such as birds might mix or regularly or stochastically switch between gaits while maintaining a steady locomotor speed. Here, we combined a novel and completely automated large-scale study (over one million frames) on motions of the center of mass in several bird species (quail, oystercatcher, northern lapwing, pigeon, and avocet) with numerical simulations. The birds studied do not strictly prefer walking mechanics at lower speeds or running mechanics at higher speeds. Moreover, our results clearly display that the birds in our study employ mixed gaits (such as one step walking followed by one step using running mechanics) more often than walking and, surprisingly, maybe as often as grounded running. Using a bio-inspired model based on parameters obtained from real quails, we found two types of stable mixed gaits. In the first, both legs exhibit different gait mechanics, whereas in the second, legs gradually alternate from one gait mechanics into the other. Interestingly, mixed gaits parameters mostly overlap those of grounded running. Thus, perturbations or changes in the state induce a switch from grounded running to mixed gaits or vice versa.

  6. Gait recognition based on integral outline

    NASA Astrophysics Data System (ADS)

    Ming, Guan; Fang, Lv

    2017-02-01

    Biometric identification technology replaces traditional security technology, which has become a trend, and gait recognition also has become a hot spot of research because its feature is difficult to imitate and theft. This paper presents a gait recognition system based on integral outline of human body. The system has three important aspects: the preprocessing of gait image, feature extraction and classification. Finally, using a method of polling to evaluate the performance of the system, and summarizing the problems existing in the gait recognition and the direction of development in the future.

  7. Gait-related cerebral alterations in patients with Parkinson's disease with freezing of gait.

    PubMed

    Snijders, Anke H; Leunissen, Inge; Bakker, Maaike; Overeem, Sebastiaan; Helmich, Rick C; Bloem, Bastiaan R; Toni, Ivan

    2011-01-01

    Freezing of gait is a common, debilitating feature of Parkinson's disease. We have studied gait planning in patients with freezing of gait, using motor imagery of walking in combination with functional magnetic resonance imaging. This approach exploits the large neural overlap that exists between planning and imagining a movement. In addition, it avoids confounds introduced by brain responses to altered motor performance and somatosensory feedback during actual freezing episodes. We included 24 patients with Parkinson's disease: 12 patients with freezing of gait, 12 matched patients without freezing of gait and 21 matched healthy controls. Subjects performed two previously validated tasks--motor imagery of gait and a visual imagery control task. During functional magnetic resonance imaging scanning, we quantified imagery performance by measuring the time required to imagine walking on paths of different widths and lengths. In addition, we used voxel-based morphometry to test whether between-group differences in imagery-related activity were related to structural differences. Imagery times indicated that patients with freezing of gait, patients without freezing of gait and controls engaged in motor imagery of gait, with matched task performance. During motor imagery of gait, patients with freezing of gait showed more activity than patients without freezing of gait in the mesencephalic locomotor region. Patients with freezing of gait also tended to have decreased responses in mesial frontal and posterior parietal regions. Furthermore, patients with freezing of gait had grey matter atrophy in a small portion of the mesencephalic locomotor region. The gait-related hyperactivity of the mesencephalic locomotor region correlated with clinical parameters (freezing of gait severity and disease duration), but not with the degree of atrophy. These results indicate that patients with Parkinson's disease with freezing of gait have structural and functional alterations in the

  8. Challenging Gait Conditions Predict 1-Year Decline in Gait Speed in Older Adults With Apparently Normal Gait

    PubMed Central

    Perera, Subashan; VanSwearingen, Jessie M.; Hile, Elizabeth S.; Wert, David M.; Studenski, Stephanie A.

    2011-01-01

    Background Mobility often is tested under a low challenge condition (ie, over a straight, uncluttered path), which often fails to identify early mobility difficulty. Tests of walking during challenging conditions may uncover mobility difficulty that is not identified with usual gait testing. Objective The purpose of this study was to determine whether gait during challenging conditions predicts decline in gait speed over 1 year in older people with apparently normal gait (ie, gait speed of ≥1.0 m/s). Design This was a prospective cohort study. Methods Seventy-one older adults (mean age=75.9 years) with a usual gait speed of ≥1.0 m/s participated. Gait was tested at baseline under 4 challenging conditions: (1) narrow walk (15 cm wide), (2) stepping over obstacles (15.24 cm [6 in] and 30.48 cm [12 in]), (3) simple walking while talking (WWT), and (4) complex WWT. Usual gait speed was recorded over a 4-m course at baseline and 1 year later. A 1-year change in gait speed was calculated, and participants were classified as declined (decreased ≥0.10 m/s, n=18), stable (changed <0.10 m/s, n=43), or improved (increased ≥0.10 m/s, n=10). Analysis of variance was used to compare challenging condition cost (usual − challenging condition gait speed difference) among the 3 groups. Results Participants who declined in the ensuing year had a greater narrow walk and obstacle walk cost than those who were stable or who improved in gait speed (narrow walk cost=0.43 versus 0.33 versus 0.22 m/s and obstacle walk cost=0.35 versus 0.26 versus 0.13 m/s). Simple and complex WWT cost did not differ among the groups. Limitations The participants who declined in gait speed over time walked the fastest, and those who improved walked the slowest at baseline; thus, the potential contribution of regression to the mean to the findings should not be overlooked. Conclusions In older adults with apparently normal gait, the assessment of gait during challenging conditions appears to uncover

  9. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    PubMed

    Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain

    2015-01-01

    In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  10. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    PubMed Central

    Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain

    2015-01-01

    In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning. PMID:26485148

  11. Identification of gait domains and key gait variables following hip fracture.

    PubMed

    Thingstad, Pernille; Egerton, Thorlene; Ihlen, Espen F; Taraldsen, Kristin; Moe-Nilssen, Rolf; Helbostad, Jorunn L

    2015-11-18

    Restoration of gait is an important goal of rehabilitation after hip fracture. Numerous spatial and temporal gait variables have been reported in the literature, but beyond gait speed, there is little agreement on which gait variables should be reported and which are redundant in describing gait recovery following hip fracture. The aims of this study were to identify distinct domains of gait and key variables representing these domains, and to explore how known predictors of poor outcome after hip fracture were associated with these key variables. Spatial and temporal gait variables were collected four months following hip fracture in 249 participants using an electronic walkway (GAITRite®). From the initial set of 31 gait variables, 16 were selected following a systematic procedure. An explorative factor analysis with oblique (oblimin) rotation was performed, using principal component analysis for extraction of factors. Unique domains of gait and the variable best representing these domains were identified. Multiple regression analyses including six predictors; age, gender, fracture type, pain, global cognitive function and grip strength were performed for each of the identified key gait variables. Mean age of participants was 82.6 (SD = 6.0) years, 75 % were women, and mean gait speed was 0.6 (SD = 0.2) m/sec. The factor analysis revealed four distinct gait domains, and the key variables that best represented these domains were double support time, walk ratio, variability of step velocity, and single support asymmetry. Cognitive decline, low grip strength, extra capsular fracture and male gender, but not pain or age, were significant predictors of impaired gait. This work proposes four key variables to represent gait of older people after hip fracture. These core variables were associated with known predictors of poor outcome after hip fracture and should warrant further assessment to confirm their importance as outcome variables in addition to gait

  12. Application of the Gillette Gait Index, Gait Deviation Index and Gait Profile Score to multiple clinical pediatric populations.

    PubMed

    McMulkin, Mark L; MacWilliams, Bruce A

    2015-02-01

    Gait indices are now commonly used to assess overall pathology and outcomes from studies with instrumented gait analyses. There are differences in how these indices are calculated and therefore inherent differences in their sensitivities to detect changes or differences between groups. The purpose of the current study was to examine the three most commonly used gait indices, Gillette Gait Index (GGI), Gait Deviation Index (GDI), and Gait Profile Score (GPS), comparing the statistical sensitivity and the ability to make meaningful interpretations of the clinical results. In addition, the GDI*, a log transformed and scaled version of the GPS score which closely matches the GDI was examined. For seven previous or ongoing studies representing varying gait pathologies seen in clinical laboratories, the GGI, GDI, and GPS/GDI* were calculated retrospectively. The GDI and GPS/GDI* proved to be the most sensitive measures in assessing differences pre/post-treatment or from a control population. A power analysis revealed the GDI and GDI* to be the most sensitive statistical measures (lowest sample sizes required). Subjectively, the GDI and GDI* interpretation seemed to be the most intuitive measure for assessing clinical changes. However, the gait variable sub-scores of the GPS determined several statistical differences which were not previously noted and was the only index tool for quantifying the relative contributions of specific joints or planes of motion. The GGI did not offer any advantages over the other two indices.

  13. Comparison of Upright Gait with Supine Bungee-Cord Gait

    NASA Technical Reports Server (NTRS)

    Boda, Wanda L.; Hargens, Alan R.; Campbell, J. A.; Yang, C.; Holton, Emily M. (Technical Monitor)

    1998-01-01

    Running on a treadmill with bungee-cord resistance is currently used on the Russian space station MIR as a countermeasure for the loss of bone and muscular strength which occurs during spaceflight. However, it is unknown whether ground reaction force (GRF) at the feet using bungee-cord resistance is similar to that which occurs during upright walking and running on Earth. We hypothesized-that the DRAMs generated during upright walking and running are greater than the DRAMs generated during supine bungee-cord gait. Eleven healthy subjects walked (4.8 +/- 0.13 km/h, mean +/- SE) and ran (9.1 +/- 0.51 km/h) during upright and supine bungee-cord exercise on an active treadmill. Subjects exercised for 3 min in each condition using a resistance of 1 body weight calibrated during an initial, stationary standing position. Data were sampled at a frequency of 500Hz and the mean of 3 trials was analyzed for each condition. A repeated measures analysis of variance tested significance between the conditions. Peak DRAMs during upright walking were significantly greater (1084.9 +/- 111.4 N) than during supine bungee-cord walking (770.3 +/- 59.8 N; p less than 0.05). Peak GRFs were also significantly greater for upright running (1548.3 +/- 135.4 N) than for supine bungee-cord running (1099.5 +/- 158.46 N). Analysis of GRF curves indicated that forces decreased throughout the stance phase for bungee-cord gait but not during upright gait. These results indicate that bungee-cord exercise may not create sufficient loads at the feet to counteract the loss of bone and muscular strength that occurs during long-duration exposure to microgravity.

  14. Comparison of Upright Gait with Supine Bungee-Cord Gait

    NASA Technical Reports Server (NTRS)

    Boda, Wanda L.; Hargens, Alan R.; Campbell, J. A.; Yang, C.; Holton, Emily M. (Technical Monitor)

    1998-01-01

    Running on a treadmill with bungee-cord resistance is currently used on the Russian space station MIR as a countermeasure for the loss of bone and muscular strength which occurs during spaceflight. However, it is unknown whether ground reaction force (GRF) at the feet using bungee-cord resistance is similar to that which occurs during upright walking and running on Earth. We hypothesized-that the DRAMs generated during upright walking and running are greater than the DRAMs generated during supine bungee-cord gait. Eleven healthy subjects walked (4.8 +/- 0.13 km/h, mean +/- SE) and ran (9.1 +/- 0.51 km/h) during upright and supine bungee-cord exercise on an active treadmill. Subjects exercised for 3 min in each condition using a resistance of 1 body weight calibrated during an initial, stationary standing position. Data were sampled at a frequency of 500Hz and the mean of 3 trials was analyzed for each condition. A repeated measures analysis of variance tested significance between the conditions. Peak DRAMs during upright walking were significantly greater (1084.9 +/- 111.4 N) than during supine bungee-cord walking (770.3 +/- 59.8 N; p less than 0.05). Peak GRFs were also significantly greater for upright running (1548.3 +/- 135.4 N) than for supine bungee-cord running (1099.5 +/- 158.46 N). Analysis of GRF curves indicated that forces decreased throughout the stance phase for bungee-cord gait but not during upright gait. These results indicate that bungee-cord exercise may not create sufficient loads at the feet to counteract the loss of bone and muscular strength that occurs during long-duration exposure to microgravity.

  15. Underwater gait analysis in Parkinson's disease.

    PubMed

    Volpe, Daniele; Pavan, Davide; Morris, Meg; Guiotto, Annamaria; Iansek, Robert; Fortuna, Sofia; Frazzitta, Giuseppe; Sawacha, Zimi

    2017-02-01

    Although hydrotherapy is one of the physical therapies adopted to optimize gait rehabilitation in people with Parkinson disease, the quantitative measurement of gait-related outcomes has not been provided yet. This work aims to document the gait improvements in a group of parkinsonians after a hydrotherapy program through 2D and 3D underwater and on land gait analysis. Thirty-four parkinsonians and twenty-two controls were enrolled, divided into two different cohorts. In the first one, 2 groups of patients underwent underwater or land based walking training; controls underwent underwater walking training. Hence pre-treatment 2D underwater and on land gait analysis were performed, together with post-treatment on land gait analysis. Considering that current literature documented a reduced movement amplitude in parkinsonians across all lower limb joints in all movement planes, 3D underwater and on land gait analysis were performed on a second cohort of subjects (10 parkinsonians and 10 controls) who underwent underwater gait training. Baseline land 2D and 3D gait analysis in parkinsonians showed shorter stride length and slower speed than controls, in agreement with previous findings. Comparison between underwater and on land gait analysis showed reduction in stride length, cadence and speed on both parkinsonians and controls. Although patients who underwent underwater treatment exhibited significant changes on spatiotemporal parameters and sagittal plane lower limb kinematics, 3D gait analysis documented a significant (p<0.05) improvement in all movement planes. These data deserve attention for research directions promoting the optimal recovery and maintenance of walking ability.

  16. Periodical gait asymmetry assessment using real-time wireless gyroscopes gait monitoring system.

    PubMed

    Gouwanda, D; Senanayake, S M N A

    2011-11-01

    A real-time gait monitoring system that incorporates an immediate and periodical assessment of gait asymmetry is described. This system was designed for gait analysis and rehabilitation of patients with pathologic gait. It employs wireless gyroscopes to measure the angular rate of the thigh and shank in real time. Cross-correlation of the lower extremity (Cc(norm)), and normalized Symmetry Index (SI(norm)) are implemented as new approaches to periodically determine the gait asymmetry in each gait cycle. Cc(norm) evaluates the signal patterns measured by wireless gyroscopes in each gait cycle. SI(norm) determines the movement differences between the left and right limb. An experimental study was conducted to examine the viability of these methods. Artificial asymmetrical gait was simulated by placing a load on one side of the limbs. Results showed that there were significant differences between the normal gait and asymmetrical gait (p < 0.01). They also indicated that the system worked well in periodically assessing the gait asymmetry.

  17. Biomechanical evaluation of wrist-driven flexor hinge orthosis in persons with spinal cord injury.

    PubMed

    Kang, Yeoun-Seung; Park, Yoon-Ghil; Lee, Bum-Suk; Park, Hyung-Soon

    2013-01-01

    The wrist-driven flexor hinge orthosis (WDFHO) is a device used to restore hand function in persons with tetraplegic spinal cord injury by furnishing three-point prehension. We assessed the effectiveness and biomechanical properties of the WDFHO in 24 persons with cervical 6 or 7 tetraplegia who have severely impaired hand function. This study introduces a mechanical operating model to assess the efficiency of the WDFHO. Experimental results showed that pinch force increased significantly (p < 0.001) after using the WDFHO and was found to positively correlate with the strength of wrist extensor muscles (r = 0.41, p < 0.001). However, when the strength of the wrist extensors acting on the WDFHO was greater, the reciprocal wrist and finger motion that generates three-point prehension was less effective (r = 0.79, p < 0.001). Reliable and valid biomechanical evaluation of the WDFHO could improve our understanding of its biomechanics.

  18. Fuzzy-logic-based hybrid locomotion mode classification for an active pelvis orthosis: Preliminary results.

    PubMed

    Yuan, Kebin; Parri, Andrea; Yan, Tingfang; Wang, Long; Munih, Marko; Vitiello, Nicola; Wang, Qining

    2015-01-01

    In this paper, we present a fuzzy-logic-based hybrid locomotion mode classification method for an active pelvis orthosis. Locomotion information measured by the onboard hip joint angle sensors and the pressure insoles is used to classify five locomotion modes, including two static modes (sitting, standing still), and three dynamic modes (level-ground walking, ascending stairs, and descending stairs). The proposed method classifies these two kinds of modes first by monitoring the variation of the relative hip joint angle between the two legs within a specific period. Static states are then classified by the time-based absolute hip joint angle. As for dynamic modes, a fuzzy-logic based method is proposed for the classification. Preliminary experimental results with three able-bodied subjects achieve an off-line classification accuracy higher than 99.49%.

  19. Exploratory design of a compliant mechanism for a dynamic hand orthosis: Lessons learned.

    PubMed

    Bos, Ronald A; Plettenburg, Dick H; Herder, Just L

    2017-07-01

    This study does not describe a success-story. Instead, it describes an exploratory process and the lessons learned while designing a compliant mechanism for a dynamic hand orthosis. Tools from engineering optimization and rapid prototyping techniques were used, with the goal to design a mechanism to compensate for hypertonic or contracted finger muscles. Results show that the mechanism did not reach its design constraints, mostly because it could not provide for the necessary stiffness and compliance at the same time. Hence, the presented approach is more suited for design problems with either lower forces or less displacement. It was concluded that physiological stiffness models are an important part when modeling hand orthoses. Moreover, further research on compliant mechanisms in dynamic hand orthoses should focus on the feasibility of implementing more complex three-dimensional shapes, i.e., compliant shell mechanisms.

  20. Congenital absence of the radius: the occupational therapist and a new orthosis.

    PubMed

    Butts, D E; Goldberg, M J

    1977-02-01

    Congenital absence of the radius (radial club hand) is a relatively common and disabling limb deficiency characterized by dislocation of the hand and carpus from the single forearm bore, the ulna. An understanding of the clinical-pathologic anatomy and consequent disruption of hand mechanics enables the orthopedic surgeon and the occupational therapist to formulate a team approach to this birth defect that can result in maximum functional capability for the child. The role of the occupational therapist and a specific therapy program for early stimulation and achievement of hand function are described. Orthotic support of the arm is indispensable to successful management. The design and fabrication of a dynamic upper-extremity orthosis for radial club hand is presented.

  1. Variability and similarity of gait as evaluated by joint angles: implications for forensic gait analysis.

    PubMed

    Yang, Sylvia X M; Larsen, Peter K; Alkjær, Tine; Simonsen, Erik B; Lynnerup, Niels

    2014-03-01

    Closed-circuit television (CCTV) footage is used in criminal investigations to compare perpetrators with suspects. Usually, incomplete gait cycles are collected, making evidential gait analysis challenging. This study aimed to analyze the discriminatory power of joint angles throughout a gait cycle. Six sets from 12 men were collected. For each man, a variability range VR (mean ± 1SD) of a specific joint angle at a specific time point (a gait cycle was 100 time points) was calculated. In turn, each individual was compared with the 11 others, and whenever 1 of these 11 had a value within this individual’s VR, it counted as positive. By adding the positives throughout the gait cycle, we created simple bar graphs; tall bars indicated a small discriminatory power, short bars indicated a larger one. The highest discriminatory power was at time points 60–80 in the gait cycle. We show how our data can assess gait data from an actual case.

  2. Diabetic Foot Biomechanics and Gait Dysfunction

    PubMed Central

    Wrobel, James S.; Najafi, Bijan

    2010-01-01

    Background Diabetic foot complications represent significant morbidity and precede most of the lower extremity amputations performed. Peripheral neuropathy is a frequent complication of diabetes shown to affect gait. Glycosylation of soft tissues can also affect gait. The purpose of this review article is to highlight the changes in gait for persons with diabetes and highlight the effects of glycosylation on soft tissues at the foot–ground interface. Methods PubMed, the Cochrane Library, and EBSCOhost® on-line databases were searched for articles pertaining to diabetes and gait. Bibliographies from relevant manuscripts were also searched. Findings Patients with diabetes frequently exhibit a conservative gait strategy where there is slower walking speed, wider base of gait, and prolonged double support time. Glycosylation affects are observed in the lower extremities. Initially, skin thickness decreases and skin hardness increases; tendons thicken; muscles atrophy and exhibit activation delays; bones become less dense; joints have limited mobility; and fat pads are less thick, demonstrate fibrotic atrophy, migrate distally, and may be stiffer. Interpretation In conclusion, there do appear to be gait changes in patients with diabetes. These changes, coupled with local soft tissue changes from advanced glycosylated end products, also alter a patient’s gait, putting them at risk of foot ulceration. Better elucidation of these changes throughout the entire spectrum of diabetes disease can help design better treatments and potentially reduce the unnecessarily high prevalence of foot ulcers and amputation. PMID:20663446

  3. Gait Analysis by High School Students

    ERIC Educational Resources Information Center

    Heck, Andre; van Dongen, Caroline

    2008-01-01

    Human walking is a complicated motion. Movement scientists have developed various research methods to study gait. This article describes how a high school student collected and analysed high quality gait data in much the same way that movement scientists do, via the recording and measurement of motions with a video analysis tool and via…

  4. Gait Analysis by High School Students

    ERIC Educational Resources Information Center

    Heck, Andre; van Dongen, Caroline

    2008-01-01

    Human walking is a complicated motion. Movement scientists have developed various research methods to study gait. This article describes how a high school student collected and analysed high quality gait data in much the same way that movement scientists do, via the recording and measurement of motions with a video analysis tool and via…

  5. Research on gait-based human identification

    NASA Astrophysics Data System (ADS)

    Li, Youguo

    Gait recognition refers to automatic identification of individual based on his/her style of walking. This paper proposes a gait recognition method based on Continuous Hidden Markov Model with Mixture of Gaussians(G-CHMM). First, we initialize a Gaussian mix model for training image sequence with K-means algorithm, then train the HMM parameters using a Baum-Welch algorithm. These gait feature sequences can be trained and obtain a Continuous HMM for every person, therefore, the 7 key frames and the obtained HMM can represent each person's gait sequence. Finally, the recognition is achieved by Front algorithm. The experiments made on CASIA gait databases obtain comparatively high correction identification ratio and comparatively strong robustness for variety of bodily angle.

  6. The impact of simulated ankle plantarflexion contracture on the knee joint during stance phase of gait: a within-subject study.

    PubMed

    Leung, Joan; Smith, Richard; Harvey, Lisa Anne; Moseley, Anne M; Chapparo, Joseph

    2014-04-01

    Ankle plantarflexion contractures are common in adults with neurological disorders and known to cause secondary gait deviations. However, their impact on the knee joint is not fully understood. The aims of this study are to describe the effect of simulated plantarflexion contractures on knee biomechanics during the stance phase and on the spatiotemporal characteristics of gait. Mild (10-degree plantarflexion) and severe (20-degree plantarflexion) ankle contractures were simulated in thirteen able-bodied adults using an ankle-foot-orthosis. A no contracture condition was compared with two simulated contracture conditions. There was an increase in knee extension, sometimes resulting in hyperextension, throughout stance for the two contracture conditions compared to the no contracture condition (mean increase in knee extension ranged from 5° to 9°; 95% CI 0° to 17°). At the same time, there were reductions in extension moment and power generation at the knee. Simulated plantarflexion contractures also reduced gait velocity, bilateral step length and cadence. All these changes were more pronounced in the severe contracture condition than mild contracture condition. While the majority of participants adopted a foot-flat pattern on landing and exhibited an increase in knee extension during stance, two participants used a toe-walking pattern and exhibited an increase in knee flexion. Ankle plantarflexion contractures are associated with an increase in knee extension during stance phase. However, some people with simulated ankle contractures may walk with an increase in knee flexion instead. Ankle plantarflexion contractures also adversely affect gait velocity, step length and cadence. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effect of a robotic restraint gait training versus robotic conventional gait training on gait parameters in stroke patients.

    PubMed

    Bonnyaud, Céline; Zory, Raphael; Boudarham, Julien; Pradon, Didier; Bensmail, Djamel; Roche, Nicolas

    2014-01-01

    Kinematic and kinetic gait parameters have never been assessed following robotic-assisted gait training in hemiparetic patients. Previous studies suggest that restraint of the non-paretic lower limb during gait training could be a useful rehabilitation approach for hemiparetic patients. The aim of this study is to compare a new Lokomat(®) asymmetrical restraint paradigm (with a negative kinematic constraint on the non-paretic limb and a positive kinematic constraint on the paretic limb) with a conventional symmetrical Lokomat(®) training in hemiparetic subjects. We hypothesized that hip and knee kinematics on paretic side would be more improved after the asymmetrical Lokomat(®) training than after the conventional training. In a prospective observational controlled study, 26 hemiparetic subjects were randomized to one of the two groups Lokomat(®) experimental gait training (LE) or Lokomat(®) conventional gait training (LC). They were assessed using 3D gait analysis before, immediately after the 20 min of gait training and following a 20-min rest period. There was a greater increase in peak knee flexion on the paretic side following LE than LC (p = 0.04), and each type of training induced different changes in vertical GRF during single-support phase on the paretic side. Several other spatiotemporal, kinematic and kinetic gait parameters were similarly improved after both types of training. Lokomat(®) restrained gait training with a negative kinematic constraint on the non-paretic limb and a positive kinematic constraint on the paretic limb appears to be an effective approach to specifically improve knee flexion in the paretic lower limb in hemiparetic patients. This study also highlights spatiotemporal, kinematic and kinetic improvements after Lokomat(®) training, in hemiparetic subjects, rarely investigated before.

  8. Efficacy of a trunk orthosis with joints providing resistive force on low-back load in elderly persons during static standing.

    PubMed

    Katsuhira, Junji; Matsudaira, Ko; Yasui, Tadashi; Iijima, Shinno; Ito, Akihiro

    2015-01-01

    Postural alignment of elderly people becomes poor due to aging, possibly leading to low-back pain and spinal deformity. Although there are several interventions for treating these conditions, no previous study has reported the effectiveness of a spinal orthosis or lumbosacral orthosis (LSO) in healthy elderly people without specific spinal deformity. We therefore developed a trunk orthosis to decrease low-back muscle activity while training good postural alignment through resistive force provided by joints with springs (here, called the ORF, which stands for orthosis with joints providing resistive force) as a preventive method against abnormal posture and low-back pain in healthy elderly persons. Fifteen community-dwelling elderly men participated in this study. Participants stood freely for 10 seconds in a laboratory setting under three conditions: without an orthosis, with the ORF, and with an LSO. The Damen corset LSO was selected as it is frequently prescribed for patients with low-back pain. Postural alignment during static standing was recorded using a three-dimensional motion capture system employing infrared cameras. Two force plates were used to record center of pressure. Electromyograms were obtained for bilateral erector spinae (ES), left internal abdominal oblique, and right gluteus medius muscles. Pelvis forward tilt angle tended to increase while wearing the ORF and decrease while wearing the LSO, but these results were not significant compared to no orthosis. Thorax extension angle and thorax angle on pelvis coordinate system significantly increased while wearing the ORF compared to the other two conditions. ES activity significantly decreased while wearing the ORF compared to the other two conditions. Internal oblique activity was significantly smaller while wearing the LSO than with no orthosis. Center of pressure did not significantly differ among the conditions. The ORF significantly improved trunk alignment and decreased ES activity in healthy

  9. Efficacy of a trunk orthosis with joints providing resistive force on low-back load in elderly persons during static standing

    PubMed Central

    Katsuhira, Junji; Matsudaira, Ko; Yasui, Tadashi; Iijima, Shinno; Ito, Akihiro

    2015-01-01

    Purpose Postural alignment of elderly people becomes poor due to aging, possibly leading to low-back pain and spinal deformity. Although there are several interventions for treating these conditions, no previous study has reported the effectiveness of a spinal orthosis or lumbosacral orthosis (LSO) in healthy elderly people without specific spinal deformity. We therefore developed a trunk orthosis to decrease low-back muscle activity while training good postural alignment through resistive force provided by joints with springs (here, called the ORF, which stands for orthosis with joints providing resistive force) as a preventive method against abnormal posture and low-back pain in healthy elderly persons. Patients and methods Fifteen community-dwelling elderly men participated in this study. Participants stood freely for 10 seconds in a laboratory setting under three conditions: without an orthosis, with the ORF, and with an LSO. The Damen corset LSO was selected as it is frequently prescribed for patients with low-back pain. Postural alignment during static standing was recorded using a three-dimensional motion capture system employing infrared cameras. Two force plates were used to record center of pressure. Electromyograms were obtained for bilateral erector spinae (ES), left internal abdominal oblique, and right gluteus medius muscles. Results Pelvis forward tilt angle tended to increase while wearing the ORF and decrease while wearing the LSO, but these results were not significant compared to no orthosis. Thorax extension angle and thorax angle on pelvis coordinate system significantly increased while wearing the ORF compared to the other two conditions. ES activity significantly decreased while wearing the ORF compared to the other two conditions. Internal oblique activity was significantly smaller while wearing the LSO than with no orthosis. Center of pressure did not significantly differ among the conditions. Conclusion The ORF significantly improved trunk

  10. Development of an orthosis for walking assistance using pneumatic artificial muscle: a quantitative assessment of the effect of assistance.

    PubMed

    Kawamura, T; Takanaka, K; Nakamura, T; Osumi, H

    2013-06-01

    In recent years, there is an increase in the number of people that require support during walking as a result of a decrease in the leg muscle strength accompanying aging. An important index for evaluating walking ability is step length. A key cause for a decrease in step length is the loss of muscle strength in the legs. Many researchers have designed and developed orthoses for walking assistance. In this study, we advanced the design of an orthosis for walking assistance that assists the forward swing of the leg to increase step length. We employed a pneumatic artificial muscle as the actuator so that flexible assistance with low rigidity can be achieved. To evaluate the performance of the system, we measured the effect of assistance quantitatively. In this study, we constructed a prototype of the orthosis and measure EMG and step length on fitting it to a healthy subject so as to determine the effect of assistance, noting the increase in the obtained step length. Although there was an increase in EMG stemming from the need to maintain body balance during the stance phase, we observed that the EMG of the sartorius muscle, which helps swing the leg forward, decreased, and the strength of the semitendinosus muscle, which restrains the leg against over-assistance, did not increase but decreased. Our experiments showed that the assistance force provided by the developed orthosis is not adequate for the intended task, and the development of a mechanism that provides appropriate assistance is required in the future.

  11. Clinical application of carbon fibre reinforced plastic leg orthosis for polio survivors and its advantages and disadvantages.

    PubMed

    Hachisuka, K; Makino, K; Wada, F; Saeki, S; Yoshimoto, N; Arai, M

    2006-08-01

    A prospective study was carried out on the clinical application and features of a carbon fibre reinforced plastic leg orthosis (carbon orthosis) for polio survivors. The subjects comprised 9 polio survivors, and 11 carbon knee-ankle-foot orthoses (KAFOs) were prescribed, fabricated, and checked out at the authors' post-polio clinic. Walking was classified based on the functional ambulatory category, and the features of walking with a carbon orthosis were self-evaluated by using a visual analogue scale. The period from modelling a cast to completion was 55 +/- 25 days; the weight of a carbon KAFO was 27.8% lighter than that of the ordinary KAFO; the standard carbon KAFO was 50% more expensive than the ordinary KAFO. The carbon KAFO remained undamaged for at least 2 years. It improved the scores in the functional ambulation categories, but there was no difference between walking with an ordinary and with a carbon KAFO. The self-evaluation of walking with a carbon KAFO revealed that the subjects using a carbon KAFO were satisfied with their carbon KAFO. The carbon KAFO is lightweight, durable, slim and smart, and is positively indicated for polio survivors.

  12. Characteristics of the muscle activities of the elderly for various pressures in the pneumatic actuator of lower limb orthosis

    NASA Astrophysics Data System (ADS)

    Kim, Kyong; Yu, Chang-Ho; Kwon, Tae-Kyu; Hong, Chul-Un; Kim, Nam-Gyun

    2005-12-01

    There developed a lower limb orthosis with a pneumatic rubber actuator, which can assist and improve the muscular activities in the lower limb of the elderly. For this purpose, the characteristics of the lower limbs muscle activities for various pressures in the pneumatic actuator for the lower limb orthosis was investigated. To find out the characteristics of the muscle activities for various pneumatic pressures, it analyzed the flexing and extending movement of the knees, and measured the lower limbs muscular power. The subjects wearing the lower limbs orthosis were instructed to perform flexing and extending movement of the knees. The variation in the air pressure of the pneumatic actuator was varies from one kgf/cm2 to four kgf/cm2. The muscular power was measured by monitoring electromyogram using MP100 (BIOPAC Systems, Inc.) and detailed three-dimensional motions of the lower limbs were collected by APAS 3D Motion Analysis system. Through this study, it expected to find the most suitable air pressure for the improvement of the muscular power of the aged.

  13. Development of a "Neuro-orthosis" for the control of wrist movements in patients with carpal tunnel syndrome: preliminary results.

    PubMed

    Ugurlu, U; Ozkan, M; Ozdogan, A H

    2007-01-01

    Carpal tunnel syndrome (CTS) is a common, painful condition. Treatment is indicated when the symptoms of the disease interferes with the usual daily activities. The use of orthoses is advocated in the treatment of mild and moderate CTS. The rationale for using neutral wrist orthoses lies on the relation of the disease with the increased intracarpal pressure. It was demonstrated that the intracarpal pressure is minimum when the wrist is in neutral position. In spite of their proven therapeutic effects, long-term or improper use of static orthoses may lead to unwanted side effects such as muscle atrophy and discomfort during forceful activities. To overcome the problems caused by a static neutral wrist orthosis, a prototype control system was developed to control the wrist movements via electrical stimulation. At this control system, wrist movements in two planes are controlled by means of electrical stimulation of the antagonistic muscles. The effect of the new control system on hand function and dexterity was compared with those obtained with rigid orthosis and no orthosis.

  14. Gait: the role of the ankle and foot in walking.

    PubMed

    Dubin, Andrew

    2014-03-01

    Evaluation of gait and its associated deviations from normal requires an in-depth evaluation of the patient and an appreciation for the complexity of the task. Understanding gait starts with an appreciation of the basic determinants of gait. Foot drop is a common gait deviation. Functionally, a foot drop results in a long limb. This will result in alterations of the gait cycle during swing phase. The common compensations for a foot drop include steppage gait, circumduction, and a persistently abducted limb. Noninterventional options for management of common gait deviations secondary to ankle/foot dysfunction present challenges. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Gait transitions in simulated reduced gravity.

    PubMed

    Ivanenko, Yuri P; Labini, Francesca Sylos; Cappellini, Germana; Macellari, Velio; McIntyre, Joseph; Lacquaniti, Francesco

    2011-03-01

    Gravity has a strong effect on gait and the speed of gait transitions. A gait has been defined as a pattern of locomotion that changes discontinuously at the transition to another gait. On Earth, during gradual speed changes, humans exhibit a sudden discontinuous switch from walking to running at a specific speed. To study the effects of altered gravity on both the stance and swing legs, we developed a novel unloading exoskeleton that allows a person to step in simulated reduced gravity by tilting the body relative to the vertical. Using different simulation techniques, we confirmed that at lower gravity levels the transition speed is slower (in accordance with the previously reported Froude number ∼0.5). Surprisingly, however, we found that at lower levels of simulated gravity the transition between walking and running was generally gradual, without any noticeable abrupt change in gait parameters. This was associated with a significant prolongation of the swing phase, whose duration became virtually equal to that of stance in the vicinity of the walk-run transition speed, and with a gradual shift from inverted-pendulum gait (walking) to bouncing gait (running).

  16. Gait Speed and Survival in Older Adults

    PubMed Central

    Studenski, Stephanie; Perera, Subashan; Patel, Kushang; Rosano, Caterina; Faulkner, Kimberly; Inzitari, Marco; Brach, Jennifer; Chandler, Julie; Cawthon, Peggy; Connor, Elizabeth Barrett; Nevitt, Michael; Visser, Marjolein; Kritchevsky, Stephen; Badinelli, Stefania; Harris, Tamara; Newman, Anne B.; Cauley, Jane; Ferrucci, Luigi; Guralnik, Jack

    2011-01-01

    Context Survival estimates help individualize goals of care for geriatric patients, but life tables fail to account for the great variability in survival. Physical performance measures, such as gait speed, might help account for variability, allowing clinicians to make more individualized estimates. Objective To evaluate the relationship between gait speed and survival. Design, Setting, and Participants Pooled analysis of 9 cohort studies (collected between 1986 and 2000), using individual data from 34 485 community-dwelling older adults aged 65 years or older with baseline gait speed data, followed up for 6 to 21 years. Participants were a mean (SD) age of 73.5 (5.9) years; 59.6%, women; and 79.8%, white; and had a mean (SD) gait speed of 0.92 (0.27) m/s. Main Outcome Measures Survival rates and life expectancy. Results There were 17 528 deaths; the overall 5-year survival rate was 84.8% (confidence interval [CI], 79.6%–88.8%)and 10-year survival rate was 59.7% (95%CI, 46.5%–70.6%). Gait speed was associated with survival in all studies (pooled hazard ratio per 0.1 m/s, 0.88; 95% CI, 0.87–0.90; P<. 001). Survival increased across the full range of gait speeds, with significant increments per 0.1 m/s. At age 75, predicted 10-year survival across the range of gait speeds ranged from 19% to 87% in men and from 35% to 91% in women. Predicted survival based on age, sex, and gait speed was as accurate as predicted based on age, sex, use of mobility aids, and self-reported function or as age, sex, chronic conditions, smoking history, blood pressure, body mass index, and hospitalization. Conclusion In this pooled analysis of individual data from 9 selected cohorts, gait speed was associated with survival in older adults. PMID:21205966

  17. Biomechanics and analysis of running gait.

    PubMed

    Dugan, Sheila A; Bhat, Krishna P

    2005-08-01

    Physical activity, including running, is important to general health by way of prevention of chronic illnesses and their precursors. To keep runners healthy, it is paramount that one has sound knowledge of the biomechanics of running and assessment of running gait. More so, improving performance in competitive runners is based in sound training and rehabilitation practices that are rooted firmly in biomechanical principles. This article summarized the biomechanics of running and the means with which one can evaluate running gait. The gait assessment techniques for collecting and analyzing kinetic and kinematic data can provide insights into injury prevention and treatment and performance enhancement.

  18. Spatial parameters of walking gait and footedness.

    PubMed

    Zverev, Y P

    2006-01-01

    The present study was undertaken to assess whether footedness has effects on selected spatial and angular parameters of able-bodied gait by evaluating footprints of young adults. A total of 112 males and 93 females were selected from among students and staff members of the University of Malawi using a simple random sampling method. Footedness of subjects was assessed by the Waterloo Footedness Questionnaire Revised. Gait at natural speed was recorded using the footprint method. The following spatial parameters of gait were derived from the inked footprint sequences of subjects: step and stride lengths, gait angle and base of gait. The anthropometric measurements taken were weight, height, leg and foot length, foot breadth, shoulder width, and hip and waist circumferences. The prevalence of right-, left- and mix-footedness in the whole sample of young Malawian adults was 81%, 8.3% and 10.7%, respectively. One-way analysis of variance did not reveal a statistically significant difference between footedness categories in the mean values of anthropometric measurements (p > 0.05 for all variables). Gender differences in step and stride length values were not statistically significant. Correction of these variables for stature did not change the trend. Males had significantly broader steps than females. Normalized values of base of gait had similar gender difference. The group means of step length and normalized step length of the right and left feet were similar, for males and females. There was a significant side difference in the gait angle in both gender groups of volunteers with higher mean values on the left side compared to the right one (t = 2.64, p < 0.05 for males, and t = 2.78, p < 0.05 for females). One-way analysis of variance did not demonstrate significant difference between footedness categories in the mean values of step length, gait angle, bilateral differences in step length and gait angle, stride length, gait base and normalized gait variables of male

  19. Comparison between clinical gait and daily-life gait assessments of fall risk in older people.

    PubMed

    Brodie, Matthew A; Coppens, Milou J; Ejupi, Andreas; Gschwind, Yves J; Annegarn, Janneke; Schoene, Daniel; Wieching, Rainer; Lord, Stephen R; Delbaere, Kim

    2017-02-08

    Falls are a leading cause of disability in older people. Here we investigate if daily-life gait assessments are better than clinical gait assessments at discriminating between older people with and without a history of falls. A total of 96 independent-living participants (age 75.5 ± 7.8) underwent sensorimotor, psychological and cognitive assessments, and the Timed Up and Go and 10-m walk tests. Participants wore a small pendant sensor device for a week in their home environment, from which the new remote assessments of daily-life gait were determined. During daily-life, fallers had significantly lower gait quality (lower gait endurance, higher within-walk variability and lower between-walk adaptability), but not reduced gait quantity (total steps) or gait intensity (mean cadence). In the clinic, fallers had slower Timed Up and Go, but not 10-m walk test times. After adjusting for demographics, only the daily-life assessments of gait endurance and within-walk variability remained significant. Reduced daily-life gait assessments were significantly correlated with older age, higher body mass index, multiple medications, disability, more concern about falling, poor executive function and higher physiological fall risk. The new daily-life gait assessments were better than the clinical gait assessments at identifying fall risk in our sample of independent living older people. However, further research is required to validate these findings in other populations or those living in residential aged care. Daily-life gait was not only associated with demographics and physiological capacity, but also general health, executive function and the ability to undertake a variety of activities of daily living without excessive concern about falling. Geriatr Gerontol Int 2016; ••: ••-••. © 2017 Japan Geriatrics Society.

  20. Variations in kinematics during clinical gait analysis in stroke patients.

    PubMed

    Boudarham, Julien; Roche, Nicolas; Pradon, Didier; Bonnyaud, Céline; Bensmail, Djamel; Zory, Raphael

    2013-01-01

    In addition to changes in spatio-temporal and kinematic parameters, patients with stroke exhibit fear of falling as well as fatigability during gait. These changes could compromise interpretation of data from gait analysis. The aim of this study was to determine if the gait of hemiplegic patients changes significantly over successive gait trials. Forty two stroke patients and twenty healthy subjects performed 9 gait trials during a gait analysis session. The mean and variability of spatio-temporal and kinematic joint parameters were analyzed during 3 groups of consecutive gait trials (1-3, 4-6 and 7-9). Principal component analysis was used to reduce the number of variables from the joint kinematic waveforms and to identify the parts of the gait cycle which changed during the gait analysis session. The results showed that i) spontaneous gait velocity and the other spatio-temporal parameters significantly increased, and ii) gait variability decreased, over the last 6 gait trials compared to the first 3, for hemiplegic patients but not healthy subjects. Principal component analysis revealed changes in the sagittal waveforms of the hip, knee and ankle for hemiplegic patients after the first 3 gait trials. These results suggest that at the beginning of the gait analysis session, stroke patients exhibited phase of adaptation,characterized by a "cautious gait" but no fatigue was observed.

  1. Robust Gait Recognition by Integrating Inertial and RGBD Sensors.

    PubMed

    Zou, Qin; Ni, Lihao; Wang, Qian; Li, Qingquan; Wang, Song

    2017-03-29

    Gait has been considered as a promising and unique biometric for person identification. Traditionally, gait data are collected using either color sensors, such as a CCD camera, depth sensors, such as a Microsoft Kinect, or inertial sensors, such as an accelerometer. However, a single type of sensors may only capture part of the dynamic gait features and make the gait recognition sensitive to complex covariate conditions, leading to fragile gait-based person identification systems. In this paper, we propose to combine all three types of sensors for gait data collection and gait recognition, which can be used for important identification applications, such as identity recognition to access a restricted building or area. We propose two new algorithms, namely EigenGait and TrajGait, to extract gait features from the inertial data and the RGBD (color and depth) data, respectively. Specifically, EigenGait extracts general gait dynamics from the accelerometer readings in the eigenspace and TrajGait extracts more detailed subdynamics by analyzing 3-D dense trajectories. Finally, both extracted features are fed into a supervised classifier for gait recognition and person identification. Experiments on 50 subjects, with comparisons to several other state-of-the-art gait-recognition approaches, show that the proposed approach can achieve higher recognition accuracy and robustness.

  2. Effects of a new spinal orthosis on posture, trunk strength, and quality of life in women with postmenopausal osteoporosis: a randomized trial.

    PubMed

    Pfeifer, Michael; Begerow, Bettina; Minne, Helmut W

    2004-03-01

    One fourth of women > or =50 yrs of age in the general population have one or more vertebral fractures. The orthotic treatment modality in the management of vertebral fractures caused by osteoporosis remains subjective because no objective data from clinical trials are available. The objective of this research was to evaluate the efficacy of a newly developed spinal orthosis in patients with osteoporotic vertebral fractures. We conducted a study that measured trunk muscle strength, angle of kyphosis, body height, body sway, and variables of quality of life such as pain, well-being, and limitations of daily living. Wearing the orthosis for 6-mo period was associated with a 73% increase in back extensor strength, a 58% increase in abdominal flexor strength, an 11% decrease in angle of kyphosis, a 25% decrease in body sway, a 7% increase in vital capacity, a 38% decrease in average pain, a 15% increase in well-being, and a 27% decrease in limitations of daily living. The overall tolerability of the orthosis was good, no side-effects were reported, and the drop-out rate of 3% was rather low. The use of an orthosis increases trunk muscle strength and thus improves posture in patients with vertebral fractures caused by osteoporosis. In addition, a better quality of life is achieved by pain reduction, decreased limitations of daily living, and improved well-being. Therefore, the use of an orthosis may represent an efficacious nonpharmacologic treatment option for spinal osteoporosis.

  3. Gait recognition based on Gabor wavelets and modified gait energy image for human identification

    NASA Astrophysics Data System (ADS)

    Huang, Deng-Yuan; Lin, Ta-Wei; Hu, Wu-Chih; Cheng, Chih-Hsiang

    2013-10-01

    This paper proposes a method for recognizing human identity using gait features based on Gabor wavelets and modified gait energy images (GEIs). Identity recognition by gait generally involves gait representation, extraction, and classification. In this work, a modified GEI convolved with an ensemble of Gabor wavelets is proposed as a gait feature. Principal component analysis is then used to project the Gabor-wavelet-based gait features into a lower-dimension feature space for subsequent classification. Finally, support vector machine classifiers based on a radial basis function kernel are trained and utilized to recognize human identity. The major contributions of this paper are as follows: (1) the consideration of the shadow effect to yield a more complete segmentation of gait silhouettes; (2) the utilization of motion estimation to track people when walkers overlap; and (3) the derivation of modified GEIs to extract more useful gait information. Extensive performance evaluation shows a great improvement of recognition accuracy due to the use of shadow removal, motion estimation, and gait representation using the modified GEIs and Gabor wavelets.

  4. Comparative study of conventional hip-knee-ankle-foot orthoses versus reciprocating-gait orthoses for children with high-level paraparesis.

    PubMed

    Katz, D E; Haideri, N; Song, K; Wyrick, P

    1997-01-01

    We evaluated eight children with thoracic or high lumbar-level paraparesis for metabolic performance while ambulating with custom fabricated thermoplastic hip-knee-ankle-foot orthoses (HKAFOs) and reciprocating-gait orthoses (RGOs). Seven of the eight children had myelomeningocele. Each patient was tested in both systems at self-selected speeds in a crossover study design. At self-selected speeds, the level of exercise intensity for both thoracic and high-lumbar patients with either orthosis was lower than that for normal children. The average metabolic cost of walking in the RGO was twice that of normal children, as compared with six times normal in HKAFOs. For the four thoracic-level patients, there was a significantly higher oxygen cost of ambulation in using HKAFOs versus RGOs. No significant difference in metabolic performance was found for the high-lumbar patients. Velocity of ambulation was faster in the RGOs than in the HKAFOs. For thoracic-level patients, our data suggest that an RGO will provide a faster, more energy-efficient gait than a statically locked HKAFO. For high-lumbar patients, no significant difference was found between the two orthoses. Seven of eight children preferred the RGO over the HKAFO.

  5. Effectiveness of modified ankle foot orthosis of low-temperature thermoplastics in idiopathic congenital talipes equino varus.

    PubMed

    Solanki, Punita Vasant; Sheth, Binoti Arun; Poduval, Murali; Sams, Stephen Brian Austin

    2010-07-01

    The aim of this study was to study the effectiveness of modified ankle foot orthosis fabricated from low-temperature thermoplastics, as an alternative orthosis for the maintenance of correction in idiopathic congenital talipes equino varus (CTEV) deformity. The study was conducted in infants after the completion of the Ponseti serial manipulation and cast treatment, with or without, percutaneous Achilles tenotomy. Both male and female infants with unilateral or bilateral CTEV deformity were included in our study. A custom-made modified ankle foot orthosis was fabricated on the day of the removal of the last plaster of Paris cast. Initial clinical assessment, including medical history, Pirani score, modified Dimeglio score, clinical method of evaluating tibial torsion, ankle and foot range of motion were carried out on the day of the fabrication of the orthosis. Follow-up assessments were carried out at regular intervals for a duration of 6 months. All infants were provided with a set of exercises in the outpatient department three to five times per week, and other sessions were carried out by the caregivers in the form of home exercise programmes, daily every 2 h. In our study, we had 40 infants. Of these, 12 were lost to follow-up. The remaining 28 infants (22 males and six females) were included in the study. Of the 28 infants, six were left sided, seven were right sided and 15 were bilateral cases. The age at which cast treatment was initiated ranged from 1 week to 8 months, and the age at which modified ankle foot orthosis was given ranged from 1 month 1 week to 15 months. The average number of plaster of Paris casts given was six. Sixteen infants required tenotomy. We found that there was a significant reduction in the Pirani and modified Dimeglio scores from baseline to the third and to the sixth months, that is, improvement and/or maintenance of the baseline scores of Pirani and modified Dimeglio was observed (P<0.05). The difference in the Pirani and

  6. Advanced Prosthetic Gait Training Tool

    DTIC Science & Technology

    2013-10-01

    or unclothed  avatars ,  stick figures, or even skeletal models to support their analyses. The system will also allow trainees to  isolate specific...CCAD’s work focused on imposing these sequences on the Santos digital  human  avatar . An initial user interface for the training application was also...ability to detect variations in gait conditions for  skinned  avatar  vs. line‐skeletal  avatar , concurrent (side‐by‐side) image representation vs

  7. Wearable sensors objectively measure gait parameters in Parkinson's disease.

    PubMed

    Schlachetzki, Johannes C M; Barth, Jens; Marxreiter, Franz; Gossler, Julia; Kohl, Zacharias; Reinfelder, Samuel; Gassner, Heiko; Aminian, Kamiar; Eskofier, Bjoern M; Winkler, Jürgen; Klucken, Jochen

    2017-01-01

    Distinct gait characteristics like short steps and shuffling gait are prototypical signs commonly observed in Parkinson's disease. Routinely assessed by observation through clinicians, gait is rated as part of categorical clinical scores. There is an increasing need to provide quantitative measurements of gait, e.g. to provide detailed information about disease progression. Recently, we developed a wearable sensor-based gait analysis system as diagnostic tool that objectively assesses gait parameter in Parkinson's disease without the need of having a specialized gait laboratory. This system consists of inertial sensor units attached laterally to both shoes. The computed target of measures are spatiotemporal gait parameters including stride length and time, stance phase time, heel-strike and toe-off angle, toe clearance, and inter-stride variation from gait sequences. To translate this prototype into medical care, we conducted a cross-sectional study including 190 Parkinson's disease patients and 101 age-matched controls and measured gait characteristics during a 4x10 meter walk at the subjects' preferred speed. To determine intraindividual changes in gait, we monitored the gait characteristics of 63 patients longitudinally. Cross-sectional analysis revealed distinct spatiotemporal gait parameter differences reflecting typical Parkinson's disease gait characteristics including short steps, shuffling gait, and postural instability specific for different disease stages and levels of motor impairment. The longitudinal analysis revealed that gait parameters were sensitive to changes by mirroring the progressive nature of Parkinson's disease and corresponded to physician ratings. Taken together, we successfully show that wearable sensor-based gait analysis reaches clinical applicability providing a high biomechanical resolution for gait impairment in Parkinson's disease. These data demonstrate the feasibility and applicability of objective wearable sensor-based gait

  8. Gait disorder in late-life hydrocephalus.

    PubMed

    Sudarsky, L; Simon, S

    1987-03-01

    Computerized analysis of gait was performed in six patients with hydrocephalus (mean age, 75.7 years), for comparison with other elderly patients with gait problems and age-matched controls. A decrease in velocity and stride, an increase in sway, and the proportion of time spent in double-limb stance were nonspecific features correlated with declining performance. Certain features appeared to characterize hydrocephalic gait when compared among groups; cadence was diminished, and there was a reduction of step height and a decreased counterrotation of the shoulders relative to the pelvis. An abnormal tendency toward cocontraction in antagonist muscle groups was observed in electromyographic data from the leg muscles, suggesting that the normal phased activation of muscle groups is disturbed. Although data are not conclusive, we believe that the gait disorder in normal-pressure hydrocephalus reflects a subcortical motor control disorder rather than a phenomenon of spasticity or apraxia.

  9. Wearable sensors used for human gait analysis.

    PubMed

    TarniŢă, Daniela

    2016-01-01

    This paper briefly presents recent developments in the field of wearable sensors and systems that are relevant to the area of normal and pathological human gait analysis. By using wearable sensors, it is possible to monitor the pathological gait disorders and alterations and the changes of balance in the people and prevent or diagnose of different diseases. The most usable wearable sensors and their applications in clinical field are presented based on specialty literature.

  10. Toward understanding the limits of gait recognition

    NASA Astrophysics Data System (ADS)

    Liu, Zongyi; Malave, Laura; Osuntogun, Adebola; Sudhakar, Preksha; Sarkar, Sudeep

    2004-08-01

    Most state of the art video-based gait recognition algorithms start from binary silhouettes. These silhouettes, defined as foreground regions, are usually detected by background subtraction methods, which results in holes or missed parts due to similarity of foreground and background color, and boundary errors due to video compression artifacts. Errors in low-level representation make it hard to understand the effect of certain conditions, such as surface and time, on gait recognition. In this paper, we present a part-level, manual silhouette database consisting of 71 subjects, over one gait cycle, with differences in surface, shoe-type, carrying condition, and time. We have a total of about 11,000 manual silhouette frames. The purpose of this manual silhouette database is twofold. First, this is a resource that we make available at http://www.GaitChallenge.org for use by the gait community to test and design better silhouette detection algorithms. These silhouettes can also be used to learn gait dynamics. Second, using the baseline gait recognition algorithm, which was specified along with the HumanID Gait Challenge problem, we show that performance from manual silhouettes is similar and only sometimes better than that from automated silhouettes detected by statistical background subtraction. Low performances when comparing sequences with differences in walking surfaces and time-variation are not fully explained by silhouette quality. We also study the recognition power in each body part and show that recognition based on just the legs is equal to that from the whole silhouette. There is also significant recognition power in the head and torso shape.

  11. Exploring phase dependent functional gait variability.

    PubMed

    Hamacher, Daniel; Hamacher, Dennis; Müller, Roy; Schega, Lutz; Zech, Astrid

    2017-04-01

    Gait variability is frequently used to evaluate the sensorimotor system and elderly fallers compared to non-fallers exhibit an altered variability in gait parameters during unchanged conditions. While gait variability is often interpreted as movement error, it is also necessary to change the gait pattern in order to react to internal and external perturbations. This phenomenon has been described as functional variability and ensures the stability of gait motor control. The aim of the current study is to explore the functional variability in relation to the different phases of the gait cycle (phase-dependent gait variability). Kinematics of the foot, shank and thigh were registered with inertial sensors (MTw2, Xsens Technologies B.V) in 25 older participants (70±6years) during normal overground walking. Phase-dependent variability was defined as the standard deviation of the Euclidean norm of the angular velocity data. To assess differences with respect to the variability of different body segments (foot, shank, and thigh), the statistical parametric mapping method was applied. In normal walking, the variability of the time-continuous foot kinematics during parts of the swing phase was higher compared to the shank (9-14% of swing phase, p<0.000) and to the thigh (3-43%, p<0.000 and 92%, p=0.024 of swing phase). Compared to the thigh, the shank kinematics was less variable at 62-64% (p=0.013) of the swing phase. The magnitudes of the variability were comparable regarding all three body segments during mid swing. Furthermore, those magnitudes of variability were smallest during mid swing where the minimum toe clearance was identified. In conclusion, we found signs of phase-dependent functional variability particularly in the swing phase of gait. In fact, we found reduced variability in the time-continuous foot kinematics in mid swing during normal walking where also the minimum toe clearance event occurs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Altered vision destabilizes gait in older persons.

    PubMed

    Helbostad, Jorunn L; Vereijken, Beatrix; Hesseberg, Karin; Sletvold, Olav

    2009-08-01

    This study assessed the effects of dim light and four experimentally induced changes in vision on gait speed and footfall and trunk parameters in older persons walking on level ground. Using a quasi-experimental design, gait characteristics were assessed in full light, dim light, and in dim light combined with manipulations resulting in reduced depth vision, double vision, blurred vision, and tunnel vision, respectively. A convenience sample of 24 home-dwelling older women and men (mean age 78.5 years, SD 3.4) with normal vision for their age and able to walk at least 10 m without assistance participated. Outcome measures were gait speed and spatial and temporal parameters of footfall and trunk acceleration, derived from an electronic gait mat and accelerometers. Dim light alone had no effect. Vision manipulations combined with dim light had effect on most footfall parameters but few trunk parameters. The largest effects were found regarding double and tunnel vision. Men increased and women decreased gait speed following manipulations (p=0.017), with gender differences also in stride velocity variability (p=0.017) and inter-stride medio-lateral trunk acceleration variability (p=0.014). Gender effects were related to differences in body height and physical functioning. Results indicate that visual problems lead to a more cautious and unstable gait pattern even under relatively simple conditions. This points to the importance of assessing vision in older persons and correcting visual impairments where possible.

  13. Gait Partitioning Methods: A Systematic Review

    PubMed Central

    Taborri, Juri; Palermo, Eduardo; Rossi, Stefano; Cappa, Paolo

    2016-01-01

    In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments. PMID:26751449

  14. Gait Recognition Using Wearable Motion Recording Sensors

    NASA Astrophysics Data System (ADS)

    Gafurov, Davrondzhon; Snekkenes, Einar

    2009-12-01

    This paper presents an alternative approach, where gait is collected by the sensors attached to the person's body. Such wearable sensors record motion (e.g. acceleration) of the body parts during walking. The recorded motion signals are then investigated for person recognition purposes. We analyzed acceleration signals from the foot, hip, pocket and arm. Applying various methods, the best EER obtained for foot-, pocket-, arm- and hip- based user authentication were 5%, 7%, 10% and 13%, respectively. Furthermore, we present the results of our analysis on security assessment of gait. Studying gait-based user authentication (in case of hip motion) under three attack scenarios, we revealed that a minimal effort mimicking does not help to improve the acceptance chances of impostors. However, impostors who know their closest person in the database or the genders of the users can be a threat to gait-based authentication. We also provide some new insights toward the uniqueness of gait in case of foot motion. In particular, we revealed the following: a sideway motion of the foot provides the most discrimination, compared to an up-down or forward-backward directions; and different segments of the gait cycle provide different level of discrimination.

  15. Development of a novel virtual reality gait intervention.

    PubMed

    Boone, Anna E; Foreman, Matthew H; Engsberg, Jack R

    2017-02-01

    Improving gait speed and kinematics can be a time consuming and tiresome process. We hypothesize that incorporating virtual reality videogame play into variable improvement goals will improve levels of enjoyment and motivation and lead to improved gait performance. To develop a feasible, engaging, VR gait intervention for improving gait variables. Completing this investigation involved four steps: 1) identify gait variables that could be manipulated to improve gait speed and kinematics using the Microsoft Kinect and free software, 2) identify free internet videogames that could successfully manipulate the chosen gait variables, 3) experimentally evaluate the ability of the videogames and software to manipulate the gait variables, and 4) evaluate the enjoyment and motivation from a small sample of persons without disability. The Kinect sensor was able to detect stride length, cadence, and joint angles. FAAST software was able to identify predetermined gait variable thresholds and use the thresholds to play free online videogames. Videogames that involved continuous pressing of a keyboard key were found to be most appropriate for manipulating the gait variables. Five participants without disability evaluated the effectiveness for modifying the gait variables and enjoyment and motivation during play. Participants were able to modify gait variables to permit successful videogame play. Motivation and enjoyment were high. A clinically feasible and engaging virtual intervention for improving gait speed and kinematics has been developed and initially tested. It may provide an engaging avenue for achieving thousands of repetitions necessary for neural plastic changes and improved gait. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Development of an assistive motorized hip orthosis: kinematics analysis and mechanical design.

    PubMed

    Olivier, Jeremy; Bouri, Mohamed; Ortlieb, Amalric; Bleuler, Hannes; Clavel, Reymond

    2013-06-01

    With the increase of life expectancy, a higher number of elderly need assistance to maintain their mobility and their independance. The hip joint is crucial for walking and is problematic for a large number of aged people. In this paper we present a novel design of a motorized hip orthosis to assist elderly people while walking, stair climbing and during the sit-to-stand transistions. The kinematics was developed based on biomechanics considerations. To be able to achieve a large assistance rate, velocity and torques of the hip joint were studied from the literature. In order to fit with these requirements, an amplification mechanism inspired by excavators was developed and implemented. Comfort considerations were also taken into account and a custom interface was designed with the collaboration of a professional orthopaedic technician. First tests with the prototype showed that the workspace is sufficient for walking, for stair climbing as well as for sit-to-stand transitions. The assistance rate can go up to 30% for a 70 kg subject during walking at a cadence of 100 steps/min. The comfort is guaranteed despite the important weight (4.3 kg) of this first prototype.

  17. Descriptive Characteristics and Amputation Rates With Use of Intrepid Dynamic Exoskeleton Orthosis.

    PubMed

    Hill, Owen; Bulathsinhala, Lakmini; Eskridge, Susan L; Quinn, Kimberly; Stinner, Daniel J

    2016-11-01

    Advancements in ankle-foot orthotic devices, such as the Intrepid Dynamic Exoskeletal Orthosis (IDEO), are designed to improve function and reduce pain of the injured lower extremity. There is a paucity of research detailing the demographics, injury patterns and amputation outcomes of patients who have been prescribed an IDEO. The purpose of this study was to describe the demographics, presenting diagnosis and patterns of amputation in patients prescribed an IDEO at the Center for the Intrepid (CFI). The study population was comprised of 624 service members who were treated at the CFI and prescribed an IDEO between 2009 and 2014. Data were extracted from the Expeditionary Medical Encounter Database, Defense Manpower Data Center, Military Health System Data Repository, and CFI patient records for demographic and injury information as well as an amputation outcome. The most common injury category that received an IDEO prescription was injuries at or surrounding the ankle joint (25.0%), followed by tibia injuries (17.5%) and nerve injuries below the knee (16.4%). Over 80% of the sample avoided amputation within a one year time period using this treatment modality. Future studies should longitudinally track IDEO users for a longer term to determine the long term viability of the device. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  18. Use of a bivalved polypropylene orthosis in the postoperative management of idiopathic scoliosis.

    PubMed

    Roberts, R S; Price, C T; Riddick, M F

    1984-05-01

    Forty-four consecutive patients with idiopathic scoliosis treated by posterior spinal fusion and Harrington rod instrumentation were immobilized after surgery with bivalved polypropylene orthoses. Immediate ambulation was allowed, and the patients wore the orthoses for a mean of 5.9 months. Brace removal was permitted with the patient recumbent for sponge bathing. These patients were followed up for a mean of 2.1 years (range, 1.0-4.3 years). The average final correction for all curves was 45%. The average loss of correction was 2.4 degrees (5.3%). Combined distraction and compression instrumentation was found to improve final correction in all curves by 3 degrees (6.2%) as compared with distraction instrumentation alone. There were no pseudarthroses and no rod breakage. Patients enjoyed the benefits of improved personal hygiene, pleasing cosmetic appearance, and increased life-style flexibility, especially swimming, which was not possible with the conventional Risser plaster cast. Use of the polypropylene orthosis offers significant advantages as compared with previous methods of postoperative management: it not only provides consistently good results but is enthusiastically accepted by patients as well.

  19. The effect of rigid versus flexible spinal orthosis on the clinical efficacy and acceptance of the patients with adolescent idiopathic scoliosis.

    PubMed

    Wong, Man Sang; Cheng, Jack C Y; Lam, Tsz Ping; Ng, Bobby K W; Sin, Sai Wing; Lee-Shum, Sandra L F; Chow, Daniel H K; Tam, Sandra Y P

    2008-05-20

    A prospective study on the comparison of the clinical efficacy and patient's acceptance of the 2 orthotic management methods. To compare the treatment effectiveness and patients' acceptance of the flexible spinal orthosis, SpineCor with that of the rigid spinal orthosis for the patients with moderate adolescent idiopathic scoliosis. The patients' acceptance to the rigid spinal orthoses is always a concern as it could greatly affect the clinical outcome. SpineCor is a relatively new design for tackling those inevitable drawbacks found in rigid orthosis. However, there was no study to compare this design with the conventional method regarding their treatment efficacy and the patient's acceptance. Forty-three subjects with moderate adolescent idiopathic scoliosis were randomly assigned to the SpineCor group (S group, n = 22) and rigid orthosis group (R group, n = 21). Their survival rate in the first 45 months of intervention was studied. The subjects' acceptance to the orthoses was evaluated by a purpose-designed questionnaire, which was administered in the 3rd, 9th, and 18th months of intervention. In the study period, there were 68% of the subjects in the S group and 95% of the subjects in the R group did not show curve progression. Significant difference (P = 0.046, by Fisher exact test) in failure rate between the 2 subject groups was found although the 2 groups had similar responses to the questionnaire. The current study showed that the failure rate of the SpineCor was significantly higher than that of the rigid spinal orthosis, and the patients' acceptance to the SpineCor was comparable to the conventional rigid spinal orthosis.

  20. Gait dynamics in Parkinson's disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling.

    PubMed

    Hausdorff, Jeffrey M

    2009-06-01

    Parkinson's disease (PD) is a common, debilitating neurodegenerative disease. Gait disturbances are a frequent cause of disability and impairment for patients with PD. This article provides a brief introduction to PD and describes the gait changes typically seen in patients with this disease. A major focus of this report is an update on the study of the fractal properties of gait in PD, the relationship between this feature of gait and stride length and gait variability, and the effects of different experimental conditions on these three gait properties. Implications of these findings are also briefly described. This update highlights the idea that while stride length, gait variability, and fractal scaling of gait are all impaired in PD, distinct mechanisms likely contribute to and are responsible for the regulation of these disparate gait properties.

  1. Gait dynamics in Parkinson's disease: Common and distinct behavior among stride length, gait variability, and fractal-like scaling

    NASA Astrophysics Data System (ADS)

    Hausdorff, Jeffrey M.

    2009-06-01

    Parkinson's disease (PD) is a common, debilitating neurodegenerative disease. Gait disturbances are a frequent cause of disability and impairment for patients with PD. This article provides a brief introduction to PD and describes the gait changes typically seen in patients with this disease. A major focus of this report is an update on the study of the fractal properties of gait in PD, the relationship between this feature of gait and stride length and gait variability, and the effects of different experimental conditions on these three gait properties. Implications of these findings are also briefly described. This update highlights the idea that while stride length, gait variability, and fractal scaling of gait are all impaired in PD, distinct mechanisms likely contribute to and are responsible for the regulation of these disparate gait properties.

  2. Changes in Post-Stroke Gait Biomechanics Induced by One Session of Gait Training.

    PubMed

    Kesar, T M; Reisman, D S; Higginson, J S; Awad, L N; Binder-Macleod, S A

    2015-01-01

    The objective of this study was to determine whether one session of targeted locomotor training can induce measurable improvements in the post-stroke gait impairments. Thirteen individuals with chronic post-stroke hemiparesis participated in one locomotor training session combining fast treadmill training and functional electrical stimulation (FES) of ankle dorsi- and plantar-flexor muscles. Three dimensional gait analysis was performed to assess within-session changes (after versus before training) in gait biomechanics at the subject's self-selected speed without FES. Our results showed that one session of locomotor training resulted in significant improvements in peak anterior ground reaction force (AGRF) and AGRF integral for the paretic leg. Additionally, individual subject data showed that a majority of study participants demonstrated improvements in the primary outcome variables following the training session. This study demonstrates, for the first time, that a single session of intense, targeted post-stroke locomotor retraining can induce significant improvements in post-stroke gait biomechanics. We posit that the within-session changes induced by a single exposure to gait training can be used to predict whether an individual is responsive to a particular gait intervention, and aid with the development of individualized gait retraining strategies. Future studies are needed to determine whether these single-session improvements in biomechanics are accompanied by short-term changes in corticospinal excitability, and whether single-session responses can serve as predictors for the longer-term effects of the intervention with other targeted gait interventions.

  3. Non-invasive brain stimulation and robot-assisted gait training after incomplete spinal cord injury: A randomized pilot study.

    PubMed

    Raithatha, Ravi; Carrico, Cheryl; Powell, Elizabeth Salmon; Westgate, Philip M; Chelette Ii, Kenneth C; Lee, Kara; Dunsmore, Laura; Salles, Sara; Sawaki, Lumy

    2016-01-01

    Locomotor training with a robot-assisted gait orthosis (LT-RGO) and transcranial direct current stimulation (tDCS) are interventions that can significantly enhance motor performance after spinal cord injury (SCI). No studies have investigated whether combining these interventions enhances lower extremity motor function following SCI. Determine whether active tDCS paired with LT-RGO improves lower extremity motor function more than a sham condition, in subjects with motor incomplete SCI. Fifteen adults with SCI received 36 sessions of either active (n = 9) or sham (n = 6) tDCS (20 minutes) preceding LT-RGO (1 hour). Outcome measures included manual muscle testing (MMT; primary outcome measure); 6-Minute Walk Test (6MinWT); 10-Meter Walk Test (10MWT); Timed Up and Go Test (TUG); Berg Balance Scale (BBS); and Spinal Cord Independence Measure-III (SCIM-III). MMT showed significant improvements after active tDCS, with the most pronounced improvement in the right lower extremity. 10MWT, 6MinWT, and BBS showed improvement for both groups. TUG and SCIM-III showed improvement only for the sham tDCS group. Pairing tDCS with LT-RGO can improve lower extremity motor function more than LT-RGO alone. Future research with a larger sample size is recommended to determine longer-term effects on motor function and activities of daily living.

  4. Modulation of gait coordination by subthalamic stimulation improves freezing of gait.

    PubMed

    Fasano, Alfonso; Herzog, Jan; Seifert, Elena; Stolze, Henning; Falk, Daniela; Reese, René; Volkmann, Jens; Deuschl, Günther

    2011-04-01

    The effect of subthalamic deep brain stimulation on gait coordination and freezing of gait in patients with Parkinson's disease is incompletely understood. The purpose of this study was to investigate the extent to which modulation of symmetry and coordination between legs by subthalamic deep brain stimulation alters the frequency and duration of freezing of gait in patients with Parkinson's disease. We recruited 13 post-subthalamic deep brain stimulation patients with Parkinson's disease with off freezing of gait and evaluated them in the following 4 conditions: subthalamic deep brain stimulation on (ON) and stimulation off (OFF), 50% reduction of stimulation voltage for the leg with shorter step length (worse side reduction) and for the leg with longer step length (better side reduction). Gait analysis was performed on a treadmill and recorded by an optoelectronic analysis system. We measured frequency and duration of freezing of gait episodes. Bilateral coordination of gait was assessed by the Phase Coordination Index, quantifying the ability to generate antiphase stepping. From the OFF to the ON state, freezing of gait improved in frequency (2.0 ± 0.4 to 1.4 ± 0.5 episodes) and duration (12.2 ± 2.6 to 2.6 ± 0.8 seconds; P = .005). Compared with the ON state, only better side reduction further reduced freezing of gait frequency (0.2 ± 0.2) and duration of episodes (0.2 ± 0.2 seconds; P = .03); worse side reduction did not change frequency (1.3 ± 0.4) but increased freezing of gait duration (5.2 ± 2.1 seconds). The better side reduction-associated improvements were accompanied by normalization of gait coordination, as measured by phase coordination index (16.5% ± 6.0%), which was significantly lower than in the other 3 conditions. Reduction of stimulation voltage in the side contralateral to the leg with longer step length improves frequency and duration of freezing of gait through normalization of gait symmetry and coordination in subthalamic deep brain

  5. A Validated Smartphone-Based Assessment of Gait and Gait Variability in Parkinson's Disease.

    PubMed

    Ellis, Robert J; Ng, Yee Sien; Zhu, Shenggao; Tan, Dawn M; Anderson, Boyd; Schlaug, Gottfried; Wang, Ye

    2015-01-01

    A well-established connection exists between increased gait variability and greater fall likelihood in Parkinson's disease (PD); however, a portable, validated means of quantifying gait variability (and testing the efficacy of any intervention) remains lacking. Furthermore, although rhythmic auditory cueing continues to receive attention as a promising gait therapy for PD, its widespread delivery remains bottlenecked. The present paper describes a smartphone-based mobile application ("SmartMOVE") to address both needs. The accuracy of smartphone-based gait analysis (utilizing the smartphone's built-in tri-axial accelerometer and gyroscope to calculate successive step times and step lengths) was validated against two heel contact-based measurement devices: heel-mounted footswitch sensors (to capture step times) and an instrumented pressure sensor mat (to capture step lengths). 12 PD patients and 12 age-matched healthy controls walked along a 26-m path during self-paced and metronome-cued conditions, with all three devices recording simultaneously. Four outcome measures of gait and gait variability were calculated. Mixed-factorial analysis of variance revealed several instances in which between-group differences (e.g., increased gait variability in PD patients relative to healthy controls) yielded medium-to-large effect sizes (eta-squared values), and cueing-mediated changes (e.g., decreased gait variability when PD patients walked with auditory cues) yielded small-to-medium effect sizes-while at the same time, device-related measurement error yielded small-to-negligible effect sizes. These findings highlight specific opportunities for smartphone-based gait analysis to serve as an alternative to conventional gait analysis methods (e.g., footswitch systems or sensor-embedded walkways), particularly when those methods are cost-prohibitive, cumbersome, or inconvenient.

  6. Classification of Parkinson's Disease Gait Using Spatial-Temporal Gait Features.

    PubMed

    Wahid, Ferdous; Begg, Rezaul K; Hass, Chris J; Halgamuge, Saman; Ackland, David C

    2015-11-01

    Quantitative gait assessment is important in diagnosis and management of Parkinson's disease (PD); however, gait characteristics of a cohort are dispersed by patient physical properties including age, height, body mass, and gender, as well as walking speed, which may limit capacity to discern some pathological features. The aim of this study was twofold. First, to use a multiple regression normalization strategy that accounts for subject age, height, body mass, gender, and self-selected walking speed to identify differences in spatial-temporal gait features between PD patients and controls; and second, to evaluate the effectiveness of machine learning strategies in classifying PD gait after gait normalization. Spatial-temporal gait data during self-selected walking were obtained from 23 PD patients and 26 aged-matched controls. Data were normalized using standard dimensionless equations and multiple regression normalization. Machine learning strategies were then employed to classify PD gait using the raw gait data, data normalized using dimensionless equations, and data normalized using the multiple regression approach. After normalizing data using the dimensionless equations, only stride length, step length, and double support time were significantly different between PD patients and controls (p < 0.05); however, normalizing data using the multiple regression method revealed significant differences in stride length, cadence, stance time, and double support time. Random Forest resulted in a PD classification accuracy of 92.6% after normalizing gait data using the multiple regression approach, compared to 80.4% (support vector machine) and 86.2% (kernel Fisher discriminant) using raw data and data normalized using dimensionless equations, respectively. Our multiple regression normalization approach will assist in diagnosis and treatment of PD using spatial-temporal gait data.

  7. A Validated Smartphone-Based Assessment of Gait and Gait Variability in Parkinson’s Disease

    PubMed Central

    Ellis, Robert J.; Ng, Yee Sien; Zhu, Shenggao; Tan, Dawn M.; Anderson, Boyd; Schlaug, Gottfried; Wang, Ye

    2015-01-01

    Background A well-established connection exists between increased gait variability and greater fall likelihood in Parkinson’s disease (PD); however, a portable, validated means of quantifying gait variability (and testing the efficacy of any intervention) remains lacking. Furthermore, although rhythmic auditory cueing continues to receive attention as a promising gait therapy for PD, its widespread delivery remains bottlenecked. The present paper describes a smartphone-based mobile application (“SmartMOVE”) to address both needs. Methods The accuracy of smartphone-based gait analysis (utilizing the smartphone’s built-in tri-axial accelerometer and gyroscope to calculate successive step times and step lengths) was validated against two heel contact–based measurement devices: heel-mounted footswitch sensors (to capture step times) and an instrumented pressure sensor mat (to capture step lengths). 12 PD patients and 12 age-matched healthy controls walked along a 26-m path during self-paced and metronome-cued conditions, with all three devices recording simultaneously. Results Four outcome measures of gait and gait variability were calculated. Mixed-factorial analysis of variance revealed several instances in which between-group differences (e.g., increased gait variability in PD patients relative to healthy controls) yielded medium-to-large effect sizes (eta-squared values), and cueing-mediated changes (e.g., decreased gait variability when PD patients walked with auditory cues) yielded small-to-medium effect sizes—while at the same time, device-related measurement error yielded small-to-negligible effect sizes. Conclusion These findings highlight specific opportunities for smartphone-based gait analysis to serve as an alternative to conventional gait analysis methods (e.g., footswitch systems or sensor-embedded walkways), particularly when those methods are cost-prohibitive, cumbersome, or inconvenient. PMID:26517720

  8. Gait Initiation in Children with Rett Syndrome

    PubMed Central

    Isaias, Ioannis Ugo; Dipaola, Mariangela; Michi, Marlies; Marzegan, Alberto; Volkmann, Jens; Rodocanachi Roidi, Marina L.; Frigo, Carlo Albino; Cavallari, Paolo

    2014-01-01

    Rett syndrome is an X-linked neurodevelopmental condition mainly characterized by loss of spoken language and a regression of purposeful hand use, with the development of distinctive hand stereotypies, and gait abnormalities. Gait initiation is the transition from quiet stance to steady-state condition of walking. The associated motor program seems to be centrally mediated and includes preparatory adjustments prior to any apparent voluntary movement of the lower limbs. Anticipatory postural adjustments contribute to postural stability and to create the propulsive forces necessary to reach steady-state gait at a predefined velocity and may be indicative of the effectiveness of the feedforward control of gait. In this study, we examined anticipatory postural adjustments associated with gait initiation in eleven girls with Rett syndrome and ten healthy subjects. Muscle activity (tibialis anterior and soleus muscles), ground reaction forces and body kinematic were recorded. Children with Rett syndrome showed a distinctive impairment in temporal organization of all phases of the anticipatory postural adjustments. The lack of appropriate temporal scaling resulted in a diminished impulse to move forward, documented by an impairment in several parameters describing the efficiency of gait start: length and velocity of the first step, magnitude and orientation of centre of pressure-centre of mass vector at the instant of (swing-)toe off. These findings were related to an abnormal muscular activation pattern mainly characterized by a disruption of the synergistic activity of antagonistic pairs of postural muscles. This study showed that girls with Rett syndrome lack accurate tuning of feedforward control of gait. PMID:24743294

  9. Modeling and simulation of normal and hemiparetic gait

    NASA Astrophysics Data System (ADS)

    Luengas, Lely A.; Camargo, Esperanza; Sanchez, Giovanni

    2015-09-01

    Gait is the collective term for the two types of bipedal locomotion, walking and running. This paper is focused on walking. The analysis of human gait is of interest to many different disciplines, including biomechanics, human-movement science, rehabilitation and medicine in general. Here we present a new model that is capable of reproducing the properties of walking, normal and pathological. The aim of this paper is to establish the biomechanical principles that underlie human walking by using Lagrange method. The constraint forces of Rayleigh dissipation function, through which to consider the effect on the tissues in the gait, are included. Depending on the value of the factor present in the Rayleigh dissipation function, both normal and pathological gait can be simulated. First of all, we apply it in the normal gait and then in the permanent hemiparetic gait. Anthropometric data of adult person are used by simulation, and it is possible to use anthropometric data for children but is necessary to consider existing table of anthropometric data. Validation of these models includes simulations of passive dynamic gait that walk on level ground. The dynamic walking approach provides a new perspective of gait analysis, focusing on the kinematics and kinetics of gait. There have been studies and simulations to show normal human gait, but few of them have focused on abnormal, especially hemiparetic gait. Quantitative comparisons of the model predictions with gait measurements show that the model can reproduce the significant characteristics of normal gait.

  10. On the imitation of CP gait patterns by healthy subjects.

    PubMed

    Rezgui, Taysir; Megrot, Fabrice; Fradet, Laetitia; Marin, Frédéric

    2013-09-01

    The comparison of gait imitated by healthy subjects with real pathological CP gaits is expected to contribute to a better distinction between primary deviations directly induced by neurological troubles and secondary compensatory deviations in relation with the biomechanics of the pathological gait. However, the ability of healthy subjects for imitating typical CP gaits such as "jump" or "crouch" gaits still remains to be determined. The present study proposes to investigate healthy subjects imitating these typical CP gait patterns. 10 healthy adult subjects performed three types of gait: one "normal" and two imitated "jump" and "crouch" gaits. Kinematics and kinetics of the hip, knee and ankle were computed in the sagittal plane. Rectified normalized EMG was also analysed. Our data were compared with reference data. For the statistical analysis, the coefficient of multicorrelation has been used. It has been demonstrated that healthy subjects were able to voluntarily modify their gait pattern with a high level of intra-session and inter-subject reproducibility as quantified by a CMC values higher than 0.76 for all parameters. The comparison with literature reference data showed that healthy subjects not could perfectly reproduce a CP gait, however could only simulate the main characteristics of "crouch" and "jump" gaits pattern. As a perspective, pathological gaits imitated by healthy subjects could be used as valuable additional material to analyse the relationship between a voluntarily modified posture and the altered muscle activation to explore a new paradigm on pathological gait pattern analysis and musculoskeletal modelling.

  11. A textured insole improves gait symmetry in individuals with stroke.

    PubMed

    Ma, Charlie C; Rao, Noel; Muthukrishnan, Sriranjini; Aruin, Alexander S

    2017-08-07

    Gait asymmetry is a common consequence of stroke and improving gait symmetry is an important goal of rehabilitation. We investigated the effect of a single textured insole in improving gait symmetry in individuals with stroke. Seventeen individuals with stroke who had asymmetrical gait were recruited and required to walk with a textured insole positioned in the shoe on the unaffected side or without the insole. Gait parameters were evaluated using the instrumented walkway. Gait velocity, cadence, and symmetry indices for the spatial and temporal parameters of gait and center of pressure displacements were obtained. When walking with a textured insole, symmetry indexes for stance, single support phases of gait, as well as center of pressure displacements improved significantly. While using a textured insole, the duration of the stance phase and a single support phase decreased on the unaffected side and increased on the affected side significantly. Gait velocity and cadence were not affected by the use of the insole. Individuals with stroke walking with a textured insole placed in the shoe on the unaffected side improved the symmetry of their gait. The outcome provides a foundation for future investigations of the efficacy of using a single textured insole in gait rehabilitation of individuals with unilateral impairment. Implications for Rehabilitation A single textured insole positioned in the shoe on the unaffected side improved gait symmetry in individuals with stroke. Gait velocity and cadence were not affected by the use of the insole.

  12. Dynamic stability and phase resetting during biped gait.

    PubMed

    Nomura, Taishin; Kawa, Kazuyoshi; Suzuki, Yasuyuki; Nakanishi, Masao; Yamasaki, Taiga

    2009-06-01

    Dynamic stability during periodic biped gait in humans and in a humanoid robot is considered. Here gait systems of human neuromusculoskeletal system and a humanoid are simply modeled while keeping their mechanical properties plausible. We prescribe periodic gait trajectories in terms of joint angles of the models as a function of time. The equations of motion of the models are then constrained by one of the prescribed gait trajectories to obtain types of periodically forced nonlinear dynamical systems. Simulated gait of the models may or may not fall down during gait, since the constraints are made only for joint angles of limbs but not for the motion of the body trunk. The equations of motion can exhibit a limit cycle solution (or an oscillatory solution that can be considered as a limit cycle practically) for each selected gait trajectory, if an initial condition is set appropriately. We analyze the stability of the limit cycle in terms of Poincaré maps and the basin of attraction of the limit cycle in order to examine how the stability depends on the prescribed trajectory. Moreover, the phase resetting of gait rhythm in response to external force perturbation is modeled. Since we always prescribe a gait trajectory in this study, reacting gait trajectories during the phase resetting are also prescribed. We show that an optimally prescribed reacting gait trajectory with an appropriate amount of the phase resetting can increase the gait stability. Neural mechanisms for generation and modulation of the gait trajectories are discussed.

  13. Cervical spine overflexion in a halo orthosis contributes to complete upper airway obstruction during awake bronchoscopic intubation: a case report.

    PubMed

    White, Alexander N J; Wong, David T; Goldstein, Christina L; Wong, Jean

    2015-03-01

    We present a case of upper airway obstruction in a patient with an unstable cervical spine fracture in a halo orthosis. We also describe the mechanism by which the obstruction occurred and identify features that predispose patients in a halo orthosis to upper airway obstruction. An 81-yr-old female presenting to hospital with an unstable cervical spine fracture was scheduled for spinal fusion. She was fitted with a halo traction device in a flexed position, and an awake tracheal intubation was planned. The patient's airway was topicalized and 1 mg of midazolam was administered. Her oxygen saturation dropped, and mask ventilation was difficult and insufficient. She then became unresponsive and pulseless. Emergency release of the halo orthosis device was carried out and her neck was held in a neutral position. Mask ventilation was successfully performed and oxygenation improved. The patient's trachea was intubated via video laryngoscopy, and she was resuscitated and taken to the intensive care unit. The degree of cervical spine flexion resulting from the halo fixation was examined in subsequent radiographs, as defined by the occiput to C2 (O-C2) angle, and the oropharyngeal cross-sectional area was measured. Spine flexion from halo fixation in concert with the topical treatment and sedation predisposed the patient to acute airway obstruction. In this case, external cervical spine fixation in flexion resulted in a change to the O-C2 angle, which reduced the oropharyngeal area and predisposed to upper airway obstruction. This highlights the need for anesthesiologists to evaluate the degree of cervical spine flexion in patients with halo devices and to have the surgical team present during airway management in the event of acute airway obstruction.

  14. Gait synchronization in Caenorhabditis elegans

    PubMed Central

    Yuan, Jinzhou; Raizen, David M.; Bau, Haim H.

    2014-01-01

    Collective motion is observed in swarms of swimmers of various sizes, ranging from self-propelled nanoparticles to fish. The mechanisms that govern interactions among individuals are debated, and vary from one species to another. Although the interactions among relatively large animals, such as fish, are controlled by their nervous systems, the interactions among microorganisms, which lack nervous systems, are controlled through physical and chemical pathways. Little is known, however, regarding the mechanism of collective movements in microscopic organisms with nervous systems. To attempt to remedy this, we studied collective swimming behavior in the nematode Caenorhabditis elegans, a microorganism with a compact nervous system. We evaluated the contributions of hydrodynamic forces, contact forces, and mechanosensory input to the interactions among individuals. We devised an experiment to examine pair interactions as a function of the distance between the animals and observed that gait synchronization occurred only when the animals were in close proximity, independent of genes required for mechanosensation. Our measurements and simulations indicate that steric hindrance is the dominant factor responsible for motion synchronization in C. elegans, and that hydrodynamic interactions and genotype do not play a significant role. We infer that a similar mechanism may apply to other microscopic swimming organisms and self-propelled particles. PMID:24778261

  15. Neuroimaging of Freezing of Gait

    PubMed Central

    Fasano, Alfonso; Herman, Talia; Tessitore, Alessandro; Strafella, Antonio P.; Bohnen, Nicolaas I.

    2015-01-01

    Abstract Functional brain imaging techniques appear ideally suited to explore the pathophysiology of freezing of gait (FOG). In the last two decades, techniques based on magnetic resonance or nuclear medicine imaging have found a number of structural changes and functional disconnections between subcortical and cortical regions of the locomotor network in patients with FOG. FOG seems to be related in part to disruptions in the “executive-attention” network along with regional tissue loss including the premotor area, inferior frontal gyrus, precentral gyrus, the parietal and occipital areas involved in visuospatial functions of the right hemisphere. Several subcortical structures have been also involved in the etiology of FOG, principally the caudate nucleus and the locomotor centers in the brainstem. Maladaptive neural compensation may present transiently in the presence of acute conflicting motor, cognitive or emotional stimulus processing, thus causing acute network overload and resulting in episodic impairment of stepping. In this review we will summarize the state of the art of neuroimaging research for FOG. We will also discuss the limitations of current approaches and delineate the next steps of neuroimaging research to unravel the pathophysiology of this mysterious motor phenomenon. PMID:25757831

  16. Control of a pneumatic power active lower-limb orthosis with filter-based iterative learning control

    NASA Astrophysics Data System (ADS)

    Huang, Chia-En; Chen, Jian-Shiang

    2014-05-01

    A filter-based iterative learning control (FILC) scheme is developed in this paper, which consists in a proportional-derivative (PD) feedback controller and a feedforward filter. Moreover, based on two-dimensional system theory, the stability of the FILC system is proven. The design criteria for a wavelet transform filter (WTF) - chosen as the feedforward filter - and the PD feedback controller are also given. Finally, using a pneumatic power active lower-limb orthosis (PPALO) as the controlled plant, the wavelet-based iterative learning control (WILC) implementation and the orchestration of a trajectory tracking control simulation are given in detail and the overall tracking performance is validated.

  17. Gait rehabilitation machines based on programmable footplates

    PubMed Central

    Schmidt, Henning; Werner, Cordula; Bernhardt, Rolf; Hesse, Stefan; Krüger, Jörg

    2007-01-01

    Background Gait restoration is an integral part of rehabilitation of brain lesioned patients. Modern concepts favour a task-specific repetitive approach, i.e. who wants to regain walking has to walk, while tone-inhibiting and gait preparatory manoeuvres had dominated therapy before. Following the first mobilization out of the bed, the wheelchair-bound patient should have the possibility to practise complex gait cycles as soon as possible. Steps in this direction were treadmill training with partial body weight support and most recently gait machines enabling the repetitive training of even surface gait and even of stair climbing. Results With treadmill training harness-secured and partially relieved wheelchair-mobilised patients could practise up to 1000 steps per session for the first time. Controlled trials in stroke and SCI patients, however, failed to show a superior result when compared to walking exercise on the floor. Most likely explanation was the effort for the therapists, e.g. manually setting the paretic limbs during the swing phase resulting in a too little gait intensity. The next steps were gait machines, either consisting of a powered exoskeleton and a treadmill (Lokomat, AutoAmbulator) or an electromechanical solution with the harness secured patient placed on movable foot plates (Gait Trainer GT I). For the latter, a large multi-centre trial with 155 non-ambulatory stroke patients (DEGAS) revealed a superior gait ability and competence in basic activities of living in the experimental group. The HapticWalker continued the end effector concept of movable foot plates, now fully programmable and equipped with 6 DOF force sensors. This device for the first time enables training of arbitrary walking situations, hence not only the simulation of floor walking but also for example of stair climbing and perturbations. Conclusion Locomotor therapy is a fascinating new tool in rehabilitation, which is in line with modern principles of motor relearning

  18. Diabetic Neuropathy and Gait: A Review.

    PubMed

    Alam, Uazman; Riley, David R; Jugdey, Ravinder S; Azmi, Shazli; Rajbhandari, Satyan; D'Août, Kristiaan; Malik, Rayaz A

    2017-09-01

    Diabetic peripheral neuropathy (DPN) is a major sequela of diabetes mellitus and may have a detrimental effect on the gait of people with this complication. DPN causes a disruption in the body's sensorimotor system and is believed to affect up to 50% of patients with diabetes mellitus, dependent on the duration of diabetes. It has a major effect on morbidity and mortality. The peripheral nervous system controls the complex series of events in gait through somatic and autonomic functions, careful balancing of eccentric and concentric muscle contractions and a reliance on the sensory information received from the planter surface. In this literature review focussing on kinetics, kinematics and posture during gait in DPN patients, we have identified an intimate link between DPN and abnormalities in gait and demonstrated an increased risk in falls for older patients with diabetes. As such, we have identified a need for further research on the role of gait abnormalities in the development of diabetic foot ulceration and subsequent amputations.

  19. Gait information flow indicates complex motor dysfunction.

    PubMed

    Hoyer, Dirk; Kletzin, Ulf; Adler, Daniela; Adler, Steffen; Meissner, Winfried; Blickhan, Reinhard

    2005-08-01

    Gait-related back movements require coordination of multiple extremities including the flexible trunk. Ageing and chronic back pain influence these adjustments. These complex coordinations can advantageously be quantified by information theoretically based communication measures such as the gait information flow (GIF). Nine back pain patients (aged 61+/-10 yr) and 12 controls (aged 38+/-10 yr) were investigated during normal walking across a distance of 300 m. The back movements were measured as distances between characteristic points (cervical spine CS, thoracic spine TS, lumbar spine LS) by the sonoSens Monitor, a system for mobile motion analysis. Gait information flow and regularity indices (RI1: short prediction horizon of 100 ms, RI2: longer prediction horizon of walking period) were assessed as communication characteristics. All indices were non-parametrically tested for group differences. Sensitivity and specificity were assessed by bivariate logistic regression models. We found regularity indices systematically dependent on measurement points, information flow horizon and groups. In the patients RI1 was increased, but RI2 was decreased in comparison to the control group. These results quantitatively characterize the altered complex communication in the patients. We conclude that ageing and/or chronic back pain related dysfunctions of gait can advantageously be monitored by gait information flow characteristics of back movements measured as distances between characteristics points at the back surface.

  20. Gait training in hemiparetic stroke patients.

    PubMed

    Mauritz, K H

    2004-09-01

    The major goal of neurological rehabilitation includes restoration of mobility. In mobility we include walking, standing up, sitting down, weight shifting from one leg to the other, turning around, initiating and stopping locomotion, as well as climbing stairs. The therapeutic procedures include: different concepts of physiotherapy stressing different features, like force exercise, reduction of spasticity, gait symmetry, utilization of equilibrium reflexes, stepping automation, endurance training, repetition of rhythmic movements etc. The spectrum of available therapies was recently widened by treadmill training with partial body-weight support, gait machines, by functional electrical stimulation (FES), locomotor pharmacotherapy, selective reduction of spasticity by botulinum-toxin (BTX) injections, acoustic and visual cuing and biofeedback. These methods pertaining to gait improvement will also be described. Technical aids should be prescribed earlier, since their costs are usually almost negligible if compared to the costs for a prolonged inpatient treatment. Treadmill training with partial body-weight support in a parachute harness allows early training of postural reactions and stepping. The gait pattern can be considerably improved by FES. A new approach includes mechanical and computer controlled training machines to enable the repetitive training of complex gait cycles without overstressing therapists. First results demonstrate positive effects beyond the classical retraining procedures.

  1. Scrunching: a novel escape gait in planarians.

    PubMed

    Cochet-Escartin, Olivier; Mickolajczyk, Keith J; Collins, Eva-Maria S

    2015-09-10

    The ability to escape a predator or other life-threatening situations is central to animal survival. Different species have evolved unique strategies under anatomical and environmental constraints. In this study, we describe a novel musculature-driven escape gait in planarians, 'scrunching', which is quantitatively different from other planarian gaits, such as gliding and peristalsis. We show that scrunching is a conserved gait among different flatworm species, underlying its importance as an escape mechanism. We further demonstrate that it can be induced by a variety of physical stimuli, including amputation, high temperature, electric shock and low pH. We discuss the functional basis for scrunching as the preferential gait when gliding is impaired due to a disruption of mucus production. Finally, we show that the key mechanical features of scrunching are adequately captured by a simple biomechanical model that is solely based on experimental data from traction force microscopy and tissue rheology without fit parameters. Together, our results form a complete description of this novel form of planarian locomotion. Because scrunching has distinct dynamics, this gait can serve as a robust behavioral readout for studies of motor neuron and muscular functions in planarians and in particular the restoration of these functions during regeneration.

  2. The asymmetric gait toenail unit sign.

    PubMed

    Zaias, Nardo; Rebell, Gerbert; Casal, German; Appel, Jason

    2012-01-01

    The aim of this investigation was to resolve a diagnostic problem and report toenail unit changes attributable to shoe friction that resemble onychomycosis, but that are fungus-negative, and identify common skeletal causes in patients with an asymmetric walking gait. X-ray and clinical feet inspections were performed to evaluate skeletal components that change normal foot biodynamics. Forty-nine patients, all dermatophyte-negative, were reviewed. All patients were those seen in our private practice who demonstrated skeletal and toenail unit abnormalities such as onycholysis, nail bed keratosis resembling distal subungual onychomycosis, nail plate surface abnormalities, distal toe skin keratosis, a diagnostic nail plate shape, as well as several skeletal abnormalities. The clinical abnormalities of the asymmetric gait syndrome include onycholysis, nail bed keratosis, nail plate surface abnormalities, and a diagnostic nail plate shape. By the patient's history, the skeletal findings that were present worsened with age and, in many patients, they were familial. Onychomycosis does not lead to an asymmetric gait nail problem, asymmetric gait toenail does not favor dermatophyte infection, and not all nail dystrophies are the result of an asymmetric walking gait.

  3. Scrunching: a novel escape gait in planarians

    NASA Astrophysics Data System (ADS)

    Cochet-Escartin, Olivier; Mickolajczyk, Keith J.; Collins, Eva-Maria S.

    2015-10-01

    The ability to escape a predator or other life-threatening situations is central to animal survival. Different species have evolved unique strategies under anatomical and environmental constraints. In this study, we describe a novel musculature-driven escape gait in planarians, ‘scrunching’, which is quantitatively different from other planarian gaits, such as gliding and peristalsis. We show that scrunching is a conserved gait among different flatworm species, underlying its importance as an escape mechanism. We further demonstrate that it can be induced by a variety of physical stimuli, including amputation, high temperature, electric shock and low pH. We discuss the functional basis for scrunching as the preferential gait when gliding is impaired due to a disruption of mucus production. Finally, we show that the key mechanical features of scrunching are adequately captured by a simple biomechanical model that is solely based on experimental data from traction force microscopy and tissue rheology without fit parameters. Together, our results form a complete description of this novel form of planarian locomotion. Because scrunching has distinct dynamics, this gait can serve as a robust behavioral readout for studies of motor neuron and muscular functions in planarians and in particular the restoration of these functions during regeneration.

  4. Multidirectional transparent support for overground gait training.

    PubMed

    Vallery, H; Lutz, P; von Zitzewitz, J; Rauter, G; Fritschi, M; Everarts, C; Ronsse, R; Curt, A; Bolliger, M

    2013-06-01

    Gait and balance training is an essential ingredient for locomotor rehabilitation of patients with neurological impairments. Robotic overhead support systems may help these patients train, for example by relieving them of part of their body weight. However, there are only very few systems that provide support during overground gait, and these suffer from limited degrees of freedom and/or undesired interaction forces due to uncompensated robot dynamics, namely inertia. Here, we suggest a novel mechanical concept that is based on cable robot technology and that allows three-dimensional gait training while reducing apparent robot dynamics to a minimum. The solution does not suffer from the conventional drawback of cable robots, which is a limited workspace. Instead, displaceable deflection units follow the human subject above a large walking area. These deflection units are not actuated, instead they are implicitly displaced by means of the forces in the cables they deflect. This leads to an underactuated design, because the deflection units cannot be moved arbitrarily. However, the design still allows accurate control of a three-dimensional force vector acting on a human subject during gait. We describe the mechanical concept, the control concept, and we show first experimental results obtained with the device, including the force control performance during robot-supported overground gait of five human subjects without motor impairments.

  5. Predisability And Gait Patterns In Older Adults

    PubMed Central

    Verghese, Joe; Xue, Xiaonan

    2010-01-01

    Presence of performance inconsistency during repeated assessments of gait may reflect underlying subclinical disease, and help shed light on the earliest stages of disablement. We studied inter-session fluctuations on three selected gait measures (velocity, stride length, and stride length variability) during normal pace walking as well as during a cognitively demanding ‘walking while talking’ condition using a repeated measurement burst design (six sessions within a 2-week period) in 71 nondisabled and nondemented community residing older adults, 40 with predisability (does activities of daily living unassisted but with difficulty). Subjects with predisability had slower gait velocity and shorter stride length on both the normal and walking while talking conditions at baseline compared to nondisabled subjects. However, there was no significant pattern of fluctuations across the six sessions on the three selected gait variables comparing the two groups during normal walking as well as on the walking while talking conditions. Our findings support consistency of gait measurements during the earliest stages of disability. PMID:21050762

  6. Gait Characteristics in Adolescents With Multiple Sclerosis.

    PubMed

    Kalron, Alon; Frid, Lior; Menascu, Shay

    2017-03-01

    Multiple sclerosis is a progressive autoimmune disease of the central nervous system. A presentation of multiple sclerosis before age18 years has traditionally been thought to be rare. However, during the past decade, more cases have been reported. We examined gait characteristics in 24 adolescents with multiple sclerosis (12 girls, 12 boys). Mean disease duration was 20.4 (S.D. = 24.9) months and mean age was 15.5 (S.D. = 1.1) years. The mean expanded disability status scale score was 1.7 (S.D. = 0.7) indicating minimal disability. Outcomes were compared with gait and the gait variability index value of healthy age-matched adolescents. Adolescents with multiple sclerosis walked slower with a wider base of support compared with age-matched healthy control subjects. Moreover, the gait variability index was lower in the multiple sclerosis group compared with the values in the healthy adolescents: 85.4 (S.D. = 8.1) versus 96.5 (S.D. = 7.4). We present gait parameters of adolescents with multiple sclerosis. From a clinical standpoint, our data could improve management of walking dysfunction in this relatively young population. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Computational intelligent gait-phase detection system to identify pathological gait.

    PubMed

    Senanayake, Chathuri M; Senanayake, S M N Arosha

    2010-09-01

    An intelligent gait-phase detection algorithm based on kinematic and kinetic parameters is presented in this paper. The gait parameters do not vary distinctly for each gait phase; therefore, it is complex to differentiate gait phases with respect to a threshold value. To overcome this intricacy, the concept of fuzzy logic was applied to detect gait phases with respect to fuzzy membership values. A real-time data-acquisition system was developed consisting of four force-sensitive resistors and two inertial sensors to obtain foot-pressure patterns and knee flexion/extension angle, respectively. The detected gait phases could be further analyzed to identify abnormality occurrences, and hence, is applicable to determine accurate timing for feedback. The large amount of data required for quality gait analysis necessitates the utilization of information technology to store, manage, and extract required information. Therefore, a software application was developed for real-time acquisition of sensor data, data processing, database management, and a user-friendly graphical-user interface as a tool to simplify the task of clinicians. The experiments carried out to validate the proposed system are presented along with the results analysis for normal and pathological walking patterns.

  8. Effects of an anterior ankle-foot orthosis on postural stability in stroke patients with hemiplegia.

    PubMed

    Chen, Chih-Kuang; Hong, Wei-Hsien; Chu, Ngok-Kiu; Lau, Yiu-Chung; Lew, Henry L; Tang, Simon F T

    2008-10-01

    To evaluate the effects of an anterior leaflet ankle-foot orthosis (AFO) on postural stability in stroke patients with hemiplegia. Twenty-one stroke patients with hemiplegia resulting from new-onset stroke and ten normal subjects were included in this study. The SMART balance master system was used to assess the postural stability by measuring the ankle strategy, maximal stability, and velocity of center-of-gravity (COG) movement under the following six conditions: (1) eyes open and fixed support (EOFS), (2) eyes closed and fixed support (ECFS), (3) sway-referenced vision and fixed support (SVFS), (4) eyes open and sway-referenced support (EOSS), (5) eyes closed and sway-referenced support (ECSS), and (6) sway-referenced vision and support (SVSS). Each patient was tested with and without an anterior AFO as compared with normal subjects. When wearing an anterior AFO, patients used ankle strategy more than hip strategy to maintain postural stability in all the six sensory conditions (P < 0.05). An anterior AFO also provided stroke patients with better maximal stability under relatively challenging conditions such as SVFS, EOSS, and ECSS (P < 0.05), but the effect was not apparent in the conditions without external perturbation (EOFS and ECFS) and the most difficult condition (SVSS). The velocity of COG movement was lowered when wearing an anterior AFO in stroke patients, and significant differences existed in the EOFS, ECFS, ECSS, and SVSS conditions (P < 0.05). In the early stage of recovery, the use of an anterior AFO may assist stroke patients with hemiplegia to improve their postural stability.

  9. Effect of Custom Orthosis and Rehabilitation Program on Outcomes Following Ankle and Subtalar Fusions.

    PubMed

    Sheean, Andrew J; Tennent, David J; Owens, Johnny G; Wilken, Jason M; Hsu, Joseph R; Stinner, Daniel J

    2016-11-01

    Fractures of the distal tibia, ankle, and foot sustained through a high-energy mechanism can be extremely debilitating, and ankle and/or subtalar fusion may be indicated if the limb is deemed salvageable. Functional outcomes among this population are often poor. The purposes of this study were to evaluate the effect of an advanced rehabilitation program combined with the use of a custom ankle-foot orthosis for patients with ankle or subtalar fusion on selected physical performance measures and patient-derived outcome measures and to determine if the response to treatment was predicated upon the type of fusion. We conducted a prospective, longitudinal, observational, cohort study composed of 23 active duty Service Members treated for lower extremity trauma. Patients were separated into 2 groups: group 1 was composed of 12 patients who underwent isolated ankle fusion or ankle fusion combined with ipsilateral subtalar fusion, group 2 was composed of 11 patients who underwent subtalar fusion only. Patient-reported outcome (PRO) measures and physical performance measures were recorded at baseline and at the conclusion of the rehabilitation program. Significant improvements in both groups were seen in each of the 4 physical performance measures. Only group 2 showed significant improvements in all domains of the Veteran's Rand 12-Item Health Survey (VR-12) and Short Musculoskeletal Function Assessment (SMFA) at all points during the course of rehabilitation. Among a subset of patients treated for severe lower extremity trauma with ankle and/or subtalar fusion, an integrated orthotic and rehabilitation initiative improved physical performance and PRO measures over an 8-week course. Level III, prospective comparative series. © The Author(s) 2016.

  10. Afferent control of human stance and gait: evidence for blocking of group I afferents during gait.

    PubMed

    Dietz, V; Quintern, J; Berger, W

    1985-01-01

    The cerebral potentials (c.p.) evoked by electrical stimulation of the tibial nerve during stance and in the various phases of gait of normal subjects were compared with the c.p. and leg muscle e.m.g. responses evoked by perturbations of stance and gait. Over the whole step cycle of gait the c.p. evoked by an electrical stimulus were of smaller amplitude (3 microV and 9 microV, respectively) than that seen in the stance condition, and appeared with a longer latency (mean times to first positive peak: 63 and 43 ms, respectively). When the electrical stimulus was applied during stance after ischaemic blockade of group I afferents, the c.p. were similar to those evoked during gait. The c.p. evoked by perturbations were larger in amplitude than those produced by the electrical stimulus, but similar in latencies in both gait and stance (mean 26 microV and 40 microV; 65 ms and 42 ms, respectively) and configurations. The large gastrocnemius e.m.g. responses evoked by the stance and gait perturbations arose with a latency of 65 to 70 ms. Only in the stance condition was a smaller, shorter latency (40 ms) response seen. It is concluded that during gait the signals of group I afferents are blocked at both segmental and supraspinal levels which was tested by tibial nerve stimulation. It is suggested that the e.m.g. responses induced in the leg by gait perturbations are evoked by group II afferents and mediated via a spinal pathway. The c.p. evoked during gait most probably reflect the processing of this group II input by supraspinal motor centres for the coordination of widespread arm and trunk muscle activation, necessary to restablish body equilibrium.

  11. Human Odometry Verifies the Symmetry Perspective on Bipedal Gaits

    ERIC Educational Resources Information Center

    Turvey, M. T.; Harrison, Steven J.; Frank, Till D.; Carello, Claudia

    2012-01-01

    Bipedal gaits have been classified on the basis of the group symmetry of the minimal network of identical differential equations (alias "cells") required to model them. Primary gaits are characterized by dihedral symmetry, whereas secondary gaits are characterized by a lower, cyclic symmetry. This fact was used in a test of human…

  12. Human Odometry Verifies the Symmetry Perspective on Bipedal Gaits

    ERIC Educational Resources Information Center

    Turvey, M. T.; Harrison, Steven J.; Frank, Till D.; Carello, Claudia

    2012-01-01

    Bipedal gaits have been classified on the basis of the group symmetry of the minimal network of identical differential equations (alias "cells") required to model them. Primary gaits are characterized by dihedral symmetry, whereas secondary gaits are characterized by a lower, cyclic symmetry. This fact was used in a test of human…

  13. Footwear Decreases Gait Asymmetry during Running

    PubMed Central

    Hoerzer, Stefan; Federolf, Peter A.; Maurer, Christian; Baltich, Jennifer; Nigg, Benno M.

    2015-01-01

    Previous research on elderly people has suggested that footwear may improve neuromuscular control of motion. If footwear does in fact improve neuromuscular control, then such an influence might already be present in young, healthy adults. A feature that is often used to assess neuromuscular control of motion is the level of gait asymmetry. The objectives of the study were (a) to develop a comprehensive asymmetry index (CAI) that is capable of detecting gait asymmetry changes caused by external boundary conditions such as footwear, and (b) to use the CAI to investigate whether footwear influences gait asymmetry during running in a healthy, young cohort. Kinematic and kinetic data were collected for both legs of 15 subjects performing five barefoot and five shod over-ground running trials. Thirty continuous gait variables including ground reaction forces and variables of the hip, knee, and ankle joints were computed for each leg. For each individual, the differences between the variables for the right and left leg were calculated. Using this data, a principal component analysis was conducted to obtain the CAI. This study had two main outcomes. First, a sensitivity analysis suggested that the CAI had an improved sensitivity for detecting changes in gait asymmetry caused by external boundary conditions. The CAI may, therefore, have important clinical applications such as monitoring the progress of neuromuscular diseases (e.g. stroke or cerebral palsy). Second, the mean CAI for shod running (131.2 ± 48.5; mean ± standard deviation) was significantly lower (p = 0.041) than the CAI for barefoot running (155.7 ± 39.5). This finding suggests that in healthy, young adults gait asymmetry is reduced when running in shoes compared to running barefoot, which may be a result of improved neuromuscular control caused by changes in the afferent sensory feedback. PMID:26488484

  14. Footwear Decreases Gait Asymmetry during Running.

    PubMed

    Hoerzer, Stefan; Federolf, Peter A; Maurer, Christian; Baltich, Jennifer; Nigg, Benno M

    2015-01-01

    Previous research on elderly people has suggested that footwear may improve neuromuscular control of motion. If footwear does in fact improve neuromuscular control, then such an influence might already be present in young, healthy adults. A feature that is often used to assess neuromuscular control of motion is the level of gait asymmetry. The objectives of the study were (a) to develop a comprehensive asymmetry index (CAI) that is capable of detecting gait asymmetry changes caused by external boundary conditions such as footwear, and (b) to use the CAI to investigate whether footwear influences gait asymmetry during running in a healthy, young cohort. Kinematic and kinetic data were collected for both legs of 15 subjects performing five barefoot and five shod over-ground running trials. Thirty continuous gait variables including ground reaction forces and variables of the hip, knee, and ankle joints were computed for each leg. For each individual, the differences between the variables for the right and left leg were calculated. Using this data, a principal component analysis was conducted to obtain the CAI. This study had two main outcomes. First, a sensitivity analysis suggested that the CAI had an improved sensitivity for detecting changes in gait asymmetry caused by external boundary conditions. The CAI may, therefore, have important clinical applications such as monitoring the progress of neuromuscular diseases (e.g. stroke or cerebral palsy). Second, the mean CAI for shod running (131.2 ± 48.5; mean ± standard deviation) was significantly lower (p = 0.041) than the CAI for barefoot running (155.7 ± 39.5). This finding suggests that in healthy, young adults gait asymmetry is reduced when running in shoes compared to running barefoot, which may be a result of improved neuromuscular control caused by changes in the afferent sensory feedback.

  15. Agency, gait and self-consciousness.

    PubMed

    Kannape, O A; Blanke, O

    2012-02-01

    Agency is an important aspect of bodily self-consciousness, allowing us to separate own movements from those induced by the environment and to distinguish own movements from those of other agents. Unsurprisingly, theoretical frameworks for agency such as central monitoring are closely tied to computational models of sensorimotor control. Until recently agency research has largely focussed on goal-directed movements of the upper limbs. In particular, the influence of performance-related sensory cues and the relevance of prediction signals for agency judgements have been studied through a variety of spatio-temporal mismatches between movement and the sensory consequences of movement. However, agents often perform a different type of movement; highly automated movements that involve the entire body such as walking, cycling, and swimming with potentially different agency mechanisms. Here, we review recent work about agency for full-body movements such as gait, highlighting the effects of performance-related visual and auditory cues on gait agency. Gait movements differ from upper limb actions. Gait is cyclic, more rarely immediately goal-directed, and is generally considered one of the most automatic and unconscious actions. We discuss such movement differences with respect to the functional mechanisms of full-body agency and body-part agency by linking these gait agency paradigms to computational models of motor control. This is followed by a selective review of gait control, locomotion, and models of motor control relying on prediction signals and underlining their relevance for full-body agency. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Evaluating a novel cervical orthosis, the Sheffield Support Snood, in patients with amyotrophic lateral sclerosis/motor neuron disease with neck weakness.

    PubMed

    Baxter, Susan; Reed, Heath; Clarke, Zoë; Judge, Simon; Heron, Nicola; Mccarthy, Avril; Langley, Joe; Stanton, Andrew; Wells, Oliver; Squire, Gill; Quinn, Ann; Strong, Mark; Shaw, Pamela J; Mcdermott, Christopher J

    2016-01-01

    Current practice and guidelines recommend the use of neck orthoses for people with amyotrophic lateral sclerosis (ALS) to compensate for neck weakness and to provide surrogate neck control. However, available options are frequently described by patients as restrictive and unsuitable and there was a need for a new device that addressed the needs of people with ALS. This project utilized a co-design process to develop a new neck orthosis that was more flexible yet supportive. Following development of a prototype device, a mixed methods cohort study was undertaken with patients and carers, in order to evaluate the new orthosis. Twenty-six patients were recruited to the study, with 20 of these completing all phases of data collection. Participants described the impact of neck weakness on their life and limitations of existing supports. Evaluation of the new orthosis identified key beneficial features: notably, increased support while providing a greater range of movement, flexibility of use, and improved appearance and comfort. In conclusion, the results of this evaluation highlight the value of this alternative option for people with ALS, and potentially other patient groups who require a neck orthosis.

  17. Effect of intensive training with a spring-assisted hand orthosis on movement smoothness in upper extremity following stroke: a pilot clinical trial.

    PubMed

    Jeon, Hye-seon; Woo, Young-Keun; Yi, Chung-hwi; Kwon, Oh-yun; Jung, Min-ye; Lee, Young-hee; Hwang, Sujin; Choi, Bo-ram

    2012-01-01

    A commercial splinting system is designed to permit quick training in opening and closing the affected hand in order to overcome the disadvantages of previous approaches. The purpose of this study was to assess the feasibility of intensive training using a spring-assisted hand orthosis on upper extremity in individuals with chronic hemiparetic stroke. Five participants for the experimental group and 5 for the control group were recruited from a local rehabilitation hospital. Subjects in the experimental group participated in 4 weeks of training using a SaeboFlex orthosis for 1 hour per day, 5 times per week. Each subject in the control group wore the same orthosis for 1 hour per day without participating in upper extremity training. Outcome measures included the Fugl-Meyer Assessment, Box and Block Test, and Action Research Arm Test; kinematic parameters were collected using a 3-D motion analysis system. The Fugl-Meyer assessment and the Box and Block Test score were increased significantly in the experimental group after the intervention. The resultant velocity of the wrist joint for the reach-to-grasp task decreased significantly, and the resultant velocity of the shoulder joint while performing a reach-to-grasp task at acromion height decreased significantly in the experimental group. A pilot clinical study of spring-assisted dynamic hand orthosis training is feasible in recovering the movement of the hemiparetic upper extremity.

  18. An evaluation of the effects of a dynamic lycra orthosis on arm function in a late stage patient with acquired brain injury.

    PubMed

    Watson, Martin J; Crosby, Pippa; Matthews, Martin

    2007-06-01

    The aim of this study was to assess the effect of a dynamic lycra orthosis in the management of upper limb paresis in a late stage stroke patient. A single case experiment, adopting a 3-phase ABA withdrawal design (without follow-up), approximately 6-weeks per phase, intervention being delivered in the middle/B phase. Assessment of arm function was carried out on a weekly basis for the 18-weeks, using a battery of upper limb tests. The subject was prescribed a tailor-made lycra orthosis which was worn daily during the middle phase of the trial. Orthosis wear appeared to result in improvements in active range of movement, self-rated function and one component of a writing test, with some suggestion of a carryover effect when treatment was withdrawn. No intervention-related changes were seen in a dressing test. Ambiguous results were seen in a further writing test and a peg board manipulation assessment. Irrespective of intervention, the subject made positive changes in scores in the majority of assessments used, throughout the 18-week period. The findings suggest that a lycra orthosis may have some beneficial effects on upper limb function late after brain injury. Results were however equivocal, suggesting (a) that effect mechanisms may be quite complex and (b) that future evaluations may require careful construction.

  19. Gait analysis by high school students

    NASA Astrophysics Data System (ADS)

    Heck, André; van Dongen, Caroline

    2008-05-01

    Human walking is a complicated motion. Movement scientists have developed various research methods to study gait. This article describes how a high school student collected and analysed high quality gait data in much the same way that movement scientists do, via the recording and measurement of motions with a video analysis tool and via electromyography, i.e., the measurement of muscle activity. Physics, biology, and mathematics come together in this practical investigation work at a rather high level. It shows that science learning at school can resemble science practice in research laboratories, provided that students have adequate tools.

  20. A stochastic model of human gait dynamics

    NASA Astrophysics Data System (ADS)

    Ashkenazy, Yosef; M. Hausdorff, Jeffrey; Ch. Ivanov, Plamen; Eugene Stanley, H.

    2002-12-01

    We present a stochastic model of gait rhythm dynamics, based on transitions between different “neural centers”, that reproduces distinctive statistical properties of normal human walking. By tuning one model parameter, the transition (hopping) range, the model can describe alterations in gait dynamics from childhood to adulthood-including a decrease in the correlation and volatility exponents with maturation. The model also generates time series with multifractal spectra whose broadness depends only on this parameter. Moreover, we find that the volatility exponent increases monotonically as a function of the width of the multifractal spectrum, suggesting the possibility of a change in multifractality with maturation.

  1. Periodic gaits for the CMU ambler

    NASA Technical Reports Server (NTRS)

    Mahalingam, Swaminathan; Dwivedi, Suren N.

    1989-01-01

    The configuration of the Carnegie Mellon University Ambler, a six legged autonomous walking vehicle for exploring Mars, enables the recovery of a trailing leg past the leading leg to reduce the energy expenditure in terrain interactions. Gaits developed for this unprecedented configuration are described. A stability criterion was developed which ensures stability of the vehicle in the event of failure of any one of the supporting legs. Periodic gaits developed for the Ambler utilize the Ambler's unique abilities, and continuously satisfy the stability criterion.

  2. Gait Recognition Based on Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Sokolova, A.; Konushin, A.

    2017-05-01

    In this work we investigate the problem of people recognition by their gait. For this task, we implement deep learning approach using the optical flow as the main source of motion information and combine neural feature extraction with the additional embedding of descriptors for representation improvement. In order to find the best heuristics, we compare several deep neural network architectures, learning and classification strategies. The experiments were made on two popular datasets for gait recognition, so we investigate their advantages and disadvantages and the transferability of considered methods.

  3. Acoustically-observable properties of adult gait.

    PubMed

    Bradley, Marshall; Sabatier, James M

    2012-03-01

    An approach has been developed for extracting human gait parameters from micro Doppler sonar grams. Key parameters include average speed of walking, torso velocity, walk cycle time, and peak leg velocity. The approach is a modification of a technique previously used in radar data analysis. It has been adapted because of differences between sonar and radar micro Doppler grams. The approach has been applied to an acoustic data set of 16 female and 60 male walkers. Statistics have been tabulated that illustrate the similarities and dissimilarities between female and male gait. Males tend to walk with larger walk cycle times and peak leg velocities than females. © 2012 Acoustical Society of America

  4. Does routine pin re-torquing of patients wearing a halo-thoracic orthosis reduce the need for pin replacement?

    PubMed

    Fraser, Sue; Coffey, John P

    2015-08-01

    The halo orthosis is a treatment option currently used in Australia for cervical spine immobilisation following trauma, fracture and post surgical stabilisation. In a previous study, the authors reported halo pin replacement to be a common complication. The aim of this study was to investigate the potential correlation between routine halo pin re-torquing and the incidence of pin replacement. A retrospective case series study was undertaken. A total of 258 charts were reviewed, with 170 patients included in the study. Patients were fitted with a Bremer HALO System with the initial application torque maintained by routine re-torquing throughout the duration of wear. A total of 680 pins (4 per patient) were inserted during the initial application of the halo orthoses, with only six pins replaced (0.88%) throughout the duration of the study. The findings from this study demonstrate a potential correlation between routinely re-torquing halo pins and decreasing the incidence of pin replacement. This case series study has identified a potential improvement in clinical management of patients wearing a halo-thoracic orthosis. © The International Society for Prosthetics and Orthotics 2014.

  5. Two single cases treated by a new pseudoelastic upper-limb orthosis for secondary dystonia of the young.

    PubMed

    Garavaglia, Lorenzo; Pagliano, Emanuela; Arnoldi, Maria Teresa; LoMauro, Antonella; Zanin, Riccardo; Baranello, Giovanni; Aliverti, Andrea; Pittaccio, Simone

    2017-07-01

    The study proposes a new treatment for dystonia based on a dynamic wearable orthosis equipped with metallic materials of non-linear mechanical characteristics. Two boys with upper-limb dystonia were enrolled, as well as six healthy children. Fully-customised devices were made for the patients. They used the orthosis for one month and their performances were evaluated before and after the treatment. The assessment was done with clinical scales (Modified Ashworth Score, Melbourne Upper Limb Assessment, PedsQL), interviews and optoelectronic kinematic analysis. Normal kinematics was obtained from the healthy group for comparison. Kinematic analysis showed modifications in motor patterns for both patients, with increases in the ranges of motion of initially stiff segments, improvements in posture, emergence of multi-joint strategies. Clinical scales did not always show similar trends in the two cases. The changes in control strategies could be linked to the force field dynamically applied by the device and appear to be learnable. This interpretation will be further tested with larger groups and longer treatments.

  6. Parkinson's disease classification using gait analysis via deterministic learning.

    PubMed

    Zeng, Wei; Liu, Fenglin; Wang, Qinghui; Wang, Ying; Ma, Limin; Zhang, Yu

    2016-10-28

    Gait analysis plays an important role in maintaining the well-being of human mobility and health care, and is a valuable tool for obtaining quantitative information on motor deficits in Parkinson's disease (PD). In this paper, we propose a method to classify (diagnose) patients with PD and healthy control subjects using gait analysis via deterministic learning theory. The classification approach consists of two phases: a training phase and a classification phase. In the training phase, gait characteristics represented by the gait dynamics are derived from the vertical ground reaction forces under the usual and self-selected paces of the subjects. The gait dynamics underlying gait patterns of healthy controls and PD patients are locally accurately approximated by radial basis function (RBF) neural networks. The obtained knowledge of approximated gait dynamics is stored in constant RBF networks. The gait patterns of healthy controls and PD patients constitute a training set. In the classification phase, a bank of dynamical estimators is constructed for all the training gait patterns. Prior knowledge of gait dynamics represented by the constant RBF networks is embedded in the estimators. By comparing the set of estimators with a test gait pattern of a certain PD patient to be classified (diagnosed), a set of classification errors are generated. The average L1 norms of the errors are taken as the classification measure between the dynamics of the training gait patterns and the dynamics of the test PD gait pattern according to the smallest error principle. When the gait patterns of 93 PD patients and 73 healthy controls are classified with five-fold cross-validation method, the accuracy, sensitivity and specificity of the results are 96.39%, 96.77% and 95.89%, respectively. Based on the results, it may be claimed that the features and the classifiers used in the present study could effectively separate the gait patterns between the groups of PD patients and healthy

  7. Biomechanical effect of electromechanical knee-ankle-foot-