Sample records for robotic system capable

  1. Flexible robotic actuators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morin, Stephen A.; Shepherd, Robert F.; Stokes, Adam

    Systems and methods for providing flexible robotic actuators are disclosed. Some embodiments of the disclosed subject matter include a soft robot capable of providing a radial deflection motions; a soft tentacle actuator capable of providing a variety of motions and providing transportation means for various types of materials; and a hybrid robotic system that retains desirable characteristics of both soft robots and hard robots. Some embodiments of the disclosed subject matter also include methods for operating the disclosed robotic systems.

  2. Robotics technology developments in the United States space telerobotics program

    NASA Technical Reports Server (NTRS)

    Lavery, David

    1994-01-01

    In the same way that the launch of Yuri Gagarin in April 1961 announced the beginning of human space flight, last year's flight of the German ROTEX robot flight experiment is heralding the start of a new era of space robotics. After a gap of twelve years since the introduction of a new capability in space remote manipulation, ROTEX is the first of at least ten new robotic systems and experiments which will fly before the year 2000. As a result of redefining the development approach for space robotic systems, and capitalizing on opportunities associated with the assembly and maintenance of the space station, the space robotics community is preparing a whole new generation of operational robotic capabilities. Expanding on the capabilities of earlier manipulation systems such as the Viking and Surveyor soil scoops, the Russian Lunakhods, and the Shuttle Remote Manipulator System (RMS), these new space robots will augment astronaut on-orbit capabilities and extend virtual human presence to lunar and planetary surfaces.

  3. Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue

    NASA Technical Reports Server (NTRS)

    Zornetzer, Steve; Gage, Douglas

    2005-01-01

    Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion.

  4. Experiments in Nonlinear Adaptive Control of Multi-Manipulator, Free-Flying Space Robots

    NASA Technical Reports Server (NTRS)

    Chen, Vincent Wei-Kang

    1992-01-01

    Sophisticated robots can greatly enhance the role of humans in space by relieving astronauts of low level, tedious assembly and maintenance chores and allowing them to concentrate on higher level tasks. Robots and astronauts can work together efficiently, as a team; but the robot must be capable of accomplishing complex operations and yet be easy to use. Multiple cooperating manipulators are essential to dexterity and can broaden greatly the types of activities the robot can achieve; adding adaptive control can ease greatly robot usage by allowing the robot to change its own controller actions, without human intervention, in response to changes in its environment. Previous work in the Aerospace Robotics Laboratory (ARL) have shown the usefulness of a space robot with cooperating manipulators. The research presented in this dissertation extends that work by adding adaptive control. To help achieve this high level of robot sophistication, this research made several advances to the field of nonlinear adaptive control of robotic systems. A nonlinear adaptive control algorithm developed originally for control of robots, but requiring joint positions as inputs, was extended here to handle the much more general case of manipulator endpoint-position commands. A new system modelling technique, called system concatenation was developed to simplify the generation of a system model for complicated systems, such as a free-flying multiple-manipulator robot system. Finally, the task-space concept was introduced wherein the operator's inputs specify only the robot's task. The robot's subsequent autonomous performance of each task still involves, of course, endpoint positions and joint configurations as subsets. The combination of these developments resulted in a new adaptive control framework that is capable of continuously providing full adaptation capability to the complex space-robot system in all modes of operation. The new adaptive control algorithm easily handles free-flying systems with multiple, interacting manipulators, and extends naturally to even larger systems. The new adaptive controller was experimentally demonstrated on an ideal testbed in the ARL-A first-ever experimental model of a multi-manipulator, free-flying space robot that is capable of capturing and manipulating free-floating objects without requiring human assistance. A graphical user interface enhanced the robot usability: it enabled an operator situated at a remote location to issue high-level task description commands to the robot, and to monitor robot activities as it then carried out each assignment autonomously.

  5. Simulation and animation of sensor-driven robots.

    PubMed

    Chen, C; Trivedi, M M; Bidlack, C R

    1994-10-01

    Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aid the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the users visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.

  6. Self-Reconfigurable Robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HENSINGER, DAVID M.; JOHNSTON, GABRIEL A.; HINMAN-SWEENEY, ELAINE M.

    2002-10-01

    A distributed reconfigurable micro-robotic system is a collection of unlimited numbers of distributed small, homogeneous robots designed to autonomously organize and reorganize in order to achieve mission-specified geometric shapes and functions. This project investigated the design, control, and planning issues for self-configuring and self-organizing robots. In the 2D space a system consisting of two robots was prototyped and successfully displayed automatic docking/undocking to operate dependently or independently. Additional modules were constructed to display the usefulness of a self-configuring system in various situations. In 3D a self-reconfiguring robot system of 4 identical modules was built. Each module connects to its neighborsmore » using rotating actuators. An individual component can move in three dimensions on its neighbors. We have also built a self-reconfiguring robot system consisting of 9-module Crystalline Robot. Each module in this robot is actuated by expansion/contraction. The system is fully distributed, has local communication (to neighbors) capabilities and it has global sensing capabilities.« less

  7. Human likeness: cognitive and affective factors affecting adoption of robot-assisted learning systems

    NASA Astrophysics Data System (ADS)

    Yoo, Hosun; Kwon, Ohbyung; Lee, Namyeon

    2016-07-01

    With advances in robot technology, interest in robotic e-learning systems has increased. In some laboratories, experiments are being conducted with humanoid robots as artificial tutors because of their likeness to humans, the rich possibilities of using this type of media, and the multimodal interaction capabilities of these robots. The robot-assisted learning system, a special type of e-learning system, aims to increase the learner's concentration, pleasure, and learning performance dramatically. However, very few empirical studies have examined the effect on learning performance of incorporating humanoid robot technology into e-learning systems or people's willingness to accept or adopt robot-assisted learning systems. In particular, human likeness, the essential characteristic of humanoid robots as compared with conventional e-learning systems, has not been discussed in a theoretical context. Hence, the purpose of this study is to propose a theoretical model to explain the process of adoption of robot-assisted learning systems. In the proposed model, human likeness is conceptualized as a combination of media richness, multimodal interaction capabilities, and para-social relationships; these factors are considered as possible determinants of the degree to which human cognition and affection are related to the adoption of robot-assisted learning systems.

  8. Measurement of the Robot Motor Capability of a Robot Motor System: A Fitts's-Law-Inspired Approach

    PubMed Central

    Lin, Hsien-I; George Lee, C. S.

    2013-01-01

    Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts's law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly. PMID:23820745

  9. Measurement of the robot motor capability of a robot motor system: a Fitts's-law-inspired approach.

    PubMed

    Lin, Hsien-I; Lee, C S George

    2013-07-02

    Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts's law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly.

  10. Robot Lies in Health Care: When Is Deception Morally Permissible?

    PubMed

    Matthias, Andreas

    2015-06-01

    Autonomous robots are increasingly interacting with users who have limited knowledge of robotics and are likely to have an erroneous mental model of the robot's workings, capabilities, and internal structure. The robot's real capabilities may diverge from this mental model to the extent that one might accuse the robot's manufacturer of deceiving the user, especially in cases where the user naturally tends to ascribe exaggerated capabilities to the machine (e.g. conversational systems in elder-care contexts, or toy robots in child care). This poses the question, whether misleading or even actively deceiving the user of an autonomous artifact about the capabilities of the machine is morally bad and why. By analyzing trust, autonomy, and the erosion of trust in communicative acts as consequences of deceptive robot behavior, we formulate four criteria that must be fulfilled in order for robot deception to be morally permissible, and in some cases even morally indicated.

  11. Embedded object concept: case balancing two-wheeled robot

    NASA Astrophysics Data System (ADS)

    Vallius, Tero; Röning, Juha

    2007-09-01

    This paper presents the Embedded Object Concept (EOC) and a telepresence robot system which is a test case for the EOC. The EOC utilizes common object-oriented methods used in software by applying them to combined Lego-like software-hardware entities. These entities represent objects in object-oriented design methods, and they are the building blocks of embedded systems. The goal of the EOC is to make the designing of embedded systems faster and easier. This concept enables people without comprehensive knowledge in electronics design to create new embedded systems, and for experts it shortens the design time of new embedded systems. We present the current status of a telepresence robot created with Atomi-objects, which is the name for our implementation of the embedded objects. The telepresence robot is a relatively complex test case for the EOC. The robot has been constructed using incremental device development, which is made possible by the architecture of the EOC. The robot contains video and audio exchange capability and a controlling system for driving with two wheels. The robot consists of Atomi-objects, demonstrating the suitability of the EOC for prototyping and easy modifications, and proving the capabilities of the EOC by realizing a function that normally requires a computer. The computer counterpart is a regular PC with audio and video capabilities running with a robot control application. The robot is functional and successfully tested.

  12. Simulation and animation of sensor-driven robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C.; Trivedi, M.M.; Bidlack, C.R.

    1994-10-01

    Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aide the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the usersmore » visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.« less

  13. Intelligent robotic tracker

    NASA Technical Reports Server (NTRS)

    Otaguro, W. S.; Kesler, L. O.; Land, K. C.; Rhoades, D. E.

    1987-01-01

    An intelligent tracker capable of robotic applications requiring guidance and control of platforms, robotic arms, and end effectors has been developed. This packaged system capable of supervised autonomous robotic functions is partitioned into a multiple processor/parallel processing configuration. The system currently interfaces to cameras but has the capability to also use three-dimensional inputs from scanning laser rangers. The inputs are fed into an image processing and tracking section where the camera inputs are conditioned for the multiple tracker algorithms. An executive section monitors the image processing and tracker outputs and performs all the control and decision processes. The present architecture of the system is presented with discussion of its evolutionary growth for space applications. An autonomous rendezvous demonstration of this system was performed last year. More realistic demonstrations in planning are discussed.

  14. 3D printing of soft robotic systems

    NASA Astrophysics Data System (ADS)

    Wallin, T. J.; Pikul, J.; Shepherd, R. F.

    2018-06-01

    Soft robots are capable of mimicking the complex motion of animals. Soft robotic systems are defined by their compliance, which allows for continuous and often responsive localized deformation. These features make soft robots especially interesting for integration with human tissues, for example, the implementation of biomedical devices, and for robotic performance in harsh or uncertain environments, for example, exploration in confined spaces or locomotion on uneven terrain. Advances in soft materials and additive manufacturing technologies have enabled the design of soft robots with sophisticated capabilities, such as jumping, complex 3D movements, gripping and releasing. In this Review, we examine the essential soft material properties for different elements of soft robots, highlighting the most relevant polymer systems. Advantages and limitations of different additive manufacturing processes, including 3D printing, fused deposition modelling, direct ink writing, selective laser sintering, inkjet printing and stereolithography, are discussed, and the different techniques are investigated for their application in soft robotic fabrication. Finally, we explore integrated robotic systems and give an outlook for the future of the field and remaining challenges.

  15. A soft robot capable of 2D mobility and self-sensing for obstacle detection and avoidance

    NASA Astrophysics Data System (ADS)

    Qin, Lei; Tang, Yucheng; Gupta, Ujjaval; Zhu, Jian

    2018-04-01

    Soft robots have shown great potential for surveillance applications due to their interesting attributes including inherent flexibility, extreme adaptability, and excellent ability to move in confined spaces. High mobility combined with the sensing systems that can detect obstacles plays a significant role in performing surveillance tasks. Extensive studies have been conducted on movement mechanisms of traditional hard-bodied robots to increase their mobility. However, there are limited efforts in the literature to explore the mobility of soft robots. In addition, little attempt has been made to study the obstacle-detection capability of a soft mobile robot. In this paper, we develop a soft mobile robot capable of high mobility and self-sensing for obstacle detection and avoidance. This robot, consisting of a dielectric elastomer actuator as the robot body and four electroadhesion actuators as the robot feet, can generate 2D mobility, i.e. translations and turning in a 2D plane, by programming the actuation sequence of the robot body and feet. Furthermore, we develop a self-sensing method which models the robot body as a deformable capacitor. By measuring the real-time capacitance of the robot body, the robot can detect an obstacle when the peak capacitance drops suddenly. This sensing method utilizes the robot body itself instead of external sensors to achieve detection of obstacles, which greatly reduces the weight and complexity of the robot system. The 2D mobility and self-sensing capability ensure the success of obstacle detection and avoidance, which paves the way for the development of lightweight and intelligent soft mobile robots.

  16. The NASA automation and robotics technology program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee B.; Montemerlo, Melvin D.

    1986-01-01

    The development and objectives of the NASA automation and robotics technology program are reviewed. The objectives of the program are to utilize AI and robotics to increase the probability of mission success; decrease the cost of ground control; and increase the capability and flexibility of space operations. There is a need for real-time computational capability; an effective man-machine interface; and techniques to validate automated systems. Current programs in the areas of sensing and perception, task planning and reasoning, control execution, operator interface, and system architecture and integration are described. Programs aimed at demonstrating the capabilities of telerobotics and system autonomy are discussed.

  17. Advances in Robotic, Human, and Autonomous Systems for Missions of Space Exploration

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Briggs, Geoffrey A.; Glass, Brian J.; Pedersen, Liam; Kortenkamp, David M.; Wettergreen, David S.; Nourbakhsh, I.; Clancy, Daniel J.; Zornetzer, Steven (Technical Monitor)

    2002-01-01

    Space exploration missions are evolving toward more complex architectures involving more capable robotic systems, new levels of human and robotic interaction, and increasingly autonomous systems. How this evolving mix of advanced capabilities will be utilized in the design of new missions is a subject of much current interest. Cost and risk constraints also play a key role in the development of new missions, resulting in a complex interplay of a broad range of factors in the mission development and planning of new missions. This paper will discuss how human, robotic, and autonomous systems could be used in advanced space exploration missions. In particular, a recently completed survey of the state of the art and the potential future of robotic systems, as well as new experiments utilizing human and robotic approaches will be described. Finally, there will be a discussion of how best to utilize these various approaches for meeting space exploration goals.

  18. Unmanned and Unattended Response Capability for Homeland Defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BENNETT, PHIL C.

    2002-11-01

    An analysis was conducted of the potential for unmanned and unattended robotic technologies for forward-based, immediate response capabilities that enables access and controlled task performance. The authors analyze high-impact response scenarios in conjunction with homeland security organizations, such as the NNSA Office of Emergency Response, the FBI, the National Guard, and the Army Technical Escort Unit, to cover a range of radiological, chemical and biological threats. They conducted an analysis of the potential of forward-based, unmanned and unattended robotic technologies to accelerate and enhance emergency and crisis response by Homeland Defense organizations. Response systems concepts were developed utilizing new technologiesmore » supported by existing emerging threats base technologies to meet the defined response scenarios. These systems will pre-position robotic and remote sensing capabilities stationed close to multiple sites for immediate action. Analysis of assembled systems included experimental activities to determine potential efficacy in the response scenarios, and iteration on systems concepts and remote sensing and robotic technologies, creating new immediate response capabilities for Homeland Defense.« less

  19. Adding navigation, artificial audition and vital sign monitoring capabilities to a telepresence mobile robot for remote home care applications.

    PubMed

    Laniel, Sebastien; Letourneau, Dominic; Labbe, Mathieu; Grondin, Francois; Polgar, Janice; Michaud, Francois

    2017-07-01

    A telepresence mobile robot is a remote-controlled, wheeled device with wireless internet connectivity for bidirectional audio, video and data transmission. In health care, a telepresence robot could be used to have a clinician or a caregiver assist seniors in their homes without having to travel to these locations. Many mobile telepresence robotic platforms have recently been introduced on the market, bringing mobility to telecommunication and vital sign monitoring at reasonable costs. What is missing for making them effective remote telepresence systems for home care assistance are capabilities specifically needed to assist the remote operator in controlling the robot and perceiving the environment through the robot's sensors or, in other words, minimizing cognitive load and maximizing situation awareness. This paper describes our approach adding navigation, artificial audition and vital sign monitoring capabilities to a commercially available telepresence mobile robot. This requires the use of a robot control architecture to integrate the autonomous and teleoperation capabilities of the platform.

  20. LABRADOR: a learning autonomous behavior-based robot for adaptive detection and object retrieval

    NASA Astrophysics Data System (ADS)

    Yamauchi, Brian; Moseley, Mark; Brookshire, Jonathan

    2013-01-01

    As part of the TARDEC-funded CANINE (Cooperative Autonomous Navigation in a Networked Environment) Program, iRobot developed LABRADOR (Learning Autonomous Behavior-based Robot for Adaptive Detection and Object Retrieval). LABRADOR was based on the rugged, man-portable, iRobot PackBot unmanned ground vehicle (UGV) equipped with an explosives ordnance disposal (EOD) manipulator arm and a custom gripper. For LABRADOR, we developed a vision-based object learning and recognition system that combined a TLD (track-learn-detect) filter based on object shape features with a color-histogram-based object detector. Our vision system was able to learn in real-time to recognize objects presented to the robot. We also implemented a waypoint navigation system based on fused GPS, IMU (inertial measurement unit), and odometry data. We used this navigation capability to implement autonomous behaviors capable of searching a specified area using a variety of robust coverage strategies - including outward spiral, random bounce, random waypoint, and perimeter following behaviors. While the full system was not integrated in time to compete in the CANINE competition event, we developed useful perception, navigation, and behavior capabilities that may be applied to future autonomous robot systems.

  1. SMARBot: a modular miniature mobile robot platform

    NASA Astrophysics Data System (ADS)

    Meng, Yan; Johnson, Kerry; Simms, Brian; Conforth, Matthew

    2008-04-01

    Miniature robots have many advantages over their larger counterparts, such as low cost, low power, and easy to build a large scale team for complex tasks. Heterogeneous multi miniature robots could provide powerful situation awareness capability due to different locomotion capabilities and sensor information. However, it would be expensive and time consuming to develop specific embedded system for different type of robots. In this paper, we propose a generic modular embedded system architecture called SMARbot (Stevens Modular Autonomous Robot), which consists of a set of hardware and software modules that can be configured to construct various types of robot systems. These modules include a high performance microprocessor, a reconfigurable hardware component, wireless communication, and diverse sensor and actuator interfaces. The design of all the modules in electrical subsystem, the selection criteria for module components, and the real-time operating system are described. Some proofs of concept experimental results are also presented.

  2. Compliant Task Execution and Learning for Safe Mixed-Initiative Human-Robot Operations

    NASA Technical Reports Server (NTRS)

    Dong, Shuonan; Conrad, Patrick R.; Shah, Julie A.; Williams, Brian C.; Mittman, David S.; Ingham, Michel D.; Verma, Vandana

    2011-01-01

    We introduce a novel task execution capability that enhances the ability of in-situ crew members to function independently from Earth by enabling safe and efficient interaction with automated systems. This task execution capability provides the ability to (1) map goal-directed commands from humans into safe, compliant, automated actions, (2) quickly and safely respond to human commands and actions during task execution, and (3) specify complex motions through teaching by demonstration. Our results are applicable to future surface robotic systems, and we have demonstrated these capabilities on JPL's All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) robot.

  3. A Dynamic Non Energy Storing Guidance Constraint with Motion Redirection for Robot Assisted Surgery

    DTIC Science & Technology

    2016-12-01

    Abstract— Haptically enabled hands-on or tele-operated surgical robotic systems provide a unique opportunity to integrate pre- and intra... robot -assisted surgical systems aim at improving and extending human capabilities, by exploiting the advantages of robotic systems while keeping the...move during the operation. Robot -assisted beating heart surgery is an example of procedures that can benefit from dynamic constraints. Their

  4. A plant-inspired robot with soft differential bending capabilities.

    PubMed

    Sadeghi, A; Mondini, A; Del Dottore, E; Mattoli, V; Beccai, L; Taccola, S; Lucarotti, C; Totaro, M; Mazzolai, B

    2016-12-20

    We present the design and development of a plant-inspired robot, named Plantoid, with sensorized robotic roots. Natural roots have a multi-sensing capability and show a soft bending behaviour to follow or escape from various environmental parameters (i.e., tropisms). Analogously, we implement soft bending capabilities in our robotic roots by designing and integrating soft spring-based actuation (SSBA) systems using helical springs to transmit the motor power in a compliant manner. Each robotic tip integrates four different sensors, including customised flexible touch and innovative humidity sensors together with commercial gravity and temperature sensors. We show how the embedded sensing capabilities together with a root-inspired control algorithm lead to the implementation of tropic behaviours. Future applications for such plant-inspired technologies include soil monitoring and exploration, useful for agriculture and environmental fields.

  5. Mergeable nervous systems for robots.

    PubMed

    Mathews, Nithin; Christensen, Anders Lyhne; O'Grady, Rehan; Mondada, Francesco; Dorigo, Marco

    2017-09-12

    Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.

  6. Graphical programming: A systems approach for telerobotic servicing of space assets

    NASA Technical Reports Server (NTRS)

    Pinkerton, James T.; Mcdonald, Michael J.; Palmquist, Robert D.; Patten, Richard

    1994-01-01

    Satellite servicing is in many ways analogous to subsea robotic servicing in the late 1970's. A cost effective, reliable, telerobotic capability had to be demonstrated before the oil companies invested money in deep water robot serviceable production facilities. In the same sense, aeronautic engineers will not design satellites for telerobotic servicing until such a quantifiable capability has been demonstrated. New space servicing systems will be markedly different than existing space robot systems. Past space manipulator systems, including the Space Shuttle's robot arm, have used master/slave technologies with poor fidelity, slow operating speeds and most importantly, in-orbit human operators. In contrast, new systems will be capable of precision operations, conducted at higher rates of speed, and be commanded via ground-control communication links. Challenge presented by this environment include achieving a mandated level of robustness and dependability, radiation hardening, minimum weight and power consumption, and a system which accommodates the inherent communication delay between the ground station and the satellite. There is also a need for a user interface which is easy to use, ensures collision free motions, and is capable of adjusting to an unknown workcell (for repair operations the condition of the satellite may not be known in advance). This paper describes the novel technologies required to deliver such a capability.

  7. Overview of NASA's In Space Robotic Servicing

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.

    2015-01-01

    The panel discussion will start with a presentation of the work of the Satellite Servicing Capabilities Office (SSCO), a team responsible for the overall management, coordination, and implementation of satellite servicing technologies and capabilities for NASA. Born from the team that executed the five Hubble servicing missions, SSCO is now maturing a core set of technologies that support both servicing goals and NASA's exploration and science objectives, including: autonomous rendezvous and docking systems; dexterous robotics; high-speed, fault-tolerant computing; advanced robotic tools, and propellant transfer systems. SSCOs proposed Restore-L mission, under development since 2009, is rapidly advancing the core capabilities the fledgling satellite-servicing industry needs to jumpstart a new national industry. Restore-L is also providing key technologies and core expertise to the Asteroid Redirect Robotic Mission (ARRM), with SSCO serving as the capture module lead for the ARRM effort. Reed will present a brief overview of SSCOs history, capabilities and technologies.

  8. Perspectives future space on robotics

    NASA Technical Reports Server (NTRS)

    Lavery, Dave

    1994-01-01

    Last year's flight of the German ROTEX robot flight experiment heralded the start of a new era for space robotics. ROTEX is the first of at least 10 new robotic systems and experiments that will fly before 2000. These robots will augment astronaut on-orbit capabilities and extend virtual human presence to lunar and planetary surfaces. The robotic systems to be flown in the next five years fall into three categories: extravehicular robotic (EVR) servicers, science payload servicers, and planetary surface rovers. A description of the work on these systems is presented.

  9. An integrated dexterous robotic testbed for space applications

    NASA Technical Reports Server (NTRS)

    Li, Larry C.; Nguyen, Hai; Sauer, Edward

    1992-01-01

    An integrated dexterous robotic system was developed as a testbed to evaluate various robotics technologies for advanced space applications. The system configuration consisted of a Utah/MIT Dexterous Hand, a PUMA 562 arm, a stereo vision system, and a multiprocessing computer control system. In addition to these major subsystems, a proximity sensing system was integrated with the Utah/MIT Hand to provide capability for non-contact sensing of a nearby object. A high-speed fiber-optic link was used to transmit digitized proximity sensor signals back to the multiprocessing control system. The hardware system was designed to satisfy the requirements for both teleoperated and autonomous operations. The software system was designed to exploit parallel processing capability, pursue functional modularity, incorporate artificial intelligence for robot control, allow high-level symbolic robot commands, maximize reusable code, minimize compilation requirements, and provide an interactive application development and debugging environment for the end users. An overview is presented of the system hardware and software configurations, and implementation is discussed of subsystem functions.

  10. Computer hardware and software for robotic control

    NASA Technical Reports Server (NTRS)

    Davis, Virgil Leon

    1987-01-01

    The KSC has implemented an integrated system that coordinates state-of-the-art robotic subsystems. It is a sensor based real-time robotic control system performing operations beyond the capability of an off-the-shelf robot. The integrated system provides real-time closed loop adaptive path control of position and orientation of all six axes of a large robot; enables the implementation of a highly configurable, expandable testbed for sensor system development; and makes several smart distributed control subsystems (robot arm controller, process controller, graphics display, and vision tracking) appear as intelligent peripherals to a supervisory computer coordinating the overall systems.

  11. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    Intrepid Systems robot "MXR - Mark's Exploration Robot" takes to the practice field and tries to capture the white object in the foreground on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Intrepid Systems' robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  12. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot.

    PubMed

    Onal, Cagdas D; Rus, Daniela

    2013-06-01

    Soft robotics offers the unique promise of creating inherently safe and adaptive systems. These systems bring man-made machines closer to the natural capabilities of biological systems. An important requirement to enable self-contained soft mobile robots is an on-board power source. In this paper, we present an approach to create a bio-inspired soft robotic snake that can undulate in a similar way to its biological counterpart using pressure for actuation power, without human intervention. With this approach, we develop an autonomous soft snake robot with on-board actuation, power, computation and control capabilities. The robot consists of four bidirectional fluidic elastomer actuators in series to create a traveling curvature wave from head to tail along its body. Passive wheels between segments generate the necessary frictional anisotropy for forward locomotion. It takes 14 h to build the soft robotic snake, which can attain an average locomotion speed of 19 mm s(-1).

  13. Knowledge representation system for assembly using robots

    NASA Technical Reports Server (NTRS)

    Jain, A.; Donath, M.

    1987-01-01

    Assembly robots combine the benefits of speed and accuracy with the capability of adaptation to changes in the work environment. However, an impediment to the use of robots is the complexity of the man-machine interface. This interface can be improved by providing a means of using a priori-knowledge and reasoning capabilities for controlling and monitoring the tasks performed by robots. Robots ought to be able to perform complex assembly tasks with the help of only supervisory guidance from human operators. For such supervisory quidance, it is important to express the commands in terms of the effects desired, rather than in terms of the motion the robot must undertake in order to achieve these effects. A suitable knowledge representation can facilitate the conversion of task level descriptions into explicit instructions to the robot. Such a system would use symbolic relationships describing the a priori information about the robot, its environment, and the tasks specified by the operator to generate the commands for the robot.

  14. Development of a semi-autonomous service robot with telerobotic capabilities

    NASA Technical Reports Server (NTRS)

    Jones, J. E.; White, D. R.

    1987-01-01

    The importance to the United States of semi-autonomous systems for application to a large number of manufacturing and service processes is very clear. Two principal reasons emerge as the primary driving forces for development of such systems: enhanced national productivity and operation in environments whch are hazardous to humans. Completely autonomous systems may not currently be economically feasible. However, autonomous systems that operate in a limited operation domain or that are supervised by humans are within the technology capability of this decade and will likely provide reasonable return on investment. The two research and development efforts of autonomy and telerobotics are distinctly different, yet interconnected. The first addresses the communication of an intelligent electronic system with a robot while the second requires human communication and ergonomic consideration. Discussed here are work in robotic control, human/robot team implementation, expert system robot operation, and sensor development by the American Welding Institute, MTS Systems Corporation, and the Colorado School of Mines--Center for Welding Research.

  15. Synthetic Fiber Capstan Drives for Highly Efficient, Torque Controlled, Robotic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazumdar, Anirban; Spencer, Steven James; Hobart, Clinton

    Here this paper describes the design and performance of a synthetic rope on sheave drive system. This system uses synthetic ropes instead of steel cables to achieve low weight and a compact form factor. We demonstrate how this system is capable of 28-Hz torque control bandwidth, 95% efficiency, and quiet operation, making it ideal for use on legged robots and other dynamic physically interactive systems. Component geometry and tailored maintenance procedures are used to achieve high endurance. Endurance tests based on walking data predict that the ropes will survive roughly 247,000 cycles when used on large (90 kg), fully actuatedmore » bipedal robot systems. The drive systems have been incorporated into two novel bipedal robots capable of three-dimensional unsupported walking. Robot data illustrate effective torque tracking and nearly silent operation. Finally, comparisons with alternative transmission designs illustrate the size, weight, and endurance advantages of using this type of synthetic rope drive system.« less

  16. Synthetic Fiber Capstan Drives for Highly Efficient, Torque Controlled, Robotic Applications

    DOE PAGES

    Mazumdar, Anirban; Spencer, Steven James; Hobart, Clinton; ...

    2017-01-05

    Here this paper describes the design and performance of a synthetic rope on sheave drive system. This system uses synthetic ropes instead of steel cables to achieve low weight and a compact form factor. We demonstrate how this system is capable of 28-Hz torque control bandwidth, 95% efficiency, and quiet operation, making it ideal for use on legged robots and other dynamic physically interactive systems. Component geometry and tailored maintenance procedures are used to achieve high endurance. Endurance tests based on walking data predict that the ropes will survive roughly 247,000 cycles when used on large (90 kg), fully actuatedmore » bipedal robot systems. The drive systems have been incorporated into two novel bipedal robots capable of three-dimensional unsupported walking. Robot data illustrate effective torque tracking and nearly silent operation. Finally, comparisons with alternative transmission designs illustrate the size, weight, and endurance advantages of using this type of synthetic rope drive system.« less

  17. Evolution of a radio communication relay system

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Pezeshkian, Narek; Hart, Abraham; Burmeister, Aaron; Holz, Kevin; Neff, Joseph; Roth, Leif

    2013-05-01

    Providing long-distance non-line-of-sight control for unmanned ground robots has long been recognized as a problem, considering the nature of the required high-bandwidth radio links. In the early 2000s, the DARPA Mobile Autonomous Robot Software (MARS) program funded the Space and Naval Warfare Systems Center (SSC) Pacific to demonstrate a capability for autonomous mobile communication relaying on a number of Pioneer laboratory robots. This effort also resulted in the development of ad hoc networking radios and software that were later leveraged in the development of a more practical and logistically simpler system, the Automatically Deployed Communication Relays (ADCR). Funded by the Joint Ground Robotics Enterprise and internally by SSC Pacific, several generations of ADCR systems introduced increasingly more capable hardware and software for automatic maintenance of communication links through deployment of static relay nodes from mobile robots. This capability was finally tapped in 2010 to fulfill an urgent need from theater. 243 kits of ruggedized, robot-deployable communication relays were produced and sent to Afghanistan to extend the range of EOD and tactical ground robots in 2012. This paper provides a summary of the evolution of the radio relay technology at SSC Pacific, and then focuses on the latest two stages, the Manually-Deployed Communication Relays and the latest effort to automate the deployment of these ruggedized and fielded relay nodes.

  18. The Charlotte (TM) intra-vehicular robot

    NASA Technical Reports Server (NTRS)

    Swaim, Patrick L.; Thompson, Clark J.; Campbell, Perry D.

    1994-01-01

    NASA has identified telerobotics and telescience as essential technologies to reduce the crew extra-vehicular activity (EVA) and intra-vehicular activity (IVA) workloads. Under this project, we are developing and flight testing a novel IVA robot to relieve the crew of tedious and routine tasks. Through ground telerobotic control of this robot, we will enable ground researchers to routinely interact with experiments in space. Our approach is to develop an IVA robot system incrementally by employing a series of flight tests with increasing complexity. This approach has the advantages of providing an early IVA capability that can assist the crew, demonstrate capabilities that ground researchers can be confident of in planning for future experiments, and allow incremental refinement of system capabilities and insertion of new technology. In parallel with this approach to flight testing, we seek to establish ground test beds, in which the requirements of payload experimenters can be further investigated. In 1993 we reviewed manifested SpaceHab experiments and defined IVA robot requirements to assist in their operation. We also examined previous IVA robot designs and assessed them against flight requirements. We rejected previous design concepts on the basis of threat to crew safety, operability, and maintainability. Based on this insight, we developed an entirely new concept for IVA robotics, the CHARLOTTE robot system. Ground based testing of a prototype version of the system has already proven its ability to perform most common tasks demanded of the crew, including operation of switches, buttons, knobs, dials, and performing video surveys of experiments and switch panels.

  19. Design of a walking robot

    NASA Technical Reports Server (NTRS)

    Whittaker, William; Dowling, Kevin

    1994-01-01

    Carnegie Mellon University's Autonomous Planetary Exploration Program (APEX) is currently building the Daedalus robot; a system capable of performing extended autonomous planetary exploration missions. Extended autonomy is an important capability because the continued exploration of the Moon, Mars and other solid bodies within the solar system will probably be carried out by autonomous robotic systems. There are a number of reasons for this - the most important of which are the high cost of placing a man in space, the high risk associated with human exploration and communication delays that make teleoperation infeasible. The Daedalus robot represents an evolutionary approach to robot mechanism design and software system architecture. Daedalus incorporates key features from a number of predecessor systems. Using previously proven technologies, the Apex project endeavors to encompass all of the capabilities necessary for robust planetary exploration. The Ambler, a six-legged walking machine was developed by CMU for demonstration of technologies required for planetary exploration. In its five years of life, the Ambler project brought major breakthroughs in various areas of robotic technology. Significant progress was made in: mechanism and control, by introducing a novel gait pattern (circulating gait) and use of orthogonal legs; perception, by developing sophisticated algorithms for map building; and planning, by developing and implementing the Task Control Architecture to coordinate tasks and control complex system functions. The APEX project is the successor of the Ambler project.

  20. Design of a walking robot

    NASA Astrophysics Data System (ADS)

    Whittaker, William; Dowling, Kevin

    1994-03-01

    Carnegie Mellon University's Autonomous Planetary Exploration Program (APEX) is currently building the Daedalus robot; a system capable of performing extended autonomous planetary exploration missions. Extended autonomy is an important capability because the continued exploration of the Moon, Mars and other solid bodies within the solar system will probably be carried out by autonomous robotic systems. There are a number of reasons for this - the most important of which are the high cost of placing a man in space, the high risk associated with human exploration and communication delays that make teleoperation infeasible. The Daedalus robot represents an evolutionary approach to robot mechanism design and software system architecture. Daedalus incorporates key features from a number of predecessor systems. Using previously proven technologies, the Apex project endeavors to encompass all of the capabilities necessary for robust planetary exploration. The Ambler, a six-legged walking machine was developed by CMU for demonstration of technologies required for planetary exploration. In its five years of life, the Ambler project brought major breakthroughs in various areas of robotic technology. Significant progress was made in: mechanism and control, by introducing a novel gait pattern (circulating gait) and use of orthogonal legs; perception, by developing sophisticated algorithms for map building; and planning, by developing and implementing the Task Control Architecture to coordinate tasks and control complex system functions. The APEX project is the successor of the Ambler project.

  1. A new method to evaluate human-robot system performance

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Weisbin, C. R.

    2003-01-01

    One of the key issues in space exploration is that of deciding what space tasks are best done with humans, with robots, or a suitable combination of each. In general, human and robot skills are complementary. Humans provide as yet unmatched capabilities to perceive, think, and act when faced with anomalies and unforeseen events, but there can be huge potential risks to human safety in getting these benefits. Robots provide complementary skills in being able to work in extremely risky environments, but their ability to perceive, think, and act by themselves is currently not error-free, although these capabilities are continually improving with the emergence of new technologies. Substantial past experience validates these generally qualitative notions. However, there is a need for more rigorously systematic evaluation of human and robot roles, in order to optimize the design and performance of human-robot system architectures using well-defined performance evaluation metrics. This article summarizes a new analytical method to conduct such quantitative evaluations. While the article focuses on evaluating human-robot systems, the method is generally applicable to a much broader class of systems whose performance needs to be evaluated.

  2. A force-controllable macro-micro manipulator and its application to medical robots

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Uecker, Darrin R.; Wang, Yulun

    1994-01-01

    This paper describes an 8-degrees-of-freedom macro-micro robot. This robot is capable of performing tasks that require accurate force control, such as polishing, finishing, grinding, deburring, and cleaning. The design of the macro-micro mechanism, the control algorithms, and the hardware/software implementation of the algorithms are described in this paper. Initial experimental results are reported. In addition, this paper includes a discussion of medical surgery and the role that force control may play. We introduce a new class of robotic systems collectively called Robotic Enhancement Technology (RET). RET systems introduce the combination of robotic manipulation with human control to perform manipulation tasks beyond the individual capability of either human or machine. The RET class of robotic systems offers new challenges in mechanism design, control-law development, and man/machine interface design. We believe force-controllable mechanisms such as the macro-micro structure we have developed are a necessary part of RET. Work in progress in the area of RET systems and their application to minimally invasive surgery is presented, along with future research directions.

  3. Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators.

    PubMed

    Marchese, Andrew D; Onal, Cagdas D; Rus, Daniela

    2014-03-01

    In this work we describe an autonomous soft-bodied robot that is both self-contained and capable of rapid, continuum-body motion. We detail the design, modeling, fabrication, and control of the soft fish, focusing on enabling the robot to perform rapid escape responses. The robot employs a compliant body with embedded actuators emulating the slender anatomical form of a fish. In addition, the robot has a novel fluidic actuation system that drives body motion and has all the subsystems of a traditional robot onboard: power, actuation, processing, and control. At the core of the fish's soft body is an array of fluidic elastomer actuators. We design the fish to emulate escape responses in addition to forward swimming because such maneuvers require rapid body accelerations and continuum-body motion. These maneuvers showcase the performance capabilities of this self-contained robot. The kinematics and controllability of the robot during simulated escape response maneuvers are analyzed and compared with studies on biological fish. We show that during escape responses, the soft-bodied robot has similar input-output relationships to those observed in biological fish. The major implication of this work is that we show soft robots can be both self-contained and capable of rapid body motion.

  4. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation. Appendix B: ROBSIM programmer's guide

    NASA Technical Reports Server (NTRS)

    Haley, D. C.; Almand, B. J.; Thomas, M. M.; Krauze, L. D.; Gremban, K. D.; Sanborn, J. C.; Kelly, J. H.; Depkovich, T. M.; Wolfe, W. J.; Nguyen, T.

    1986-01-01

    The purpose of the Robotic Simulation (ROBSIM) program is to provide a broad range of computer capabilities to assist in the design, verification, simulation, and study of robotic systems. ROBSIM is programmed in FORTRAM 77 and implemented on a VAX 11/750 computer using the VMS operating system. The programmer's guide describes the ROBSIM implementation and program logic flow, and the functions and structures of the different subroutines. With the manual and the in-code documentation, an experienced programmer can incorporate additional routines and modify existing ones to add desired capabilities.

  5. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation, appendix B

    NASA Technical Reports Server (NTRS)

    Haley, D. C.; Almand, B. J.; Thomas, M. M.; Krauze, L. D.; Gremban, K. D.; Sanborn, J. C.; Kelly, J. H.; Depkovich, T. M.

    1984-01-01

    The purpose of the Robotics Simulation (ROBSIM) program is to provide a broad range of computer capabilities to assist in the design, verification, simulation, and study of robotic systems. ROBSIM is programmed in FORTRAN 77 and implemented on a VAX 11/750 computer using the VMS operating system. This programmer's guide describes the ROBSIM implementation and program logic flow, and the functions and structures of the different subroutines. With this manual and the in-code documentation, and experienced programmer can incorporate additional routines and modify existing ones to add desired capabilities.

  6. Robotic Technology Efforts at the NASA/Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Diftler, Ron

    2017-01-01

    The NASA/Johnson Space Center has been developing robotic systems in support of space exploration for more than two decades. The goal of the Center’s Robotic Systems Technology Branch is to design and build hardware and software to assist astronauts in performing their mission. These systems include: rovers, humanoid robots, inspection devices and wearable robotics. Inspection systems provide external views of space vehicles to search for surface damage and also maneuver inside restricted areas to verify proper connections. New concepts in human and robotic rovers offer solutions for navigating difficult terrain expected in future planetary missions. An important objective for humanoid robots is to relieve the crew of “dull, dirty or dangerous” tasks allowing them more time to perform their important science and exploration missions. Wearable robotics one of the Center’s newest development areas can provide crew with low mass exercise capability and also augment an astronaut’s strength while wearing a space suit.This presentation will describe the robotic technology and prototypes developed at the Johnson Space Center that are the basis for future flight systems. An overview of inspection robots will show their operation on the ground and in-orbit. Rovers with independent wheel modules, crab steering, and active suspension are able to climb over large obstacles, and nimbly maneuver around others. Humanoid robots, including the First Humanoid Robot in Space: Robonaut 2, demonstrate capabilities that will lead to robotic caretakers for human habitats in space, and on Mars. The Center’s Wearable Robotics Lab supports work in assistive and sensing devices, including exoskeletons, force measuring shoes, and grasp assist gloves.

  7. Robotic Technology Efforts at the NASA/Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Diftler, Ron

    2017-01-01

    The NASA/Johnson Space Center has been developing robotic systems in support of space exploration for more than two decades. The goal of the Center's Robotic Systems Technology Branch is to design and build hardware and software to assist astronauts in performing their mission. These systems include: rovers, humanoid robots, inspection devices and wearable robotics. Inspection systems provide external views of space vehicles to search for surface damage and also maneuver inside restricted areas to verify proper connections. New concepts in human and robotic rovers offer solutions for navigating difficult terrain expected in future planetary missions. An important objective for humanoid robots is to relieve the crew of "dull, dirty or dangerous" tasks allowing them more time to perform their important science and exploration missions. Wearable robotics one of the Center's newest development areas can provide crew with low mass exercise capability and also augment an astronaut's strength while wearing a space suit. This presentation will describe the robotic technology and prototypes developed at the Johnson Space Center that are the basis for future flight systems. An overview of inspection robots will show their operation on the ground and in-orbit. Rovers with independent wheel modules, crab steering, and active suspension are able to climb over large obstacles, and nimbly maneuver around others. Humanoid robots, including the First Humanoid Robot in Space: Robonaut 2, demonstrate capabilities that will lead to robotic caretakers for human habitats in space, and on Mars. The Center's Wearable Robotics Lab supports work in assistive and sensing devices, including exoskeletons, force measuring shoes, and grasp assist gloves.

  8. A Segway RMP-based robotic transport system

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Kogut, Greg; Barua, Ripan; Burmeister, Aaron; Pezeshkian, Narek; Powell, Darren; Farrington, Nathan; Wimmer, Matt; Cicchetto, Brett; Heng, Chana; Ramirez, Velia

    2004-12-01

    In the area of logistics, there currently is a capability gap between the one-ton Army robotic Multifunction Utility/Logistics and Equipment (MULE) vehicle and a soldier"s backpack. The Unmanned Systems Branch at Space and Naval Warfare Systems Center (SPAWAR Systems Center, or SSC), San Diego, with the assistance of a group of interns from nearby High Tech High School, has demonstrated enabling technologies for a solution that fills this gap. A small robotic transport system has been developed based on the Segway Robotic Mobility Platform (RMP). We have demonstrated teleoperated control of this robotic transport system, and conducted two demonstrations of autonomous behaviors. Both demonstrations involved a robotic transporter following a human leader. In the first demonstration, the transporter used a vision system running a continuously adaptive mean-shift filter to track and follow a human. In the second demonstration, the separation between leader and follower was significantly increased using Global Positioning System (GPS) information. The track of the human leader, with a GPS unit in his backpack, was sent wirelessly to the transporter, also equipped with a GPS unit. The robotic transporter traced the path of the human leader by following these GPS breadcrumbs. We have additionally demonstrated a robotic medical patient transport capability by using the Segway RMP to power a mock-up of the Life Support for Trauma and Transport (LSTAT) patient care platform, on a standard NATO litter carrier. This paper describes the development of our demonstration robotic transport system and the various experiments conducted.

  9. Robot and robot system

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)

    2011-01-01

    A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.

  10. Self-conscious robotic system design process--from analysis to implementation.

    PubMed

    Chella, Antonio; Cossentino, Massimo; Seidita, Valeria

    2011-01-01

    Developing robotic systems endowed with self-conscious capabilities means realizing complex sub-systems needing ad-hoc software engineering techniques for their modelling, analysis and implementation. In this chapter the whole process (from analysis to implementation) to model the development of self-conscious robotic systems is presented and the new created design process, PASSIC, supporting each part of it, is fully illustrated.

  11. Control Architecture for Robotic Agent Command and Sensing

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance; Aghazarian, Hrand; Estlin, Tara; Gaines, Daniel

    2008-01-01

    Control Architecture for Robotic Agent Command and Sensing (CARACaS) is a recent product of a continuing effort to develop architectures for controlling either a single autonomous robotic vehicle or multiple cooperating but otherwise autonomous robotic vehicles. CARACaS is potentially applicable to diverse robotic systems that could include aircraft, spacecraft, ground vehicles, surface water vessels, and/or underwater vessels. CARACaS incudes an integral combination of three coupled agents: a dynamic planning engine, a behavior engine, and a perception engine. The perception and dynamic planning en - gines are also coupled with a memory in the form of a world model. CARACaS is intended to satisfy the need for two major capabilities essential for proper functioning of an autonomous robotic system: a capability for deterministic reaction to unanticipated occurrences and a capability for re-planning in the face of changing goals, conditions, or resources. The behavior engine incorporates the multi-agent control architecture, called CAMPOUT, described in An Architecture for Controlling Multiple Robots (NPO-30345), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 65. CAMPOUT is used to develop behavior-composition and -coordination mechanisms. Real-time process algebra operators are used to compose a behavior network for any given mission scenario. These operators afford a capability for producing a formally correct kernel of behaviors that guarantee predictable performance. By use of a method based on multi-objective decision theory (MODT), recommendations from multiple behaviors are combined to form a set of control actions that represents their consensus. In this approach, all behaviors contribute simultaneously to the control of the robotic system in a cooperative rather than a competitive manner. This approach guarantees a solution that is good enough with respect to resolution of complex, possibly conflicting goals within the constraints of the mission to be accomplished by the vehicle(s).

  12. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation. Appendix A: ROBSIM user's guide

    NASA Technical Reports Server (NTRS)

    Haley, D. C.; Almand, B. J.; Thomas, M. M.; Krauze, L. D.; Gremban, K. D.; Sanborn, J. C.; Kelley, J. H.; Depkovich, T. M.; Wolfe, W. J.; Nguyen, T.

    1986-01-01

    The purpose of the Robotics Simulation Program is to provide a broad range of computer capabilities to assist in the design, verification, simulation, and study of robotics systems. ROBSIM is program in FORTRAN 77 for use on a VAX 11/750 computer under the VMS operating system. This user's guide describes the capabilities of the ROBSIM programs, including the system definition function, the analysis tools function and the postprocessor function. The options a user may encounter with each of these executables are explained in detail and the different program prompts appearing to the user are included. Some useful suggestions concerning the appropriate answers to be given by the user are provided. An example user interactive run in enclosed for each of the main program services, and some of the capabilities are illustrated.

  13. A lightweight, inexpensive robotic system for insect vision.

    PubMed

    Sabo, Chelsea; Chisholm, Robert; Petterson, Adam; Cope, Alex

    2017-09-01

    Designing hardware for miniaturized robotics which mimics the capabilities of flying insects is of interest, because they share similar constraints (i.e. small size, low weight, and low energy consumption). Research in this area aims to enable robots with similarly efficient flight and cognitive abilities. Visual processing is important to flying insects' impressive flight capabilities, but currently, embodiment of insect-like visual systems is limited by the hardware systems available. Suitable hardware is either prohibitively expensive, difficult to reproduce, cannot accurately simulate insect vision characteristics, and/or is too heavy for small robotic platforms. These limitations hamper the development of platforms for embodiment which in turn hampers the progress on understanding of how biological systems fundamentally work. To address this gap, this paper proposes an inexpensive, lightweight robotic system for modelling insect vision. The system is mounted and tested on a robotic platform for mobile applications, and then the camera and insect vision models are evaluated. We analyse the potential of the system for use in embodiment of higher-level visual processes (i.e. motion detection) and also for development of navigation based on vision for robotics in general. Optic flow from sample camera data is calculated and compared to a perfect, simulated bee world showing an excellent resemblance. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Robot Design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Martin Marietta Aero and Naval Systems has advanced the CAD art to a very high level at its Robotics Laboratory. One of the company's major projects is construction of a huge Field Material Handling Robot for the Army's Human Engineering Lab. Design of FMR, intended to move heavy and dangerous material such as ammunition, was a triumph in CAD Engineering. Separate computer problems modeled the robot's kinematics and dynamics, yielding such parameters as the strength of materials required for each component, the length of the arms, their degree of freedom and power of hydraulic system needed. The Robotics Lab went a step further and added data enabling computer simulation and animation of the robot's total operational capability under various loading and unloading conditions. NASA computer program (IAC), integrated Analysis Capability Engineering Database was used. Program contains a series of modules that can stand alone or be integrated with data from sensors or software tools.

  15. Development of dog-like retrieving capability in a ground robot

    NASA Astrophysics Data System (ADS)

    MacKenzie, Douglas C.; Ashok, Rahul; Rehg, James M.; Witus, Gary

    2013-01-01

    This paper presents the Mobile Intelligence Team's approach to addressing the CANINE outdoor ground robot competition. The competition required developing a robot that provided retrieving capabilities similar to a dog, while operating fully autonomously in unstructured environments. The vision team consisted of Mobile Intelligence, the Georgia Institute of Technology, and Wayne State University. Important computer vision aspects of the project were the ability to quickly learn the distinguishing characteristics of novel objects, searching images for the object as the robot drove a search pattern, identifying people near the robot for safe operations, correctly identify the object among distractors, and localizing the object for retrieval. The classifier used to identify the objects will be discussed, including an analysis of its performance, and an overview of the entire system architecture presented. A discussion of the robot's performance in the competition will demonstrate the system's successes in real-world testing.

  16. Space station automation: the role of robotics and artificial intelligence (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Park, W. T.; Firschein, O.

    1985-12-01

    Automation of the space station is necessary to make more effective use of the crew, to carry out repairs that are impractical or dangerous, and to monitor and control the many space station subsystems. Intelligent robotics and expert systems play a strong role in automation, and both disciplines are highly dependent on a common artificial intelligence (Al) technology base. The AI technology base provides the reasoning and planning capabilities needed in robotic tasks, such as perception of the environment and planning a path to a goal, and in expert systems tasks, such as control of subsystems and maintenance of equipment. This paper describes automation concepts for the space station, the specific robotic and expert systems required to attain this automation, and the research and development required. It also presents an evolutionary development plan that leads to fully automatic mobile robots for servicing satellites. Finally, we indicate the sequence of demonstrations and the research and development needed to confirm the automation capabilities. We emphasize that advanced robotics requires AI, and that to advance, AI needs the "real-world" problems provided by robotics.

  17. Human Factors and Robotics: Current Status and Future Prospects.

    ERIC Educational Resources Information Center

    Parsons, H. McIlvaine; Kearsley, Greg P.

    The principal human factors engineering issue in robotics is the division of labor between automation (robots) and human beings. This issue reflects a prime human factors engineering consideration in systems design--what equipment should do and what operators and maintainers should do. Understanding of capabilities and limitations of robots and…

  18. Regolith Advanced Surface Systems Operations Robot Excavator

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Smith, Jonathan D.; Ebert, Thomas; Cox, Rachel; Rahmatian, Laila; Wood, James; Schuler, Jason; Nick, Andrew

    2013-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) excavator robot is a teleoperated mobility platform with a space regolith excavation capability. This more compact, lightweight design (<50 kg) has counterrotating bucket drums, which results in a net-zero reaction horizontal force due to the self-cancellation of the symmetrical, equal but opposing, digging forces.

  19. Advancement of a 30K W Solar Electric Propulsion System Capability for NASA Human and Robotic Exploration Missions

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Nazario, Margaret L.; Manzella, David H.

    2012-01-01

    Solar Electric Propulsion has evolved into a demonstrated operational capability performing station keeping for geosynchronous satellites, enabling challenging deep-space science missions, and assisting in the transfer of satellites from an elliptical orbit Geostationary Transfer Orbit (GTO) to a Geostationary Earth Orbit (GEO). Advancing higher power SEP systems will enable numerous future applications for human, robotic, and commercial missions. These missions are enabled by either the increased performance of the SEP system or by the cost reductions when compared to conventional chemical propulsion systems. Higher power SEP systems that provide very high payload for robotic missions also trade favorably for the advancement of human exploration beyond low Earth orbit. Demonstrated reliable systems are required for human space flight and due to their successful present day widespread use and inherent high reliability, SEP systems have progressively become a viable entrant into these future human exploration architectures. NASA studies have identified a 30 kW-class SEP capability as the next appropriate evolutionary step, applicable to wide range of both human and robotic missions. This paper describes the planning options, mission applications, and technology investments for representative 30kW-class SEP mission concepts under consideration by NASA

  20. A robotic system for researching social integration in honeybees.

    PubMed

    Griparić, Karlo; Haus, Tomislav; Miklić, Damjan; Polić, Marsela; Bogdan, Stjepan

    2017-01-01

    In this paper, we present a novel robotic system developed for researching collective social mechanisms in a biohybrid society of robots and honeybees. The potential for distributed coordination, as observed in nature in many different animal species, has caused an increased interest in collective behaviour research in recent years because of its applicability to a broad spectrum of technical systems requiring robust multi-agent control. One of the main problems is understanding the mechanisms driving the emergence of collective behaviour of social animals. With the aim of deepening the knowledge in this field, we have designed a multi-robot system capable of interacting with honeybees within an experimental arena. The final product, stationary autonomous robot units, designed by specificaly considering the physical, sensorimotor and behavioral characteristics of the honeybees (lat. Apis mallifera), are equipped with sensing, actuating, computation, and communication capabilities that enable the measurement of relevant environmental states, such as honeybee presence, and adequate response to the measurements by generating heat, vibration and airflow. The coordination among robots in the developed system is established using distributed controllers. The cooperation between the two different types of collective systems is realized by means of a consensus algorithm, enabling the honeybees and the robots to achieve a common objective. Presented results, obtained within ASSISIbf project, show successful cooperation indicating its potential for future applications.

  1. Exoskeleton Enhancements for Marines: Tactical-level Technology for an Operational Consequence

    DTIC Science & Technology

    2010-01-01

    wearable mechanical capability to assist Marines in the form of a robotic anthropomorphic exoskeleton system. This capability may be a key enabler to...or human attributes.”37 In this case exoskeletons are a device that follows the human form and direction. "Exoskeleton" within the robotics community...technology. An exoskeleton is not a panacea and will likely still require parallel development with other robotic alternatives to support

  2. Robotics in biomedical chromatography and electrophoresis.

    PubMed

    Fouda, H G

    1989-08-11

    The ideal laboratory robot can be viewed as "an indefatigable assistant capable of working continuously for 24 h a day with constant efficiency". The development of a system approaching that promise requires considerable skill and time commitment, a thorough understanding of the capabilities and limitations of the robot and its specialized modules and an intimate knowledge of the functions to be automated. The robot need not emulate every manual step. Effective substitutes for difficult steps must be devised. The future of laboratory robots depends not only on technological advances in other fields, but also on the skill and creativity of chromatographers and other scientists. The robot has been applied to automate numerous biomedical chromatography and electrophoresis methods. The quality of its data can approach, and in some cases exceed, that of manual methods. Maintaining high data quality during continuous operation requires frequent maintenance and validation. Well designed robotic systems can yield substantial increase in the laboratory productivity without a corresponding increase in manpower. They can free skilled personnel from mundane tasks and can enhance the safety of the laboratory environment. The integration of robotics, chromatography systems and laboratory information management systems permits full automation and affords opportunities for unattended method development and for future incorporation of artificial intelligence techniques and the evolution of expert systems. Finally, humanoid attributes aside, robotic utilization in the laboratory should not be an end in itself. The robot is a useful tool that should be utilized only when it is prudent and cost-effective to do so.

  3. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.

    PubMed

    Moradi Dalvand, Mohsen; Shirinzadeh, Bijan; Nahavandi, Saeid; Smith, Julian

    2014-06-01

    Robotic assisted minimally invasive surgery systems not only have the advantages of traditional laparoscopic procedures but also restore the surgeon's hand-eye coordination and improve the surgeon's precision by filtering hand tremors. Unfortunately, these benefits have come at the expense of the surgeon's ability to feel. Several research efforts have already attempted to restore this feature and study the effects of force feedback in robotic systems. The proposed methods and studies have some shortcomings. The main focus of this research is to overcome some of these limitations and to study the effects of force feedback in palpation in a more realistic fashion. A parallel robot assisted minimally invasive surgery system (PRAMiSS) with force feedback capabilities was employed to study the effects of realistic force feedback in palpation of artificial tissue samples. PRAMiSS is capable of actually measuring the tip/tissue interaction forces directly from the surgery site. Four sets of experiments using only vision feedback, only force feedback, simultaneous force and vision feedback and direct manipulation were conducted to evaluate the role of sensory feedback from sideways tip/tissue interaction forces with a scale factor of 100% in characterising tissues of varying stiffness. Twenty human subjects were involved in the experiments for at least 1440 trials. Friedman and Wilcoxon signed-rank tests were employed to statistically analyse the experimental results. Providing realistic force feedback in robotic assisted surgery systems improves the quality of tissue characterization procedures. Force feedback capability also increases the certainty of characterizing soft tissues compared with direct palpation using the lateral sides of index fingers. The force feedback capability can improve the quality of palpation and characterization of soft tissues of varying stiffness by restoring sense of touch in robotic assisted minimally invasive surgery operations.

  4. System design of a hand-held mobile robot for craniotomy.

    PubMed

    Kane, Gavin; Eggers, Georg; Boesecke, Robert; Raczkowsky, Jörg; Wörn, Heinz; Marmulla, Rüdiger; Mühling, Joachim

    2009-01-01

    This contribution reports the development and initial testing of a Mobile Robot System for Surgical Craniotomy, the Craniostar. A kinematic system based on a unicycle robot is analysed to provide local positioning through two spiked wheels gripping directly onto a patients skull. A control system based on a shared control system between both the Surgeon and Robot is employed in a hand-held design that is tested initially on plastic phantom and swine skulls. Results indicate that the system has substantially lower risk than present robotically assisted craniotomies, and despite being a hand-held mobile robot, the Craniostar is still capable of sub-millimetre accuracy in tracking along a trajectory and thus achieving an accurate transfer of pre-surgical plan to the operating room procedure, without the large impact of current medical robots based on modified industrial robots.

  5. Equipment and technology in surgical robotics.

    PubMed

    Sim, Hong Gee; Yip, Sidney Kam Hung; Cheng, Christopher Wai Sam

    2006-06-01

    Contemporary medical robotic systems used in urologic surgery usually consist of a computer and a mechanical device to carry out the designated task with an image acquisition module. These systems are typically from one of the two categories: offline or online robots. Offline robots, also known as fixed path robots, are completely automated with pre-programmed motion planning based on pre-operative imaging studies where precise movements within set confines are carried out. Online robotic systems rely on continuous input from the surgeons and change their movements and actions according to the input in real time. This class of robots is further divided into endoscopic manipulators and master-slave robotic systems. Current robotic surgical systems have resulted in a paradigm shift in the minimally invasive approach to complex laparoscopic urological procedures. Future developments will focus on refining haptic feedback, system miniaturization and improved augmented reality and telesurgical capabilities.

  6. Neural net target-tracking system using structured laser patterns

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Wan; Lee, Yong-Bum; Lee, Nam-Ho; Park, Soon-Yong; Lee, Jongmin; Choi, Gapchu; Baek, Sunghyun; Park, Dong-Sun

    1996-06-01

    In this paper, we describe a robot endeffector tracking system using sensory information from recently-announced structured pattern laser diodes, which can generate images with several different types of structured pattern. The neural network approach is employed to recognize the robot endeffector covering the situation of three types of motion: translation, scaling and rotation. Features for the neural network to detect the position of the endeffector are extracted from the preprocessed images. Artificial neural networks are used to store models and to match with unknown input features recognizing the position of the robot endeffector. Since a minimal number of samples are used for different directions of the robot endeffector in the system, an artificial neural network with the generalization capability can be utilized for unknown input features. A feedforward neural network with the generalization capability can be utilized for unknown input features. A feedforward neural network trained with the back propagation learning is used to detect the position of the robot endeffector. Another feedforward neural network module is used to estimate the motion from a sequence of images and to control movements of the robot endeffector. COmbining the tow neural networks for recognizing the robot endeffector and estimating the motion with the preprocessing stage, the whole system keeps tracking of the robot endeffector effectively.

  7. A Hybrid Robotic Control System Using Neuroblastoma Cultures

    NASA Astrophysics Data System (ADS)

    Ferrández, J. M.; Lorente, V.; Cuadra, J. M.; Delapaz, F.; Álvarez-Sánchez, José Ramón; Fernández, E.

    The main objective of this work is to analyze the computing capabilities of human neuroblastoma cultured cells and to define connection schemes for controlling a robot behavior. Multielectrode Array (MEA) setups have been designed for direct culturing neural cells over silicon or glass substrates, providing the capability to stimulate and record simultaneously populations of neural cells. This paper describes the process of growing human neuroblastoma cells over MEA substrates and tries to modulate the natural physiologic responses of these cells by tetanic stimulation of the culture. We show that the large neuroblastoma networks developed in cultured MEAs are capable of learning: establishing numerous and dynamic connections, with modifiability induced by external stimuli and we propose an hybrid system for controlling a robot to avoid obstacles.

  8. A cost-effective intelligent robotic system with dual-arm dexterous coordination and real-time vision

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Chen, Alexander Y. K.

    1991-01-01

    Dexterous coordination of manipulators based on the use of redundant degrees of freedom, multiple sensors, and built-in robot intelligence represents a critical breakthrough in development of advanced manufacturing technology. A cost-effective approach for achieving this new generation of robotics has been made possible by the unprecedented growth of the latest microcomputer and network systems. The resulting flexible automation offers the opportunity to improve the product quality, increase the reliability of the manufacturing process, and augment the production procedures for optimizing the utilization of the robotic system. Moreover, the Advanced Robotic System (ARS) is modular in design and can be upgraded by closely following technological advancements as they occur in various fields. This approach to manufacturing automation enhances the financial justification and ensures the long-term profitability and most efficient implementation of robotic technology. The new system also addresses a broad spectrum of manufacturing demand and has the potential to address both complex jobs as well as highly labor-intensive tasks. The ARS prototype employs the decomposed optimization technique in spatial planning. This technique is implemented to the framework of the sensor-actuator network to establish the general-purpose geometric reasoning system. The development computer system is a multiple microcomputer network system, which provides the architecture for executing the modular network computing algorithms. The knowledge-based approach used in both the robot vision subsystem and the manipulation control subsystems results in the real-time image processing vision-based capability. The vision-based task environment analysis capability and the responsive motion capability are under the command of the local intelligence centers. An array of ultrasonic, proximity, and optoelectronic sensors is used for path planning. The ARS currently has 18 degrees of freedom made up by two articulated arms, one movable robot head, and two charged coupled device (CCD) cameras for producing the stereoscopic views, and articulated cylindrical-type lower body, and an optional mobile base. A functional prototype is demonstrated.

  9. Active Sensing System with In Situ Adjustable Sensor Morphology

    PubMed Central

    Nurzaman, Surya G.; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Background Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. Methodology This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. Conclusions/Significance The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed. PMID:24416094

  10. Development of Advanced Robotic Hand System for space application

    NASA Technical Reports Server (NTRS)

    Machida, Kazuo; Akita, Kenzo; Mikami, Tatsuo; Komada, Satoru

    1994-01-01

    The Advanced Robotic Hand System (ARH) is a precise telerobotics system with a semi dexterous hand for future space application. The ARH will be tested in space as one of the missions of the Engineering Tests Satellite 7 (ETS-7) which will be launched in 1997. The objectives of the ARH development are to evaluate the capability of a possible robot hand for precise and delicate tasks and to validate the related technologies implemented in the system. The ARH is designed to be controlled both from ground as a teleoperation and by locally autonomous control. This paper presents the overall system design and the functional capabilities of the ARH as well as its mission outline as the preliminary design has been completed.

  11. Autonomous intelligent military robots: Army ants, killer bees, and cybernetic soldiers

    NASA Astrophysics Data System (ADS)

    Finkelstein, Robert

    The rationale for developing autonomous intelligent robots in the military is to render conventional warfare systems ineffective and indefensible. The Desert Storm operation demonstrated the effectiveness of such systems as unmanned air and ground vehicles and indicated the future possibilities of robotic technology. Robotic military vehicles would have the advantages of expendability, low cost, lower complexity compared to manned systems, survivability, maneuverability, and a capability to share in instantaneous communication and distributed processing of combat information. Basic characteristics of intelligent systems and hierarchical control systems with sensor inputs are described. Genetic algorithms are seen as a means of achieving appropriate levels of intelligence in a robotic system. Potential impacts of robotic technology in the military are outlined.

  12. Robotic hair restoration.

    PubMed

    Rose, Paul T; Nusbaum, Bernard

    2014-01-01

    The latest innovation to hair restoration surgery has been the introduction of a robotic system for harvesting grafts. This system uses the follicular unit extraction/follicular isolation technique method for harvesting follicular units, which is particularly well suited to the abilities of a robotic technology. The ARTAS system analyzes images of the donor area and then a dual-chamber needle and blunt dissecting punch are used to harvest the follicular units. The robotic technology is now being used in various locations around the world. This article discusses the use of the robotic system, its capabilities, and the advantages and disadvantages of the system. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. A CLIPS-based expert system for the evaluation and selection of robots

    NASA Technical Reports Server (NTRS)

    Nour, Mohamed A.; Offodile, Felix O.; Madey, Gregory R.

    1994-01-01

    This paper describes the development of a prototype expert system for intelligent selection of robots for manufacturing operations. The paper first develops a comprehensive, three-stage process to model the robot selection problem. The decisions involved in this model easily lend themselves to an expert system application. A rule-based system, based on the selection model, is developed using the CLIPS expert system shell. Data about actual robots is used to test the performance of the prototype system. Further extensions to the rule-based system for data handling and interfacing capabilities are suggested.

  14. Defining life: connecting robotics and chemistry.

    PubMed

    Brack, André; Troublé, Michel

    2010-04-01

    Life is commonly referred as open systems driven by organic chemistry capable to self reproduce and to evolve. The notion of life has also been extended to non chemical systems such as robots. The key characteristics of living systems, i.e. autonomy, self-replication, self-reproduction, self-organization, self-aggregation, autocatalysis, as defined in chemistry and in robotics, are compared in a dialogue between a chemist and a robotitian.

  15. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    Intrepid Systems robot, foreground, and the University of Waterloo (Canada) robot, take to the practice field on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Robot teams will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  16. TRICCS: A proposed teleoperator/robot integrated command and control system for space applications

    NASA Technical Reports Server (NTRS)

    Will, R. W.

    1985-01-01

    Robotic systems will play an increasingly important role in space operations. An integrated command and control system based on the requirements of space-related applications and incorporating features necessary for the evolution of advanced goal-directed robotic systems is described. These features include: interaction with a world model or domain knowledge base, sensor feedback, multiple-arm capability and concurrent operations. The system makes maximum use of manual interaction at all levels for debug, monitoring, and operational reliability. It is shown that the robotic command and control system may most advantageously be implemented as packages and tasks in Ada.

  17. Development of a soft untethered robot using artificial muscle actuators

    NASA Astrophysics Data System (ADS)

    Cao, Jiawei; Qin, Lei; Lee, Heow Pueh; Zhu, Jian

    2017-04-01

    Soft robots have attracted much interest recently, due to their potential capability to work effectively in unstructured environment. Soft actuators are key components in soft robots. Dielectric elastomer actuators are one class of soft actuators, which can deform in response to voltage. Dielectric elastomer actuators exhibit interesting attributes including large voltage-induced deformation and high energy density. These attributes make dielectric elastomer actuators capable of functioning as artificial muscles for soft robots. It is significant to develop untethered robots, since connecting the cables to external power sources greatly limits the robots' functionalities, especially autonomous movements. In this paper we develop a soft untethered robot based on dielectric elastomer actuators. This robot mainly consists of a deformable robotic body and two paper-based feet. The robotic body is essentially a dielectric elastomer actuator, which can expand or shrink at voltage on or off. In addition, the two feet can achieve adhesion or detachment based on the mechanism of electroadhesion. In general, the entire robotic system can be controlled by electricity or voltage. By optimizing the mechanical design of the robot (the size and weight of electric circuits), we put all these components (such as batteries, voltage amplifiers, control circuits, etc.) onto the robotic feet, and the robot is capable of realizing autonomous movements. Experiments are conducted to study the robot's locomotion. Finite element method is employed to interpret the deformation of dielectric elastomer actuators, and the simulations are qualitatively consistent with the experimental observations.

  18. Agent independent task planning

    NASA Technical Reports Server (NTRS)

    Davis, William S.

    1990-01-01

    Agent-Independent Planning is a technique that allows the construction of activity plans without regard to the agent that will perform them. Once generated, a plan is then validated and translated into instructions for a particular agent, whether a robot, crewmember, or software-based control system. Because Space Station Freedom (SSF) is planned for orbital operations for approximately thirty years, it will almost certainly experience numerous enhancements and upgrades, including upgrades in robotic manipulators. Agent-Independent Planning provides the capability to construct plans for SSF operations, independent of specific robotic systems, by combining techniques of object oriented modeling, nonlinear planning and temporal logic. Since a plan is validated using the physical and functional models of a particular agent, new robotic systems can be developed and integrated with existing operations in a robust manner. This technique also provides the capability to generate plans for crewmembers with varying skill levels, and later apply these same plans to more sophisticated robotic manipulators made available by evolutions in technology.

  19. Automation and robotics for the National Space Program

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The emphasis on automation and robotics in the augmentation of the human centered systems as it concerns the space station is discussed. How automation and robotics can amplify the capabilities of humans is detailed. A detailed developmental program for the space station is outlined.

  20. Electroactive Polymer (EAP) Actuation of Mechanisms and Robotic Devices

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Leary, S.; Harrison, J.; Smith, J.

    1999-01-01

    Actuators are responsible to the operative capability of manipulation systems and robots. In recent years, electroactive polymers (EAP) have emerged as potential alternative to conventional actuators.

  1. 2018 Ground Robotics Capabilities Conference and Exhibiton

    DTIC Science & Technology

    2018-04-11

    Transportable Robot System (MTRS) Inc 1 Non -standard Equipment (approved) Explosive Ordnance Disposal Common Robotic System-Heavy (CRS-H) Inc 1 AROC: 3-Star...and engineering • AI risk mitigation methodologies and techniques are at best immature – E.g., V&V; Probabilistic software analytics; code level...controller to minimize potential UxS mishaps and unauthorized Command and Control (C2). • PSP-10 – Ensure that software systems which exhibit non

  2. Human-like object tracking and gaze estimation with PKD android

    PubMed Central

    Wijayasinghe, Indika B.; Miller, Haylie L.; Das, Sumit K; Bugnariu, Nicoleta L.; Popa, Dan O.

    2018-01-01

    As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold : to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans. PMID:29416193

  3. Human-like object tracking and gaze estimation with PKD android

    NASA Astrophysics Data System (ADS)

    Wijayasinghe, Indika B.; Miller, Haylie L.; Das, Sumit K.; Bugnariu, Nicoleta L.; Popa, Dan O.

    2016-05-01

    As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold: to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans.

  4. Robot, computer problem solving system

    NASA Technical Reports Server (NTRS)

    Becker, J. D.

    1972-01-01

    The development of a computer problem solving system is reported that considers physical problems faced by an artificial robot moving around in a complex environment. Fundamental interaction constraints with a real environment are simulated for the robot by visual scan and creation of an internal environmental model. The programming system used in constructing the problem solving system for the simulated robot and its simulated world environment is outlined together with the task that the system is capable of performing. A very general framework for understanding the relationship between an observed behavior and an adequate description of that behavior is included.

  5. Telerobotic management system: coordinating multiple human operators with multiple robots

    NASA Astrophysics Data System (ADS)

    King, Jamie W.; Pretty, Raymond; Brothers, Brendan; Gosine, Raymond G.

    2003-09-01

    This paper describes an application called the Tele-robotic management system (TMS) for coordinating multiple operators with multiple robots for applications such as underground mining. TMS utilizes several graphical interfaces to allow the user to define a partially ordered plan for multiple robots. This plan is then converted to a Petri net for execution and monitoring. TMS uses a distributed framework to allow robots and operators to easily integrate with the applications. This framework allows robots and operators to join the network and advertise their capabilities through services. TMS then decides whether tasks should be dispatched to a robot or a remote operator based on the services offered by the robots and operators.

  6. A comparative analysis and guide to virtual reality robotic surgical simulators.

    PubMed

    Julian, Danielle; Tanaka, Alyssa; Mattingly, Patricia; Truong, Mireille; Perez, Manuela; Smith, Roger

    2018-02-01

    Since the US Food and Drug Administration approved robotically assisted surgical devices for human surgery in 2000, the number of surgeries utilizing this innovative technology has risen. In 2015, approximately 650 000 robot-assisted procedures were performed worldwide. Surgeons must be properly trained to safely transition to using such innovative technology. Multiple virtual reality robotic simulators are now commercially available for educational and training purposes. There is a need for comparative evaluations of these simulators to aid users in selecting an appropriate device for their purposes. We conducted a comparison of the design and capabilities of all dedicated simulators of the da Vinci robot - the da Vinci Skills Simulator (dVSS), dV-Trainer (dVT), Robotic Skills Simulators (RoSS) and the RobotiX Mentor. This paper provides the base specifications of the hardware and software, with an emphasis on the training capabilities of each system. Each simulator contains a large number of training exercises for skills development: dVSS n = 40, dVT n = 65, RoSS n = 52, RobotiX Mentor n = 31. All four offer 3D visual images but use different display technologies. The dVSS leverages the real robotic surgical console to provide visualization, hand controls and foot pedals. The dVT, RoSS and RobotiX Mentor created simulated versions of all of these control systems. Each includes systems management services that allow instructors to collect, export and analyze the scores of students using the simulators. This study provides comparative information on the four simulators' functional capabilities. Each device offers unique advantages and capabilities for training robotic surgeons. Each has been the subject of validation experiments, which have been published in the literature. But those do not provide specific details on the capabilities of the simulators, which are necessary for an understanding sufficient to select the one best suited for an organization's needs. This article provides comparative information to assist with that type of selection. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Development and verification of ground-based tele-robotics operations concept for Dextre

    NASA Astrophysics Data System (ADS)

    Aziz, Sarmad

    2013-05-01

    The Special Purpose Dextreous Manipulator (Dextre) is the latest addition to the on-orbit segment of the Mobile Servicing System (MSS); Canada's contribution to the International Space Station (ISS). Launched in March 2008, the advanced two-armed robot is designed to perform various ISS maintenance tasks on robotically compatible elements and on-orbit replaceable units using a wide variety of tools and interfaces. The addition of Dextre has increased the capabilities of the MSS, and has introduced significant complexity to ISS robotics operations. While the initial operations concept for Dextre was based on human-in-the-loop control by the on-orbit astronauts, the complexities of robotic maintenance and the associated costs of training and maintaining the operator skills required for Dextre operations demanded a reexamination of the old concepts. A new approach to ISS robotic maintenance was developed in order to utilize the capabilities of Dextre safely and efficiently, while at the same time reducing the costs of on-orbit operations. This paper will describe the development, validation, and on-orbit demonstration of the operations concept for ground-based tele-robotics control of Dextre. It will describe the evolution of the new concepts from the experience gained from the development and implementation of the ground control capability for the Space Station Remote Manipulator System; Canadarm 2. It will discuss the various technical challenges faced during the development effort, such as requirements for high positioning accuracy, force/moment sensing and accommodation, failure tolerance, complex tool operations, and the novel operational tools and techniques developed to overcome them. The paper will also describe the work performed to validate the new concepts on orbit and will discuss the results and lessons learned from the on-orbit checkout and commissioning of Dextre using the newly developed tele-robotics techniques and capabilities.

  8. Rice-obot 1: An intelligent autonomous mobile robot

    NASA Technical Reports Server (NTRS)

    Defigueiredo, R.; Ciscon, L.; Berberian, D.

    1989-01-01

    The Rice-obot I is the first in a series of Intelligent Autonomous Mobile Robots (IAMRs) being developed at Rice University's Cooperative Intelligent Mobile Robots (CIMR) lab. The Rice-obot I is mainly designed to be a testbed for various robotic and AI techniques, and a platform for developing intelligent control systems for exploratory robots. Researchers present the need for a generalized environment capable of combining all of the control, sensory and knowledge systems of an IAMR. They introduce Lisp-Nodes as such a system, and develop the basic concepts of nodes, messages and classes. Furthermore, they show how the control system of the Rice-obot I is implemented as sub-systems in Lisp-Nodes.

  9. An Overview of Power Capability Requirements for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Davis, Jose M.; Cataldo, Robert L.; Soeder, James F.; Manzo, Michelle A.; Hakimzadeh, Roshanak

    2005-01-01

    Advanced power is one of the key capabilities that will be needed to achieve NASA's missions of exploration and scientific advancement. Significant gaps exist in advanced power capabilities that are on the critical path to enabling human exploration beyond Earth orbit and advanced robotic exploration of the solar system. Focused studies and investment are needed to answer key development issues for all candidate technologies before down-selection. The viability of candidate power technology alternatives will be a major factor in determining what exploration mission architectures are possible. Achieving the capabilities needed to enable the CEV, Moon, and Mars missions is dependent on adequate funding. Focused investment in advanced power technologies for human and robotic exploration missions is imperative now to reduce risk and to make informed decisions on potential exploration mission decisions beginning in 2008. This investment would begin the long lead-time needed to develop capabilities for human exploration missions in the 2015 to 2030 timeframe. This paper identifies some of the key technologies that will be needed to fill these power capability gaps. Recommendations are offered to address capability gaps in advanced power for Crew Exploration Vehicle (CEV) power, surface nuclear power systems, surface mobile power systems, high efficiency power systems, and space transportation power systems. These capabilities fill gaps that are on the critical path to enabling robotic and human exploration missions. The recommendations address the following critical technology areas: Energy Conversion, Energy Storage, and Power Management and Distribution.

  10. Urban hopper.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xavier, Patrick Gordon; Feddema, John Todd; Little, Charles Quentin

    2010-03-01

    Hopping robots provide the possibility of breaking the link between the size of a ground vehicle and the largest obstacle that it can overcome. For more than a decade, DARPA and Sandia National Laboratories have been developing small-scale hopping robot technology, first as part of purely hopping platforms and, more recently, as part of platforms that are capable of both wheeled and hopping locomotion. In this paper we introduce the Urban Hopper robot and summarize its capabilities. The advantages of hopping for overcoming certain obstacles are discussed. Several configurations of the Urban Hopper are described, as are intelligent capabilities ofmore » the system. Key challenges are discussed.« less

  11. Application of historical mobility testing to sensor-based robotic performance

    NASA Astrophysics Data System (ADS)

    Willoughby, William E.; Jones, Randolph A.; Mason, George L.; Shoop, Sally A.; Lever, James H.

    2006-05-01

    The USA Engineer Research and Development Center (ERDC) has conducted on-/off-road experimental field testing with full-sized and scale-model military vehicles for more than fifty years. Some 4000 acres of local terrain are available for tailored field evaluations or verification/validation of future robotic designs in a variety of climatic regimes. Field testing and data collection procedures, as well as techniques for quantifying terrain in engineering terms, have been developed and refined into algorithms and models for predicting vehicle-terrain interactions and resulting forces or speeds of military-sized vehicles. Based on recent experiments with Matilda, Talon, and Pacbot, these predictive capabilities appear to be relevant to most robotic systems currently in development. Utilization of current testing capabilities with sensor-based vehicle drivers, or use of the procedures for terrain quantification from sensor data, would immediately apply some fifty years of historical knowledge to the development, refinement, and implementation of future robotic systems. Additionally, translation of sensor-collected terrain data into engineering terms would allow assessment of robotic performance a priori deployment of the actual system and ensure maximum system performance in the theater of operation.

  12. Research on Self-Reconfigurable Modular Robot System

    NASA Astrophysics Data System (ADS)

    Kamimura, Akiya; Murata, Satoshi; Yoshida, Eiichi; Kurokawa, Haruhisa; Tomita, Kohji; Kokaji, Shigeru

    Growing complexity of artificial systems arises reliability and flexibility issues of large system design. Robots are not exception of this, and many attempts have been made to realize reliable and flexible robot systems. Distributed modular composition of robot is one of the most effective approaches to attain such abilities and has a potential to adapt to its surroundings by changing its configuration autonomously according to information of surroundings. In this paper, we propose a novel three-dimensional self-reconfigurable robotic module. Each module has a very simple structure that consists of two semi-cylindrical parts connected by a link. The modular system is capable of not only building static structure but also generating dynamic robotic motion. We present details of the mechanical/electrical design of the developed module and its control system architecture. Experiments using ten modules with centralized control demonstrate robotic configuration change, crawling locomotion and three types of quadruped locomotion.

  13. Brief Report: Development of a Robotic Intervention Platform for Young Children with ASD.

    PubMed

    Warren, Zachary; Zheng, Zhi; Das, Shuvajit; Young, Eric M; Swanson, Amy; Weitlauf, Amy; Sarkar, Nilanjan

    2015-12-01

    Increasingly researchers are attempting to develop robotic technologies for children with autism spectrum disorder (ASD). This pilot study investigated the development and application of a novel robotic system capable of dynamic, adaptive, and autonomous interaction during imitation tasks with embedded real-time performance evaluation and feedback. The system was designed to incorporate both a humanoid robot and a human examiner. We compared child performance within system across these conditions in a sample of preschool children with ASD (n = 8) and a control sample of typically developing children (n = 8). The system was well-tolerated in the sample, children with ASD exhibited greater attention to the robotic system than the human administrator, and for children with ASD imitation performance appeared superior during the robotic interaction.

  14. University Research Program in Robotics - "Technologies for Micro-Electrical-Mechanical Systems in directed Stockpile Work (DSW) Radiation and Campaigns", Final Technical Annual Report, Project Period 9/1/06 - 8/31/07

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James S. Tulenko; Carl D. Crane

    The University Research Program in Robotics (URPR) is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities in robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.

  15. Brief Report: Development of a Robotic Intervention Platform for Young Children with ASD

    ERIC Educational Resources Information Center

    Warren, Zachary; Zheng, Zhi; Das, Shuvajit; Young, Eric M.; Swanson, Amy; Weitlauf, Amy; Sarkar, Nilanjan

    2015-01-01

    Increasingly researchers are attempting to develop robotic technologies for children with autism spectrum disorder (ASD). This pilot study investigated the development and application of a novel robotic system capable of dynamic, adaptive, and autonomous interaction during imitation tasks with embedded real-time performance evaluation and…

  16. Multigait soft robot

    PubMed Central

    Shepherd, Robert F.; Ilievski, Filip; Choi, Wonjae; Morin, Stephen A.; Stokes, Adam A.; Mazzeo, Aaron D.; Chen, Xin; Wang, Michael; Whitesides, George M.

    2011-01-01

    This manuscript describes a unique class of locomotive robot: A soft robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals (e.g., squid, starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a simple pneumatic valving system that operates at low pressures (< 10 psi). A combination of crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This demonstration illustrates an advantage of soft robotics: They are systems in which simple types of actuation produce complex motion. PMID:22123978

  17. Mathematical model for adaptive control system of ASEA robot at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Zia, Omar

    1989-01-01

    The dynamic properties and the mathematical model for the adaptive control of the robotic system presently under investigation at Robotic Application and Development Laboratory at Kennedy Space Center are discussed. NASA is currently investigating the use of robotic manipulators for mating and demating of fuel lines to the Space Shuttle Vehicle prior to launch. The Robotic system used as a testbed for this purpose is an ASEA IRB-90 industrial robot with adaptive control capabilities. The system was tested and it's performance with respect to stability was improved by using an analogue force controller. The objective of this research project is to determine the mathematical model of the system operating under force feedback control with varying dynamic internal perturbation in order to provide continuous stable operation under variable load conditions. A series of lumped parameter models are developed. The models include some effects of robot structural dynamics, sensor compliance, and workpiece dynamics.

  18. Ground Vehicle Convoying

    NASA Astrophysics Data System (ADS)

    Gage, Douglas W.; Pletta, J. Bryan

    1987-01-01

    Initial investigations into two different approaches for applying autonomous ground vehicle technology to the vehicle convoying application are described. A minimal capability system that would maintain desired speed and vehicle spacing while a human driver provided steering control could improve convoy performance and provide positive control at night and in inclement weather, but would not reduce driver manpower requirements. Such a system could be implemented in a modular and relatively low cost manner. A more capable system would eliminate the human driver in following vehicles and reduce manpower requirements for the transportation of supplies. This technology could also be used to aid in the deployment of teleoperated vehicles in a battlefield environment. The needs, requirements, and several proposed solutions for such an Attachable Robotic Convoy Capability (ARCC) system will be discussed. Included are discussions of sensors, communications, computers, control systems and safety issues. This advanced robotic convoy system will provide a much greater capability, but will be more difficult and expensive to implement.

  19. Millimeter-scale MEMS enabled autonomous systems: system feasibility and mobility

    NASA Astrophysics Data System (ADS)

    Pulskamp, Jeffrey S.

    2012-06-01

    Millimeter-scale robotic systems based on highly integrated microelectronics and micro-electromechanical systems (MEMS) could offer unique benefits and attributes for small-scale autonomous systems. This extreme scale for robotics will naturally constrain the realizable system capabilities significantly. This paper assesses the feasibility of developing such systems by defining the fundamental design trade spaces between component design variables and system level performance parameters. This permits the development of mobility enabling component technologies within a system relevant context. Feasible ranges of system mass, required aerodynamic power, available battery power, load supported power, flight endurance, and required leg load bearing capability are presented for millimeter-scale platforms. The analysis illustrates the feasibility of developing both flight capable and ground mobile millimeter-scale autonomous systems while highlighting the significant challenges that must be overcome to realize their potential.

  20. Managing Complexity in Next Generation Robotic Spacecraft: From a Software Perspective

    NASA Technical Reports Server (NTRS)

    Reinholtz, Kirk

    2008-01-01

    This presentation highlights the challenges in the design of software to support robotic spacecraft. Robotic spacecraft offer a higher degree of autonomy, however currently more capabilities are required, primarily in the software, while providing the same or higher degree of reliability. The complexity of designing such an autonomous system is great, particularly while attempting to address the needs for increased capabilities and high reliability without increased needs for time or money. The efforts to develop programming models for the new hardware and the integration of software architecture are highlighted.

  1. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Intrepid Systems Team member Mark Curry, left, talks with NASA Deputy Administrator Lori Garver and NASA Chief Technologist Mason Peck, right, about his robot named "MXR - Mark's Exploration Robot" on Saturday, June 16, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Curry's robot team was one of the final teams participating in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  2. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    Intrepid Systems Team member Mark Curry, right, answers questions from 8th grade Sullivan Middle School (Mass.) students about his robot named "MXR - Mark's Exploration Robot" on Friday, June 15, 2012, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Curry's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  3. A macro-micro robot for precise force applications

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Wang, Yulun

    1993-01-01

    This paper describes an 8 degree-of-freedom macro-micro robot capable of performing tasks which require accurate force control. Applications such as polishing, finishing, grinding, deburring, and cleaning are a few examples of tasks which need this capability. Currently these tasks are either performed manually or with dedicated machinery because of the lack of a flexible and cost effective tool, such as a programmable force-controlled robot. The basic design and control of the macro-micro robot is described in this paper. A modular high-performance multiprocessor control system was designed to provide sufficient compute power for executing advanced control methods. An 8 degree of freedom macro-micro mechanism was constructed to enable accurate tip forces. Control algorithms based on the impedance control method were derived, coded, and load balanced for maximum execution speed on the multiprocessor system.

  4. Comparative analysis of the functionality of simulators of the da Vinci surgical robot.

    PubMed

    Smith, Roger; Truong, Mireille; Perez, Manuela

    2015-04-01

    The implementation of robotic technology in minimally invasive surgery has led to the need to develop more efficient and effective training methods, as well as assessment and skill maintenance tools for surgical education. Multiple simulators and procedures are available for educational and training purposes. A need for comparative evaluations of these simulators exists to aid users in selecting an appropriate device for their purposes. We conducted an objective review and comparison of the design and capabilities of all dedicated simulators of the da Vinci robot, the da Vinci Skill Simulator (DVSS) (Intuitive Surgical Inc., Sunnyvale, CA, USA), dV-Trainer (dVT) (Mimic Technologies Inc., Seattle, WA, USA), and Robotic Surgery Simulator (RoSS) (Simulated Surgical Skills, LLC, Williamsville, NY, USA). This provides base specifications of the hardware and software, with an emphasis on the training capabilities of each system. Each simulator contains a large number of training exercises, DVSS = 40, dVT = 65, and RoSS = 52 for skills development. All three offer 3D visual images but use different display technologies. The DVSS leverages the real robotic surgeon's console to provide visualization, hand controls, and foot pedals. The dVT and RoSS created simulated versions of all of these control systems. They include systems management services which allow instructors to collect, export, and analyze the scores of students using the simulators. This study is the first to provide comparative information of the three simulators functional capabilities with an emphasis on their educational skills. They offer unique advantages and capabilities in training robotic surgeons. Each device has been the subject of multiple validation experiments which have been published in the literature. But those do not provide specific details on the capabilities of the simulators which are necessary for an understanding sufficient to select the one best suited for an organization's needs.

  5. Can Robotic Interaction Improve Joint Attention Skills?

    PubMed Central

    Zheng, Zhi; Swanson, Amy R.; Bekele, Esubalew; Zhang, Lian; Crittendon, Julie A.; Weitlauf, Amy F.; Sarkar, Nilanjan

    2013-01-01

    Although it has often been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorder (ASD), relatively few investigations have indexed the impact of intervention and feedback approaches. This pilot study investigated the application of a novel robotic interaction system capable of administering and adjusting joint attention prompts to a small group (n = 6) of children with ASD. Across a series of four sessions, children improved in their ability to orient to prompts administered by the robotic system and continued to display strong attention toward the humanoid robot over time. The results highlight both potential benefits of robotic systems for directed intervention approaches as well as potent limitations of existing humanoid robotic platforms. PMID:24014194

  6. Can Robotic Interaction Improve Joint Attention Skills?

    PubMed

    Warren, Zachary E; Zheng, Zhi; Swanson, Amy R; Bekele, Esubalew; Zhang, Lian; Crittendon, Julie A; Weitlauf, Amy F; Sarkar, Nilanjan

    2015-11-01

    Although it has often been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorder (ASD), relatively few investigations have indexed the impact of intervention and feedback approaches. This pilot study investigated the application of a novel robotic interaction system capable of administering and adjusting joint attention prompts to a small group (n = 6) of children with ASD. Across a series of four sessions, children improved in their ability to orient to prompts administered by the robotic system and continued to display strong attention toward the humanoid robot over time. The results highlight both potential benefits of robotic systems for directed intervention approaches as well as potent limitations of existing humanoid robotic platforms.

  7. The Summer Robotic Autonomy Course

    NASA Technical Reports Server (NTRS)

    Nourbakhsh, Illah R.

    2002-01-01

    We offered a first Robotic Autonomy course this summer, located at NASA/Ames' new NASA Research Park, for approximately 30 high school students. In this 7-week course, students worked in ten teams to build then program advanced autonomous robots capable of visual processing and high-speed wireless communication. The course made use of challenge-based curricula, culminating each week with a Wednesday Challenge Day and a Friday Exhibition and Contest Day. Robotic Autonomy provided a comprehensive grounding in elementary robotics, including basic electronics, electronics evaluation, microprocessor programming, real-time control, and robot mechanics and kinematics. Our course then continued the educational process by introducing higher-level perception, action and autonomy topics, including teleoperation, visual servoing, intelligent scheduling and planning and cooperative problem-solving. We were able to deliver such a comprehensive, high-level education in robotic autonomy for two reasons. First, the content resulted from close collaboration between the CMU Robotics Institute and researchers in the Information Sciences and Technology Directorate and various education program/project managers at NASA/Ames. This collaboration produced not only educational content, but will also be focal to the conduct of formative and summative evaluations of the course for further refinement. Second, CMU rapid prototyping skills as well as the PI's low-overhead perception and locomotion research projects enabled design and delivery of affordable robot kits with unprecedented sensory- locomotory capability. Each Trikebot robot was capable of both indoor locomotion and high-speed outdoor motion and was equipped with a high-speed vision system coupled to a low-cost pan/tilt head. As planned, follow the completion of Robotic Autonomy, each student took home an autonomous, competent robot. This robot is the student's to keep, as she explores robotics with an extremely capable tool in the midst of a new community for roboticists. CMU provided undergraduate course credit for this official course, 16-162U, for 13 students, with all other students receiving course credit from National Hispanic University.

  8. IntelliTable: Inclusively-Designed Furniture with Robotic Capabilities.

    PubMed

    Prescott, Tony J; Conran, Sebastian; Mitchinson, Ben; Cudd, Peter

    2017-01-01

    IntelliTable is a new proof-of-principle assistive technology system with robotic capabilities in the form of an elegant universal cantilever table able to move around by itself, or under user control. We describe the design and current capabilities of the table and the human-centered design methodology used in its development and initial evaluation. The IntelliTable study has delivered robotic platform programmed by a smartphone that can navigate around a typical home or care environment, avoiding obstacles, and positioning itself at the user's command. It can also be configured to navigate itself to pre-ordained places positions within an environment using ceiling tracking, responsive optical guidance and object-based sonar navigation.

  9. Parallel Robot for Lower Limb Rehabilitation Exercises.

    PubMed

    Rastegarpanah, Alireza; Saadat, Mozafar; Borboni, Alberto

    2016-01-01

    The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators' forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators' forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg's model placed on the robot. The results demonstrate the robot's capability to perform a full range of various rehabilitation exercises.

  10. Parallel Robot for Lower Limb Rehabilitation Exercises

    PubMed Central

    Saadat, Mozafar; Borboni, Alberto

    2016-01-01

    The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators' forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators' forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg's model placed on the robot. The results demonstrate the robot's capability to perform a full range of various rehabilitation exercises. PMID:27799727

  11. A unified teleoperated-autonomous dual-arm robotic system

    NASA Technical Reports Server (NTRS)

    Hayati, Samad; Lee, Thomas S.; Tso, Kam Sing; Backes, Paul G.; Lloyd, John

    1991-01-01

    A description is given of complete robot control facility built as part of a NASA telerobotics program to develop a state-of-the-art robot control environment for performing experiments in the repair and assembly of spacelike hardware to gain practical knowledge of such work and to improve the associated technology. The basic architecture of the manipulator control subsystem is presented. The multiarm Robot Control C Library (RCCL), a key software component of the system, is described, along with its implementation on a Sun-4 computer. The system's simulation capability is also described, and the teleoperation and shared control features are explained.

  12. Recent advancements in robotic micro-optical assembly at the Lockheed Martin Optical Payload Center of Excellence

    NASA Astrophysics Data System (ADS)

    Hwang, David; Larson, Thomas M.

    2017-08-01

    Lockheed Martin Space Systems Company Optical Payloads Center of Excellence is in process of standing up the Robotic Optical Assembly System (ROAS) capability at Lockheed Martin Coherent Technologies in Colorado. This currently implemented Robotic Optical Assembly has enabled Lockheed Martin to create world-leading, ultra-lowSWAP photonic devices using a closed-loop control robot to precisely position and align micro-optics with a potential fill factor of >25 optics per square inch. This paper will discuss the anticipated applications and optical capability when ROAS is fully operational, as well as challenge the audience to update their "rules of thumb" and best practices when designing low-SWAP optical-mechanical systems that take advantage of Lockheed Martin's ROAS capability. This paper will reveal demonstrated optical pointing and stability performance achievable with ROAS and why we believe these optical specifications are relevant for the majority of anticipated applications. After a high level overview of the ROAS current state, this paper will focus in on recent results of the "Reworkable Micro-Optics Mounting IRAD". Results from this IRAD will correlate to the anticipated optical specifications required for relevant applications.

  13. Object-based task-level control: A hierarchical control architecture for remote operation of space robots

    NASA Technical Reports Server (NTRS)

    Stevens, H. D.; Miles, E. S.; Rock, S. J.; Cannon, R. H.

    1994-01-01

    Expanding man's presence in space requires capable, dexterous robots capable of being controlled from the Earth. Traditional 'hand-in-glove' control paradigms require the human operator to directly control virtually every aspect of the robot's operation. While the human provides excellent judgment and perception, human interaction is limited by low bandwidth, delayed communications. These delays make 'hand-in-glove' operation from Earth impractical. In order to alleviate many of the problems inherent to remote operation, Stanford University's Aerospace Robotics Laboratory (ARL) has developed the Object-Based Task-Level Control architecture. Object-Based Task-Level Control (OBTLC) removes the burden of teleoperation from the human operator and enables execution of tasks not possible with current techniques. OBTLC is a hierarchical approach to control where the human operator is able to specify high-level, object-related tasks through an intuitive graphical user interface. Infrequent task-level command replace constant joystick operations, eliminating communications bandwidth and time delay problems. The details of robot control and task execution are handled entirely by the robot and computer control system. The ARL has implemented the OBTLC architecture on a set of Free-Flying Space Robots. The capability of the OBTLC architecture has been demonstrated by controlling the ARL Free-Flying Space Robots from NASA Ames Research Center.

  14. A developmental roadmap for learning by imitation in robots.

    PubMed

    Lopes, Manuel; Santos-Victor, José

    2007-04-01

    In this paper, we present a strategy whereby a robot acquires the capability to learn by imitation following a developmental pathway consisting on three levels: 1) sensory-motor coordination; 2) world interaction; and 3) imitation. With these stages, the system is able to learn tasks by imitating human demonstrators. We describe results of the different developmental stages, involving perceptual and motor skills, implemented in our humanoid robot, Baltazar. At each stage, the system's attention is drawn toward different entities: its own body and, later on, objects and people. Our main contributions are the general architecture and the implementation of all the necessary modules until imitation capabilities are eventually acquired by the robot. Also, several other contributions are made at each level: learning of sensory-motor maps for redundant robots, a novel method for learning how to grasp objects, and a framework for learning task description from observation for program-level imitation. Finally, vision is used extensively as the sole sensing modality (sometimes in a simplified setting) avoiding the need for special data-acquisition hardware.

  15. M.I.N.G., Mars Investment for a New Generation: Robotic construction of a permanently manned Mars base

    NASA Technical Reports Server (NTRS)

    Amos, Jeff; Beeman, Randy; Brown, Susan; Calhoun, John; Hill, John; Howorth, Lark; Mcfaden, Clay; Nguyen, Paul; Reid, Philip; Rexrode, Stuart

    1989-01-01

    A basic procedure for robotically constructing a manned Mars base is outlined. The research procedure was divided into three areas: environment, robotics, and habitat. The base as designed will consist of these components: two power plants, communication facilities, a habitat complex, and a hangar, a garage, recreation and manufacturing facilities. The power plants will be self-contained nuclear fission reactors placed approx. 1 km from the base for safety considerations. The base communication system will use a combination of orbiting satellites and surface relay stations. This system is necessary for robotic contact with Phobos and any future communication requirements. The habitat complex will consist of six self-contained modules: core, biosphere, science, living quarters, galley/storage, and a sick bay which will be brought from Phobos. The complex will be set into an excavated hole and covered with approximately 0.5 m of sandbags to provide radiation protection for the astronauts. The recreation, hangar, garage, and manufacturing facilities will each be transformed from the four one-way landers. The complete complex will be built by autonomous, artificially intelligent robots. Robots incorporated into the design are as follows: Large Modular Construction Robots with detachable arms capable of large scale construction activities; Small Maneuverable Robotic Servicers capable of performing delicate tasks normally requiring a suited astronaut; and a trailer vehicle with modular type attachments to complete specific tasks; and finally, Mobile Autonomous Rechargeable Transporters capable of transferring air and water from the manufacturing facility to the habitat complex.

  16. M.I.N.G., Mars Investment for a New Generation: Robotic construction of a permanently manned Mars base

    NASA Astrophysics Data System (ADS)

    Amos, Jeff; Beeman, Randy; Brown, Susan; Calhoun, John; Hill, John; Howorth, Lark; McFaden, Clay; Nguyen, Paul; Reid, Philip; Rexrode, Stuart

    1989-05-01

    A basic procedure for robotically constructing a manned Mars base is outlined. The research procedure was divided into three areas: environment, robotics, and habitat. The base as designed will consist of these components: two power plants, communication facilities, a habitat complex, and a hanger, a garage, recreation and manufacturing facilities. The power plants will be self-contained nuclear fission reactors placed approx. 1 km from the base for safety considerations. The base communication system will use a combination of orbiting satellites and surface relay stations. This system is necessary for robotic contact with Phobos and any future communication requirements. The habitat complex will consist of six self-contained modules: core, biosphere, science, living quarters, galley/storage, and a sick bay which will be brought from Phobos. The complex will be set into an excavated hole and covered with approximately 0.5 m of sandbags to provide radiation protection for the astronauts. The recreation, hangar, garage, and manufacturing facilities will each be transformed from the four one-way landers. The complete complex will be built by autonomous, artificially intelligent robots. Robots incorporated into the design are as follows: Large Modular Construction Robots with detachable arms capable of large scale construction activities; Small Maneuverable Robotic Servicers capable of performing delicate tasks normally requiring a suited astronaut; and a trailer vehicle with modular type attachments to complete specific tasks; and finally, Mobile Autonomous Rechargeable Transporters capable of transferring air and water from the manufacturing facility to the habitat complex.

  17. Integrated mobile robot control

    NASA Technical Reports Server (NTRS)

    Amidi, Omead; Thorpe, Charles

    1991-01-01

    This paper describes the structure, implementation, and operation of a real-time mobile robot controller which integrates capabilities such as: position estimation, path specification and tracking, human interfaces, fast communication, and multiple client support. The benefits of such high-level capabilities in a low-level controller was shown by its implementation for the Navlab autonomous vehicle. In addition, performance results from positioning and tracking systems are reported and analyzed.

  18. Integrated mobile robot control

    NASA Astrophysics Data System (ADS)

    Amidi, Omead; Thorpe, Chuck E.

    1991-03-01

    This paper describes the strucwre implementation and operation of a real-time mobile robot controller which integrates capabilities such as: position estimation path specification and hacking human interfaces fast communication and multiple client support The benefits of such high-level capabilities in a low-level controller was shown by its implementation for the Naviab autonomous vehicle. In addition performance results from positioning and tracking systems are reported and analyzed.

  19. Robot computer problem solving system

    NASA Technical Reports Server (NTRS)

    Merriam, E. W.; Becker, J. D.

    1973-01-01

    A robot computer problem solving system which represents a robot exploration vehicle in a simulated Mars environment is described. The model exhibits changes and improvements made on a previously designed robot in a city environment. The Martian environment is modeled in Cartesian coordinates; objects are scattered about a plane; arbitrary restrictions on the robot's vision have been removed; and the robot's path contains arbitrary curves. New environmental features, particularly the visual occlusion of objects by other objects, were added to the model. Two different algorithms were developed for computing occlusion. Movement and vision capabilities of the robot were established in the Mars environment, using LISP/FORTRAN interface for computational efficiency. The graphical display program was redesigned to reflect the change to the Mars-like environment.

  20. Telemanipulation of cooperative robots: a case of study

    NASA Astrophysics Data System (ADS)

    Pliego-Jiménez, Javier; Arteaga-Pérez, Marco

    2018-06-01

    This article addresses the problem of dexterous robotic grasping by means of a telemanipulation system composed of a single master and two slave robot manipulators. The slave robots are analysed as a cooperative system where it is assumed that the robots can push but not pull the object. In order to achieve a stable rigid grasp, a centralised adaptive position-force control algorithm for the slave robots is proposed. On the other hand, a linear velocity observer for the master robot is developed to avoid numerical differentiation. A set of experiments with different human operators were carried out to show the good performance and capabilities of the proposed control-observer algorithm. In addition, the dynamic model and closed-loop dynamics of the telemanipulation is presented.

  1. Information Robots and Manipulators.

    ERIC Educational Resources Information Center

    Katys, G. P.; And Others

    In the modern concept a robot is a complex automatic cybernetics system capable of executing various operations in the sphere of human activity and in various respects combining the imitative capacity of the physical and mental activity of man. They are a class of automatic information systems intended for search, collection, processing, and…

  2. Person-like intelligent systems architectures for robotic shared control and automated operations

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.; Aucoin, Paschal J., Jr.; Ossorio, Peter G.

    1992-01-01

    An approach to rendering robotic systems as 'personlike' as possible to achieve needed capabilities is outlined. Human characteristics such as knowledge, motivation, know-how, performance, achievement and individual differences corresponding to propensities and abilities can be supplied, within limits, with computing software and hardware to robotic systems provided with sufficiently rich sensory configurations. Pushing these limits is the developmental path for more and more personlike robotic systems. The portions of the Person Concept that appear to be most directly relevant to this effort are described in the following topics: reality concepts (the state-of-affairs system and descriptive formats, behavior as intentional action, individual persons (person characteristics), social patterns of behavior (social practices), and boundary conditions (status maxims). Personlike robotic themes and considerations for a technical development plan are also discussed.

  3. The ROMPS robot in HitchHiker

    NASA Technical Reports Server (NTRS)

    Voellmer, George

    1992-01-01

    The Robotics Branch of the Goddard Space Flight Center has under development a robot that fits inside a Get Away Special can. In the RObotic Materials Processing System (ROMPS) HitchHiker experiment, this robot is used to transport pallets containing wafers of different materials from their storage rack to a halogen lamp furnace for rapid thermal processing in a microgravity environment. It then returns them to their storage rack. A large part of the mechanical design of the robot dealt with the potential misalignment between the various components that are repeatedly mated and demated. A system of tapered guides and compliant springs was designed to work within the robot's force and accuracy capabilities. This paper discusses the above and other robot design issues in detail, and presents examples of ROMPS robot analyses that are applicable to other HitcherHiker materials handling missions.

  4. Autonomy in Materials Research: A Case Study in Carbon Nanotube Growth (Postprint)

    DTIC Science & Technology

    2016-10-21

    built an Autonomous Research System (ARES)—an autonomous research robot capable of first-of-its-kind closed-loop iterative materials experimentation...ARES exploits advances in autonomous robotics , artificial intelligence, data sciences, and high-throughput and in situ techniques, and is able to...roles of humans and autonomous research robots , and for human-machine partnering. We believe autonomous research robots like ARES constitute a

  5. Self-organization via active exploration in robotic applications

    NASA Technical Reports Server (NTRS)

    Ogmen, H.; Prakash, R. V.

    1992-01-01

    We describe a neural network based robotic system. Unlike traditional robotic systems, our approach focussed on non-stationary problems. We indicate that self-organization capability is necessary for any system to operate successfully in a non-stationary environment. We suggest that self-organization should be based on an active exploration process. We investigated neural architectures having novelty sensitivity, selective attention, reinforcement learning, habit formation, flexible criteria categorization properties and analyzed the resulting behavior (consisting of an intelligent initiation of exploration) by computer simulations. While various computer vision researchers acknowledged recently the importance of active processes (Swain and Stricker, 1991), the proposed approaches within the new framework still suffer from a lack of self-organization (Aloimonos and Bandyopadhyay, 1987; Bajcsy, 1988). A self-organizing, neural network based robot (MAVIN) has been recently proposed (Baloch and Waxman, 1991). This robot has the capability of position, size rotation invariant pattern categorization, recognition and pavlovian conditioning. Our robot does not have initially invariant processing properties. The reason for this is the emphasis we put on active exploration. We maintain the point of view that such invariant properties emerge from an internalization of exploratory sensory-motor activity. Rather than coding the equilibria of such mental capabilities, we are seeking to capture its dynamics to understand on the one hand how the emergence of such invariances is possible and on the other hand the dynamics that lead to these invariances. The second point is crucial for an adaptive robot to acquire new invariances in non-stationary environments, as demonstrated by the inverting glass experiments of Helmholtz. We will introduce Pavlovian conditioning circuits in our future work for the precise objective of achieving the generation, coordination, and internalization of sequence of actions.

  6. Capabilities Roadmap Briefings to the National Research Council

    NASA Technical Reports Server (NTRS)

    2005-01-01

    High energy power and propulsion capability roadmap - general background and introduction. Advanced telescopes and observatories and scientific instruments and sensors capability roadmaps - general background and introduction. Space communications capability roadmap interim review. Robotic access to planetary surface capability roadmap. Human health and support systems capability roadmap progress review.

  7. Trajectory planning and optimal tracking for an industrial mobile robot

    NASA Astrophysics Data System (ADS)

    Hu, Huosheng; Brady, J. Michael; Probert, Penelope J.

    1994-02-01

    This paper introduces a unified approach to trajectory planning and tracking for an industrial mobile robot subject to non-holonomic constraints. We show (1) how a smooth trajectory is generated that takes into account the constraints from the dynamic environment and the robot kinematics; and (2) how a general predictive controller works to provide optimal tracking capability for nonlinear systems. The tracking performance of the proposed guidance system is analyzed by simulation.

  8. A High Density Electrophysiological Data Analysis System for a Peripheral Nerve Interface Communicating with Individual Neurons in the Brain

    DTIC Science & Technology

    2016-11-14

    necessary capability to build a high density communication highway between 86 billion brain neurons and intelligent vehicles or robots . With this...build a high density communication highway between brain neurons and intelligent vehicles or robots . The final outcome of the INI using TDT system...will be beneficial to wounded warriors suffering from loss of limb function, so that, using sophisticated bidirectional robotic limbs, these

  9. Pilot clinical application of an adaptive robotic system for young children with autism

    PubMed Central

    Bekele, Esubalew; Crittendon, Julie A; Swanson, Amy; Sarkar, Nilanjan; Warren, Zachary E

    2013-01-01

    It has been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders. This pilot feasibility study evaluated the application of a novel adaptive robot-mediated system capable of both administering and automatically adjusting joint attention prompts to a small group of preschool children with autism spectrum disorders (n = 6) and a control group (n = 6). Children in both groups spent more time looking at the humanoid robot and were able to achieve a high level of accuracy across trials. However, across groups, children required higher levels of prompting to successfully orient within robot-administered trials. The results highlight both the potential benefits of closed-loop adaptive robotic systems as well as current limitations of existing humanoid-robotic platforms. PMID:24104517

  10. Robotic astrobiology - prospects for enhancing scientific productivity of mars rover missions

    NASA Astrophysics Data System (ADS)

    Ellery, A. A.

    2018-07-01

    Robotic astrobiology involves the remote projection of intelligent capabilities to planetary missions in the search for life, preferably with human-level intelligence. Planetary rovers would be true human surrogates capable of sophisticated decision-making to enhance their scientific productivity. We explore several key aspects of this capability: (i) visual texture analysis of rocks to enable their geological classification and so, astrobiological potential; (ii) serendipitous target acquisition whilst on the move; (iii) continuous extraction of regolith properties, including water ice whilst on the move; and (iv) deep learning-capable Bayesian net expert systems. Individually, these capabilities will provide enhanced scientific return for astrobiology missions, but together, they will provide full autonomous science capability.

  11. A review of robotics in surgery.

    PubMed

    Davies, B

    2000-01-01

    A brief introduction is given to the definitions and history of surgical robotics. The capabilities and merits of surgical robots are then contrasted with the related field of computer assisted surgery. A classification is then given of the various types of robot system currently being investigated internationally, together with a number of examples of different applications in both soft-tissue and orthopaedic surgery. The paper finishes with a discussion of the main difficulties facing robotic surgery and a prediction of future progress.

  12. Robotic surgery.

    PubMed

    Stoianovici, D

    2000-09-01

    The industrial revolution demonstrated the capability of robotic systems to facilitate and improve manufacturing. As a result, robotics extended to various other domains, including the delivery of health care. Hence, robots have been developed to assist hospital staff, to facilitate laboratory analyses, to augment patient rehabilitation, and even to advance surgical performance. As robotics lead usefulness and gain wider acceptance among the surgical community, the urologist should become familiar with this new interdisciplinary field and its "URobotics" subset: robotics applied to urology. This article reviews the current applications and experience, issues and debates in surgical robotics, and highlights future directions in the field.

  13. SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlemann, I; Graduate School for Computing in Medicine and Life Sciences, University of Luebeck; Jauer, P

    Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety featuresmore » create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking applications, including image quality control and target tracking.« less

  14. Grounding language in action and perception: From cognitive agents to humanoid robots

    NASA Astrophysics Data System (ADS)

    Cangelosi, Angelo

    2010-06-01

    In this review we concentrate on a grounded approach to the modeling of cognition through the methodologies of cognitive agents and developmental robotics. This work will focus on the modeling of the evolutionary and developmental acquisition of linguistic capabilities based on the principles of symbol grounding. We review cognitive agent and developmental robotics models of the grounding of language to demonstrate their consistency with the empirical and theoretical evidence on language grounding and embodiment, and to reveal the benefits of such an approach in the design of linguistic capabilities in cognitive robotic agents. In particular, three different models will be discussed, where the complexity of the agent's sensorimotor and cognitive system gradually increases: from a multi-agent simulation of language evolution, to a simulated robotic agent model for symbol grounding transfer, to a model of language comprehension in the humanoid robot iCub. The review also discusses the benefits of the use of humanoid robotic platform, and specifically of the open source iCub platform, for the study of embodied cognition.

  15. Enhancing the effectiveness of human-robot teaming with a closed-loop system.

    PubMed

    Teo, Grace; Reinerman-Jones, Lauren; Matthews, Gerald; Szalma, James; Jentsch, Florian; Hancock, Peter

    2018-02-01

    With technological developments in robotics and their increasing deployment, human-robot teams are set to be a mainstay in the future. To develop robots that possess teaming capabilities, such as being able to communicate implicitly, the present study implemented a closed-loop system. This system enabled the robot to provide adaptive aid without the need for explicit commands from the human teammate, through the use of multiple physiological workload measures. Such measures of workload vary in sensitivity and there is large inter-individual variability in physiological responses to imposed taskload. Workload models enacted via closed-loop system should accommodate such individual variability. The present research investigated the effects of the adaptive robot aid vs. imposed aid on performance and workload. Results showed that adaptive robot aid driven by an individualized workload model for physiological response resulted in greater improvements in performance compared to aid that was simply imposed by the system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The real-time learning mechanism of the Scientific Research Associates Advanced Robotic System (SRAARS)

    NASA Technical Reports Server (NTRS)

    Chen, Alexander Y.

    1990-01-01

    Scientific research associates advanced robotic system (SRAARS) is an intelligent robotic system which has autonomous learning capability in geometric reasoning. The system is equipped with one global intelligence center (GIC) and eight local intelligence centers (LICs). It controls mainly sixteen links with fourteen active joints, which constitute two articulated arms, an extensible lower body, a vision system with two CCD cameras and a mobile base. The on-board knowledge-based system supports the learning controller with model representations of both the robot and the working environment. By consecutive verifying and planning procedures, hypothesis-and-test routines and learning-by-analogy paradigm, the system would autonomously build up its own understanding of the relationship between itself (i.e., the robot) and the focused environment for the purposes of collision avoidance, motion analysis and object manipulation. The intelligence of SRAARS presents a valuable technical advantage to implement robotic systems for space exploration and space station operations.

  17. Evolutionary Space Communications Architectures for Human/Robotic Exploration and Science Missions

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Hayden, Jeffrey L.

    2004-01-01

    NASA enterprises have growing needs for an advanced, integrated, communications infrastructure that will satisfy the capabilities needed for multiple human, robotic and scientific missions beyond 2015. Furthermore, the reliable, multipoint infrastructure is required to provide continuous, maximum coverage of areas of concentrated activities, such as around Earth and in the vicinity of the Moon or Mars, with access made available on demand of the human or robotic user. As a first step, the definitions of NASA's future space communications and networking architectures are underway. Architectures that describe the communications and networking needed between the nodal regions consisting of Earth, Moon, Lagrange points, Mars, and the places of interest within the inner and outer solar system have been laid out. These architectures will need the modular flexibility that must be included in the communication and networking technologies to enable the infrastructure to grow in capability with time and to transform from supporting robotic missions in the solar system to supporting human ventures to Mars, Jupiter, Jupiter's moons, and beyond. The protocol-based networking capability seamlessly connects the backbone, access, inter-spacecraft and proximity network elements of the architectures employed in the infrastructure. In this paper, we present the summary of NASA's near and long term needs and capability requirements that were gathered by participative methods. We describe an integrated architecture concept and model that will enable communications for evolutionary robotic and human science missions. We then define the communication nodes, their requirements, and various options to connect them.

  18. Evolutionary Space Communications Architectures for Human/Robotic Exploration and Science Missions

    NASA Astrophysics Data System (ADS)

    Bhasin, Kul; Hayden, Jeffrey L.

    2004-02-01

    NASA enterprises have growing needs for an advanced, integrated, communications infrastructure that will satisfy the capabilities needed for multiple human, robotic and scientific missions beyond 2015. Furthermore, the reliable, multipoint infrastructure is required to provide continuous, maximum coverage of areas of concentrated activities, such as around Earth and in the vicinity of the Moon or Mars, with access made available on demand of the human or robotic user. As a first step, the definitions of NASA's future space communications and networking architectures are underway. Architectures that describe the communications and networking needed between the nodal regions consisting of Earth, Moon, Lagrange points, Mars, and the places of interest within the inner and outer solar system have been laid out. These architectures will need the modular flexibility that must be included in the communication and networking technologies to enable the infrastructure to grow in capability with time and to transform from supporting robotic missions in the solar system to supporting human ventures to Mars, Jupiter, Jupiter's moons, and beyond. The protocol-based networking capability seamlessly connects the backbone, access, inter-spacecraft and proximity network elements of the architectures employed in the infrastructure. In this paper, we present the summary of NASA's near and long term needs and capability requirements that were gathered by participative methods. We describe an integrated architecture concept and model that will enable communications for evolutionary robotic and human science missions. We then define the communication nodes, their requirements, and various options to connect them.

  19. Digital redesign of the control system for the Robotics Research Corporation model K-1607 robot

    NASA Technical Reports Server (NTRS)

    Carroll, Robert L.

    1989-01-01

    The analog control system for positioning each link of the Robotics Research Corporation Model K-1607 robot manipulator was redesigned for computer control. In order to accomplish the redesign, a linearized model of the dynamic behavior of the robot was developed. The parameters of the model were determined by examination of the input-output data collected in closed-loop operation of the analog control system. The robot manipulator possesses seven degrees of freedom in its motion. The analog control system installed by the manufacturer of the robot attempts to control the positioning of each link without feedback from other links. Constraints on the design of a digital control system include: the robot cannot be disassembled for measurement of parameters; the digital control system must not include filtering operations if possible, because of lack of computer capability; and criteria of goodness of control system performing is lacking. The resulting design employs sampled-data position and velocity feedback. The criteria of the design permits the control system gain margin and phase margin, measured at the same frequencies, to be the same as that provided by the analog control system.

  20. Human-Robot Control Strategies for the NASA/DARPA Robonaut

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Culbert, Chris J.; Ambrose, Robert O.; Huber, E.; Bluethmann, W. J.

    2003-01-01

    The Robotic Systems Technology Branch at the NASA Johnson Space Center (JSC) is currently developing robot systems to reduce the Extra-Vehicular Activity (EVA) and planetary exploration burden on astronauts. One such system, Robonaut, is capable of interfacing with external Space Station systems that currently have only human interfaces. Robonaut is human scale, anthropomorphic, and designed to approach the dexterity of a space-suited astronaut. Robonaut can perform numerous human rated tasks, including actuating tether hooks, manipulating flexible materials, soldering wires, grasping handrails to move along space station mockups, and mating connectors. More recently, developments in autonomous control and perception for Robonaut have enabled dexterous, real-time man-machine interaction. Robonaut is now capable of acting as a practical autonomous assistant to the human, providing and accepting tools by reacting to body language. A versatile, vision-based algorithm for matching range silhouettes is used for monitoring human activity as well as estimating tool pose.

  1. UNIVERSITY RESEARCH PROGRAM IN ROBOTICS, Final Technical Annual Report, Project Period: 9/1/04 - 8/31/05

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James S. Tulenko; Carl D. Crane III

    The University Research Program in Robotics (URPR) Implementation Plan is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities of robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.

  2. Integrating deliberative planning in a robot architecture

    NASA Technical Reports Server (NTRS)

    Elsaesser, Chris; Slack, Marc G.

    1994-01-01

    The role of planning and reactive control in an architecture for autonomous agents is discussed. The postulated architecture seperates the general robot intelligence problem into three interacting pieces: (1) robot reactive skills, i.e., grasping, object tracking, etc.; (2) a sequencing capability to differentially ativate the reactive skills; and (3) a delibrative planning capability to reason in depth about goals, preconditions, resources, and timing constraints. Within the sequencing module, caching techniques are used for handling routine activities. The planning system then builds on these cached solutions to routine tasks to build larger grain sized primitives. This eliminates large numbers of essentially linear planning problems. The architecture will be used in the future to incorporate in robots cognitive capabilites normally associated with intelligent behavior.

  3. Pilot Clinical Application of an Adaptive Robotic System for Young Children with Autism

    ERIC Educational Resources Information Center

    Bekele, Esubalew; Crittendon, Julie A.; Swanson, Amy; Sarkar, Nilanjan; Warren, Zachary E.

    2014-01-01

    It has been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders. This pilot feasibility study evaluated the application of a novel adaptive robot-mediated system capable of both administering and automatically adjusting joint attention prompts to a small…

  4. Adaptive multisensor fusion for planetary exploration rovers

    NASA Technical Reports Server (NTRS)

    Collin, Marie-France; Kumar, Krishen; Pampagnin, Luc-Henri

    1992-01-01

    The purpose of the adaptive multisensor fusion system currently being designed at NASA/Johnson Space Center is to provide a robotic rover with assured vision and safe navigation capabilities during robotic missions on planetary surfaces. Our approach consists of using multispectral sensing devices ranging from visible to microwave wavelengths to fulfill the needs of perception for space robotics. Based on the illumination conditions and the sensors capabilities knowledge, the designed perception system should automatically select the best subset of sensors and their sensing modalities that will allow the perception and interpretation of the environment. Then, based on reflectance and emittance theoretical models, the sensor data are fused to extract the physical and geometrical surface properties of the environment surface slope, dielectric constant, temperature and roughness. The theoretical concepts, the design and first results of the multisensor perception system are presented.

  5. Off the Shelf Cloud Robotics for the Smart Home: Empowering a Wireless Robot through Cloud Computing.

    PubMed

    Ramírez De La Pinta, Javier; Maestre Torreblanca, José María; Jurado, Isabel; Reyes De Cozar, Sergio

    2017-03-06

    In this paper, we explore the possibilities offered by the integration of home automation systems and service robots. In particular, we examine how advanced computationally expensive services can be provided by using a cloud computing approach to overcome the limitations of the hardware available at the user's home. To this end, we integrate two wireless low-cost, off-the-shelf systems in this work, namely, the service robot Rovio and the home automation system Z-wave. Cloud computing is used to enhance the capabilities of these systems so that advanced sensing and interaction services based on image processing and voice recognition can be offered.

  6. Off the Shelf Cloud Robotics for the Smart Home: Empowering a Wireless Robot through Cloud Computing

    PubMed Central

    Ramírez De La Pinta, Javier; Maestre Torreblanca, José María; Jurado, Isabel; Reyes De Cozar, Sergio

    2017-01-01

    In this paper, we explore the possibilities offered by the integration of home automation systems and service robots. In particular, we examine how advanced computationally expensive services can be provided by using a cloud computing approach to overcome the limitations of the hardware available at the user’s home. To this end, we integrate two wireless low-cost, off-the-shelf systems in this work, namely, the service robot Rovio and the home automation system Z-wave. Cloud computing is used to enhance the capabilities of these systems so that advanced sensing and interaction services based on image processing and voice recognition can be offered. PMID:28272305

  7. Understanding of and applications for robot vision guidance at KSC

    NASA Technical Reports Server (NTRS)

    Shawaga, Lawrence M.

    1988-01-01

    The primary thrust of robotics at KSC is for the servicing of Space Shuttle remote umbilical docking functions. In order for this to occur, robots performing servicing operations must be capable of tracking a swaying Orbiter in Six Degrees of Freedom (6-DOF). Currently, in NASA KSC's Robotic Applications Development Laboratory (RADL), an ASEA IRB-90 industrial robot is being equipped with a real-time computer vision (hardware and software) system to allow it to track a simulated Orbiter interface (target) in 6-DOF. The real-time computer vision system effectively becomes the eyes for the lab robot, guiding it through a closed loop visual feedback system to move with the simulated Orbiter interface. This paper will address an understanding of this vision guidance system and how it will be applied to remote umbilical servicing at KSC. In addition, other current and future applications will be addressed.

  8. Designing minimal space telerobotics systems for maximum performance

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Long, Mark K.; Steele, Robert D.

    1992-01-01

    The design of the remote site of a local-remote telerobot control system is described which addresses the constraints of limited computational power available at the remote site control system while providing a large range of control capabilities. The Modular Telerobot Task Execution System (MOTES) provides supervised autonomous control, shared control and teleoperation for a redundant manipulator. The system is capable of nominal task execution as well as monitoring and reflex motion. The MOTES system is minimized while providing a large capability by limiting its functionality to only that which is necessary at the remote site and by utilizing a unified multi-sensor based impedance control scheme. A command interpreter similar to one used on robotic spacecraft is used to interpret commands received from the local site. The system is written in Ada and runs in a VME environment on 68020 processors and initially controls a Robotics Research K1207 7 degree of freedom manipulator.

  9. Telerobotic controller development

    NASA Technical Reports Server (NTRS)

    Otaguro, W. S.; Kesler, L. O.; Land, Ken; Rhoades, Don

    1987-01-01

    To meet NASA's space station's needs and growth, a modular and generic approach to robotic control which provides near-term implementation with low development cost and capability for growth into more autonomous systems was developed. The method uses a vision based robotic controller and compliant hand integrated with the Remote Manipulator System arm on the Orbiter. A description of the hardware and its system integration is presented.

  10. Design challenges and methodology for developing new integrated circuits for the robotics exploration of the solar system

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad M.; Kolawa, Elizabeth; Blalock, Benjamin; Johnson, R. Wayne

    2005-01-01

    Next generation space-based robotics systems will be constructed using distributed architectures where electronics capable of working in the extreme environments of the planets of the solar system are integrated with the sensors and actuators in plug-and-play modules and are connected through common multiple redundant data and power buses.

  11. Dynamic photogrammetric calibration of industrial robots

    NASA Astrophysics Data System (ADS)

    Maas, Hans-Gerd

    1997-07-01

    Today's developments in industrial robots focus on aims like gain of flexibility, improvement of the interaction between robots and reduction of down-times. A very important method to achieve these goals are off-line programming techniques. In contrast to conventional teach-in-robot programming techniques, where sequences of actions are defined step-by- step via remote control on the real object, off-line programming techniques design complete robot (inter-)action programs in a CAD/CAM environment. This poses high requirements to the geometric accuracy of a robot. While the repeatability of robot poses in the teach-in mode is often better than 0.1 mm, the absolute pose accuracy potential of industrial robots is usually much worse due to tolerances, eccentricities, elasticities, play, wear-out, load, temperature and insufficient knowledge of model parameters for the transformation from poses into robot axis angles. This fact necessitates robot calibration techniques, including the formulation of a robot model describing kinematics and dynamics of the robot, and a measurement technique to provide reference data. Digital photogrammetry as an accurate, economic technique with realtime potential offers itself for this purpose. The paper analyzes the requirements posed to a measurement technique by industrial robot calibration tasks. After an overview on measurement techniques used for robot calibration purposes in the past, a photogrammetric robot calibration system based on off-the- shelf lowcost hardware components will be shown and results of pilot studies will be discussed. Besides aspects of accuracy, reliability and self-calibration in a fully automatic dynamic photogrammetric system, realtime capabilities are discussed. In the pilot studies, standard deviations of 0.05 - 0.25 mm in the three coordinate directions could be achieved over a robot work range of 1.7 X 1.5 X 1.0 m3. The realtime capabilities of the technique allow to go beyond kinematic robot calibration and perform dynamic robot calibration as well as photogrammetric on-line control of a robot in action.

  12. Towards a sustainable modular robot system for planetary exploration

    NASA Astrophysics Data System (ADS)

    Hossain, S. G. M.

    This thesis investigates multiple perspectives of developing an unmanned robotic system suited for planetary terrains. In this case, the unmanned system consists of unit-modular robots. This type of robot has potential to be developed and maintained as a sustainable multi-robot system while located far from direct human intervention. Some characteristics that make this possible are: the cooperation, communication and connectivity among the robot modules, flexibility of individual robot modules, capability of self-healing in the case of a failed module and the ability to generate multiple gaits by means of reconfiguration. To demonstrate the effects of high flexibility of an individual robot module, multiple modules of a four-degree-of-freedom unit-modular robot were developed. The robot was equipped with a novel connector mechanism that made self-healing possible. Also, design strategies included the use of series elastic actuators for better robot-terrain interaction. In addition, various locomotion gaits were generated and explored using the robot modules, which is essential for a modular robot system to achieve robustness and thus successfully navigate and function in a planetary environment. To investigate multi-robot task completion, a biomimetic cooperative load transportation algorithm was developed and simulated. Also, a liquid motion-inspired theory was developed consisting of a large number of robot modules. This can be used to traverse obstacles that inevitably occur in maneuvering over rough terrains such as in a planetary exploration. Keywords: Modular robot, cooperative robots, biomimetics, planetary exploration, sustainability.

  13. Pilot clinical application of an adaptive robotic system for young children with autism.

    PubMed

    Bekele, Esubalew; Crittendon, Julie A; Swanson, Amy; Sarkar, Nilanjan; Warren, Zachary E

    2014-07-01

    It has been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders. This pilot feasibility study evaluated the application of a novel adaptive robot-mediated system capable of both administering and automatically adjusting joint attention prompts to a small group of preschool children with autism spectrum disorders (n = 6) and a control group (n = 6). Children in both groups spent more time looking at the humanoid robot and were able to achieve a high level of accuracy across trials. However, across groups, children required higher levels of prompting to successfully orient within robot-administered trials. The results highlight both the potential benefits of closed-loop adaptive robotic systems as well as current limitations of existing humanoid-robotic platforms. © The Author(s) 2013.

  14. Advantages of Science Cubesat and Microsat Deployment Using DSG Deep Space Exploration Robotics

    NASA Astrophysics Data System (ADS)

    Shaw, A.; Rembala, R.; Fulford, P.

    2018-02-01

    Important scientific missions can be accomplished with cubesats/microsats. These missions would benefit from advantages offered by having an independent cubesat/microsat deployment capability as part of Deep Space Gateway's Deep Space Exploration Robotics system.

  15. Review of emerging surgical robotic technology.

    PubMed

    Peters, Brian S; Armijo, Priscila R; Krause, Crystal; Choudhury, Songita A; Oleynikov, Dmitry

    2018-04-01

    The use of laparoscopic and robotic procedures has increased in general surgery. Minimally invasive robotic surgery has made tremendous progress in a relatively short period of time, realizing improvements for both the patient and surgeon. This has led to an increase in the use and development of robotic devices and platforms for general surgery. The purpose of this review is to explore current and emerging surgical robotic technologies in a growing and dynamic environment of research and development. This review explores medical and surgical robotic endoscopic surgery and peripheral technologies currently available or in development. The devices discussed here are specific to general surgery, including laparoscopy, colonoscopy, esophagogastroduodenoscopy, and thoracoscopy. Benefits and limitations of each technology were identified and applicable future directions were described. A number of FDA-approved devices and platforms for robotic surgery were reviewed, including the da Vinci Surgical System, Sensei X Robotic Catheter System, FreeHand 1.2, invendoscopy E200 system, Flex® Robotic System, Senhance, ARES, the Single-Port Instrument Delivery Extended Research (SPIDER), and the NeoGuide Colonoscope. Additionally, platforms were reviewed which have not yet obtained FDA approval including MiroSurge, ViaCath System, SPORT™ Surgical System, SurgiBot, Versius Robotic System, Master and Slave Transluminal Endoscopic Robot, Verb Surgical, Miniature In Vivo Robot, and the Einstein Surgical Robot. The use and demand for robotic medical and surgical platforms is increasing and new technologies are continually being developed. New technologies are increasingly implemented to improve on the capabilities of previously established systems. Future studies are needed to further evaluate the strengths and weaknesses of each robotic surgical device and platform in the operating suite.

  16. Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics.

    PubMed

    Stanton, M M; Trichet-Paredes, C; Sánchez, S

    2015-04-07

    This article will focus on recent reports that have applied three-dimensional (3D) printing for designing millimeter to micrometer architecture for robotic motility. The utilization of 3D printing has rapidly grown in applications for medical prosthetics and scaffolds for organs and tissue, but more recently has been implemented for designing mobile robotics. With an increase in the demand for devices to perform in fragile and confined biological environments, it is crucial to develop new miniaturized, biocompatible 3D systems. Fabrication of materials at different scales with different properties makes 3D printing an ideal system for creating frameworks for small-scale robotics. 3D printing has been applied for the design of externally powered, artificial microswimmers and studying their locomotive capabilities in different fluids. Printed materials have also been incorporated with motile cells for bio-hybrid robots capable of functioning by cell contraction and swimming. These 3D devices offer new methods of robotic motility for biomedical applications requiring miniature structures. Traditional 3D printing methods, where a structure is fabricated in an additive process from a digital design, and non-traditional 3D printing methods, such as lithography and molding, will be discussed.

  17. Initial Validation of Robotic Operations for In-Space Assembly of a Large Solar Electric Propulsion Transport Vehicle

    NASA Technical Reports Server (NTRS)

    Komendera, Erik E.; Dorsey, John T.

    2017-01-01

    Developing a capability for the assembly of large space structures has the potential to increase the capabilities and performance of future space missions and spacecraft while reducing their cost. One such application is a megawatt-class solar electric propulsion (SEP) tug, representing a critical transportation ability for the NASA lunar, Mars, and solar system exploration missions. A series of robotic assembly experiments were recently completed at Langley Research Center (LaRC) that demonstrate most of the assembly steps for the SEP tug concept. The assembly experiments used a core set of robotic capabilities: long-reach manipulation and dexterous manipulation. This paper describes cross-cutting capabilities and technologies for in-space assembly (ISA), applies the ISA approach to a SEP tug, describes the design and development of two assembly demonstration concepts, and summarizes results of two sets of assembly experiments that validate the SEP tug assembly steps.

  18. Proceedings of the Goddard Space Flight Center Workshop on Robotics for Commercial Microelectronic Processes in Space

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Potential applications of robots for cost effective commercial microelectronic processes in space were studied and the associated robotic requirements were defined. Potential space application areas include advanced materials processing, bulk crystal growth, and epitaxial thin film growth and related processes. All possible automation of these processes was considered, along with energy and environmental requirements. Aspects of robot capabilities considered include system intelligence, ROM requirements, kinematic and dynamic specifications, sensor design and configuration, flexibility and maintainability. Support elements discussed included facilities, logistics, ground support, launch and recovery, and management systems.

  19. Design and implementation of a robot control system with traded and shared control capability

    NASA Technical Reports Server (NTRS)

    Hayati, S.; Venkataraman, S. T.

    1989-01-01

    Preliminary results are reported from efforts to design and develop a robotic system that will accept and execute commands from either a six-axis teleoperator device or an autonomous planner, or combine the two. Such a system should have both traded as well as shared control capability. A sharing strategy is presented whereby the overall system, while retaining positive features of teleoperated and autonomous operation, loses its individual negative features. A two-tiered shared control architecture is considered here, consisting of a task level and a servo level. Also presented is a computer architecture for the implementation of this system, including a description of the hardware and software.

  20. Physical and digital simulations for IVA robotics

    NASA Technical Reports Server (NTRS)

    Hinman, Elaine; Workman, Gary L.

    1992-01-01

    Space based materials processing experiments can be enhanced through the use of IVA robotic systems. A program to determine requirements for the implementation of robotic systems in a microgravity environment and to develop some preliminary concepts for acceleration control of small, lightweight arms has been initiated with the development of physical and digital simulation capabilities. The physical simulation facilities incorporate a robotic workcell containing a Zymark Zymate II robot instrumented for acceleration measurements, which is able to perform materials transfer functions while flying on NASA's KC-135 aircraft during parabolic manuevers to simulate reduced gravity. Measurements of accelerations occurring during the reduced gravity periods will be used to characterize impacts of robotic accelerations in a microgravity environment in space. Digital simulations are being performed with TREETOPS, a NASA developed software package which is used for the dynamic analysis of systems with a tree topology. Extensive use of both simulation tools will enable the design of robotic systems with enhanced acceleration control for use in the space manufacturing environment.

  1. Robotic Colorectal Surgery

    PubMed Central

    2008-01-01

    Robotic colorectal surgery has gradually been performed more with the help of the technological advantages of the da Vinci® system. Advanced technological advantages of the da Vinci® system compared with standard laparoscopic colorectal surgery have been reported. These are a stable camera platform, three-dimensional imaging, excellent ergonomics, tremor elimination, ambidextrous capability, motion scaling, and instruments with multiple degrees of freedom. However, despite these technological advantages, most studies did not report the clinical advantages of robotic colorectal surgery compared to standard laparoscopic colorectal surgery. Only one study recently implies the real benefits of robotic rectal cancer surgery. The purpose of this review article is to outline the early concerns of robotic colorectal surgery using the da Vinci® system, to present early clinical outcomes from the most current series, and to discuss not only the safety and the feasibility but also the real benefits of robotic colorectal surgery. Moreover, this article will comment on the possible future clinical advantages and limitations of the da Vinci® system in robotic colorectal surgery. PMID:19108010

  2. Requirements for implementing real-time control functional modules on a hierarchical parallel pipelined system

    NASA Technical Reports Server (NTRS)

    Wheatley, Thomas E.; Michaloski, John L.; Lumia, Ronald

    1989-01-01

    Analysis of a robot control system leads to a broad range of processing requirements. One fundamental requirement of a robot control system is the necessity of a microcomputer system in order to provide sufficient processing capability.The use of multiple processors in a parallel architecture is beneficial for a number of reasons, including better cost performance, modular growth, increased reliability through replication, and flexibility for testing alternate control strategies via different partitioning. A survey of the progression from low level control synchronizing primitives to higher level communication tools is presented. The system communication and control mechanisms of existing robot control systems are compared to the hierarchical control model. The impact of this design methodology on the current robot control systems is explored.

  3. Envisioning Cognitive Robots for Future Space Exploration

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry; Stoica, Adrian

    2010-01-01

    Cognitive robots in the context of space exploration are envisioned with advanced capabilities of model building, continuous planning/re-planning, self-diagnosis, as well as the ability to exhibit a level of 'understanding' of new situations. An overview of some JPL components (e.g. CASPER, CAMPOUT) and a description of the architecture CARACaS (Control Architecture for Robotic Agent Command and Sensing) that combines these in the context of a cognitive robotic system operating in a various scenarios are presented. Finally, two examples of typical scenarios of a multi-robot construction mission and a human-robot mission, involving direct collaboration with humans is given.

  4. Design of a simulation environment for laboratory management by robot organizations

    NASA Technical Reports Server (NTRS)

    Zeigler, Bernard P.; Cellier, Francois E.; Rozenblit, Jerzy W.

    1988-01-01

    This paper describes the basic concepts needed for a simulation environment capable of supporting the design of robot organizations for managing chemical, or similar, laboratories on the planned U.S. Space Station. The environment should facilitate a thorough study of the problems to be encountered in assigning the responsibility of managing a non-life-critical, but mission valuable, process to an organized group of robots. In the first phase of the work, we seek to employ the simulation environment to develop robot cognitive systems and strategies for effective multi-robot management of chemical experiments. Later phases will explore human-robot interaction and development of robot autonomy.

  5. The next decade of space robotics

    NASA Technical Reports Server (NTRS)

    Lavery, Dave; Weisbin, Charles

    1994-01-01

    In the same way that the launch of Yuri Gagarin in April 1961 announced the beginning of human space flight, last year's flight of the German ROTEX robot flight experiment is heralding the start of a new era of space robotics. After a gap of twelve years since the introduction of a new capability in space remote manipulation, ROTEX is the first of at least ten new robotic systems and experiments which will fly before the year 2000.

  6. Development and Control of Multi-Degree-of-Freedom Mobile Robot for Acquisition of Road Environmental Modes

    NASA Astrophysics Data System (ADS)

    Murata, Naoya; Katsura, Seiichiro

    Acquisition of information about the environment around a mobile robot is important for purposes such as controlling the robot from a remote location and in situations such as that when the robot is running autonomously. In many researches, audiovisual information is used. However, acquisition of information about force sensation, which is included in environmental information, has not been well researched. The mobile-hapto, which is a remote control system with force information, has been proposed, but the robot used for the system can acquire only the horizontal component of forces. For this reason, in this research, a three-wheeled mobile robot that consists of seven actuators was developed and its control system was constructed. It can get information on horizontal and vertical forces without using force sensors. By using this robot, detailed information on the forces in the environment can be acquired and the operability of the robot and its capability to adjust to the environment are expected to improve.

  7. Robotic aortic surgery.

    PubMed

    Duran, Cassidy; Kashef, Elika; El-Sayed, Hosam F; Bismuth, Jean

    2011-01-01

    Surgical robotics was first utilized to facilitate neurosurgical biopsies in 1985, and it has since found application in orthopedics, urology, gynecology, and cardiothoracic, general, and vascular surgery. Surgical assistance systems provide intelligent, versatile tools that augment the physician's ability to treat patients by eliminating hand tremor and enabling dexterous operation inside the patient's body. Surgical robotics systems have enabled surgeons to treat otherwise untreatable conditions while also reducing morbidity and error rates, shortening operative times, reducing radiation exposure, and improving overall workflow. These capabilities have begun to be realized in two important realms of aortic vascular surgery, namely, flexible robotics for exclusion of complex aortic aneurysms using branched endografts, and robot-assisted laparoscopic aortic surgery for occlusive and aneurysmal disease.

  8. I(CES)-cubes: a modular self-reconfigurable bipartite robotic system

    NASA Astrophysics Data System (ADS)

    Unsal, Cem; Kiliccote, Han; Khosla, Pradeep K.

    1999-08-01

    In this manuscript, we introduce I(CES)-Cubes, a class of 3D modular robotic system that is capable of reconfiguring itself in order to adapt to its environment. This is a bipartite system, i.e. a collection of (i) active elements capable of actuation, and (ii) passive elements acting as connectors between actuated elements. Active elements, called links, are 3-DOF manipulators that are capable of attaching/detaching themselves to/from the passive elements. The cubes can then be positioned and oriented using links, which are independent mechatronic elements. Self- reconfiguration property enables the system to performed locomotion tasks over difficult terrain. For example, the system would be capable of moving over obstacles and climbing stairs. These task are performed by positing and orienting cubes and links to form a 3D network with required shape and position. This paper describes the design of the passive and active elements, the attachment mechanics, and several reconfiguration scenarios. Specifics of the hardware implementation and result of experiments with current prototypes are also given.

  9. Mapping planetary caves with an autonomous, heterogeneous robot team

    NASA Astrophysics Data System (ADS)

    Husain, Ammar; Jones, Heather; Kannan, Balajee; Wong, Uland; Pimentel, Tiago; Tang, Sarah; Daftry, Shreyansh; Huber, Steven; Whittaker, William L.

    Caves on other planetary bodies offer sheltered habitat for future human explorers and numerous clues to a planet's past for scientists. While recent orbital imagery provides exciting new details about cave entrances on the Moon and Mars, the interiors of these caves are still unknown and not observable from orbit. Multi-robot teams offer unique solutions for exploration and modeling subsurface voids during precursor missions. Robot teams that are diverse in terms of size, mobility, sensing, and capability can provide great advantages, but this diversity, coupled with inherently distinct low-level behavior architectures, makes coordination a challenge. This paper presents a framework that consists of an autonomous frontier and capability-based task generator, a distributed market-based strategy for coordinating and allocating tasks to the different team members, and a communication paradigm for seamless interaction between the different robots in the system. Robots have different sensors, (in the representative robot team used for testing: 2D mapping sensors, 3D modeling sensors, or no exteroceptive sensors), and varying levels of mobility. Tasks are generated to explore, model, and take science samples. Based on an individual robot's capability and associated cost for executing a generated task, a robot is autonomously selected for task execution. The robots create coarse online maps and store collected data for high resolution offline modeling. The coordination approach has been field tested at a mock cave site with highly-unstructured natural terrain, as well as an outdoor patio area. Initial results are promising for applicability of the proposed multi-robot framework to exploration and modeling of planetary caves.

  10. Vision technology/algorithms for space robotics applications

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar; Defigueiredo, Rui J. P.

    1987-01-01

    The thrust of automation and robotics for space applications has been proposed for increased productivity, improved reliability, increased flexibility, higher safety, and for the performance of automating time-consuming tasks, increasing productivity/performance of crew-accomplished tasks, and performing tasks beyond the capability of the crew. This paper provides a review of efforts currently in progress in the area of robotic vision. Both systems and algorithms are discussed. The evolution of future vision/sensing is projected to include the fusion of multisensors ranging from microwave to optical with multimode capability to include position, attitude, recognition, and motion parameters. The key feature of the overall system design will be small size and weight, fast signal processing, robust algorithms, and accurate parameter determination. These aspects of vision/sensing are also discussed.

  11. Behavior coordination of mobile robotics using supervisory control of fuzzy discrete event systems.

    PubMed

    Jayasiri, Awantha; Mann, George K I; Gosine, Raymond G

    2011-10-01

    In order to incorporate the uncertainty and impreciseness present in real-world event-driven asynchronous systems, fuzzy discrete event systems (DESs) (FDESs) have been proposed as an extension to crisp DESs. In this paper, first, we propose an extension to the supervisory control theory of FDES by redefining fuzzy controllable and uncontrollable events. The proposed supervisor is capable of enabling feasible uncontrollable and controllable events with different possibilities. Then, the extended supervisory control framework of FDES is employed to model and control several navigational tasks of a mobile robot using the behavior-based approach. The robot has limited sensory capabilities, and the navigations have been performed in several unmodeled environments. The reactive and deliberative behaviors of the mobile robotic system are weighted through fuzzy uncontrollable and controllable events, respectively. By employing the proposed supervisory controller, a command-fusion-type behavior coordination is achieved. The observability of fuzzy events is incorporated to represent the sensory imprecision. As a systematic analysis of the system, a fuzzy-state-based controllability measure is introduced. The approach is implemented in both simulation and real time. A performance evaluation is performed to quantitatively estimate the validity of the proposed approach over its counterparts.

  12. Automated Kinematics Equations Generation and Constrained Motion Planning Resolution for Modular and Reconfigurable Robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pin, Francois G.; Love, Lonnie L.; Jung, David L.

    2004-03-29

    Contrary to the repetitive tasks performed by industrial robots, the tasks in most DOE missions such as environmental restoration or Decontamination and Decommissioning (D&D) can be characterized as ''batches-of-one'', in which robots must be capable of adapting to changes in constraints, tools, environment, criteria and configuration. No commercially available robot control code is suitable for use with such widely varying conditions. In this talk we present our development of a ''generic code'' to allow real time (at loop rate) robot behavior adaptation to changes in task objectives, tools, number and type of constraints, modes of controls or kinematics configuration. Wemore » present the analytical framework underlying our approach and detail the design of its two major modules for the automatic generation of the kinematics equations when the robot configuration or tools change and for the motion planning under time-varying constraints. Sample problems illustrating the capabilities of the developed system are presented.« less

  13. Robotic Precursor Missions for Mars Habitats

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry; Pirjanian, Paolo; Schenker, Paul S.; Trebi-Ollennu, Ashitey; Das, Hari; Joshi, Sajay

    2000-01-01

    Infrastructure support for robotic colonies, manned Mars habitat, and/or robotic exploration of planetary surfaces will need to rely on the field deployment of multiple robust robots. This support includes such tasks as the deployment and servicing of power systems and ISRU generators, construction of beaconed roadways, and the site preparation and deployment of manned habitat modules. The current level of autonomy of planetary rovers such as Sojourner will need to be greatly enhanced for these types of operations. In addition, single robotic platforms will not be capable of complicated construction scenarios. Precursor robotic missions to Mars that involve teams of multiple cooperating robots to accomplish some of these tasks is a cost effective solution to the possible long timeline necessary for the deployment of a manned habitat. Ongoing work at JPL under the Mars Outpost Program in the area of robot colonies is investigating many of the technology developments necessary for such an ambitious undertaking. Some of the issues that are being addressed include behavior-based control systems for multiple cooperating robots (CAMPOUT), development of autonomous robotic systems for the rescue/repair of trapped or disabled robots, and the design and development of robotic platforms for construction tasks such as material transport and surface clearing.

  14. Sprint: The first flight demonstration of the external work system robots

    NASA Technical Reports Server (NTRS)

    Price, Charles R.; Grimm, Keith

    1995-01-01

    The External Works Systems (EWS) 'X Program' is a new NASA initiative that will, in the next ten years, develop a new generation of space robots for active and participative support of zero g external operations. The robotic development will center on three areas: the assistant robot, the associate robot, and the surrogate robot that will support external vehicular activities (EVA) prior to and after, during, and instead of space-suited human external activities respectively. The EWS robotics program will be a combination of technology developments and flight demonstrations for operational proof of concept. The first EWS flight will be a flying camera called 'Sprint' that will seek to demonstrate operationally flexible, remote viewing capability for EVA operations, inspections, and contingencies for the space shuttle and space station. This paper describes the need for Sprint and its characteristics.

  15. Performance standards for urban search and rescue robots

    NASA Astrophysics Data System (ADS)

    Messina, Elena; Jacoff, Adam

    2006-05-01

    In this paper, we describe work in performance standards for urban search and rescue (USAR) robots begun in 2004 by the Department of Homeland Security. This program is being coordinated by the National Institute of Standards and Technology and will result in consensus standards developed through ASTM International, under the Operational Equipment Subcommittee of their Homeland Security Committee. The first phase of the program involved definition of requirements by subject matter experts. Responders participated in a series of workshops to identify deployment categories for robots, performance categories, and ranges of acceptable or target performance in the various categories. Over one hundred individual requirements were identified, within main categories such as Human-System Interaction, Logistics, Operating Environment, and System (which includes Chassis, Communications, Mobility, Payload, Power, and Sensing). To ensure that the robot developers and eventual end users work closely together, "responders meet robots" events at situationally relevant sites are being held to refine and extend the performance requirements and develop standard test methods. The results of these standard performance tests will be captured in a compendium of existing and developmental robots with classifications and descriptors to differentiate particular robotic capabilities. This, along with ongoing efforts to categorize situational USAR constraints such as building collapse types or the presence of hazardous materials, will help responders match particular robotic capabilities to response needs. In general, these efforts will enable responders to effectively use robotic tools to enhance their effectiveness while reducing risk to personnel during disasters.

  16. Crewbot Suspension Design

    NASA Technical Reports Server (NTRS)

    Wood, Nathan A.

    2005-01-01

    Planetary Surface Robot Work Crews (RWC) represent a new class of construction robots for future deployment in planetary exploration. Rovers currently being used for the RWC platform lack the load carrying capabilities required in regular work. Two new rovers, dubbed CrewBots, being designed in JPL's Planetary Robotics Lab specifically for RWC applications greatly increase the load carrying capabilities of the platform. A major component of the rover design was the design of the rocker type suspension, which increases rover mobility. The design of the suspension for the Crewbots departed from the design of recent rovers. While many previous rovers have used internal bevel gear differentials, the increased load requirements of the Crewbots calls for a more robust system. The solution presented is the use of an external modified three-bar, slider-linkage, rocker-style suspension that increases the moment arm of the differential. The final product is a suspension system capable of supporting the extreme loading cases the RWC platform presents, without consuming a large portion of the Crewbots' internal space.

  17. A bio-inspired electrocommunication system for small underwater robots.

    PubMed

    Wang, Wei; Liu, Jindong; Xie, Guangming; Wen, Li; Zhang, Jianwei

    2017-03-29

    Weakly electric fishes (Gymnotid and Mormyrid) use an electric field to communicate efficiently (termed electrocommunication) in the turbid waters of confined spaces where other communication modalities fail. Inspired by this biological phenomenon, we design an artificial electrocommunication system for small underwater robots and explore the capabilities of such an underwater robotic communication system. An analytical model for electrocommunication is derived to predict the effect of the key parameters such as electrode distance and emitter current of the system on the communication performance. According to this model, a low-dissipation, and small-sized electrocommunication system is proposed and integrated into a small robotic fish. We characterize the communication performance of the robot in still water, flowing water, water with obstacles and natural water conditions. The results show that underwater robots are able to communicate electrically at a speed of around 1 k baud within about 3 m with a low power consumption (less than 1 W). In addition, we demonstrate that two leader-follower robots successfully achieve motion synchronization through electrocommunication in the three-dimensional underwater space, indicating that this bio-inspired electrocommunication system is a promising setup for the interaction of small underwater robots.

  18. Exploration of Planetary Terrains with a Legged Robot as a Scout Adjunct to a Rover

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano; Kirchner, Frank; Spenneberg, Dirk; Hanratty, James

    2004-01-01

    The Scorpion robot is an innovative, biologically inspired 8-legged walking robot. It currently runs a novel approach to control which utilizes a central pattern generator (CPG) and local reflex action for each leg. From this starting point we are proposing to both extend the system's individual capabilities and its capacity to function as a "scout", cooperating with a larger wheeled rover. For this purpose we propose to develop a distributed system architecture that extends the system's capabilities both in the direction of high level planning and execution in collaboration with a rover, and in the direction of force-feedback based low level behaviors that will greatly enhance its ability to walk and climb in rough varied terrains. The final test of this improved ability will be a rappelling experiment where the Scorpion explores a steep cliff side in cooperation with a rover that serves as both anchor and planner/executive.

  19. Enhancing functional electrical stimulation for emerging rehabilitation robotics in the framework of HYPER project.

    PubMed

    Brunetti, F; Garay, Á; Moreno, J C; Pons, J L

    2011-01-01

    This paper presents the development of a novel functional electrical stimulation (FES) system. New approaches in emerging rehabilitation robotics propose the use of residual muscular activity or limbs movements during the rehabilitation process of neuromotor. More ambitious projects propose the use of FES systems to restore or compensate motor capabilities by controlling existing muscles or subject limbs. These emerging approaches require more sophisticated FES devices in terms of channels, signals controls and portability. In the framework of HYPER project, such devices are being developed to support the main objective of the project: the development of neurorobots and neuroprosthetics to restore functional motor capabilities in patients who suffered cerebrovascular accidents or spinal cord injury. The presented portable FES system includes novel elec-trostimulator circuits and improved channel switching capacities to enable emerging approaches in rehabilitation robotics. © 2011 IEEE

  20. Man-Robot Symbiosis: A Framework For Cooperative Intelligence And Control

    NASA Astrophysics Data System (ADS)

    Parker, Lynne E.; Pin, Francois G.

    1988-10-01

    The man-robot symbiosis concept has the fundamental objective of bridging the gap between fully human-controlled and fully autonomous systems to achieve true man-robot cooperative control and intelligence. Such a system would allow improved speed, accuracy, and efficiency of task execution, while retaining the man in the loop for innovative reasoning and decision-making. The symbiont would have capabilities for supervised and unsupervised learning, allowing an increase of expertise in a wide task domain. This paper describes a robotic system architecture facilitating the symbiotic integration of teleoperative and automated modes of task execution. The architecture reflects a unique blend of many disciplines of artificial intelligence into a working system, including job or mission planning, dynamic task allocation, man-robot communication, automated monitoring, and machine learning. These disciplines are embodied in five major components of the symbiotic framework: the Job Planner, the Dynamic Task Allocator, the Presenter/Interpreter, the Automated Monitor, and the Learning System.

  1. A color-coded vision scheme for robotics

    NASA Technical Reports Server (NTRS)

    Johnson, Kelley Tina

    1991-01-01

    Most vision systems for robotic applications rely entirely on the extraction of information from gray-level images. Humans, however, regularly depend on color to discriminate between objects. Therefore, the inclusion of color in a robot vision system seems a natural extension of the existing gray-level capabilities. A method for robot object recognition using a color-coding classification scheme is discussed. The scheme is based on an algebraic system in which a two-dimensional color image is represented as a polynomial of two variables. The system is then used to find the color contour of objects. In a controlled environment, such as that of the in-orbit space station, a particular class of objects can thus be quickly recognized by its color.

  2. Demonstrations of Deployable Systems for Robotic Precursor Missions

    NASA Technical Reports Server (NTRS)

    Dervan, J.; Johnson, L.; Lockett, T.; Carr, J.; Boyd, D.

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that serve as enabling technologies for exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, deployment systems, and miniaturized electronics, new mission-level capabilities will be demonstrated aboard small spacecraft enabling a new generation of frequent, inexpensive, and highly capable robotic precursor missions with goals extensible to future human exploration. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication as demonstrated by recent advances on the Near Earth Asteroid (NEA) Scout and Lightweight Integrated Solar Array and anTenna (LISA-T) projects.

  3. Grounding language in action and perception: from cognitive agents to humanoid robots.

    PubMed

    Cangelosi, Angelo

    2010-06-01

    In this review we concentrate on a grounded approach to the modeling of cognition through the methodologies of cognitive agents and developmental robotics. This work will focus on the modeling of the evolutionary and developmental acquisition of linguistic capabilities based on the principles of symbol grounding. We review cognitive agent and developmental robotics models of the grounding of language to demonstrate their consistency with the empirical and theoretical evidence on language grounding and embodiment, and to reveal the benefits of such an approach in the design of linguistic capabilities in cognitive robotic agents. In particular, three different models will be discussed, where the complexity of the agent's sensorimotor and cognitive system gradually increases: from a multi-agent simulation of language evolution, to a simulated robotic agent model for symbol grounding transfer, to a model of language comprehension in the humanoid robot iCub. The review also discusses the benefits of the use of humanoid robotic platform, and specifically of the open source iCub platform, for the study of embodied cognition. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Teleoperated Modular Robots for Lunar Operations

    NASA Technical Reports Server (NTRS)

    Globus, Al; Hornby, Greg; Larchev, Greg; Hancher, Matt; Cannon, Howard; Lohn, Jason

    2004-01-01

    Solar system exploration is currently carried out by special purpose robots exquisitely designed for the anticipated tasks. However, all contingencies for in situ resource utilization (ISRU), human habitat preparation, and exploration will be difficult to anticipate. Furthermore, developing the necessary special purpose mechanisms for deployment and other capabilities is difficult and error prone. For example, the Galileo high gain antenna never opened, severely restricting the quantity of data returned by the spacecraft. Also, deployment hardware is used only once. To address these problems, we are developing teleoperated modular robots for lunar missions, including operations in transit from Earth. Teleoperation of lunar systems from Earth involves a three second speed-of-light delay, but experiment suggests that interactive operations are feasible.' Modular robots typically consist of many identical modules that pass power and data between them and can be reconfigured for different tasks providing great flexibility, inherent redundancy and graceful degradation as modules fail. Our design features a number of different hub, link, and joint modules to simplify the individual modules, lower structure cost, and provide specialized capabilities. Modular robots are well suited for space applications because of their extreme flexibility, inherent redundancy, high-density packing, and opportunities for mass production. Simple structural modules can be manufactured from lunar regolith in situ using molds or directed solar sintering. Software to direct and control modular robots is difficult to develop. We have used genetic algorithms to evolve both the morphology and control system for walking modular robots3 We are currently using evolvable system technology to evolve controllers for modular robots in the ISS glove box. Development of lunar modular robots will require software and physical simulators, including regolith simulation, to enable design and test of robot software and hardware, particularly automation software. Ready access to these simulators could provide opportunities for contest-driven development ala RoboCup (http://www.robocup.org/). Licensing of module designs could provide opportunities in the toy market and for spin-off applications.

  5. An advanced rehabilitation robotic system for augmenting healthcare.

    PubMed

    Hu, John; Lim, Yi-Je; Ding, Ye; Paluska, Daniel; Solochek, Aaron; Laffery, David; Bonato, Paolo; Marchessault, Ronald

    2011-01-01

    Emerging technologies such as rehabilitation robots (RehaBot) for retraining upper and lower limb functions have shown to carry tremendous potential to improve rehabilitation outcomes. Hstar Technologies is developing a revolutionary rehabilitation robot system enhancing healthcare quality for patients with neurological and muscular injuries or functional impairments. The design of RehaBot is a safe and robust system that can be run at a rehabilitation hospital under the direct monitoring and interactive supervision control and at a remote site via telepresence operation control. RehaBot has a wearable robotic structure design like exoskeleton, which employs a unique robotic actuation--Series Elastic Actuator. These electric actuators provide robotic structural compliance, safety, flexibility, and required strength for upper extremity dexterous manipulation rehabilitation training. RehaBot also features a novel non-treadmill paddle platform capable of haptics feedback locomotion rehabilitation training. In this paper, we concern mainly about the motor incomplete patient and rehabilitation applications.

  6. New Trends in Robotics for Agriculture: Integration and Assessment of a Real Fleet of Robots

    PubMed Central

    Gonzalez-de-Soto, Mariano; Pajares, Gonzalo

    2014-01-01

    Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis. PMID:25143976

  7. New trends in robotics for agriculture: integration and assessment of a real fleet of robots.

    PubMed

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-01-01

    Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis.

  8. Key technology issues for space robotic systems

    NASA Technical Reports Server (NTRS)

    Schappell, Roger T.

    1987-01-01

    Robotics has become a key technology consideration for the Space Station project to enable enhanced crew productivity and to maximize safety. There are many robotic functions currently being studied, including Space Station assembly, repair, and maintenance as well as satellite refurbishment, repair, and retrieval. Another area of concern is that of providing ground based experimenters with a natural interface that they might directly interact with their hardware onboard the Space Station or ancillary spacecraft. The state of the technology is such that the above functions are feasible; however, considerable development work is required for operation in this gravity-free vacuum environment. Furthermore, a program plan is evolving within NASA that will capitalize on recent government, university, and industrial robotics research and development (R and D) accomplishments. A brief summary is presented of the primary technology issues and physical examples are provided of the state of the technology for the initial operational capability (IOC) system as well as for the eventual final operational capability (FOC) Space Station.

  9. Identification of two-phase flow regime based on electrical capacitance tomography and soft-sensing technique

    NASA Astrophysics Data System (ADS)

    Zhao, Ming-fu; Hu, Xin-Yu; Shao, Yun; Luo, Bin-bin; Wang, Xin

    2008-10-01

    This article analyses nowadays in common use of football robots in China, intended to improve the football robots' hardware platform system's capability, and designed a football robot which based on DSP core controller, and combined Fuzzy-PID control algorithm. The experiment showed, because of the advantages of DSP, such as quickly operation, various of interfaces, low power dissipation etc. It has great improvement on the football robot's performance of movement, controlling precision, real-time performance.

  10. Robotic acquisition programs: technical and performance challenges

    NASA Astrophysics Data System (ADS)

    Thibadoux, Steven A.

    2002-07-01

    The Unmanned Ground Vehicles/ Systems Joint Project Office (UGV/S JPO) is developing and fielding a variety of tactical robotic systems for the Army and Marine Corps. The Standardized Robotic System (SRS) provides a family of common components that can be installed in existing military vehicles, to allow unmanned operation of the vehicle and its payloads. The Robotic Combat Support System (RCSS) will be a medium sized unmanned system with interchangeable attachments, allowing a remote operator to perform a variety of engineering tasks. The Gladiator Program is a USMC initiative for a small to medium sized, highly mobile UGV to conduct scout/ surveillance missions and to carry various lethal and non-lethal payloads. Acquisition plans for these programs require preplanned evolutionary block upgrades to add operational capability, as new technology becomes available. This paper discusses technical and performance issues that must be resolved and the enabling technologies needed for near term block upgrades of these first generation robotic systems. Additionally, two Joint Robotics Program (JRP) initiatives, Robotic Acquisition through Virtual Environments and Networked Simulations (RAVENS) and Joint Architecture for Unmanned Ground Systems (JAUGS), will be discussed. RAVENS and JAUGS will be used to efficiently evaluate and integrate new technologies to be incorporated in system upgrades.

  11. Serendipitous Offline Learning in a Neuromorphic Robot.

    PubMed

    Stewart, Terrence C; Kleinhans, Ashley; Mundy, Andrew; Conradt, Jörg

    2016-01-01

    We demonstrate a hybrid neuromorphic learning paradigm that learns complex sensorimotor mappings based on a small set of hard-coded reflex behaviors. A mobile robot is first controlled by a basic set of reflexive hand-designed behaviors. All sensor data is provided via a spike-based silicon retina camera (eDVS), and all control is implemented via spiking neurons simulated on neuromorphic hardware (SpiNNaker). Given this control system, the robot is capable of simple obstacle avoidance and random exploration. To train the robot to perform more complex tasks, we observe the robot and find instances where the robot accidentally performs the desired action. Data recorded from the robot during these times is then used to update the neural control system, increasing the likelihood of the robot performing that task in the future, given a similar sensor state. As an example application of this general-purpose method of training, we demonstrate the robot learning to respond to novel sensory stimuli (a mirror) by turning right if it is present at an intersection, and otherwise turning left. In general, this system can learn arbitrary relations between sensory input and motor behavior.

  12. Experimental investigation of efficient locomotion of underwater snake robots for lateral undulation and eel-like motion patterns.

    PubMed

    Kelasidi, Eleni; Liljebäck, Pål; Pettersen, Kristin Y; Gravdahl, Jan T

    2015-01-01

    Underwater snake robots offer many interesting capabilities for underwater operations. The long and slender structure of such robots provide superior capabilities for access through narrow openings and within confined areas. This is interesting for inspection and monitoring operations, for instance within the subsea oil and gas industry and within marine archeology. In addition, underwater snake robots can provide both inspection and intervention capabilities and are thus interesting candidates for the next generation inspection and intervention AUVs. Furthermore, bioinspired locomotion through oscillatory gaits, like lateral undulation and eel-like motion, is interesting from an energy efficiency point of view. Increasing the motion efficiency in terms of the achieved forward speed by improving the method of propulsion is a key issue for underwater robots. Moreover, energy efficiency is one of the main challenges for long-term autonomy of these systems. In this study, we will consider both these two aspects of efficiency. This paper considers the energy efficiency of swimming snake robots by presenting and experimentally investigating fundamental properties of the velocity and the power consumption of an underwater snake robot for both lateral undulation and eel-like motion patterns. In particular, we investigate the relationship between the parameters of the gait patterns, the forward velocity and the energy consumption for different motion patterns. The simulation and experimental results are seen to support the theoretical findings.

  13. New technologies in robotic surgery: the Korean experience.

    PubMed

    Tuliao, Patrick H; Kim, Sang W; Rha, Koon H

    2014-01-01

    The development of the robotic systems has made surgery an increasingly technology-driven field. Since the introduction of the first robotic platform in 2005, surgical practice in South Korea has also been caught up in the global robotic revolution. Consequently, a market focused on improving the robotic systems was created and Korea has emerged as one of its frontrunners. This article reviews the Korean experience in developing various robotic technologies and then Korea's most recent contributions to the development of new technologies in robotic surgery. The goal of new technologies in the field of robotic surgery has been to improve on the current platforms by eliminating their disadvantages. The pressing goal is to develop a platform that is less bulky, more ergonomic, and capable of providing force feedback to the surgeon. In Korea, the Lapabot and two new robotic systems for single-port laparoscopic surgery are the most recent advances that have been reported. Robotic surgery is rapidly evolving and Korea has stayed in the forefront of its development. These new advancements in technology will eventually produce better robotic platforms that will greatly improve the manner in which surgical care is delivered.

  14. Microfluidic-Based Robotic Sampling System for Radioactive Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jack D. Law; Julia L. Tripp; Tara E. Smith

    A novel microfluidic based robotic sampling system has been developed for sampling and analysis of liquid solutions in nuclear processes. This system couples the use of a microfluidic sample chip with a robotic system designed to allow remote, automated sampling of process solutions in-cell and facilitates direct coupling of the microfluidic sample chip with analytical instrumentation. This system provides the capability for near real time analysis, reduces analytical waste, and minimizes the potential for personnel exposure associated with traditional sampling methods. A prototype sampling system was designed, built and tested. System testing demonstrated operability of the microfluidic based sample systemmore » and identified system modifications to optimize performance.« less

  15. FOCU:S--future operator control unit: soldier

    NASA Astrophysics Data System (ADS)

    O'Brien, Barry J.; Karan, Cem; Young, Stuart H.

    2009-05-01

    The U.S. Army Research Laboratory's (ARL) Computational and Information Sciences Directorate (CISD) has long been involved in autonomous asset control, specifically as it relates to small robots. Over the past year, CISD has been making strides in the implementation of three areas of small robot autonomy, namely platform autonomy, Soldier-robot interface, and tactical behaviors. It is CISD's belief that these three areas must be considered as a whole in order to provide Soldiers with useful capabilities. In addressing the Soldier-robot interface aspect, CISD has begun development on a unique dismounted controller called the Future Operator Control Unit: Soldier (FOCU:S) that is based on an Apple iPod Touch. The iPod Touch's small form factor, unique touch-screen input device, and the presence of general purpose computing applications such as a web browser combine to give this device the potential to be a disruptive technology. Setting CISD's implementation apart from other similar iPod or iPhone-based devices is the ARL software that allows multiple robotic platforms to be controlled from a single OCU. The FOCU:S uses the same Agile Computing Infrastructure (ACI) that all other assets in the ARL robotic control system use, enabling automated asset discovery on any type of network. Further, a custom ad hoc routing implementation allows the FOCU:S to communicate with the ARL ad hoc communications system and enables it to extend the range of the network. This paper will briefly describe the current robotic control architecture employed by ARL and provide short descriptions of existing capabilities. Further, the paper will discuss FOCU:S specific software developed for the iPod Touch, including unique capabilities enabled by the device's unique hardware.

  16. Anticipation as a Strategy: A Design Paradigm for Robotics

    NASA Astrophysics Data System (ADS)

    Williams, Mary-Anne; Gärdenfors, Peter; Johnston, Benjamin; Wightwick, Glenn

    Anticipation plays a crucial role during any action, particularly in agents operating in open, complex and dynamic environments. In this paper we consider the role of anticipation as a strategy from a design perspective. Anticipation is a crucial skill in sporting games like soccer, tennis and cricket. We explore the role of anticipation in robot soccer matches in the context of reaching the RoboCup vision to develop a robot soccer team capable of defeating the FIFA World Champions in 2050. Anticipation in soccer can be planned or emergent but whether planned or emergent, anticipation can be designed. Two key obstacles stand in the way of developing more anticipatory robot systems; an impoverished understanding of the "anticipation" process/capability and a lack of know-how in the design of anticipatory systems. Several teams at RoboCup have developed remarkable preemptive behaviors. The CMU Dive and UTS Dodge are two compelling examples. In this paper we take steps towards designing robots that can adopt anticipatory behaviors by proposing an innovative model of anticipation as a strategy that specifies the key characteristics of anticipation behaviors to be developed. The model can drive the design of autonomous systems by providing a means to explore and to represent anticipation requirements. Our approach is to analyze anticipation as a strategy and then to use the insights obtained to design a reference model that can be used to specify a set of anticipatory requirements for guiding an autonomous robot soccer system.

  17. Mobile Robot Designed with Autonomous Navigation System

    NASA Astrophysics Data System (ADS)

    An, Feng; Chen, Qiang; Zha, Yanfang; Tao, Wenyin

    2017-10-01

    With the rapid development of robot technology, robots appear more and more in all aspects of life and social production, people also ask more requirements for the robot, one is that robot capable of autonomous navigation, can recognize the road. Take the common household sweeping robot as an example, which could avoid obstacles, clean the ground and automatically find the charging place; Another example is AGV tracking car, which can following the route and reach the destination successfully. This paper introduces a new type of robot navigation scheme: SLAM, which can build the environment map in a totally strange environment, and at the same time, locate its own position, so as to achieve autonomous navigation function.

  18. Smart Fluid Systems: The Advent of Autonomous Liquid Robotics.

    PubMed

    Chiolerio, A; Quadrelli, Marco B

    2017-07-01

    Organic, inorganic or hybrid devices in the liquid state, kept in a fixed volume by surface tension or by a confining membrane that protects them from a harsh environment, could be used as biologically inspired autonomous robotic systems with unique capabilities. They could change shape according to a specific exogenous command or by means of a fully integrated adaptive system, and provide an innovative solution for many future applications, such as space exploration in extreme or otherwise challenging environments, post-disaster search and rescue in ground applications, compliant wearable devices, and even in the medical field for in vivo applications. This perspective provides an initial assessment of existing capabilities that could be leveraged to pursue the topic of "Smart Fluid Systems" or "Liquid Engineered Systems".

  19. Understanding of Android-Based Robotic and Game Structure

    NASA Astrophysics Data System (ADS)

    Phongtraychack, A.; Syryamkin, V.

    2018-05-01

    The development of an android with impressive lifelike appearance and behavior has been a long-standing goal in robotics and a new and exciting approach of smartphone-based robotics for research and education. Recent years have been progressive for many technologies, which allowed creating such androids. There are different examples including the autonomous Erica android system capable of conversational interaction and speech synthesis technologies. The behavior of Android-based robot could be running on the phone as the robot performed a task outdoors. In this paper, we present an overview and understanding of the platform of Android-based robotic and game structure for research and education.

  20. Task Analysis and Descriptions of Required Job Competencies for Robotics/Automated Systems Technicians. Final Report. Volume 2. Curriculum Planning Guide.

    ERIC Educational Resources Information Center

    Hull, Daniel M.; Lovett, James E.

    This volume of the final report for the Robotics/Automated Systems Technician (RAST) curriculum project is a curriculum planning guide intended for school administrators, faculty, and student counselors/advisors. It includes step-by-step procedures to help institutions evaluate their community's needs and their capabilities to meet these needs in…

  1. Rovers Pave the Way for Hospital Robots

    NASA Technical Reports Server (NTRS)

    2013-01-01

    The Jet Propulsion Laboratory provided funding for the Massachusetts Institute of Technology to develop capabilities for robotics like Rocky 7. After developing the operating system, Daniel Theobald started working at Cambridge, Massachusetts-based Vecna Technologies. Today, Vecna's QC Bot incorporates systems based on the NASA work and is being used to ease logistics at hospitals. The technology has contributed to 20 new jobs.

  2. The Robot in the Crib: A Developmental Analysis of Imitation Skills in Infants and Robots

    ERIC Educational Resources Information Center

    Demiris, Yiannis; Meltzoff, Andrew

    2008-01-01

    Interesting systems, whether biological or artificial, develop. Starting from some initial conditions, they respond to environmental changes, and continuously improve their capabilities. Developmental psychologists have dedicated significant effort to studying the developmental progression of infant imitation skills, because imitation underlies…

  3. Human-Vehicle Interface for Semi-Autonomous Operation of Uninhabited Aero Vehicles

    NASA Technical Reports Server (NTRS)

    Jones, Henry L.; Frew, Eric W.; Woodley, Bruce R.; Rock, Stephen M.

    2001-01-01

    The robustness of autonomous robotic systems to unanticipated circumstances is typically insufficient for use in the field. The many skills of human user often fill this gap in robotic capability. To incorporate the human into the system, a useful interaction between man and machine must exist. This interaction should enable useful communication to be exchanged in a natural way between human and robot on a variety of levels. This report describes the current human-robot interaction for the Stanford HUMMINGBIRD autonomous helicopter. In particular, the report discusses the elements of the system that enable multiple levels of communication. An intelligent system agent manages the different inputs given to the helicopter. An advanced user interface gives the user and helicopter a method for exchanging useful information. Using this human-robot interaction, the HUMMINGBIRD has carried out various autonomous search, tracking, and retrieval missions.

  4. Trauma Pod: a semi-automated telerobotic surgical system.

    PubMed

    Garcia, Pablo; Rosen, Jacob; Kapoor, Chetan; Noakes, Mark; Elbert, Greg; Treat, Michael; Ganous, Tim; Hanson, Matt; Manak, Joe; Hasser, Chris; Rohler, David; Satava, Richard

    2009-06-01

    The Trauma Pod (TP) vision is to develop a rapidly deployable robotic system to perform critical acute stabilization and/or surgical procedures, autonomously or in a teleoperative mode, on wounded soldiers in the battlefield who might otherwise die before treatment in a combat hospital could be provided. In the first phase of a project pursuing this vision, a robotic TP system was developed and its capability demonstrated by performing selected surgical procedures on a patient phantom. The system demonstrates the feasibility of performing acute stabilization procedures with the patient being the only human in the surgical cell. The teleoperated surgical robot is supported by autonomous robotic arms and subsystems that carry out scrub-nurse and circulating-nurse functions. Tool change and supply delivery are performed automatically and at least as fast as performed manually by nurses. Tracking and counting of the supplies is performed automatically. The TP system also includes a tomographic X-ray facility for patient diagnosis and two-dimensional (2D) fluoroscopic data to support interventions. The vast amount of clinical protocols generated in the TP system are recorded automatically. Automation and teleoperation capabilities form the basis for a more comprehensive acute diagnostic and management platform that will provide life-saving care in environments where surgical personnel are not present.

  5. A telepresence robot system realized by embedded object concept

    NASA Astrophysics Data System (ADS)

    Vallius, Tero; Röning, Juha

    2006-10-01

    This paper presents the Embedded Object Concept (EOC) and a telepresence robot system which is a test case for the EOC. The EOC utilizes common object-oriented methods used in software by applying them to combined Lego-like software-hardware entities. These entities represent objects in object-oriented design methods, and they are the building blocks of embedded systems. The goal of the EOC is to make the designing embedded systems faster and easier. This concept enables people without comprehensive knowledge in electronics design to create new embedded systems, and for experts it shortens the design time of new embedded systems. We present the current status of a telepresence robot created with second-generation Atomi-objects, which is the name for our implementation of the embedded objects. The telepresence robot is a relatively complex test case for the EOC. The robot has been constructed using incremental device development, which is made possible by the architecture of the EOC. The robot contains video and audio exchange capability and a controlling system for driving with two wheels. The robot is built in two versions, the first consisting of a PC device and Atomi-objects, and the second consisting of only Atomi-objects. The robot is currently incomplete, but most of it has been successfully tested.

  6. Soft Robotic Manipulator for Improving Dexterity in Minimally Invasive Surgery.

    PubMed

    Diodato, Alessandro; Brancadoro, Margherita; De Rossi, Giacomo; Abidi, Haider; Dall'Alba, Diego; Muradore, Riccardo; Ciuti, Gastone; Fiorini, Paolo; Menciassi, Arianna; Cianchetti, Matteo

    2018-02-01

    Combining the strengths of surgical robotics and minimally invasive surgery (MIS) holds the potential to revolutionize surgical interventions. The MIS advantages for the patients are obvious, but the use of instrumentation suitable for MIS often translates in limiting the surgeon capabilities (eg, reduction of dexterity and maneuverability and demanding navigation around organs). To overcome these shortcomings, the application of soft robotics technologies and approaches can be beneficial. The use of devices based on soft materials is already demonstrating several advantages in all the exploitation areas where dexterity and safe interaction are needed. In this article, the authors demonstrate that soft robotics can be synergistically used with traditional rigid tools to improve the robotic system capabilities and without affecting the usability of the robotic platform. A bioinspired soft manipulator equipped with a miniaturized camera has been integrated with the Endoscopic Camera Manipulator arm of the da Vinci Research Kit both from hardware and software viewpoints. Usability of the integrated system has been evaluated with nonexpert users through a standard protocol to highlight difficulties in controlling the soft manipulator. This is the first time that an endoscopic tool based on soft materials has been integrated into a surgical robot. The soft endoscopic camera can be easily operated through the da Vinci Research Kit master console, thus increasing the workspace and the dexterity, and without limiting intuitive and friendly use.

  7. 16th Annual Expeditionary Warfare Conference: Integrating Future and Present Capabilities

    DTIC Science & Technology

    2011-10-27

    practical, cost-effective robotic systems. ADTECH provides full life cycle submarine maintenance services to the U.S. Navy, space suit design and...Zena Le NSWC PCD CAPT Rand LeBouvier, USN (Ret) Bluefin Robotics Corporation Ms. Heidi Lecklinter-Halvorson NSWC PCD Mr. Roger Leete AUSGAR...America CAPT Terry Miller, USN (Ret) Liquid Robotics , Inc. Mr. Jonathan Millhollon NSWC PCD Col Duncan Milne, USMC (Ret) Pelican Products, Inc. Mr

  8. High-Efficiency Nested Hall Thrusters for Robotic Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.

    2013-01-01

    This work describes the scaling and design attributes of Nested Hall Thrusters (NHT) with extremely large operational envelopes, including a wide range of throttleability in power and specific impulse at high efficiency (>50%). NHTs have the potential to provide the game changing performance, powerprocessing capabilities, and cost effectiveness required to enable missions that cannot otherwise be accomplished. NHTs were first identified in the electric propulsion community as a path to 100- kW class thrusters for human missions. This study aimed to identify the performance capabilities NHTs can provide for NASA robotic and human missions, with an emphasis on 10-kW class thrusters well-suited for robotic exploration. A key outcome of this work has been the identification of NHTs as nearly constant-efficiency devices over large power throttling ratios, especially in direct-drive power systems. NHT systems sized for robotic solar system exploration are predicted to be capable of high-efficiency operation over nearly their entire power throttling range. A traditional Annular Hall Thruster (AHT) consists of a single annular discharge chamber where the propellant is ionized and accelerated. In an NHT, multiple annular channels are concentrically stacked. The channels can be operated in unison or individually depending on the available power or required performance. When throttling an AHT, performance must be sacrificed since a single channel cannot satisfy the diverse design attributes needed to maintain high thrust efficiency. NHTs can satisfy these requirements by varying which channels are operated and thereby offer significant benefits in terms of thruster performance, especially under deep power throttling conditions where the efficiency of an AHT suffers since a single channel can only operate efficiently (>50%) over a narrow power throttling ratio (3:1). Designs for 10-kW class NHTs were developed and compared with AHT systems. Power processing systems were considered using either traditional Power Processing Units (PPU) or Direct Drive Units (DDU). In a PPU-based system, power from the solar arrays is transformed from the low voltage of the arrays to the high voltage needed by the thruster. In a DDU-based system, power from the solar arrays is fed to the thruster without conversion. DDU-based systems are attractive for their simplicity since they eliminate the most complex and expensive part of the propulsion system. The results point to the strong potential of NHTs operating with either PPUs or DDUs to benefit robotic and human missions through their unprecedented power and specific impulse throttling capabilities. NHTs coupled to traditional PPUs are predicted to offer high-efficiency (>50%) power throttling ratios 320% greater than present capabilities, while NHTs with direct-drive power systems (DDU) could exceed existing capabilities by 340%. Because the NHT-DDU approach is implicitly low-cost, NHT-DDU technology has the potential to radically reduce the cost of SEP-enabled NASA missions while simultaneously enabling unprecedented performance capability.

  9. Combined virtual and real robotic test-bed for single operator control of multiple robots

    NASA Astrophysics Data System (ADS)

    Lee, Sam Y.-S.; Hunt, Shawn; Cao, Alex; Pandya, Abhilash

    2010-04-01

    Teams of heterogeneous robots with different dynamics or capabilities could perform a variety of tasks such as multipoint surveillance, cooperative transport and explorations in hazardous environments. In this study, we work with heterogeneous robots of semi-autonomous ground and aerial robots for contaminant localization. We developed a human interface system which linked every real robot to its virtual counterpart. A novel virtual interface has been integrated with Augmented Reality that can monitor the position and sensory information from video feed of ground and aerial robots in the 3D virtual environment, and improve user situational awareness. An operator can efficiently control the real multi-robots using the Drag-to-Move method on the virtual multi-robots. This enables an operator to control groups of heterogeneous robots in a collaborative way for allowing more contaminant sources to be pursued simultaneously. The advanced feature of the virtual interface system is guarded teleoperation. This can be used to prevent operators from accidently driving multiple robots into walls and other objects. Moreover, the feature of the image guidance and tracking is able to reduce operator workload.

  10. From decimeter- to centimeter-sized mobile microrobots: the development of the MINIMAN system

    NASA Astrophysics Data System (ADS)

    Woern, Heinz; Schmoeckel, Ferdinand; Buerkle, Axel; Samitier, Josep; Puig-Vidal, Manel; Johansson, Stefan A. I.; Simu, Urban; Meyer, Joerg-Uwe; Biehl, Margit

    2001-10-01

    Based on small mobile robots the presented MINIMAN system provides a platform for micro-manipulation tasks in very different kinds of applications. Three exemplary applications demonstrate the capabilities of the system. Both the high precision assembly of an optical system consisting of three millimeter-sized parts and the positioning of single 20-μm-cells under the light microscope as well as the handling of tiny samples inside the scanning electron microscope are done by the same kind of robot. For the different tasks, the robot is equipped with appropriate tools such as micro-pipettes or grippers with force and tactile sensors. For the extension to a multi-robot system, it is necessary to further reduce the size of robots. For the above mentioned robot prototypes a slip-stick driving principle is employed. While this design proves to work very well for the described decimeter-sized robots, it is not suitable for further miniaturized robots because of their reduced inertia. Therefore, the developed centimeter-sized robot is driven by multilayered piezoactuators performing defined steps without a slipping phase. To reduce the number of connecting wires the microrobot has integrated circuits on board. They include high voltage drivers and a serial communication interface for a minimized number of wires.

  11. [Objective surgery -- advanced robotic devices and simulators used for surgical skill assessment].

    PubMed

    Suhánszki, Norbert; Haidegger, Tamás

    2014-12-01

    Robotic assistance became a leading trend in minimally invasive surgery, which is based on the global success of laparoscopic surgery. Manual laparoscopy requires advanced skills and capabilities, which is acquired through tedious learning procedure, while da Vinci type surgical systems offer intuitive control and advanced ergonomics. Nevertheless, in either case, the key issue is to be able to assess objectively the surgeons' skills and capabilities. Robotic devices offer radically new way to collect data during surgical procedures, opening the space for new ways of skill parameterization. This may be revolutionary in MIS training, given the new and objective surgical curriculum and examination methods. The article reviews currently developed skill assessment techniques for robotic surgery and simulators, thoroughly inspecting their validation procedure and utility. In the coming years, these methods will become the mainstream of Western surgical education.

  12. Insect-controlled Robot: A Mobile Robot Platform to Evaluate the Odor-tracking Capability of an Insect.

    PubMed

    Ando, Noriyasu; Emoto, Shuhei; Kanzaki, Ryohei

    2016-12-19

    Robotic odor source localization has been a challenging area and one to which biological knowledge has been expected to contribute, as finding odor sources is an essential task for organism survival. Insects are well-studied organisms with regard to odor tracking, and their behavioral strategies have been applied to mobile robots for evaluation. This "bottom-up" approach is a fundamental way to develop biomimetic robots; however, the biological analyses and the modeling of behavioral mechanisms are still ongoing. Therefore, it is still unknown how such a biological system actually works as the controller of a robotic platform. To answer this question, we have developed an insect-controlled robot in which a male adult silkmoth (Bombyx mori) drives a robot car in response to odor stimuli; this can be regarded as a prototype of a future insect-mimetic robot. In the cockpit of the robot, a tethered silkmoth walked on an air-supported ball and an optical sensor measured the ball rotations. These rotations were translated into the movement of the two-wheeled robot. The advantage of this "hybrid" approach is that experimenters can manipulate any parameter of the robot, which enables the evaluation of the odor-tracking capability of insects and provides useful suggestions for robotic odor-tracking. Furthermore, these manipulations are non-invasive ways to alter the sensory-motor relationship of a pilot insect and will be a useful technique for understanding adaptive behaviors.

  13. MicROS-drt: supporting real-time and scalable data distribution in distributed robotic systems.

    PubMed

    Ding, Bo; Wang, Huaimin; Fan, Zedong; Zhang, Pengfei; Liu, Hui

    A primary requirement in distributed robotic software systems is the dissemination of data to all interested collaborative entities in a timely and scalable manner. However, providing such a service in a highly dynamic and resource-limited robotic environment is a challenging task, and existing robot software infrastructure has limitations in this aspect. This paper presents a novel robot software infrastructure, micROS-drt, which supports real-time and scalable data distribution. The solution is based on a loosely coupled data publish-subscribe model with the ability to support various time-related constraints. And to realize this model, a mature data distribution standard, the data distribution service for real-time systems (DDS), is adopted as the foundation of the transport layer of this software infrastructure. By elaborately adapting and encapsulating the capability of the underlying DDS middleware, micROS-drt can meet the requirement of real-time and scalable data distribution in distributed robotic systems. Evaluation results in terms of scalability, latency jitter and transport priority as well as the experiment on real robots validate the effectiveness of this work.

  14. Knowledge based systems for intelligent robotics

    NASA Technical Reports Server (NTRS)

    Rajaram, N. S.

    1982-01-01

    It is pointed out that the construction of large space platforms, such as space stations, has to be carried out in the outer space environment. As it is extremely expensive to support human workers in space for large periods, the only feasible solution appears to be related to the development and deployment of highly capable robots for most of the tasks. Robots for space applications will have to possess characteristics which are very different from those needed by robots in industry. The present investigation is concerned with the needs of space robotics and the technologies which can be of assistance to meet these needs, giving particular attention to knowledge bases. 'Intelligent' robots are required for the solution of arising problems. The collection of facts and rules needed for accomplishing such solutions form the 'knowledge base' of the system.

  15. Generic, scalable and decentralized fault detection for robot swarms.

    PubMed

    Tarapore, Danesh; Christensen, Anders Lyhne; Timmis, Jon

    2017-01-01

    Robot swarms are large-scale multirobot systems with decentralized control which means that each robot acts based only on local perception and on local coordination with neighboring robots. The decentralized approach to control confers number of potential benefits. In particular, inherent scalability and robustness are often highlighted as key distinguishing features of robot swarms compared with systems that rely on traditional approaches to multirobot coordination. It has, however, been shown that swarm robotics systems are not always fault tolerant. To realize the robustness potential of robot swarms, it is thus essential to give systems the capacity to actively detect and accommodate faults. In this paper, we present a generic fault-detection system for robot swarms. We show how robots with limited and imperfect sensing capabilities are able to observe and classify the behavior of one another. In order to achieve this, the underlying classifier is an immune system-inspired algorithm that learns to distinguish between normal behavior and abnormal behavior online. Through a series of experiments, we systematically assess the performance of our approach in a detailed simulation environment. In particular, we analyze our system's capacity to correctly detect robots with faults, false positive rates, performance in a foraging task in which each robot exhibits a composite behavior, and performance under perturbations of the task environment. Results show that our generic fault-detection system is robust, that it is able to detect faults in a timely manner, and that it achieves a low false positive rate. The developed fault-detection system has the potential to enable long-term autonomy for robust multirobot systems, thus increasing the usefulness of robots for a diverse repertoire of upcoming applications in the area of distributed intelligent automation.

  16. Adaptive servo control for umbilical mating

    NASA Technical Reports Server (NTRS)

    Zia, Omar

    1988-01-01

    Robotic applications at Kennedy Space Center are unique and in many cases require the fime positioning of heavy loads in dynamic environments. Performing such operations is beyond the capabilities of an off-the-shelf industrial robot. Therefore Robotics Applications Development Laboratory at Kennedy Space Center has put together an integrated system that coordinates state of the art robotic system providing an excellent easy to use testbed for NASA sensor integration experiments. This paper reviews the ways of improving the dynamic response of the robot operating under force feedback with varying dynamic internal perturbations in order to provide continuous stable operations under variable load conditions. The goal is to improve the stability of the system with force feedback using the adaptive control feature of existing system over a wide range of random motions. The effect of load variations on the dynamics and the transfer function (order or values of the parameters) of the system has been investigated, more accurate models of the system have been determined and analyzed.

  17. Control of free-flying space robot manipulator systems

    NASA Technical Reports Server (NTRS)

    Cannon, Robert H., Jr.

    1990-01-01

    New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail.

  18. Evolution of robotic arms.

    PubMed

    Moran, Michael E

    2007-01-01

    The foundation of surgical robotics is in the development of the robotic arm. This is a thorough review of the literature on the nature and development of this device with emphasis on surgical applications. We have reviewed the published literature and classified robotic arms by their application: show, industrial application, medical application, etc. There is a definite trend in the manufacture of robotic arms toward more dextrous devices, more degrees-of-freedom, and capabilities beyond the human arm. da Vinci designed the first sophisticated robotic arm in 1495 with four degrees-of-freedom and an analog on-board controller supplying power and programmability. von Kemplen's chess-playing automaton left arm was quite sophisticated. Unimate introduced the first industrial robotic arm in 1961, it has subsequently evolved into the PUMA arm. In 1963 the Rancho arm was designed; Minsky's Tentacle arm appeared in 1968, Scheinman's Stanford arm in 1969, and MIT's Silver arm in 1974. Aird became the first cyborg human with a robotic arm in 1993. In 2000 Miguel Nicolalis redefined possible man-machine capacity in his work on cerebral implantation in owl-monkeys directly interfacing with robotic arms both locally and at a distance. The robotic arm is the end-effector of robotic systems and currently is the hallmark feature of the da Vinci Surgical System making its entrance into surgical application. But, despite the potential advantages of this computer-controlled master-slave system, robotic arms have definite limitations. Ongoing work in robotics has many potential solutions to the drawbacks of current robotic surgical systems.

  19. Common world model for unmanned systems

    NASA Astrophysics Data System (ADS)

    Dean, Robert Michael S.

    2013-05-01

    The Robotic Collaborative Technology Alliance (RCTA) seeks to provide adaptive robot capabilities which move beyond traditional metric algorithms to include cognitive capabilities. Key to this effort is the Common World Model, which moves beyond the state-of-the-art by representing the world using metric, semantic, and symbolic information. It joins these layers of information to define objects in the world. These objects may be reasoned upon jointly using traditional geometric, symbolic cognitive algorithms and new computational nodes formed by the combination of these disciplines. The Common World Model must understand how these objects relate to each other. Our world model includes the concept of Self-Information about the robot. By encoding current capability, component status, task execution state, and histories we track information which enables the robot to reason and adapt its performance using Meta-Cognition and Machine Learning principles. The world model includes models of how aspects of the environment behave, which enable prediction of future world states. To manage complexity, we adopted a phased implementation approach to the world model. We discuss the design of "Phase 1" of this world model, and interfaces by tracing perception data through the system from the source to the meta-cognitive layers provided by ACT-R and SS-RICS. We close with lessons learned from implementation and how the design relates to Open Architecture.

  20. Tracking Control of Mobile Robots Localized via Chained Fusion of Discrete and Continuous Epipolar Geometry, IMU and Odometry.

    PubMed

    Tick, David; Satici, Aykut C; Shen, Jinglin; Gans, Nicholas

    2013-08-01

    This paper presents a novel navigation and control system for autonomous mobile robots that includes path planning, localization, and control. A unique vision-based pose and velocity estimation scheme utilizing both the continuous and discrete forms of the Euclidean homography matrix is fused with inertial and optical encoder measurements to estimate the pose, orientation, and velocity of the robot and ensure accurate localization and control signals. A depth estimation system is integrated in order to overcome the loss of scale inherent in vision-based estimation. A path following control system is introduced that is capable of guiding the robot along a designated curve. Stability analysis is provided for the control system and experimental results are presented that prove the combined localization and control system performs with high accuracy.

  1. Development and demonstration of autonomous behaviors for urban environment exploration

    NASA Astrophysics Data System (ADS)

    Ahuja, Gaurav; Fellars, Donald; Kogut, Gregory; Pacis Rius, Estrellina; Schoolov, Misha; Xydes, Alexander

    2012-06-01

    Under the Urban Environment Exploration project, the Space and Naval Warfare Systems Center Pacic (SSC- PAC) is maturing technologies and sensor payloads that enable man-portable robots to operate autonomously within the challenging conditions of urban environments. Previously, SSC-PAC has demonstrated robotic capabilities to navigate and localize without GPS and map the ground oors of various building sizes.1 SSC-PAC has since extended those capabilities to localize and map multiple multi-story buildings within a specied area. To facilitate these capabilities, SSC-PAC developed technologies that enable the robot to detect stairs/stairwells, maintain localization across multiple environments (e.g. in a 3D world, on stairs, with/without GPS), visualize data in 3D, plan paths between any two points within the specied area, and avoid 3D obstacles. These technologies have been developed as independent behaviors under the Autonomous Capabilities Suite, a behavior architecture, and demonstrated at a MOUT site at Camp Pendleton. This paper describes the perceptions and behaviors used to produce these capabilities, as well as an example demonstration scenario.

  2. Generic, scalable and decentralized fault detection for robot swarms

    PubMed Central

    Christensen, Anders Lyhne; Timmis, Jon

    2017-01-01

    Robot swarms are large-scale multirobot systems with decentralized control which means that each robot acts based only on local perception and on local coordination with neighboring robots. The decentralized approach to control confers number of potential benefits. In particular, inherent scalability and robustness are often highlighted as key distinguishing features of robot swarms compared with systems that rely on traditional approaches to multirobot coordination. It has, however, been shown that swarm robotics systems are not always fault tolerant. To realize the robustness potential of robot swarms, it is thus essential to give systems the capacity to actively detect and accommodate faults. In this paper, we present a generic fault-detection system for robot swarms. We show how robots with limited and imperfect sensing capabilities are able to observe and classify the behavior of one another. In order to achieve this, the underlying classifier is an immune system-inspired algorithm that learns to distinguish between normal behavior and abnormal behavior online. Through a series of experiments, we systematically assess the performance of our approach in a detailed simulation environment. In particular, we analyze our system’s capacity to correctly detect robots with faults, false positive rates, performance in a foraging task in which each robot exhibits a composite behavior, and performance under perturbations of the task environment. Results show that our generic fault-detection system is robust, that it is able to detect faults in a timely manner, and that it achieves a low false positive rate. The developed fault-detection system has the potential to enable long-term autonomy for robust multirobot systems, thus increasing the usefulness of robots for a diverse repertoire of upcoming applications in the area of distributed intelligent automation. PMID:28806756

  3. Telesurgery With Miniature Robots to Leverage Surgical Expertise in Distributed Expeditionary Environments.

    PubMed

    Reichenbach, Mark; Frederick, Tom; Cubrich, Lou; Bircher, Walter; Bills, Nathan; Morien, Marsha; Farritor, Shane; Oleynikov, Dmitry

    2017-03-01

    This study aimed to evaluate the capability of performing telesurgery via radio transmission for military arenas where wired internet connections may not be practical. Most existing robotic surgery systems are too large to effectively deploy with first responders. The miniature surgical platform in this study consists of a multifunctional robot suite that can fit easily into a briefcase. The focus of this study is to explore the implications of radio control of the robot. The hypothesis is that an in vivo robot and its control boards can be controlled using off-the-shelf wireless components. An experiment was designed with off-the-shelf wireless components to test the capability of our newest generation of miniature surgical robot to become battery-operated and wireless. Wireless transmission of control signals has provided proof of concept and has exposed areas of the software that can be built upon to improve responsiveness. Wireless transmission of the video feed can be adequately performed with basic off-the-shelf components. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  4. “Five on a dice” port placement for robot-assisted thoracoscopic right upper lobectomy using robotic stapler

    PubMed Central

    Chan, Edward Y.

    2017-01-01

    Early versions of the da Vinci robot system (S and Si) have been used to perform pulmonary lung resection with severe limitations. The lack of a vascular robot stapler required the presence of a trained bedside assistant whose role was to place, manipulate and fire the stapler around major vascular structures. Thus, the techniques developed for the Si robot required a skilled bedside assistant to perform stapling of the hilar structure and manipulation of the lung. With the advent of the da Vinci Xi system with a vascular robot stapler, we postulated that we could develop a new port placement and technique to provide total control for the surgeon during the pulmonary lung resection. We found that the “five on a dice” port placement and technique allows for minimal assistance during the lobectomy with full control by the surgeon. This technique uses the full capability of the Xi robot to make the robot-assisted lobectomy a safe and ergonomic operation. PMID:29312746

  5. "Five on a dice" port placement for robot-assisted thoracoscopic right upper lobectomy using robotic stapler.

    PubMed

    Kim, Min P; Chan, Edward Y

    2017-12-01

    Early versions of the da Vinci robot system (S and Si) have been used to perform pulmonary lung resection with severe limitations. The lack of a vascular robot stapler required the presence of a trained bedside assistant whose role was to place, manipulate and fire the stapler around major vascular structures. Thus, the techniques developed for the Si robot required a skilled bedside assistant to perform stapling of the hilar structure and manipulation of the lung. With the advent of the da Vinci Xi system with a vascular robot stapler, we postulated that we could develop a new port placement and technique to provide total control for the surgeon during the pulmonary lung resection. We found that the "five on a dice" port placement and technique allows for minimal assistance during the lobectomy with full control by the surgeon. This technique uses the full capability of the Xi robot to make the robot-assisted lobectomy a safe and ergonomic operation.

  6. The 3D laser radar vision processor system

    NASA Astrophysics Data System (ADS)

    Sebok, T. M.

    1990-10-01

    Loral Defense Systems (LDS) developed a 3D Laser Radar Vision Processor system capable of detecting, classifying, and identifying small mobile targets as well as larger fixed targets using three dimensional laser radar imagery for use with a robotic type system. This processor system is designed to interface with the NASA Johnson Space Center in-house Extra Vehicular Activity (EVA) Retriever robot program and provide to it needed information so it can fetch and grasp targets in a space-type scenario.

  7. The 3D laser radar vision processor system

    NASA Technical Reports Server (NTRS)

    Sebok, T. M.

    1990-01-01

    Loral Defense Systems (LDS) developed a 3D Laser Radar Vision Processor system capable of detecting, classifying, and identifying small mobile targets as well as larger fixed targets using three dimensional laser radar imagery for use with a robotic type system. This processor system is designed to interface with the NASA Johnson Space Center in-house Extra Vehicular Activity (EVA) Retriever robot program and provide to it needed information so it can fetch and grasp targets in a space-type scenario.

  8. Right-Arm Robotic-Aided-Therapy with the Light-Exoskeleton: A General Overview

    NASA Astrophysics Data System (ADS)

    Lugo-Villeda, Luis I.; Frisoli, Antonio; Sotgiu, Edoardo; Greco, Giovanni; Bergamasco, Massimo

    Rehabilitation robotics applications and their developments have been spreading out as consequences of the actual needs in the human activities of daily living (ADL). Exoskeletons for rehabilitation are one of them, whose intrinsic characteristics are quite useful for applications where repetitive, robustness and accurate performance are a must. As a part of robotic-mediated-rehabilitation programme into the worldwide, the exoskeletons are trying to improve the ADL of disable people through the fusion of several disciplines that lets to expand the capabilities of wearing a powered robotic exoskeletal device for rehabilitation tasks. This fact deserves to present this contribution from a general scope point of view, i.e., the technologies integration and its associated knowledge. So far, the Light-Exoskeleton which is intended for human arm rehabilitation in post-stroke patients is introduced. Preliminary experimental results as well as the involved stages about the system show the capabilities of using a robotic-constrained-rehabilitation for human arm.

  9. Hybrid position and orientation tracking for a passive rehabilitation table-top robot.

    PubMed

    Wojewoda, K K; Culmer, P R; Gallagher, J F; Jackson, A E; Levesley, M C

    2017-07-01

    This paper presents a real time hybrid 2D position and orientation tracking system developed for an upper limb rehabilitation robot. Designed to work on a table-top, the robot is to enable home-based upper-limb rehabilitative exercise for stroke patients. Estimates of the robot's position are computed by fusing data from two tracking systems, each utilizing a different sensor type: laser optical sensors and a webcam. Two laser optical sensors are mounted on the underside of the robot and track the relative motion of the robot with respect to the surface on which it is placed. The webcam is positioned directly above the workspace, mounted on a fixed stand, and tracks the robot's position with respect to a fixed coordinate system. The optical sensors sample the position data at a higher frequency than the webcam, and a position and orientation fusion scheme is proposed to fuse the data from the two tracking systems. The proposed fusion scheme is validated through an experimental set-up whereby the rehabilitation robot is moved by a humanoid robotic arm replicating previously recorded movements of a stroke patient. The results prove that the presented hybrid position tracking system can track the position and orientation with greater accuracy than the webcam or optical sensors alone. The results also confirm that the developed system is capable of tracking recovery trends during rehabilitation therapy.

  10. High level language-based robotic control system

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Inventor); Kruetz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)

    1994-01-01

    This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.

  11. High level language-based robotic control system

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Inventor); Kreutz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)

    1996-01-01

    This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.

  12. Current Limitations of Surgical Robotics in Reconstructive Plastic Microsurgery.

    PubMed

    Tan, Youri P A; Liverneaux, Philippe; Wong, Jason K F

    2018-01-01

    Surgical robots have the potential to provide surgeons with increased capabilities, such as removing physiologic tremor, scaling motion and increasing manual dexterity. Several surgical specialties have subsequently integrated robotic surgery into common clinical practice. Plastic and reconstructive microsurgical procedures have not yet  benefitted significantly from technical developments observed over the last two decades. Several studies have successfully demonstrated the feasibility of utilising surgical robots in plastic surgery procedures, yet limited work has been done to identify and analyse current barriers that have prevented wide-scale adaptation of surgical robots for microsurgery. Therefore, a systematic review using PubMed, MEDLINE, Embase and Web of Science databases was performed, in order to evaluate current state of surgical robotics within the field of reconstructive microsurgery and their limitations. Despite the theoretical potential of surgical robots, current commercially available robotic systems are suboptimal for plastic or reconstructive microsurgery. Absence of bespoke microsurgical instruments, increases in operating time, and high costs associated with robotic-assisted provide a barrier to using such systems effectively for reconstructive microsurgery. Consequently, surgical robots provide currently little overall advantage over conventional microsurgery. Nevertheless, if current barriers can be addressed and systems are specifically designed for microsurgery, surgical robots may have the potential of meaningful impact on clinical outcomes within  this surgical subspeciality.

  13. Current Limitations of Surgical Robotics in Reconstructive Plastic Microsurgery

    PubMed Central

    Tan, Youri P. A.; Liverneaux, Philippe; Wong, Jason K. F.

    2018-01-01

    Surgical robots have the potential to provide surgeons with increased capabilities, such as removing physiologic tremor, scaling motion and increasing manual dexterity. Several surgical specialties have subsequently integrated robotic surgery into common clinical practice. Plastic and reconstructive microsurgical procedures have not yet  benefitted significantly from technical developments observed over the last two decades. Several studies have successfully demonstrated the feasibility of utilising surgical robots in plastic surgery procedures, yet limited work has been done to identify and analyse current barriers that have prevented wide-scale adaptation of surgical robots for microsurgery. Therefore, a systematic review using PubMed, MEDLINE, Embase and Web of Science databases was performed, in order to evaluate current state of surgical robotics within the field of reconstructive microsurgery and their limitations. Despite the theoretical potential of surgical robots, current commercially available robotic systems are suboptimal for plastic or reconstructive microsurgery. Absence of bespoke microsurgical instruments, increases in operating time, and high costs associated with robotic-assisted provide a barrier to using such systems effectively for reconstructive microsurgery. Consequently, surgical robots provide currently little overall advantage over conventional microsurgery. Nevertheless, if current barriers can be addressed and systems are specifically designed for microsurgery, surgical robots may have the potential of meaningful impact on clinical outcomes within  this surgical subspeciality. PMID:29740585

  14. The Co-simulation of Humanoid Robot Based on Solidworks, ADAMS and Simulink

    NASA Astrophysics Data System (ADS)

    Song, Dalei; Zheng, Lidan; Wang, Li; Qi, Weiwei; Li, Yanli

    A simulation method of adaptive controller is proposed for the humanoid robot system based on co-simulation of Solidworks, ADAMS and Simulink. A complex mathematical modeling process is avoided by this method, and the real time dynamic simulating function of Simulink would be exerted adequately. This method could be generalized to other complicated control system. This method is adopted to build and analyse the model of humanoid robot. The trajectory tracking and adaptive controller design also proceed based on it. The effect of trajectory tracking is evaluated by fitting-curve theory of least squares method. The anti-interference capability of the robot is improved a lot through comparative analysis.

  15. Development and Evaluation of Sensor Concepts for Ageless Aerospace Vehicles: Report 6 - Development and Demonstration of a Self-Organizing Diagnostic System for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Batten, Adam; Edwards, Graeme; Gerasimov, Vadim; Hoschke, Nigel; Isaacs, Peter; Lewis, Chris; Moore, Richard; Oppolzer, Florien; Price, Don; Prokopenko, Mikhail; hide

    2010-01-01

    This report describes a significant advance in the capability of the CSIRO/NASA structural health monitoring Concept Demonstrator (CD). The main thrust of the work has been the development of a mobile robotic agent, and the hardware and software modifications and developments required to enable the demonstrator to operate as a single, self-organizing, multi-agent system. This single-robot system is seen as the forerunner of a system in which larger numbers of small robots perform inspection and repair tasks cooperatively, by self-organization. While the goal of demonstrating self-organized damage diagnosis was not fully achieved in the time available, much of the work required for the final element that enables the robot to point the video camera and transmit an image has been completed. A demonstration video of the CD and robotic systems operating will be made and forwarded to NASA.

  16. Multi-arm multilateral haptics-based immersive tele-robotic system (HITS) for improvised explosive device disposal

    NASA Astrophysics Data System (ADS)

    Erickson, David; Lacheray, Hervé; Lai, Gilbert; Haddadi, Amir

    2014-06-01

    This paper presents the latest advancements of the Haptics-based Immersive Tele-robotic System (HITS) project, a next generation Improvised Explosive Device (IED) disposal (IEDD) robotic interface containing an immersive telepresence environment for a remotely-controlled three-articulated-robotic-arm system. While the haptic feedback enhances the operator's perception of the remote environment, a third teleoperated dexterous arm, equipped with multiple vision sensors and cameras, provides stereo vision with proper visual cues, and a 3D photo-realistic model of the potential IED. This decentralized system combines various capabilities including stable and scaled motion, singularity avoidance, cross-coupled hybrid control, active collision detection and avoidance, compliance control and constrained motion to provide a safe and intuitive control environment for the operators. Experimental results and validation of the current system are presented through various essential IEDD tasks. This project demonstrates that a two-armed anthropomorphic Explosive Ordnance Disposal (EOD) robot interface can achieve complex neutralization techniques against realistic IEDs without the operator approaching at any time.

  17. Coordinated control of a dual-arm dexterous robot using full immersion telepresence and virtual reality

    NASA Technical Reports Server (NTRS)

    Li, Larry; Cox, Brian; Shelton, Susan; Diftler, Myron

    1994-01-01

    Telepresence is an approach to teleoperation that provides egocentric, intuitive interactions between an operator and a remote environment. This approach takes advantage of the natural cognitive and sensory motor skills of an on-board crew and effectively transfers them to a slave robot. A dual alarm dexterous robot operating under telepresence control has been developed and initial evaluations of the system performing candidate EVA, IVA and planetary geological tasks were conducted. The results of our evaluation showed that telepresence control is very effective in transferring the operator's skills to the slave robot. However, the results also showed that, due to the kinematic and dynamics inconsistencies between the operator and the robot, a limited amount of intelligent automation is also required to carry out some to the tasks. Therefore, several enhancements have been made to the original system to increase the automated capabilities of the control system without losing the benefits of telepresence.

  18. Teaching Human Poses Interactively to a Social Robot

    PubMed Central

    Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A.

    2013-01-01

    The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics. PMID:24048336

  19. Teaching human poses interactively to a social robot.

    PubMed

    Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A

    2013-09-17

    The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics.

  20. The use of automation and robotic systems to establish and maintain lunar base operations

    NASA Technical Reports Server (NTRS)

    Petrosky, Lyman J.

    1992-01-01

    Robotic systems provide a means of performing many of the operations required to establish and maintain a lunar base. They form a synergistic system when properly used in concert with human activities. This paper discusses the various areas where robotics and automation may be used to enhance lunar base operations. Robots are particularly well suited for surface operations (exterior to the base habitat modules) because they can be designed to operate in the extreme temperatures and vacuum conditions of the Moon (or Mars). In this environment, the capabilities of semi-autonomous robots would surpass that of humans in all but the most complex tasks. Robotic surface operations include such activities as long range geological and mineralogical surveys with sample return, materials movement in and around the base, construction of radiation barriers around habitats, transfer of materials over large distances, and construction of outposts. Most of the above operations could be performed with minor modifications to a single basic robotic rover. Within the lunar base habitats there are a few areas where robotic operations would be preferable to human operations. Such areas include routine inspections for leakage in the habitat and its systems, underground transfer of materials between habitats, and replacement of consumables. In these and many other activities, robotic systems will greatly enhance lunar base operations. The robotic systems described in this paper are based on what is realistically achievable with relatively near term technology. A lunar base can be built and maintained if we are willing.

  1. Research in mobile robotics at ORNL/CESAR (Oak Ridge National Laboratory/Center for Engineering Systems Advanced Research)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.; Weisbin, C.R.; Pin, F.G.

    1989-01-01

    This paper reviews ongoing and planned research with mobile autonomous robots at the Oak Ridge National Laboratory (ORNL), Center for Engineering Systems Advanced Research (CESAR). Specifically we report on results obtained with the robot HERMIES-IIB in navigation, intelligent sensing, learning, and on-board parallel computing in support of these functions. We briefly summarize an experiment with HERMIES-IIB that demonstrates the capability of smooth transitions between robot autonomy and tele-operation. This experiment results from collaboration among teams at the Universities of Florida, Michigan, Tennessee, and Texas; and ORNL in a program targeted at robotics for advanced nuclear power stations. We conclude bymore » summarizing ongoing R D with our new mobile robot HERMIES-III which is equipped with a seven degree-of-freedom research manipulator arm. 12 refs., 4 figs.« less

  2. A Robotic Coach Architecture for Elder Care (ROCARE) Based on Multi-user Engagement Models

    PubMed Central

    Fan, Jing; Bian, Dayi; Zheng, Zhi; Beuscher, Linda; Newhouse, Paul A.; Mion, Lorraine C.; Sarkar, Nilanjan

    2017-01-01

    The aging population with its concomitant medical conditions, physical and cognitive impairments, at a time of strained resources, establishes the urgent need to explore advanced technologies that may enhance function and quality of life. Recently, robotic technology, especially socially assistive robotics has been investigated to address the physical, cognitive, and social needs of older adults. Most system to date have predominantly focused on one-on-one human robot interaction (HRI). In this paper, we present a multi-user engagement-based robotic coach system architecture (ROCARE). ROCARE is capable of administering both one-on-one and multi-user HRI, providing implicit and explicit channels of communication, and individualized activity management for long-term engagement. Two preliminary feasibility studies, a one-on-one interaction and a triadic interaction with two humans and a robot, were conducted and the results indicated potential usefulness and acceptance by older adults, with and without cognitive impairment. PMID:28113672

  3. A Robotic Coach Architecture for Elder Care (ROCARE) Based on Multi-User Engagement Models.

    PubMed

    Fan, Jing; Bian, Dayi; Zheng, Zhi; Beuscher, Linda; Newhouse, Paul A; Mion, Lorraine C; Sarkar, Nilanjan

    2017-08-01

    The aging population with its concomitant medical conditions, physical and cognitive impairments, at a time of strained resources, establishes the urgent need to explore advanced technologies that may enhance function and quality of life. Recently, robotic technology, especially socially assistive robotics has been investigated to address the physical, cognitive, and social needs of older adults. Most system to date have predominantly focused on one-on-one human robot interaction (HRI). In this paper, we present a multi-user engagement-based robotic coach system architecture (ROCARE). ROCARE is capable of administering both one-on-one and multi-user HRI, providing implicit and explicit channels of communication, and individualized activity management for long-term engagement. Two preliminary feasibility studies, a one-on-one interaction and a triadic interaction with two humans and a robot, were conducted and the results indicated potential usefulness and acceptance by older adults, with and without cognitive impairment.

  4. A sensory-driven controller for quadruped locomotion.

    PubMed

    Ferreira, César; Santos, Cristina P

    2017-02-01

    Locomotion of quadruped robots has not yet achieved the harmony, flexibility, efficiency and robustness of its biological counterparts. Biological research showed that spinal reflexes are crucial for a successful locomotion in the most varied terrains. In this context, the development of bio-inspired controllers seems to be a good way to move toward an efficient and robust robotic locomotion, by mimicking their biological counterparts. This contribution presents a sensory-driven controller designed for the simulated Oncilla quadruped robot. In the proposed reflex controller, movement is generated through the robot's interactions with the environment, and therefore, the controller is solely dependent on sensory information. The results show that the reflex controller is capable of producing stable quadruped locomotion with a regular stepping pattern. Furthermore, it is capable of dealing with slopes without changing the parameters and with small obstacles, overcoming them successfully. Finally, system robustness was verified by adding noise to sensors and actuators and also delays.

  5. User-centric design of a personal assistance robot (FRASIER) for active aging.

    PubMed

    Padir, Taşkin; Skorinko, Jeanine; Dimitrov, Velin

    2015-01-01

    We present our preliminary results from the design process for developing the Worcester Polytechnic Institute's personal assistance robot, FRASIER, as an intelligent service robot for enabling active aging. The robot capabilities include vision-based object detection, tracking the user and help with carrying heavy items such as grocery bags or cafeteria trays. This work-in-progress report outlines our motivation and approach to developing the next generation of service robots for the elderly. Our main contribution in this paper is the development of a set of specifications based on the adopted user-centered design process, and realization of the prototype system designed to meet these specifications.

  6. SafeNet: a methodology for integrating general-purpose unsafe devices in safe-robot rehabilitation systems.

    PubMed

    Vicentini, Federico; Pedrocchi, Nicola; Malosio, Matteo; Molinari Tosatti, Lorenzo

    2014-09-01

    Robot-assisted neurorehabilitation often involves networked systems of sensors ("sensory rooms") and powerful devices in physical interaction with weak users. Safety is unquestionably a primary concern. Some lightweight robot platforms and devices designed on purpose include safety properties using redundant sensors or intrinsic safety design (e.g. compliance and backdrivability, limited exchange of energy). Nonetheless, the entire "sensory room" shall be required to be fail-safe and safely monitored as a system at large. Yet, sensor capabilities and control algorithms used in functional therapies require, in general, frequent updates or re-configurations, making a safety-grade release of such devices hardly sustainable in cost-effectiveness and development time. As such, promising integrated platforms for human-in-the-loop therapies could not find clinical application and manufacturing support because of lacking in the maintenance of global fail-safe properties. Under the general context of cross-machinery safety standards, the paper presents a methodology called SafeNet for helping in extending the safety rate of Human Robot Interaction (HRI) systems using unsafe components, including sensors and controllers. SafeNet considers, in fact, the robotic system as a device at large and applies the principles of functional safety (as in ISO 13489-1) through a set of architectural procedures and implementation rules. The enabled capability of monitoring a network of unsafe devices through redundant computational nodes, allows the usage of any custom sensors and algorithms, usually planned and assembled at therapy planning-time rather than at platform design-time. A case study is presented with an actual implementation of the proposed methodology. A specific architectural solution is applied to an example of robot-assisted upper-limb rehabilitation with online motion tracking. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Gigapan Voyage for Robotic Recon

    NASA Technical Reports Server (NTRS)

    Lee, Susan Y.; Moorse, Theodore Fitzgerald; Park, Eric J.

    2010-01-01

    Gigapan Voyage (GV) is a self-contained remotely-operable Gigapan capturing system that is currently being developed by the Intelligent Robotics Group (IRG) at NASA Ames Research Center. Gigapan Voyage was primarily designed to be integrated onto Johnson Space Center s Lunar Electric Rovers (LER). While on LER, Gigapan Voyage was used by scientists and astronauts during the 2009 and 2010 Desert RATS field tests. The concept behind Gigapan Voyage is to merge all the sub-components of the commercial GigaPan system into an all-in-one system that can capture, stitch, and display Gigapans in an automated way via a simple web interface. The GV system enables NASA to quickly and easily add remote-controlled Gigapan capturing capability onto rovers with minimal integration effort. Key Words: Geology, NASA, Black Point Lava Flow, Robot, K10, LER, Gigapan Voyage, Desert RATS, Intelligent Robotics Group

  8. Autonomous exploration and mapping of unknown environments

    NASA Astrophysics Data System (ADS)

    Owens, Jason; Osteen, Phil; Fields, MaryAnne

    2012-06-01

    Autonomous exploration and mapping is a vital capability for future robotic systems expected to function in arbitrary complex environments. In this paper, we describe an end-to-end robotic solution for remotely mapping buildings. For a typical mapping system, an unmanned system is directed to enter an unknown building at a distance, sense the internal structure, and, barring additional tasks, while in situ, create a 2-D map of the building. This map provides a useful and intuitive representation of the environment for the remote operator. We have integrated a robust mapping and exploration system utilizing laser range scanners and RGB-D cameras, and we demonstrate an exploration and metacognition algorithm on a robotic platform. The algorithm allows the robot to safely navigate the building, explore the interior, report significant features to the operator, and generate a consistent map - all while maintaining localization.

  9. Centaur: A Mobile Dexterous Humanoid for Surface Operations

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik; Ambrose, Robert O.; Goza, S. Michael; Junkin, Lucien; Neuhaus, Peter D.; Pratt, Jerry E.

    2005-01-01

    Future human and robotic planetary expeditions could benefit greatly from expanded Extra-Vehicular Activity (EVA) capabilities supporting a broad range of multiple, concurrent surface operations. Risky, expensive and complex, conventional EVAs are restricted in both duration and scope by consumables and available manpower, creating a resource management problem. A mobile, highly dexterous Extra-Vehicular Robotic (EVR) system called Centaur is proposed to cost-effectively augment human astronauts on surface excursions. The Centaur design combines a highly capable wheeled mobility platform with an anthropomorphic upper body mounted on a three degree-of-freedom waist. Able to use many ordinary handheld tools, the robot could conserve EVA hours by relieving humans of many routine inspection and maintenance chores and assisting them in more complex tasks, such as repairing other robots. As an astronaut surrogate, Centaur could take risks unacceptable to humans, respond more quickly to EVA emergencies and work much longer shifts. Though originally conceived as a system for planetary surface exploration, the Centaur concept could easily be adapted for terrestrial military applications such as de-Gig, surveillance and other hazardous duties.

  10. Autonomous mobile robotic system for supporting counterterrorist and surveillance operations

    NASA Astrophysics Data System (ADS)

    Adamczyk, Marek; Bulandra, Kazimierz; Moczulski, Wojciech

    2017-10-01

    Contemporary research on mobile robots concerns applications to counterterrorist and surveillance operations. The goal is to develop systems that are capable of supporting the police and special forces by carrying out such operations. The paper deals with a dedicated robotic system for surveillance of large objects such as airports, factories, military bases, and many others. The goal is to trace unauthorised persons who try to enter to the guarded area, document the intrusion and report it to the surveillance centre, and then warn the intruder by sound messages and eventually subdue him/her by stunning through acoustic effect of great power. The system consists of several parts. An armoured four-wheeled robot assures required mobility of the system. The robot is equipped with a set of sensors including 3D mapping system, IR and video cameras, and microphones. It communicates with the central control station (CCS) by means of a wideband wireless encrypted system. A control system of the robot can operate autonomously, and under remote control. In the autonomous mode the robot follows the path planned by the CCS. Once an intruder has been detected, the robot can adopt its plan to allow tracking him/her. Furthermore, special procedures of treatment of the intruder are applied including warning about the breach of the border of the protected area, and incapacitation of an appropriately selected very loud sound until a patrol of guards arrives. Once getting stuck the robot can contact the operator who can remotely solve the problem the robot is faced with.

  11. A multimodal interface for real-time soldier-robot teaming

    NASA Astrophysics Data System (ADS)

    Barber, Daniel J.; Howard, Thomas M.; Walter, Matthew R.

    2016-05-01

    Recent research and advances in robotics have led to the development of novel platforms leveraging new sensing capabilities for semantic navigation. As these systems becoming increasingly more robust, they support highly complex commands beyond direct teleoperation and waypoint finding facilitating a transition away from robots as tools to robots as teammates. Supporting future Soldier-Robot teaming requires communication capabilities on par with human-human teams for successful integration of robots. Therefore, as robots increase in functionality, it is equally important that the interface between the Soldier and robot advances as well. Multimodal communication (MMC) enables human-robot teaming through redundancy and levels of communications more robust than single mode interaction. Commercial-off-the-shelf (COTS) technologies released in recent years for smart-phones and gaming provide tools for the creation of portable interfaces incorporating MMC through the use of speech, gestures, and visual displays. However, for multimodal interfaces to be successfully used in the military domain, they must be able to classify speech, gestures, and process natural language in real-time with high accuracy. For the present study, a prototype multimodal interface supporting real-time interactions with an autonomous robot was developed. This device integrated COTS Automated Speech Recognition (ASR), a custom gesture recognition glove, and natural language understanding on a tablet. This paper presents performance results (e.g. response times, accuracy) of the integrated device when commanding an autonomous robot to perform reconnaissance and surveillance activities in an unknown outdoor environment.

  12. Robotic follower experimentation results: ready for FCS increment I

    NASA Astrophysics Data System (ADS)

    Jaczkowski, Jeffrey J.

    2003-09-01

    Robotics is a fundamental enabling technology required to meet the U.S. Army's vision to be a strategically responsive force capable of domination across the entire spectrum of conflict. The U. S. Army Research, Development and Engineering Command (RDECOM) Tank Automotive Research, Development & Engineering Center (TARDEC), in partnership with the U.S. Army Research Laboratory, is developing a leader-follower capability for Future Combat Systems. The Robotic Follower Advanced Technology Demonstration (ATD) utilizes a manned leader to provide a highlevel proofing of the follower's path, which operates with minimal user intervention. This paper will give a programmatic overview and discuss both the technical approach and operational experimentation results obtained during testing conducted at Ft. Bliss, New Mexico in February-March 2003.

  13. Coordinating with Humans by Adjustable-Autonomy for Multirobot Pursuit (CHAMP)

    NASA Astrophysics Data System (ADS)

    Dumond, Danielle; Ayers, Jeanine; Schurr, Nathan; Carlin, Alan; Burke, Dustin; Rousseau, Jeffrey

    2012-06-01

    One of the primary challenges facing the modern small-unit tactical team is the ability of the unit to safely and effectively search, explore, clear and hold urbanized terrain that includes buildings, streets, and subterranean dwellings. Buildings provide cover and concealment to an enemy and restrict the movement of forces while diminishing their ability to engage the adversary. The use of robots has significant potential to reduce the risk to tactical teams and dramatically force multiply the small unit's footprint. Despite advances in robotic mobility, sensing capabilities, and human-robot interaction, the use of robots in room clearing operations remains nascent. CHAMP is a software system in development that integrates with a team of robotic platforms to enable them to coordinate with a human operator performing a search and pursuit task. In this way, the human operator can either give control to the robots to search autonomously, or can retain control and direct the robots where needed. CHAMP's autonomy is built upon a combination of adversarial pursuit algorithms and dynamic function allocation strategies that maximize the team's resources. Multi-modal interaction with CHAMP is achieved using novel gesture-recognition based capabilities to reduce the need for heads-down tele-operation. The Champ Coordination Algorithm addresses dynamic and limited team sizes, generates a novel map of the area, and takes into account mission goals, user preferences and team roles. In this paper we show results from preliminary simulated experiments and find that the CHAMP system performs faster than traditional search and pursuit algorithms.

  14. Modularity in robotic systems

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Butler, Michael S.

    1989-01-01

    Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design.

  15. Vision-based semi-autonomous outdoor robot system to reduce soldier workload

    NASA Astrophysics Data System (ADS)

    Richardson, Al; Rodgers, Michael H.

    2001-09-01

    Sensors and computational capability have not reached the point to enable small robots to navigate autonomously in unconstrained outdoor environments at tactically useful speeds. This problem is greatly reduced, however, if a soldier can lead the robot through terrain that he knows it can traverse. An application of this concept is a small pack-mule robot that follows a foot soldier over outdoor terrain. The solder would be responsible to avoid situations beyond the robot's limitations when encountered. Having learned the route, the robot could autonomously retrace the path carrying supplies and munitions. This would greatly reduce the soldier's workload under normal conditions. This paper presents a description of a developmental robot sensor system using low-cost commercial 3D vision and inertial sensors to address this application. The robot moves at fast walking speed and requires only short-range perception to accomplish its task. 3D-feature information is recorded on a composite route map that the robot uses to negotiate its local environment and retrace the path taught by the soldier leader.

  16. Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Warren

    2004-06-01

    There is significant motivation to provide robotic systems with improved autonomy as a means to significantly accelerate deactivation and decommissioning (D&D) operations while also reducing the associated costs, removing human operators from hazardous environments, and reducing the required burden and skill of human operators. To achieve improved autonomy, this project focused on the basic science challenges leading to the development of visual servo controllers. The challenge in developing these controllers is that a camera provides 2-dimensional image information about the 3-dimensional Euclidean-space through a perspective (range dependent) projection that can be corrupted by uncertainty in the camera calibration matrix andmore » by disturbances such as nonlinear radial distortion. Disturbances in this relationship (i.e., corruption in the sensor information) propagate erroneous information to the feedback controller of the robot, leading to potentially unpredictable task execution. This research project focused on the development of a visual servo control methodology that targets compensating for disturbances in the camera model (i.e., camera calibration and the recovery of range information) as a means to achieve predictable response by the robotic system operating in unstructured environments. The fundamental idea is to use nonlinear Lyapunov-based techniques along with photogrammetry methods to overcome the complex control issues and alleviate many of the restrictive assumptions that impact current robotic applications. The outcome of this control methodology is a plug-and-play visual servoing control module that can be utilized in conjunction with current technology such as feature recognition and extraction to enable robotic systems with the capabilities of increased accuracy, autonomy, and robustness, with a larger field of view (and hence a larger workspace). The developed methodology has been reported in numerous peer-reviewed publications and the performance and enabling capabilities of the resulting visual servo control modules have been demonstrated on mobile robot and robot manipulator platforms.« less

  17. An improved adaptive control for repetitive motion of robots

    NASA Technical Reports Server (NTRS)

    Pourboghrat, F.

    1989-01-01

    An adaptive control algorithm is proposed for a class of nonlinear systems, such as robotic manipulators, which is capable of improving its performance in repetitive motions. When the task is repeated, the error between the desired trajectory and that of the system is guaranteed to decrease. The design is based on the combination of a direct adaptive control and a learning process. This method does not require any knowledge of the dynamic parameters of the system.

  18. The flight robotics laboratory

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Williamson, Marlin J.; Glaese, John R.

    1988-01-01

    The Flight Robotics Laboratory of the Marshall Space Flight Center is described in detail. This facility, containing an eight degree of freedom manipulator, precision air bearing floor, teleoperated motion base, reconfigurable operator's console, and VAX 11/750 computer system, provides simulation capability to study human/system interactions of remote systems. The facility hardware, software and subsequent integration of these components into a real time man-in-the-loop simulation for the evaluation of spacecraft contact proximity and dynamics are described.

  19. Meeting the challenges of installing a mobile robotic system

    NASA Technical Reports Server (NTRS)

    Decorte, Celeste

    1994-01-01

    The challenges of integrating a mobile robotic system into an application environment are many. Most problems inherent to installing the mobile robotic system fall into one of three categories: (1) the physical environment - location(s) where, and conditions under which, the mobile robotic system will work; (2) the technological environment - external equipment with which the mobile robotic system will interact; and (3) the human environment - personnel who will operate and interact with the mobile robotic system. The successful integration of a mobile robotic system into these three types of application environment requires more than a good pair of pliers. The tools for this job include: careful planning, accurate measurement data (as-built drawings), complete technical data of systems to be interfaced, sufficient time and attention of key personnel for training on how to operate and program the robot, on-site access during installation, and a thorough understanding and appreciation - by all concerned - of the mobile robotic system's role in the security mission at the site, as well as the machine's capabilities and limitations. Patience, luck, and a sense of humor are also useful tools to keep handy during a mobile robotic system installation. This paper will discuss some specific examples of problems in each of three categories, and explore approaches to solving these problems. The discussion will draw from the author's experience with on-site installations of mobile robotic systems in various applications. Most of the information discussed in this paper has come directly from knowledge learned during installations of Cybermotion's SR2 security robots. A large part of the discussion will apply to any vehicle with a drive system, collision avoidance, and navigation sensors, which is, of course, what makes a vehicle autonomous. And it is with these sensors and a drive system that the installer must become familiar in order to foresee potential trouble areas in the physical, technical, and human environment.

  20. Development and human factors analysis of an augmented reality interface for multi-robot tele-operation and control

    NASA Astrophysics Data System (ADS)

    Lee, Sam; Lucas, Nathan P.; Ellis, R. Darin; Pandya, Abhilash

    2012-06-01

    This paper presents a seamlessly controlled human multi-robot system comprised of ground and aerial robots of semiautonomous nature for source localization tasks. The system combines augmented reality interfaces capabilities with human supervisor's ability to control multiple robots. The role of this human multi-robot interface is to allow an operator to control groups of heterogeneous robots in real time in a collaborative manner. It used advanced path planning algorithms to ensure obstacles are avoided and that the operators are free for higher-level tasks. Each robot knows the environment and obstacles and can automatically generate a collision-free path to any user-selected target. It displayed sensor information from each individual robot directly on the robot in the video view. In addition, a sensor data fused AR view is displayed which helped the users pin point source information or help the operator with the goals of the mission. The paper studies a preliminary Human Factors evaluation of this system in which several interface conditions are tested for source detection tasks. Results show that the novel Augmented Reality multi-robot control (Point-and-Go and Path Planning) reduced mission completion times compared to the traditional joystick control for target detection missions. Usability tests and operator workload analysis are also investigated.

  1. Designing robots for industrial environments. [economic factors and vulnerability

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Environmental hazards to industrial robots are summarized. The inherent reliability of the design of the Unimate robot is assessed and the data used in a management system to bring the reliability performance up to a level nearing what is theoretically available. The design is shown to be capable of a mean time between failure of 400 hours and an average up time of 98%. Specific design decisions made in view of application requirements are explored.

  2. Control of Free-Flying Space Robot Manipulator Systems

    NASA Technical Reports Server (NTRS)

    Cannon, Robert H., Jr.; Rock, Stephen M.; How, Jonathan

    2000-01-01

    This is the final report on the Stanford University portion of a major NASA program in telerobotics called the TRIWG Program, led strongly from NASA Headquarters by David Lavery This portion of the TRIWG research was carried out in Stanford's Aerospace Robotics Laboratory (ARL) to (1) contribute in unique and valuable ways to new fundamental capability for NASA in its space missions (the total contribution came from some 100 PhD-student years of research), and (2) to provide a steady stream of very capable PhD graduates to the American space enterprise.

  3. Stereo optical guidance system for control of industrial robots

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W. (Inventor); Rodgers, Mike H. (Inventor)

    1992-01-01

    A device for the generation of basic electrical signals which are supplied to a computerized processing complex for the operation of industrial robots. The system includes a stereo mirror arrangement for the projection of views from opposite sides of a visible indicia formed on a workpiece. The views are projected onto independent halves of the retina of a single camera. The camera retina is of the CCD (charge-coupled-device) type and is therefore capable of providing signals in response to the image projected thereupon. These signals are then processed for control of industrial robots or similar devices.

  4. Towards Autonomous Operation of Robonaut 2

    NASA Technical Reports Server (NTRS)

    Badger, Julia M.; Hart, Stephen W.; Yamokoski, J. D.

    2011-01-01

    The Robonaut 2 (R2) platform, as shown in Figure 1, was designed through a collaboration between NASA and General Motors to be a capable robotic assistant with the dexterity similar to a suited astronaut [1]. An R2 robot was sent to the International Space Station (ISS) in February 2011 and, in doing so, became the first humanoid robot in space. Its capabilities are presently being tested and expanded to increase its usefulness to the crew. Current work on R2 includes the addition of a mobility platform to allow the robot to complete tasks (such as cleaning, maintenance, or simple construction activities) both inside and outside of the ISS. To support these new activities, R2's software architecture is being developed to provide efficient ways of programming robust and autonomous behavior. In particular, a multi-tiered software architecture is proposed that combines principles of low-level feedback control with higher-level planners that accomplish behavioral goals at the task level given the run-time context, user constraints, the health of the system, and so on. The proposed architecture is shown in Figure 2. At the lowest-level, the resource level, there exists the various sensory and motor signals available to the system. The sensory signals for a robot such as R2 include multiple channels of force/torque data, joint or Cartesian positions calculated through the robot's proprioception, and signals derived from objects observable by its cameras.

  5. Introduction to haptics for neurosurgeons.

    PubMed

    L'Orsa, Rachael; Macnab, Chris J B; Tavakoli, Mahdi

    2013-01-01

    Robots are becoming increasingly relevant to neurosurgeons, extending a neurosurgeon's physical capabilities, improving navigation within the surgical landscape when combined with advanced imaging, and propelling the movement toward minimally invasive surgery. Most surgical robots, however, isolate surgeons from the full range of human senses during a procedure. This forces surgeons to rely on vision alone for guidance through the surgical corridor, which limits the capabilities of the system, requires significant operator training, and increases the surgeon's workload. Incorporating haptics into these systems, ie, enabling the surgeon to "feel" forces experienced by the tool tip of the robot, could render these limitations obsolete by making the robot feel more like an extension of the surgeon's own body. Although the use of haptics in neurosurgical robots is still mostly the domain of research, neurosurgeons who keep abreast of this emerging field will be more prepared to take advantage of it as it becomes more prevalent in operating theaters. Thus, this article serves as an introduction to the field of haptics for neurosurgeons. We not only outline the current and future benefits of haptics but also introduce concepts in the fields of robotic technology and computer control. This knowledge will allow readers to be better aware of limitations in the technology that can affect performance and surgical outcomes, and "knowing the right questions to ask" will be invaluable for surgeons who have purchasing power within their departments.

  6. Sandia National Laboratories proof-of-concept robotic security vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, J.J.; Jones, D.P.; Klarer, P.R.

    1989-01-01

    Several years ago Sandia National Laboratories developed a prototype interior robot that could navigate autonomously inside a large complex building to air and test interior intrusion detection systems. Recently the Department of Energy Office of Safeguards and Security has supported the development of a vehicle that will perform limited security functions autonomously in a structured exterior environment. The goal of the first phase of this project was to demonstrate the feasibility of an exterior robotic vehicle for security applications by using converted interior robot technology, if applicable. An existing teleoperational test bed vehicle with remote driving controls was modified andmore » integrated with a newly developed command driving station and navigation system hardware and software to form the Robotic Security Vehicle (RSV) system. The RSV, also called the Sandia Mobile Autonomous Navigator (SANDMAN), has been successfully used to demonstrate that teleoperated security vehicles which can perform limited autonomous functions are viable and have the potential to decrease security manpower requirements and improve system capabilities. 2 refs., 3 figs.« less

  7. Humanoid Robotics: Real-Time Object Oriented Programming

    NASA Technical Reports Server (NTRS)

    Newton, Jason E.

    2005-01-01

    Programming of robots in today's world is often done in a procedural oriented fashion, where object oriented programming is not incorporated. In order to keep a robust architecture allowing for easy expansion of capabilities and a truly modular design, object oriented programming is required. However, concepts in object oriented programming are not typically applied to a real time environment. The Fujitsu HOAP-2 is the test bed for the development of a humanoid robot framework abstracting control of the robot into simple logical commands in a real time robotic system while allowing full access to all sensory data. In addition to interfacing between the motor and sensory systems, this paper discusses the software which operates multiple independently developed control systems simultaneously and the safety measures which keep the humanoid from damaging itself and its environment while running these systems. The use of this software decreases development time and costs and allows changes to be made while keeping results safe and predictable.

  8. Experimental robot gripper control for handling of soft objects

    NASA Astrophysics Data System (ADS)

    Friedrich, Werner E.; Ziegler, T. H.; Lim, P.

    1996-10-01

    The challenging task of automated handling of variable objects necessitates a combination of innovative engineering and advanced information technology. This paper describes the application of a recently developed control strategy applied to overcome some limitations of robot handling, particularly when dealing with variable objects. The paper focuses on a novel approach to accommodate the need for sensing and actuation in controlling the pickup procedure. An experimental robot-based system for the handling of soft parts, ranging from artificial components to natural objects such as fruit and meat pieces was developed. The configuration comprises a modular gripper subsystem, and an industrial robot as part of a distributed control system. The gripper subsystem features manually configurable fingers with integrated sensing capabilities. The control architecture is based on a concept of decentralized control differentiating between positioning and gripping procedures. In this way, the robot and gripper systems are treated as individual handling operations. THis concept allows very short set-up times for future changes involving one or more sub-systems.

  9. Development of the HERMIES III mobile robot research testbed at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manges, W.W.; Hamel, W.R.; Weisbin, C.R.

    1988-01-01

    The latest robot in the Hostile Environment Robotic Machine Intelligence Experiment Series (HERMIES) is now under development at the Center for Engineering Systems Advanced Research (CESAR) in the Oak Ridge National Laboratory. The HERMIES III robot incorporates a larger than human size 7-degree-of-freedom manipulator mounted on a 2-degree-of-freedom mobile platform including a variety of sensors and computers. The deployment of this robot represents a significant increase in research capabilities for the CESAR laboratory. The initial on-board computer capacity of the robot exceeds that of 20 Vax 11/780s. The navigation and vision algorithms under development make extensive use of the on-boardmore » NCUBE hypercube computer while the sensors are interfaced through five VME computers running the OS-9 real-time, multitasking operating system. This paper describes the motivation, key issues, and detailed design trade-offs of implementing the first phase (basic functionality) of the HERMIES III robot. 10 refs., 7 figs.« less

  10. A Demonstrator Intelligent Scheduler For Sensor-Based Robots

    NASA Astrophysics Data System (ADS)

    Perrotta, Gabriella; Allen, Charles R.; Shepherd, Andrew J.

    1987-10-01

    The development of an execution module capable of functioning as as on-line supervisor for a robot equipped with a vision sensor and tactile sensing gripper system is described. The on-line module is supported by two off-line software modules which provide a procedural based assembly constraints language to allow the assembly task to be defined. This input is then converted into a normalised and minimised form. The host Robot programming language permits high level motions to be issued at the to level, hence allowing a low programming overhead to the designer, who must describe the assembly sequence. Components are selected for pick and place robot movement, based on information derived from two cameras, one static and the other mounted on the end effector of the robot. The approach taken is multi-path scheduling as described by Fox pi. The system is seen to permit robot assembly in a less constrained parts presentation environment making full use of the sensory detail available on the robot.

  11. Navigation of a care and welfare robot

    NASA Astrophysics Data System (ADS)

    Yukawa, Toshihiro; Hosoya, Osamu; Saito, Naoki; Okano, Hideharu

    2005-12-01

    In this paper, we propose the development of a robot that can perform nursing tasks in a hospital. In a narrow environment such as a sickroom or a hallway, the robot must be able to move freely in arbitrary directions. Therefore, the robot needs to have high controllability and the capability to make precise movements. Our robot can recognize a line by using cameras, and can be controlled in the reference directions by means of comparison with original cell map information; furthermore, it moves safely on the basis of an original center-line established permanently in the building. Correspondence between the robot and a centralized control center enables the robot's autonomous movement in the hospital. Through a navigation system using cell map information, the robot is able to perform nursing tasks smoothly by changing the camera angle.

  12. NASA Project Constellation Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2005-01-01

    NASA's Office of Exploration Systems (OExS) is organized to empower the Vision for Space Exploration with transportation systems that result in achievable, affordable, and sustainable human and robotic journeys to the Moon, Mars, and beyond. In the process of delivering these capabilities, the systems engineering function is key to implementing policies, managing mission requirements, and ensuring technical integration and verification of hardware and support systems in a timely, cost-effective manner. The OExS Development Programs Division includes three main areas: (1) human and robotic technology, (2) Project Prometheus for nuclear propulsion development, and (3) Constellation Systems for space transportation systems development, including a Crew Exploration Vehicle (CEV). Constellation Systems include Earth-to-orbit, in-space, and surface transportation systems; maintenance and science instrumentation; and robotic investigators and assistants. In parallel with development of the CEV, robotic explorers will serve as trailblazers to reduce the risk and costs of future human operations on the Moon, as well as missions to other destinations, including Mars. Additional information is included in the original extended abstract.

  13. Automating High-Precision X-Ray and Neutron Imaging Applications with Robotics

    DOE PAGES

    Hashem, Joseph Anthony; Pryor, Mitch; Landsberger, Sheldon; ...

    2017-03-28

    Los Alamos National Laboratory and the University of Texas at Austin recently implemented a robotically controlled nondestructive testing (NDT) system for X-ray and neutron imaging. This system is intended to address the need for accurate measurements for a variety of parts and, be able to track measurement geometry at every imaging location, and is designed for high-throughput applications. This system was deployed in a beam port at a nuclear research reactor and in an operational inspection X-ray bay. The nuclear research reactor system consisted of a precision industrial seven-axis robot, 1.1-MW TRIGA research reactor, and a scintillator-mirror-camera-based imaging system. Themore » X-ray bay system incorporated the same robot, a 225-keV microfocus X-ray source, and a custom flat panel digital detector. The robotic positioning arm is programmable and allows imaging in multiple configurations, including planar, cylindrical, as well as other user defined geometries that provide enhanced engineering evaluation capability. The imaging acquisition device is coupled with the robot for automated image acquisition. The robot can achieve target positional repeatability within 17 μm in the 3-D space. Flexible automation with nondestructive imaging saves costs, reduces dosage, adds imaging techniques, and achieves better quality results in less time. Specifics regarding the robotic system and imaging acquisition and evaluation processes are presented. In conclusion, this paper reviews the comprehensive testing and system evaluation to affirm the feasibility of robotic NDT, presents the system configuration, and reviews results for both X-ray and neutron radiography imaging applications.« less

  14. Automating High-Precision X-Ray and Neutron Imaging Applications with Robotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashem, Joseph Anthony; Pryor, Mitch; Landsberger, Sheldon

    Los Alamos National Laboratory and the University of Texas at Austin recently implemented a robotically controlled nondestructive testing (NDT) system for X-ray and neutron imaging. This system is intended to address the need for accurate measurements for a variety of parts and, be able to track measurement geometry at every imaging location, and is designed for high-throughput applications. This system was deployed in a beam port at a nuclear research reactor and in an operational inspection X-ray bay. The nuclear research reactor system consisted of a precision industrial seven-axis robot, 1.1-MW TRIGA research reactor, and a scintillator-mirror-camera-based imaging system. Themore » X-ray bay system incorporated the same robot, a 225-keV microfocus X-ray source, and a custom flat panel digital detector. The robotic positioning arm is programmable and allows imaging in multiple configurations, including planar, cylindrical, as well as other user defined geometries that provide enhanced engineering evaluation capability. The imaging acquisition device is coupled with the robot for automated image acquisition. The robot can achieve target positional repeatability within 17 μm in the 3-D space. Flexible automation with nondestructive imaging saves costs, reduces dosage, adds imaging techniques, and achieves better quality results in less time. Specifics regarding the robotic system and imaging acquisition and evaluation processes are presented. In conclusion, this paper reviews the comprehensive testing and system evaluation to affirm the feasibility of robotic NDT, presents the system configuration, and reviews results for both X-ray and neutron radiography imaging applications.« less

  15. Will Robots Ever Replace Attendants? Exploring the Current Capabilities and Future Potential of Robots in Education and Rehabilitation.

    ERIC Educational Resources Information Center

    Lees, David; LePage, Pamela

    1994-01-01

    This article describes the current capabilities and future potential of robots designed as supplements or replacements for human assistants or as tools for education and rehabilitation of people with disabilities. Review of robots providing educational, vocational, or independent living assistance concludes that eventually effective, reliable…

  16. Visualization Methods for Viability Studies of Inspection Modules for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Mobasher, Amir A.

    2005-01-01

    An effective simulation of an object, process, or task must be similar to that object, process, or task. A simulation could consist of a physical device, a set of mathematical equations, a computer program, a person, or some combination of these. There are many reasons for the use of simulators. Although some of the reasons are unique to a specific situation, there are many general reasons and purposes for using simulators. Some are listed but not limited to (1) Safety, (2) Scarce resources, (3) Teaching/education, (4) Additional capabilities, (5) Flexibility and (6) Cost. Robot simulators are in use for all of these reasons. Virtual environments such as simulators will eliminate physical contact with humans and hence will increase the safety of work environment. Corporations with limited funding and resources may utilize simulators to accomplish their goals while saving manpower and money. A computer simulation is safer than working with a real robot. Robots are typically a scarce resource. Schools typically don t have a large number of robots, if any. Factories don t want the robots not performing useful work unless absolutely necessary. Robot simulators are useful in teaching robotics. A simulator gives a student hands-on experience, if only with a simulator. The simulator is more flexible. A user can quickly change the robot configuration, workcell, or even replace the robot with a different one altogether. In order to be useful, a robot simulator must create a model that accurately performs like the real robot. A powerful simulator is usually thought of as a combination of a CAD package with simulation capabilities. Computer Aided Design (CAD) techniques are used extensively by engineers in virtually all areas of engineering. Parts are designed interactively aided by the graphical display of both wireframe and more realistic shaded renderings. Once a part s dimensions have been specified to the CAD package, designers can view the part from any direction to examine how it will look and perform in relation to other parts. If changes are deemed necessary, the designer can easily make the changes and view the results graphically. However, a complex process of moving parts intended for operation in a complex environment can only be fully understood through the process of animated graphical simulation. A CAD package with simulation capabilities allows the designer to develop geometrical models of the process being designed, as well as the environment in which the process will be used, and then test the process in graphical animation much as the actual physical system would be run . By being able to operate the system of moving and stationary parts, the designer is able to see in simulation how the system will perform under a wide variety of conditions. If, for example, undesired collisions occur between parts of the system, design changes can be easily made without the expense or potential danger of testing the physical system.

  17. Reactive, Safe Navigation for Lunar and Planetary Robots

    NASA Technical Reports Server (NTRS)

    Utz, Hans; Ruland, Thomas

    2008-01-01

    When humans return to the moon, Astronauts will be accompanied by robotic helpers. Enabling robots to safely operate near astronauts on the lunar surface has the potential to significantly improve the efficiency of crew surface operations. Safely operating robots in close proximity to astronauts on the lunar surface requires reactive obstacle avoidance capabilities not available on existing planetary robots. In this paper we present work on safe, reactive navigation using a stereo based high-speed terrain analysis and obstacle avoidance system. Advances in the design of the algorithms allow it to run terrain analysis and obstacle avoidance algorithms at full frame rate (30Hz) on off the shelf hardware. The results of this analysis are fed into a fast, reactive path selection module, enforcing the safety of the chosen actions. The key components of the system are discussed and test results are presented.

  18. Sozzy: a hormone-driven autonomous vacuum cleaner

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masaki

    1994-02-01

    Domestic robots are promising examples of the application of robotics to personal life. There have been many approaches in this field, but no successful results exist. The problem is that domestic environments are more difficult for robots than other environments, such as factory floors or office floors. Consequently, conventional approaches using a model of human intelligence to design robots have not been successful. In this paper, we report on a prototyped domestic vacuum-cleaning robot that is designed to be able to handle complex environments. The control software is composed of two layers, both of which are generally inspired by behaviors of living creatures. The first layer corresponds to a dynamically reconfigurable system of behaviors implemented in the subsumption architecture. The ability of the robot to support alternate configurations of its behaviors provides the robot with increased robustness. We have conveniently labeled particular configurations as specific `emotions' according to the interpretation of observers of the robot's behavior. The second layer simulates the hormone system. The hormone system is modeled using state variables, increased or decreased by stimuli from the environment. The hormone condition selects the robot's most suitable emotion, according to the changing environments. The robot hardware is built of off-the-shelf parts, such as an embedded CPU, inexpensive home-appliance sensors, and small motors. These parts keep the total building cost to a minimum. The robot also has a vacuum cleaning function to demonstrate its capability to perform useful tasks. We tested the robot in our laboratory, and successfully videotaped its robust behaviors. We also confirmed the hormone system to enhance the robot's plasticity and lifelike quality.

  19. Towards Autonomous Inspection of Space Systems Using Mobile Robotic Sensor Platforms

    NASA Technical Reports Server (NTRS)

    Wong, Edmond; Saad, Ashraf; Litt, Jonathan S.

    2007-01-01

    The space transportation systems required to support NASA's Exploration Initiative will demand a high degree of reliability to ensure mission success. This reliability can be realized through autonomous fault/damage detection and repair capabilities. It is crucial that such capabilities are incorporated into these systems since it will be impractical to rely upon Extra-Vehicular Activity (EVA), visual inspection or tele-operation due to the costly, labor-intensive and time-consuming nature of these methods. One approach to achieving this capability is through the use of an autonomous inspection system comprised of miniature mobile sensor platforms that will cooperatively perform high confidence inspection of space vehicles and habitats. This paper will discuss the efforts to develop a small scale demonstration test-bed to investigate the feasibility of using autonomous mobile sensor platforms to perform inspection operations. Progress will be discussed in technology areas including: the hardware implementation and demonstration of robotic sensor platforms, the implementation of a hardware test-bed facility, and the investigation of collaborative control algorithms.

  20. Self-entrainment to optimal gaits of an underactuated biomimetic swimming robot using adaptive frequency oscillators.

    PubMed

    Alessi, Alessio; Accoto, Dino; Guglielmelli, Eugenio

    2015-08-01

    Underactuated compliant swimming robots are characterized by a simple mechanical structure, capable to mimic the body undulation of many fish species. One of the design issue for these robots is the generation and control of best performing swimming gaits. In this paper we propose a new controller, based on AFO oscillators, to address this issue. After analyzing the effects of the motion on the robot natural frequencies, we show that the closed loop system is able to generate self-sustained oscillations, at a characteristic frequency, while maximizing swimming velocity.

  1. [Principles of MR-guided interventions, surgery, navigation, and robotics].

    PubMed

    Melzer, A

    2010-08-01

    The application of magnetic resonance imaging (MRI) as an imaging technique in interventional and surgical techniques provides a new dimension of soft tissue-oriented precise procedures without exposure to ionizing radiation and nephrotoxic allergenic, iodine-containing contrast agents. The technical capabilities of MRI in combination with interventional devices and systems, navigation, and robotics are discussed.

  2. Multi-Robot Systems in Military Domains (Les Systemes Multi-Robots Dans les Domaines Militaires)

    DTIC Science & Technology

    2008-12-01

    to allow him to react quickly to improve his personal safety , it is mandatory to shorten the current very long delay needed for the human operator to...Hard RT tasks 2 OS / API Process monitoring 3 H / API Flexible communication medium 4 H / API Networking capabilities 5 H / API Safety 6 API...also be considered between high level services and legacy systems. 4) This is the one of the basic requirement for CoRoDe. 5) Safety : CRC, Timeouts

  3. TARDEC's Intelligent Ground Systems overview

    NASA Astrophysics Data System (ADS)

    Jaster, Jeffrey F.

    2009-05-01

    The mission of the Intelligent Ground Systems (IGS) Area at the Tank Automotive Research, Development and Engineering Center (TARDEC) is to conduct technology maturation and integration to increase Soldier robot control/interface intuitiveness and robotic ground system robustness, functionality and overall system effectiveness for the Future Combat System Brigade Combat Team, Robotics Systems Joint Project Office and game changing capabilities to be fielded beyond the current force. This is accomplished through technology component development focused on increasing unmanned ground vehicle autonomy, optimizing crew interfaces and mission planners that capture commanders' intent, integrating payloads that provide 360 degree local situational awareness and expanding current UGV tactical behavior, learning and adaptation capabilities. The integration of these technology components into ground vehicle demonstrators permits engineering evaluation, User assessment and performance characterization in increasingly complex, dynamic and relevant environments to include high speed on road or cross country operations, all weather/visibility conditions and military operations in urban terrain (MOUT). Focused testing and experimentation is directed at reducing PM risk areas (safe operations, autonomous maneuver, manned-unmanned collaboration) and transitioning technology in the form of hardware, software algorithms, test and performance data, as well as User feedback and lessons learned.

  4. Three degree-of-freedom force feedback control for robotic mating of umbilical lines

    NASA Technical Reports Server (NTRS)

    Fullmer, R. Rees

    1988-01-01

    The use of robotic manipulators for the mating and demating of umbilical fuel lines to the Space Shuttle Vehicle prior to launch is investigated. Force feedback control is necessary to minimize the contact forces which develop during mating. The objective is to develop and demonstrate a working robotic force control system. Initial experimental force control tests with an ASEA IRB-90 industrial robot using the system's Adaptive Control capabilities indicated that control stability would by a primary problem. An investigation of the ASEA system showed a 0.280 second software delay between force input commands and the output of command voltages to the servo system. This computational delay was identified as the primary cause of the instability. Tests on a second path into the ASEA's control computer using the MicroVax II supervisory computer show that time delay would be comparable, offering no stability improvement. An alternative approach was developed where the digital control system of the robot was disconnected and an analog electronic force controller was used to control the robot's servosystem directly, allowing the robot to use force feedback control while in rigid contact with a moving three-degree-of-freedom target. An alternative approach was developed where the digital control system of the robot was disconnected and an analog electronic force controller was used to control the robot's servo system directly. This method allowed the robot to use force feedback control while in rigid contact with moving three degree-of-freedom target. Tests on this approach indicated adequate force feedback control even under worst case conditions. A strategy to digitally-controlled vision system was developed. This requires switching between the digital controller when using vision control and the analog controller when using force control, depending on whether or not the mating plates are in contact.

  5. Coordination of dual robot arms using kinematic redundancy

    NASA Technical Reports Server (NTRS)

    Suh, Il Hong; Shin, Kang G.

    1988-01-01

    A method is developed to coordinate the motion of dual robot arms carrying a solid object, where the first robot (leader) grasps one end of the object rigidly and the second robot (follower) is allowed to change its grasping position at the other end of the object along the object surface while supporting the object. It is shown that this flexible grasping is equivalent to the addition of one more degree of freedom (dof), giving the follower more maneuvering capabilities. In particular, motion commands for the follower are generated by using kinematic redundancy. To show the utility and power of the method, an example system with two PUMA 560 robots carrying a beam is analyzed.

  6. Improved sample manipulation at the STRESS-SPEC neutron diffractometer using an industrial 6-axis robot for texture and strain analyses

    NASA Astrophysics Data System (ADS)

    Randau, C.; Brokmeier, H. G.; Gan, W. M.; Hofmann, M.; Voeller, M.; Tekouo, W.; Al-hamdany, N.; Seidl, G.; Schreyer, A.

    2015-09-01

    The materials science neutron diffractometer STRESS-SPEC located at FRM II is a dedicated instrument for strain and pole figure measurements. Both methods make complementary demands on sample handling. On one hand pole figure measurements need a high degree of freedom to orient small samples and on the other hand in strain investigations it is often necessary to handle large and heavy components. Therefore a robot based sample positioning system was developed, which has the capability to provide both possibilities. Based on this new robot system further developments like a full automated sample changer system for texture measurements were accomplished. Moreover this system opens the door for combined strain and texture analysis at STRESS-SPEC.

  7. On discrete control of nonlinear systems with applications to robotics

    NASA Technical Reports Server (NTRS)

    Eslami, Mansour

    1989-01-01

    Much progress has been reported in the areas of modeling and control of nonlinear dynamic systems in a continuous-time framework. From implementation point of view, however, it is essential to study these nonlinear systems directly in a discrete setting that is amenable for interfacing with digital computers. But to develop discrete models and discrete controllers for a nonlinear system such as robot is a nontrivial task. Robot is also inherently a variable-inertia dynamic system involving additional complications. Not only the computer-oriented models of these systems must satisfy the usual requirements for such models, but these must also be compatible with the inherent capabilities of computers and must preserve the fundamental physical characteristics of continuous-time systems such as the conservation of energy and/or momentum. Preliminary issues regarding discrete systems in general and discrete models of a typical industrial robot that is developed with full consideration of the principle of conservation of energy are presented. Some research on the pertinent tactile information processing is reviewed. Finally, system control methods and how to integrate these issues in order to complete the task of discrete control of a robot manipulator are also reviewed.

  8. Integration of task level planning and diagnosis for an intelligent robot

    NASA Technical Reports Server (NTRS)

    Chan, Amy W.

    1992-01-01

    A satellite floating space is diagnosed with a telerobot attached performing maintenance or replacement tasks. This research included three objectives. The first objective was to generate intelligent path planning for a robot to move around a satellite. The second objective was to diagnose possible faulty scenarios in the satellite. The third objective included two tasks. The first task was to combine intelligent path planning with diagnosis. The second task was to build an interface between the combined intelligent system with Robosim. The ability of a robot to deal with unexpected scenarios is particularly important in space since the situation could be different from time to time so that the telerobot must be capable of detecting that the situation has changed and the necessity may exist to alter its behavior based on the new situation. The feature of allowing human-in-the-loop is also very important in space. In some extreme cases, the situation is beyond the capability of a robot so our research project allows the human to override the decision of a robot.

  9. Practical robotic self-awareness and self-knowledge

    NASA Astrophysics Data System (ADS)

    Gage, Douglas W.

    2011-05-01

    The functional software components of an autonomous robotic system express behavior via commands to its actuators, based on processed inputs from its sensors; we propose an additional set of "cognitive" capabilities for robotic systems of all types, based on the comprehensive logging of all available data, including sensor inputs, behavioral states, and outputs sent to actuators. A robot should maintain a "sense" of its own (piecewise) continuous existence through time and space; it should in some sense "get a life," providing a level of self-awareness and self-knowledge. Self-awareness includes the ability to survive and work through unexpected power glitches while executing a task or mission. Selfknowledge includes an extensive world model including a model of self and the purpose context in which it is operating (deontics). Our system must support proactive self-test, monitoring, and calibration, and maintain a "personal" health/repair history, supporting system test and evaluation by continuously measuring performance throughout the entire product lifecycle. It will include episodic memory, and a system "lifelog," and will also participate in multiple modes of Human Robotic interaction (HRI).

  10. A Survey of Space Robotics

    NASA Technical Reports Server (NTRS)

    Pedersen, L.; Kortenkamp, D.; Wettergreen, D.; Nourbakhsh, I.; Korsmeyer, David (Technical Monitor)

    2003-01-01

    In this paper we summarize a survey conducted by NASA to determine the state-of-the-art in space robotics and to predict future robotic capabilities under either nominal and intensive development effort. The space robotics assessment study examined both in-space operations including assembly, inspection, and maintenance and planetary surface operations like mobility and exploration. Applications of robotic autonomy and human-robot cooperation were considered. The study group devised a decomposition of robotic capabilities and then suggested metrics to specify the technical challenges associated with each. The conclusion of this paper identifies possible areas in which investment in space robotics could lead to significant advances of important technologies.

  11. Smart Fluid Systems: The Advent of Autonomous Liquid Robotics

    PubMed Central

    2017-01-01

    Organic, inorganic or hybrid devices in the liquid state, kept in a fixed volume by surface tension or by a confining membrane that protects them from a harsh environment, could be used as biologically inspired autonomous robotic systems with unique capabilities. They could change shape according to a specific exogenous command or by means of a fully integrated adaptive system, and provide an innovative solution for many future applications, such as space exploration in extreme or otherwise challenging environments, post‐disaster search and rescue in ground applications, compliant wearable devices, and even in the medical field for in vivo applications. This perspective provides an initial assessment of existing capabilities that could be leveraged to pursue the topic of “Smart Fluid Systems” or “Liquid Engineered Systems”. PMID:28725530

  12. GSFC Information Systems Technology Developments Supporting the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Hughes, Peter; Dennehy, Cornelius; Mosier, Gary; Smith, Dan; Rykowski, Lisa

    2004-01-01

    The Vision for Space Exploration will guide NASA's future human and robotic space activities. The broad range of human and robotic missions now being planned will require the development of new system-level capabilities enabled by emerging new technologies. Goddard Space Flight Center is actively supporting the Vision for Space Exploration in a number of program management, engineering and technology areas. This paper provides a brief background on the Vision for Space Exploration and a general overview of potential key Goddard contributions. In particular, this paper focuses on describing relevant GSFC information systems capabilities in architecture development; interoperable command, control and communications; and other applied information systems technology/research activities that are applicable to support the Vision for Space Exploration goals. Current GSFC development efforts and task activities are presented together with future plans.

  13. A Step Towards Developing Adaptive Robot-Mediated Intervention Architecture (ARIA) for Children With Autism

    PubMed Central

    Bekele, Esubalew T; Lahiri, Uttama; Swanson, Amy R.; Crittendon, Julie A.; Warren, Zachary E.; Sarkar, Nilanjan

    2013-01-01

    Emerging technology, especially robotic technology, has been shown to be appealing to children with autism spectrum disorders (ASD). Such interest may be leveraged to provide repeatable, accurate and individualized intervention services to young children with ASD based on quantitative metrics. However, existing robot-mediated systems tend to have limited adaptive capability that may impact individualization. Our current work seeks to bridge this gap by developing an adaptive and individualized robot-mediated technology for children with ASD. The system is composed of a humanoid robot with its vision augmented by a network of cameras for real-time head tracking using a distributed architecture. Based on the cues from the child’s head movement, the robot intelligently adapts itself in an individualized manner to generate prompts and reinforcements with potential to promote skills in the ASD core deficit area of early social orienting. The system was validated for feasibility, accuracy, and performance. Results from a pilot usability study involving six children with ASD and a control group of six typically developing (TD) children are presented. PMID:23221831

  14. An intelligent, free-flying robot

    NASA Technical Reports Server (NTRS)

    Reuter, G. J.; Hess, C. W.; Rhoades, D. E.; Mcfadin, L. W.; Healey, K. J.; Erickson, J. D.

    1988-01-01

    The ground-based demonstration of EVA Retriever, a voice-supervised, intelligent, free-flying robot, is designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the Space Station. The major objective of the EVA Retriever Project is to design, develop, and evaluate an integrated robotic hardware and on-board software system which autonomously: (1) performs system activation and check-out, (2) searches for and acquires the target, (3) plans and executes a rendezvous while continuously tracking the target, (4) avoids stationary and moving obstacles, (5) reaches for and grapples the target, (6) returns to transfer the object, and (7) returns to base.

  15. An intelligent, free-flying robot

    NASA Technical Reports Server (NTRS)

    Reuter, G. J.; Hess, C. W.; Rhoades, D. E.; Mcfadin, L. W.; Healey, K. J.; Erickson, J. D.; Phinney, Dale E.

    1989-01-01

    The ground based demonstration of the extensive extravehicular activity (EVA) Retriever, a voice-supervised, intelligent, free flying robot, is designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the Space Station. The major objective of the EVA Retriever Project is to design, develop, and evaluate an integrated robotic hardware and on-board software system which autonomously: (1) performs system activation and check-out; (2) searches for and acquires the target; (3) plans and executes a rendezvous while continuously tracking the target; (4) avoids stationary and moving obstacles; (5) reaches for and grapples the target; (6) returns to transfer the object; and (7) returns to base.

  16. Immunology-directed methods for distributed robotics: a novel immunity-based architecture for robust control and coordination

    NASA Astrophysics Data System (ADS)

    Singh, Surya P. N.; Thayer, Scott M.

    2002-02-01

    This paper presents a novel algorithmic architecture for the coordination and control of large scale distributed robot teams derived from the constructs found within the human immune system. Using this as a guide, the Immunology-derived Distributed Autonomous Robotics Architecture (IDARA) distributes tasks so that broad, all-purpose actions are refined and followed by specific and mediated responses based on each unit's utility and capability to timely address the system's perceived need(s). This method improves on initial developments in this area by including often overlooked interactions of the innate immune system resulting in a stronger first-order, general response mechanism. This allows for rapid reactions in dynamic environments, especially those lacking significant a priori information. As characterized via computer simulation of a of a self-healing mobile minefield having up to 7,500 mines and 2,750 robots, IDARA provides an efficient, communications light, and scalable architecture that yields significant operation and performance improvements for large-scale multi-robot coordination and control.

  17. Filtering Data Based on Human-Inspired Forgetting.

    PubMed

    Freedman, S T; Adams, J A

    2011-12-01

    Robots are frequently presented with vast arrays of diverse data. Unfortunately, perfect memory and recall provides a mixed blessing. While flawless recollection of episodic data allows increased reasoning, photographic memory can hinder a robot's ability to operate in real-time dynamic environments. Human-inspired forgetting methods may enable robotic systems to rid themselves of out-dated, irrelevant, and erroneous data. This paper presents the use of human-inspired forgetting to act as a filter, removing unnecessary, erroneous, and out-of-date information. The novel ActSimple forgetting algorithm has been developed specifically to provide effective forgetting capabilities to robotic systems. This paper presents the ActSimple algorithm and how it was optimized and tested in a WiFi signal strength estimation task. The results generated by real-world testing suggest that human-inspired forgetting is an effective means of improving the ability of mobile robots to move and operate within complex and dynamic environments.

  18. Biological Soft Robotics.

    PubMed

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.

  19. Automated site characterization for robotic sample acquisition systems

    NASA Astrophysics Data System (ADS)

    Scholl, Marija S.; Eberlein, Susan J.

    1993-04-01

    A mobile, semiautonomous vehicle with multiple sensors and on-board intelligence is proposed for performing preliminary scientific investigations on extraterrestrial bodies prior to human exploration. Two technologies, a hybrid optical-digital computer system based on optical correlator technology and an image and instrument data analysis system, provide complementary capabilities that might be part of an instrument package for an intelligent robotic vehicle. The hybrid digital-optical vision system could perform real-time image classification tasks using an optical correlator with programmable matched filters under control of a digital microcomputer. The data analysis system would analyze visible and multiband imagery to extract mineral composition and textural information for geologic characterization. Together these technologies would support the site characterization needs of a robotic vehicle for both navigational and scientific purposes.

  20. NONLINEAR FORCE PROFILE USED TO INCREASE THE PERFORMANCE OF A HAPTIC USER INTERFACE FOR TELEOPERATING A ROBOTIC HAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony L. Crawford

    MODIFIED PAPER TITLE AND ABSTRACT DUE TO SLIGHTLY MODIFIED SCOPE: TITLE: Nonlinear Force Profile Used to Increase the Performance of a Haptic User Interface for Teleoperating a Robotic Hand Natural movements and force feedback are important elements in using teleoperated equipment if complex and speedy manipulation tasks are to be accomplished in hazardous environments, such as hot cells, glove boxes, decommissioning, explosives disarmament, and space. The research associated with this paper hypothesizes that a user interface and complementary radiation compatible robotic hand that integrates the human hand’s anthropometric properties, speed capability, nonlinear strength profile, reduction of active degrees of freedommore » during the transition from manipulation to grasping, and just noticeable difference force sensation characteristics will enhance a user’s teleoperation performance. The main contribution of this research is in that a system that concisely integrates all these factors has yet to be developed and furthermore has yet to be applied to a hazardous environment as those referenced above. In fact, the most prominent slave manipulator teleoperation technology in use today is based on a design patented in 1945 (Patent 2632574) [1]. The robotic hand/user interface systems of similar function as the one being developed in this research limit their design input requirements in the best case to only complementing the hand’s anthropometric properties, speed capability, and linearly scaled force application relationship (e.g. robotic force is a constant, 4 times that of the user). In this paper a nonlinear relationship between the force experienced between the user interface and the robotic hand was devised based on property differences of manipulation and grasping activities as they pertain to the human hand. The results show that such a relationship when subjected to a manipulation task and grasping task produces increased performance compared to the traditional linear scaling techniques used by other systems. Key Words: Teleoperation, Robotic Hand, Robotic Force Scaling« less

  1. User needs, benefits and integration of robotic systems in a space station laboratory

    NASA Technical Reports Server (NTRS)

    Farnell, K. E.; Richard, J. A.; Ploge, E.; Badgley, M. B.; Konkel, C. R.; Dodd, W. R.

    1989-01-01

    The methodology, results and conclusions of the User Needs, Benefits, and Integration Study (UNBIS) of Robotic Systems in the Space Station Microgravity and Materials Processing Facility are summarized. Study goals include the determination of user requirements for robotics within the Space Station, United States Laboratory. Three experiments were selected to determine user needs and to allow detailed investigation of microgravity requirements. A NASTRAN analysis of Space Station response to robotic disturbances, and acceleration measurement of a standard industrial robot (Intelledex Model 660) resulted in selection of two ranges of low gravity manipulation: Level 1 (10-3 to 10-5 G at greater than 1 Hz.) and Level 2 (less than = 10-6 G at 0.1 Hz). This included an evaluation of microstepping methods for controlling stepper motors and concluded that an industrial robot actuator can perform milli-G motion without modification. Relative merits of end-effectors and manipulators were studied in order to determine their ability to perform a range of tasks related to the three low gravity experiments. An Effectivity Rating was established for evaluating these robotic system capabilities. Preliminary interface requirements were determined such that definition of requirements for an orbital flight demonstration experiment may be established.

  2. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    A robot from the Intrepid Systems team is seen during the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Stellar Automation Systems team poses for a picture with their robot after attempting the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. Maneuverability and mobility in palm-sized legged robots

    NASA Astrophysics Data System (ADS)

    Kohut, Nicholas J.; Birkmeyer, Paul M.; Peterson, Kevin C.; Fearing, Ronald S.

    2012-06-01

    Palm sized legged robots show promise for military and civilian applications, including exploration of hazardous or difficult to reach places, search and rescue, espionage, and battlefield reconnaissance. However, they also face many technical obstacles, including- but not limited to- actuator performance, weight constraints, processing power, and power density. This paper presents an overview of several robots from the Biomimetic Millisystems Laboratory at UC Berkeley, including the OctoRoACH, a steerable, running legged robot capable of basic navigation and equipped with a camera and active tail; CLASH, a dynamic climbing robot; and BOLT, a hybrid crawling and flying robot. The paper also discusses, and presents some preliminary solutions to, the technical obstacles listed above plus issues such as robustness to unstructured environments, limited sensing and communication bandwidths, and system integration.

  5. Hardware Design and Testing of SUPERball, A Modular Tensegrity Robot

    NASA Technical Reports Server (NTRS)

    Sabelhaus, Andrew P.; Bruce, Jonathan; Caluwaerts, Ken; Chen, Yangxin; Lu, Dizhou; Liu, Yuejia; Agogino, Adrian K.; SunSpiral, Vytas; Agogino, Alice M.

    2014-01-01

    We are developing a system of modular, autonomous "tensegrity end-caps" to enable the rapid exploration of untethered tensegrity robot morphologies and functions. By adopting a self-contained modular approach, different end-caps with various capabilities (such as peak torques, or motor speeds), can be easily combined into new tensegrity robots composed of rods, cables, and actuators of different scale (such as in length, mass, peak loads, etc). As a first step in developing this concept, we are in the process of designing and testing the end-caps for SUPERball (Spherical Underactuated Planetary Exploration Robot), a project at the Dynamic Tensegrity Robotics Lab (DTRL) within NASA Ames's Intelligent Robotics Group. This work discusses the evolving design concepts and test results that have gone into the structural, mechanical, and sensing aspects of SUPERball. This representative tensegrity end-cap design supports robust and repeatable untethered mobility tests of the SUPERball, while providing high force, high displacement actuation, with a low-friction, compliant cabling system.

  6. Kinematics Analysis of End Effector for Carrier Robot of Feeding Broiler Chicken System

    NASA Astrophysics Data System (ADS)

    Syam, Rafiuddin; Arsyad, Hairul; Bauna, Ruslan; Renreng, Ilyas; Bakhri, Syaiful

    2018-02-01

    The demand for commodities, especially Broiler chicken farms are increasing, the volume of feed requirements Broiler chickens increased with age up to the age of 30-57 days required feed 3,829 grams/day/head, so if the chicken population is 3,000 needed transporting feed 11 487 kg/day, This research aims to produce a robot capable of transporting feed in the top of the cage by using a control system so as to make efficient use of manpower. Design robot performed using software design three-dimensional Solidworks2010, process of making the robot is started with the design manufacture three (3) units of mechanical systems (mechanical system for holder feed, mechanical systems for lifter feed and mechanical systems for transporting feed), then do the design process framework as a component buffer so that the mechanical system will work properly and safely when the robot operates. Furthermore, the manufacture of electronic circuits and control are using Arduino Mega microcontroller. After assembling all components mechanical systems and installation of electronic systems and control, then experiments to evaluate the performance of the robot have been made. The results of experiments showed that all components work well according to plan, in particular the speed and acceleration of end effector motion so it can hold and release the feed well. This strongly supports the robots perform tasks in accordance with the intent, i.e., holding, lifting and moving feed.

  7. Robotics Strategy White Paper

    DTIC Science & Technology

    2009-03-19

    Cargo packaging and pallet assembly. Use of robotics tools to support palletization falls under the supply functional area which tasks the Army to...system. 17 At first glance, remote tele-operated surgery capability appears to already exist in civilian hospitals (i.e., DaVinci Machine: http... tool free maintenance and anticipatory sustainment and improved distribution. The UJTL tasks suggest nominal improvements in the maintenance area

  8. NIITEK-NVESD AMDS program and interim field-ready system

    NASA Astrophysics Data System (ADS)

    Hibbard, Mark W.; Etebari, Ali

    2010-04-01

    NIITEK (Non-Intrusive Inspection Technology, Inc) develops and fields vehicle-mounted mine and buried threat detection systems. Since 2003, the NIITEK has developed and tested a remote robot-mounted mine detection system for use in the NVESD AMDS program. This paper will discuss the road map of development since the outset of the program, including transition from a data collection platform towards a militarized field-ready system for immediate use as a remote countermine and buried threat detection solution with real-time autonomous threat classification. The detection system payload has been integrated on both the iRobot Packbot and the Foster-Miller Talon robot. This brief will discuss the requirements for a successful near-term system, the progressive development of the system, our current real-time capabilities, and our planned upgrades for moving into and supporting field testing, evaluation, and ongoing operation.

  9. A novel robotic platform for laser-assisted transurethral surgery of the prostate.

    PubMed

    Russo, S; Dario, P; Menciassi, A

    2015-02-01

    Benign prostatic hyperplasia (BPH) is the most common pathology afflicting ageing men. The gold standard for the surgical treatment of BPH is transurethral resection of the prostate. The laser-assisted transurethral surgical treatment of BPH is recently emerging as a valid clinical alternative. Despite this, there are still some issues that hinder the outcome of laser surgery, e.g., distal dexterity is strongly reduced by the current endoscopic instrumentation and contact between laser and prostatic tissue cannot be monitored and optimized. This paper presents a novel robotic platform for laser-assisted transurethral surgery of BPH. The system, designed to be compatible with the traditional endoscopic instrumentation, is composed of a catheter-like robot provided with a fiber optic-based sensing system and a cable-driven actuation mechanism. The sensing system allows contact monitoring between the laser and the hypertrophic tissue. The actuation mechanism allows steering of the laser fiber inside the prostatic urethra of the patient, when contact must be reached. The design of the proposed robotic platform along with its preliminary testing and evaluation is presented in this paper. The actuation mechanism is tested in in vitro experiments to prove laser steering performances according to the clinical requirements. The sensing system is calibrated in experiments aimed to evaluate the capability of discriminating the contact forces, between the laser tip and the prostatic tissue, from the pulling forces exerted on the cables, during laser steering. These results have been validated demonstrating the robot's capability of detecting sub-Newton contact forces even in combination with actuation.

  10. Double-Acting Sleeve Muscle Actuator for Bio-Robotic Systems.

    PubMed

    Zheng, Hao; Shen, Xiangrong

    2013-11-25

    This paper presents a new type of muscle-like actuator, namely double-acting (DA) sleeve muscle actuator, which is suitable for the actuation of biologically-inspired and biomedical robotic systems, especially those serving human-assistance purposes (prostheses, orthoses, etc .). Developed based on the traditional pneumatic muscle actuator, the new DA sleeve muscle incorporates a unique insert at the center. With the insert occupying the central portion of the internal volume, this new actuator enjoys multiple advantages relative to the traditional pneumatic muscle, including a consistent increase of force capacity over the entire range of motion, and a significant decrease of energy consumption in operation. Furthermore, the insert encompasses an additional chamber, which generates an extension force when pressurized. As such, this new actuator provides a unique bi-directional actuation capability, and, thus, has a potential to significantly simplify the design of a muscle actuator-powered robotic system. To demonstrate this new actuator concept, a prototype has been designed and fabricated, and experiments conducted on this prototype demonstrated the enhanced force capacity and the unique bi-directional actuation capability.

  11. Performance Evaluation and Benchmarking of Next Intelligent Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Pobil, Angel; Madhavan, Raj; Bonsignorio, Fabio

    Performance Evaluation and Benchmarking of Intelligent Systems presents research dedicated to the subject of performance evaluation and benchmarking of intelligent systems by drawing from the experiences and insights of leading experts gained both through theoretical development and practical implementation of intelligent systems in a variety of diverse application domains. This contributed volume offers a detailed and coherent picture of state-of-the-art, recent developments, and further research areas in intelligent systems. The chapters cover a broad range of applications, such as assistive robotics, planetary surveying, urban search and rescue, and line tracking for automotive assembly. Subsystems or components described in this bookmore » include human-robot interaction, multi-robot coordination, communications, perception, and mapping. Chapters are also devoted to simulation support and open source software for cognitive platforms, providing examples of the type of enabling underlying technologies that can help intelligent systems to propagate and increase in capabilities. Performance Evaluation and Benchmarking of Intelligent Systems serves as a professional reference for researchers and practitioners in the field. This book is also applicable to advanced courses for graduate level students and robotics professionals in a wide range of engineering and related disciplines including computer science, automotive, healthcare, manufacturing, and service robotics.« less

  12. Simulating the dynamic interaction of a robotic arm and the Space Shuttle remote manipulator system. M.S. Thesis - George Washington Univ., Dec. 1994

    NASA Technical Reports Server (NTRS)

    Garrahan, Steven L.; Tolson, Robert H.; Williams, Robert L., II

    1995-01-01

    Industrial robots are usually attached to a rigid base. Placing the robot on a compliant base introduces dynamic coupling between the two systems. The Vehicle Emulation System (VES) is a six DOF platform that is capable of modeling this interaction. The VES employs a force-torque sensor as the interface between robot and base. A computer simulation of the VES is presented. Each of the hardware and software components is described and Simulink is used as the programming environment. The simulation performance is compared with experimental results to validate accuracy. A second simulation which models the dynamic interaction of a robot and a flexible base acts as a comparison to the simulated motion of the VES. Results are presented that compare the simulated VES motion with the motion of the VES hardware using the same admittance model. The two computer simulations are compared to determine how well the VES is expected to emulate the desired motion. Simulation results are given for robots mounted to the end effector of the Space Shuttle Remote Manipulator System (SRMS). It is shown that for fast motions of the two robots studied, the SRMS experiences disturbances on the order of centimeters. Larger disturbances are possible if different manipulators are used.

  13. Geometric reasoning

    NASA Technical Reports Server (NTRS)

    Woodbury, R. F.; Oppenheim, I. J.

    1987-01-01

    Cognitive robot systems are ones in which sensing and representation occur, from which task plans and tactics are determined. Such a robot system accomplishes a task after being told what to do, but determines for itself how to do it. Cognition is required when the work environment is uncontrolled, when contingencies are prevalent, or when task complexity is large; it is useful in any robotic mission. A number of distinguishing features can be associated with cognitive robotics, and one emphasized here is the role of artificial intelligence in knowledge representation and in planning. While space telerobotics may elude some of the problems driving cognitive robotics, it shares many of the same demands, and it can be assumed that capabilities developed for cognitive robotics can be employed advantageously for telerobotics in general. The top level problem is task planning, and it is appropriate to introduce a hierarchical view of control. Presented with certain mission objectives, the system must generate plans (typically) at the strategic, tactical, and reflexive levels. The structure by which knowledge is used to construct and update these plans endows the system with its cognitive attributes, and with the ability to deal with contingencies, changes, unknowns, and so on. Issues of representation and reasoning which are absolutely fundamental to robot manipulation, decisions based upon geometry, are discussed here, not AI task planning per se.

  14. Conformal Robotic Stereolithography

    PubMed Central

    Stevens, Adam G.; Oliver, C. Ryan; Kirchmeyer, Matthieu; Wu, Jieyuan; Chin, Lillian; Polsen, Erik S.; Archer, Chad; Boyle, Casey; Garber, Jenna

    2016-01-01

    Abstract Additive manufacturing by layerwise photopolymerization, commonly called stereolithography (SLA), is attractive due to its high resolution and diversity of materials chemistry. However, traditional SLA methods are restricted to planar substrates and planar layers that are perpendicular to a single-axis build direction. Here, we present a robotic system that is capable of maskless layerwise photopolymerization on curved surfaces, enabling production of large-area conformal patterns and the construction of conformal freeform objects. The system comprises an industrial six-axis robot and a custom-built maskless projector end effector. Use of the system involves creating a mesh representation of the freeform substrate, generation of a triangulated toolpath with curved layers that represents the target object to be printed, precision mounting of the substrate in the robot workspace, and robotic photopatterning of the target object by coordinated motion of the robot and substrate. We demonstrate printing of conformal photopatterns on spheres of various sizes, and construction of miniature three-dimensional objects on spheres without requiring support features. Improvement of the motion accuracy and development of freeform toolpaths would enable construction of polymer objects that surpass the size and support structure constraints imparted by traditional SLA systems. PMID:29577062

  15. The Robot in the Crib: A Developmental Analysis of Imitation Skills in Infants and Robots.

    PubMed

    Demiris, Yiannis; Meltzoff, Andrew

    2008-01-01

    Interesting systems, whether biological or artificial, develop. Starting from some initial conditions, they respond to environmental changes, and continuously improve their capabilities. Developmental psychologists have dedicated significant effort to studying the developmental progression of infant imitation skills, because imitation underlies the infant's ability to understand and learn from his or her social environment. In a converging intellectual endeavour, roboticists have been equipping robots with the ability to observe and imitate human actions because such abilities can lead to rapid teaching of robots to perform tasks. We provide here a comparative analysis between studies of infants imitating and learning from human demonstrators, and computational experiments aimed at equipping a robot with such abilities. We will compare the research across the following two dimensions: (a) initial conditions-what is innate in infants, and what functionality is initially given to robots, and (b) developmental mechanisms-how does the performance of infants improve over time, and what mechanisms are given to robots to achieve equivalent behaviour. Both developmental science and robotics are critically concerned with: (a) how their systems can and do go 'beyond the stimulus' given during the demonstration, and (b) how the internal models used in this process are acquired during the lifetime of the system.

  16. User Needs, Benefits, and Integration of Robotic Systems in a Space Station Laboratory

    NASA Technical Reports Server (NTRS)

    Dodd, W. R.; Badgley, M. B.; Konkel, C. R.

    1989-01-01

    The methodology, results and conclusions of all tasks of the User Needs, Benefits, and Integration Study (UNBIS) of Robotic Systems in a Space Station Laboratory are summarized. Study goals included the determination of user requirements for robotics within the Space Station, United States Laboratory. In Task 1, three experiments were selected to determine user needs and to allow detailed investigation of microgravity requirements. In Task 2, a NASTRAN analysis of Space Station response to robotic disturbances, and acceleration measurement of a standard industrial robot (Intelledex Model 660) resulted in selection of two ranges of microgravity manipulation: Level 1 (10-3 to 10-5 G at greater than 1 Hz) and Level 2 (less than equal 10-6 G at 0.1 Hz). This task included an evaluation of microstepping methods for controlling stepper motors and concluded that an industrial robot actuator can perform milli-G motion without modification. Relative merits of end-effectors and manipulators were studied in Task 3 in order to determine their ability to perform a range of tasks related to the three microgravity experiments. An Effectivity Rating was established for evaluating these robotic system capabilities. Preliminary interface requirements for an orbital flight demonstration were determined in Task 4. Task 5 assessed the impact of robotics.

  17. Intelligent Surveillance Robot with Obstacle Avoidance Capabilities Using Neural Network

    PubMed Central

    2015-01-01

    For specific purpose, vision-based surveillance robot that can be run autonomously and able to acquire images from its dynamic environment is very important, for example, in rescuing disaster victims in Indonesia. In this paper, we propose architecture for intelligent surveillance robot that is able to avoid obstacles using 3 ultrasonic distance sensors based on backpropagation neural network and a camera for face recognition. 2.4 GHz transmitter for transmitting video is used by the operator/user to direct the robot to the desired area. Results show the effectiveness of our method and we evaluate the performance of the system. PMID:26089863

  18. ISAAC - A Testbed for Advanced Composites Research

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.

    2014-01-01

    The NASA Langley Research Center is acquiring a state-of-art composites fabrication environment to support the Center's research and technology development mission. This overall system described in this paper is named ISAAC, or Integrated Structural Assembly of Advanced Composites. ISAAC's initial operational capability is a commercial robotic automated fiber placement system from Electroimpact, Inc. that consists of a multi-degree of freedom commercial robot platform, a tool changer mechanism, and a specialized automated fiber placement end effector. Examples are presented of how development of advanced composite materials, structures, fabrication processes and technology are enabled by utilizing the fiber placement end effector directly or with appropriate modifications. Alternatively, end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.

  19. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    NASA Technical Reports Server (NTRS)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications, NASA is investigating the use of in-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes possible for robotic and human exploration to maximize scientific return and minimize cost and risk to both. Progress made to date at the Johnson Space Center on an ISRU producible reactant, Proton Exchange Membrane (PEM) fuel cell based power plant project to demonstrate the concept in conjunction with rover applications will be presented in detail.

  20. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    NASA Astrophysics Data System (ADS)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications. NASA is investigating the use of In-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes possible for robotic and human exploration to maximize scientific return and minimize cost and risk to both. Progress made to date at the Johnson Space Center on an ISRU producible reactant. Proton Exchange Membrane (PEM) fuel cell based power plant project for use in the first demonstration of this concept in conjunction with rover applications will be presented in detail.

  1. Application of the HeartLander Crawling Robot for Injection of a Thermally Sensitive Anti-Remodeling Agent for Myocardial Infarction Therapy

    PubMed Central

    Chapman, Michael P.; López González, Jose L.; Goyette, Brina E.; Fujimoto, Kazuro L.; Ma, Zuwei; Wagner, William R.; Zenati, Marco A.; Riviere, Cameron N.

    2011-01-01

    The injection of a mechanical bulking agent into the left ventricular (LV) wall of the heart has shown promise as a therapy for maladaptive remodeling of the myocardium after myocardial infarct (MI). The HeartLander robotic crawler presented itself as an ideal vehicle for minimally-invasive, highly accurate epicardial injection of such an agent. Use of the optimal bulking agent, a thermosetting hydrogel developed by our group, presents a number of engineering obstacles, including cooling of the miniaturized injection system while the robot is navigating in the warm environment of a living patient. We present herein a demonstration of an integrated miniature cooling and injection system in the HeartLander crawling robot, that is fully biocompatible and capable of multiple injections of a thermosetting hydrogel into dense animal tissue while the entire system is immersed in a 37°C water bath. PMID:21096276

  2. Using Generative Representations to Evolve Robots. Chapter 1

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.

    2004-01-01

    Recent research has demonstrated the ability of evolutionary algorithms to automatically design both the physical structure and software controller of real physical robots. One of the challenges for these automated design systems is to improve their ability to scale to the high complexities found in real-world problems. Here we claim that for automated design systems to scale in complexity they must use a representation which allows for the hierarchical creation and reuse of modules, which we call a generative representation. Not only is the ability to reuse modules necessary for functional scalability, but it is also valuable for improving efficiency in testing and construction. We then describe an evolutionary design system with a generative representation capable of hierarchical modularity and demonstrate it for the design of locomoting robots in simulation. Finally, results from our experiments show that evolution with our generative representation produces better robots than those evolved with a non-generative representation.

  3. Iconic Gestures for Robot Avatars, Recognition and Integration with Speech.

    PubMed

    Bremner, Paul; Leonards, Ute

    2016-01-01

    Co-verbal gestures are an important part of human communication, improving its efficiency and efficacy for information conveyance. One possible means by which such multi-modal communication might be realized remotely is through the use of a tele-operated humanoid robot avatar. Such avatars have been previously shown to enhance social presence and operator salience. We present a motion tracking based tele-operation system for the NAO robot platform that allows direct transmission of speech and gestures produced by the operator. To assess the capabilities of this system for transmitting multi-modal communication, we have conducted a user study that investigated if robot-produced iconic gestures are comprehensible, and are integrated with speech. Robot performed gesture outcomes were compared directly to those for gestures produced by a human actor, using a within participant experimental design. We show that iconic gestures produced by a tele-operated robot are understood by participants when presented alone, almost as well as when produced by a human. More importantly, we show that gestures are integrated with speech when presented as part of a multi-modal communication equally well for human and robot performances.

  4. Integration of a computerized two-finger gripper for robot workstation safety

    NASA Technical Reports Server (NTRS)

    Sneckenberger, John E.; Yoshikata, Kazuki

    1988-01-01

    A microprocessor-based controller has been developed that continuously monitors and adjusts the gripping force applied by a special two-finger gripper. This computerized force sensing gripper system enables the endeffector gripping action to be independently detected and corrected. The gripping force applied to a manipulated object is real-time monitored for problem situations, situations which can occur during both planned and errant robot arm manipulation. When unspecified force conditions occur at the gripper, the gripping force controller initiates specific reactions to cause dynamic corrections to the continuously variable gripping action. The force controller for this intelligent gripper has been interfaced to the controller of an industrial robot. The gripper and robot controllers communicate to accomplish the successful completion of normal gripper operations as well as unexpected hazardous situations. An example of an unexpected gripping condition would be the sudden deformation of the object being manipulated by the robot. The capabilities of the interfaced gripper-robot system to apply workstation safety measures (e.g., stop the robot) when these unexpected gripping effects occur have been assessed.

  5. 2009 Ground Robotics Capabilities Conference and Exhibition

    DTIC Science & Technology

    2009-03-26

    adaptability to varying social cues and context – ARL via the Robotics Collaborative Technology Alliance program • Autonomy is “conditional” … largely...roadmaps, alliances and robotics organizations have been established to synchronize development efforts • Many emerging robotics capabilities can...Crossing Plan ( B2B ) 1. Target Customer 2. Compelling Reason to Buy 3. Whole Product 4. Partners & Allies 5. Distribution 6. Pricing 7. Competition 8

  6. Bio-applications of ionic polymer metal composite transducers

    NASA Astrophysics Data System (ADS)

    Aw, K. C.; McDaid, A. J.

    2014-07-01

    Traditional robotic actuators have advanced performance which in some aspects can surpass that of humans, however they are lacking when it comes to developing devices which are capable of operating together with humans. Bio-inspired transducers, for example ionic polymer metal composites (IPMC), which have similar properties to human tissue and muscle, demonstrate much future promise as candidates for replacing traditional robotic actuators in medical robotics applications. This paper outlines four biomedical robotics applications, an IPMC stepper motor, an assistive glove exoskeleton/prosthetic hand, a surgical robotic tool and a micromanipulation system. These applications have been developed using mechanical design/modelling techniques with IPMC ‘artificial muscle’ as the actuation system. The systems are designed by first simulating the performance using an IPMC model and dynamic models of the mechanical system; the appropriate advanced adaptive control schemes are then implemented to ensure that the IPMCs operate in the correct manner, robustly over time. This paper serves as an overview of the applications and concludes with some discussion on the future challenges of developing real-world IPMC applications.

  7. Hopping robot

    DOEpatents

    Spletzer, Barry L.; Fischer, Gary J.; Marron, Lisa C.; Martinez, Michael A.; Kuehl, Michael A.; Feddema, John T.

    2001-01-01

    The present invention provides a hopping robot that includes a misfire tolerant linear actuator suitable for long trips, low energy steering and control, reliable low energy righting, miniature low energy fuel control. The present invention provides a robot with hopping mobility, capable of traversing obstacles significant in size relative to the robot and capable of operation on unpredictable terrain over long range. The present invention further provides a hopping robot with misfire-tolerant combustion actuation, and with combustion actuation suitable for use in oxygen-poor environments.

  8. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.

    PubMed

    Abels, C; Qualtieri, A; De Vittorio, M; Megill, W M; Rizzi, F

    2016-06-03

    To enhance today's artificial flow sensing capabilities in aerial and underwater robotics, future robots could be equipped with a large number of miniaturized sensors distributed over the surface to provide high resolution measurement of the surrounding fluid flow. In this work we show a linear array of closely separated bio-inspired micro-electro-mechanical flow sensors whose sensing mechanism is based on a piezoresistive strain-gauge along a stress-driven cantilever beam, mimicking the biological superficial neuromasts found in the lateral line organ of fishes. Aiming to improve state-of-the-art flow sensing capability in autonomously flying and swimming robots, our artificial lateral line system was designed and developed to feature multi-parameter freestream flow measurements which provide information about (1) local flow velocities as measured by the signal amplitudes from the individual cantilevers as well as (2) propagation velocity, (3) linear forward/backward direction along the cantilever beam orientation and (4) periodicity of pulses or pulse trains determined by cross-correlating sensor signals. A real-time capable cross-correlation procedure was developed which makes it possible to extract freestream flow direction and velocity information from flow fluctuations. The computed flow velocities deviate from a commercial system by 0.09 m s(-1) at 0.5 m s(-1) and 0.15 m s(-1) at 1.0 m s(-1) flow velocity for a sampling rate of 240 Hz and a sensor distance of 38 mm. Although experiments were performed in air, the presented flow sensing system can be applied to underwater vehicles as well, once the sensors are embedded in a waterproof micro-electro-mechanical systems package.

  9. Octopus-inspired multi-arm robotic swimming.

    PubMed

    Sfakiotakis, M; Kazakidi, A; Tsakiris, D P

    2015-05-13

    The outstanding locomotor and manipulation characteristics of the octopus have recently inspired the development, by our group, of multi-functional robotic swimmers, featuring both manipulation and locomotion capabilities, which could be of significant engineering interest in underwater applications. During its little-studied arm-swimming behavior, as opposed to the better known jetting via the siphon, the animal appears to generate considerable propulsive thrust and rapid acceleration, predominantly employing movements of its arms. In this work, we capture the fundamental characteristics of the corresponding complex pattern of arm motion by a sculling profile, involving a fast power stroke and a slow recovery stroke. We investigate the propulsive capabilities of a multi-arm robotic system under various swimming gaits, namely patterns of arm coordination, which achieve the generation of forward, as well as backward, propulsion and turning. A lumped-element model of the robotic swimmer, which considers arm compliance and the interaction with the aquatic environment, was used to study the characteristics of these gaits, the effect of various kinematic parameters on propulsion, and the generation of complex trajectories. This investigation focuses on relatively high-stiffness arms. Experiments employing a compliant-body robotic prototype swimmer with eight compliant arms, all made of polyurethane, inside a water tank, successfully demonstrated this novel mode of underwater propulsion. Speeds of up to 0.26 body lengths per second (approximately 100 mm s(-1)), and propulsive forces of up to 3.5 N were achieved, with a non-dimensional cost of transport of 1.42 with all eight arms and of 0.9 with only two active arms. The experiments confirmed the computational results and verified the multi-arm maneuverability and simultaneous object grasping capability of such systems.

  10. Robonaut: A Robotic Astronaut Assistant

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O.; Diftler, Myron A.

    2001-01-01

    NASA's latest anthropomorphic robot, Robonaut, has reached a milestone in its capability. This highly dexterous robot, designed to assist astronauts in space, is now performing complex tasks at the Johnson Space Center that could previously only be carried out by humans. With 43 degrees of freedom, Robonaut is the first humanoid built for space and incorporates technology advances in dexterous hands, modular manipulators, lightweight materials, and telepresence control systems. Robonaut is human size, has a three degree of freedom (DOF) articulated waist, and two, seven DOF arms, giving it an impressive work space for interacting with its environment. Its two, five fingered hands allow manipulation of a wide range of tools. A pan/tilt head with multiple stereo camera systems provides data for both teleoperators and computer vision systems.

  11. A Compact Magnetic Field-Based Obstacle Detection and Avoidance System for Miniature Spherical Robots.

    PubMed

    Wu, Fang; Vibhute, Akash; Soh, Gim Song; Wood, Kristin L; Foong, Shaohui

    2017-05-28

    Due to their efficient locomotion and natural tolerance to hazardous environments, spherical robots have wide applications in security surveillance, exploration of unknown territory and emergency response. Numerous studies have been conducted on the driving mechanism, motion planning and trajectory tracking methods of spherical robots, yet very limited studies have been conducted regarding the obstacle avoidance capability of spherical robots. Most of the existing spherical robots rely on the "hit and run" technique, which has been argued to be a reasonable strategy because spherical robots have an inherent ability to recover from collisions. Without protruding components, they will not become stuck and can simply roll back after running into bstacles. However, for small scale spherical robots that contain sensitive surveillance sensors and cannot afford to utilize heavy protective shells, the absence of obstacle avoidance solutions would leave the robot at the mercy of potentially dangerous obstacles. In this paper, a compact magnetic field-based obstacle detection and avoidance system has been developed for miniature spherical robots. It utilizes a passive magnetic field so that the system is both compact and power efficient. The proposed system can detect not only the presence, but also the approaching direction of a ferromagnetic obstacle, therefore, an intelligent avoidance behavior can be generated by adapting the trajectory tracking method with the detection information. Design optimization is conducted to enhance the obstacle detection performance and detailed avoidance strategies are devised. Experimental results are also presented for validation purposes.

  12. Design and Integration for High Performance Robotic Systems Based on Decomposition and Hybridization Approaches

    PubMed Central

    Zhang, Dan; Wei, Bin

    2017-01-01

    Currently, the uses of robotics are limited with respect to performance capabilities. Improving the performance of robotic mechanisms is and still will be the main research topic in the next decade. In this paper, design and integration for improving performance of robotic systems are achieved through three different approaches, i.e., structure synthesis design approach, dynamic balancing approach, and adaptive control approach. The purpose of robotic mechanism structure synthesis design is to propose certain mechanism that has better kinematic and dynamic performance as compared to the old ones. For the dynamic balancing design approach, it is normally accomplished based on employing counterweights or counter-rotations. The potential issue is that more weight and inertia will be included in the system. Here, reactionless based on the reconfiguration concept is put forward, which can address the mentioned problem. With the mechanism reconfiguration, the control system needs to be adapted thereafter. One way to address control system adaptation is by applying the “divide and conquer” methodology. It entails modularizing the functionalities: breaking up the control functions into small functional modules, and from those modules assembling the control system according to the changing needs of the mechanism. PMID:28075360

  13. Autonomous mobile robot for radiologic surveys

    DOEpatents

    Dudar, A.M.; Wagner, D.G.; Teese, G.D.

    1994-06-28

    An apparatus is described for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm. 5 figures.

  14. Autonomous mobile robot for radiologic surveys

    DOEpatents

    Dudar, Aed M.; Wagner, David G.; Teese, Gregory D.

    1994-01-01

    An apparatus for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm.

  15. Obstacle negotiation control for a mobile robot suspended on overhead ground wires by optoelectronic sensors

    NASA Astrophysics Data System (ADS)

    Zheng, Li; Yi, Ruan

    2009-11-01

    Power line inspection and maintenance already benefit from developments in mobile robotics. This paper presents mobile robots capable of crossing obstacles on overhead ground wires. A teleoperated robot realizes inspection and maintenance tasks on power transmission line equipment. The inspection robot is driven by 11 motor with two arms, two wheels and two claws. The inspection robot is designed to realize the function of observation, grasp, walk, rolling, turn, rise, and decline. This paper is oriented toward 100% reliable obstacle detection and identification, and sensor fusion to increase the autonomy level. An embedded computer based on PC/104 bus is chosen as the core of control system. Visible light camera and thermal infrared Camera are both installed in a programmable pan-and-tilt camera (PPTC) unit. High-quality visual feedback rapidly becomes crucial for human-in-the-loop control and effective teleoperation. The communication system between the robot and the ground station is based on Mesh wireless networks by 700 MHz bands. An expert system programmed with Visual C++ is developed to implement the automatic control. Optoelectronic laser sensors and laser range scanner were installed in robot for obstacle-navigation control to grasp the overhead ground wires. A novel prototype with careful considerations on mobility was designed to inspect the 500KV power transmission lines. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  16. Embedded object concept with a telepresence robot system

    NASA Astrophysics Data System (ADS)

    Vallius, Tero; Röning, Juha

    2005-10-01

    This paper presents the Embedded Object Concept (EOC) and a telepresence robot system which is a test case for the EOC. The EOC utilizes common object-oriented methods used in software by applying them to combined Lego-like software-hardware entities. These entities represent objects in object-oriented design methods, and they are the building blocks of embedded systems. The goal of the EOC is to make the designing of embedded systems faster and easier. This concept enables people without comprehensive knowledge in electronics design to create new embedded systems, and for experts it shortens the design time of new embedded systems. We present the current status of the EOC, including two generations of embedded objects named Atomi objects. The first generation of the Atomi objects has been tested with different applications, and found to be functional, but not optimal. The second generation aims to correct the issues found with the first generation, and it is being tested in a relatively complex test case. The test case is a telepresence robot consisting of a two wheeled human height robot and its computer counter part. The robot has been constructed using incremental device development, which is made possible by the architecture of the EOC. The robot contains video and audio exchange capability, and a controlling and balancing system for driving with two wheels. The robot is built in two versions, the first consisting of a PDA device and Atomi objects, and the second consisting of only Atomi objects. The robot is currently incomplete, but for the most part it has been successfully tested.

  17. Human-Automation Allocations for Current Robotic Space Operations

    NASA Technical Reports Server (NTRS)

    Marquez, Jessica J.; Chang, Mai L.; Beard, Bettina L.; Kim, Yun Kyung; Karasinski, John A.

    2018-01-01

    Within the Human Research Program, one risk delineates the uncertainty surrounding crew working with automation and robotics in spaceflight. The Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI) is concerned with the detrimental effects on crew performance due to ineffective user interfaces, system designs and/or functional task allocation, potentially compromising mission success and safety. Risk arises because we have limited experience with complex automation and robotics. One key gap within HARI, is the gap related to functional allocation. The gap states: We need to evaluate, develop, and validate methods and guidelines for identifying human-automation/robot task information needs, function allocation, and team composition for future long duration, long distance space missions. Allocations determine the human-system performance as it identifies the functions and performance levels required by the automation/robotic system, and in turn, what work the crew is expected to perform and the necessary human performance requirements. Allocations must take into account each of the human, automation, and robotic systems capabilities and limitations. Some functions may be intuitively assigned to the human versus the robot, but to optimize efficiency and effectiveness, purposeful role assignments will be required. The role of automation and robotics will significantly change in future exploration missions, particularly as crew becomes more autonomous from ground controllers. Thus, we must understand the suitability of existing function allocation methods within NASA as well as the existing allocations established by the few robotic systems that are operational in spaceflight. In order to evaluate future methods of robotic allocations, we must first benchmark the allocations and allocation methods that have been used. We will present 1) documentation of human-automation-robotic allocations in existing, operational spaceflight systems; and 2) To gather existing lessons learned and best practices in these role assignments, from spaceflight operational experience of crew and ground teams that may be used to guide development for future systems. NASA and other space agencies have operational spaceflight experience with two key Human-Automation-Robotic (HAR) systems: heavy lift robotic arms and planetary robotic explorers. Additionally, NASA has invested in high-fidelity rover systems that can carry crew, building beyond Apollo's lunar rover. The heavy lift robotic arms reviewed are: Space Station Remote Manipulator System (SSRMS), Japanese Remote Manipulator System (JEMRMS), and the European Robotic Arm (ERA, designed but not deployed in space). The robotic rover systems reviewed are: Mars Exploration Rovers, Mars Science Laboratory rover, and the high-fidelity K10 rovers. Much of the design and operational feedback for these systems have been communicated to flight controllers and robotic design teams. As part of the mitigating the HARI risk for future human spaceflight operations, we must document function allocations between robots and humans that have worked well in practice.

  18. Semantic Likelihood Models for Bayesian Inference in Human-Robot Interaction

    NASA Astrophysics Data System (ADS)

    Sweet, Nicholas

    Autonomous systems, particularly unmanned aerial systems (UAS), remain limited in au- tonomous capabilities largely due to a poor understanding of their environment. Current sensors simply do not match human perceptive capabilities, impeding progress towards full autonomy. Recent work has shown the value of humans as sources of information within a human-robot team; in target applications, communicating human-generated 'soft data' to autonomous systems enables higher levels of autonomy through large, efficient information gains. This requires development of a 'human sensor model' that allows soft data fusion through Bayesian inference to update the probabilistic belief representations maintained by autonomous systems. Current human sensor models that capture linguistic inputs as semantic information are limited in their ability to generalize likelihood functions for semantic statements: they may be learned from dense data; they do not exploit the contextual information embedded within groundings; and they often limit human input to restrictive and simplistic interfaces. This work provides mechanisms to synthesize human sensor models from constraints based on easily attainable a priori knowledge, develops compression techniques to capture information-dense semantics, and investigates the problem of capturing and fusing semantic information contained within unstructured natural language. A robotic experimental testbed is also developed to validate the above contributions.

  19. Ground Robotics Capabilities Conference and Exhibition Held in Miami, Florida on March 16-18, 2010

    DTIC Science & Technology

    2010-03-18

    Underwater Vehicle Environmentally Non-Disturbing Under- ice Robotic Antarctic Explorer (ENDURANCE) 4/10/07 Elachi ASU 23 Possible future submersible...seeking liquid water on Europa or Enceladus 1 Ground Robotics Capability Conference and Exhibit Mr. George Solhan Office of Naval Research Code 30

  20. Research and applications: Artificial intelligence

    NASA Technical Reports Server (NTRS)

    Raphael, B.; Duda, R. O.; Fikes, R. E.; Hart, P. E.; Nilsson, N. J.; Thorndyke, P. W.; Wilber, B. M.

    1971-01-01

    Research in the field of artificial intelligence is discussed. The focus of recent work has been the design, implementation, and integration of a completely new system for the control of a robot that plans, learns, and carries out tasks autonomously in a real laboratory environment. The computer implementation of low-level and intermediate-level actions; routines for automated vision; and the planning, generalization, and execution mechanisms are reported. A scenario that demonstrates the approximate capabilities of the current version of the entire robot system is presented.

  1. Visual and tactile interfaces for bi-directional human robot communication

    NASA Astrophysics Data System (ADS)

    Barber, Daniel; Lackey, Stephanie; Reinerman-Jones, Lauren; Hudson, Irwin

    2013-05-01

    Seamless integration of unmanned and systems and Soldiers in the operational environment requires robust communication capabilities. Multi-Modal Communication (MMC) facilitates achieving this goal due to redundancy and levels of communication superior to single mode interaction using auditory, visual, and tactile modalities. Visual signaling using arm and hand gestures is a natural method of communication between people. Visual signals standardized within the U.S. Army Field Manual and in use by Soldiers provide a foundation for developing gestures for human to robot communication. Emerging technologies using Inertial Measurement Units (IMU) enable classification of arm and hand gestures for communication with a robot without the requirement of line-of-sight needed by computer vision techniques. These devices improve the robustness of interpreting gestures in noisy environments and are capable of classifying signals relevant to operational tasks. Closing the communication loop between Soldiers and robots necessitates them having the ability to return equivalent messages. Existing visual signals from robots to humans typically require highly anthropomorphic features not present on military vehicles. Tactile displays tap into an unused modality for robot to human communication. Typically used for hands-free navigation and cueing, existing tactile display technologies are used to deliver equivalent visual signals from the U.S. Army Field Manual. This paper describes ongoing research to collaboratively develop tactile communication methods with Soldiers, measure classification accuracy of visual signal interfaces, and provides an integration example including two robotic platforms.

  2. Robot-assisted vitreoretinal surgery: current perspectives

    PubMed Central

    Roizenblatt, Marina; Edwards, Thomas L; Gehlbach, Peter L

    2018-01-01

    Vitreoretinal microsurgery is among the most technically challenging of the minimally invasive surgical techniques. Exceptional precision is required to operate on micron scale targets presented by the retina while also maneuvering in a tightly constrained and fragile workspace. These challenges are compounded by inherent limitations of the unassisted human hand with regard to dexterity, tremor and precision in positioning instruments. The limited human ability to visually resolve targets on the single-digit micron scale is a further limitation. The inherent attributes of robotic approaches therefore, provide logical, strategic and promising solutions to the numerous challenges associated with retinal microsurgery. Robotic retinal surgery is a rapidly emerging technology that has witnessed an exponential growth in capabilities and applications over the last decade. There is now a worldwide movement toward evaluating robotic systems in an expanding number of clinical applications. Coincident with this expanding application is growth in the number of laboratories committed to “robotic medicine”. Recent technological advances in conventional retina surgery have also led to tremendous progress in the surgeon’s capabilities, enhanced outcomes, a reduction of patient discomfort, limited hospitalization and improved safety. The emergence of robotic technology into this rapidly advancing domain is expected to further enhance important aspects of the retinal surgery experience for the patients, surgeons and society. PMID:29527537

  3. Robot-assisted vitreoretinal surgery: current perspectives.

    PubMed

    Roizenblatt, Marina; Edwards, Thomas L; Gehlbach, Peter L

    2018-01-01

    Vitreoretinal microsurgery is among the most technically challenging of the minimally invasive surgical techniques. Exceptional precision is required to operate on micron scale targets presented by the retina while also maneuvering in a tightly constrained and fragile workspace. These challenges are compounded by inherent limitations of the unassisted human hand with regard to dexterity, tremor and precision in positioning instruments. The limited human ability to visually resolve targets on the single-digit micron scale is a further limitation. The inherent attributes of robotic approaches therefore, provide logical, strategic and promising solutions to the numerous challenges associated with retinal microsurgery. Robotic retinal surgery is a rapidly emerging technology that has witnessed an exponential growth in capabilities and applications over the last decade. There is now a worldwide movement toward evaluating robotic systems in an expanding number of clinical applications. Coincident with this expanding application is growth in the number of laboratories committed to "robotic medicine". Recent technological advances in conventional retina surgery have also led to tremendous progress in the surgeon's capabilities, enhanced outcomes, a reduction of patient discomfort, limited hospitalization and improved safety. The emergence of robotic technology into this rapidly advancing domain is expected to further enhance important aspects of the retinal surgery experience for the patients, surgeons and society.

  4. Developing a telepresence robot for interpersonal communication with the elderly in a home environment.

    PubMed

    Tsai, Tzung-Cheng; Hsu, Yeh-Liang; Ma, An-I; King, Trevor; Wu, Chang-Huei

    2007-08-01

    "Telepresence" is an interesting field that includes virtual reality implementations with human-system interfaces, communication technologies, and robotics. This paper describes the development of a telepresence robot called Telepresence Robot for Interpersonal Communication (TRIC) for the purpose of interpersonal communication with the elderly in a home environment. The main aim behind TRIC's development is to allow elderly populations to remain in their home environments, while loved ones and caregivers are able to maintain a higher level of communication and monitoring than via traditional methods. TRIC aims to be a low-cost, lightweight robot, which can be easily implemented in the home environment. Under this goal, decisions on the design elements included are discussed. In particular, the implementation of key autonomous behaviors in TRIC to increase the user's capability of projection of self and operation of the telepresence robot, in addition to increasing the interactive capability of the participant as a dialogist are emphasized. The technical development and integration of the modules in TRIC, as well as human factors considerations are then described. Preliminary functional tests show that new users were able to effectively navigate TRIC and easily locate visual targets. Finally the future developments of TRIC, especially the possibility of using TRIC for home tele-health monitoring and tele-homecare visits are discussed.

  5. Robotics in near-earth space

    NASA Technical Reports Server (NTRS)

    Card, Michael E.

    1991-01-01

    The areas of space exploration in which robotic devices will play a part are identified, and progress to date in the space agency plans to acquire this capability is briefly reviewed. Roles and functions on orbit for robotic devices include well known activities, such as inspection and maintenance, assembly, docking, berthing, deployment, retrieval, materials handling, orbital replacement unit exchange, and repairs. Missions that could benefit from a robotic capability are discussed.

  6. Affect in Human-Robot Interaction

    DTIC Science & Technology

    2014-01-01

    is capable of learning and producing a large number of facial expressions based on Ekman’s Facial Action Coding System, FACS (Ekman and Friesen 1978... tactile (pushed, stroked, etc.), auditory (loud sound), temperature and olfactory (alcohol, smoke, etc.). The personality of the robot consists of...robot’s behavior through decision-making, learning , or action selection, a number of researchers used the fuzzy logic approach to emotion generation

  7. Sliding GAIT Algorithm for the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE)

    NASA Technical Reports Server (NTRS)

    Townsend, Julie; Biesiadecki, Jeffrey

    2012-01-01

    The design of a surface robotic system typically involves a trade between the traverse speed of a wheeled rover and the terrain-negotiating capabilities of a multi-legged walker. The ATHLETE mobility system, with both articulated limbs and wheels, is uniquely capable of both driving and walking, and has the flexibility to employ additional hybrid mobility modes. This paper introduces the Sliding Gait, an intermediate mobility algorithm faster than walking with better terrain-handling capabilities than wheeled mobility.

  8. Automation and robotics - Key to productivity. [in industry and space

    NASA Technical Reports Server (NTRS)

    Cohen, A.

    1985-01-01

    The automated and robotic systems requirements of the NASA Space Station are prompted by maintenance, repair, servicing and assembly requirements. Trend analyses, fault diagnoses, and subsystem status assessments for the Station's electrical power, guidance, navigation, control, data management and environmental control subsystems will be undertaken by cybernetic expert systems; this will reduce or eliminate on-board or ground facility activities that would otherwise be essential, enhancing system productivity. Additional capabilities may also be obtained through the incorporation of even a limited amount of artificial intelligence in the controllers of the various Space Station systems.

  9. An efficient temporal logic for robotic task planning

    NASA Technical Reports Server (NTRS)

    Becker, Jeffrey M.

    1989-01-01

    Computations required for temporal reasoning can be prohibitively expensive if fully general representations are used. Overly simple representations, such as totally ordered sequence of time points, are inadequate for use in a nonlinear task planning system. A middle ground is identified which is general enough to support a capable nonlinear task planner, but specialized enough that the system can support online task planning in real time. A Temporal Logic System (TLS) was developed during the Intelligent Task Automation (ITA) project to support robotic task planning. TLS is also used within the ITA system to support plan execution, monitoring, and exception handling.

  10. Evidence Report, Risk of Inadequate Design of Human and Automation/Robotic Integration

    NASA Technical Reports Server (NTRS)

    Zumbado, Jennifer Rochlis; Billman, Dorrit; Feary, Mike; Green, Collin

    2011-01-01

    The success of future exploration missions depends, even more than today, on effective integration of humans and technology (automation and robotics). This will not emerge by chance, but by design. Both crew and ground personnel will need to do more demanding tasks in more difficult conditions, amplifying the costs of poor design and the benefits of good design. This report has looked at the importance of good design and the risks from poor design from several perspectives: 1) If the relevant functions needed for a mission are not identified, then designs of technology and its use by humans are unlikely to be effective: critical functions will be missing and irrelevant functions will mislead or drain attention. 2) If functions are not distributed effectively among the (multiple) participating humans and automation/robotic systems, later design choices can do little to repair this: additional unnecessary coordination work may be introduced, workload may be redistributed to create problems, limited human attentional resources may be wasted, and the capabilities of both humans and technology underused. 3) If the design does not promote accurate understanding of the capabilities of the technology, the operators will not use the technology effectively: the system may be switched off in conditions where it would be effective, or used for tasks or in contexts where its effectiveness may be very limited. 4) If an ineffective interaction design is implemented and put into use, a wide range of problems can ensue. Many involve lack of transparency into the system: operators may be unable or find it very difficult to determine a) the current state and changes of state of the automation or robot, b) the current state and changes in state of the system being controlled or acted on, and c) what actions by human or by system had what effects. 5) If the human interfaces for operation and control of robotic agents are not designed to accommodate the unique points of view and operating environments of both the human and the robotic agent, then effective human-robot coordination cannot be achieved.

  11. Real Time Target Tracking Using Dedicated Vision Hardware

    NASA Astrophysics Data System (ADS)

    Kambies, Keith; Walsh, Peter

    1988-03-01

    This paper describes a real-time vision target tracking system developed by Adaptive Automation, Inc. and delivered to NASA's Launch Equipment Test Facility, Kennedy Space Center, Florida. The target tracking system is part of the Robotic Application Development Laboratory (RADL) which was designed to provide NASA with a general purpose robotic research and development test bed for the integration of robot and sensor systems. One of the first RADL system applications is the closing of a position control loop around a six-axis articulated arm industrial robot using a camera and dedicated vision processor as the input sensor so that the robot can locate and track a moving target. The vision system is inside of the loop closure of the robot tracking system, therefore, tight throughput and latency constraints are imposed on the vision system that can only be met with specialized hardware and a concurrent approach to the processing algorithms. State of the art VME based vision boards capable of processing the image at frame rates were used with a real-time, multi-tasking operating system to achieve the performance required. This paper describes the high speed vision based tracking task, the system throughput requirements, the use of dedicated vision hardware architecture, and the implementation design details. Important to the overall philosophy of the complete system was the hierarchical and modular approach applied to all aspects of the system, hardware and software alike, so there is special emphasis placed on this topic in the paper.

  12. Solar Thermal Utility-Scale Joint Venture Program (USJVP) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANCINI,THOMAS R.

    2001-04-01

    Several years ago Sandia National Laboratories developed a prototype interior robot [1] that could navigate autonomously inside a large complex building to aid and test interior intrusion detection systems. Recently the Department of Energy Office of Safeguards and Security has supported the development of a vehicle that will perform limited security functions autonomously in a structured exterior environment. The goal of the first phase of this project was to demonstrate the feasibility of an exterior robotic vehicle for security applications by using converted interior robot technology, if applicable. An existing teleoperational test bed vehicle with remote driving controls was modifiedmore » and integrated with a newly developed command driving station and navigation system hardware and software to form the Robotic Security Vehicle (RSV) system. The RSV, also called the Sandia Mobile Autonomous Navigator (SANDMAN), has been successfully used to demonstrate that teleoperated security vehicles which can perform limited autonomous functions are viable and have the potential to decrease security manpower requirements and improve system capabilities.« less

  13. Development and demonstration of a telerobotic excavation system

    NASA Technical Reports Server (NTRS)

    Burks, Barry L.; Thompson, David H.; Killough, Stephen M.; Dinkins, Marion A.

    1994-01-01

    Oak Ridge National Laboratory is developing remote excavation technologies for the Department of Energy's Office (DOE) of Technology Development, Robotics Technology Development Program, and also for the Department of Defense (DOD) Project Manager for Ammunition Logistics. This work is being done to meet the need for remote excavation and removal of radioactive and contaminated buried waste at several DOE sites and unexploded ordnance at DOD sites. System requirements are based on the need to uncover and remove waste from burial sites in a way that does not cause unnecessary personnel exposure or additional environmental contamination. Goals for the current project are to demonstrate dexterous control of a backhoe with force feedback and to implement robotic operations that will improve productivity. The Telerobotic Small Emplacement Excavator is a prototype system that incorporates the needed robotic and telerobotic capabilities on a commercially available platform. The ability to add remote dexterous teleoperation and robotic operating modes is intended to be adaptable to other commercially available excavator systems.

  14. Robustly stable adaptive control of a tandem of master-slave robotic manipulators with force reflection by using a multiestimation scheme.

    PubMed

    Ibeas, Asier; de la Sen, Manuel

    2006-10-01

    The problem of controlling a tandem of robotic manipulators composing a teleoperation system with force reflection is addressed in this paper. The final objective of this paper is twofold: 1) to design a robust control law capable of ensuring closed-loop stability for robots with uncertainties and 2) to use the so-obtained control law to improve the tracking of each robot to its corresponding reference model in comparison with previously existing controllers when the slave is interacting with the obstacle. In this way, a multiestimation-based adaptive controller is proposed. Thus, the master robot is able to follow more accurately the constrained motion defined by the slave when interacting with an obstacle than when a single-estimation-based controller is used, improving the transparency property of the teleoperation scheme. The closed-loop stability is guaranteed if a minimum residence time, which might be updated online when unknown, between different controller parameterizations is respected. Furthermore, the analysis of the teleoperation and stability capabilities of the overall scheme is carried out. Finally, some simulation examples showing the working of the multiestimation scheme complete this paper.

  15. Kinematic evaluation of mobile robotic platforms for overground gait neurorehabilitation

    NASA Astrophysics Data System (ADS)

    Alias, N. Akmal; Huq, M. Saiful; Ibrahim, B. S. K. K.; Omar, Rosli

    2017-09-01

    Gait assistive devices offer a great solution to the walking re-education which reduce patients theoretical limit by aiding the anatomical joints to be in line with the rehabilitation session. Overground gait training, which is differs significantly from body-weight supported treadmill training in many aspects, essentially consists of a mobile robotic base to support the subject securely (usually with overhead harness) while its motion and orientation is controlled seamlessly to facilitate subjects free movement. In this study, efforts have been made for evaluation of both holonomic and nonholonomic drives, the outcome of which may constitute the primarily results to the effective approach in designing a robotic platform for the mobile rehabilitation robot. The sets of kinematic equations are derived using typical geometries of two different drives. The results indicate that omnidirectional mecanum wheel platform is capable for more sophisticated discipline. Although the differential drive platform happens to be more simple and easy to construct, but it is less desirable as it has limited number of motions applicable to the system. The omnidirectional robot consisting of mecanum wheels, which is classified as holonomic is potentially the best solution in terms of its capability to move in arbitrary direction without concerning the changing of wheel's direction.

  16. Advances in Robotic Servicing Technology Development

    NASA Technical Reports Server (NTRS)

    Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin

    2015-01-01

    NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and near Earth asteroid boulder retrieval; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.

  17. Advances in Robotic Servicing Technology Development

    NASA Technical Reports Server (NTRS)

    Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin

    2015-01-01

    NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and asteroid redirection; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.

  18. Automation and robotics for Space Station in the twenty-first century

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.; Pivirotto, D. L.

    1986-01-01

    Space Station telerobotics will evolve beyond the initial capability into a smarter and more capable system as we enter the twenty-first century. Current technology programs including several proposed ground and flight experiments to enable development of this system are described. Advancements in the areas of machine vision, smart sensors, advanced control architecture, manipulator joint design, end effector design, and artificial intelligence will provide increasingly more autonomous telerobotic systems.

  19. Remote-controlled vision-guided mobile robot system

    NASA Astrophysics Data System (ADS)

    Ande, Raymond; Samu, Tayib; Hall, Ernest L.

    1997-09-01

    Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of the remote controlled emergency stop and vision systems for an autonomous mobile robot. The remote control provides human supervision and emergency stop capabilities for the autonomous vehicle. The vision guidance provides automatic operation. A mobile robot test-bed has been constructed using a golf cart base. The mobile robot (Bearcat) was built for the Association for Unmanned Vehicle Systems (AUVS) 1997 competition. The mobile robot has full speed control with guidance provided by a vision system and an obstacle avoidance system using ultrasonic sensors systems. Vision guidance is accomplished using two CCD cameras with zoom lenses. The vision data is processed by a high speed tracking device, communicating with the computer the X, Y coordinates of blobs along the lane markers. The system also has three emergency stop switches and a remote controlled emergency stop switch that can disable the traction motor and set the brake. Testing of these systems has been done in the lab as well as on an outside test track with positive results that show that at five mph the vehicle can follow a line and at the same time avoid obstacles.

  20. Multiresponsive Kinematics and Robotics of Surface-Patterned Polymer Film.

    PubMed

    Liang, Shumin; Qiu, Xiaxin; Yuan, Jun; Huang, Wei; Du, Xuemin; Zhang, Lidong

    2018-06-06

    Soft robots, sensors, and energy harvesters require materials that are capable of converting external stimuli to visible deformations, especially when shape-programmable deformations are desired. Herein, we develop a polymer film that can reversibly respond to humidity, heating, and acetone vapors with the generation of shape-programmable large deformations. Poly(vinylidene fluoride) film, capable of providing acetone responsiveness, is designed with microchannel patterns created on its one side by using templates, and the microchannels-patterned side is then treated with hygroscopic 3-aminopropyltriethoxysilane (APTES) to give humidity/heating-responsive elements. The APTES-modified microchannels lead to anisotropic flexural modulus and hygroscopicity in the film, resulting in the shape-programmed kinematics depending on the orientations of surface microchannels. As the microchannels align at oblique/right angles with respect to the long axis of the film strips, the coiling/curling motions can be generated in response to the stimuli, and the better motion performances are found in humidity- and heating-driven systems. This material utilized in self-adaptive soft robots exhibits prominent toughness, powerful strength, and long endurance for converting humidity and heat to mechanical works including transportation of lightweight objects, automatic sensing cap, and mimicking crawling in nature. We thus believe that this material with shape-programmable multisensing capability might be suitable for soft machines and robotics.

  1. Monocular-Based 6-Degree of Freedom Pose Estimation Technology for Robotic Intelligent Grasping Systems

    PubMed Central

    Liu, Tao; Guo, Yin; Yang, Shourui; Yin, Shibin; Zhu, Jigui

    2017-01-01

    Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF) pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments. PMID:28216555

  2. Monocular-Based 6-Degree of Freedom Pose Estimation Technology for Robotic Intelligent Grasping Systems.

    PubMed

    Liu, Tao; Guo, Yin; Yang, Shourui; Yin, Shibin; Zhu, Jigui

    2017-02-14

    Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF) pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments.

  3. Autonomous stair-climbing with miniature jumping robots.

    PubMed

    Stoeter, Sascha A; Papanikolopoulos, Nikolaos

    2005-04-01

    The problem of vision-guided control of miniature mobile robots is investigated. Untethered mobile robots with small physical dimensions of around 10 cm or less do not permit powerful onboard computers because of size and power constraints. These challenges have, in the past, reduced the functionality of such devices to that of a complex remote control vehicle with fancy sensors. With the help of a computationally more powerful entity such as a larger companion robot, the control loop can be closed. Using the miniature robot's video transmission or that of an observer to localize it in the world, control commands can be computed and relayed to the inept robot. The result is a system that exhibits autonomous capabilities. The framework presented here solves the problem of climbing stairs with the miniature Scout robot. The robot's unique locomotion mode, the jump, is employed to hop one step at a time. Methods for externally tracking the Scout are developed. A large number of real-world experiments are conducted and the results discussed.

  4. STARR: shortwave-targeted agile Raman robot for the detection and identification of emplaced explosives

    NASA Astrophysics Data System (ADS)

    Gomer, Nathaniel R.; Gardner, Charles W.

    2014-05-01

    In order to combat the threat of emplaced explosives (land mines, etc.), ChemImage Sensor Systems (CISS) has developed a multi-sensor, robot mounted sensor capable of identification and confirmation of potential threats. The system, known as STARR (Shortwave-infrared Targeted Agile Raman Robot), utilizes shortwave infrared spectroscopy for the identification of potential threats, combined with a visible short-range standoff Raman hyperspectral imaging (HSI) system for material confirmation. The entire system is mounted onto a Talon UGV (Unmanned Ground Vehicle), giving the sensor an increased area search rate and reducing the risk of injury to the operator. The Raman HSI system utilizes a fiber array spectral translator (FAST) for the acquisition of high quality Raman chemical images, allowing for increased sensitivity and improved specificity. An overview of the design and operation of the system will be presented, along with initial detection results of the fusion sensor.

  5. Robotic Manufacturing of 18-ft (5.5m) Diameter Cryogenic Fuel Tank Dome Assemblies for the NASA Ares I Rocket

    NASA Technical Reports Server (NTRS)

    Jones, Ronald E.; Carter, Robert W.

    2012-01-01

    The Ares I rocket was the first launch vehicle scheduled for manufacture under the National Aeronautic and Space Administration's Constellation program. A series of full-scale Ares I development articles were constructed on the Robotic Weld Tool at the NASA George C. Marshall Space Flight Center in Huntsville, Alabama. The Robotic Weld Tool is a 100 ton, 7- axis, robotic manufacturing system capable of machining and friction stir welding large-scale space hardware. This paper will focus on the friction stir welding of 18-ft (5.5m) diameter cryogenic fuel tank components; specifically, the liquid hydrogen forward dome and two common bulkhead manufacturing development articles.

  6. The Ion Propulsion System for the Asteroid Redirect Robotic Mission

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Sekerak, Michael

    2016-01-01

    The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA's future beyond-low-Earth-orbit, human-crewed exploration plans. This presentation presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.

  7. Admittance Control for Robot Assisted Retinal Vein Micro-Cannulation under Human-Robot Collaborative Mode.

    PubMed

    Zhang, He; Gonenc, Berk; Iordachita, Iulian

    2017-10-01

    Retinal vein occlusion is one of the most common retinovascular diseases. Retinal vein cannulation is a potentially effective treatment method for this condition that currently lies, however, at the limits of human capabilities. In this work, the aim is to use robotic systems and advanced instrumentation to alleviate these challenges, and assist the procedure via a human-robot collaborative mode based on our earlier work on the Steady-Hand Eye Robot and force-sensing instruments. An admittance control method is employed to stabilize the cannula relative to the vein and maintain it inside the lumen during the injection process. A pre-stress strategy is used to prevent the tip of microneedle from getting out of vein in in prolonged infusions, and the performance is verified through simulations.

  8. Automation and robotics technology for intelligent mining systems

    NASA Technical Reports Server (NTRS)

    Welsh, Jeffrey H.

    1989-01-01

    The U.S. Bureau of Mines is approaching the problems of accidents and efficiency in the mining industry through the application of automation and robotics to mining systems. This technology can increase safety by removing workers from hazardous areas of the mines or from performing hazardous tasks. The short-term goal of the Automation and Robotics program is to develop technology that can be implemented in the form of an autonomous mining machine using current continuous mining machine equipment. In the longer term, the goal is to conduct research that will lead to new intelligent mining systems that capitalize on the capabilities of robotics. The Bureau of Mines Automation and Robotics program has been structured to produce the technology required for the short- and long-term goals. The short-term goal of application of automation and robotics to an existing mining machine, resulting in autonomous operation, is expected to be accomplished within five years. Key technology elements required for an autonomous continuous mining machine are well underway and include machine navigation systems, coal-rock interface detectors, machine condition monitoring, and intelligent computer systems. The Bureau of Mines program is described, including status of key technology elements for an autonomous continuous mining machine, the program schedule, and future work. Although the program is directed toward underground mining, much of the technology being developed may have applications for space systems or mining on the Moon or other planets.

  9. Intraocular robotic interventional surgical system (IRISS): Mechanical design, evaluation, and master-slave manipulation.

    PubMed

    Wilson, Jason T; Gerber, Matthew J; Prince, Stephen W; Chen, Cheng-Wei; Schwartz, Steven D; Hubschman, Jean-Pierre; Tsao, Tsu-Chin

    2018-02-01

    Since the advent of robotic-assisted surgery, the value of using robotic systems to assist in surgical procedures has been repeatedly demonstrated. However, existing technologies are unable to perform complete, multi-step procedures from start to finish. Many intraocular surgical steps continue to be manually performed. An intraocular robotic interventional surgical system (IRISS) capable of performing various intraocular surgical procedures was designed, fabricated, and evaluated. Methods were developed to evaluate the performance of the remote centers of motion (RCMs) using a stereo-camera setup and to assess the accuracy and precision of positioning the tool tip using an optical coherence tomography (OCT) system. The IRISS can simultaneously manipulate multiple surgical instruments, change between mounted tools using an onboard tool-change mechanism, and visualize the otherwise invisible RCMs to facilitate alignment of the RCM to the surgical incision. The accuracy of positioning the tool tip was measured to be 0.205±0.003 mm. The IRISS was evaluated by trained surgeons in a remote surgical theatre using post-mortem pig eyes and shown to be effective in completing many key steps in a variety of intraocular surgical procedures as well as being capable of performing an entire cataract extraction from start to finish. The IRISS represents a necessary step towards fully automated intraocular surgery and demonstrated accurate and precise master-slave manipulation for cataract removal and-through visual feedback-retinal vein cannulation. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Concept and design philosophy of a person-accompanying robot

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Hiroshi; Shigehara, Takaomi; Goto, Yoshiyasu; Hidai, Ken-ichi; Mishima, Taketoshi

    1999-01-01

    This paper proposes a person accompanying robot as a novel human collaborative robot. The person accompanying robot is such legged mobile robot that is possible to follow the person utilizing its vision. towards future aging society, human collaboration and human support are required as novel applications of robots. Such human collaborative robots share the same space with humans. But conventional robots are isolated from humans and lack the capability to observe humans. Study on human observing function of robot is crucial to realize novel robot such as service and pet robot. To collaborate and support humans properly human collaborative robot must have capability to observe and recognize humans. Study on human observing function of robot is crucial to realize novel robot such as service and pet robot. The authors are currently implementing a prototype of the proposed accompanying robot.As a base for the human observing function of the prototype robot, we have realized face tracking utilizing skin color extraction and correlation based tracking. We also develop a method for the robot to pick up human voice clearly and remotely by utilizing microphone arrays. Results of these preliminary study suggest feasibility of the proposed robot.

  11. Study of eddy current probes

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Wang, Morgan

    1992-01-01

    The recognition of materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques.

  12. Externalising moods and psychological states in a cloud based system to enhance a pet-robot and child's interaction.

    PubMed

    Larriba, Ferran; Raya, Cristóbal; Angulo, Cecilio; Albo-Canals, Jordi; Díaz, Marta; Boldú, Roger

    2016-07-15

    This PATRICIA research project is about using pet robots to reduce pain and anxiety in hospitalized children. The study began 2 years ago and it is believed that the advances made in this project are significant. Patients, parents, nurses, psychologists, and engineers have adopted the Pleo robot, a baby dinosaur robotic pet, which works in different ways to assist children during hospitalization. Focus is spent on creating a wireless communication system with the Pleo in order to help the coordinator, who conducts therapy with the child, monitor, understand, and control Pleo's behavior at any moment. This article reports how this technological function is being developed and tested. Wireless communication between the Pleo and an Android device is achieved. The developed Android app allows the user to obtain any state of the robot without stopping its interaction with the patient. Moreover, information is sent to a cloud, so that robot moods, states and interactions can be shared among different robots. Pleo attachment was successful for more than 1 month, working with children in therapy, which makes the investment capable of positive therapeutic possibilities. This technical improvement in the Pleo addresses two key issues in social robotics: needing an enhanced response to maintain the attention and engagement of the child, and using the system as a platform to collect the states of the child's progress for clinical purposes.

  13. Smart tissue anastomosis robot (STAR): a vision-guided robotics system for laparoscopic suturing.

    PubMed

    Leonard, Simon; Wu, Kyle L; Kim, Yonjae; Krieger, Axel; Kim, Peter C W

    2014-04-01

    This paper introduces the smart tissue anastomosis robot (STAR). Currently, the STAR is a proof-of-concept for a vision-guided robotic system featuring an actuated laparoscopic suturing tool capable of executing running sutures from image-based commands. The STAR tool is designed around a commercially available laparoscopic suturing tool that is attached to a custom-made motor stage and the STAR supervisory control architecture that enables a surgeon to select and track incisions and the placement of stitches. The STAR supervisory-control interface provides two modes: A manual mode that enables a surgeon to specify the placement of each stitch and an automatic mode that automatically computes equally-spaced stitches based on an incision contour. Our experiments on planar phantoms demonstrate that the STAR in either mode is more accurate, up to four times more consistent and five times faster than surgeons using state-of-the-art robotic surgical system, four times faster than surgeons using manual Endo360(°)®, and nine times faster than surgeons using manual laparoscopic tools.

  14. Design and control of a macro-micro robot for precise force applications

    NASA Technical Reports Server (NTRS)

    Wang, Yulun; Mangaser, Amante; Laby, Keith; Jordan, Steve; Wilson, Jeff

    1993-01-01

    Creating a robot which can delicately interact with its environment has been the goal of much research. Primarily two difficulties have made this goal hard to attain. The execution of control strategies which enable precise force manipulations are difficult to implement in real time because such algorithms have been too computationally complex for available controllers. Also, a robot mechanism which can quickly and precisely execute a force command is difficult to design. Actuation joints must be sufficiently stiff, frictionless, and lightweight so that desired torques can be accurately applied. This paper describes a robotic system which is capable of delicate manipulations. A modular high-performance multiprocessor control system was designed to provide sufficient compute power for executing advanced control methods. An 8 degree of freedom macro-micro mechanism was constructed to enable accurate tip forces. Control algorithms based on the impedance control method were derived, coded, and load balanced for maximum execution speed on the multiprocessor system. Delicate force tasks such as polishing, finishing, cleaning, and deburring, are the target applications of the robot.

  15. Novel compliant actuator for wearable robotics applications.

    PubMed

    Claros, M; Soto, R; Rodríguez, J J; Cantú, C; Contreras-Vidal, José L

    2013-01-01

    In the growing fields of wearable robotics, rehabilitation robotics, prosthetics, and walking robots, variable impedance and force actuators are being designed and implemented because of their ability to dynamically modulate the intrinsic viscoelastic properties such as stiffness and damping. This modulation is crucial to achieve an efficient and safe human-robot interaction that could lead to electronically generate useful emergent dynamical behaviors. In this work we propose a novel actuation system in which is implemented a control scheme based on equilibrium forces for an active joint capable to provide assistance/resistance as needed and also achieve minimal mechanical impedance when tracking the movement of the user limbs. The actuation system comprises a DC motor with a built in speed reducer, two force-sensing resistors (FSR), a mechanism which transmits to the FSRs the torque developed in the joint and a controller which regulate the amount of energy that is delivered to the DC motor. The proposed system showed more impedance reduction, by the effect of the controlled contact forces, compared with the ones in the reviewed literature.

  16. Intelligent Robotic Systems Study (IRSS), phase 4

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Under the Intelligent Robotics Systems Study (IRSS), a generalized robotic control architecture was developed for use with the ProtoFlight Manipulator Arm (PFMA). Based upon the NASREM system design concept, the controller built for the PFMA provides localized position based force control, teleoperation, and advanced path recording and playback capabilities. The PFMA has six computer controllable degrees of freedom (DOF) plus a 7th manually indexable DOF, making the manipulator a pseudo 7 DOF mechanism. Joints on the PFMA are driven via 7 pulse width modulated amplifiers. Digital control of the PFMA is implemented using a variety of single board computers. There were two major activities under the IRSS phase 4 study: (1) enhancement of the PFMA control system software functionality; and (2) evaluation of operating modes via a teleoperation performance study. These activities are described and results are given.

  17. Distributed power and control actuation in the thoracic mechanics of a robotic insect.

    PubMed

    Finio, Benjamin M; Wood, Robert J

    2010-12-01

    Recent advances in the understanding of biological flight have inspired roboticists to create flapping-wing vehicles on the scale of insects and small birds. While our understanding of the wing kinematics, flight musculature and neuromotor control systems of insects has expanded, in practice it has proven quite difficult to construct an at-scale mechanical device capable of similar flight performance. One of the key challenges is the development of an effective and efficient transmission mechanism to control wing motions. Here we present multiple insect-scale robotic thorax designs capable of producing asymmetric wing kinematics similar to those observed in nature and utilized by dipteran insects to maneuver. Inspired by the thoracic mechanics of dipteran insects, which entail a morphological separation of power and control muscles, these designs show that such distributed actuation can also modulate wing motion in a robotic design.

  18. A robotically constructed production and supply base on Phobos

    NASA Astrophysics Data System (ADS)

    1989-05-01

    PHOBIA Corporation is involved with the design of a man-tenable robotically constructed, bootstrap base on Mars' moon, Phobos. This base will be a pit-stop for future manned missions to Mars and beyond and will be a control facility during the robotic construction of a Martian base. An introduction is given to the concepts and the ground rules followed during the design process. Details of a base design and its location are given along with information about some of the subsystems. Since a major purpose of the base is to supply fuel to spacecraft so they can limit their fuel mass, mining and production systems are discussed. Surface support activities such as docks, anchors, and surface transportation systems are detailed. Several power supplies for the base are investigated and include fuel cells and a nuclear reactor. Tasks for the robots are defined along with descriptions of the robots capable of completing the tasks. Finally, failure modes for the entire PHOBIA Corporation design are presented along with an effects analysis and preventative recommendations.

  19. A universal six-joint robot controller

    NASA Technical Reports Server (NTRS)

    Bihn, D. G.; Hsia, T. C.

    1987-01-01

    A general purpose six-axis robotic manipulator controller was designed and implemented to serve as a research tool for the investigation of the practical and theoretical aspects of various control strategies in robotics. A 80286-based Intel System 310 running the Xenix operating servo software as well as the higher level software (e.g., kinematics and path planning) were employed. A Multibus compatible interface board was designed and constructed to handle I/O signals from the robot manipulator's joint motors. From the design point of view, the universal controller is capable of driving robot manipulators equipped with D.C. joint motors and position optical encoders. To test its functionality, the controller is connected to the joint motor D.C. power amplifier of a PUMA 560 arm bypassing completely the manufacturer-supplied Unimation controller. A controller algorithm consisting of local PD control laws was written and installed into the Xenix operating system. Additional software drivers were implemented to allow application programs access to the interface board. All software was written in the C language.

  20. A robotically constructed production and supply base on Phobos

    NASA Technical Reports Server (NTRS)

    1989-01-01

    PHOBIA Corporation is involved with the design of a man-tenable robotically constructed, bootstrap base on Mars' moon, Phobos. This base will be a pit-stop for future manned missions to Mars and beyond and will be a control facility during the robotic construction of a Martian base. An introduction is given to the concepts and the ground rules followed during the design process. Details of a base design and its location are given along with information about some of the subsystems. Since a major purpose of the base is to supply fuel to spacecraft so they can limit their fuel mass, mining and production systems are discussed. Surface support activities such as docks, anchors, and surface transportation systems are detailed. Several power supplies for the base are investigated and include fuel cells and a nuclear reactor. Tasks for the robots are defined along with descriptions of the robots capable of completing the tasks. Finally, failure modes for the entire PHOBIA Corporation design are presented along with an effects analysis and preventative recommendations.

  1. Evolutionary online behaviour learning and adaptation in real robots.

    PubMed

    Silva, Fernando; Correia, Luís; Christensen, Anders Lyhne

    2017-07-01

    Online evolution of behavioural control on real robots is an open-ended approach to autonomous learning and adaptation: robots have the potential to automatically learn new tasks and to adapt to changes in environmental conditions, or to failures in sensors and/or actuators. However, studies have so far almost exclusively been carried out in simulation because evolution in real hardware has required several days or weeks to produce capable robots. In this article, we successfully evolve neural network-based controllers in real robotic hardware to solve two single-robot tasks and one collective robotics task. Controllers are evolved either from random solutions or from solutions pre-evolved in simulation. In all cases, capable solutions are found in a timely manner (1 h or less). Results show that more accurate simulations may lead to higher-performing controllers, and that completing the optimization process in real robots is meaningful, even if solutions found in simulation differ from solutions in reality. We furthermore demonstrate for the first time the adaptive capabilities of online evolution in real robotic hardware, including robots able to overcome faults injected in the motors of multiple units simultaneously, and to modify their behaviour in response to changes in the task requirements. We conclude by assessing the contribution of each algorithmic component on the performance of the underlying evolutionary algorithm.

  2. 3D vision system for intelligent milking robot automation

    NASA Astrophysics Data System (ADS)

    Akhloufi, M. A.

    2013-12-01

    In a milking robot, the correct localization and positioning of milking teat cups is of very high importance. The milking robots technology has not changed since a decade and is based primarily on laser profiles for teats approximate positions estimation. This technology has reached its limit and does not allow optimal positioning of the milking cups. Also, in the presence of occlusions, the milking robot fails to milk the cow. These problems, have economic consequences for producers and animal health (e.g. development of mastitis). To overcome the limitations of current robots, we have developed a new system based on 3D vision, capable of efficiently positioning the milking cups. A prototype of an intelligent robot system based on 3D vision for real-time positioning of a milking robot has been built and tested under various conditions on a synthetic udder model (in static and moving scenarios). Experimental tests, were performed using 3D Time-Of-Flight (TOF) and RGBD cameras. The proposed algorithms permit the online segmentation of teats by combing 2D and 3D visual information. The obtained results permit the teat 3D position computation. This information is then sent to the milking robot for teat cups positioning. The vision system has a real-time performance and monitors the optimal positioning of the cups even in the presence of motion. The obtained results, with both TOF and RGBD cameras, show the good performance of the proposed system. The best performance was obtained with RGBD cameras. This latter technology will be used in future real life experimental tests.

  3. Soft robotics: a review and progress towards faster and higher torque actuators (presentation video)

    NASA Astrophysics Data System (ADS)

    Shepherd, Robert

    2014-03-01

    Last year, nearly 160,000 industrial robots were shipped worldwide—into a total market valued at 26 Bn (including hardware, software, and peripherals).[1] Service robots for professional (e.g., defense, medical, agriculture) and personal (e.g., household, handicap assistance, toys, and education) use accounted for 16,000 units, 3.4 Bn and 3,000,000 units, $1.2 Bn respectively.[1] The vast majority of these robotic systems use fully actuated, rigid components that take little advantage of passive dynamics. Soft robotics is a field that is taking advantage of compliant actuators and passive dynamics to achieve several goals: reduced design, manufacturing and control complexity, improved energy efficiency, more sophisticated motions, and safe human-machine interactions to name a few. The potential for societal impact is immense. In some instances, soft actuators have achieved commercial success; however, large scale adoption will require improved methods of controlling non-linear systems, greater reliability in their function, and increased utility from faster and more forceful actuation. In my talk, I will describe efforts from my work in the Whitesides group at Harvard to prove sophisticated motions in these machines using simple controls, as well capabilities unique to soft machines. I will also describe the potential for combinations of different classes of soft actuators (e.g., electrically and pneumatically actuated systems) to improve the utility of soft robots. 1. World Robotics - Industrial Robots 2013, 2013, International Federation of Robotics.

  4. Virtual Presence: One Step Beyond Reality

    NASA Technical Reports Server (NTRS)

    Budden, Nancy Ann

    1997-01-01

    Our primary objective was to team up a group consisting of scientists and engineers from two different NASA cultures, and simulate an interactive teleoperated robot conducting geologic field work on the Moon or Mars. The information derived from the experiment will benefit both the robotics team and the planetary exploration team in the areas of robot design and development, and mission planning and analysis. The Earth Sciences and Space and Life Sciences Division combines the past with the future contributing experience from Apollo crews exploring the lunar surface, knowledge of reduced gravity environments, the performance limits of EVA suits, and future goals for human exploration beyond low Earth orbit. The Automation, Robotics. and Simulation Division brings to the table the technical expertise of robotic systems, the future goals of highly interactive robotic capabilities, treading on the edge of technology by joining for the first time a unique combination of telepresence with virtual reality.

  5. OzBot and haptics: remote surveillance to physical presence

    NASA Astrophysics Data System (ADS)

    Mullins, James; Fielding, Mick; Nahavandi, Saeid

    2009-05-01

    This paper reports on robotic and haptic technologies and capabilities developed for the law enforcement and defence community within Australia by the Centre for Intelligent Systems Research (CISR). The OzBot series of small and medium surveillance robots have been designed in Australia and evaluated by law enforcement and defence personnel to determine suitability and ruggedness in a variety of environments. Using custom developed digital electronics and featuring expandable data busses including RS485, I2C, RS232, video and Ethernet, the robots can be directly connected to many off the shelf payloads such as gas sensors, x-ray sources and camera systems including thermal and night vision. Differentiating the OzBot platform from its peers is its ability to be integrated directly with haptic technology or the 'haptic bubble' developed by CISR. Haptic interfaces allow an operator to physically 'feel' remote environments through position-force control and experience realistic force feedback. By adding the capability to remotely grasp an object, feel its weight, texture and other physical properties in real-time from the remote ground control unit, an operator's situational awareness is greatly improved through Haptic augmentation in an environment where remote-system feedback is often limited.

  6. Detecting method of subjects' 3D positions and experimental advanced camera control system

    NASA Astrophysics Data System (ADS)

    Kato, Daiichiro; Abe, Kazuo; Ishikawa, Akio; Yamada, Mitsuho; Suzuki, Takahito; Kuwashima, Shigesumi

    1997-04-01

    Steady progress is being made in the development of an intelligent robot camera capable of automatically shooting pictures with a powerful sense of reality or tracking objects whose shooting requires advanced techniques. Currently, only experienced broadcasting cameramen can provide these pictures.TO develop an intelligent robot camera with these abilities, we need to clearly understand how a broadcasting cameraman assesses his shooting situation and how his camera is moved during shooting. We use a real- time analyzer to study a cameraman's work and his gaze movements at studios and during sports broadcasts. This time, we have developed a detecting method of subjects' 3D positions and an experimental camera control system to help us further understand the movements required for an intelligent robot camera. The features are as follows: (1) Two sensor cameras shoot a moving subject and detect colors, producing its 3D coordinates. (2) Capable of driving a camera based on camera movement data obtained by a real-time analyzer. 'Moving shoot' is the name we have given to the object position detection technology on which this system is based. We used it in a soccer game, producing computer graphics showing how players moved. These results will also be reported.

  7. Iconic Gestures for Robot Avatars, Recognition and Integration with Speech

    PubMed Central

    Bremner, Paul; Leonards, Ute

    2016-01-01

    Co-verbal gestures are an important part of human communication, improving its efficiency and efficacy for information conveyance. One possible means by which such multi-modal communication might be realized remotely is through the use of a tele-operated humanoid robot avatar. Such avatars have been previously shown to enhance social presence and operator salience. We present a motion tracking based tele-operation system for the NAO robot platform that allows direct transmission of speech and gestures produced by the operator. To assess the capabilities of this system for transmitting multi-modal communication, we have conducted a user study that investigated if robot-produced iconic gestures are comprehensible, and are integrated with speech. Robot performed gesture outcomes were compared directly to those for gestures produced by a human actor, using a within participant experimental design. We show that iconic gestures produced by a tele-operated robot are understood by participants when presented alone, almost as well as when produced by a human. More importantly, we show that gestures are integrated with speech when presented as part of a multi-modal communication equally well for human and robot performances. PMID:26925010

  8. Sediment Sampling in Estuarine Mudflats with an Aerial-Ground Robotic Team

    PubMed Central

    Deusdado, Pedro; Guedes, Magno; Silva, André; Marques, Francisco; Pinto, Eduardo; Rodrigues, Paulo; Lourenço, André; Mendonça, Ricardo; Santana, Pedro; Corisco, José; Almeida, Susana Marta; Portugal, Luís; Caldeira, Raquel; Barata, José; Flores, Luis

    2016-01-01

    This paper presents a robotic team suited for bottom sediment sampling and retrieval in mudflats, targeting environmental monitoring tasks. The robotic team encompasses a four-wheel-steering ground vehicle, equipped with a drilling tool designed to be able to retain wet soil, and a multi-rotor aerial vehicle for dynamic aerial imagery acquisition. On-demand aerial imagery, properly fused on an aerial mosaic, is used by remote human operators for specifying the robotic mission and supervising its execution. This is crucial for the success of an environmental monitoring study, as often it depends on human expertise to ensure the statistical significance and accuracy of the sampling procedures. Although the literature is rich on environmental monitoring sampling procedures, in mudflats, there is a gap as regards including robotic elements. This paper closes this gap by also proposing a preliminary experimental protocol tailored to exploit the capabilities offered by the robotic system. Field trials in the south bank of the river Tagus’ estuary show the ability of the robotic system to successfully extract and transport bottom sediment samples for offline analysis. The results also show the efficiency of the extraction and the benefits when compared to (conventional) human-based sampling. PMID:27618060

  9. Intraoperative optical coherence tomography of the cerebral cortex using a 7 degree-of freedom robotic arm

    NASA Astrophysics Data System (ADS)

    Reyes Perez, Robnier; Jivraj, Jamil; Yang, Victor X. D.

    2017-02-01

    Optical Coherence Tomography (OCT) provides a high-resolution imaging technique with limited depth penetration. The current use of OCT is limited to relatively small areas of tissue for anatomical structure diagnosis or minimally invasive guided surgery. In this study, we propose to image a large area of the surface of the cerebral cortex. This experiment aims to evaluate the potential difficulties encountered when applying OCT imaging to large and irregular surface areas. The current state-of-the-art OCT imaging technology uses scanning systems with at most 3 degrees-of-freedom (DOF) to obtain a 3D image representation of the sample tissue. We propose the use of a 7 DOF industrial robotic arm to increase the scanning capabilities of our OCT. Such system will be capable of acquiring data from large samples of tissue that are too irregular for conventional methods. Advantages and disadvantages of our system are discussed.

  10. A telerobotic digital controller system

    NASA Technical Reports Server (NTRS)

    Brown, Richard J.

    1992-01-01

    This system is a network of joint mounted dual axes digital servo-controllers (DDSC), providing control of various joints and end effectors of different robotic systems. This report provides description of and user required information for the Digital Controller System Network (DSCN) and, in particular, the DDSC, Model DDSC-2, developed to perform the controller functions. The DDSC can control 3 phase brushless or brush type DC motors, requiring up to 8 amps. Only four wires, two for power and 2 for serial communication, are required, except for local sensor and motor connections. This highly capable, very flexible, programmable servo-controller, contained on a single, compact printed circuit board measuring only 4.5 x 5.1 inches, is applicable to control systems of all types from sub-arc second precision pointing to control of robotic joints and end effectors. This document concentrates on the robotic applications for the DDSC.

  11. Design Considerations for Spacecraft Operations During Uncrewed Dormant Phases of Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Williams-Byrd, Julie; Antol, Jeff; Jefferies, Sharon; Goodliff, Kandyce; Williams, Phillip; Ambrose, Rob; Sylvester, Andre; Anderson, Molly; Dinsmore, Craig; Hoffman, Stephen; hide

    2016-01-01

    NASA is transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities in low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. However, pioneering space involves daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. Subject matter experts from NASA's Human Exploration and Operations Mission Directorate (HEOMD) are currently studying a human exploration campaign that involves deployment of assets for planetary exploration. This study, called the Evolvable Mars Campaign (EMC) study, explores options with solar electric propulsion as a central component of the transportation architecture. This particular in-space transportation option often results in long duration transit to destinations. The EMC study is also investigating deployed human rated systems like landers, habitats, rovers, power systems and ISRU system to the surface of Mars, which also will involve long dormant periods when these systems are staged on the surface. In order to enable the EMC architecture, campaign and element design leads along with system and capability development experts from HEOMD's System Maturation Team (SMT) have identified additional capabilities, systems and operation modes that will sustain these systems especially during these dormant phases of the mission. Dormancy is defined by the absence of crew and relative inactivity of the systems. For EMC missions, dormant periods could range from several months to several years. Two aspects of uncrewed dormant operations are considered herein: (1) the vehicle systems that are placed in a dormant state and (2) the autonomous vehicle systems and robotic capabilities that monitor, maintain, and repair the vehicle and systems. This paper describes the mission stages of dormancy operations, phases of dormant operations, and critical system capabilities that are needed for dormant operations. This paper will compare dormancy operations of past robotic missions to identify lessons that can be applied to planned human exploration missions. Finally, this paper will also identify future work and analysis planned to assess system performance metrics and integrated system operations.

  12. Small Body Exploration Technologies as Precursors for Interstellar Robotics

    NASA Astrophysics Data System (ADS)

    Noble, R. J.; Sykes, M. V.

    The scientific activities undertaken to explore our Solar System will be very similar to those required someday at other stars. The systematic exploration of primitive small bodies throughout our Solar System requires new technologies for autonomous robotic spacecraft. These diverse celestial bodies contain clues to the early stages of the Solar System's evolution, as well as information about the origin and transport of water-rich and organic material, the essential building blocks for life. They will be among the first objects studied at distant star systems. The technologies developed to address small body and outer planet exploration will form much of the technical basis for designing interstellar robotic explorers. The Small Bodies Assessment Group, which reports to NASA, initiated a Technology Forum in 2011 that brought together scientists and technologists to discuss the needs and opportunities for small body robotic exploration in the Solar System. Presentations and discussions occurred in the areas of mission and spacecraft design, electric power, propulsion, avionics, communications, autonomous navigation, remote sensing and surface instruments, sampling, intelligent event recognition, and command and sequencing software. In this paper, the major technology themes from the Technology Forum are reviewed, and suggestions are made for developments that will have the largest impact on realizing autonomous robotic vehicles capable of exploring other star systems.

  13. Small Body Exploration Technologies as Precursors for Interstellar Robotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, Robert; /SLAC; Sykes, Mark V.

    The scientific activities undertaken to explore our Solar System will be the same as required someday at other stars. The systematic exploration of primitive small bodies throughout our Solar System requires new technologies for autonomous robotic spacecraft. These diverse celestial bodies contain clues to the early stages of the Solar System's evolution as well as information about the origin and transport of water-rich and organic material, the essential building blocks for life. They will be among the first objects studied at distant star systems. The technologies developed to address small body and outer planet exploration will form much of themore » technical basis for designing interstellar robotic explorers. The Small Bodies Assessment Group, which reports to NASA, initiated a Technology Forum in 2011 that brought together scientists and technologists to discuss the needs and opportunities for small body robotic exploration in the Solar System. Presentations and discussions occurred in the areas of mission and spacecraft design, electric power, propulsion, avionics, communications, autonomous navigation, remote sensing and surface instruments, sampling, intelligent event recognition, and command and sequencing software. In this paper, the major technology themes from the Technology Forum are reviewed, and suggestions are made for developments that will have the largest impact on realizing autonomous robotic vehicles capable of exploring other star systems.« less

  14. Control solutions for robots using Android and iOS devices

    NASA Astrophysics Data System (ADS)

    Evans, A. William, III; Gray, Jeremy P.; Rudnick, Dave; Karlsen, Robert E.

    2012-06-01

    As more Soldiers seek to utilize robots to enhance their mission capabilities, controls are needed which are intuitive, portable, and adaptable to a wide range of mission tasks. Android™ and iOS™ devices have the potential to meet each of these requirements as well as being based on readily available hardware. This paper will focus on some of the ways in which an Android™ or iOS™ device could be used to control specific and varied robot mobility functions and payload tools. Several small unmanned ground vehicle (SUGV) payload tools will have been investigated at Camp Pendleton during a user assessment and mission feasibility study for automatic remote tool changing. This group of payload tools will provide a basis, to researchers, concerning what types of control functions are needed to fully utilize SUGV robotic capabilities. Additional, mobility functions using tablet devices have been used as part of the Safe Operation of Unmanned systems for Reconnaissance in Complex Environments Army Technology Objective (SOURCE ATO) which is investigating the safe operation of robotics. Using Android™ and iOS™ hand-held devices is not a new concept in robot manipulation. However, the authors of this paper hope to introduce some novel concepts that may serve to make the interaction between Soldier and machine more fluid and intuitive. By creating a better user experience, Android™ and iOS™ devices could help to reduce training time, enhance performance, and increase acceptance of robotics as valuable mission tools for Soldiers.

  15. Robot-Beacon Distributed Range-Only SLAM for Resource-Constrained Operation

    PubMed Central

    Torres-González, Arturo; Martínez-de Dios, Jose Ramiro; Ollero, Anibal

    2017-01-01

    This work deals with robot-sensor network cooperation where sensor nodes (beacons) are used as landmarks for Range-Only (RO) Simultaneous Localization and Mapping (SLAM). Most existing RO-SLAM techniques consider beacons as passive devices disregarding the sensing, computational and communication capabilities with which they are actually endowed. SLAM is a resource-demanding task. Besides the technological constraints of the robot and beacons, many applications impose further resource consumption limitations. This paper presents a scalable distributed RO-SLAM scheme for resource-constrained operation. It is capable of exploiting robot-beacon cooperation in order to improve SLAM accuracy while meeting a given resource consumption bound expressed as the maximum number of measurements that are integrated in SLAM per iteration. The proposed scheme combines a Sparse Extended Information Filter (SEIF) SLAM method, in which each beacon gathers and integrates robot-beacon and inter-beacon measurements, and a distributed information-driven measurement allocation tool that dynamically selects the measurements that are integrated in SLAM, balancing uncertainty improvement and resource consumption. The scheme adopts a robot-beacon distributed approach in which each beacon participates in the selection, gathering and integration in SLAM of robot-beacon and inter-beacon measurements, resulting in significant estimation accuracies, resource-consumption efficiency and scalability. It has been integrated in an octorotor Unmanned Aerial System (UAS) and evaluated in 3D SLAM outdoor experiments. The experimental results obtained show its performance and robustness and evidence its advantages over existing methods. PMID:28425946

  16. Robot-Beacon Distributed Range-Only SLAM for Resource-Constrained Operation.

    PubMed

    Torres-González, Arturo; Martínez-de Dios, Jose Ramiro; Ollero, Anibal

    2017-04-20

    This work deals with robot-sensor network cooperation where sensor nodes (beacons) are used as landmarks for Range-Only (RO) Simultaneous Localization and Mapping (SLAM). Most existing RO-SLAM techniques consider beacons as passive devices disregarding the sensing, computational and communication capabilities with which they are actually endowed. SLAM is a resource-demanding task. Besides the technological constraints of the robot and beacons, many applications impose further resource consumption limitations. This paper presents a scalable distributed RO-SLAM scheme for resource-constrained operation. It is capable of exploiting robot-beacon cooperation in order to improve SLAM accuracy while meeting a given resource consumption bound expressed as the maximum number of measurements that are integrated in SLAM per iteration. The proposed scheme combines a Sparse Extended Information Filter (SEIF) SLAM method, in which each beacon gathers and integrates robot-beacon and inter-beacon measurements, and a distributed information-driven measurement allocation tool that dynamically selects the measurements that are integrated in SLAM, balancing uncertainty improvement and resource consumption. The scheme adopts a robot-beacon distributed approach in which each beacon participates in the selection, gathering and integration in SLAM of robot-beacon and inter-beacon measurements, resulting in significant estimation accuracies, resource-consumption efficiency and scalability. It has been integrated in an octorotor Unmanned Aerial System (UAS) and evaluated in 3D SLAM outdoor experiments. The experimental results obtained show its performance and robustness and evidence its advantages over existing methods.

  17. Robot Tracking of Human Subjects in Field Environments

    NASA Technical Reports Server (NTRS)

    Graham, Jeffrey; Shillcutt, Kimberly

    2003-01-01

    Future planetary exploration will involve both humans and robots. Understanding and improving their interaction is a main focus of research in the Intelligent Systems Branch at NASA's Johnson Space Center. By teaming intelligent robots with astronauts on surface extra-vehicular activities (EVAs), safety and productivity can be improved. The EVA Robotic Assistant (ERA) project was established to study the issues of human-robot teams, to develop a testbed robot to assist space-suited humans in exploration tasks, and to experimentally determine the effectiveness of an EVA assistant robot. A companion paper discusses the ERA project in general, its history starting with ASRO (Astronaut-Rover project), and the results of recent field tests in Arizona. This paper focuses on one aspect of the research, robot tracking, in greater detail: the software architecture and algorithms. The ERA robot is capable of moving towards and/or continuously following mobile or stationary targets or sequences of targets. The contributions made by this research include how the low-level pose data is assembled, normalized and communicated, how the tracking algorithm was generalized and implemented, and qualitative performance reports from recent field tests.

  18. A tracked robot with novel bio-inspired passive "legs".

    PubMed

    Sun, Bo; Jing, Xingjian

    2017-01-01

    For track-based robots, an important aspect is the suppression design, which determines the trafficability and comfort of the whole system. The trafficability limits the robot's working capability, and the riding comfort limits the robot's working effectiveness, especially with some sensitive instruments mounted on or operated. To these aims, a track-based robot equipped with a novel passive bio-inspired suspension is designed and studied systematically in this paper. Animal or insects have very special leg or limb structures which are good for motion control and adaptable to different environments. Inspired by this, a new track-based robot is designed with novel "legs" for connecting the loading wheels to the robot body. Each leg is designed with passive structures and can achieve very high loading capacity but low dynamic stiffness such that the robot can move on rough ground similar to a multi-leg animal or insect. Therefore, the trafficability and riding comfort can be significantly improved without losing loading capacity. The new track-based robot can be well applied to various engineering tasks for providing a stable moving platform of high mobility, better trafficability and excellent loading capacity.

  19. Video. Natural Orifice Translumenal Endoscopic Surgery with a miniature in vivo surgical robot.

    PubMed

    Lehman, Amy C; Dumpert, Jason; Wood, Nathan A; Visty, Abigail Q; Farritor, Shane M; Varnell, Brandon; Oleynikov, Dmitry

    2009-07-01

    The application of flexible endoscopy tools for Natural Orifice Translumenal Endoscopic Surgery (NOTES) is constrained due to limitations in dexterity, instrument insertion, navigation, visualization, and retraction. Miniature endolumenal robots can mitigate these constraints by providing a stable platform for visualization and dexterous manipulation. This video demonstrates the feasibility of using an endolumenal miniature robot to improve vision and to apply off-axis forces for task assistance in NOTES procedures. A two-armed miniature in vivo robot has been developed for NOTES. The robot is remotely controlled, has on-board cameras for guidance, and grasper and cautery end effectors for manipulation. Two basic configurations of the robot allow for flexibility during insertion and rigidity for visualization and tissue manipulation. Embedded magnets in the body of the robot and in an exterior surgical console are used for attaching the robot to the interior abdominal wall. This enables the surgeon to arbitrarily position the robot throughout a procedure. The visualization and task assistance capabilities of the miniature robot were demonstrated in a nonsurvivable NOTES procedure in a porcine model. An endoscope was used to create a transgastric incision and advance an overtube into the peritoneal cavity. The robot was then inserted through the overtube and into the peritoneal cavity using an endoscope. The surgeon successfully used the robot to explore the peritoneum and perform small-bowel dissection. This study has demonstrated the feasibility of inserting an endolumenal robot per os. Once deployed, the robot provided visualization and dexterous capabilities from multiple orientations. Further miniaturization and increased dexterity will enhance future capabilities.

  20. Astrobee: A New Platform for Free-Flying Robotics on the International Space Station

    NASA Technical Reports Server (NTRS)

    Smith, Trey; Barlow, Jonathan; Bualat, Maria; Fong, Terrence; Provencher, Christopher; Sanchez, Hugo; Smith, Ernest

    2016-01-01

    The Astrobees are next-generation free-flying robots that will operate in the interior of the International Space Station (ISS). Their primary purpose is to provide a flexible platform for research on zero-g freeflying robotics, with the ability to carry a wide variety of future research payloads and guest science software. They will also serve utility functions: as free-flying cameras to record video of astronaut activities, and as mobile sensor platforms to conduct surveys of the ISS. The Astrobee system includes two robots, a docking station, and a ground data system (GDS). It is developed by the Human Exploration Telerobotics 2 (HET-2) Project, which began in Oct. 2014, and will deliver the Astrobees for launch to ISS in 2017. This paper covers selected aspects of the Astrobee design, focusing on capabilities relevant to potential users of the platform.

  1. Synergy-Based Bilateral Port: A Universal Control Module for Tele-Manipulation Frameworks Using Asymmetric Master–Slave Systems

    PubMed Central

    Brygo, Anais; Sarakoglou, Ioannis; Grioli, Giorgio; Tsagarakis, Nikos

    2017-01-01

    Endowing tele-manipulation frameworks with the capability to accommodate a variety of robotic hands is key to achieving high performances through permitting to flexibly interchange the end-effector according to the task considered. This requires the development of control policies that not only cope with asymmetric master–slave systems but also whose high-level components are designed in a unified space in abstraction from the devices specifics. To address this dual challenge, a novel synergy port is developed that resolves the kinematic, sensing, and actuation asymmetries of the considered system through generating motion and force feedback references in the hardware-independent hand postural synergy space. It builds upon the concept of the Cartesian-based synergy matrix, which is introduced as a tool mapping the fingertips Cartesian space to the directions oriented along the grasp principal components. To assess the effectiveness of the proposed approach, the synergy port has been integrated into the control system of a highly asymmetric tele-manipulation framework, in which the 3-finger hand exoskeleton HEXOTRAC is used as a master device to control the SoftHand, a robotic hand whose transmission system relies on a single motor to drive all joints along a soft synergistic path. The platform is further enriched with the vision-based motion capture system Optitrack to monitor the 6D trajectory of the user’s wrist, which is used to control the robotic arm on which the SoftHand is mounted. Experiments have been conducted with the humanoid robot COMAN and the KUKA LWR robotic manipulator. Results indicate that this bilateral interface is highly intuitive and allows users with no prior experience to reach, grasp, and transport a variety of objects exhibiting very different shapes and impedances. In addition, the hardware and control solutions proved capable of accommodating users with different hand kinematics. Finally, the proposed control framework offers a universal, flexible, and intuitive interface allowing for the performance of effective tele-manipulations. PMID:28421179

  2. Synergy-Based Bilateral Port: A Universal Control Module for Tele-Manipulation Frameworks Using Asymmetric Master-Slave Systems.

    PubMed

    Brygo, Anais; Sarakoglou, Ioannis; Grioli, Giorgio; Tsagarakis, Nikos

    2017-01-01

    Endowing tele-manipulation frameworks with the capability to accommodate a variety of robotic hands is key to achieving high performances through permitting to flexibly interchange the end-effector according to the task considered. This requires the development of control policies that not only cope with asymmetric master-slave systems but also whose high-level components are designed in a unified space in abstraction from the devices specifics. To address this dual challenge, a novel synergy port is developed that resolves the kinematic, sensing, and actuation asymmetries of the considered system through generating motion and force feedback references in the hardware-independent hand postural synergy space. It builds upon the concept of the Cartesian-based synergy matrix, which is introduced as a tool mapping the fingertips Cartesian space to the directions oriented along the grasp principal components. To assess the effectiveness of the proposed approach, the synergy port has been integrated into the control system of a highly asymmetric tele-manipulation framework, in which the 3-finger hand exoskeleton HEXOTRAC is used as a master device to control the SoftHand, a robotic hand whose transmission system relies on a single motor to drive all joints along a soft synergistic path. The platform is further enriched with the vision-based motion capture system Optitrack to monitor the 6D trajectory of the user's wrist, which is used to control the robotic arm on which the SoftHand is mounted. Experiments have been conducted with the humanoid robot COMAN and the KUKA LWR robotic manipulator. Results indicate that this bilateral interface is highly intuitive and allows users with no prior experience to reach, grasp, and transport a variety of objects exhibiting very different shapes and impedances. In addition, the hardware and control solutions proved capable of accommodating users with different hand kinematics. Finally, the proposed control framework offers a universal, flexible, and intuitive interface allowing for the performance of effective tele-manipulations.

  3. A neural-network approach to robotic control

    NASA Technical Reports Server (NTRS)

    Graham, D. P. W.; Deleuterio, G. M. T.

    1993-01-01

    An artificial neural-network paradigm for the control of robotic systems is presented. The approach is based on the Cerebellar Model Articulation Controller created by James Albus and incorporates several extensions. First, recognizing the essential structure of multibody equations of motion, two parallel modules are used that directly reflect the dynamical characteristics of multibody systems. Second, the architecture of the proposed network is imbued with a self-organizational capability which improves efficiency and accuracy. Also, the networks can be arranged in hierarchical fashion with each subsequent network providing finer and finer resolution.

  4. Robotic surgery in children: adopt now, await, or dismiss?

    PubMed

    Cundy, Thomas P; Marcus, Hani J; Hughes-Hallett, Archie; Khurana, Sanjeev; Darzi, Ara

    2015-12-01

    The role of robot-assisted surgery in children remains controversial. This article aims to distil this debate into an evidence informed decision-making taxonomy; to adopt this technology (1) now, (2) later, or (3) not at all. Robot-assistance is safe, feasible and effective in selected cases as an adjunctive tool to enhance capabilities of minimally invasive surgery, as it is known today. At present, expectations of rigid multi-arm robotic systems to deliver higher quality care are over-estimated and poorly substantiated by evidence. Such systems are associated with high costs. Further comparative effectiveness evidence is needed to define the case-mix for which robot-assistance might be indicated. It seems unlikely that we should expect compelling patient benefits when it is only the mode of minimally invasive surgery that differs. Only large higher-volume institutions that share the robot amongst multiple specialty groups are likely to be able to sustain higher associated costs with today's technology. Nevertheless, there is great potential for next-generation surgical robotics to enable better ways to treat childhood surgical diseases through less invasive techniques that are not possible today. This will demand customized technology for selected patient populations or procedures. Several prototype robots exclusively designed for pediatric use are already under development. Financial affordability must be a high priority to ensure clinical accessibility.

  5. Toolkits Control Motion of Complex Robotics

    NASA Technical Reports Server (NTRS)

    2010-01-01

    That space is a hazardous environment for humans is common knowledge. Even beyond the obvious lack of air and gravity, the extreme temperatures and exposure to radiation make the human exploration of space a complicated and risky endeavor. The conditions of space and the space suits required to conduct extravehicular activities add layers of difficulty and danger even to tasks that would be simple on Earth (tightening a bolt, for example). For these reasons, the ability to scout distant celestial bodies and perform maintenance and construction in space without direct human involvement offers significant appeal. NASA has repeatedly turned to complex robotics for solutions to extend human presence deep into space at reduced risk and cost and to enhance space operations in low Earth orbit. At Johnson Space Center, engineers explore the potential applications of dexterous robots capable of performing tasks like those of an astronaut during extravehicular activities and even additional ones too delicate or dangerous for human participation. Johnson's Dexterous Robotics Laboratory experiments with a wide spectrum of robot manipulators, such as the Mitsubishi PA-10 and the Robotics Research K-1207i robotic arms. To simplify and enhance the use of these robotic systems, Johnson researchers sought generic control methods that could work effectively across every system.

  6. The magic glove: a gesture-based remote controller for intelligent mobile robots

    NASA Astrophysics Data System (ADS)

    Luo, Chaomin; Chen, Yue; Krishnan, Mohan; Paulik, Mark

    2012-01-01

    This paper describes the design of a gesture-based Human Robot Interface (HRI) for an autonomous mobile robot entered in the 2010 Intelligent Ground Vehicle Competition (IGVC). While the robot is meant to operate autonomously in the various Challenges of the competition, an HRI is useful in moving the robot to the starting position and after run termination. In this paper, a user-friendly gesture-based embedded system called the Magic Glove is developed for remote control of a robot. The system consists of a microcontroller and sensors that is worn by the operator as a glove and is capable of recognizing hand signals. These are then transmitted through wireless communication to the robot. The design of the Magic Glove included contributions on two fronts: hardware configuration and algorithm development. A triple axis accelerometer used to detect hand orientation passes the information to a microcontroller, which interprets the corresponding vehicle control command. A Bluetooth device interfaced to the microcontroller then transmits the information to the vehicle, which acts accordingly. The user-friendly Magic Glove was successfully demonstrated first in a Player/Stage simulation environment. The gesture-based functionality was then also successfully verified on an actual robot and demonstrated to judges at the 2010 IGVC.

  7. Patient motion tracking in the presence of measurement errors.

    PubMed

    Haidegger, Tamás; Benyó, Zoltán; Kazanzides, Peter

    2009-01-01

    The primary aim of computer-integrated surgical systems is to provide physicians with superior surgical tools for better patient outcome. Robotic technology is capable of both minimally invasive surgery and microsurgery, offering remarkable advantages for the surgeon and the patient. Current systems allow for sub-millimeter intraoperative spatial positioning, however certain limitations still remain. Measurement noise and unintended changes in the operating room environment can result in major errors. Positioning errors are a significant danger to patients in procedures involving robots and other automated devices. We have developed a new robotic system at the Johns Hopkins University to support cranial drilling in neurosurgery procedures. The robot provides advanced visualization and safety features. The generic algorithm described in this paper allows for automated compensation of patient motion through optical tracking and Kalman filtering. When applied to the neurosurgery setup, preliminary results show that it is possible to identify patient motion within 700 ms, and apply the appropriate compensation with an average of 1.24 mm positioning error after 2 s of setup time.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, N.S.V.; Kareti, S.; Shi, Weimin

    A formal framework for navigating a robot in a geometric terrain by an unknown set of obstacles is considered. Here the terrain model is not a priori known, but the robot is equipped with a sensor system (vision or touch) employed for the purpose of navigation. The focus is restricted to the non-heuristic algorithms which can be theoretically shown to be correct within a given framework of models for the robot, terrain and sensor system. These formulations, although abstract and simplified compared to real-life scenarios, provide foundations for practical systems by highlighting the underlying critical issues. First, the authors considermore » the algorithms that are shown to navigate correctly without much consideration given to the performance parameters such as distance traversed, etc. Second, they consider non-heuristic algorithms that guarantee bounds on the distance traversed or the ratio of the distance traversed to the shortest path length (computed if the terrain model is known). Then they consider the navigation of robots with very limited computational capabilities such as finite automata, etc.« less

  9. An efficient representation of spatial information for expert reasoning in robotic vehicles

    NASA Technical Reports Server (NTRS)

    Scott, Steven; Interrante, Mark

    1987-01-01

    The previous generation of robotic vehicles and drones was designed for a specific task, with limited flexibility in executing their mission. This limited flexibility arises because the robotic vehicles do not possess the intelligence and knowledge upon which to make significant tactical decisions. Current development of robotic vehicles is toward increased intelligence and capabilities, adapting to a changing environment and altering mission objectives. The latest techniques in artificial intelligence (AI) are being employed to increase the robotic vehicle's intelligent decision-making capabilities. This document describes the design of the SARA spatial database tool, which is composed of request parser, reasoning, computations, and database modules that collectively manage and derive information useful for robotic vehicles.

  10. Micro-intestinal robot with wireless power transmission: design, analysis and experiment.

    PubMed

    Shi, Yu; Yan, Guozheng; Chen, Wenwen; Zhu, Bingquan

    2015-11-01

    Video capsule endoscopy is a useful tool for noninvasive intestinal detection, but it is not capable of active movement; wireless power is an effective solution to this problem. The research in this paper consists of two parts: the mechanical structure which enables the robot to move smoothly inside the intestinal tract, and the wireless power supply which ensures efficiency. First, an intestinal robot with leg architectures was developed based on the Archimedes spiral, which mimics the movement of an inchworm. The spiral legs were capable of unfolding to an angle of approximately 155°, which guaranteed stability of clamping, consistency of surface pressure, and avoided the risk of puncturing the intestinal tract. Secondly, the necessary power to operate the robot was far beyond the capacity of button batteries, so a wireless power transmission (WPT) platform was developed. The design of the platform focused on power transfer efficiency and frequency stability. In addition, the safety of human tissue in the alternating electromagnetic field was also taken into consideration. Finally, the assembled robot was tested and verified with the use of the WPT platform. In the isolated intestine, the robot system successfully traveled along the intestine with an average speed of 23 mm per minute. The obtained videos displayed a resolution of 320 × 240 and a transmission rate of 30 frames per second. The WPT platform supplied up to 500 mW of energy to the robot, and achieved a power transfer efficiency of 12%. It has been experimentally verified that the intestinal robot is safe and effective as an endoscopy tool, for which wireless power is feasible. Proposals for further improving the robot and wireless power supply are provided later in this paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Robotics in cardiac surgery: the Istanbul experience.

    PubMed

    Sagbas, Ertan; Akpinar, Belhhan; Sanisoglu, Ilhan; Caynak, Baris; Guden, Mustafa; Ozbek, Ugur; Bayramoglu, Zehra; Bayindir, Osman

    2006-06-01

    Robots are sensor-based tools capable of performing precise, accurate and versatile actions. Initially designed to spare humans from risky tasks, robots have progressed into revolutionary tools for surgeons. Tele-operated robots, such as the da Vinci (Intuitive Surgical, Mountain View, CA), have allowed cardiac procedures to start benefiting from robotics as an enhancement to traditional minimally invasive surgery. The aim of this text was to discuss our experience with the da Vinci system during a 12 month period in which 61 cardiac patients were operated on. There were 59 coronary bypass patients (CABG) and two atrial septal defect (ASD) closures. Two patients (3.3%) had to be converted to median sternotomy because of pleural adhesions. There were no procedure- or device-related complications. Our experience suggests that robotics can be integrated into routine cardiac surgical practice. Systematic training, team dedication and proper patient selection are important factors that determine the success of a robotic surgery programme. Copyright 2006 John Wiley & Sons, Ltd.

  12. Algorithms and Sensors for Small Robot Path Following

    NASA Technical Reports Server (NTRS)

    Hogg, Robert W.; Rankin, Arturo L.; Roumeliotis, Stergios I.; McHenry, Michael C.; Helmick, Daniel M.; Bergh, Charles F.; Matthies, Larry

    2002-01-01

    Tracked mobile robots in the 20 kg size class are under development for applications in urban reconnaissance. For efficient deployment, it is desirable for teams of robots to be able to automatically execute path following behaviors, with one or more followers tracking the path taken by a leader. The key challenges to enabling such a capability are (l) to develop sensor packages for such small robots that can accurately determine the path of the leader and (2) to develop path following algorithms for the subsequent robots. To date, we have integrated gyros, accelerometers, compass/inclinometers, odometry, and differential GPS into an effective sensing package. This paper describes the sensor package, sensor processing algorithm, and path tracking algorithm we have developed for the leader/follower problem in small robots and shows the result of performance characterization of the system. We also document pragmatic lessons learned about design, construction, and electromagnetic interference issues particular to the performance of state sensors on small robots.

  13. Towards a model of temporal attention for on-line learning in a mobile robot

    NASA Astrophysics Data System (ADS)

    Marom, Yuval; Hayes, Gillian

    2001-06-01

    We present a simple attention system, capable of bottom-up signal detection adaptive to subjective internal needs. The system is used by a robotic agent, learning to perform phototaxis and obstacle avoidance by following a teacher agent around a simulated environment, and deciding when to form associations between perceived information and imitated actions. We refer to this kind of decision-making as on-line temporal attention. The main role of the attention system is perception of change; the system is regulated through feedback about cognitive effort. We show how different levels of effort affect both the ability to learn a task, and to execute it.

  14. An order (n) algorithm for the dynamics simulation of robotic systems

    NASA Technical Reports Server (NTRS)

    Chun, H. M.; Turner, J. D.; Frisch, Harold P.

    1989-01-01

    The formulation of an Order (n) algorithm for DISCOS (Dynamics Interaction Simulation of Controls and Structures), which is an industry-standard software package for simulation and analysis of flexible multibody systems is presented. For systems involving many bodies, the new Order (n) version of DISCOS is much faster than the current version. Results of the experimental validation of the dynamics software are also presented. The experiment is carried out on a seven-joint robot arm at NASA's Goddard Space Flight Center. The algorithm used in the current version of DISCOS requires the inverse of a matrix whose dimension is equal to the number of constraints in the system. Generally, the number of constraints in a system is roughly proportional to the number of bodies in the system, and matrix inversion requires O(p exp 3) operations, where p is the dimension of the matrix. The current version of DISCOS is therefore considered an Order (n exp 3) algorithm. In contrast, the Order (n) algorithm requires inversion of matrices which are small, and the number of matrices to be inverted increases only linearly with the number of bodies. The newly-developed Order (n) DISCOS is currently capable of handling chain and tree topologies as well as multiple closed loops. Continuing development will extend the capability of the software to deal with typical robotics applications such as put-and-place, multi-arm hand-off and surface sliding.

  15. Robotics and neurosurgery.

    PubMed

    Nathoo, Narendra; Pesek, Todd; Barnett, Gene H

    2003-12-01

    Ultimately, neurosurgery performed via a robotic interface will serve to improve the standard of a neurosurgeon's skills, thus making a good surgeon a better surgeon. In fact, computer and robotic instrumentation will become allies to the neurosurgeon through the use of these technologies in training, diagnostic, and surgical events. Nonetheless, these technologies are still in an early stage of development, and each device developed will entail its own set of challenges and limitations for use in clinical settings. The future operating room should be regarded as an integrated information system incorporating robotic surgical navigators and telecontrolled micromanipulators, with the capabilities of all principal neurosurgical concepts, sharing information, and under the control of a single person, the neurosurgeon. The eventual integration of robotic technology into mainstream clinical neurosurgery offers the promise of a future of safer, more accurate, and less invasive surgery that will result in improved patient outcome.

  16. Survey of robot lawn mowers

    NASA Astrophysics Data System (ADS)

    Hicks, Rob W., II; Hall, Ernest L.

    2000-10-01

    Lawn mowing is considered by many to be one of the most boring and tiring routine household tasks. It is also one of the most promising personal robot applications. Several devices have not been invented and some manufactured products are available for lawn mowing. The purpose of this paper is to survey the state of the art in robotic lawn mowers to highlight the requirements and capabilities of current devices. A brief survey of available robot products, typical patents and some test bed prototypes are presented. Some enabling technologies which could make the devices more capable are also suggested. Some predictions indicate that the robot lawn mower will be the breakthrough device in robotics. The significance of this research lies in the presentation of an overview of a potential major market for personal robots.

  17. Integrating Artificial Immune, Neural and Endrocine Systems in Autonomous Sailing Robots

    DTIC Science & Technology

    2010-09-24

    system - Development of an adaptive hormone system capable of changing operation and control of the neural network depending on changing enviromental ...and control of the neural network depending on changing enviromental conditions • First basic design of the MOOP and a simple neural-endocrine based

  18. Robotic automation of medication-use management.

    PubMed

    Enright, S M

    1993-11-01

    In the October 1993 issue of Physician Assistant, we published "Robots for Health Care," the first of two articles on the medical applications of robotics. That article discussed ways in which robots could help patients with manipulative disabilities to perform activities of daily living and hold paid employment; transfer patients from bed to chair and back again; add precision to the most exacting surgical procedures; and someday carry out diagnostic and therapeutic techniques from within the human body. This month, we are pleased to offer an article by Sharon Enright, an authority on pharmacy operations, who considers how an automated medication-management system that makes use of bar-code technology is capable of streamlining drug dispensing, controlling safety, increasing cost-effectiveness, and ensuring accurate and complete record-keeping.

  19. Behavior generation strategy of artificial behavioral system by self-learning paradigm for autonomous robot tasks

    NASA Astrophysics Data System (ADS)

    Dağlarli, Evren; Temeltaş, Hakan

    2008-04-01

    In this study, behavior generation and self-learning paradigms are investigated for the real-time applications of multi-goal mobile robot tasks. The method is capable to generate new behaviors and it combines them in order to achieve multi goal tasks. The proposed method is composed from three layers: Behavior Generating Module, Coordination Level and Emotion -Motivation Level. Last two levels use Hidden Markov models to manage dynamical structure of behaviors. The kinematics and dynamic model of the mobile robot with non-holonomic constraints are considered in the behavior based control architecture. The proposed method is tested on a four-wheel driven and four-wheel steered mobile robot with constraints in simulation environment and results are obtained successfully.

  20. Technology demonstration of space intravehicular automation and robotics

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry; Barker, L. Keith

    1994-01-01

    Automation and robotic technologies are being developed and capabilities demonstrated which would increase the productivity of microgravity science and materials processing in the space station laboratory module, especially when the crew is not present. The Automation Technology Branch at NASA Langley has been working in the area of intravehicular automation and robotics (IVAR) to provide a user-friendly development facility, to determine customer requirements for automated laboratory systems, and to improve the quality and efficiency of commercial production and scientific experimentation in space. This paper will describe the IVAR facility and present the results of a demonstration using a simulated protein crystal growth experiment inside a full-scale mockup of the space station laboratory module using a unique seven-degree-of-freedom robot.

  1. THREAD: A programming environment for interactive planning-level robotics applications

    NASA Technical Reports Server (NTRS)

    Beahan, John J., Jr.

    1989-01-01

    THREAD programming language, which was developed to meet the needs of researchers in developing robotics applications that perform such tasks as grasp, trajectory design, sensor data analysis, and interfacing with external subsystems in order to perform servo-level control of manipulators and real time sensing is discussed. The philosophy behind THREAD, the issues which entered into its design, and the features of the language are discussed from the viewpoint of researchers who want to develop algorithms in a simulation environment, and from those who want to implement physical robotics systems. The detailed functions of the many complex robotics algorithms and tools which are part of the language are not explained, but an overall impression of their capability is given.

  2. Open multi-agent control architecture to support virtual-reality-based man-machine interfaces

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel

    2001-10-01

    Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.

  3. Robot tracking system improvements and visual calibration of orbiter position for radiator inspection

    NASA Technical Reports Server (NTRS)

    Tonkay, Gregory

    1990-01-01

    The following separate topics are addressed: (1) improving a robotic tracking system; and (2) providing insights into orbiter position calibration for radiator inspection. The objective of the tracking system project was to provide the capability to track moving targets more accurately by adjusting parameters in the control system and implementing a predictive algorithm. A computer model was developed to emulate the tracking system. Using this model as a test bed, a self-tuning algorithm was developed to tune the system gains. The model yielded important findings concerning factors that affect the gains. The self-tuning algorithms will provide the concepts to write a program to automatically tune the gains in the real system. The section concerning orbiter position calibration provides a comparison to previous work that had been performed for plant growth. It provided the conceptualized routines required to visually determine the orbiter position and orientation. Furthermore, it identified the types of information which are required to flow between the robot controller and the vision system.

  4. A small, cheap, and portable reconnaissance robot

    NASA Astrophysics Data System (ADS)

    Kenyon, Samuel H.; Creary, D.; Thi, Dan; Maynard, Jeffrey

    2005-05-01

    While there is much interest in human-carriable mobile robots for defense/security applications, existing examples are still too large/heavy, and there are not many successful small human-deployable mobile ground robots, especially ones that can survive being thrown/dropped. We have developed a prototype small short-range teleoperated indoor reconnaissance/surveillance robot that is semi-autonomous. It is self-powered, self-propelled, spherical, and meant to be carried and thrown by humans into indoor, yet relatively unstructured, dynamic environments. The robot uses multiple channels for wireless control and feedback, with the potential for inter-robot communication, swarm behavior, or distributed sensor network capabilities. The primary reconnaissance sensor for this prototype is visible-spectrum video. This paper focuses more on the software issues, both the onboard intelligent real time control system and the remote user interface. The communications, sensor fusion, intelligent real time controller, etc. are implemented with onboard microcontrollers. We based the autonomous and teleoperation controls on a simple finite state machine scripting layer. Minimal localization and autonomous routines were designed to best assist the operator, execute whatever mission the robot may have, and promote its own survival. We also discuss the advantages and pitfalls of an inexpensive, rapidly-developed semi-autonomous robotic system, especially one that is spherical, and the importance of human-robot interaction as considered for the human-deployment and remote user interface.

  5. Autonomous urban reconnaissance ingress system (AURIS): providing a tactically relevant autonomous door-opening kit for unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Shane, David J.; Rufo, Michael A.; Berkemeier, Matthew D.; Alberts, Joel A.

    2012-06-01

    The Autonomous Urban Reconnaissance Ingress System (AURIS™) addresses a significant limitation of current military and first responder robotics technology: the inability of reconnaissance robots to open doors. Leveraging user testing as a baseline, the program has derived specifications necessary for military personnel to open doors with fielded UGVs (Unmanned Ground Vehicles), and evaluates the technology's impact on operational mission areas: duration, timing, and user patience in developing a tactically relevant, safe, and effective system. Funding is provided through the US ARMY Tank Automotive Research, Development and Engineering Center (TARDEC) and the project represents a leap forward in perception, autonomy, robotic implements, and coordinated payload operation in UGVs. This paper describes high level details of specification generation, status of the last phase of development, an advanced view of the system autonomy capability, and a short look ahead towards the ongoing work on this compelling and important technology.

  6. a Distributed Online 3D-LIDAR Mapping System

    NASA Astrophysics Data System (ADS)

    Schmiemann, J.; Harms, H.; Schattenberg, J.; Becker, M.; Batzdorfer, S.; Frerichs, L.

    2017-08-01

    In this paper we are presenting work done within the joint development project ANKommEn. It deals with the development of a highly automated robotic system for fast data acquisition in civil disaster scenarios. One of the main requirements is a versatile system, hence the concept embraces a machine cluster consisting of multiple fundamentally different robotic platforms. To cover a large variety of potential deployment scenarios, neither the absolute amount of participants, nor the precise individual layout of each platform shall be restricted within the conceptual design. Thus leading to a variety of special requirements, like onboard and online data processing capabilities for each individual participant and efficient data exchange structures, allowing reliable random data exchange between individual robots. We are demonstrating the functionality and performance by means of a distributed mapping system evaluated with real world data in a challenging urban and rural indoor/outdoor scenarios.

  7. Evolutionary online behaviour learning and adaptation in real robots

    PubMed Central

    Correia, Luís; Christensen, Anders Lyhne

    2017-01-01

    Online evolution of behavioural control on real robots is an open-ended approach to autonomous learning and adaptation: robots have the potential to automatically learn new tasks and to adapt to changes in environmental conditions, or to failures in sensors and/or actuators. However, studies have so far almost exclusively been carried out in simulation because evolution in real hardware has required several days or weeks to produce capable robots. In this article, we successfully evolve neural network-based controllers in real robotic hardware to solve two single-robot tasks and one collective robotics task. Controllers are evolved either from random solutions or from solutions pre-evolved in simulation. In all cases, capable solutions are found in a timely manner (1 h or less). Results show that more accurate simulations may lead to higher-performing controllers, and that completing the optimization process in real robots is meaningful, even if solutions found in simulation differ from solutions in reality. We furthermore demonstrate for the first time the adaptive capabilities of online evolution in real robotic hardware, including robots able to overcome faults injected in the motors of multiple units simultaneously, and to modify their behaviour in response to changes in the task requirements. We conclude by assessing the contribution of each algorithmic component on the performance of the underlying evolutionary algorithm. PMID:28791130

  8. Peer-to-peer model for the area coverage and cooperative control of mobile sensor networks

    NASA Astrophysics Data System (ADS)

    Tan, Jindong; Xi, Ning

    2004-09-01

    This paper presents a novel model and distributed algorithms for the cooperation and redeployment of mobile sensor networks. A mobile sensor network composes of a collection of wireless connected mobile robots equipped with a variety of sensors. In such a sensor network, each mobile node has sensing, computation, communication, and locomotion capabilities. The locomotion ability enhances the autonomous deployment of the system. The system can be rapidly deployed to hostile environment, inaccessible terrains or disaster relief operations. The mobile sensor network is essentially a cooperative multiple robot system. This paper first presents a peer-to-peer model to define the relationship between neighboring communicating robots. Delaunay Triangulation and Voronoi diagrams are used to define the geometrical relationship between sensor nodes. This distributed model allows formal analysis for the fusion of spatio-temporal sensory information of the network. Based on the distributed model, this paper discusses a fault tolerant algorithm for autonomous self-deployment of the mobile robots. The algorithm considers the environment constraints, the presence of obstacles and the nonholonomic constraints of the robots. The distributed algorithm enables the system to reconfigure itself such that the area covered by the system can be enlarged. Simulation results have shown the effectiveness of the distributed model and deployment algorithms.

  9. High-throughput and automated SAXS/USAXS experiment for industrial use at BL19B2 in SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osaka, Keiichi, E-mail: k-osaka@spring8.or.jp; Inoue, Daisuke; Sato, Masugu

    A highly automated system combining a sample transfer robot with focused SR beam has been established for small-angle and ultra small-angle X-ray scattering (SAXS/USAXS) measurement at BL19B2 for industrial use of SPring-8. High-throughput data collection system can be realized by means of X-ray beam of high photon flux density concentrated by a cylindrical mirror, and a two-dimensional pixel detector PILATUS-2M. For SAXS measurement, we can obtain high-quality data within 1 minute for one exposure using this system. The sample transfer robot has a capacity of 90 samples with a large variety of shapes. The fusion of high-throughput and robotic systemmore » has enhanced the usability of SAXS/USAXS capability for industrial application.« less

  10. The space station tethered elevator system

    NASA Technical Reports Server (NTRS)

    Anderson, Loren A.

    1989-01-01

    The optimized conceptual engineering design of a space station tethered elevator is presented. The elevator is an unmanned mobile structure which operates on a ten kilometer tether spanning the distance between the Space Station and a tethered platform. Elevator capabilities include providing access to residual gravity levels, remote servicing, and transportation to any point along a tether. The potential uses, parameters, and evolution of the spacecraft design are discussed. Engineering development of the tethered elevator is the result of work conducted in the following areas: structural configurations; robotics, drive mechanisms; and power generation and transmission systems. The structural configuration of the elevator is presented. The structure supports, houses, and protects all systems on board the elevator. The implementation of robotics on board the elevator is discussed. Elevator robotics allow for the deployment, retrieval, and manipulation of tethered objects. Robotic manipulators also aid in hooking the elevator on a tether. Critical to the operation of the tethered elevator is the design of its drive mechanisms, which are discussed. Two drivers, located internal to the elevator, propel the vehicle along a tether. These modular components consist of endless toothed belts, shunt-wound motors, regenerative power braking, and computer controlled linear actuators. The designs of self-sufficient power generation and transmission systems are reviewed. Thorough research indicates all components of the elevator will operate under power provided by fuel cells. The fuel cell systems will power the vehicle at seven kilowatts continuously and twelve kilowatts maximally. A set of secondary fuel cells provides redundancy in the unlikely event of a primary system failure. Power storage exists in the form of Nickel-Hydrogen batteries capable of powering the elevator under maximum loads.

  11. Computing design principles for robotic telescopes

    NASA Astrophysics Data System (ADS)

    Bowman, Mark K.; Ford, Martyn J.; Lett, Robert D. J.; McKay, Derek J.; Mücke-Herzberg, Dorothy; Norbury, Martin A.

    2002-12-01

    Telescopes capable of making observing decisions independent of human supervision have become a reality in the 21st century. These new telescopes are likely to replace automated systems as the telescopes of choice. A fully robotic implementation offers not only reduced operating costs, but also significant gains in scientific output over automated or remotely operated systems. The design goals are to maximise the telescope operating time and minimise the cost of diagnosis and repair. However, the demands of a robotic telescope greatly exceed those of its remotely operated counterpart, and the design of the computing system is key to its operational performance. This paper outlines the challenges facing the designer of these computing systems, and describes some of the principles of design which may be applied. Issues considered include automatic control and efficiency, system awareness, robustness and reliability, access, security and safety, as well as ease-of-use and maintenance. These requirements cannot be considered simply within the context of the application software. Hence, this paper takes into account operating system, hardware and environmental issues. Consideration is also given to accommodating different levels of manual control within robotic telescopes, as well as methods of accessing and overriding the system in the event of failure.

  12. Towards frameless maskless SRS through real-time 6DoF robotic motion compensation.

    PubMed

    Belcher, Andrew H; Liu, Xinmin; Chmura, Steven; Yenice, Kamil; Wiersma, Rodney D

    2017-11-13

    Stereotactic radiosurgery (SRS) uses precise dose placement to treat conditions of the CNS. Frame-based SRS uses a metal head ring fixed to the patient's skull to provide high treatment accuracy, but patient comfort and clinical workflow may suffer. Frameless SRS, while potentially more convenient, may increase uncertainty of treatment accuracy and be physiologically confining to some patients. By incorporating highly precise robotics and advanced software algorithms into frameless treatments, we present a novel frameless and maskless SRS system where a robot provides real-time 6DoF head motion stabilization allowing positional accuracies to match or exceed those of traditional frame-based SRS. A 6DoF parallel kinematics robot was developed and integrated with a real-time infrared camera in a closed loop configuration. A novel compensation algorithm was developed based on an iterative closest-path correction approach. The robotic SRS system was tested on six volunteers, whose motion was monitored and compensated for in real-time over 15 min simulated treatments. The system's effectiveness in maintaining the target's 6DoF position within preset thresholds was determined by comparing volunteer head motion with and without compensation. Comparing corrected and uncorrected motion, the 6DoF robotic system showed an overall improvement factor of 21 in terms of maintaining target position within 0.5 mm and 0.5 degree thresholds. Although the system's effectiveness varied among the volunteers examined, for all volunteers tested the target position remained within the preset tolerances 99.0% of the time when robotic stabilization was used, compared to 4.7% without robotic stabilization. The pre-clinical robotic SRS compensation system was found to be effective at responding to sub-millimeter and sub-degree cranial motions for all volunteers examined. The system's success with volunteers has demonstrated its capability for implementation with frameless and maskless SRS treatments, potentially able to achieve the same or better treatment accuracies compared to traditional frame-based approaches.

  13. Robotic Access to Planetary Surfaces Capability Roadmap

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A set of robotic access to planetary surfaces capability developments and supporting infrastructure have been identified. Reference mission pulls derived from ongoing strategic planning. Capability pushes to enable broader mission considerations. Facility and flight test capability needs. Those developments have been described to the level of detail needed for high-level planning. Content and approach. Readiness and metrics. Rough schedule and cost. Connectivity to mission concepts.

  14. Energy Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    systems test hub includes a Class 1, Division 2 space for performing tests of high-pressure hydrogen Laboratory offers the following capabilities. High-Pressure Hydrogen Systems The high-pressure hydrogen infrastructure. Key Infrastructure Robotic arm; high-pressure hydrogen; natural gas supply; standalone SCADA

  15. An integrated system for interactive continuous learning of categorical knowledge

    NASA Astrophysics Data System (ADS)

    Skočaj, Danijel; Vrečko, Alen; Mahnič, Marko; Janíček, Miroslav; Kruijff, Geert-Jan M.; Hanheide, Marc; Hawes, Nick; Wyatt, Jeremy L.; Keller, Thomas; Zhou, Kai; Zillich, Michael; Kristan, Matej

    2016-09-01

    This article presents an integrated robot system capable of interactive learning in dialogue with a human. Such a system needs to have several competencies and must be able to process different types of representations. In this article, we describe a collection of mechanisms that enable integration of heterogeneous competencies in a principled way. Central to our design is the creation of beliefs from visual and linguistic information, and the use of these beliefs for planning system behaviour to satisfy internal drives. The system is able to detect gaps in its knowledge and to plan and execute actions that provide information needed to fill these gaps. We propose a hierarchy of mechanisms which are capable of engaging in different kinds of learning interactions, e.g. those initiated by a tutor or by the system itself. We present the theory these mechanisms are build upon and an instantiation of this theory in the form of an integrated robot system. We demonstrate the operation of the system in the case of learning conceptual models of objects and their visual properties.

  16. Recent testing of a micro autonomous positioning system for multi-object instrumentation

    NASA Astrophysics Data System (ADS)

    Cochrane, W. A.; Atkinson, D. C.; Bailie, T. E. C.; Dickson, C.; Lim, T.; Luo, X.; Montgomery, D. M.; Schnetler, H.; Taylor, W. D.; Wilson, B.

    2012-09-01

    A multiple pick off mirror positioning sub-system has been developed as a solution for the deployment of mirrors within multi-object instrumentation such as the EAGLE instrument in the European Extremely Large Telescope (E-ELT). The positioning sub-system is a two wheeled differential steered friction drive robot with a footprint of approximately 20 x 20 mm. Controlled by RF communications there are two versions of the robot that exist. One is powered by a single cell lithium ion battery and the other utilises a power floor system. The robots use two brushless DC motors with 125:1 planetary gear heads for positioning in the coarse drive stages. A unique power floor allows the robots to be positioned at any location in any orientation on the focal plane. The design, linear repeatability tests, metrology and power continuity of the robot will be evaluated and presented in this paper. To gather photons from the objects of interest it is important to position POMs within a sphere of confusion of less than 10 μm, with an angular alignment better than 1 mrad. The robots potential of meeting these requirements will be described through the open-loop repeatability tests conducted with a Faro laser beam tracker. Tests have involved sending the robot step commands and automatically taking continuous measurements every three seconds. Currently the robot is capable of repeatedly travelling 233 mm within 0.307 mm at 5 mm/s. An analysis of the power floors reliability through the continuous monitoring of the voltage across the tracks with a Pico logger will also be presented.

  17. Sensing and data classification for a robotic meteorite search

    NASA Astrophysics Data System (ADS)

    Pedersen, Liam; Apostolopoulos, Dimi; Whittaker, William L.; Benedix, Gretchen; Rousch, Ted

    1999-01-01

    Upcoming missions to Mars and the mon call for highly autonomous robots with capability to perform intra-site exploration, reason about their scientific finds, and perform comprehensive on-board analysis of data collected. An ideal case for testing such technologies and robot capabilities is the robotic search for Antarctic meteorites. The successful identification and classification of meteorites depends on sensing modalities and intelligent evaluation of acquired data. Data from color imagery and spectroscopic measurements are used to identify terrestrial rocks and distinguish them from meteorites. However, because of the large number of rocks and the high cost and delay of using some of the sensors, it is necessary to eliminate as many meteorite candidates as possible using cheap long range sensors, such as color cameras. More resource consuming sensor will be held in reserve for the more promising samples only. Bayes networks are used as the formalism for incrementally combing data from multiple sources in a statistically rigorous manner. Furthermore, they can be used to infer the utility of further sensor readings given currently known data. This information, along with cost estimates, in necessary for the sensing system to rationally schedule further sensor reading sand deployments. This paper address issues associated with sensor selection and implementation of an architecture for automatic identification of rocks and meteorites from a mobile robot.

  18. Fully decentralized control of a soft-bodied robot inspired by true slime mold.

    PubMed

    Umedachi, Takuya; Takeda, Koichi; Nakagaki, Toshiyuki; Kobayashi, Ryo; Ishiguro, Akio

    2010-03-01

    Animals exhibit astoundingly adaptive and supple locomotion under real world constraints. In order to endow robots with similar capabilities, we must implement many degrees of freedom, equivalent to animals, into the robots' bodies. For taming many degrees of freedom, the concept of autonomous decentralized control plays a pivotal role. However a systematic way of designing such autonomous decentralized control system is still missing. Aiming at understanding the principles that underlie animals' locomotion, we have focused on a true slime mold, a primitive living organism, and extracted a design scheme for autonomous decentralized control system. In order to validate this design scheme, this article presents a soft-bodied amoeboid robot inspired by the true slime mold. Significant features of this robot are twofold: (1) the robot has a truly soft and deformable body stemming from real-time tunable springs and protoplasm, the former is used for an outer skin of the body and the latter is to satisfy the law of conservation of mass; and (2) fully decentralized control using coupled oscillators with completely local sensory feedback mechanism is realized by exploiting the long-distance physical interaction between the body parts stemming from the law of conservation of protoplasmic mass. Simulation results show that this robot exhibits highly supple and adaptive locomotion without relying on any hierarchical structure. The results obtained are expected to shed new light on design methodology for autonomous decentralized control system.

  19. [Surgical robotics, short state of the art and prospects].

    PubMed

    Gravez, P

    2003-11-01

    State-of-the-art robotized systems developed for surgery are either remotely controlled manipulators that duplicate gestures made by the surgeon (endoscopic surgery applications), or automated robots that execute trajectories defined relatively to pre-operative medical imaging (neurosurgery and orthopaedic surgery). This generation of systems primarily applies existing robotics technologies (the remote handling systems and the so-called "industrial robots") to current surgical practices. It has contributed to validate the huge potential of surgical robotics, but it suffers from several drawbacks, mainly high costs, excessive dimensions and some lack of user-friendliness. Nevertheless, technological progress let us anticipate the appearance in the near future of miniaturised surgical robots able to assist the gesture of the surgeon and to enhance his perception of the operation at hand. Due to many in-the-body articulated links, these systems will have the capability to perform complex minimally invasive gestures without obstructing the operating theatre. They will also combine the facility of manual piloting with the accuracy and increased safety of computer control, guiding the gestures of the human without offending to his freedom of action. Lastly, they will allow the surgeon to feel the mechanical properties of the tissues he is operating through a genuine "remote palpation" function. Most probably, such technological evolutions will lead the way to redesigned surgical procedures taking place inside new operating rooms featuring a better integration of all equipments and favouring cooperative work from multidisciplinary and sometimes geographically distributed medical staff.

  20. High-precision robotic microcontact printing (R-μCP) utilizing a vision guided selectively compliant articulated robotic arm.

    PubMed

    McNulty, Jason D; Klann, Tyler; Sha, Jin; Salick, Max; Knight, Gavin T; Turng, Lih-Sheng; Ashton, Randolph S

    2014-06-07

    Increased realization of the spatial heterogeneity found within in vivo tissue microenvironments has prompted the desire to engineer similar complexities into in vitro culture substrates. Microcontact printing (μCP) is a versatile technique for engineering such complexities onto cell culture substrates because it permits microscale control of the relative positioning of molecules and cells over large surface areas. However, challenges associated with precisely aligning and superimposing multiple μCP steps severely limits the extent of substrate modification that can be achieved using this method. Thus, we investigated the feasibility of using a vision guided selectively compliant articulated robotic arm (SCARA) for μCP applications. SCARAs are routinely used to perform high precision, repetitive tasks in manufacturing, and even low-end models are capable of achieving microscale precision. Here, we present customization of a SCARA to execute robotic-μCP (R-μCP) onto gold-coated microscope coverslips. The system not only possesses the ability to align multiple polydimethylsiloxane (PDMS) stamps but also has the capability to do so even after the substrates have been removed, reacted to graft polymer brushes, and replaced back into the system. Plus, non-biased computerized analysis shows that the system performs such sequential patterning with <10 μm precision and accuracy, which is equivalent to the repeatability specifications of the employed SCARA model. R-μCP should facilitate the engineering of complex in vivo-like complexities onto culture substrates and their integration with microfluidic devices.

  1. Regenerative patterning in Swarm Robots: mutual benefits of research in robotics and stem cell biology.

    PubMed

    Rubenstein, Michael; Sai, Ying; Chuong, Cheng-Ming; Shen, Wei-Min

    2009-01-01

    This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. Self here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering.

  2. Regenerative patterning in Swarm Robots: mutual benefits of research in robotics and stem cell biology

    PubMed Central

    RUBENSTEIN, MICHAEL; SAI, YING; CHUONG, CHENG-MING; SHEN, WEI-MIN

    2010-01-01

    This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. “Self” here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering. PMID:19557691

  3. Design and testing of a model CELSS chamber robot

    NASA Astrophysics Data System (ADS)

    Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; McCarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth

    1994-08-01

    A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system. A stability pre-test was used to determine whether the model robot arm would tip over on the stand when it was fully extended. Results showed the stand tipped when 50 Newtons were applied horizontally to the top of the vertical shaft while the arm was fully extended.

  4. Design and testing of a model CELSS chamber robot

    NASA Technical Reports Server (NTRS)

    Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; Mccarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth

    1994-01-01

    A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system. A stability pre-test was used to determine whether the model robot arm would tip over on the stand when it was fully extended. Results showed the stand tipped when 50 Newtons were applied horizontally to the top of the vertical shaft while the arm was fully extended. This proved that it was stable. Another pre-test was the actuator slip test used to determine if there is an adequate coefficient of friction between the actuator drive wheels and drive cable to enable the actuator to fully extend and retract the arm. This pre-test revealed that the coefficient of friction was not large enough to prevent slippage. Sandpaper was glued to the drive wheel and this eliminated the slippage problem. The class preformed a fit test in the CELSS chamber to ensure that the completed robot arm is capable of reaching the entire working envelope. The robot was centered in the chamber and the arm was fully extended to the sides of the chamber. The arm was also able to retract to clear the drain pipes separating the upper and lower plant trays.

  5. Force reflecting hand controller for manipulator teleoperation

    NASA Technical Reports Server (NTRS)

    Bryfogle, Mark D.

    1991-01-01

    A force reflecting hand controller based upon a six degree of freedom fully parallel mechanism, often termed a Stewart Platform, has been designed, constructed, and tested as an integrated system with a slave robot manipulator test bed. A force reflecting hand controller comprises a kinesthetic device capable of transmitting position and orientation commands to a slave robot manipulator while simultaneously representing the environmental interaction forces of the slave manipulator back to the operator through actuators driving the hand controller mechanism. The Stewart Platform was chosen as a novel approach to improve force reflecting teleoperation because of its inherently high ratio of load generation capability to system mass content and the correspondingly high dynamic bandwidth. An additional novelty of the program was to implement closed loop force and torque control about the hand controller mechanism by equipping the handgrip with a six degree of freedom force and torque measuring cell. The mechanical, electrical, computer, and control systems are discussed and system tests are presented.

  6. Electroactive polymer (EAP) actuators for future humanlike robots

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2009-03-01

    Human-like robots are increasingly becoming an engineering reality thanks to recent technology advances. These robots, which are inspired greatly by science fiction, were originated from the desire to reproduce the human appearance, functions and intelligence and they may become our household appliance or even companion. The development of such robots is greatly supported by emerging biologically inspired technologies. Potentially, electroactive polymer (EAP) materials are offering actuation capabilities that allow emulating the action of our natural muscles for making such machines perform lifelike. There are many technical issues related to making such robots including the need for EAP materials that can operate as effective actuators. Beside the technology challenges these robots also raise concerns that need to be addressed prior to forming super capable robots. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper, the potential EAP actuators and the challenges that these robots may pose will be reviewed.

  7. Electroactive Polymer (EAP) Actuators for Future Humanlike Robots

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2009-01-01

    Human-like robots are increasingly becoming an engineering reality thanks to recent technology advances. These robots, which are inspired greatly by science fiction, were originated from the desire to reproduce the human appearance, functions and intelligence and they may become our household appliance or even companion. The development of such robots is greatly supported by emerging biologically inspired technologies. Potentially, electroactive polymer (EAP) materials are offering actuation capabilities that allow emulating the action of our natural muscles for making such machines perform lifelike. There are many technical issues related to making such robots including the need for EAP materials that can operate as effective actuators. Beside the technology challenges these robots also raise concerns that need to be addressed prior to forming super capable robots. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper, the potential EAP actuators and the challenges that these robots may pose will be reviewed.

  8. Analysis of reaching movements of upper arm in robot assisted exercises. Kinematic assessment of robot assisted upper arm reaching single-joint movements.

    PubMed

    Iuppariello, Luigi; D'Addio, Giovanni; Romano, Maria; Bifulco, Paolo; Lanzillo, Bernardo; Pappone, Nicola; Cesarelli, Mario

    2016-01-01

    Robot-mediated therapy (RMT) has been a very dynamic area of research in recent years. Robotics devices are in fact capable to quantify the performances of a rehabilitation task in treatments of several disorders of the arm and the shoulder of various central and peripheral etiology. Different systems for robot-aided neuro-rehabilitation are available for upper limb rehabilitation but the biomechanical parameters proposed until today, to evaluate the quality of the movement, are related to the specific robot used and to the type of exercise performed. Besides, none study indicated a standardized quantitative evaluation of robot assisted upper arm reaching movements, so the RMT is still far to be considered a standardised tool. In this paper a quantitative kinematic assessment of robot assisted upper arm reaching movements, considering also the effect of gravity on the quality of the movements, is proposed. We studied a group of 10 healthy subjects and results indicate that our advised protocol can be useful for characterising normal pattern in reaching movements.

  9. Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery.

    PubMed

    Abidi, Haider; Gerboni, Giada; Brancadoro, Margherita; Fras, Jan; Diodato, Alessandro; Cianchetti, Matteo; Wurdemann, Helge; Althoefer, Kaspar; Menciassi, Arianna

    2018-02-01

    For some surgical interventions, like the Total Mesorectal Excision (TME), traditional laparoscopes lack the flexibility to safely maneuver and reach difficult surgical targets. This paper answers this need through designing, fabricating and modelling a highly dexterous 2-module soft robot for minimally invasive surgery (MIS). A soft robotic approach is proposed that uses flexible fluidic actuators (FFAs) allowing highly dexterous and inherently safe navigation. Dexterity is provided by an optimized design of fluid chambers within the robot modules. Safe physical interaction is ensured by fabricating the entire structure by soft and compliant elastomers, resulting in a squeezable 2-module robot. An inner free lumen/chamber along the central axis serves as a guide of flexible endoscopic tools. A constant curvature based inverse kinematics model is also proposed, providing insight into the robot capabilities. Experimental tests in a surgical scenario using a cadaver model are reported, demonstrating the robot advantages over standard systems in a realistic MIS environment. Simulations and experiments show the efficacy of the proposed soft robot. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Learning classifier systems for single and multiple mobile robots in unstructured environments

    NASA Astrophysics Data System (ADS)

    Bay, John S.

    1995-12-01

    The learning classifier system (LCS) is a learning production system that generates behavioral rules via an underlying discovery mechanism. The LCS architecture operates similarly to a blackboard architecture; i.e., by posted-message communications. But in the LCS, the message board is wiped clean at every time interval, thereby requiring no persistent shared resource. In this paper, we adapt the LCS to the problem of mobile robot navigation in completely unstructured environments. We consider the model of the robot itself, including its sensor and actuator structures, to be part of this environment, in addition to the world-model that includes a goal and obstacles at unknown locations. This requires a robot to learn its own I/O characteristics in addition to solving its navigation problem, but results in a learning controller that is equally applicable, unaltered, in robots with a wide variety of kinematic structures and sensing capabilities. We show the effectiveness of this LCS-based controller through both simulation and experimental trials with a small robot. We then propose a new architecture, the Distributed Learning Classifier System (DLCS), which generalizes the message-passing behavior of the LCS from internal messages within a single agent to broadcast massages among multiple agents. This communications mode requires little bandwidth and is easily implemented with inexpensive, off-the-shelf hardware. The DLCS is shown to have potential application as a learning controller for multiple intelligent agents.

  11. Virtual Reality Robotic Operation Simulations Using MEMICA Haptic System

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Mavroidis, C.; Bouzit, M.; Dolgin, B.; Harm, D. L.; Kopchok, G. E.; White, R.

    2000-01-01

    There is an increasing realization that some tasks can be performed significantly better by humans than robots but, due to associated hazards, distance, etc., only a robot can be employed. Telemedicine is one area where remotely controlled robots can have a major impact by providing urgent care at remote sites. In recent years, remotely controlled robotics has been greatly advanced. The robotic astronaut, "Robonaut," at NASA Johnson Space Center is one such example. Unfortunately, due to the unavailability of force and tactile feedback capability the operator must determine the required action using only visual feedback from the remote site, which limits the tasks that Robonaut can perform. There is a great need for dexterous, fast, accurate teleoperated robots with the operator?s ability to "feel" the environment at the robot's field. Recently, we conceived a haptic mechanism called MEMICA (Remote MEchanical MIrroring using Controlled stiffness and Actuators) that can enable the design of high dexterity, rapid response, and large workspace system. Our team is developing novel MEMICA gloves and virtual reality models to allow the simulation of telesurgery and other applications. The MEMICA gloves are designed to have a high dexterity, rapid response, and large workspace and intuitively mirror the conditions at a virtual site where a robot is simulating the presence of the human operator. The key components of MEMICA are miniature electrically controlled stiffness (ECS) elements and Electrically Controlled Force and Stiffness (ECFS) actuators that are based on the sue of Electro-Rheological Fluids (ERF). In this paper the design of the MEMICA system and initial experimental results are presented.

  12. Cognitive patterns: giving autonomy some context

    NASA Astrophysics Data System (ADS)

    Dumond, Danielle; Stacy, Webb; Geyer, Alexandra; Rousseau, Jeffrey; Therrien, Mike

    2013-05-01

    Today's robots require a great deal of control and supervision, and are unable to intelligently respond to unanticipated and novel situations. Interactions between an operator and even a single robot take place exclusively at a very low, detailed level, in part because no contextual information about a situation is conveyed or utilized to make the interaction more effective and less time consuming. Moreover, the robot control and sensing systems do not learn from experience and, therefore, do not become better with time or apply previous knowledge to new situations. With multi-robot teams, human operators, in addition to managing the low-level details of navigation and sensor management while operating single robots, are also required to manage inter-robot interactions. To make the most use of robots in combat environments, it will be necessary to have the capability to assign them new missions (including providing them context information), and to have them report information about the environment they encounter as they proceed with their mission. The Cognitive Patterns Knowledge Generation system (CPKG) has the ability to connect to various knowledge-based models, multiple sensors, and to a human operator. The CPKG system comprises three major internal components: Pattern Generation, Perception/Action, and Adaptation, enabling it to create situationally-relevant abstract patterns, match sensory input to a suitable abstract pattern in a multilayered top-down/bottom-up fashion similar to the mechanisms used for visual perception in the brain, and generate new abstract patterns. The CPKG allows the operator to focus on things other than the operation of the robot(s).

  13. An overview of the program to place advanced automation and robotics on the Space Station

    NASA Technical Reports Server (NTRS)

    Heydorn, Richard P.

    1987-01-01

    The preliminary design phase of the Space Station has uncovered a large number of potential uses of automation and robotics, most of which deal with the assembly and operation of the Station. If NASA were to vigorously push automation and robotics concepts in the design, the Station crew would probably be free to spend a substantial portion of time on payload activities. However, at this point NASA has taken a conservative attitude toward automation and robotics. For example, the belief is that robotics should evolve through telerobotics and that uses of artificial intelligence should be initially used in an advisory capacity. This conservativeness is in part due to the new and untested nature of automation and robotics; but, it is also due to emphases plased on designing the Station to the so-called upfront cost without thoroughly understanding the life cycle cost. Presumably automation and robotics has a tendency to increase the initial cost of the Space Station but could substantially reduce the life cycle cost. To insure that NASA will include some form of robotic capability, Congress directed to set aside funding. While this stimulates the development of robotics, it does not necessarily stimulate uses of artificial intelligence. However, since the initial development costs of some forms of artificial intelligence, such as expert systems, are in general lower than they are for robotics one is likely to see several expert systems being used on the Station.

  14. Using Voice Coils to Actuate Modular Soft Robots: Wormbot, an Example.

    PubMed

    Nemitz, Markus P; Mihaylov, Pavel; Barraclough, Thomas W; Ross, Dylan; Stokes, Adam A

    2016-12-01

    In this study, we present a modular worm-like robot, which utilizes voice coils as a new paradigm in soft robot actuation. Drive electronics are incorporated into the actuators, providing a significant improvement in self-sufficiency when compared with existing soft robot actuation modes such as pneumatics or hydraulics. The body plan of this robot is inspired by the phylum Annelida and consists of three-dimensional printed voice coil actuators, which are connected by flexible silicone membranes. Each electromagnetic actuator engages with its neighbor to compress or extend the membrane of each segment, and the sequence in which they are actuated results in an earthworm-inspired peristaltic motion. We find that a minimum of three segments is required for locomotion, but due to our modular design, robots of any length can be quickly and easily assembled. In addition to actuation, voice coils provide audio input and output capabilities. We demonstrate transmission of data between segments by high-frequency carrier waves and, using a similar mechanism, we note that the passing of power between coupled coils in neighboring modules-or from an external power source-is also possible. Voice coils are a convenient multifunctional alternative to existing soft robot actuators. Their self-contained nature and ability to communicate with each other are ideal for modular robotics, and the additional functionality of sound input/output and power transfer will become increasingly useful as soft robots begin the transition from early proof-of-concept systems toward fully functional and highly integrated robotic systems.

  15. Development of a compact continuum tubular robotic system for nasopharyngeal biopsy.

    PubMed

    Wu, Liao; Song, Shuang; Wu, Keyu; Lim, Chwee Ming; Ren, Hongliang

    2017-03-01

    Traditional posterior nasopharyngeal biopsy using a flexible nasal endoscope has the risks of abrasion and injury to the nasal mucosa and thus causing trauma to the patient. Recently, a new class of robots known as continuum tubular robots (CTRs) provide a novel solution to the challenge with miniaturized size, curvilinear maneuverability, and capability of avoiding collision within the nasal environment. This paper presents a compact CTR which is 35 cm in total length, 10 cm in diameter, 2.15 kg in weight, and easy to be integrated with a robotic arm to perform more complicated operations. Structural design, end-effector design, and workspace analysis are described in detail. In addition, teleoperation of the CTR using a haptic input device is developed for position control in 3D space. Moreover, by integrating the robot with three electromagnetic tracking sensors, a navigation system together with a shape reconstruction algorithm is developed. Comprehensive experiments are conducted to test the functionality of the proposed prototype; experiment results show that under teleoperation, the system has an accuracy of 2.20 mm in following a linear path, an accuracy of 2.01 mm in following a circular path, and a latency time of 0.1 s. It is also found that the proposed shape reconstruction algorithm has a mean error of around 1 mm along the length of the tubes. Besides, the feasibility and effectiveness of the proposed robotic system being applied to posterior nasopharyngeal biopsy are demonstrated by a cadaver experiment. The proposed robotic system holds promise to enhance clinical operation in transnasal procedures.

  16. Emerging Technology Creator of Worlds

    DTIC Science & Technology

    2016-01-01

    periencing even more profound uses. Artificial intelligence, brain inter- face, robotics, autonomous systems, biotechnology , lasers, hypersonics, and......capability to create customized medical treatments using biotechnology , particu- larly in treating certain types of cancer and a variety of other

  17. Compact teleoperated laparoendoscopic single-site robotic surgical system: Kinematics, control, and operation.

    PubMed

    Isaac-Lowry, Oran Jacob; Okamoto, Steele; Pedram, Sahba Aghajani; Woo, Russell; Berkelman, Peter

    2017-12-01

    To date a variety of teleoperated surgical robotic systems have been developed to improve a surgeon's ability to perform demanding single-port procedures. However typical large systems are bulky, expensive, and afford limited angular motion, while smaller designs suffer complications arising from limited motion range, speed, and force generation. This work was to develop and validate a simple, compact, low cost single site teleoperated laparoendoscopic surgical robotic system, with demonstrated capability to carry out basic surgical procedures. This system builds upon previous work done at the University of Hawaii at Manoa and includes instrument and endoscope manipulators as well as compact articulated instruments designed to overcome single incision geometry complications. A robotic endoscope holder was used for the base, with an added support frame for teleoperated manipulators and instruments fabricated mostly from 3D printed parts. Kinematics and control methods were formulated for the novel manipulator configuration. Trajectory following results from an optical motion tracker and sample task performance results are presented. Results indicate that the system has successfully met the goal of basic surgical functionality while minimizing physical size, complexity, and cost. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Learning Semantics of Gestural Instructions for Human-Robot Collaboration

    PubMed Central

    Shukla, Dadhichi; Erkent, Özgür; Piater, Justus

    2018-01-01

    Designed to work safely alongside humans, collaborative robots need to be capable partners in human-robot teams. Besides having key capabilities like detecting gestures, recognizing objects, grasping them, and handing them over, these robots need to seamlessly adapt their behavior for efficient human-robot collaboration. In this context we present the fast, supervised Proactive Incremental Learning (PIL) framework for learning associations between human hand gestures and the intended robotic manipulation actions. With the proactive aspect, the robot is competent to predict the human's intent and perform an action without waiting for an instruction. The incremental aspect enables the robot to learn associations on the fly while performing a task. It is a probabilistic, statistically-driven approach. As a proof of concept, we focus on a table assembly task where the robot assists its human partner. We investigate how the accuracy of gesture detection affects the number of interactions required to complete the task. We also conducted a human-robot interaction study with non-roboticist users comparing a proactive with a reactive robot that waits for instructions. PMID:29615888

  19. Learning Semantics of Gestural Instructions for Human-Robot Collaboration.

    PubMed

    Shukla, Dadhichi; Erkent, Özgür; Piater, Justus

    2018-01-01

    Designed to work safely alongside humans, collaborative robots need to be capable partners in human-robot teams. Besides having key capabilities like detecting gestures, recognizing objects, grasping them, and handing them over, these robots need to seamlessly adapt their behavior for efficient human-robot collaboration. In this context we present the fast, supervised Proactive Incremental Learning (PIL) framework for learning associations between human hand gestures and the intended robotic manipulation actions. With the proactive aspect, the robot is competent to predict the human's intent and perform an action without waiting for an instruction. The incremental aspect enables the robot to learn associations on the fly while performing a task. It is a probabilistic, statistically-driven approach. As a proof of concept, we focus on a table assembly task where the robot assists its human partner. We investigate how the accuracy of gesture detection affects the number of interactions required to complete the task. We also conducted a human-robot interaction study with non-roboticist users comparing a proactive with a reactive robot that waits for instructions.

  20. Steering of an automated vehicle in an unstructured environment

    NASA Astrophysics Data System (ADS)

    Kanakaraju, Sampath; Shanmugasundaram, Sathish K.; Thyagarajan, Ramesh; Hall, Ernest L.

    1999-08-01

    The purpose of this paper is to describe a high-level path planning logic, which processes the data from a vision system and an ultrasonic obstacle avoidance system and steers an autonomous mobile robot between obstacles. The test bed was an autonomous root built at University of Cincinnati, and this logic was tested and debugged on this machine. Attempts have already been made to incorporate fuzzy system on a similar robot, and this paper extends them to take advantage of the robot's ZTR capability. Using the integrated vision syste, the vehicle senses its location and orientation. A rotating ultrasonic sensor is used to map the location and size of possible obstacles. With these inputs the fuzzy logic controls the speed and the steering decisions of the robot. With the incorporation of this logic, it has been observed that Bearcat II has been very successful in avoiding obstacles very well. This was achieved in the Ground Robotics Competition conducted by the AUVS in June 1999, where it travelled a distance of 154 feet in a 10ft. wide path ridden with obstacles. This logic proved to be a significant contributing factor in this feat of Bearcat II.

  1. Experiments with a small behaviour controlled planetary rover

    NASA Technical Reports Server (NTRS)

    Miller, David P.; Desai, Rajiv S.; Gat, Erann; Ivlev, Robert; Loch, John

    1993-01-01

    A series of experiments that were performed on the Rocky 3 robot is described. Rocky 3 is a small autonomous rover capable of navigating through rough outdoor terrain to a predesignated area, searching that area for soft soil, acquiring a soil sample, and depositing the sample in a container at its home base. The robot is programmed according to a reactive behavior control paradigm using the ALFA programming language. This style of programming produces robust autonomous performance while requiring significantly less computational resources than more traditional mobile robot control systems. The code for Rocky 3 runs on an eight bit processor and uses about ten k of memory.

  2. Autonomous planetary rover

    NASA Astrophysics Data System (ADS)

    Krotkov, Eric; Simmons, Reid; Whittaker, William

    1992-02-01

    This report describes progress in research on an autonomous robot for planetary exploration performed during 1991 at the Robotics Institute, Carnegie Mellon University. The report summarizes the achievements during calendar year 1991, and lists personnel and publications. In addition, it includes several papers resulting from the research. Research in 1991 focused on understanding the unique capabilities of the Ambler mechanism and on autonomous walking in rough, natural terrain. We also designed a sample acquisition system, and began to configure a successor to the Ambler.

  3. Augmenting Naval Capabilities in Remote Locations

    DTIC Science & Technology

    2009-12-01

    suggested that the Navy adopt a different style of war fighting and that the Navy consider tailoring its forces by region and mission. Based on these...Vessel Return To Ship End 1 2 3 4 5 6 7 8 33 Figure 14. Future State Maps. From a Lean Six Sigma perspective, the project team was trained ...systems development and the training and support services robotics companies offer. In many cases, robotics firms and the customer sign up for modular

  4. Control of a Quadcopter Aerial Robot Using Optic Flow Sensing

    NASA Astrophysics Data System (ADS)

    Hurd, Michael Brandon

    This thesis focuses on the motion control of a custom-built quadcopter aerial robot using optic flow sensing. Optic flow sensing is a vision-based approach that can provide a robot the ability to fly in global positioning system (GPS) denied environments, such as indoor environments. In this work, optic flow sensors are used to stabilize the motion of quadcopter robot, where an optic flow algorithm is applied to provide odometry measurements to the quadcopter's central processing unit to monitor the flight heading. The optic-flow sensor and algorithm are capable of gathering and processing the images at 250 frames/sec, and the sensor package weighs 2.5 g and has a footprint of 6 cm2 in area. The odometry value from the optic flow sensor is then used a feedback information in a simple proportional-integral-derivative (PID) controller on the quadcopter. Experimental results are presented to demonstrate the effectiveness of using optic flow for controlling the motion of the quadcopter aerial robot. The technique presented herein can be applied to different types of aerial robotic systems or unmanned aerial vehicles (UAVs), as well as unmanned ground vehicles (UGV).

  5. Human-Robot Planetary Exploration Teams

    NASA Technical Reports Server (NTRS)

    Tyree, Kimberly

    2004-01-01

    The EVA Robotic Assistant (ERA) project at NASA Johnson Space Center studies human-robot interaction and robotic assistance for future human planetary exploration. Over the past four years, the ERA project has been performing field tests with one or more four-wheeled robotic platforms and one or more space-suited humans. These tests have provided experience in how robots can assist humans, how robots and humans can communicate in remote environments, and what combination of humans and robots works best for different scenarios. The most efficient way to understand what tasks human explorers will actually perform, and how robots can best assist them, is to have human explorers and scientists go and explore in an outdoor, planetary-relevant environment, with robots to demonstrate what they are capable of, and roboticists to observe the results. It can be difficult to have a human expert itemize all the needed tasks required for exploration while sitting in a lab: humans do not always remember all the details, and experts in one arena may not even recognize that the lower level tasks they take for granted may be essential for a roboticist to know about. Field tests thus create conditions that more accurately reveal missing components and invalid assumptions, as well as allow tests and comparisons of new approaches and demonstrations of working systems. We have performed field tests in our local rock yard, in several locations in the Arizona desert, and in the Utah desert. We have tested multiple exploration scenarios, such as geological traverses, cable or solar panel deployments, and science instrument deployments. The configuration of our robot can be changed, based on what equipment is needed for a given scenario, and the sensor mast can even be placed on one of two robot bases, each with different motion capabilities. The software architecture of our robot is also designed to be as modular as possible, to allow for hardware and configuration changes. Two focus areas of our research are safety and crew time efficiency. For safety, our work involves enabling humans to reliably communicate with a robot while moving in the same workspace, and enabling robots to monitor and advise humans of potential problems. Voice, gesture, remote computer control, and enhanced robot intelligence are methods we are studying. For crew time efficiency, we are investigating the effects of assigning different roles to humans and robots in collaborative exploration scenarios.

  6. A bio-inspired approach for the design of a multifunctional robotic end-effector customized for automated maintenance of a reconfigurable vibrating screen.

    PubMed

    Makinde, O A; Mpofu, K; Vrabic, R; Ramatsetse, B I

    2017-01-01

    The development of a robotic-driven maintenance solution capable of automatically maintaining reconfigurable vibrating screen (RVS) machine when utilized in dangerous and hazardous underground mining environment has called for the design of a multifunctional robotic end-effector capable of carrying out all the maintenance tasks on the RVS machine. In view of this, the paper presents a bio-inspired approach which unfolds the design of a novel multifunctional robotic end-effector embedded with mechanical and control mechanisms capable of automatically maintaining the RVS machine. To achieve this, therblig and morphological methodologies (which classifies the motions as well as the actions required by the robotic end-effector in carrying out RVS machine maintenance tasks), obtained from a detailed analogy of how human being (i.e. a machine maintenance manager) will carry out different maintenance tasks on the RVS machine, were used to obtain the maintenance objective functions or goals of the multifunctional robotic end-effector as well as the maintenance activity constraints of the RVS machine that must be adhered to by the multifunctional robotic end-effector during the machine maintenance. The results of the therblig and morphological analyses of five (5) different maintenance tasks capture and classify one hundred and thirty-four (134) repetitive motions and fifty-four (54) functions required in automating the maintenance tasks of the RVS machine. Based on these findings, a worm-gear mechanism embedded with fingers extruded with a hexagonal shaped heads capable of carrying out the "gripping and ungrasping" and "loosening and bolting" functions of the robotic end-effector and an electric cylinder actuator module capable of carrying out "unpinning and hammering" functions of the robotic end-effector were integrated together to produce the customized multifunctional robotic end-effector capable of automatically maintaining the RVS machine. The axial forces ([Formula: see text] and [Formula: see text]), normal forces ([Formula: see text]) and total load [Formula: see text] acting on the teeth of the worm-gear module of the multifunctional robotic end-effector during the gripping of worn-out or new RVS machine subsystems, which are 978.547, 1245.06 and 1016.406 N, respectively, were satisfactory. The nominal bending and torsional stresses acting on the shoulder of the socket module of the multifunctional robotic end-effector during the loosing and tightening of bolts, which are 1450.72 and 179.523 MPa, respectively, were satisfactory. The hammering and unpinning forces utilized by the electric cylinder actuator module of the multifunctional robotic end-effector during the unpinning and hammering of screen panel pins out of and into the screen panels were satisfactory.

  7. Integration of robotic resources into FORCEnet

    NASA Astrophysics Data System (ADS)

    Nguyen, Chinh; Carroll, Daniel; Nguyen, Hoa

    2006-05-01

    The Networked Intelligence, Surveillance, and Reconnaissance (NISR) project integrates robotic resources into Composeable FORCEnet to control and exploit unmanned systems over extremely long distances. The foundations are built upon FORCEnet-the U.S. Navy's process to define C4ISR for net-centric operations-and the Navy Unmanned Systems Common Control Roadmap to develop technologies and standards for interoperability, data sharing, publish-and-subscribe methodology, and software reuse. The paper defines the goals and boundaries for NISR with focus on the system architecture, including the design tradeoffs necessary for unmanned systems in a net-centric model. Special attention is given to two specific scenarios demonstrating the integration of unmanned ground and water surface vehicles into the open-architecture web-based command-and-control information-management system of Composeable FORCEnet. Planned spiral development for NISR will improve collaborative control, expand robotic sensor capabilities, address multiple domains including underwater and aerial platforms, and extend distributive communications infrastructure for battlespace optimization for unmanned systems in net-centric operations.

  8. Humanoids for lunar and planetary surface operations

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Keymeulen, Didier; Csaszar, Ambrus; Gan, Quan; Hidalgo, Timothy; Moore, Jeff; Newton, Jason; Sandoval, Steven; Xu, Jiajing

    2005-01-01

    This paper presents a vision of humanoid robots as human's key partners in future space exploration, in particular for construction, maintenance/repair and operation of lunar/planetary habitats, bases and settlements. It integrates this vision with the recent plans, for human and robotic exploration, aligning a set of milestones for operational capability of humanoids with the schedule for the next decades and development spirals in the Project Constellation. These milestones relate to a set of incremental challenges, for the solving of which new humanoid technologies are needed. A system of systems integrative approach that would lead to readiness of cooperating humanoid crews is sketched. Robot fostering, training/education techniques, and improved cognitive/sensory/motor development techniques are considered essential elements for achieving intelligent humanoids. A pilot project in this direction is outlined.

  9. Interactive intelligent remote operations: application to space robotics

    NASA Astrophysics Data System (ADS)

    Dupuis, Erick; Gillett, G. R.; Boulanger, Pierre; Edwards, Eric; Lipsett, Michael G.

    1999-11-01

    A set of tolls addressing the problems specific to the control and monitoring of remote robotic systems from extreme distances has been developed. The tools include the capability to model and visualize the remote environment, to generate and edit complex task scripts, to execute the scripts to supervisory control mode and to monitor and diagnostic equipment from multiple remote locations. Two prototype systems are implemented for demonstration. The first demonstration, using a prototype joint design called Dexter, shows the applicability of the approach to space robotic operation in low Earth orbit. The second demonstration uses a remotely controlled excavator in an operational open-pit tar sand mine. This demonstrates that the tools developed can also be used for planetary exploration operations as well as for terrestrial mining applications.

  10. Tele-care robot for assisting independent senior citizens who live at home.

    PubMed

    Katz, Reuven

    2015-01-01

    In the last twenty years most developed countries face dramatic demographic changes, and predominantly the rapid aging of their population. As the share of elderly people is climbing while the number of care providers is declining, the aging problem is becoming an increasingly important social and economic challenge. The supply of care at home, utilizing affordable tele-care systems and smart home technologies, is one of the promising strategies to cope with challenges posed by these demographic changes. The goal of this paper is to present a tele-care robot (TCR) aimed to assist Senior citizens who live independently at their home, that need assistance in daily life activities. The idea of the proposed system is that a caregiver, operating from a central location, will be able to service between 10 to 20 patients living at their home, by using the tele-care robot. The robot will possess motion control capabilities to move inside the house of each patient and alert in case that emergency events occur. The robot will allow the care provider to communicate remotely with the patient using audio and video equipment installed on the robot. By using the robot, the caregiver will be able to examine several times during the day the well-being of the patient, his medication consumption, and his overall functionality.

  11. Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor

    NASA Technical Reports Server (NTRS)

    Prinz, F. B.

    1991-01-01

    Sensor based robot motion planning research has primarily focused on mobile robots. Consider, however, the case of a robot manipulator expected to operate autonomously in a dynamic environment where unexpected collisions can occur with many parts of the robot. Only a sensor based system capable of generating collision free paths would be acceptable in such situations. Recently, work in this area has been reported in which a deterministic solution for 2DOF systems has been generated. The arm was sensitized with 'skin' of infra-red sensors. We have proposed a heuristic (potential field based) methodology for redundant robots with large DOF's. The key concepts are solving the path planning problem by cooperating global and local planning modules, the use of complete information from the sensors and partial (but appropriate) information from a world model, representation of objects with hyper-ellipsoids in the world model, and the use of variational planning. We intend to sensitize the robot arm with a 'skin' of capacitive proximity sensors. These sensors were developed at NASA, and are exceptionally suited for the space application. In the first part of the report, we discuss the development and modeling of the capacitive proximity sensor. In the second part we discuss the motion planning algorithm.

  12. Light weight portable operator control unit using an Android-enabled mobile phone

    NASA Astrophysics Data System (ADS)

    Fung, Nicholas

    2011-05-01

    There have been large gains in the field of robotics, both in hardware sophistication and technical capabilities. However, as more capable robots have been developed and introduced to battlefield environments, the problem of interfacing with human controllers has proven to be challenging. Particularly in the field of military applications, controller requirements can be stringent and can range from size and power consumption, to durability and cost. Traditional operator control units (OCUs) tend to resemble laptop personal computers (PCs), as these devices are mobile and have ample computing power. However, laptop PCs are bulky and have greater power requirements. To approach this problem, a light weight, inexpensive controller was created based on a mobile phone running the Android operating system. It was designed to control an iRobot Packbot through the Army Research Laboratory (ARL) in-house Agile Computing Infrastructure (ACI). The hardware capabilities of the mobile phone, such as Wi- Fi communications, touch screen interface, and the flexibility of the Android operating system, made it a compelling platform. The Android based OCU offers a more portable package and can be easily carried by a soldier along with normal gear requirements. In addition, the one hand operation of the Android OCU allows for the Soldier to keep an unoccupied hand for greater flexibility. To validate the Android OCU as a capable controller, experimental data was collected evaluating use of the controller and a traditional, tablet PC based OCU. Initial analysis suggests that the Android OCU performed positively in qualitative data collected from participants.

  13. An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger

    PubMed Central

    Hussain, Irfan; Spagnoletti, Giovanni; Salvietti, Gionata; Prattichizzo, Domenico

    2016-01-01

    In this paper, we propose a novel electromyographic (EMG) control interface to control motion and joints compliance of a supernumerary robotic finger. The supernumerary robotic fingers are a recently introduced class of wearable robotics that provides users additional robotic limbs in order to compensate or augment the existing abilities of natural limbs without substituting them. Since supernumerary robotic fingers are supposed to closely interact and perform actions in synergy with the human limbs, the control principles of extra finger should have similar behavior as human’s ones including the ability of regulating the compliance. So that, it is important to propose a control interface and to consider the actuators and sensing capabilities of the robotic extra finger compatible to implement stiffness regulation control techniques. We propose EMG interface and a control approach to regulate the compliance of the device through servo actuators. In particular, we use a commercial EMG armband for gesture recognition to be associated with the motion control of the robotic device and surface one channel EMG electrodes interface to regulate the compliance of the robotic device. We also present an updated version of a robotic extra finger where the adduction/abduction motion is realized through ball bearing and spur gears mechanism. We have validated the proposed interface with two sets of experiments related to compensation and augmentation. In the first set of experiments, different bimanual tasks have been performed with the help of the robotic device and simulating a paretic hand since this novel wearable system can be used to compensate the missing grasping abilities in chronic stroke patients. In the second set, the robotic extra finger is used to enlarge the workspace and manipulation capability of healthy hands. In both sets, the same EMG control interface has been used. The obtained results demonstrate that the proposed control interface is intuitive and can successfully be used, not only to control the motion of a supernumerary robotic finger but also to regulate its compliance. The proposed approach can be exploited also for the control of different wearable devices that has to actively cooperate with the human limbs. PMID:27891088

  14. Wheeled hopping robot

    DOEpatents

    Fischer, Gary J [Albuquerque, NM

    2010-08-17

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  15. Teleoperation experiments with a Utah/MIT hand and a VPL DataGlove

    NASA Technical Reports Server (NTRS)

    Clark, D.; Demmel, J.; Hong, J.; Lafferriere, Gerardo; Salkind, L.; Tan, X.

    1989-01-01

    A teleoperation system capable of controlling a Utah/MIT Dextrous Hand using a VPL DataGlove as a master is presented. Additionally the system is capable of running the dextrous hand in robotic (autonomous) mode as new programs are developed. The software and hardware architecture used is presented and the experiments performed are described. The communication and calibration issues involved are analyzed and applications to the analysis and development of automated dextrous manipulations are investigated.

  16. Innovative Robot Archetypes for In-Space Construction and Maintenance

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik; Ambrose, Robert O.; Kennedy, Brett; Diftler, Myron; Mehling Joshua; Brigwater, Lyndon; Radford, Nicolaus; Goza, S. Michael; Culbert, Christopher

    2005-01-01

    The space environment presents unique challenges and opportunities in the assembly, inspection and maintenance of orbital and transit spaceflight systems. While conventional Extra-Vehicular Activity (EVA) technology, out of necessity, addresses each of the challenges, relatively few of the opportunities have been exploited due to crew safety and reliability considerations. Extra-Vehicular Robotics (EVR) is one of the least-explored design spaces but offers many exciting innovations transcending the crane-like Space Shuttle and International Space Station Remote Manipulator System (RMS) robots used for berthing, coarse positioning and stabilization. Microgravity environments can support new robotic archetypes with locomotion and manipulation capabilities analogous to undersea creatures. Such diversification could enable the next generation of space science platforms and vehicles that are too large and fragile to launch and deploy as self-contained payloads. Sinuous manipulators for minimally invasive inspection and repair in confined spaces, soft-stepping climbers with expansive leg reach envelopes and free-flying nanosatellite cameras can access EVA worksites generally not accessible to humans in spacesuits. These and other novel robotic archetypes are presented along with functionality concepts

  17. Lower Limb Rehabilitation Using Patient Data

    PubMed Central

    Saadat, Mozafar

    2016-01-01

    The aim of this study is to investigate the performance of a 6-DoF parallel robot in tracking the movement of the foot trajectory of a paretic leg during a single stride. The foot trajectories of nine patients with a paretic leg including both males and females have been measured and analysed by a Vicon system in a gait laboratory. Based on kinematic and dynamic analysis of a 6-DoF UPS parallel robot, an algorithm was developed in MATLAB to calculate the length of the actuators and their required forces during all trajectories. The workspace and singularity points of the robot were then investigated in nine different cases. A 6-DoF UPS parallel robot prototype with high repeatability was designed and built in order to simulate a single stride. Results showed that the robot was capable of tracking all of the trajectories with the maximum position error of 1.2 mm. PMID:27721648

  18. Percutaneous intracardiac beating-heart surgery using metal MEMS tissue approximation tools

    PubMed Central

    Gosline, Andrew H; Vasilyev, Nikolay V; Butler, Evan J; Folk, Chris; Cohen, Adam; Chen, Rich; Lang, Nora; del Nido, Pedro J; Dupont, Pierre E

    2013-01-01

    Achieving superior outcomes through the use of robots in medical applications requires an integrated approach to the design of the robot, tooling and the procedure itself. In this paper, this approach is applied to develop a robotic technique for closing abnormal communication between the atria of the heart. The goal is to achieve the efficacy of surgical closure as performed on a stopped, open heart with the reduced risk and trauma of a beating-heart catheter-based procedure. In the proposed approach, a concentric tube robot is used to percutaneously access the right atrium and deploy a tissue approximation device. The device is constructed using a metal microelectromechanical system (MEMS) fabrication process and is designed to both fit the manipulation capabilities of the robot as well as to reproduce the beneficial features of surgical closure by suture. The effectiveness of the approach is demonstrated through ex vivo and in vivo experiments. PMID:23750066

  19. Mobile autonomous robotic apparatus for radiologic characterization

    DOEpatents

    Dudar, Aed M.; Ward, Clyde R.; Jones, Joel D.; Mallet, William R.; Harpring, Larry J.; Collins, Montenius X.; Anderson, Erin K.

    1999-01-01

    A mobile robotic system that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console.

  20. Mobile autonomous robotic apparatus for radiologic characterization

    DOEpatents

    Dudar, A.M.; Ward, C.R.; Jones, J.D.; Mallet, W.R.; Harpring, L.J.; Collins, M.X.; Anderson, E.K.

    1999-08-10

    A mobile robotic system is described that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console. 4 figs.

  1. Evolving a Neural Olfactorimotor System in Virtual and Real Olfactory Environments

    PubMed Central

    Rhodes, Paul A.; Anderson, Todd O.

    2012-01-01

    To provide a platform to enable the study of simulated olfactory circuitry in context, we have integrated a simulated neural olfactorimotor system with a virtual world which simulates both computational fluid dynamics as well as a robotic agent capable of exploring the simulated plumes. A number of the elements which we developed for this purpose have not, to our knowledge, been previously assembled into an integrated system, including: control of a simulated agent by a neural olfactorimotor system; continuous interaction between the simulated robot and the virtual plume; the inclusion of multiple distinct odorant plumes and background odor; the systematic use of artificial evolution driven by olfactorimotor performance (e.g., time to locate a plume source) to specify parameter values; the incorporation of the realities of an imperfect physical robot using a hybrid model where a physical robot encounters a simulated plume. We close by describing ongoing work toward engineering a high dimensional, reversible, low power electronic olfactory sensor which will allow olfactorimotor neural circuitry evolved in the virtual world to control an autonomous olfactory robot in the physical world. The platform described here is intended to better test theories of olfactory circuit function, as well as provide robust odor source localization in realistic environments. PMID:23112772

  2. Intelligent lead: a novel HRI sensor for guide robots.

    PubMed

    Cho, Keum-Bae; Lee, Beom-Hee

    2012-01-01

    This paper addresses the introduction of a new Human Robot Interaction (HRI) sensor for guide robots. Guide robots for geriatric patients or the visually impaired should follow user's control command, keeping a certain desired distance allowing the user to work freely. Therefore, it is necessary to acquire control commands and a user's position on a real-time basis. We suggest a new sensor fusion system to achieve this objective and we will call this sensor the "intelligent lead". The objective of the intelligent lead is to acquire a stable distance from the user to the robot, speed-control volume and turn-control volume, even when the robot platform with the intelligent lead is shaken on uneven ground. In this paper we explain a precise Extended Kalman Filter (EKF) procedure for this. The intelligent lead physically consists of a Kinect sensor, the serial linkage attached with eight rotary encoders, and an IMU (Inertial Measurement Unit) and their measurements are fused by the EKF. A mobile robot was designed to test the performance of the proposed sensor system. After installing the intelligent lead in the mobile robot, several tests are conducted to verify that the mobile robot with the intelligent lead is capable of achieving its goal points while maintaining the appropriate distance between the robot and the user. The results show that we can use the intelligent lead proposed in this paper as a new HRI sensor joined a joystick and a distance measure in the mobile environments such as the robot and the user are moving at the same time.

  3. Use of pharmacy delivery robots in intensive care units.

    PubMed

    Summerfield, Marc R; Seagull, F Jacob; Vaidya, Neelesh; Xiao, Yan

    2011-01-01

    The use of pharmacy delivery robots in an institution's intensive care units was evaluated. In 2003, the University of Maryland Medical Center (UMMC) began a pilot program to determine the logistic capability and functional utility of robotic technology in the delivery of medications from satellite pharmacies to patient care units. Three satellite pharmacies currently used the robotic system. Five data sources (electronic robot activation records, logs, interviews, surveys, and observations) were used to assess five key aspects of robotic delivery: robot use, reliability, timeliness, cost minimization, and acceptance. A 19-item survey using a 7-point Likert-type scale was developed to determine if pharmacy delivery robots changed nurses' perception of pharmacy service. The components measured included general satisfaction, reliability, timeliness, stat orders, services, interaction with pharmacy, and status tracking. A total of 23 pre-implementation, 96 post-implementation, and 30 two-year follow-up surveys were completed. After implementation of the robotic delivery system, time from fax to label, order preparation time, and idle time for medications to be delivered decreased, while nurses' general satisfaction with the pharmacy and opinion of the reliability of pharmacy delivery significantly increased. Robotic delivery did not influence the perceived quality of delivery service or the timeliness of orders or stat orders. Robot reliability was a major issue for the technician but not for pharmacists, who did not have as much interaction with the devices. By considering the needs of UMMC and its patients and matching them with available technology, the institution was able to improve the medication-use process and timeliness of medication departure from the pharmacy.

  4. Cooperative Exploration of Rough Martian Terrains with the "Scorpion" Legged Robot as an Adjunct to a Rover.

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano P.; Kirchner, Frank; Spenneberg, Dirk; Starman, Jared; Hanratty, James; Kovsmeyer, David (Technical Monitor)

    2003-01-01

    NASA needs autonomous robotic exploration of difficult (rough and/or steep) scientifically interesting Martian terrains. Concepts involving distributed autonomy for cooperative robotic exploration are key to enabling new scientific objectives in robotic missions. We propose to utilize a legged robot as an adjunct scout to a rover for access to difficult - scientifically interesting - terrains (rocky areas, slopes, cliffs). Our final mission scenario involves the Ames rover platform "K9" and Scorpion acting together to explore a steep cliff, with the Scorpion robot rappelling down using the K9 as an anchor as well as mission planner and executive. Cooperation concepts, including wheeled rappelling robots have been proposed before. Now we propose to test the combined advantages of a wheeled vehicle with a legged scout as well as the advantages of merging of high level planning and execution with biologically inspired, behavior based robotics. We propose to use the 8-legged, multifunctional autonomous robot platform Scorpion that is currently capable of: Walking on different terrains (rocks, sand, grass, ...). Perceiving its environment and modifying its behavioral pattern accordingly. These capabilities would be extended to enable the Scorpion to: communicate and cooperate with a partner robot; climb over rocks, rubble piles, and objects with structural features. This will be done in the context of exploration of rough terrains in the neighborhood of the rover, but inaccessible to it, culminating in the added capability of rappelling down a steep cliff for both vertical and horizontal terrain observation.

  5. The da Vinci robotic surgical assisted anterior lumbar interbody fusion: technical development and case report.

    PubMed

    Beutler, William J; Peppelman, Walter C; DiMarco, Luciano A

    2013-02-15

    Technique development to use the da Vince Robotic Surgical System for anterior lumbar interbody fusion at L5-S1 is detailed. A case report is also presented. To evaluate and develop the da Vinci robotic assisted laparoscopic anterior lumbar stand-alone interbody fusion procedure. Anterior lumbar interbody fusion is a common procedure associated with potential morbidity related to the surgical approach. The da Vinci robot provides intra-abdominal dissection and visualization advantages compared with the traditional open and laparoscopic approach. The surgical techniques for approach to the anterior lumbar spine using the da Vinci robot were developed and modified progressively beginning with operative models followed by placement of an interbody fusion cage in the living porcine model. Development continued to progress with placement of fusion cage in a human cadaver, completed first in the laboratory setting and then in the operating room. Finally, the first patient with fusion completed using the da Vinci robot-assisted approach is presented. The anterior transperitoneal approach to the lumbar spine is accomplished with enhanced visualization and dissection capability, with maintenance of pneumoperitoneum using the da Vinci robot. Blood loss is minimal. The visualization inside the disc space and surrounding structures was considered better than current open and laparoscopic techniques. The da Vinci robot Surgical System technique continues to develop and is now described for the transperitoneal approach to the anterior lumbar spine. 4.

  6. Covalent Bonding of Thermoplastics to Rubbers for Printable, Reel-to-Reel Processing in Soft Robotics and Microfluidics.

    PubMed

    Taylor, Jay M; Perez-Toralla, Karla; Aispuro, Ruby; Morin, Stephen A

    2018-02-01

    The lamination of mechanically stiff structures to elastic materials is prevalent in biological systems and popular in many emerging synthetic systems, such as soft robotics, microfluidics, stretchable electronics, and pop-up assemblies. The disparate mechanical and chemical properties of these materials have made it challenging to develop universal synthetic procedures capable of reliably adhering to these classes of materials together. Herein, a simple and scalable procedure is described that is capable of covalently laminating a variety of commodity ("off-the-shelf") thermoplastic sheets to silicone rubber films. When combined with laser printing, the nonbonding sites can be "printed" onto the thermoplastic sheets, enabling the direct fabrication of microfluidic systems for actuation and liquid handling applications. The versatility of this approach in generating thin, multifunctional laminates is demonstrated through the fabrication of milliscale soft actuators and grippers with hinged articulation and microfluidic channels with built-in optical filtering and pressure-dependent geometries. This method of fabrication offers several advantages, including technical simplicity, process scalability, design versatility, and material diversity. The concepts and strategies presented herein are broadly applicable to the soft robotics, microfluidics, and advanced and additive manufacturing communities where hybrid rubber/plastic structures are prevalent. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Reliable fusion of control and sensing in intelligent machines. Thesis

    NASA Technical Reports Server (NTRS)

    Mcinroy, John E.

    1991-01-01

    Although robotics research has produced a wealth of sophisticated control and sensing algorithms, very little research has been aimed at reliably combining these control and sensing strategies so that a specific task can be executed. To improve the reliability of robotic systems, analytic techniques are developed for calculating the probability that a particular combination of control and sensing algorithms will satisfy the required specifications. The probability can then be used to assess the reliability of the design. An entropy formulation is first used to quickly eliminate designs not capable of meeting the specifications. Next, a framework for analyzing reliability based on the first order second moment methods of structural engineering is proposed. To ensure performance over an interval of time, lower bounds on the reliability of meeting a set of quadratic specifications with a Gaussian discrete time invariant control system are derived. A case study analyzing visual positioning in robotic system is considered. The reliability of meeting timing and positioning specifications in the presence of camera pixel truncation, forward and inverse kinematic errors, and Gaussian joint measurement noise is determined. This information is used to select a visual sensing strategy, a kinematic algorithm, and a discrete compensator capable of accomplishing the desired task. Simulation results using PUMA 560 kinematic and dynamic characteristics are presented.

  8. A novel traveling wave piezoelectric actuated tracked mobile robot utilizing friction effect

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Shu, Chengyou; Jin, Jiamei; Zhang, Jianhui

    2017-03-01

    A novel traveling wave piezoelectric-actuated tracked mobile robot with potential application to robotic rovers was proposed and investigated in this study. The proposed tracked mobile robot is composed of a parallelogram-frame-structure piezoelectric transducer with four rings and a metal track. Utilizing the converse piezoelectric and friction effects, traveling waves were propagated in the rings and then the metal track was actuated by the piezoelectric transducer. Compared with traditional tracked mechanisms, the proposed tracked mobile robot has a simpler and more compact structure without lubricant, which eliminates the problem of lubricant volatilization and deflation, thus, it could be operated in the vacuum environment. Dynamic characteristics were simulated and measured to reveal the mechanism of actuating track of the piezoelectric transducer. Experimental investigations of the traveling wave piezoelectric-actuated tracked mobile robot were then carried out, and the results indicated that the robot prototype with a pair of exciting voltages of 460 Vpp is able to achieve a maximum velocity of 57 mm s-1 moving on the foam plate and possesses the obstacle crossing capability with a maximum height of 27 mm. The proposed tracked mobile robot exhibits potential to be the driving system of robotic rovers.

  9. Current status of robotic simulators in acquisition of robotic surgical skills.

    PubMed

    Kumar, Anup; Smith, Roger; Patel, Vipul R

    2015-03-01

    This article provides an overview of the current status of simulator systems in robotic surgery training curriculum, focusing on available simulators for training, their comparison, new technologies introduced in simulation focusing on concepts of training along with existing challenges and future perspectives of simulator training in robotic surgery. The different virtual reality simulators available in the market like dVSS, dVT, RoSS, ProMIS and SEP have shown face, content and construct validity in robotic skills training for novices outside the operating room. Recently, augmented reality simulators like HoST, Maestro AR and RobotiX Mentor have been introduced in robotic training providing a more realistic operating environment, emphasizing more on procedure-specific robotic training . Further, the Xperience Team Trainer, which provides training to console surgeon and bed-side assistant simultaneously, has been recently introduced to emphasize the importance of teamwork and proper coordination. Simulator training holds an important place in current robotic training curriculum of future robotic surgeons. There is a need for more procedure-specific augmented reality simulator training, utilizing advancements in computing and graphical capabilities for new innovations in simulator technology. Further studies are required to establish its cost-benefit ratio along with concurrent and predictive validity.

  10. Distributed proximity sensor system having embedded light emitters and detectors

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan (Inventor)

    1990-01-01

    A distributed proximity sensor system is provided with multiple photosensitive devices and light emitters embedded on the surface of a robot hand or other moving member in a geometric pattern. By distributing sensors and emitters capable of detecting distances and angles to points on the surface of an object from known points in the geometric pattern, information is obtained for achieving noncontacting shape and distance perception, i.e., for automatic determination of the object's shape, direction and distance, as well as the orientation of the object relative to the robot hand or other moving member.

  11. Evaluation of microsurgical tasks with OCT-guided and/or robot-assisted ophthalmic forceps

    PubMed Central

    Yu, Haoran; Shen, Jin-Hui; Shah, Rohan J.; Simaan, Nabil; Joos, Karen M.

    2015-01-01

    Real-time intraocular optical coherence tomography (OCT) visualization of tissues with surgical feedback can enhance retinal surgery. An intraocular 23-gauge B-mode forward-imaging co-planar OCT-forceps, coupling connectors and algorithms were developed to form a unique ophthalmic surgical robotic system. Approach to the surface of a phantom or goat retina by a manual or robotic-controlled forceps, with and without real-time OCT guidance, was performed. Efficiency of lifting phantom membranes was examined. Placing the co-planar OCT imaging probe internal to the surgical tool reduced instrument shadowing and permitted constant tracking. Robotic assistance together with real-time OCT feedback improved depth perception accuracy. The first-generation integrated OCT-forceps was capable of peeling membrane phantoms despite smooth tips. PMID:25780736

  12. Robotic Lunar Rover Technologies and SEI Supporting Technologies at Sandia National Laboratories

    NASA Technical Reports Server (NTRS)

    Klarer, Paul R.

    1992-01-01

    Existing robotic rover technologies at Sandia National Laboratories (SNL) can be applied toward the realization of a robotic lunar rover mission in the near term. Recent activities at the SNL-RVR have demonstrated the utility of existing rover technologies for performing remote field geology tasks similar to those envisioned on a robotic lunar rover mission. Specific technologies demonstrated include low-data-rate teleoperation, multivehicle control, remote site and sample inspection, standard bandwidth stereo vision, and autonomous path following based on both internal dead reckoning and an external position location update system. These activities serve to support the use of robotic rovers for an early return to the lunar surface by demonstrating capabilities that are attainable with off-the-shelf technology and existing control techniques. The breadth of technical activities at SNL provides many supporting technology areas for robotic rover development. These range from core competency areas and microsensor fabrication facilities, to actual space qualification of flight components that are designed and fabricated in-house.

  13. Robotic inspection for vehicle-borne contraband

    NASA Astrophysics Data System (ADS)

    Witus, Gary; Gerhart, Grant; Smuda, W.; Andrusz, H.

    2006-05-01

    Vehicle-borne smuggling is widespread because of the availability, flexibility and capacity of the cars and trucks. Inspecting vehicles at border crossings and checkpoints are key security elements. At the present time, most vehicle security inspections at home and abroad are conducted manually. Remotely operated vehicle inspection robots could be integrated into the operating procedures to improve throughput while reducing the workload burden on security personnel. The robotic inspection must be effective at detecting contraband and efficient at clearing the "clean" vehicles that make up the bulk of the traffic stream, while limiting the workload burden on the operators. In this paper, we present a systems engineering approach to robotic vehicle inspection. We review the tactics, techniques and procedures to interdict contraband. We present an operational concept for robotic vehicle inspection within this framework, and identify needed capabilities. We review the technologies currently available to meet these needs. Finally, we summarize the immediate potential and R&D challenges for effective contraband detection robots.

  14. RCTA capstone assessment

    NASA Astrophysics Data System (ADS)

    Lennon, Craig; Bodt, Barry; Childers, Marshal; Dean, Robert; Oh, Jean; DiBerardino, Chip; Keegan, Terence

    2015-05-01

    The Army Research Laboratory's Robotics Collaborative Technology Alliance (RCTA) is a program intended to change robots from tools that soldiers use into teammates with which soldiers can work. This requires the integration of fundamental and applied research in perception, artificial intelligence, and human-robot interaction. In October of 2014, the RCTA assessed progress towards integrating this research. This assessment was designed to evaluate the robot's performance when it used new capabilities to perform selected aspects of a mission. The assessed capabilities included the ability of the robot to: navigate semantically outdoors with respect to structures and landmarks, identify doors in the facades of buildings, and identify and track persons emerging from those doors. We present details of the mission-based vignettes that constituted the assessment, and evaluations of the robot's performance in these vignettes.

  15. A prototype home robot with an ambient facial interface to improve drug compliance.

    PubMed

    Takacs, Barnabas; Hanak, David

    2008-01-01

    We have developed a prototype home robot to improve drug compliance. The robot is a small mobile device, capable of autonomous behaviour, as well as remotely controlled operation via a wireless datalink. The robot is capable of face detection and also has a display screen to provide facial feedback to help motivate patients and thus increase their level of compliance. An RFID reader can identify tags attached to different objects, such as bottles, for fluid intake monitoring. A tablet dispenser allows drug compliance monitoring. Despite some limitations, experience with the prototype suggests that simple and low-cost robots may soon become feasible for care of people living alone or in isolation.

  16. Design of a pneumatically powered wearable exoskeleton with biomimetic support and actuation

    NASA Astrophysics Data System (ADS)

    Sergeyev, A.; Alaraje, N.; Seidel, C.; Carlson, Z.; Breda, B.

    Powered exoskeletons are designed to assist and protect the wearer. Depending on the situation they may be used to protect soldiers and construction workers, aid the survival of people in dangerous environments, or assist patients in rehabilitation. Regardless of the application there are strict requirements for designing and producing exoskeleton suites. They must be durable but light weight and flexible, have reliable power control and modulation, capable of detecting unsafe and invalid motions, and may require significant weight lifting capabilities. In this article we present an on-going research on robotic exoskeleton replicating of human muscle functions. A single wearable knee-joint prototype described in this article combines the use of soft pneumatic muscle-like actuators and a control system based off the users own natural muscle signals. The Pneumatic Exoskeleton uses bioelectrical signals to detect movement intention from the pilot. This paper details the technical design aspects of a lower-limb robotic exoskeleton with possibility of further expansion to fully functioning robotic exoskeleton suit.

  17. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Students from Hagerty High School in Oviedo, Fla., participants in FIRST Robotics, show off their robots' capabilities at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  18. The Ion Propulsion System for the Asteroid Redirect Robotic Mission

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Sekerak, Michael J.

    2016-01-01

    The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA'a future beyond-low-Earth-orbit, human-crewed exploration plans. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. This paper presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.

  19. The role of intrinsic motivations in attention allocation and shifting

    PubMed Central

    Di Nocera, Dario; Finzi, Alberto; Rossi, Silvia; Staffa, Mariacarla

    2014-01-01

    The concepts of attention and intrinsic motivations are of great interest within adaptive robotic systems, and can be exploited in order to guide, activate, and coordinate multiple concurrent behaviors. Attention allocation strategies represent key capabilities of human beings, which are strictly connected with action selection and execution mechanisms, while intrinsic motivations directly affect the allocation of attentional resources. In this paper we propose a model of Reinforcement Learning (RL), where both these capabilities are involved. RL is deployed to learn how to allocate attentional resources in a behavior-based robotic system, while action selection is obtained as a side effect of the resulting motivated attentional behaviors. Moreover, the influence of intrinsic motivations in attention orientation is obtained by introducing rewards associated with curiosity drives. In this way, the learning process is affected not only by goal-specific rewards, but also by intrinsic motivations. PMID:24744746

  20. Reducing software mass through behavior control. [of planetary roving robots

    NASA Technical Reports Server (NTRS)

    Miller, David P.

    1992-01-01

    Attention is given to the tradeoff between communication and computation as regards a planetary rover (both these subsystems are very power-intensive, and both can be the major driver of the rover's power subsystem, and therefore the minimum mass and size of the rover). Software techniques that can be used to reduce the requirements on both communciation and computation, allowing the overall robot mass to be greatly reduced, are discussed. Novel approaches to autonomous control, called behavior control, employ an entirely different approach, and for many tasks will yield a similar or superior level of autonomy to traditional control techniques, while greatly reducing the computational demand. Traditional systems have several expensive processes that operate serially, while behavior techniques employ robot capabilities that run in parallel. Traditional systems make extensive world models, while behavior control systems use minimal world models or none at all.

Top