Therapeutic robotics for children with disabilities: a case study.
Drane, James; Safos, Charlotte; Lathan, Corinna E
2009-01-01
The advancement of technology is having a profound effect on enhancing the lives of children with disabilities. As advances in biomedical technology allow research breakthroughs to continue at a steady pace, more and more is being discovered about the nature of different disorders in children. At the same time, partly due to the continuing rapid rate of advancement (and societal acceptance) of robotics technology, researchers, educators, and therapists are exploring the idea that robots might be used as an effective therapeutic and educational tool. Over the past nine years, AnthroTronix has collaborated extensively with therapists, educators, researchers, parents, and children to uncover the therapeutic and educational benefits of including robotics as part of rehabilitation curriculum for children. As a central part of this effort, the company has worked with its colleagues to develop and refine the CosmoBot system, an interactive robotic toolkit designed to enhance therapy, education, and play for children with disabilities.
The potential power of robotics for upper extremity stroke rehabilitation.
Dukelow, Sean P
2017-01-01
Two decades of research on robots and upper extremity rehabilitation has resulted in recommendations from systematic reviews and guidelines on their use in stroke. Robotics are often cited for their ability to encourage mass practice as a means to enhance recovery of movement. Yet, stroke recovery is a complex process occurring across many aspects of neurologic function beyond movement. As newer devices are developed and enhanced assessments are integrated into treatment protocols, the potential of robotics to advance rehabilitation will continue to grow.
Next-generation robotic surgery--from the aspect of surgical robots developed by industry.
Nakadate, Ryu; Arata, Jumpei; Hashizume, Makoto
2015-02-01
At present, much of the research conducted worldwide focuses on extending the ability of surgical robots. One approach is to extend robotic dexterity. For instance, accessibility and dexterity of the surgical instruments remains the largest issue for reduced port surgery such as single port surgery or natural orifice surgery. To solve this problem, a great deal of research is currently conducted in the field of robotics. Enhancing the surgeon's perception is an approach that uses advanced sensor technology. The real-time data acquired through the robotic system combined with the data stored in the robot (such as the robot's location) provide a major advantage. This paper aims at introducing state-of-the-art products and pre-market products in this technological advancement, namely the robotic challenge in extending dexterity and hopefully providing the path to robotic surgery in the near future.
Future robotic platforms in urologic surgery: Recent Developments
Herrell, S. Duke; Webster, Robert; Simaan, Nabil
2014-01-01
Purpose of review To review recent developments at Vanderbilt University of new robotic technologies and platforms designed for minimally invasive urologic surgery and their design rationale and potential roles in advancing current urologic surgical practice. Recent findings Emerging robotic platforms are being developed to improve performance of a wider variety of urologic interventions beyond the standard minimally invasive robotic urologic surgeries conducted presently with the da Vinci platform. These newer platforms are designed to incorporate significant advantages of robotics to improve the safety and outcomes of transurethral bladder surgery and surveillance, further decrease the invasiveness of interventions by advancing LESS surgery, and allow for previously impossible needle access and ablation delivery. Summary Three new robotic surgical technologies that have been developed at Vanderbilt University are reviewed, including a robotic transurethral system to enhance bladder surveillance and TURBT, a purpose-specific robotic system for LESS, and a needle sized robot that can be used as either a steerable needle or small surgeon-controlled micro-laparoscopic manipulator. PMID:24253803
Ramírez De La Pinta, Javier; Maestre Torreblanca, José María; Jurado, Isabel; Reyes De Cozar, Sergio
2017-03-06
In this paper, we explore the possibilities offered by the integration of home automation systems and service robots. In particular, we examine how advanced computationally expensive services can be provided by using a cloud computing approach to overcome the limitations of the hardware available at the user's home. To this end, we integrate two wireless low-cost, off-the-shelf systems in this work, namely, the service robot Rovio and the home automation system Z-wave. Cloud computing is used to enhance the capabilities of these systems so that advanced sensing and interaction services based on image processing and voice recognition can be offered.
Off the Shelf Cloud Robotics for the Smart Home: Empowering a Wireless Robot through Cloud Computing
Ramírez De La Pinta, Javier; Maestre Torreblanca, José María; Jurado, Isabel; Reyes De Cozar, Sergio
2017-01-01
In this paper, we explore the possibilities offered by the integration of home automation systems and service robots. In particular, we examine how advanced computationally expensive services can be provided by using a cloud computing approach to overcome the limitations of the hardware available at the user’s home. To this end, we integrate two wireless low-cost, off-the-shelf systems in this work, namely, the service robot Rovio and the home automation system Z-wave. Cloud computing is used to enhance the capabilities of these systems so that advanced sensing and interaction services based on image processing and voice recognition can be offered. PMID:28272305
Robotic surgery in gynecology.
Magrina, J F
2007-01-01
Robotic technology is nothing more than an enhancement along the continuum of laparoscopic technological advances and represents only the beginning of numerous more forthcoming advances. It constitutes a major improvement in the efficiency, accuracy, ease, and comfort associated with the performance of laparoscopic operations. Instrument articulation, downscaling of movements, absence of tremor, 3-D image, and comfort for the surgeon, assistant and scrub nurse are all new to the practice of laparoscopy. In our hands, robotic operative times for simple and radical hysterectomy are shorter than those obtained by conventional laparoscopy. Robotic technology is preferable to conventional laparoscopic instrumentation for the surgical treatment of gynecologic malignancies and most operations for benign disease of certain complexity such as hysterectomy myomectomy, and invasive pelvic endometriosis.
Overview and fundamentals of urologic robot-integrated systems.
Allaf, Mohamad; Patriciu, Alexandru; Mazilu, Dumitru; Kavoussi, Louis; Stoianovici, Dan
2004-11-01
Advances in technology have revolutionized urology. Minimally invasive tools now form the core of the urologist's armamentarium. Laparoscopic surgery has become the favored approach for treating many complicated urologic ailments. Surgical robots represent the next evolutionary step in the fruitful man-machine partnership. The introduction of robotic technology in urology changes how urologists learn, teach, plan, and operate. As technology evolves, robots not only will improve performance in minimally invasive procedures, but also enhance other procedures or enable new kinds of operations.
Advancing automation and robotics technology for the Space Station Freedom and for the U.S. Economy
NASA Technical Reports Server (NTRS)
1991-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the thirteenth in a series of progress updates and covers the period between 14 Feb. - 15 Aug. 1991. The progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology is described. Emphasis was placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 12, and issues of A&R implementation into Ground Mission Operations and A&R enhancement of science productivity. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.
Robot-assisted vitreoretinal surgery: current perspectives
Roizenblatt, Marina; Edwards, Thomas L; Gehlbach, Peter L
2018-01-01
Vitreoretinal microsurgery is among the most technically challenging of the minimally invasive surgical techniques. Exceptional precision is required to operate on micron scale targets presented by the retina while also maneuvering in a tightly constrained and fragile workspace. These challenges are compounded by inherent limitations of the unassisted human hand with regard to dexterity, tremor and precision in positioning instruments. The limited human ability to visually resolve targets on the single-digit micron scale is a further limitation. The inherent attributes of robotic approaches therefore, provide logical, strategic and promising solutions to the numerous challenges associated with retinal microsurgery. Robotic retinal surgery is a rapidly emerging technology that has witnessed an exponential growth in capabilities and applications over the last decade. There is now a worldwide movement toward evaluating robotic systems in an expanding number of clinical applications. Coincident with this expanding application is growth in the number of laboratories committed to “robotic medicine”. Recent technological advances in conventional retina surgery have also led to tremendous progress in the surgeon’s capabilities, enhanced outcomes, a reduction of patient discomfort, limited hospitalization and improved safety. The emergence of robotic technology into this rapidly advancing domain is expected to further enhance important aspects of the retinal surgery experience for the patients, surgeons and society. PMID:29527537
Robot-assisted vitreoretinal surgery: current perspectives.
Roizenblatt, Marina; Edwards, Thomas L; Gehlbach, Peter L
2018-01-01
Vitreoretinal microsurgery is among the most technically challenging of the minimally invasive surgical techniques. Exceptional precision is required to operate on micron scale targets presented by the retina while also maneuvering in a tightly constrained and fragile workspace. These challenges are compounded by inherent limitations of the unassisted human hand with regard to dexterity, tremor and precision in positioning instruments. The limited human ability to visually resolve targets on the single-digit micron scale is a further limitation. The inherent attributes of robotic approaches therefore, provide logical, strategic and promising solutions to the numerous challenges associated with retinal microsurgery. Robotic retinal surgery is a rapidly emerging technology that has witnessed an exponential growth in capabilities and applications over the last decade. There is now a worldwide movement toward evaluating robotic systems in an expanding number of clinical applications. Coincident with this expanding application is growth in the number of laboratories committed to "robotic medicine". Recent technological advances in conventional retina surgery have also led to tremendous progress in the surgeon's capabilities, enhanced outcomes, a reduction of patient discomfort, limited hospitalization and improved safety. The emergence of robotic technology into this rapidly advancing domain is expected to further enhance important aspects of the retinal surgery experience for the patients, surgeons and society.
Jayaraman, Arun; Burt, Sheila; Rymer, William Zev
2017-07-01
To review lower-limb technology currently available for people with neurological disorders, such as spinal cord injury, stroke, or other conditions. We focus on 3 emerging technologies: treadmill-based training devices, exoskeletons, and other wearable robots. Efficacy for these devices remains unclear, although preliminary data indicate that specific patient populations may benefit from robotic training used with more traditional physical therapy. Potential benefits include improved lower-limb function and a more typical gait trajectory. Use of these devices is limited by insufficient data, cost, and in some cases size of the machine. However, robotic technology is likely to become more prevalent as these machines are enhanced and able to produce targeted physical rehabilitation. Therapists should be aware of these technologies as they continue to advance but understand the limitations and challenges posed with therapeutic/mobility robots.
Qiao, Guixiu; Weiss, Brian A.
2016-01-01
Unexpected equipment downtime is a ‘pain point’ for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system. PMID:28058172
Qiao, Guixiu; Weiss, Brian A
2016-01-01
Unexpected equipment downtime is a 'pain point' for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system.
Robotic surgery for lung resections—total port approach: advantages and disadvantages
Ramadan, Omar I.; Cerfolio, Robert J.
2017-01-01
Minimally invasive thoracic surgery, when compared with open thoracotomy, has been shown to have improved perioperative outcomes as well as comparable long-term survival. Robotic surgery represents a powerful advancement of minimally invasive surgery, with vastly improved visualization and instrument maneuverability, and is increasingly popular for thoracic surgery. However, there remains debate over the best robotic approaches for lung resection, with several different techniques evidenced and described in the literature. We delineate our method for total port approach with four robotic arms and discuss how its advantages outweigh its disadvantages. We conclude that it is preferred to other robotic approaches, such as the robotic assisted approach, due to its enhanced visualization, improved instrument range of motion, and reduced potential for injury. PMID:29078585
Robotic surgery for lung resections-total port approach: advantages and disadvantages.
Ramadan, Omar I; Wei, Benjamin; Cerfolio, Robert J
2017-01-01
Minimally invasive thoracic surgery, when compared with open thoracotomy, has been shown to have improved perioperative outcomes as well as comparable long-term survival. Robotic surgery represents a powerful advancement of minimally invasive surgery, with vastly improved visualization and instrument maneuverability, and is increasingly popular for thoracic surgery. However, there remains debate over the best robotic approaches for lung resection, with several different techniques evidenced and described in the literature. We delineate our method for total port approach with four robotic arms and discuss how its advantages outweigh its disadvantages. We conclude that it is preferred to other robotic approaches, such as the robotic assisted approach, due to its enhanced visualization, improved instrument range of motion, and reduced potential for injury.
Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research.
Raj, Aditi; Thakur, Atul
2016-04-13
Underwater robot designs inspired by the behavior, physiology, and anatomy of fishes can provide enhanced maneuverability, stealth, and energy efficiency. Over the last two decades, robotics researchers have developed and reported a large variety of fish-inspired robot designs. The purpose of this review is to report different types of fish-inspired robot designs based upon their intended locomotion patterns. We present a detailed comparison of various design features like sensing, actuation, autonomy, waterproofing, and morphological structure of fish-inspired robots reported in the past decade. We believe that by studying the existing robots, future designers will be able to create new designs by adopting features from the successful robots. The review also summarizes the open research issues that need to be taken up for the further advancement of the field and also for the deployment of fish-inspired robots in practice.
Morone, Giovanni; Paolucci, Stefano; Cherubini, Andrea; De Angelis, Domenico; Venturiero, Vincenzo; Coiro, Paola; Iosa, Marco
2017-01-01
In this review, we give a brief outline of robot-mediated gait training for stroke patients, as an important emerging field in rehabilitation. Technological innovations are allowing rehabilitation to move toward more integrated processes, with improved efficiency and less long-term impairments. In particular, robot-mediated neurorehabilitation is a rapidly advancing field, which uses robotic systems to define new methods for treating neurological injuries, especially stroke. The use of robots in gait training can enhance rehabilitation, but it needs to be used according to well-defined neuroscientific principles. The field of robot-mediated neurorehabilitation brings challenges to both bioengineering and clinical practice. This article reviews the state of the art (including commercially available systems) and perspectives of robotics in poststroke rehabilitation for walking recovery. A critical revision, including the problems at stake regarding robotic clinical use, is also presented.
Morone, Giovanni; Paolucci, Stefano; Cherubini, Andrea; De Angelis, Domenico; Venturiero, Vincenzo; Coiro, Paola; Iosa, Marco
2017-01-01
In this review, we give a brief outline of robot-mediated gait training for stroke patients, as an important emerging field in rehabilitation. Technological innovations are allowing rehabilitation to move toward more integrated processes, with improved efficiency and less long-term impairments. In particular, robot-mediated neurorehabilitation is a rapidly advancing field, which uses robotic systems to define new methods for treating neurological injuries, especially stroke. The use of robots in gait training can enhance rehabilitation, but it needs to be used according to well-defined neuroscientific principles. The field of robot-mediated neurorehabilitation brings challenges to both bioengineering and clinical practice. This article reviews the state of the art (including commercially available systems) and perspectives of robotics in poststroke rehabilitation for walking recovery. A critical revision, including the problems at stake regarding robotic clinical use, is also presented. PMID:28553117
Enhanced control & sensing for the REMOTEC ANDROS Mk VI robot. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spelt, P.F.; Harvey, H.W.
1997-08-01
This Cooperative Research and Development Agreement (CRADA) between Lockheed Marietta Energy Systems, Inc., and REMOTEC, Inc., explored methods of providing operator feedback for various work actions of the ANDROS Mk VI teleoperated robot. In a hazardous environment, an extremely heavy workload seriously degrades the productivity of teleoperated robot operators. This CRADA involved the addition of computer power to the robot along with a variety of sensors and encoders to provide information about the robot`s performance in and relationship to its environment. Software was developed to integrate the sensor and encoder information and provide control input to the robot. ANDROS Mkmore » VI robots are presently used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists, as well as in a variety of other hazardous environments. Further, this platform has potential for use in a number of environmental restoration tasks, such as site survey and detection of hazardous waste materials. The addition of sensors and encoders serves to make the robot easier to manage and permits tasks to be done more safely and inexpensively (due to time saved in the completion of complex remote tasks). Prior research on the automation of mobile platforms with manipulators at Oak Ridge National Laboratory`s Center for Engineering Systems Advanced Research (CESAR, B&R code KC0401030) Laboratory, a BES-supported facility, indicated that this type of enhancement is effective. This CRADA provided such enhancements to a successful working teleoperated robot for the first time. Performance of this CRADA used the CESAR laboratory facilities and expertise developed under BES funding.« less
SOFT ROBOTICS. A 3D-printed, functionally graded soft robot powered by combustion.
Bartlett, Nicholas W; Tolley, Michael T; Overvelde, Johannes T B; Weaver, James C; Mosadegh, Bobak; Bertoldi, Katia; Whitesides, George M; Wood, Robert J
2015-07-10
Roboticists have begun to design biologically inspired robots with soft or partially soft bodies, which have the potential to be more robust and adaptable, and safer for human interaction, than traditional rigid robots. However, key challenges in the design and manufacture of soft robots include the complex fabrication processes and the interfacing of soft and rigid components. We used multimaterial three-dimensional (3D) printing to manufacture a combustion-powered robot whose body transitions from a rigid core to a soft exterior. This stiffness gradient, spanning three orders of magnitude in modulus, enables reliable interfacing between rigid driving components (controller, battery, etc.) and the primarily soft body, and also enhances performance. Powered by the combustion of butane and oxygen, this robot is able to perform untethered jumping. Copyright © 2015, American Association for the Advancement of Science.
Robotics in the rehabilitation treatment of patients with stroke.
Volpe, Bruce T; Ferraro, Mark; Krebs, Hermano I; Hogan, Neville
2002-07-01
Stroke is the leading cause of permanent disability despite continued advances in prevention and novel interventional treatments. Post-stroke neuro-rehabilitation programs teach compensatory strategies that alter the degree of permanent disability. Robotic devices are new tools for therapists to deliver enhanced sensorimotor training and concentrate on impairment reduction. Results from several groups have registered success in reducing impairment and increasing motor power with task-specific exercise delivered by the robotic devices. Enhancing the rehabilitation experience with task-specific repetitive exercise marks a different approach to the patient with stroke. The clinical challenge will be to streamline, adapt, and expand the robot protocols to accommodate healthcare economies, to determine which patients sustain the greatest benefit, and to explore the relationship between impairment reduction and disability level. With these new tools, therapists will measure aspects of outcome objectively and contribute to the emerging scientific basis of neuro-rehabilitation.
Enhanced control and sensing for the REMOTEC ANDROS Mk VI robot. CRADA final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spelt, P.F.; Harvey, H.W.
1998-08-01
This Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc., and REMOTEC, Inc., explored methods of providing operator feedback for various work actions of the ANDROS Mk VI teleoperated robot. In a hazardous environment, an extremely heavy workload seriously degrades the productivity of teleoperated robot operators. This CRADA involved the addition of computer power to the robot along with a variety of sensors and encoders to provide information about the robot`s performance in and relationship to its environment. Software was developed to integrate the sensor and encoder information and provide control input to the robot. ANDROS Mkmore » VI robots are presently used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists, as well as in a variety of other hazardous environments. Further, this platform has potential for use in a number of environmental restoration tasks, such as site survey and detection of hazardous waste materials. The addition of sensors and encoders serves to make the robot easier to manage and permits tasks to be done more safely and inexpensively (due to time saved in the completion of complex remote tasks). Prior research on the automation of mobile platforms with manipulators at Oak Ridge National Laboratory`s Center for Engineering Systems Advanced Research (CESAR, B&R code KC0401030) Laboratory, a BES-supported facility, indicated that this type of enhancement is effective. This CRADA provided such enhancements to a successful working teleoperated robot for the first time. Performance of this CRADA used the CESAR laboratory facilities and expertise developed under BES funding.« less
Marcus, Hani J; Seneci, Carlo A; Payne, Christopher J; Nandi, Dipankar; Darzi, Ara; Yang, Guang-Zhong
2014-03-01
Over the past decade, advances in image guidance, endoscopy, and tube-shaft instruments have allowed for the further development of keyhole transcranial endoscope-assisted microsurgery, utilizing smaller craniotomies and minimizing exposure and manipulation of unaffected brain tissue. Although such approaches offer the possibility of shorter operating times, reduced morbidity and mortality, and improved long-term outcomes, the technical skills required to perform such surgery are inevitably greater than for traditional open surgical techniques, and they have not been widely adopted by neurosurgeons. Surgical robotics, which has the ability to improve visualization and increase dexterity, therefore has the potential to enhance surgical performance. To evaluate the role of surgical robots in keyhole transcranial endoscope-assisted microsurgery. The technical challenges faced by surgeons utilizing keyhole craniotomies were reviewed, and a thorough appraisal of presently available robotic systems was performed. Surgical robotic systems have the potential to incorporate advances in augmented reality, stereoendoscopy, and jointed-wrist instruments, and therefore to significantly impact the field of keyhole neurosurgery. To date, over 30 robotic systems have been applied to neurosurgical procedures. The vast majority of these robots are best described as supervisory controlled, and are designed for stereotactic or image-guided surgery. Few telesurgical robots are suitable for keyhole neurosurgical approaches, and none are in widespread clinical use in the field. New robotic platforms in minimally invasive neurosurgery must possess clear and unambiguous advantages over conventional approaches if they are to achieve significant clinical penetration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. Burgess; M. Noakes; P. Spampinato
This paper presents an evaluation of robotics and remote handling technologies that have the potential to increase the efficiency of handling waste packages at the proposed Yucca Mountain High-Level Nuclear Waste Repository. It is expected that increased efficiency will reduce the cost of operations. The goal of this work was to identify technologies for consideration as potential projects that the U.S. Department of Energy Office of Civilian Radioactive Waste Management, Office of Science and Technology International Programs, could support in the near future, and to assess their ''payback'' value. The evaluation took into account the robotics and remote handling capabilitiesmore » planned for incorporation into the current baseline design for the repository, for both surface and subsurface operations. The evaluation, completed at the end of fiscal year 2004, identified where significant advantages in operating efficiencies could accrue by implementing any given robotics technology or approach, and included a road map for a multiyear R&D program for improvements to remote handling technology that support operating enhancements.« less
Kassahun, Yohannes; Yu, Bingbin; Tibebu, Abraham Temesgen; Stoyanov, Danail; Giannarou, Stamatia; Metzen, Jan Hendrik; Vander Poorten, Emmanuel
2016-04-01
Advances in technology and computing play an increasingly important role in the evolution of modern surgical techniques and paradigms. This article reviews the current role of machine learning (ML) techniques in the context of surgery with a focus on surgical robotics (SR). Also, we provide a perspective on the future possibilities for enhancing the effectiveness of procedures by integrating ML in the operating room. The review is focused on ML techniques directly applied to surgery, surgical robotics, surgical training and assessment. The widespread use of ML methods in diagnosis and medical image computing is beyond the scope of the review. Searches were performed on PubMed and IEEE Explore using combinations of keywords: ML, surgery, robotics, surgical and medical robotics, skill learning, skill analysis and learning to perceive. Studies making use of ML methods in the context of surgery are increasingly being reported. In particular, there is an increasing interest in using ML for developing tools to understand and model surgical skill and competence or to extract surgical workflow. Many researchers begin to integrate this understanding into the control of recent surgical robots and devices. ML is an expanding field. It is popular as it allows efficient processing of vast amounts of data for interpreting and real-time decision making. Already widely used in imaging and diagnosis, it is believed that ML will also play an important role in surgery and interventional treatments. In particular, ML could become a game changer into the conception of cognitive surgical robots. Such robots endowed with cognitive skills would assist the surgical team also on a cognitive level, such as possibly lowering the mental load of the team. For example, ML could help extracting surgical skill, learned through demonstration by human experts, and could transfer this to robotic skills. Such intelligent surgical assistance would significantly surpass the state of the art in surgical robotics. Current devices possess no intelligence whatsoever and are merely advanced and expensive instruments.
An advanced rehabilitation robotic system for augmenting healthcare.
Hu, John; Lim, Yi-Je; Ding, Ye; Paluska, Daniel; Solochek, Aaron; Laffery, David; Bonato, Paolo; Marchessault, Ronald
2011-01-01
Emerging technologies such as rehabilitation robots (RehaBot) for retraining upper and lower limb functions have shown to carry tremendous potential to improve rehabilitation outcomes. Hstar Technologies is developing a revolutionary rehabilitation robot system enhancing healthcare quality for patients with neurological and muscular injuries or functional impairments. The design of RehaBot is a safe and robust system that can be run at a rehabilitation hospital under the direct monitoring and interactive supervision control and at a remote site via telepresence operation control. RehaBot has a wearable robotic structure design like exoskeleton, which employs a unique robotic actuation--Series Elastic Actuator. These electric actuators provide robotic structural compliance, safety, flexibility, and required strength for upper extremity dexterous manipulation rehabilitation training. RehaBot also features a novel non-treadmill paddle platform capable of haptics feedback locomotion rehabilitation training. In this paper, we concern mainly about the motor incomplete patient and rehabilitation applications.
A Robotic Coach Architecture for Elder Care (ROCARE) Based on Multi-user Engagement Models
Fan, Jing; Bian, Dayi; Zheng, Zhi; Beuscher, Linda; Newhouse, Paul A.; Mion, Lorraine C.; Sarkar, Nilanjan
2017-01-01
The aging population with its concomitant medical conditions, physical and cognitive impairments, at a time of strained resources, establishes the urgent need to explore advanced technologies that may enhance function and quality of life. Recently, robotic technology, especially socially assistive robotics has been investigated to address the physical, cognitive, and social needs of older adults. Most system to date have predominantly focused on one-on-one human robot interaction (HRI). In this paper, we present a multi-user engagement-based robotic coach system architecture (ROCARE). ROCARE is capable of administering both one-on-one and multi-user HRI, providing implicit and explicit channels of communication, and individualized activity management for long-term engagement. Two preliminary feasibility studies, a one-on-one interaction and a triadic interaction with two humans and a robot, were conducted and the results indicated potential usefulness and acceptance by older adults, with and without cognitive impairment. PMID:28113672
A Robotic Coach Architecture for Elder Care (ROCARE) Based on Multi-User Engagement Models.
Fan, Jing; Bian, Dayi; Zheng, Zhi; Beuscher, Linda; Newhouse, Paul A; Mion, Lorraine C; Sarkar, Nilanjan
2017-08-01
The aging population with its concomitant medical conditions, physical and cognitive impairments, at a time of strained resources, establishes the urgent need to explore advanced technologies that may enhance function and quality of life. Recently, robotic technology, especially socially assistive robotics has been investigated to address the physical, cognitive, and social needs of older adults. Most system to date have predominantly focused on one-on-one human robot interaction (HRI). In this paper, we present a multi-user engagement-based robotic coach system architecture (ROCARE). ROCARE is capable of administering both one-on-one and multi-user HRI, providing implicit and explicit channels of communication, and individualized activity management for long-term engagement. Two preliminary feasibility studies, a one-on-one interaction and a triadic interaction with two humans and a robot, were conducted and the results indicated potential usefulness and acceptance by older adults, with and without cognitive impairment.
Larriba, Ferran; Raya, Cristóbal; Angulo, Cecilio; Albo-Canals, Jordi; Díaz, Marta; Boldú, Roger
2016-07-15
This PATRICIA research project is about using pet robots to reduce pain and anxiety in hospitalized children. The study began 2 years ago and it is believed that the advances made in this project are significant. Patients, parents, nurses, psychologists, and engineers have adopted the Pleo robot, a baby dinosaur robotic pet, which works in different ways to assist children during hospitalization. Focus is spent on creating a wireless communication system with the Pleo in order to help the coordinator, who conducts therapy with the child, monitor, understand, and control Pleo's behavior at any moment. This article reports how this technological function is being developed and tested. Wireless communication between the Pleo and an Android device is achieved. The developed Android app allows the user to obtain any state of the robot without stopping its interaction with the patient. Moreover, information is sent to a cloud, so that robot moods, states and interactions can be shared among different robots. Pleo attachment was successful for more than 1 month, working with children in therapy, which makes the investment capable of positive therapeutic possibilities. This technical improvement in the Pleo addresses two key issues in social robotics: needing an enhanced response to maintain the attention and engagement of the child, and using the system as a platform to collect the states of the child's progress for clinical purposes.
Current status of endovascular catheter robotics.
Lumsden, Alan B; Bismuth, Jean
2018-06-01
In this review, we will detail the evolution of endovascular therapy as the basis for the development of catheter-based robotics. In parallel, we will outline the evolution of robotics in the surgical space and how the convergence of technology and the entrepreneurs who push this evolution have led to the development of endovascular robots. The current state-of-the-art and future directions and potential are summarized for the reader. Information in this review has been drawn primarily from our personal clinical and preclinical experience in use of catheter robotics, coupled with some ground-breaking work reported from a few other major centers who have embraced the technology's capabilities and opportunities. Several case studies demonstrating the unique capabilities of a precisely controlled catheter are presented. Most of the preclinical work was performed in the advanced imaging and navigation laboratory. In this unique facility, the interface of advanced imaging techniques and robotic guidance is being explored. Although this procedure employs a very high-tech approach to navigation inside the endovascular space, we have conveyed the kind of opportunities that this technology affords to integrate 3D imaging and 3D control. Further, we present the opportunity of semi-autonomous motion of these devices to a target. For the interventionist, enhanced precision can be achieved in a nearly radiation-free environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This plan covers robotics Research, Development, Demonstration, Testing, activities in the Program for the next five years. These activities range from bench-scale R D to fullscale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and an initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management operations at DOE sites to be safer, faster and cheaper. Fivemore » priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. This 5-Year Program Plan discusses the overall approach to be adopted by the RTDP to aggressively develop robotics technology and contains discussions of the Program Management Plan, Site Visit and Needs Summary, Approach to Needs-Directed Technical Development, Application-Specific Technical Development, and Cross-Cutting and Advanced Technology. Integrating application-specific ER WM needs, the current state of robotics technology, and the potential benefits (in terms of faster, safer, and cheaper) of new technology, the Plan develops application-specific road maps for robotics RDDT E for the period FY 1991 through FY 1995. In addition, the Plan identifies areas where longer-term research in robotics will have a high payoff in the 5- to 20-year time frame. 12 figs.« less
Advanced Robotics for Air Force Operations
1989-06-01
evaluated current and potential uses of advanced robotics to support Air Force systems, (2) recommended the most effective aplications of advanced robotics...manpower. Such a robot system would The boom would not only transfer fuel, be considerably more mobile and effi- 10 ADVANCED ROBOTICS FOR AIR FORCE...increased manpower resources in war tive clothing reduce vision, hearing, and make this an attractive potential appli- mobility , which further reduce
Turning assistive machines into assistive robots
NASA Astrophysics Data System (ADS)
Argall, Brenna D.
2015-01-01
For decades, the potential for automation in particular, in the form of smart wheelchairs to aid those with motor, or cognitive, impairments has been recognized. It is a paradox that often the more severe a person's motor impairment, the more challenging it is for them to operate the very assistive machines which might enhance their quality of life. A primary aim of my lab is to address this confound by incorporating robotics autonomy and intelligence into assistive machines turning the machine into a kind of robot, and offloading some of the control burden from the user. Robots already synthetically sense, act in and reason about the world, and these technologies can be leveraged to help bridge the gap left by sensory, motor or cognitive impairments in the users of assistive machines. This paper overviews some of the ongoing projects in my lab, which strives to advance human ability through robotics autonomy.
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Chen, Alexander Y. K.
1991-01-01
Dexterous coordination of manipulators based on the use of redundant degrees of freedom, multiple sensors, and built-in robot intelligence represents a critical breakthrough in development of advanced manufacturing technology. A cost-effective approach for achieving this new generation of robotics has been made possible by the unprecedented growth of the latest microcomputer and network systems. The resulting flexible automation offers the opportunity to improve the product quality, increase the reliability of the manufacturing process, and augment the production procedures for optimizing the utilization of the robotic system. Moreover, the Advanced Robotic System (ARS) is modular in design and can be upgraded by closely following technological advancements as they occur in various fields. This approach to manufacturing automation enhances the financial justification and ensures the long-term profitability and most efficient implementation of robotic technology. The new system also addresses a broad spectrum of manufacturing demand and has the potential to address both complex jobs as well as highly labor-intensive tasks. The ARS prototype employs the decomposed optimization technique in spatial planning. This technique is implemented to the framework of the sensor-actuator network to establish the general-purpose geometric reasoning system. The development computer system is a multiple microcomputer network system, which provides the architecture for executing the modular network computing algorithms. The knowledge-based approach used in both the robot vision subsystem and the manipulation control subsystems results in the real-time image processing vision-based capability. The vision-based task environment analysis capability and the responsive motion capability are under the command of the local intelligence centers. An array of ultrasonic, proximity, and optoelectronic sensors is used for path planning. The ARS currently has 18 degrees of freedom made up by two articulated arms, one movable robot head, and two charged coupled device (CCD) cameras for producing the stereoscopic views, and articulated cylindrical-type lower body, and an optional mobile base. A functional prototype is demonstrated.
Using advanced computer vision algorithms on small mobile robots
NASA Astrophysics Data System (ADS)
Kogut, G.; Birchmore, F.; Biagtan Pacis, E.; Everett, H. R.
2006-05-01
The Technology Transfer project employs a spiral development process to enhance the functionality and autonomy of mobile robot systems in the Joint Robotics Program (JRP) Robotic Systems Pool by converging existing component technologies onto a transition platform for optimization. An example of this approach is the implementation of advanced computer vision algorithms on small mobile robots. We demonstrate the implementation and testing of the following two algorithms useful on mobile robots: 1) object classification using a boosted Cascade of classifiers trained with the Adaboost training algorithm, and 2) human presence detection from a moving platform. Object classification is performed with an Adaboost training system developed at the University of California, San Diego (UCSD) Computer Vision Lab. This classification algorithm has been used to successfully detect the license plates of automobiles in motion in real-time. While working towards a solution to increase the robustness of this system to perform generic object recognition, this paper demonstrates an extension to this application by detecting soda cans in a cluttered indoor environment. The human presence detection from a moving platform system uses a data fusion algorithm which combines results from a scanning laser and a thermal imager. The system is able to detect the presence of humans while both the humans and the robot are moving simultaneously. In both systems, the two aforementioned algorithms were implemented on embedded hardware and optimized for use in real-time. Test results are shown for a variety of environments.
NASA Technical Reports Server (NTRS)
2009-01-01
Topics covered include: Image-Capture Devices Extend Medicine's Reach; Medical Devices Assess, Treat Balance Disorders; NASA Bioreactors Advance Disease Treatments; Robotics Algorithms Provide Nutritional Guidelines; "Anti-Gravity" Treadmills Speed Rehabilitation; Crew Management Processes Revitalize Patient Care; Hubble Systems Optimize Hospital Schedules; Web-based Programs Assess Cognitive Fitness; Electrolyte Concentrates Treat Dehydration; Tools Lighten Designs, Maintain Structural Integrity; Insulating Foams Save Money, Increase Safety; Polyimide Resins Resist Extreme Temperatures; Sensors Locate Radio Interference; Surface Operations Systems Improve Airport Efficiency; Nontoxic Resins Advance Aerospace Manufacturing; Sensors Provide Early Warning of Biological Threats; Robot Saves Soldier's Lives Overseas (MarcBot); Apollo-Era Life Raft Saves Hundreds of Sailors; Circuits Enhance Scientific Instruments and Safety Devices; Tough Textiles Protect Payloads and Public Safety Officers; Forecasting Tools Point to Fishing Hotspots; Air Purifiers Eliminate Pathogens, Preserve Food; Fabrics Protect Sensitive Skin from UV Rays; Phase Change Fabrics Control Temperature; Tiny Devices Project Sharp, Colorful Images; Star-Mapping Tools Enable Tracking of Endangered Animals; Nanofiber Filters Eliminate Contaminants; Modeling Innovations Advance Wind Energy Industry; Thermal Insulation Strips Conserve Energy; Satellite Respondent Buoys Identify Ocean Debris; Mobile Instruments Measure Atmospheric Pollutants; Cloud Imagers Offer New Details on Earth's Health; Antennas Lower Cost of Satellite Access; Feature Detection Systems Enhance Satellite Imagery; Chlorophyll Meters Aid Plant Nutrient Management; Telemetry Boards Interpret Rocket, Airplane Engine Data; Programs Automate Complex Operations Monitoring; Software Tools Streamline Project Management; Modeling Languages Refine Vehicle Design; Radio Relays Improve Wireless Products; Advanced Sensors Boost Optical Communication, Imaging; Tensile Fabrics Enhance Architecture Around the World; Robust Light Filters Support Powerful Imaging Devices; Thermoelectric Devices Cool, Power Electronics; Innovative Tools Advance Revolutionary Weld Technique; Methods Reduce Cost, Enhance Quality of Nanotubes; Gauging Systems Monitor Cryogenic Liquids; Voltage Sensors Monitor Harmful Static; and Compact Instruments Measure Heat Potential.
The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.
1994-01-01
Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.
The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety
NASA Astrophysics Data System (ADS)
Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.
1994-02-01
Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.
Prior video game exposure does not enhance robotic surgical performance.
Harper, Jonathan D; Kaiser, Stefan; Ebrahimi, Kamyar; Lamberton, Gregory R; Hadley, H Roger; Ruckle, Herbert C; Baldwin, D Duane
2007-10-01
Prior research has demonstrated that counterintuitive laparoscopic surgical skills are enhanced by experience with video games. A similar relation with robotic surgical skills has not been tested. The purpose of this study was to determine whether prior video-game experience enhances the acquisition of robotic surgical skills. A series of 242 preclinical medical students completed a self-reported video-game questionnaire detailing the frequency, duration, and peak playing time. The 10 students with the highest and lowest video-game exposure completed a follow-up questionnaire further quantifying video game, sports, musical instrument, and craft and hobby exposure. Each subject viewed a training video demonstrating the use of the da Vinci surgical robot in tying knots, followed by 3 minutes of proctored practice time. Subjects then tied knots for 5 minutes while an independent blinded observer recorded the number of knots tied, missed knots, frayed sutures, broken sutures, and mechanical errors. The mean playing time for the 10 game players was 15,136 total hours (range 5,840-30,000 hours). Video-game players tied fewer knots than nonplayers (5.8 v 9.0; P = 0.04). Subjects who had played sports for at least 4 years had fewer mechanical errors (P = 0.04), broke fewer sutures (P = 0.01), and committed fewer total errors (P = 0.01). Similarly, those playing musical instruments longer than 5 years missed fewer knots (P = 0.05). In the extremes of video-game experience tested in this study, game playing was inversely correlated with the ability to learn robotic suturing. This study suggests that advanced surgical skills such as robotic suturing may be learned more quickly by athletes and musicians. Prior extensive video-game exposure had a negative impact on robotic performance.
Robotic surgery in gynecologic cancer.
Yim, Ga Won; Kim, Young Tae
2012-02-01
The development of robotic technology has facilitated the application of minimally invasive techniques for complex operations in gynecologic oncology. The objective of this article is to review the published literature regarding robotic surgery and its application to gynecologic cancer. To date, 20 articles addressing radical hysterectomy, six articles of radical trachelectomy, seven articles of surgical procedure in advanced or recurrent cervical cancer, 14 articles of endometrial cancer staging, and two articles solely on ovarian cancer all performed robotically are published in the literature. The majority of publications on robotic surgery are still retrospective or descriptive in nature. However, the data for gynecologic cancer show comparable results of robotic surgery compared with laparoscopy or laparotomy in terms of blood loss, length of hospital stay, and complications. Computer-enhanced technology with its associated benefits appears to facilitate the surgical approach for technically challenging operations performed to treat selected cases of cervical, endometrial, and ovarian cancer as evidenced by the current literature. Continued research and clinical trials are needed to further elucidate the equivalence or superiority of robot-assisted surgery to conventional methods in terms of oncologic outcome and patients' quality of life.
Virtual Reality and Simulation in Neurosurgical Training.
Bernardo, Antonio
2017-10-01
Recent biotechnological advances, including three-dimensional microscopy and endoscopy, virtual reality, surgical simulation, surgical robotics, and advanced neuroimaging, have continued to mold the surgeon-computer relationship. For developing neurosurgeons, such tools can reduce the learning curve, improve conceptual understanding of complex anatomy, and enhance visuospatial skills. We explore the current and future roles and application of virtual reality and simulation in neurosurgical training. Copyright © 2017 Elsevier Inc. All rights reserved.
Lendvay, Thomas Sean; Hannaford, Blake; Satava, Richard M
2013-01-01
In just over a decade, robotic surgery has penetrated almost every surgical subspecialty and has even replaced some of the most commonly performed open oncologic procedures. The initial reports on patient outcomes yielded mixed results, but as more medical centers develop high-volume robotics programs, outcomes appear comparable if not improved for some applications. There are limitations to the current commercially available system, and new robotic platforms, some designed to compete in the current market and some to address niche surgical considerations, are being developed that will change the robotic landscape in the next decade. Adoption of these new systems will be dependent on overcoming barriers to true telesurgery that range from legal to logistical. As additional surgical disciplines embrace robotics and open surgery continues to be replaced by robotic approaches, it will be imperative that adequate education and training keep pace with technology. Methods to enhance surgical performance in robotics through the use of simulation and telementoring promise to accelerate learning curves and perhaps even improve surgical readiness through brief virtual-reality warm-ups and presurgical rehearsal. All these advances will need to be carefully and rigorously validated through not only patient outcomes, but also cost efficiency.
Software development to support sensor control of robot arc welding
NASA Technical Reports Server (NTRS)
Silas, F. R., Jr.
1986-01-01
The development of software for a Digital Equipment Corporation MINC-23 Laboratory Computer to provide functions of a workcell host computer for Space Shuttle Main Engine (SSME) robotic welding is documented. Routines were written to transfer robot programs between the MINC and an Advanced Robotic Cyro 750 welding robot. Other routines provide advanced program editing features while additional software allows communicatin with a remote computer aided design system. Access to special robot functions were provided to allow advanced control of weld seam tracking and process control for future development programs.
A perspective on intelligent devices and environments in medical rehabilitation.
Cooper, Rory A; Dicianno, Brad E; Brewer, Bambi; LoPresti, Edmund; Ding, Dan; Simpson, Richard; Grindle, Garrett; Wang, Hongwu
2008-12-01
Globally, the number of people older than 65 years is anticipated to double between 1997 and 2025, while at the same time the number of people with disabilities is growing at a similar rate, which makes technical advances and social policies critical to attain, prolong, and preserve quality of life. Recent advancements in technology, including computation, robotics, machine learning, communication, and miniaturization of sensors have been used primarily in manufacturing, military, space exploration, and entertainment. However, few efforts have been made to utilize these technologies to enhance the quality of life of people with disabilities. This article offers a perspective of future development in seven emerging areas: translation of research into clinical practice, pervasive assistive technology, cognitive assistive technologies, rehabilitation monitoring and coaching technologies, robotic assisted therapy, and personal mobility and manipulation technology.
Applications of Brain–Machine Interface Systems in Stroke Recovery and Rehabilitation
Francisco, Gerard E.; Contreras-Vidal, Jose L.
2014-01-01
Stroke is a leading cause of disability, significantly impacting the quality of life (QOL) in survivors, and rehabilitation remains the mainstay of treatment in these patients. Recent engineering and technological advances such as brain-machine interfaces (BMI) and robotic rehabilitative devices are promising to enhance stroke neu-rorehabilitation, to accelerate functional recovery and improve QOL. This review discusses the recent applications of BMI and robotic-assisted rehabilitation in stroke patients. We present the framework for integrated BMI and robotic-assisted therapies, and discuss their potential therapeutic, assistive and diagnostic functions in stroke rehabilitation. Finally, we conclude with an outlook on the potential challenges and future directions of these neurotechnologies, and their impact on clinical rehabilitation. PMID:25110624
ERIC Educational Resources Information Center
McLurkin, J.; Rykowski, J.; John, M.; Kaseman, Q.; Lynch, A. J.
2013-01-01
This paper describes the experiences of using an advanced, low-cost robot in science, technology, engineering, and mathematics (STEM) education. It presents three innovations: It is a powerful, cheap, robust, and small advanced personal robot; it forms the foundation of a problem-based learning curriculum; and it enables a novel multi-robot…
NASA Astrophysics Data System (ADS)
Erickson, David; Lacheray, Hervé; Lai, Gilbert; Haddadi, Amir
2014-06-01
This paper presents the latest advancements of the Haptics-based Immersive Tele-robotic System (HITS) project, a next generation Improvised Explosive Device (IED) disposal (IEDD) robotic interface containing an immersive telepresence environment for a remotely-controlled three-articulated-robotic-arm system. While the haptic feedback enhances the operator's perception of the remote environment, a third teleoperated dexterous arm, equipped with multiple vision sensors and cameras, provides stereo vision with proper visual cues, and a 3D photo-realistic model of the potential IED. This decentralized system combines various capabilities including stable and scaled motion, singularity avoidance, cross-coupled hybrid control, active collision detection and avoidance, compliance control and constrained motion to provide a safe and intuitive control environment for the operators. Experimental results and validation of the current system are presented through various essential IEDD tasks. This project demonstrates that a two-armed anthropomorphic Explosive Ordnance Disposal (EOD) robot interface can achieve complex neutralization techniques against realistic IEDs without the operator approaching at any time.
Experiments in Nonlinear Adaptive Control of Multi-Manipulator, Free-Flying Space Robots
NASA Technical Reports Server (NTRS)
Chen, Vincent Wei-Kang
1992-01-01
Sophisticated robots can greatly enhance the role of humans in space by relieving astronauts of low level, tedious assembly and maintenance chores and allowing them to concentrate on higher level tasks. Robots and astronauts can work together efficiently, as a team; but the robot must be capable of accomplishing complex operations and yet be easy to use. Multiple cooperating manipulators are essential to dexterity and can broaden greatly the types of activities the robot can achieve; adding adaptive control can ease greatly robot usage by allowing the robot to change its own controller actions, without human intervention, in response to changes in its environment. Previous work in the Aerospace Robotics Laboratory (ARL) have shown the usefulness of a space robot with cooperating manipulators. The research presented in this dissertation extends that work by adding adaptive control. To help achieve this high level of robot sophistication, this research made several advances to the field of nonlinear adaptive control of robotic systems. A nonlinear adaptive control algorithm developed originally for control of robots, but requiring joint positions as inputs, was extended here to handle the much more general case of manipulator endpoint-position commands. A new system modelling technique, called system concatenation was developed to simplify the generation of a system model for complicated systems, such as a free-flying multiple-manipulator robot system. Finally, the task-space concept was introduced wherein the operator's inputs specify only the robot's task. The robot's subsequent autonomous performance of each task still involves, of course, endpoint positions and joint configurations as subsets. The combination of these developments resulted in a new adaptive control framework that is capable of continuously providing full adaptation capability to the complex space-robot system in all modes of operation. The new adaptive control algorithm easily handles free-flying systems with multiple, interacting manipulators, and extends naturally to even larger systems. The new adaptive controller was experimentally demonstrated on an ideal testbed in the ARL-A first-ever experimental model of a multi-manipulator, free-flying space robot that is capable of capturing and manipulating free-floating objects without requiring human assistance. A graphical user interface enhanced the robot usability: it enabled an operator situated at a remote location to issue high-level task description commands to the robot, and to monitor robot activities as it then carried out each assignment autonomously.
[Robots in general surgery: present and future].
Galvani, Carlos; Horgan, Santiago
2005-09-01
Robotic surgery is an emerging technology. We began to use this technique in 2000, after it was approved by the Food and Drug Administration. Our preliminary experience was satisfactory. We report 4 years' experience of using this technique in our institution. Between August 2000 and December 2004, 399 patients underwent robotic surgery using the Da Vinci system. We performed 110 gastric bypass procedures, 30 Lap band, 59 Heller myotomies, 12 Nissen fundoplications, 6 epiphrenic diverticula, 18 total esophagectomies, 3 esophageal leiomyoma resections, 1 pyloroplasty, 2 gastrojejunostomies, 2 transduodenal sphincteroplasties, 10 adrenalectomies and 145 living-related donor nephrectomies. Operating times for fundoplications and Lap band were longer. After the learning curve, the operating times and morbidity of the remaining procedures were considerably reduced. Robot-assisted surgery allows advanced laparoscopic procedures to be performed with enhanced results given that it reduces the learning curve as measured by operating time and morbidity.
Technological advances in robotic-assisted laparoscopic surgery.
Tan, Gerald Y; Goel, Raj K; Kaouk, Jihad H; Tewari, Ashutosh K
2009-05-01
In this article, the authors describe the evolution of urologic robotic systems and the current state-of-the-art features and existing limitations of the da Vinci S HD System (Intuitive Surgical, Inc.). They then review promising innovations in scaling down the footprint of robotic platforms, the early experience with mobile miniaturized in vivo robots, advances in endoscopic navigation systems using augmented reality technologies and tracking devices, the emergence of technologies for robotic natural orifice transluminal endoscopic surgery and single-port surgery, advances in flexible robotics and haptics, the development of new virtual reality simulator training platforms compatible with the existing da Vinci system, and recent experiences with remote robotic surgery and telestration.
Getting started with robotics in general surgery with cholecystectomy: the Canadian experience.
Jayaraman, Shiva; Davies, Ward; Schlachta, Christopher M
2009-10-01
The value of robotics in general surgery may be for advanced minimally invasive procedures. Unlike other specialties, formal fellowship training opportunities for robotic general surgery are few. As a result, most surgeons currently develop robotic skills in practice. Our goal was to determine whether robotic cholecystectomy is a safe and effective bridge to advanced robotics in general surgery. Before performing advanced robotic procedures, 2 surgeons completed the Intuitive Surgical da Vinci training course and agreed to work together on all procedures. Clinical surgery began with da Vinci cholecystectomy with a plan to begin advanced procedures after at least 10 cholecystectomies. We performed a retrospective review of our pilot series of robotic cholecystectomies and compared them with contemporaneous laparoscopic controls. The primary outcome was safety, and the secondary outcome was learning curve. There were 16 procedures in the robotics arm and 20 in the laparoscopic arm. Two complications (da Vinci port-site hernia, transient elevation of liver enzymes) occurred in the robotic arm, whereas only 1 laparoscopic patient (slow to awaken from anesthetic) experienced a complication. None was significant. The mean time required to perform robotic cholecystectomy was significantly longer than laparoscopic surgery (91 v. 41 min, p < 0.001). The mean time to clear the operating room was significantly longer for robotic procedures (14 v. 11 min, p = 0.015). We observed a trend showing longer mean anesthesia time for robotic procedures (23 v. 15 min). Regarding learning curve, the mean operative time needed for the first 3 robotic procedures was longer than for the last 3 (101 v. 80 min); however, this difference was not significant. Since this experience, the team has confidently gone on to perform robotic biliary, pancreatic, gastresophageal, intestinal and colorectal operations. Robotic cholecystectomy can be performed reliably; however, owing to the significant increase in operating room resources, it cannot be justified for routine use. Our experience, however, demonstrates that robotic cholecystectomy is one means by which general surgeons may gain confidence in performing advanced robotic procedures.
Lee, Kit-Hang; Fu, Denny K.C.; Leong, Martin C.W.; Chow, Marco; Fu, Hing-Choi; Althoefer, Kaspar; Sze, Kam Yim; Yeung, Chung-Kwong
2017-01-01
Abstract Bioinspired robotic structures comprising soft actuation units have attracted increasing research interest. Taking advantage of its inherent compliance, soft robots can assure safe interaction with external environments, provided that precise and effective manipulation could be achieved. Endoscopy is a typical application. However, previous model-based control approaches often require simplified geometric assumptions on the soft manipulator, but which could be very inaccurate in the presence of unmodeled external interaction forces. In this study, we propose a generic control framework based on nonparametric and online, as well as local, training to learn the inverse model directly, without prior knowledge of the robot's structural parameters. Detailed experimental evaluation was conducted on a soft robot prototype with control redundancy, performing trajectory tracking in dynamically constrained environments. Advanced element formulation of finite element analysis is employed to initialize the control policy, hence eliminating the need for random exploration in the robot's workspace. The proposed control framework enabled a soft fluid-driven continuum robot to follow a 3D trajectory precisely, even under dynamic external disturbance. Such enhanced control accuracy and adaptability would facilitate effective endoscopic navigation in complex and changing environments. PMID:29251567
Lee, Kit-Hang; Fu, Denny K C; Leong, Martin C W; Chow, Marco; Fu, Hing-Choi; Althoefer, Kaspar; Sze, Kam Yim; Yeung, Chung-Kwong; Kwok, Ka-Wai
2017-12-01
Bioinspired robotic structures comprising soft actuation units have attracted increasing research interest. Taking advantage of its inherent compliance, soft robots can assure safe interaction with external environments, provided that precise and effective manipulation could be achieved. Endoscopy is a typical application. However, previous model-based control approaches often require simplified geometric assumptions on the soft manipulator, but which could be very inaccurate in the presence of unmodeled external interaction forces. In this study, we propose a generic control framework based on nonparametric and online, as well as local, training to learn the inverse model directly, without prior knowledge of the robot's structural parameters. Detailed experimental evaluation was conducted on a soft robot prototype with control redundancy, performing trajectory tracking in dynamically constrained environments. Advanced element formulation of finite element analysis is employed to initialize the control policy, hence eliminating the need for random exploration in the robot's workspace. The proposed control framework enabled a soft fluid-driven continuum robot to follow a 3D trajectory precisely, even under dynamic external disturbance. Such enhanced control accuracy and adaptability would facilitate effective endoscopic navigation in complex and changing environments.
Application of robotics in gastrointestinal endoscopy: A review
Yeung, Baldwin Po Man; Chiu, Philip Wai Yan
2016-01-01
Multiple robotic flexible endoscope platforms have been developed based on cross specialty collaboration between engineers and medical doctors. However, significant number of these platforms have been developed for the natural orifice transluminal endoscopic surgery paradigm. Increasing amount of evidence suggest the focus of development should be placed on advanced endolumenal procedures such as endoscopic submucosal dissection instead. A thorough literature analysis was performed to assess the current status of robotic flexible endoscopic platforms designed for advanced endolumenal procedures. Current efforts are mainly focused on robotic locomotion and robotic instrument control. In the future, advances in actuation and servoing technology, optical analysis, augmented reality and wireless power transmission technology will no doubt further advance the field of robotic endoscopy. Globally, health systems have become increasingly budget conscious; widespread acceptance of robotic endoscopy will depend on careful design to ensure its delivery of a cost effective service. PMID:26855540
Wang, Hongwu; Grindle, Garrett G; Candiotti, Jorge; Chung, Chengshiu; Shino, Motoki; Houston, Elaine; Cooper, Rory A
2012-01-01
The Personal Mobility and Manipulation Appliance (PerMMA) is a recently developed personal assistance robot developed to provide people with disabilities and older adults enhanced assistance in both mobility and manipulation, which are two fundamental components for independently activities of daily life performing, community participation, and quality of life. Technologies to assist with mobility and manipulation are among the most important tools for clinicians, end users and caregivers; however, there are currently few systems that provide practical and coordinated assistance with mobility and manipulation tasks. The PerMMA was not only developed and evaluated to provide users and caregivers enhanced mobility and manipulation options, but also as a clinical tool as well as research platform. The development and evaluation of PerMMA are presented in the paper.
Ong, Carmichael F; Hicks, Jennifer L; Delp, Scott L
2016-05-01
Technologies that augment human performance are the focus of intensive research and development, driven by advances in wearable robotic systems. Success has been limited by the challenge of understanding human-robot interaction. To address this challenge, we developed an optimization framework to synthesize a realistic human standing long jump and used the framework to explore how simulated wearable robotic devices might enhance jump performance. A planar, five-segment, seven-degree-of-freedom model with physiological torque actuators, which have variable torque capacity depending on joint position and velocity, was used to represent human musculoskeletal dynamics. An active augmentation device was modeled as a torque actuator that could apply a single pulse of up to 100 Nm of extension torque. A passive design was modeled as rotational springs about each lower limb joint. Dynamic optimization searched for physiological and device actuation patterns to maximize jump distance. Optimization of the nominal case yielded a 2.27 m jump that captured salient kinematic and kinetic features of human jumps. When the active device was added to the ankle, knee, or hip, jump distance increased to between 2.49 and 2.52 m. Active augmentation of all three joints increased the jump distance to 3.10 m. The passive design increased jump distance to 3.32 m by adding torques of 135, 365, and 297 Nm to the ankle, knee, and hip, respectively. Dynamic optimization can be used to simulate a standing long jump and investigate human-robot interaction. Simulation can aid in the design of performance-enhancing technologies.
Virtual reality, robotics, and other wizardry in 21st century trauma care.
Maniscalco-Theberge, M E; Elliott, D C
1999-12-01
The former Special Assistant to the Director on Biomedical Technology, Defense Advanced Research Projects Agency (DARPA), COL RM Satava, notes "Predicting the future trends in any profession jeopardizes the credibility of the author." Thus, we have attempted to outline current systems and prototype models in testing phases. Technologic advances will enable enhanced care of trauma patients. In the acute care setting, they also will affect the educational system in theory and practice.
Fusing human and machine skills for remote robotic operations
NASA Technical Reports Server (NTRS)
Schenker, Paul S.; Kim, Won S.; Venema, Steven C.; Bejczy, Antal K.
1991-01-01
The question of how computer assists can improve teleoperator trajectory tracking during both free and force-constrained motions is addressed. Computer graphics techniques which enable the human operator to both visualize and predict detailed 3D trajectories in real-time are reported. Man-machine interactive control procedures for better management of manipulator contact forces and positioning are also described. It is found that collectively, these novel advanced teleoperations techniques both enhance system performance and significantly reduce control problems long associated with teleoperations under time delay. Ongoing robotic simulations of the 1984 space shuttle Solar Maximum EVA Repair Mission are briefly described.
Ground robotic measurement of aeolian processes
NASA Astrophysics Data System (ADS)
Qian, Feifei; Jerolmack, Douglas; Lancaster, Nicholas; Nikolich, George; Reverdy, Paul; Roberts, Sonia; Shipley, Thomas; Van Pelt, R. Scott; Zobeck, Ted M.; Koditschek, Daniel E.
2017-08-01
Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These devices are often cumbersome and logistically difficult to set up and maintain, especially near steep or vegetated dune surfaces. Significant advances in instrumentation are needed to provide the datasets that are required to validate and improve mechanistic models of aeolian sediment transport. Recent advances in robotics show great promise for assisting and amplifying scientists' efforts to increase the spatial and temporal resolution of many environmental measurements governing sediment transport. The emergence of cheap, agile, human-scale robotic platforms endowed with increasingly sophisticated sensor and motor suites opens up the prospect of deploying programmable, reactive sensor payloads across complex terrain in the service of aeolian science. This paper surveys the need and assesses the opportunities and challenges for amassing novel, highly resolved spatiotemporal datasets for aeolian research using partially-automated ground mobility. We review the limitations of existing measurement approaches for aeolian processes, and discuss how they may be transformed by ground-based robotic platforms, using examples from our initial field experiments. We then review how the need to traverse challenging aeolian terrains and simultaneously make high-resolution measurements of critical variables requires enhanced robotic capability. Finally, we conclude with a look to the future, in which robotic platforms may operate with increasing autonomy in harsh conditions. Besides expanding the completeness of terrestrial datasets, bringing ground-based robots to the aeolian research community may lead to unexpected discoveries that generate new hypotheses to expand the science itself.
Clinical application of a modular ankle robot for stroke rehabilitation.
Forrester, Larry W; Roy, Anindo; Goodman, Ronald N; Rietschel, Jeremy; Barton, Joseph E; Krebs, Hermano Igo; Macko, Richard F
2013-01-01
Advances in our understanding of neuroplasticity and motor learning post-stroke are now being leveraged with the use of robotics technology to enhance physical rehabilitation strategies. Major advances have been made with upper extremity robotics, which have been tested for efficacy in multi-site trials across the subacute and chronic phases of stroke. In contrast, use of lower extremity robotics to promote locomotor re-learning has been more recent and presents unique challenges by virtue of the complex multi-segmental mechanics of gait. Here we review a programmatic effort to develop and apply the concept of joint-specific modular robotics to the paretic ankle as a means to improve underlying impairments in distal motor control that may have a significant impact on gait biomechanics and balance. An impedance controlled ankle robot module (anklebot) is described as a platform to test the idea that a modular approach can be used to modify training and measure the time profile of treatment response. Pilot studies using seated visuomotor anklebot training with chronic patients are reviewed, along with results from initial efforts to evaluate the anklebot's utility as a clinical tool for assessing intrinsic ankle stiffness. The review includes a brief discussion of future directions for using the seated anklebot training in the earliest phases of sub-acute therapy, and to incorporate neurophysiological measures of cerebro-cortical activity as a means to reveal underlying mechanistic processes of motor learning and brain plasticity associated with robotic training. Finally we conclude with an initial control systems strategy for utilizing the anklebot as a gait training tool that includes integrating an Internal Model-based adaptive controller to both accommodate individual deficit severities and adapt to changes in patient performance.
Clinical application of a modular ankle robot for stroke rehabilitation
Forrester, Larry W.; Roy, Anindo; Goodman, Ronald N.; Rietschel, Jeremy; Barton, Joseph E.; Krebs, Hermano Igo; Macko, Richard F.
2015-01-01
Background Advances in our understanding of neuroplasticity and motor learning post-stroke are now being leveraged with the use of robotics technology to enhance physical rehabilitation strategies. Major advances have been made with upper extremity robotics, which have been tested for efficacy in multi-site trials across the subacute and chronic phases of stroke. In contrast, use of lower extremity robotics to promote locomotor re-learning has been more recent and presents unique challenges by virtue of the complex multi-segmental mechanics of gait. Objectives Here we review a programmatic effort to develop and apply the concept of joint-specific modular robotics to the paretic ankle as a means to improve underlying impairments in distal motor control that may have a significant impact on gait biomechanics and balance. Methods An impedance controlled ankle robot module (anklebot) is described as a platform to test the idea that a modular approach can be used to modify training and measure the time profile of treatment response. Results Pilot studies using seated visuomotor anklebot training with chronic patients are reviewed, along with results from initial efforts to evaluate the anklebot's utility as a clinical tool for assessing intrinsic ankle stiffness. The review includes a brief discussion of future directions for using the seated anklebot training in the earliest phases of sub-acute therapy, and to incorporate neurophysiological measures of cerebro-cortical activity as a means to reveal underlying mechanistic processes of motor learning and brain plasticity associated with robotic training. Conclusions Finally we conclude with an initial control systems strategy for utilizing the anklebot as a gait training tool that includes integrating an Internal Model-based adaptive controller to both accommodate individual deficit severities and adapt to changes in patient performance. PMID:23949045
In vivo miniature robots for natural orifice surgery: State of the art and future perspectives.
Tiwari, Manish M; Reynoso, Jason F; Lehman, Amy C; Tsang, Albert W; Farritor, Shane M; Oleynikov, Dmitry
2010-06-27
Natural orifice translumenal endoscopic surgery (NOTES) is the integration of laparoscopic minimally invasive surgery techniques with endoscopic technology. Despite the advances in NOTES technology, the approach presents several unique instrumentation and technique-specific challenges. Current flexible endoscopy platforms for NOTES have several drawbacks including limited stability, triangulation and dexterity, and lack of adequate visualization, suggesting the need for new and improved instrumentation for this approach. Much of the current focus is on the development of flexible endoscopy platforms that incorporate robotic technology. An alternative approach to access the abdominal viscera for either a laparoscopic or NOTES procedure is the use of small robotic devices that can be implanted in an intracorporeal manner. Multiple, independent, miniature robots can be simultaneously inserted into the abdominal cavity to provide a robotic platform for NOTES surgery. The capabilities of the robots include imaging, retraction, tissue and organ manipulation, and precise maneuverability in the abdominal cavity. Such a platform affords several advantages including enhanced visualization, better surgical dexterity and improved triangulation for NOTES. This review discusses the current status and future perspectives of this novel miniature robotics platform for the NOTES approach. Although these technologies are still in pre-clinical development, a miniature robotics platform provides a unique method for addressing the limitations of minimally invasive surgery, and NOTES in particular.
Enabling Future Robotic Missions with Multicore Processors
NASA Technical Reports Server (NTRS)
Powell, Wesley A.; Johnson, Michael A.; Wilmot, Jonathan; Some, Raphael; Gostelow, Kim P.; Reeves, Glenn; Doyle, Richard J.
2011-01-01
Recent commercial developments in multicore processors (e.g. Tilera, Clearspeed, HyperX) have provided an option for high performance embedded computing that rivals the performance attainable with FPGA-based reconfigurable computing architectures. Furthermore, these processors offer more straightforward and streamlined application development by allowing the use of conventional programming languages and software tools in lieu of hardware design languages such as VHDL and Verilog. With these advantages, multicore processors can significantly enhance the capabilities of future robotic space missions. This paper will discuss these benefits, along with onboard processing applications where multicore processing can offer advantages over existing or competing approaches. This paper will also discuss the key artchitecural features of current commercial multicore processors. In comparison to the current art, the features and advancements necessary for spaceflight multicore processors will be identified. These include power reduction, radiation hardening, inherent fault tolerance, and support for common spacecraft bus interfaces. Lastly, this paper will explore how multicore processors might evolve with advances in electronics technology and how avionics architectures might evolve once multicore processors are inserted into NASA robotic spacecraft.
An interactive online robotics course.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wedeward, Kevin; Bruder, Steven B. H.
Attempting to convey concepts and ideas in the subject area of robotic manipulators from within the confines of a static two-dimensional printed page can prove quite challenging to even the most gifted of authors. The inherently dynamic and multi-dimensional nature of the subject matter seems better suited to a medium of conveyance wherein a student is allowed to interactively explore topics in this multi-disciplinary field. This article describes the initial development of an online robotics course 'textbook' which seeks to leverage recent advances in Web-based technologies to enhance the learning experience in ways not possible with printed materials. The pedagogicalmore » approach employed herein is that of multi-modal reinforcement wherein key concepts are first described in words, conveyed visually, and finally reinforced by soliciting student interaction.« less
Video. Natural Orifice Translumenal Endoscopic Surgery with a miniature in vivo surgical robot.
Lehman, Amy C; Dumpert, Jason; Wood, Nathan A; Visty, Abigail Q; Farritor, Shane M; Varnell, Brandon; Oleynikov, Dmitry
2009-07-01
The application of flexible endoscopy tools for Natural Orifice Translumenal Endoscopic Surgery (NOTES) is constrained due to limitations in dexterity, instrument insertion, navigation, visualization, and retraction. Miniature endolumenal robots can mitigate these constraints by providing a stable platform for visualization and dexterous manipulation. This video demonstrates the feasibility of using an endolumenal miniature robot to improve vision and to apply off-axis forces for task assistance in NOTES procedures. A two-armed miniature in vivo robot has been developed for NOTES. The robot is remotely controlled, has on-board cameras for guidance, and grasper and cautery end effectors for manipulation. Two basic configurations of the robot allow for flexibility during insertion and rigidity for visualization and tissue manipulation. Embedded magnets in the body of the robot and in an exterior surgical console are used for attaching the robot to the interior abdominal wall. This enables the surgeon to arbitrarily position the robot throughout a procedure. The visualization and task assistance capabilities of the miniature robot were demonstrated in a nonsurvivable NOTES procedure in a porcine model. An endoscope was used to create a transgastric incision and advance an overtube into the peritoneal cavity. The robot was then inserted through the overtube and into the peritoneal cavity using an endoscope. The surgeon successfully used the robot to explore the peritoneum and perform small-bowel dissection. This study has demonstrated the feasibility of inserting an endolumenal robot per os. Once deployed, the robot provided visualization and dexterous capabilities from multiple orientations. Further miniaturization and increased dexterity will enhance future capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This plan covers robotics Research, Development, Demonstration, Testing and Evaluation activities in the Program for the next five years. These activities range from bench-scale R D to full-scale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development Program (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management (ER WM) operations at DOE sites to be safer,more » faster and cheaper. Five priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. In July 1990 a forum was held announcing the robotics program. Over 60 organizations (industrial, university, and federal laboratory) made presentations on their robotics capabilities. To stimulate early interactions with the ER WM activities at DOE sites, as well as with the robotics community, the RTDP sponsored four technology demonstrations related to ER WM needs. These demonstrations integrated commercial technology with robotics technology developed by DOE in support of areas such as nuclear reactor maintenance and the civilian reactor waste program. 2 figs.« less
Getting started with robotics in general surgery with cholecystectomy: the Canadian experience
Jayaraman, Shiva; Davies, Ward; Schlachta, Christopher M.
2009-01-01
Background The value of robotics in general surgery may be for advanced minimally invasive procedures. Unlike other specialties, formal fellowship training opportunities for robotic general surgery are few. As a result, most surgeons currently develop robotic skills in practice. Our goal was to determine whether robotic cholecystectomy is a safe and effective bridge to advanced robotics in general surgery. Methods Before performing advanced robotic procedures, 2 surgeons completed the Intuitive Surgical da Vinci training course and agreed to work together on all procedures. Clinical surgery began with da Vinci cholecystectomy with a plan to begin advanced procedures after at least 10 cholecystectomies. We performed a retrospective review of our pilot series of robotic cholecystectomies and compared them with contemporaneous laparoscopic controls. The primary outcome was safety, and the secondary outcome was learning curve. Results There were 16 procedures in the robotics arm and 20 in the laparoscopic arm. Two complications (da Vinci port-site hernia, transient elevation of liver enzymes) occurred in the robotic arm, whereas only 1 laparoscopic patient (slow to awaken from anesthetic) experienced a complication. None was significant. The mean time required to perform robotic cholecystectomy was significantly longer than laparoscopic surgery (91 v. 41 min, p < 0.001). The mean time to clear the operating room was significantly longer for robotic procedures (14 v. 11 min, p = 0.015). We observed a trend showing longer mean anesthesia time for robotic procedures (23 v. 15 min). Regarding learning curve, the mean operative time needed for the first 3 robotic procedures was longer than for the last 3 (101 v. 80 min); however, this difference was not significant. Since this experience, the team has confidently gone on to perform robotic biliary, pancreatic, gastresophageal, intestinal and colorectal operations. Conclusion Robotic cholecystectomy can be performed reliably; however, owing to the significant increase in operating room resources, it cannot be justified for routine use. Our experience, however, demonstrates that robotic cholecystectomy is one means by which general surgeons may gain confidence in performing advanced robotic procedures. PMID:19865571
Air Force Research Laboratory Technology Milestones 2008
2008-01-01
futuristic ‘bots will possess self - healing properties as well, enhancing their resiliency to damage sustained during such missions. Leading the SuperBot...Matrix Composites Pollution Prevention Materials Polymeric Materials Power and Chemical Processes Quantitative Defect Characterization Robotics ...advanced self -sealing CMC manufactured by French company Snecma Propulsion Solide (SPS). Thus far, the seals have performed extremely well, and a
NASA Technical Reports Server (NTRS)
Sandy, Michael
2015-01-01
The Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 is an excavation robot for mining regolith on a planet like Mars. The robot is programmed using the Robotic Operating System (ROS) and it also uses a physical simulation program called Gazebo. This internship focused on various functions of the program in order to make it a more professional and efficient robot. During the internship another project called the Smart Autonomous Sand-Swimming Excavator was worked on. This is a robot that is designed to dig through sand and extract sample material. The intern worked on programming the Sand-Swimming robot, and designing the electrical system to power and control the robot.
Robotics in biomedical chromatography and electrophoresis.
Fouda, H G
1989-08-11
The ideal laboratory robot can be viewed as "an indefatigable assistant capable of working continuously for 24 h a day with constant efficiency". The development of a system approaching that promise requires considerable skill and time commitment, a thorough understanding of the capabilities and limitations of the robot and its specialized modules and an intimate knowledge of the functions to be automated. The robot need not emulate every manual step. Effective substitutes for difficult steps must be devised. The future of laboratory robots depends not only on technological advances in other fields, but also on the skill and creativity of chromatographers and other scientists. The robot has been applied to automate numerous biomedical chromatography and electrophoresis methods. The quality of its data can approach, and in some cases exceed, that of manual methods. Maintaining high data quality during continuous operation requires frequent maintenance and validation. Well designed robotic systems can yield substantial increase in the laboratory productivity without a corresponding increase in manpower. They can free skilled personnel from mundane tasks and can enhance the safety of the laboratory environment. The integration of robotics, chromatography systems and laboratory information management systems permits full automation and affords opportunities for unattended method development and for future incorporation of artificial intelligence techniques and the evolution of expert systems. Finally, humanoid attributes aside, robotic utilization in the laboratory should not be an end in itself. The robot is a useful tool that should be utilized only when it is prudent and cost-effective to do so.
Ong, Carmichael F.; Hicks, Jennifer L.; Delp, Scott L.
2017-01-01
Goal Technologies that augment human performance are the focus of intensive research and development, driven by advances in wearable robotic systems. Success has been limited by the challenge of understanding human–robot interaction. To address this challenge, we developed an optimization framework to synthesize a realistic human standing long jump and used the framework to explore how simulated wearable robotic devices might enhance jump performance. Methods A planar, five-segment, seven-degree-of-freedom model with physiological torque actuators, which have variable torque capacity depending on joint position and velocity, was used to represent human musculoskeletal dynamics. An active augmentation device was modeled as a torque actuator that could apply a single pulse of up to 100 Nm of extension torque. A passive design was modeled as rotational springs about each lower limb joint. Dynamic optimization searched for physiological and device actuation patterns to maximize jump distance. Results Optimization of the nominal case yielded a 2.27 m jump that captured salient kinematic and kinetic features of human jumps. When the active device was added to the ankle, knee, or hip, jump distance increased to between 2.49 and 2.52 m. Active augmentation of all three joints increased the jump distance to 3.10 m. The passive design increased jump distance to 3.32 m by adding torques of 135 Nm, 365 Nm, and 297 Nm to the ankle, knee, and hip, respectively. Conclusion Dynamic optimization can be used to simulate a standing long jump and investigate human-robot interaction. Significance Simulation can aid in the design of performance-enhancing technologies. PMID:26258930
Advancing automation and robotics technology for the Space Station Freedom and for the US economy
NASA Technical Reports Server (NTRS)
1990-01-01
In April 1985, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). The progress made by Levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology are described. Emphasis was placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 9, the Flight Telerobotic Servicer, the Advanced Development Program, and the Data Management System. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom.
Rehabilitation robotics: an academic engineer perspective.
Krebs, Hermano I
2011-01-01
In this paper, we present a retrospective review of our efforts to revolutionize the way physical medicine is practiced by developing and deploying rehabilitation robots. We present a sample of our clinical results with well over 600 stroke patients, both inpatients and outpatients. We discuss the different robots developed at our laboratory over the past 20 years and their unique characteristics. All are configured both to deliver reproducible interactive therapy and also to measure outcomes with minimal encumbrance, thus providing critical measurement tools to help unravel the key remaining question: what constitutes "best practice"? While success to date indicates that this therapeutic application of robots has opened an emerging new frontier in physical medicine and rehabilitation, the barrier to further progress lies not in developing new hardware but rather in finding the most effective way to enhance neuro-recovery. We close this manuscript discussing some of the tools required for advancing the effort beyond the present state to what we believe will be the central feature of research during the next 10 years.
Technology advances in hospital practices: robotics in treatment of patients.
Rosiek, Anna; Leksowski, Krzysztof
2015-06-01
Laparoscopic cholecystectomy is widely considered as the treatment of choice for acute cholecystitis. The safety of the procedure and its minimal invasiveness made it a valid treatment option for a patient not responding to antibiotic therapy. Our research shows that patients positively assess this treatment method, but the world's tendency is to turn to a more sophisticated method utilizing robot-assisted surgery as a gold standard. Providing patient with minimally invasive surgical procedures that utilize the state-of-the-art equipment like the da Vinci Robotic Surgical System underscores the commitment to high-quality patient care while enhancing patient safety. The advantages include minimal invasive scarring, less pain and bleeding, faster recovery time, and shorter hospital stay. The move toward less invasive and less morbid procedures and a need to re-create the true open surgical experience have paved the way for the development and application of robotic and computer-assisted systems in surgery in Poland as well as the rest of the world. © The Author(s) 2014.
Intelligent Robotic Systems Study (IRSS), phase 4
NASA Technical Reports Server (NTRS)
1991-01-01
Under the Intelligent Robotics Systems Study (IRSS), a generalized robotic control architecture was developed for use with the ProtoFlight Manipulator Arm (PFMA). Based upon the NASREM system design concept, the controller built for the PFMA provides localized position based force control, teleoperation, and advanced path recording and playback capabilities. The PFMA has six computer controllable degrees of freedom (DOF) plus a 7th manually indexable DOF, making the manipulator a pseudo 7 DOF mechanism. Joints on the PFMA are driven via 7 pulse width modulated amplifiers. Digital control of the PFMA is implemented using a variety of single board computers. There were two major activities under the IRSS phase 4 study: (1) enhancement of the PFMA control system software functionality; and (2) evaluation of operating modes via a teleoperation performance study. These activities are described and results are given.
Advanced EVA Capabilities: A Study for NASA's Revolutionary Aerospace Systems Concept Program
NASA Technical Reports Server (NTRS)
Hoffman, Stephen J.
2004-01-01
This report documents the results of a study carried out as part of NASA s Revolutionary Aerospace Systems Concepts Program examining the future technology needs of extravehicular activities (EVAs). The intent of this study is to produce a comprehensive report that identifies various design concepts for human-related advanced EVA systems necessary to achieve the goals of supporting future space exploration and development customers in free space and on planetary surfaces for space missions in the post-2020 timeframe. The design concepts studied and evaluated are not limited to anthropomorphic space suits, but include a wide range of human-enhancing EVA technologies as well as consideration of coordination and integration with advanced robotics. The goal of the study effort is to establish a baseline technology "road map" that identifies and describes an investment and technical development strategy, including recommendations that will lead to future enhanced synergistic human/robot EVA operations. The eventual use of this study effort is to focus evolving performance capabilities of various EVA system elements toward the goal of providing high performance human operational capabilities for a multitude of future space applications and destinations. The data collected for this study indicate a rich and diverse history of systems that have been developed to perform a variety of EVA tasks, indicating what is possible. However, the data gathered for this study also indicate a paucity of new concepts and technologies for advanced EVA missions - at least any that researchers are willing to discuss in this type of forum.
Advancing automation and robotics technology for the Space Station Freedom and for the US economy
NASA Technical Reports Server (NTRS)
1990-01-01
The progress made by levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology is described. Emphasis is placed upon the Space Station Freedom Program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) progress report 10, the flight telerobotic servicer, and the Advanced Development Program. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom.
Overview of robotic colorectal surgery: Current and future practical developments
Roy, Sudipta; Evans, Charles
2016-01-01
Minimal access surgery has revolutionised colorectal surgery by offering reduced morbidity and mortality over open surgery, while maintaining oncological and functional outcomes with the disadvantage of additional practical challenges. Robotic surgery aids the surgeon in overcoming these challenges. Uptake of robotic assistance has been relatively slow, mainly because of the high initial and ongoing costs of equipment but also because of limited evidence of improved patient outcomes. Advances in robotic colorectal surgery will aim to widen the scope of minimal access surgery to allow larger and more complex surgery through smaller access and natural orifices and also to make the technology more economical, allowing wider dispersal and uptake of robotic technology. Advances in robotic endoscopy will yield self-advancing endoscopes and a widening role for capsule endoscopy including the development of motile and steerable capsules able to deliver localised drug therapy and insufflation as well as being recharged from an extracorporeal power source to allow great longevity. Ultimately robotic technology may advance to the point where many conventional surgical interventions are no longer required. With respect to nanotechnology, surgery may eventually become obsolete. PMID:26981188
Advancing automation and robotics technology for the Space Station and for the US economy, volume 2
NASA Technical Reports Server (NTRS)
1985-01-01
In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Technical Report, Volume 2, provides background information on automation and robotics technologies and their potential and documents: the relevant aspects of Space Station design; representative examples of automation and robotics; applications; the state of the technology and advances needed; and considerations for technology transfer to U.S. industry and for space commercialization.
Physics and Robotic Sensing -- the good, the bad, and approaches to making it work
NASA Astrophysics Data System (ADS)
Huff, Brian
2011-03-01
All of the technological advances that have benefited consumer electronics have direct application to robotics. Technological advances have resulted in the dramatic reduction in size, cost, and weight of computing systems, while simultaneously doubling computational speed every eighteen months. The same manufacturing advancements that have enabled this rapid increase in computational power are now being leveraged to produce small, powerful and cost-effective sensing technologies applicable for use in mobile robotics applications. Despite the increase in computing and sensing resources available to today's robotic systems developers, there are sensing problems typically found in unstructured environments that continue to frustrate the widespread use of robotics and unmanned systems. This talk presents how physics has contributed to the creation of the technologies that are making modern robotics possible. The talk discusses theoretical approaches to robotic sensing that appear to suffer when they are deployed in the real world. Finally the author presents methods being used to make robotic sensing more robust.
Design-Oriented Enhanced Robotics Curriculum
ERIC Educational Resources Information Center
Yilmaz, M.; Ozcelik, S.; Yilmazer, N.; Nekovei, R.
2013-01-01
This paper presents an innovative two-course, laboratory-based, and design-oriented robotics educational model. The robotics curriculum exposed senior-level undergraduate students to major robotics concepts, and enhanced the student learning experience in hybrid learning environments by incorporating the IEEE Region-5 annual robotics competition…
Klibansky, David; Rothstein, Richard I
2012-09-01
The increasing complexity of intralumenal and emerging translumenal endoscopic procedures has created an opportunity to apply robotics in endoscopy. Computer-assisted or direct-drive robotic technology allows the triangulation of flexible tools through telemanipulation. The creation of new flexible operative platforms, along with other emerging technology such as nanobots and steerable capsules, can be transformational for endoscopic procedures. In this review, we cover some background information on the use of robotics in surgery and endoscopy, and review the emerging literature on platforms, capsules, and mini-robotic units. The development of techniques in advanced intralumenal endoscopy (endoscopic mucosal resection and endoscopic submucosal dissection) and translumenal endoscopic procedures (NOTES) has generated a number of novel platforms, flexible tools, and devices that can apply robotic principles to endoscopy. The development of a fully flexible endoscopic surgical toolkit will enable increasingly advanced procedures to be performed through natural orifices. The application of platforms and new flexible tools to the areas of advanced endoscopy and NOTES heralds the opportunity to employ useful robotic technology. Following the examples of the utility of robotics from the field of laparoscopic surgery, we can anticipate the emerging role of robotic technology in endoscopy.
Shintake, Jun; Cacucciolo, Vito; Floreano, Dario; Shea, Herbert
2018-05-07
Advances in soft robotics, materials science, and stretchable electronics have enabled rapid progress in soft grippers. Here, a critical overview of soft robotic grippers is presented, covering different material sets, physical principles, and device architectures. Soft gripping can be categorized into three technologies, enabling grasping by: a) actuation, b) controlled stiffness, and c) controlled adhesion. A comprehensive review of each type is presented. Compared to rigid grippers, end-effectors fabricated from flexible and soft components can often grasp or manipulate a larger variety of objects. Such grippers are an example of morphological computation, where control complexity is greatly reduced by material softness and mechanical compliance. Advanced materials and soft components, in particular silicone elastomers, shape memory materials, and active polymers and gels, are increasingly investigated for the design of lighter, simpler, and more universal grippers, using the inherent functionality of the materials. Embedding stretchable distributed sensors in or on soft grippers greatly enhances the ways in which the grippers interact with objects. Challenges for soft grippers include miniaturization, robustness, speed, integration of sensing, and control. Improved materials, processing methods, and sensing play an important role in future research. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
From Illusion to Reality: A Brief History of Robotic Surgery.
Marino, Marco Vito; Shabat, Galyna; Gulotta, Gaspare; Komorowski, Andrzej Lech
2018-06-01
Robotic surgery is currently employed for many surgical procedures, yielding interesting results. We performed an historical review of robots and robotic surgery evaluating some critical phases of its evolution, analyzing its impact on our life and the steps completed that gave the robotics its current popularity. The origins of robotics can be traced back to Greek mythology. Different aspects of robotics have been explored by some of the greatest inventors like Leonardo da Vinci, Pierre Jaquet-Droz, and Wolfgang Von-Kempelen. Advances in many fields of science made possible the development of advanced surgical robots. Over 3000 da Vinci robotic platforms are installed worldwide, and more than 200 000 robotic procedures are performed every year. Despite some potential adverse events, robotic technology seems safe and feasible. It is strictly linked to our life, leading surgeons to a new concept of surgery and training.
Recent advancements in prosthetic hand technology.
Saikia, Angana; Mazumdar, Sushmi; Sahai, Nitin; Paul, Sudip; Bhatia, Dinesh; Verma, Suresh; Rohilla, Punit Kumar
2016-07-01
Recently, significant advances over the past decade have been made in robotics, artificial intelligence and other cognitive related fields, allowing development of highly sophisticated bio-mimetic robotics systems. In addition, enormous number of robots have been designed and assembled by explicitly realising their biological oriented behaviours. To enhance skill behaviours and adequate grasping abilities in these devices, a new phase of dexterous hands has been developed recently with bio-mimetically oriented and bio-inspired functionalities. The aim in writing this review paper is to present a detailed insight towards the development of the bio-mimetic based dexterous robotic multi-fingered artificial hand. An "ideal" upper limb prosthesis should be perceived as a part of their natural body by the amputee and should replicate sensory-motor capabilities of the amputated limb. Upper-limb amputations are most often the result of sudden trauma to the body, although they also can be caused by malignancy, congenital deficiencies and vascular diseases. This paper discusses the different bio-mimetic approaches using a framework that permits for a common description of biological and technical based hand manipulation behaviour. In particular, the review focuses on a number of developments in the inspired robotic systems. In conclusion, the study found that a huge amount of research efforts in terms of kinematics, dynamics, modelling and control methodologies are being put in to improve the present hand technology, thereby providing more functionality to the prosthetic limb of the amputee. This would improve their quality-of-life and help in performing activities of daily living (ADL) tasks with comparative ease in the near future.
The Advanced Solid Rocket Motor
NASA Technical Reports Server (NTRS)
Mitchell, Royce E.
1992-01-01
The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.
Do laparoscopic skills transfer to robotic surgery?
Panait, Lucian; Shetty, Shohan; Shewokis, Patricia A; Sanchez, Juan A
2014-03-01
Identifying the set of skills that can transfer from laparoscopic to robotic surgery is an important consideration in designing optimal training curricula. We tested the degree to which laparoscopic skills transfer to a robotic platform. Fourteen medical students and 14 surgery residents with no previous robotic but varying degrees of laparoscopic experience were studied. Three fundamentals of laparoscopic surgery tasks were used on the laparoscopic box trainer and then the da Vinci robot: peg transfer (PT), circle cutting (CC), and intracorporeal suturing (IS). A questionnaire was administered for assessing subjects' comfort level with each task. Standard fundamentals of laparoscopic surgery scoring metric were used and higher scores indicate a superior performance. For the group, PT and CC scores were similar between robotic and laparoscopic modalities (90 versus 90 and 52 versus 47; P > 0.05). However, for the advanced IS task, robotic-IS scores were significantly higher than laparoscopic-IS (80 versus 53; P < 0.001). Subgroup analysis of senior residents revealed a lower robotic-PT score when compared with laparoscopic-PT (92 versus 105; P < 0.05). Scores for CC and IS were similar in this subgroup (64 ± 9 versus 69 ± 15 and 95 ± 3 versus 92 ± 10; P > 0.05). The robot was favored over laparoscopy for all drills (PT, 66.7%; CC, 88.9%; IS, 94.4%). For simple tasks, participants with preexisting skills perform worse with the robot. However, with increasing task difficulty, robotic performance is equal or better than laparoscopy. Laparoscopic skills appear to readily transfer to a robotic platform, and difficult tasks such as IS are actually enhanced, even in subjects naive to the technology. Copyright © 2014 Elsevier Inc. All rights reserved.
Advances in Robotic Servicing Technology Development
NASA Technical Reports Server (NTRS)
Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin
2015-01-01
NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and near Earth asteroid boulder retrieval; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.
Advances in Robotic Servicing Technology Development
NASA Technical Reports Server (NTRS)
Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin
2015-01-01
NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and asteroid redirection; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.
Evaluation Studies of Robotic Rollators by the User Perspective: A Systematic Review.
Werner, Christian; Ullrich, Phoebe; Geravand, Milad; Peer, Angelika; Hauer, Klaus
2016-01-01
Robotic rollators enhance the basic functions of established devices by technically advanced physical, cognitive, or sensory support to increase autonomy in persons with severe impairment. In the evaluation of such ambient assisted living solutions, both the technical and user perspectives are important to prove usability, effectiveness and safety, and to ensure adequate device application. The aim of this systematic review is to summarize the methodology of studies evaluating robotic rollators with focus on the user perspective and to give recommendations for future evaluation studies. A systematic literature search up to December 31, 2014, was conducted based on the Cochrane Review methodology using the electronic databases PubMed and IEEE Xplore. Articles were selected according to the following inclusion criteria: evaluation studies of robotic rollators documenting human-robot interaction, no case reports, published in English language. Twenty-eight studies were identified that met the predefined inclusion criteria. Large heterogeneity in the definitions of the target user group, study populations, study designs and assessment methods was found across the included studies. No generic methodology to evaluate robotic rollators could be identified. We found major methodological shortcomings related to insufficient sample descriptions and sample sizes, and lack of appropriate, standardized and validated assessment methods. Long-term use in habitual environment was also not evaluated. Apart from the heterogeneity, methodological deficits in most of the identified studies became apparent. Recommendations for future evaluation studies include: clear definition of target user group, adequate selection of subjects, inclusion of other assistive mobility devices for comparison, evaluation of the habitual use of advanced prototypes, adequate assessment strategy with established, standardized and validated methods, and statistical analysis of study results. Assessment strategies may additionally focus on specific functionalities of the robotic rollators allowing an individually tailored assessment of innovative features to document their added value. © 2016 S. Karger AG, Basel.
NASA Technical Reports Server (NTRS)
Myers, Dale
1987-01-01
An introduction is given to NASA goals in the development of automation (expert systems) and robotics technologies in the Space Station program. Artificial intelligence (AI) has been identified as a means to lowering ground support costs. Telerobotics will enhance space assembly, servicing and repair capabilities, and will be used for an estimated half of the necessary EVA tasks. The general principles guiding NASA in the design, development, ground-testing, interactions with industry and construction of the Space Station component systems are summarized. The telerobotics program has progressed to a point where a telerobot servicer is a firm component of the first Space Station element launch, to support assembly, maintenance and servicing of the Station. The University of Wisconsin has been selected for the establishment of a Center for the Commercial Development of Space, specializing in space automation and robotics.
Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration
NASA Technical Reports Server (NTRS)
Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita
2007-01-01
Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,
NASA Technical Reports Server (NTRS)
1985-01-01
In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the Space Station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the Space Station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space.
Robotics in colorectal surgery.
Kariv, Y; Delaney, C P
2005-10-01
A minimally invasive approach has not yet become the gold standard in colorectal procedures, despite its proven advantages in postoperative recovery. This is in part the result of the technical limitations in today's standard laparoscopy, and the advanced surgical skills that are required. Robotic technology overcomes some of these limitations by successfully providing intuitive motion and enhanced precision and accuracy, in an environment that is much more ergonomic. While currently performed in only few designated centers, this technology has already been applied in almost every major procedure performed to treat both benign and malignant conditions of the large bowel. The feasibility of performing these procedures using robotic systems has been reported in several series. Conversion and complication rates are low, and short term results are comparable to conventional laparoscopy. However, no clear advantages to patients have been demonstrated yet. Furthermore, robotic technology is associated with a significant increase in time consumed during surgery and cost of care. Nevertheless, a great potential for patients benefit in the future may exist with this technology. Increasing clinical experience with these systems, further technological developments, and continuous research are required before robotic technology can be routinely incorporated into surgical procedures on the colon and rectum.
Utilization of robotic-arm assisted total knee arthroplasty for soft tissue protection.
Sultan, Assem A; Piuzzi, Nicolas; Khlopas, Anton; Chughtai, Morad; Sodhi, Nipun; Mont, Michael A
2017-12-01
Despite the well-established success of total knee arthroplasty (TKA), iatrogenic ligamentous and soft tissue injuries are infrequent, but potential complications that can have devastating impact on clinical outcomes. These injuries are often related to technical errors and excessive soft tissue manipulation, particularly during bony resections. Recently, robotic-arm assisted TKA was introduced and demonstrated promising results with potential technical advantages over manual surgery in implant positioning and mechanical accuracy. Furthermore, soft tissue protection is an additional potential advantage offered by these systems that can reduce inadvertent human technical errors encountered during standard manual resections. Therefore, due to the relative paucity of literature, we attempted to answer the following questions: 1) does robotic-arm assisted TKA offer a technical advantage that allows enhanced soft tissue protection? 2) What is the available evidence about soft tissue protection? Recently introduced models of robotic-arm assisted TKA systems with advanced technology showed promising clinical outcomes and soft tissue protection in the short- and mid-term follow-up with results comparable or superior to manual TKA. In this review, we attempted to explore this dimension of robotics in TKA and investigate the soft tissue related complications currently reported in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, R.C.; Weisbin, C.R.; Pin, F.G.
1989-01-01
This paper reviews ongoing and planned research with mobile autonomous robots at the Oak Ridge National Laboratory (ORNL), Center for Engineering Systems Advanced Research (CESAR). Specifically we report on results obtained with the robot HERMIES-IIB in navigation, intelligent sensing, learning, and on-board parallel computing in support of these functions. We briefly summarize an experiment with HERMIES-IIB that demonstrates the capability of smooth transitions between robot autonomy and tele-operation. This experiment results from collaboration among teams at the Universities of Florida, Michigan, Tennessee, and Texas; and ORNL in a program targeted at robotics for advanced nuclear power stations. We conclude bymore » summarizing ongoing R D with our new mobile robot HERMIES-III which is equipped with a seven degree-of-freedom research manipulator arm. 12 refs., 4 figs.« less
Advances in Robotic, Human, and Autonomous Systems for Missions of Space Exploration
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Briggs, Geoffrey A.; Glass, Brian J.; Pedersen, Liam; Kortenkamp, David M.; Wettergreen, David S.; Nourbakhsh, I.; Clancy, Daniel J.; Zornetzer, Steven (Technical Monitor)
2002-01-01
Space exploration missions are evolving toward more complex architectures involving more capable robotic systems, new levels of human and robotic interaction, and increasingly autonomous systems. How this evolving mix of advanced capabilities will be utilized in the design of new missions is a subject of much current interest. Cost and risk constraints also play a key role in the development of new missions, resulting in a complex interplay of a broad range of factors in the mission development and planning of new missions. This paper will discuss how human, robotic, and autonomous systems could be used in advanced space exploration missions. In particular, a recently completed survey of the state of the art and the potential future of robotic systems, as well as new experiments utilizing human and robotic approaches will be described. Finally, there will be a discussion of how best to utilize these various approaches for meeting space exploration goals.
The role of assistive robotics in the lives of persons with disability.
Brose, Steven W; Weber, Douglas J; Salatin, Ben A; Grindle, Garret G; Wang, Hongwu; Vazquez, Juan J; Cooper, Rory A
2010-06-01
Robotic assistive devices are used increasingly to improve the independence and quality of life of persons with disabilities. Devices as varied as robotic feeders, smart-powered wheelchairs, independent mobile robots, and socially assistive robots are becoming more clinically relevant. There is a growing importance for the rehabilitation professional to be aware of available systems and ongoing research efforts. The aim of this article is to describe the advances in assistive robotics that are relevant to professionals serving persons with disabilities. This review breaks down relevant advances into categories of Assistive Robotic Systems, User Interfaces and Control Systems, Sensory and Feedback Systems, and User Perspectives. An understanding of the direction that assistive robotics is taking is important for the clinician and researcher alike; this review is intended to address this need.
Regolith Advanced Surface Systems Operations Robot Excavator
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Smith, Jonathan D.; Ebert, Thomas; Cox, Rachel; Rahmatian, Laila; Wood, James; Schuler, Jason; Nick, Andrew
2013-01-01
The Regolith Advanced Surface Systems Operations Robot (RASSOR) excavator robot is a teleoperated mobility platform with a space regolith excavation capability. This more compact, lightweight design (<50 kg) has counterrotating bucket drums, which results in a net-zero reaction horizontal force due to the self-cancellation of the symmetrical, equal but opposing, digging forces.
SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhlemann, I; Graduate School for Computing in Medicine and Life Sciences, University of Luebeck; Jauer, P
Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety featuresmore » create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking applications, including image quality control and target tracking.« less
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2015-01-01
Human and robotic missions to Mercury and Saturn are presented and analyzed. Unique elements of the local planetary environments are discussed and included in the analyses and assessments. Using historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many way. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed.
NASA Technical Reports Server (NTRS)
Hollars, M. G.; Cannon, R. H., Jr.; Alexander, H. L.; Morse, D. F.
1987-01-01
The Stanford University Aerospace Robotics Laboratory is actively developing and experimentally testing advanced robot control strategies for space robotic applications. Early experiments focused on control of very lightweight one-link manipulators and other flexible structures. The results are being extended to position and force control of mini-manipulators attached to flexible manipulators and multilink manipulators with flexible drive trains. Experimental results show that end-point sensing and careful dynamic modeling or adaptive control are key to the success of these control strategies. Free-flying space robot simulators that operate on an air cushion table have been built to test control strategies in which the dynamics of the base of the robot and the payload are important.
Prasad, Sunil M.; Ducko, Christopher T.; Stephenson, Edward R.; Chambers, Charles E.; Damiano, Ralph J.
2001-01-01
Objective To follow up in prospective fashion patients with coronary artery anastomoses completed endoscopically with robotic assistance. The robotic system was evaluated for safety and its effectiveness in completing microsurgical coronary anastomoses. Summary Background Data Recently there has been an interest in using robotics and computers to enhance the surgeon’s ability to perform endoscopic cardiac surgery. This interest has stemmed from the rapid advancement of technology and the desire to make cardiac surgery less invasive. Using traditional endoscopic instruments, it has not been possible to perform coronary surgery. Methods Nineteen patients underwent robotically assisted endoscopic coronary artery bypass grafting of the left internal thoracic artery (LITA) to the left anterior descending artery (LAD). Two robotic instruments and one endoscopic camera were placed through three 5-mm ports. A robotic system was used to construct the LITA–LAD anastomosis. All other required grafts were completed by conventional techniques. Results Seventeen LITA–LAD grafts (89%) had adequate intraoperative flow. The mean LITA–LAD graft flow was 38.5 ± 5 mL/min. At 8 weeks, LITA–LAD grafts were assessed by angiography and showed 100% patency with thrombolysis in myocardial infarction (TIMI) I flow. At a mean follow-up of 17 ± 4.2 months, all patients were NYHA class I and there were no adverse cardiac events. Conclusions The results from the first prospective clinical trial of robotically assisted endoscopic coronary bypass surgery in the United States showed favorable short-term outcomes with no adverse events. Robotic assistance is an enabling technology allowing the performance of endoscopic coronary anastomoses. PMID:11371730
Advancing automation and robotics technology for the Space Station Freedom and for the US economy
NASA Technical Reports Server (NTRS)
Lum, Henry, Jr.
1992-01-01
Described here is the progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology. Emphasis was placed on the Space Station Freedom program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) Progress Report 13, and issues of A&R implementation into the payload operations integration Center at Marshall Space Flight Center. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.
Concrete bridge deck early problem detection and mitigation using robotics
NASA Astrophysics Data System (ADS)
Gucunski, Nenad; Yi, Jingang; Basily, Basily; Duong, Trung; Kim, Jinyoung; Balaguru, Perumalsamy; Parvardeh, Hooman; Maher, Ali; Najm, Husam
2015-04-01
More economical management of bridges can be achieved through early problem detection and mitigation. The paper describes development and implementation of two fully automated (robotic) systems for nondestructive evaluation (NDE) and minimally invasive rehabilitation of concrete bridge decks. The NDE system named RABIT was developed with the support from Federal Highway Administration (FHWA). It implements multiple NDE technologies, namely: electrical resistivity (ER), impact echo (IE), ground-penetrating radar (GPR), and ultrasonic surface waves (USW). In addition, the system utilizes advanced vision to substitute traditional visual inspection. The RABIT system collects data at significantly higher speeds than it is done using traditional NDE equipment. The associated platform for the enhanced interpretation of condition assessment in concrete bridge decks utilizes data integration, fusion, and deterioration and defect visualization. The interpretation and visualization platform specifically addresses data integration and fusion from the four NDE technologies. The data visualization platform facilitates an intuitive presentation of the main deterioration due to: corrosion, delamination, and concrete degradation, by integrating NDE survey results and high resolution deck surface imaging. The rehabilitation robotic system was developed with the support from National Institute of Standards and Technology-Technology Innovation Program (NIST-TIP). The system utilizes advanced robotics and novel materials to repair problems in concrete decks, primarily early stage delamination and internal cracking, using a minimally invasive approach. Since both systems use global positioning systems for navigation, some of the current efforts concentrate on their coordination for the most effective joint evaluation and rehabilitation.
Real-time control for manufacturing space shuttle main engines: Work in progress
NASA Technical Reports Server (NTRS)
Ruokangas, Corinne C.
1988-01-01
During the manufacture of space-based assemblies such as Space Shuttle Main Engines, flexibility is required due to the high-cost and low-volume nature of the end products. Various systems have been developed pursuing the goal of adaptive, flexible manufacturing for several space applications, including an Advanced Robotic Welding System for the manufacture of complex components of the Space Shuttle Main Engines. The Advanced Robotic Welding System (AROWS) is an on-going joint effort, funded by NASA, between NASA/Marshall Space Flight Center, and two divisions of Rockwell International: Rocketdyne and the Science Center. AROWS includes two levels of flexible control of both motion and process parameters: Off-line programming using both geometric and weld-process data bases, and real-time control incorporating multiple sensors during weld execution. Both control systems were implemented using conventional hardware and software architectures. The feasibility of enhancing the real-time control system using the problem-solving architecture of Schemer is investigated and described.
Virtual Sensors for Advanced Controllers in Rehabilitation Robotics.
Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Portillo, Eva; Jung, Je Hyung
2018-03-05
In order to properly control rehabilitation robotic devices, the measurement of interaction force and motion between patient and robot is an essential part. Usually, however, this is a complex task that requires the use of accurate sensors which increase the cost and the complexity of the robotic device. In this work, we address the development of virtual sensors that can be used as an alternative of actual force and motion sensors for the Universal Haptic Pantograph (UHP) rehabilitation robot for upper limbs training. These virtual sensors estimate the force and motion at the contact point where the patient interacts with the robot using the mathematical model of the robotic device and measurement through low cost position sensors. To demonstrate the performance of the proposed virtual sensors, they have been implemented in an advanced position/force controller of the UHP rehabilitation robot and experimentally evaluated. The experimental results reveal that the controller based on the virtual sensors has similar performance to the one using direct measurement (less than 0.005 m and 1.5 N difference in mean error). Hence, the developed virtual sensors to estimate interaction force and motion can be adopted to replace actual precise but normally high-priced sensors which are fundamental components for advanced control of rehabilitation robotic devices.
Vision Based Autonomous Robotic Control for Advanced Inspection and Repair
NASA Technical Reports Server (NTRS)
Wehner, Walter S.
2014-01-01
The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.
a New Golf-Swing Robot Model Utilizing Shaft Elasticity
NASA Astrophysics Data System (ADS)
Suzuki, S.; Inooka, H.
1998-10-01
The performance of golf clubs and balls is generally evaluated by using golf-swing robots that conventionally have two or three joints with completely interrelated motion. This interrelation allows the user of this robot to specify only the initial posture and swing velocity of the robot and therefore the swing motion of this type of robot cannot be subtly adjusted to the specific characteristics of individual golf clubs. Consequently, golf-swing robots cannot accurately emulate advanced golfers, and this causes serious problems for the evaluation of golf club performance. In this study, a new golf-swing robot that can adjust its motion to both a specified value of swing velocity and the specific characteristics of individual golf clubs was analytically investigated. This robot utilizes the dynamic interference force produced by its swing motion and by shaft vibration and can therefore emulate advanced golfers and perform highly reliable evaluations of golf clubs.
Robotic Mirror Therapy System for Functional Recovery of Hemiplegic Arms.
Beom, Jaewon; Koh, Sukgyu; Nam, Hyung Seok; Kim, Wonshik; Kim, Yoonjae; Seo, Han Gil; Oh, Byung-Mo; Chung, Sun Gun; Kim, Sungwan
2016-08-15
Mirror therapy has been performed as effective occupational therapy in a clinical setting for functional recovery of a hemiplegic arm after stroke. It is conducted by eliciting an illusion through use of a mirror as if the hemiplegic arm is moving in real-time while moving the healthy arm. It can facilitate brain neuroplasticity through activation of the sensorimotor cortex. However, conventional mirror therapy has a critical limitation in that the hemiplegic arm is not actually moving. Thus, we developed a real-time 2-axis mirror robot system as a simple add-on module for conventional mirror therapy using a closed feedback mechanism, which enables real-time movement of the hemiplegic arm. We used 3 Attitude and Heading Reference System sensors, 2 brushless DC motors for elbow and wrist joints, and exoskeletal frames. In a feasibility study on 6 healthy subjects, robotic mirror therapy was safe and feasible. We further selected tasks useful for activities of daily living training through feedback from rehabilitation doctors. A chronic stroke patient showed improvement in the Fugl-Meyer assessment scale and elbow flexor spasticity after a 2-week application of the mirror robot system. Robotic mirror therapy may enhance proprioceptive input to the sensory cortex, which is considered to be important in neuroplasticity and functional recovery of hemiplegic arms. The mirror robot system presented herein can be easily developed and utilized effectively to advance occupational therapy.
Fuzzy Integral-Based Gaze Control of a Robotic Head for Human Robot Interaction.
Yoo, Bum-Soo; Kim, Jong-Hwan
2015-09-01
During the last few decades, as a part of effort to enhance natural human robot interaction (HRI), considerable research has been carried out to develop human-like gaze control. However, most studies did not consider hardware implementation, real-time processing, and the real environment, factors that should be taken into account to achieve natural HRI. This paper proposes a fuzzy integral-based gaze control algorithm, operating in real-time and the real environment, for a robotic head. We formulate the gaze control as a multicriteria decision making problem and devise seven human gaze-inspired criteria. Partial evaluations of all candidate gaze directions are carried out with respect to the seven criteria defined from perceived visual, auditory, and internal inputs, and fuzzy measures are assigned to a power set of the criteria to reflect the user defined preference. A fuzzy integral of the partial evaluations with respect to the fuzzy measures is employed to make global evaluations of all candidate gaze directions. The global evaluation values are adjusted by applying inhibition of return and are compared with the global evaluation values of the previous gaze directions to decide the final gaze direction. The effectiveness of the proposed algorithm is demonstrated with a robotic head, developed in the Robot Intelligence Technology Laboratory at Korea Advanced Institute of Science and Technology, through three interaction scenarios and three comparison scenarios with another algorithm.
Manned spacecraft automation and robotics
NASA Technical Reports Server (NTRS)
Erickson, Jon D.
1987-01-01
The Space Station holds promise of being a showcase user and driver of advanced automation and robotics technology. The author addresses the advances in automation and robotics from the Space Shuttle - with its high-reliability redundancy management and fault tolerance design and its remote manipulator system - to the projected knowledge-based systems for monitoring, control, fault diagnosis, planning, and scheduling, and the telerobotic systems of the future Space Station.
Advancing automation and robotics technology for the Space Station Freedom and for the U.S. economy
NASA Technical Reports Server (NTRS)
Lum, Henry, Jr.
1992-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fifteenth in a series of progress updates and covers the period between 27 Feb. - 17 Sep. 1992. The progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology is described. Emphasis was placed upon the Space Station Freedom program responses to specific recommendations made in ATAC Progress Report 14. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.
NASA Technical Reports Server (NTRS)
Lum, Henry, Jr.
1991-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. The report describes the progress made by Levels 1, 2 and 3 of the Office Space Station in developing and applying advanced automation and robotics technology. Emphasis has been placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 11, the status of the Flight Telerobotic Servicer, and the status of the Advanced Development Program. In addition, an assessment is provided of the automation and robotics status of the Canadian Space Station Program.
A Novel Concept for Safe, Stiffness-Controllable Robot Links.
Stilli, Agostino; Wurdemann, Helge A; Althoefer, Kaspar
2017-03-01
The recent decade has seen an astounding increase of interest and advancement in a new field of robotics, aimed at creating structures specifically for the safe interaction with humans. Softness, flexibility, and variable stiffness in robotics have been recognized as highly desirable characteristics for many applications. A number of solutions were proposed ranging from entirely soft robots (such as those composed mainly from soft materials such as silicone), via flexible continuum and snake-like robots, to rigid-link robots enhanced by joints that exhibit an elastic behavior either implemented in hardware or achieved purely by means of intelligent control. Although these are very good solutions paving the path to safe human-robot interaction, we propose here a new approach that focuses on creating stiffness controllability for the linkages between the robot joints. This article proposes a replacement for the traditionally rigid robot link-the new link is equipped with an additional capability of stiffness controllability. With this added feature, a robot can accurately carry out manipulation tasks (high stiffness), but can virtually instantaneously reduce its stiffness when a human is nearby or in contact with the robot. The key point of the invention described here is a robot link made of an airtight chamber formed by a soft and flexible, but high-strain resistant combination of a plastic mesh and silicone wall. Inflated with air to a high pressure, the mesh silicone chamber behaves like a rigid link; reducing the air pressure, softens the link and rendering the robot structure safe. This article investigates a number of link prototypes and shows the feasibility of the new concept. Stiffness tests have been performed, showing that a significant level of stiffness can be achieved-up to 40 N reaction force along the axial direction, for a 25-mm-diameter sample at 60 kPa, at an axial deformation of 5 mm. The results confirm that this novel concept to linkages for robot manipulators exhibits the beam-like behavior of traditional rigid links when fully pressurized and significantly reduced stiffness at low pressure. The proposed concept has the potential to easily create safe robots, augmenting traditional robot designs.
UROLOGIC ROBOTS AND FUTURE DIRECTIONS
Mozer, Pierre; Troccaz, Jocelyne; Stoianovici, Dan
2009-01-01
Purpose of review Robot-assisted laparoscopic surgery in urology has gained immense popularity with the Da Vinci system but a lot of research teams are working on new robots. The purpose of this paper is to review current urologic robots and present future developments directions. Recent findings Future systems are expected to advance in two directions: improvements of remote manipulation robots and developments of image-guided robots. Summary The final goal of robots is to allow safer and more homogeneous outcomes with less variability of surgeon performance, as well as new tools to perform tasks based on medical transcutaneous imaging, in a less invasive way, at lower costs. It is expected that improvements for remote system could be augmented reality, haptic feed back, size reduction and development of new tools for NOTES surgery. The paradigm of image-guided robots is close to a clinical availability and the most advanced robots are presented with end-user technical assessments. It is also notable that the potential of robots lies much further ahead than the accomplishments of the daVinci system. The integration of imaging with robotics holds a substantial promise, because this can accomplish tasks otherwise impossible. Image guided robots have the potential to offer a paradigm shift. PMID:19057227
Urologic robots and future directions.
Mozer, Pierre; Troccaz, Jocelyne; Stoianovici, Dan
2009-01-01
Robot-assisted laparoscopic surgery in urology has gained immense popularity with the daVinci system, but a lot of research teams are working on new robots. The purpose of this study is to review current urologic robots and present future development directions. Future systems are expected to advance in two directions: improvements of remote manipulation robots and developments of image-guided robots. The final goal of robots is to allow safer and more homogeneous outcomes with less variability of surgeon performance, as well as new tools to perform tasks on the basis of medical transcutaneous imaging, in a less invasive way, at lower costs. It is expected that improvements for a remote system could be augmented in reality, with haptic feedback, size reduction, and development of new tools for natural orifice translumenal endoscopic surgery. The paradigm of image-guided robots is close to clinical availability and the most advanced robots are presented with end-user technical assessments. It is also notable that the potential of robots lies much further ahead than the accomplishments of the daVinci system. The integration of imaging with robotics holds a substantial promise, because this can accomplish tasks otherwise impossible. Image-guided robots have the potential to offer a paradigm shift.
Summary of astronaut inputs on automation and robotics for Space Station Freedom
NASA Technical Reports Server (NTRS)
Weeks, David J.
1990-01-01
Astronauts and payload specialists present specific recommendations in the form of an overview that relate to the use of automation and robotics on the Space Station Freedom. The inputs are based on on-orbit operations experience, time requirements for crews, and similar crew-specific knowledge that address the impacts of automation and robotics on productivity. Interview techniques and specific questionnaire results are listed, and the majority of the responses indicate that incorporating automation and robotics to some extent and with human backup can improve productivity. Specific support is found for the use of advanced automation and EVA robotics on the Space Station Freedom and for the use of advanced automation on ground-based stations. Ground-based control of in-flight robotics is required, and Space Station activities and crew tasks should be analyzed to assess the systems engineering approach for incorporating automation and robotics.
ERIC Educational Resources Information Center
Albus, James S.
1984-01-01
Spectacular advances in microcomputers are forging new technological frontiers in robotics. For example, many factories will be totally automated. Economic implications of the new technology of robotics for the future are examined. (RM)
2017-02-01
DARPA ROBOTICS CHALLENGE (DRC) USING HUMAN-MACHINE TEAMWORK TO PERFORM DISASTER RESPONSE WITH A HUMANOID ROBOT FLORIDA INSTITUTE FOR HUMAN AND...AND SUBTITLE DARPA ROBOTICS CHALLENGE (DRC) USING HUMAN-MACHINE TEAMWORK TO PERFORM DISASTER RESPONSE WITH A HUMANOID ROBOT 5a. CONTRACT NUMBER...Human and Machine Cognition (IHMC) from 2012-2016 through three phases of the Defense Advanced Research Projects Agency (DARPA) Robotics Challenge
New technologies in robotic surgery: the Korean experience.
Tuliao, Patrick H; Kim, Sang W; Rha, Koon H
2014-01-01
The development of the robotic systems has made surgery an increasingly technology-driven field. Since the introduction of the first robotic platform in 2005, surgical practice in South Korea has also been caught up in the global robotic revolution. Consequently, a market focused on improving the robotic systems was created and Korea has emerged as one of its frontrunners. This article reviews the Korean experience in developing various robotic technologies and then Korea's most recent contributions to the development of new technologies in robotic surgery. The goal of new technologies in the field of robotic surgery has been to improve on the current platforms by eliminating their disadvantages. The pressing goal is to develop a platform that is less bulky, more ergonomic, and capable of providing force feedback to the surgeon. In Korea, the Lapabot and two new robotic systems for single-port laparoscopic surgery are the most recent advances that have been reported. Robotic surgery is rapidly evolving and Korea has stayed in the forefront of its development. These new advancements in technology will eventually produce better robotic platforms that will greatly improve the manner in which surgical care is delivered.
The ISECG* Global Exploration Roadmap as Context for Robotic and Human Exploration Operations
NASA Technical Reports Server (NTRS)
Lupisella, Mark
2015-01-01
The International Space Exploration Coordination Group (ISECG) Global Exploration Roadmap (GER) provides a broad international context for understanding how robotic missions and robotic assets can enable future human exploration of multiple destinations. This presentation will provide a brief high-level review of the GER with a focus on key robotic missions and robotic assets that can provide enabling technology advancements and that also raise interesting operational challenges in both the near-term and long-term. The GER presently features a variety of robotic missions and robotic assets that can provide important technology advancements as well as operational challenges and improvements, in areas ranging from: (a) leveraging the International Space Station, (b) planetary science robotic missions to potential human destinations, (c) micro-g body proximity operations (e.g. asteroids), (d) autonomous operations, (e) high and low-latency telerobotics, (f) human assisted sample return, and (g) contamination control. This presentation will highlight operational and technology challenges in these areas that have feed forward implications for human exploration.
Robotic surgery in cancer care: opportunities and challenges.
Mohammadzadeh, Niloofar; Safdari, Reza
2014-01-01
Malignancy-associated mortality, decreased productivity, and spiritual, social and physical burden in cancer patients and their families impose heavy costs on communities. Therefore cancer prevention, early detection, rapid diagnosis and timely treatment are very important. Use of modern methods based on information technology in cancer can improve patient survival and increase patient and health care provider satisfaction. Robot technology is used in different areas of health care and applications in surgery have emerged affecting the cancer treatment domain. Computerized and robotic devices can offer enhanced dexterity by tremor abolition, motion scaling, high quality 3D vision for surgeons and decreased blood loss, significant reduction in narcotic use, and reduced hospital stay for patients. However, there are many challenges like lack of surgical community support, large size, high costs and absence of tactile and haptic feedback. A comprehensive view to identify all factors in different aspects such as technical, legal and ethical items that prevent robotic surgery adoption is thus very necessary. Also evidence must be presented to surgeons to achieve appropriate support from physicians. The aim of this review article is to survey applications, opportunities and barriers to this advanced technology in patients and surgeons as an approach to improve cancer care.
da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety.
Marcus, Hani J; Hughes-Hallett, Archie; Cundy, Thomas P; Yang, Guang-Zhong; Darzi, Ara; Nandi, Dipankar
2015-04-01
The goal of this cadaver study was to evaluate the feasibility and safety of da Vinci robot-assisted keyhole neurosurgery. Several keyhole craniotomies were fashioned including supraorbital subfrontal, retrosigmoid and supracerebellar infratentorial. In each case, a simple durotomy was performed, and the flap was retracted. The da Vinci surgical system was then used to perform arachnoid dissection towards the deep-seated intracranial cisterns. It was not possible to simultaneously pass the 12-mm endoscope and instruments through the keyhole craniotomy in any of the approaches performed, limiting visualization. The articulated instruments provided greater dexterity than existing tools, but the instrument arms could not be placed in parallel through the keyhole craniotomy and, therefore, could not be advanced to the deep cisterns without significant clashing. The da Vinci console offered considerable ergonomic advantages over the existing operating room arrangement, allowing the operating surgeon to remain non-sterile and seated comfortably throughout the procedure. However, the lack of haptic feedback was a notable limitation. In conclusion, while robotic platforms have the potential to greatly enhance the performance of transcranial approaches, there is strong justification for research into next-generation robots, better suited to keyhole neurosurgery.
Advancing automation and robotics technology for the space station and the US economy
NASA Technical Reports Server (NTRS)
Cohen, A.
1985-01-01
In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and rebotics for use in the space station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the space station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the space station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space.
Coevolving advances in animal flight and aerial robotics
Lentink, David
2017-01-01
Our understanding of animal flight has inspired the design of new aerial robots with more effective flight capacities through the process of biomimetics and bioinspiration. The aerodynamic origin of the elevated performance of flying animals remains, however, poorly understood. In this themed issue, animal flight research and aerial robot development coalesce to offer a broader perspective on the current advances and future directions in these coevolving fields of research. Together, four reviews summarize and 14 reports contribute to our understanding of low Reynolds number flight. This area of applied aerodynamics research is challenging to dissect due to the complicated flow phenomena that include laminar–turbulent flow transition, laminar separation bubbles, delayed stall and nonlinear vortex dynamics. Our mechanistic understanding of low Reynolds number flight has perhaps been advanced most by the development of dynamically scaled robot models and new specialized wind tunnel facilities: in particular, the tiltable Lund flight tunnel for animal migration research and the recently developed AFAR hypobaric wind tunnel for high-altitude animal flight studies. These world-class facilities are now complemented with a specialized low Reynolds number wind tunnel for studying the effect of turbulence on animal and robot flight in much greater detail than previously possible. This is particular timely, because the study of flight in extremely laminar versus turbulent flow opens a new frontier in our understanding of animal flight. Advancing this new area will offer inspiration for developing more efficient high-altitude aerial robots and removes roadblocks for aerial robots operating in turbulent urban environments.
NASA Technical Reports Server (NTRS)
Nunamaker, Robert R.; Willshire, Kelli F.
1988-01-01
The reports of a committee established by Congress to identify specific systems of the Space Station which would advance automation and robotics technologies are reviewed. The history of the committee, its relation to NASA, and the reports which it has released are discussed. The committee's reports recommend the widespread use of automation and robotics for the Space Station, a program for technology development and transfer between industries and research and development communities, and the planned use of robots to service and repair satellites and their payloads which are accessible from the Space Station.
On the practicality of emergency surgery during long-duration space missions.
Dawson, David L
2008-07-01
While discussions of the practicality of surgery in space often focus on technical issues, such as adapting instrumentation and procedures for use in microgravity, programmatic issues need to be addressed if meaningful capabilities for emergency surgery are to be considered for human exploration missions beyond low Earth orbit. Advanced technologies that have been evaluated, including simulation-enhanced training, telementoring, or robotic assistance, might help prepare or augment a crew medical officer, but a physician with advanced training and relevant experience will be needed if surgical capabilities beyond basic emergency aid are to be considered. Specific operational roles for physician-astronauts should be established.
NASA's In-Space Propulsion Technology Project's Products for Near-term Mission Applicability
NASA Astrophysics Data System (ADS)
Dankanich, John
2009-01-01
The In-Space Propulsion Technology (ISPT) project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. The primary investments and products currently available for technology infusion include NASA's Evolutionary Xenon Thruster (NEXT) and the Advanced Materials Bipropellant Rocket (AMBR) engine. These products will reach TRL 6 in 2008 and are available for the current and all future mission opportunities. Development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of electric propulsion, advanced chemical thrusters, and aerocapture are presented.
NASA Tech Briefs, January 2013
NASA Technical Reports Server (NTRS)
2013-01-01
Topics include: Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector; Surface-Enhanced Raman Scattering Using Silica Whispering-Gallery Mode Resonators; 3D Hail Size Distribution Interpolation/Extrapolation Algorithm; Color-Changing Sensors for Detecting the Presence of Hypergolic Fuels; Artificial Intelligence Software for Assessing Postural Stability; Transformers: Shape-Changing Space Systems Built with Robotic Textiles; Fibrillar Adhesive for Climbing Robots; Using Pre-Melted Phase Change Material to Keep Payloads in Space Warm for Hours without Power; Development of a Centrifugal Technique for the Microbial Bioburden Analysis of Freon (CFC-11); Microwave Sinterator Freeform Additive Construction System (MS-FACS); DSP/FPGA Design for a High-Speed Programmable S-Band Space Transceiver; On-Chip Power-Combining for High-Power Schottky Diode-Based Frequency Multipliers; FPGA Vision Data Architecture; Memory Circuit Fault Simulator; Ultra-Compact Transputer-Based Controller for High-Level, Multi-Axis Coordination; Regolith Advanced Surface Systems Operations Robot Excavator; Magnetically Actuated Seal; Hybrid Electrostatic/Flextensional Mirror for Lightweight, Large-Aperture, and Cryogenic Space Telescopes; System for Contributing and Discovering Derived Mission and Science Data; Remote Viewer for Maritime Robotics Software; Stackfile Database; Reachability Maps for In Situ Operations; JPL Space Telecommunications Radio System Operating Environment; RFI-SIM: RFI Simulation Package; ION Configuration Editor; Dtest Testing Software; IMPaCT - Integration of Missions, Programs, and Core Technologies; Integrated Systems Health Management (ISHM) Toolkit; Wind-Driven Wireless Networked System of Mobile Sensors for Mars Exploration; In Situ Solid Particle Generator; Analysis of the Effects of Streamwise Lift Distribution on Sonic Boom Signature; Rad-Tolerant, Thermally Stable, High-Speed Fiber-Optic Network for Harsh Environments; Towed Subsurface Optical Communications Buoy; High-Collection-Efficiency Fluorescence Detection Cell; Ultra-Compact, Superconducting Spectrometer-on-a-Chip at Submillimeter Wavelengths; UV Resonant Raman Spectrometer with Multi-Line Laser Excitation; Medicine Delivery Device with Integrated Sterilization and Detection; Ionospheric Simulation System for Satellite Observations and Global Assimilative Model Experiments - ISOGAME; Airborne Tomographic Swath Ice Sounding Processing System; flexplan: Mission Planning System for the Lunar Reconnaissance Orbiter; Estimating Torque Imparted on Spacecraft Using Telemetry; PowderSim: Lagrangian Discrete and Mesh-Free Continuum Simulation Code for Cohesive Soils; Multiple-Frame Detection of Subpixel Targets in Thermal Image Sequences; Metric Learning to Enhance Hyperspectral Image Segmentation; Basic Operational Robotics Instructional System; Sheet Membrane Spacesuit Water Membrane Evaporator; Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers; Motor Qualification for Long-Duration Mars Missions.
Robot navigation research using the HERMIES mobile robot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, D.L.
1989-01-01
In recent years robot navigation has attracted much attention from researchers around the world. Not only are theoretical studies being simulated on sophisticated computers, but many mobile robots are now used as test vehicles for these theoretical studies. Various algorithms have been perfected for navigation in a known static environment; but navigation in an unknown and dynamic environment poses a much more challenging problem for researchers. Many different methodologies have been developed for autonomous robot navigation, but each methodology is usually restricted to a particular type of environment. One important research focus of the Center for Engineering Systems Advanced researchmore » (CESAR) at Oak Ridge National Laboratory, is autonomous navigation in unknown and dynamic environments using the series of HERMIES mobile robots. The research uses an expert system for high-level planning interfaced with C-coded routines for implementing the plans, and for quick processing of data requested by the expert system. In using this approach, the navigation is not restricted to one methodology since the expert system can activate a rule module for the methodology best suited for the current situation. Rule modules can be added the rule base as they are developed and tested. Modules are being developed or enhanced for navigating from a map, searching for a target, exploring, artificial potential-field navigation, navigation using edge-detection, etc. This paper will report on the various rule modules and methods of navigation in use, or under development at CESAR, using the HERMIES-IIB robot as a testbed. 13 refs., 5 figs., 1 tab.« less
Virtual reality in surgery and medicine.
Chinnock, C
1994-01-01
This report documents the state of development of enhanced and virtual reality-based systems in medicine. Virtual reality systems seek to simulate a surgical procedure in a computer-generated world in order to improve training. Enhanced reality systems seek to augment or enhance reality by providing improved imaging alternatives for specific patient data. Virtual reality represents a paradigm shift in the way we teach and evaluate the skills of medical personnel. Driving the development of virtual reality-based simulators is laparoscopic abdominal surgery, where there is a perceived need for better training techniques; within a year, systems will be fielded for second-year residency students. Further refinements over perhaps the next five years should allow surgeons to evaluate and practice new techniques in a simulator before using them on patients. Technical developments are rapidly improving the realism of these machines to an amazing degree, as well as bringing the price down to affordable levels. In the next five years, many new anatomical models, procedures, and skills are likely to become available on simulators. Enhanced reality systems are generally being developed to improve visualization of specific patient data. Three-dimensional (3-D) stereovision systems for endoscopic applications, head-mounted displays, and stereotactic image navigation systems are being fielded now, with neurosurgery and laparoscopic surgery being major driving influences. Over perhaps the next five years, enhanced and virtual reality systems are likely to merge. This will permit patient-specific images to be used on virtual reality simulators or computer-generated landscapes to be input into surgical visualization instruments. Percolating all around these activities are developments in robotics and telesurgery. An advanced information infrastructure eventually will permit remote physicians to share video, audio, medical records, and imaging data with local physicians in real time. Surgical robots are likely to be deployed for specific tasks in the operating room (OR) and to support telesurgery applications. Technical developments in robotics and motion control are key components of many virtual reality systems. Since almost all of the virtual reality and enhanced reality systems will be digitally based, they are also capable of being put "on-line" for tele-training, consulting, and even surgery. Advancements in virtual and enhanced reality systems will be driven in part by consumer applications of this technology. Many of the companies that will supply systems for medical applications are also working on commercial products. A big consumer hit can benefit the entire industry by increasing volumes and bringing down costs.(ABSTRACT TRUNCATED AT 400 WORDS)
Development of inspection robots for bridge cables.
Yun, Hae-Bum; Kim, Se-Hoon; Wu, Liuliu; Lee, Jong-Jae
2013-01-01
This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented.
Advancing automation and robotics technology for the Space Station Freedom and for the U.S. economy
NASA Technical Reports Server (NTRS)
1993-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the sixteenth in a series of progress updates and covers the period between 15 Sep. 1992 - 16 Mar. 1993. The report describes the progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology. Emphasis was placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 15; and includes a status review of Space Station Freedom Launch Processing facilities at Kennedy Space Center. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.
Advancing automation and robotics technology for the space station and for the US economy
NASA Technical Reports Server (NTRS)
Nunamaker, Robert
1988-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station. This material was documented in the initial report (NASA Technical Memo 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the sixth in a series of progress updates and covers the period between October 1, 1987 and March 1, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station program and serve as a highly visible stimulator affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Space Station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the Space Station.
Advancing automation and robotics technology for the space station and for the US economy
NASA Technical Reports Server (NTRS)
1986-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the second in a series of progress updates and covers the period between October 4, 1985, and March 31, l986. NASA has accepted the basic recommendations of ATAC for its Space Station efforts. ATAC and NASA agree that thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Program and serve as a highly visible stimulator effecting the U.S. long-term economy. The progress report identifies the work of NASA and the Space Station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the Space Station.
Task automation in a successful industrial telerobot
NASA Technical Reports Server (NTRS)
Spelt, Philip F.; Jones, Sammy L.
1994-01-01
In this paper, we discuss cooperative work by Oak Ridge National Laboratory and Remotec, Inc., to automate components of the operator's workload using Remotec's Andros telerobot, thereby providing an enhanced user interface which can be retrofit to existing fielded units as well as being incorporated into new production units. Remotec's Andros robots are presently used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists, as well as by the armed forces and numerous law enforcement agencies. The automation of task components, as well as the video graphics display of the robot's position in the environment, will enhance all tasks performed by these users, as well as enabling performance in terrain where the robots cannot presently perform due to lack of knowledge about, for instance, the degree of tilt of the robot. Enhanced performance of a successful industrial mobile robot leads to increased safety and efficiency of performance in hazardous environments. The addition of these capabilities will greatly enhance the utility of the robot, as well as its marketability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry
This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics naturalmore » human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.« less
[Objective surgery -- advanced robotic devices and simulators used for surgical skill assessment].
Suhánszki, Norbert; Haidegger, Tamás
2014-12-01
Robotic assistance became a leading trend in minimally invasive surgery, which is based on the global success of laparoscopic surgery. Manual laparoscopy requires advanced skills and capabilities, which is acquired through tedious learning procedure, while da Vinci type surgical systems offer intuitive control and advanced ergonomics. Nevertheless, in either case, the key issue is to be able to assess objectively the surgeons' skills and capabilities. Robotic devices offer radically new way to collect data during surgical procedures, opening the space for new ways of skill parameterization. This may be revolutionary in MIS training, given the new and objective surgical curriculum and examination methods. The article reviews currently developed skill assessment techniques for robotic surgery and simulators, thoroughly inspecting their validation procedure and utility. In the coming years, these methods will become the mainstream of Western surgical education.
Development of Inspection Robots for Bridge Cables
Kim, Se-Hoon; Lee, Jong-Jae
2013-01-01
This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented. PMID:24459453
Meal assistance robot with ultrasonic motor
NASA Astrophysics Data System (ADS)
Kodani, Yasuhiro; Tanaka, Kanya; Wakasa, Yuji; Akashi, Takuya; Oka, Masato
2007-12-01
In this paper, we have constructed a robot that help people with disabilities of upper extremities and advanced stage amyotrophic lateral sclerosis (ALS) patients to eat with their residual abilities. Especially, many of people suffering from advanced stage ALS of the use a pacemaker. And they need to avoid electromagnetic waves. Therefore we adopt ultra sonic motor that does not generate electromagnetic waves as driving sources. Additionally we approach the problem of the conventional meal assistance robot. Moreover, we introduce the interface with eye movement so that extremities can also use our system. User operates our robot not with hands or foot but with eye movement.
Humanlike robots: the upcoming revolution in robotics
NASA Astrophysics Data System (ADS)
Bar-Cohen, Yoseph
2009-08-01
Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.
Humanlike Robots - The Upcoming Revolution in Robotics
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
2009-01-01
Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.
NASA Astrophysics Data System (ADS)
Manoonpong, Poramate; Petersen, Dennis; Kovalev, Alexander; Wörgötter, Florentin; Gorb, Stanislav N.; Spinner, Marlene; Heepe, Lars
2016-12-01
Based on the principles of morphological computation, we propose a novel approach that exploits the interaction between a passive anisotropic scale-like material (e.g., shark skin) and a non-smooth substrate to enhance locomotion efficiency of a robot walking on inclines. Real robot experiments show that passive tribologically-enhanced surfaces of the robot belly or foot allow the robot to grip on specific surfaces and move effectively with reduced energy consumption. Supplementing the robot experiments, we investigated tribological properties of the shark skin as well as its mechanical stability. It shows high frictional anisotropy due to an array of sloped denticles. The orientation of the denticles to the underlying collagenous material also strongly influences their mechanical interlocking with the substrate. This study not only opens up a new way of achieving energy-efficient legged robot locomotion but also provides a better understanding of the functionalities and mechanical properties of anisotropic surfaces. That understanding will assist developing new types of material for other real-world applications.
Manoonpong, Poramate; Petersen, Dennis; Kovalev, Alexander; Wörgötter, Florentin; Gorb, Stanislav N.; Spinner, Marlene; Heepe, Lars
2016-01-01
Based on the principles of morphological computation, we propose a novel approach that exploits the interaction between a passive anisotropic scale-like material (e.g., shark skin) and a non-smooth substrate to enhance locomotion efficiency of a robot walking on inclines. Real robot experiments show that passive tribologically-enhanced surfaces of the robot belly or foot allow the robot to grip on specific surfaces and move effectively with reduced energy consumption. Supplementing the robot experiments, we investigated tribological properties of the shark skin as well as its mechanical stability. It shows high frictional anisotropy due to an array of sloped denticles. The orientation of the denticles to the underlying collagenous material also strongly influences their mechanical interlocking with the substrate. This study not only opens up a new way of achieving energy-efficient legged robot locomotion but also provides a better understanding of the functionalities and mechanical properties of anisotropic surfaces. That understanding will assist developing new types of material for other real-world applications. PMID:28008936
ERIC Educational Resources Information Center
Illi, M.; And Others
This collection includes five papers assessing current and projected developments in the field of robotics and the implications of these developments for vocational-technical education. The first paper, "New Applications for Industrial Robots--Perspectives for the Next Five Years" (M. Illi) compares advances in robotics in Japan and the…
Robots in space into the 21st century
NASA Technical Reports Server (NTRS)
Weisbin, C. R.; Lavery, D.; Rodriguez, G.
1997-01-01
Describes the technological developments which are establishing the foundation for an exciting era of in situ exploration missions to planets, comets and asteroids with advanced robotic systems. Also outlines important concurrent terrestrial applications and spinoffs of the space robotics technology. These include high-precision robotic manipulators for microsurgical operations and dexterous arm control systems.
[Image guided and robotic treatment--the advance of cybernetics in clinical medicine].
Fosse, E; Elle, O J; Samset, E; Johansen, M; Røtnes, J S; Tønnessen, T I; Edwin, B
2000-01-10
The introduction of advanced technology in hospitals has changed the treatment practice towards more image guided and minimal invasive procedures. Modern computer and communication technology opens up for robot aided and pre-programmed intervention. Several robotic systems are in clinical use today both in microsurgery and in major cardiac and orthopedic operations. As this trend develops, professions which are new in this context such as physicists, mathematicians and cybernetic engineers will be increasingly important in the treatment of patients.
A history of robots: from science fiction to surgical robotics.
Hockstein, N G; Gourin, C G; Faust, R A; Terris, D J
2007-01-01
Surgical robotics is an evolving field with great advances having been made over the last decade. The origin of robotics was in the science-fiction literature and from there industrial applications, and more recently commercially available, surgical robotic devices have been realized. In this review, we examine the field of robotics from its roots in literature to its development for clinical surgical use. Surgical mills and telerobotic devices are discussed, as are potential future developments.
Promoting Diversity in Undergraduate Research in Robotics-Based Seismic
NASA Astrophysics Data System (ADS)
Gifford, C. M.; Arthur, C. L.; Carmichael, B. L.; Webber, G. K.; Agah, A.
2006-12-01
The motivation for this research was to investigate forming evenly-spaced grid patterns with a team of mobile robots for future use in seismic imaging in polar environments. A team of robots was incrementally designed and simulated by incorporating sensors and altering each robot's controller. Challenges, design issues, and efficiency were also addressed. This research project incorporated the efforts of two undergraduate REU students from Elizabeth City State University (ECSU) in North Carolina, and the research staff at the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas. ECSU is a historically black university. Mentoring these two minority students in scientific research, seismic, robotics, and simulation will hopefully encourage them to pursue graduate degrees in science-related or engineering fields. The goals for this 10-week internship during summer 2006 were to educate the students in the fields of seismology, robotics, and virtual prototyping and simulation. Incrementally designing a robot platform for future enhancement and evaluation was central to this research, and involved simulation of several robots working together to change seismic grid shape and spacing. This process gave these undergraduate students experience and knowledge in an actual research project for a real-world application. The two undergraduate students gained valuable research experience and advanced their knowledge of seismic imaging, robotics, sensors, and simulation. They learned that seismic sensors can be used in an array to gather 2D and 3D images of the subsurface. They also learned that robotics can support dangerous or difficult human activities, such as those in a harsh polar environment, by increasing automation, robustness, and precision. Simulating robot designs also gave them experience in programming behaviors for mobile robots. Thus far, one academic paper has resulted from their research. This paper received third place at the 2006 National Technical Association's (NTA) National Conference in Chicago. CReSIS, in conjunction with ECSU, provided these minority students with a well-rounded educational experience in a real-world research project. Their contributions will be used for future projects.
Robotic laparoscopic surgery: cost and training.
Amodeo, A; Linares Quevedo, A; Joseph, J V; Belgrano, E; Patel, H R H
2009-06-01
The advantages of minimally invasive surgery are well accepted. Shorter hospital stays, decreased postoperative pain, rapid return to preoperative activity, decreased postoperative ileus, and preserved immune function are among the benefits of the laparoscopic approach. However, the instruments of laparoscopy afford surgeons limited precision and poor ergonomics, and their use is associated with a significant learning curve and the amount of time and energy necessary to develop and maintain such advanced laparoscopic skills is not insignificant. The robotic surgery allows all laparoscopists to perform advanced laparoscopic procedures with greater ease. The potential advantages of surgical robotic systems include making advanced laparoscopic surgical procedures accessible to surgeons who do not have advanced video endoscopic training and broadening the scope of surgical procedures that can be performed using the laparoscopic method. The wristed instruments, x10 magnifications, tremor filtering, scaling of movements and three-dimensional view allow the urologist to perform the intricate dissection and anastomosis with high precision. The robot is not, however, without significant disadvantages as compared with traditional laparoscopy. These include greater expense and consumption of operating room resources such as space and the availability of skilled technical staff, complete elimination of tactile feedback, and more limited options for trocar placement. The current cost of the da Vinci system is $ 1.2 million and annual maintenance is $ 138000. Many studies suggest that depreciation and maintenance costs can be minimised if the number of robotic cases is increased. The high cost of purchasing and maintaining the instruments of the robotic system is one of its many disadvantages. The availability of the robotic systems to only a limited number of centres reduces surgical training opportunities. Hospital administrators and surgeons must define the reasons for developing a robotic surgical program: it is very important to show that robotics will add a dimension that will benefit the hospital, the patient care and institutional recognition. Another essential task to overcome is the important education of the operating room nursing staff, a significant difference between this modality and traditional surgery. Without operating room environment support, most surgeons will revert to traditional methods even after a few successful robotics cases. As the field of robotic surgery continues to grow, graduate medical education and continuing medical education programs that address the surgical robotic learning needs of residents and practicing surgeons need to be developed.
Sartorato, Felippe; Przybylowski, Leon; Sarko, Diana K
2017-07-01
For children with autism spectrum disorders (ASDs), social robots are increasingly utilized as therapeutic tools in order to enhance social skills and communication. Robots have been shown to generate a number of social and behavioral benefits in children with ASD including heightened engagement, increased attention, and decreased social anxiety. Although social robots appear to be effective social reinforcement tools in assistive therapies, the perceptual mechanism underlying these benefits remains unknown. To date, social robot studies have primarily relied on expertise in fields such as engineering and clinical psychology, with measures of social robot efficacy principally limited to qualitative observational assessments of children's interactions with robots. In this review, we examine a range of socially interactive robots that currently have the most widespread use as well as the utility of these robots and their therapeutic effects. In addition, given that social interactions rely on audiovisual communication, we discuss how enhanced sensory processing and integration of robotic social cues may underlie the perceptual and behavioral benefits that social robots confer. Although overall multisensory processing (including audiovisual integration) is impaired in individuals with ASD, social robot interactions may provide therapeutic benefits by allowing audiovisual social cues to be experienced through a simplified version of a human interaction. By applying systems neuroscience tools to identify, analyze, and extend the multisensory perceptual substrates that may underlie the therapeutic benefits of social robots, future studies have the potential to strengthen the clinical utility of social robots for individuals with ASD. Copyright © 2017 Elsevier Ltd. All rights reserved.
The robotic Whipple: operative strategy and technical considerations.
MacKenzie, Shawn; Kosari, Kambiz; Sielaff, Timothy; Johnson, Eric
2011-03-01
Advances in robotic surgery have allowed the frontiers of minimally invasive pancreatic surgery to expand. We present a step-by-step approach to the robotic Whipple procedure. The discussion includes port setting and robotic docking, kocherization and superior mesenteric vein identification, portal dissection, releasing the ligament of Treitz, uncinate dissection, and reconstruction. A brief report of our initial 2-year experience with the robotic Whipple procedure is also presented.
Neurobionics and the brain-computer interface: current applications and future horizons.
Rosenfeld, Jeffrey V; Wong, Yan Tat
2017-05-01
The brain-computer interface (BCI) is an exciting advance in neuroscience and engineering. In a motor BCI, electrical recordings from the motor cortex of paralysed humans are decoded by a computer and used to drive robotic arms or to restore movement in a paralysed hand by stimulating the muscles in the forearm. Simultaneously integrating a BCI with the sensory cortex will further enhance dexterity and fine control. BCIs are also being developed to: provide ambulation for paraplegic patients through controlling robotic exoskeletons; restore vision in people with acquired blindness; detect and control epileptic seizures; and improve control of movement disorders and memory enhancement. High-fidelity connectivity with small groups of neurons requires microelectrode placement in the cerebral cortex. Electrodes placed on the cortical surface are less invasive but produce inferior fidelity. Scalp surface recording using electroencephalography is much less precise. BCI technology is still in an early phase of development and awaits further technical improvements and larger multicentre clinical trials before wider clinical application and impact on the care of people with disabilities. There are also many ethical challenges to explore as this technology evolves.
NASA Technical Reports Server (NTRS)
1990-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the ninth in a series of progress updates and covers the period between February 24, 1989, and July 12, 1989. NASA has accepted the basic recommendation of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The work of NASA and the Freedom contractors, e.g., Work Packages, as well as the Flight Telerobotic Servicer is identified. Research in progress is also described and assessments of the advancement of automation and robotics technology on the Space Station Freedom are given.
Advancing automation and robotics technology for the space station Freedom and for the US economy
NASA Technical Reports Server (NTRS)
Creedon, Jeremiah F.
1989-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Freedom space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the eighth in a series of progress updates and covers the period between October 1, 1988, and March 31, 1989. NASA has accepted the basic recommendations of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Freedom program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Freedom study contractors. It also describes research in progress, and it makes assessments of the advancement of automation and robotics technology on the Freedom space station.
Advancing automation and robotics technology for the Space Station Freedom and for the US economy
NASA Technical Reports Server (NTRS)
1988-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Freedom space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the seventh in a series of progress updates and covers the period between April 1, 1988 and September 30, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Freedom program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Freedom study contractors. It also describes research in progress, and it makes assessments of the advancement of automation and robotics technology on the Freedom space station.
NASA Technical Reports Server (NTRS)
1987-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fourth in a series of progress updates and covers the period October 1, 1986 to May 15, 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the will of Congress is to build an advanced automation and robotics technology base that will support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy. The progress report identifies the work of NASA and the space station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the space station.
NASA Technical Reports Server (NTRS)
1986-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committer (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the third in a series of progress updates and covers the period between April 1, 1986 and September 30, 1986. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the will of Congress is to build an advanced automation and robotics technology base that will support an evolutionary space station program and serve as a highly visible stimulater affecting the long-term U.S. economy. The progress report identifies the work of NASA and the space station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the space station.
Advance of Hazardous Operation Robot and its Application in Special Equipment Accident Rescue
NASA Astrophysics Data System (ADS)
Zeng, Qin-Da; Zhou, Wei; Zheng, Geng-Feng
A survey of hazardous operation robot is given out in this article. Firstly, the latest researches such as nuclear industry robot, fire-fighting robot and explosive-handling robot are shown. Secondly, existing key technologies and their shortcomings are summarized, including moving mechanism, control system, perceptive technology and power technology. Thirdly, the trend of hazardous operation robot is predicted according to current situation. Finally, characteristics and hazards of special equipment accident, as well as feasibility of hazardous operation robot in the area of special equipment accident rescue are analyzed.
Spline-Locking Screw Fastening Strategy (SLSFS)
NASA Technical Reports Server (NTRS)
Vranish, John M.
1991-01-01
A fastener was developed by NASA Goddard for efficiently performing assembly, maintenance, and equipment replacement functions in space using either robotic or astronaut means. This fastener, the 'Spline Locking Screw' (SLS) would also have significant commercial value in advanced manufacturing. Commercial (or DoD) products could be manufactured in such a way that their prime subassemblies would be assembled using SLS fasteners. This would permit machines and robots to disconnect and replace these modules/parts with ease, greatly reducing life cycle costs of the products and greatly enhancing the quality, timeliness, and consistency of repairs, upgrades, and remanufacturing. The operation of the basic SLS fastener is detailed, including hardware and test results. Its extension into a comprehensive fastening strategy for NASA use in space is also outlined. Following this, the discussion turns toward potential commercial and government applications and the potential market significance of same.
Spline-locking screw fastening strategy
NASA Technical Reports Server (NTRS)
Vranish, John M.
1992-01-01
A fastener was developed by NASA Goddard for efficiently performing assembly, maintenance, and equipment replacement functions in space using either robotics or astronaut means. This fastener, the 'Spline Locking Screw' (SLS) would also have significant commercial value in advanced space manufacturing. Commercial (or DoD) products could be manufactured in such a way that their prime subassemblies would be assembled using SLS fasteners. This would permit machines and robots to disconnect and replace these modules/parts with ease, greatly reducing life cycle costs of the products and greatly enhancing the quality, timeliness, and consistency of repairs, upgrades, and remanufacturing. The operation of the basic SLS fastener is detailed, including hardware and test results. Its extension into a comprehensive fastening strategy for NASA use in space is also outlined. Following this, the discussion turns toward potential commercial and government applications and the potential market significance of same.
Space station automation study-satellite servicing. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1984-01-01
A plan for advancing the state of automation and robotics technology as an integral part of the U.S. space station development effort was studied. This study was undertaken: (1) to determine the benefits that will accrue from using automated systems onboard the space station in support of satellite servicing; (2) to define methods for increasing the capacity for, and effectiveness of satellite servicing while reducing demands on crew time and effort and on ground support; (3) to find optimum combinations of men/machine activities in the performance of servicing functions; and (4) project the evolution of automation technology needed to enhance or enable satellite servicing capabilities to match the evolutionary growth of the space station. A secondary intent is to accelerate growth and utilization of robotics in terrestrial applications as a spin-off from the space station program.
NASA Astrophysics Data System (ADS)
Wiener, C.; Miller, A.; Zykov, V.
2016-12-01
Advanced robotic vehicles are increasingly being used by oceanographic research vessels to enable more efficient and widespread exploration of the ocean, particularly the deep ocean. With cutting-edge capabilities mounted onto robotic vehicles, data at high resolutions is being generated more than ever before, enabling enhanced data collection and the potential for broader participation. For example, high resolution camera technology not only improves visualization of the ocean environment, but also expands the capacity to engage participants remotely through increased use of telepresence and virtual reality techniques. Schmidt Ocean Institute is a private, non-profit operating foundation established to advance the understanding of the world's oceans through technological advancement, intelligent observation and analysis, and open sharing of information. Telepresence-enabled research is an important component of Schmidt Ocean Institute's science research cruises, which this presentation will highlight. Schmidt Ocean Institute is one of the only research programs that make their entire underwater vehicle dive series available online, creating a collection of video that enables anyone to follow deep sea research in real time. We encourage students, educators and the general public to take advantage of freely available dive videos. Additionally, other SOI-supported internet platforms, have engaged the public in image and video annotation activities. Examples of these new online platforms, which utilize citizen scientists to annotate scientific image and video data will be provided. This presentation will include an introduction to SOI-supported video and image tagging citizen science projects, real-time robot tracking, live ship-to-shore communications, and an array of outreach activities that enable scientists to interact with the public and explore the ocean in fascinating detail.
Friedrich, D T; Sommer, F; Scheithauer, M O; Greve, J; Hoffmann, T K; Schuler, P J
2017-12-01
Objective Advanced transnasal sinus and skull base surgery remains a challenging discipline for head and neck surgeons. Restricted access and space for instrumentation can impede advanced interventions. Thus, we present the combination of an innovative robotic endoscope guidance system and a specific endoscope with adjustable viewing angle to facilitate transnasal surgery in a human cadaver model. Materials and Methods The applicability of the robotic endoscope guidance system with custom foot pedal controller was tested for advanced transnasal surgery on a fresh frozen human cadaver head. Visualization was enabled using a commercially available endoscope with adjustable viewing angle (15-90 degrees). Results Visualization and instrumentation of all paranasal sinuses, including the anterior and middle skull base, were feasible with the presented setup. Controlling the robotic endoscope guidance system was effectively precise, and the adjustable endoscope lens extended the view in the surgical field without the common change of fixed viewing angle endoscopes. Conclusion The combination of a robotic endoscope guidance system and an advanced endoscope with adjustable viewing angle enables bimanual surgery in transnasal interventions of the paranasal sinuses and the anterior skull base in a human cadaver model. The adjustable lens allows for the abandonment of fixed-angle endoscopes, saving time and resources, without reducing the quality of imaging.
NASA Technical Reports Server (NTRS)
Chavers, Greg
2015-01-01
Since 2006 NASA has been formulating robotic missions to the lunar surface through programs and projects like the Robotic Lunar Exploration Program, Lunar Precursor Robotic Program, and International Lunar Network. All of these were led by NASA Marshall Space Flight Center (MSFC). Due to funding shortfalls, the lunar missions associated with these efforts, the designs, were not completed. From 2010 to 2013, the Robotic Lunar Lander Development Activity was funded by the Science Mission Directorate (SMD) to develop technologies that would enable and enhance robotic lunar surface missions at lower costs. In 2013, a requirements-driven, low-cost robotic lunar lander concept was developed for the Resource Prospector Mission. Beginning in 2014, The Advanced Exploration Systems funded the lander team and established the MSFC, Johnson Space Center, Applied Physics Laboratory, and the Jet Propulsion Laboratory team with MSFC leading the project. The lander concept to place a 300-kg rover on the lunar surface has been described in the New Technology Report Case Number MFS-33238-1. A low-cost lander concept for placing a robotic payload on the lunar surface is shown in figures 1 and 2. The NASA lander team has developed several lander concepts using common hardware and software to allow the lander to be configured for a specific mission need. In addition, the team began to transition lander expertise to United States (U.S.) industry to encourage the commercialization of space, specifically the lunar surface. The Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST) initiative was started and the NASA lander team listed above is partnering with three competitively selected U.S. companies (Astrobotic, Masten Space Systems, and Moon Express) to develop, test, and operate their lunar landers.
Single-port laparoscopic and robotic partial nephrectomy.
Kaouk, Jihad H; Goel, Raj K
2009-05-01
Partial nephrectomy (PN) for small renal masses provides effective oncologic outcomes. Single-port laparoscopic (SPL) and robotic surgeries are evolving approaches to advance minimally invasive surgery. To determine the feasibility of laparoscopic and robotic single-port PN. Since 2007, evaluation of patients undergoing SPL and single-port robotic (SPR) PN at a primary referral center was performed. Patients with small, solitary, exophytic-enhancing renal masses were selected. Patients with a solitary kidney, endophytic or hilar tumors, and previous abdominal and/or kidney surgery were excluded. Perioperative and pathologic data were entered prospectively into an institutional review board (IRB)-approved database. Tumor location determined either an open Hasson transperitoneal or retroperitoneal approach. A single multichannel port or Triport provided intra-abdominal access. The Harmonic Scalpel was used for tumor excision under normal renal perfusion. The da Vinci surgical robot was used for SPR cases. Patient demographics, perioperative, hematologic, and pathologic data as well as pain assessment using the Visual Analog Pain Scale (VAPS) were assessed. A total of seven patients underwent single-port PN (SPL=5, SPR=2). One patient with a right anterior upper-pole mass required conversion from SPL to standard laparoscopy following tumor excision because of intraoperative bleeding. Pathology revealed six lesions compatible with renal cell carcinoma (RCC) and one benign cyst. One negative frozen section came back focally positive on final histopathology. All other surgical margins were negative. A mean difference of 3.0+/-2.0 g/dl in hemoglobin was noted in all patients. Minimal pain was noted at discharge following both laparoscopic and robotic single-port surgery (VAPS=1.7+/-1.2 vs 1+/-0.5/10). SPL and SPR PN is feasible for select exophytic tumors. Robotics may improve surgical capabilities during single-port surgery.
Lee, Joong Ho; Tanaka, Eiji; Woo, Yanghee; Ali, Güner; Son, Taeil; Kim, Hyoung-Il; Hyung, Woo Jin
2017-12-01
The recent scientific and technologic advances have profoundly affected the training of surgeons worldwide. We describe a novel intraoperative real-time training module, the Advanced Robotic Multi-display Educational System (ARMES). We created a real-time training module, which can provide a standardized step by step guidance to robotic distal subtotal gastrectomy with D2 lymphadenectomy procedures, ARMES. The short video clips of 20 key steps in the standardized procedure for robotic gastrectomy were created and integrated with TilePro™ software to delivery on da Vinci Surgical Systems (Intuitive Surgical, Sunnyvale, CA). We successfully performed the robotic distal subtotal gastrectomy with D2 lymphadenectomy for patient with gastric cancer employing this new teaching method without any transfer errors or system failures. Using this technique, the total operative time was 197 min and blood loss was 50 mL and there were no intra- or post-operative complications. Our innovative real-time mentoring module, ARMES, enables standardized, systematic guidance during surgical procedures. © 2017 Wiley Periodicals, Inc.
Brain Computer Interfaces for Enhanced Interaction with Mobile Robot Agents
2016-07-27
synergistic and complementary way. This project focused on acquiring a mobile robotic agent platform that can be used to explore these interfaces...providing a test environment where the human control of a robot agent can be experimentally validated in 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...Distribution Unlimited UU UU UU UU 27-07-2016 17-Sep-2013 16-Sep-2014 Final Report: Brain Computer Interfaces for Enhanced Interactions with Mobile Robot
The new era of robotic neck surgery: The universal application of the retroauricular approach.
Byeon, Hyung Kwon; Koh, Yoon Woo
2015-12-01
Recent advances in technology has triggered the introduction of surgical robotics in the field of head and neck surgery and changed the landscape indefinitely. The advent of transoral robotic surgery and robotic thyroidectomy techniques has urged the extended applications of the robot to other neck surgeries including remote access surgeries. Based on earlier reports and our surgical experiences, this review will discuss in detail various robotic head and neck surgeries via retroauricular approach. © 2015 Wiley Periodicals, Inc.
Technology developments integrating a space network communications testbed
NASA Technical Reports Server (NTRS)
Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee
2006-01-01
As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enables its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions.
Robotic System For Greenhouse Or Nursery
NASA Technical Reports Server (NTRS)
Gill, Paul; Montgomery, Jim; Silver, John; Heffelfinger, Neil; Simonton, Ward; Pease, Jim
1993-01-01
Report presents additional information about robotic system described in "Robotic Gripper With Force Control And Optical Sensors" (MFS-28537). "Flexible Agricultural Robotics Manipulator System" (FARMS) serves as prototype of robotic systems intended to enhance productivities of agricultural assembly-line-type facilities in large commercial greenhouses and nurseries.
Climbing with adhesion: from bioinspiration to biounderstanding
Cutkosky, Mark R.
2015-01-01
Bioinspiration is an increasingly popular design paradigm, especially as robots venture out of the laboratory and into the world. Animals are adept at coping with the variability that the world imposes. With advances in scientific tools for understanding biological structures in detail, we are increasingly able to identify design features that account for animals' robust performance. In parallel, advances in fabrication methods and materials are allowing us to engineer artificial structures with similar properties. The resulting robots become useful platforms for testing hypotheses about which principles are most important. Taking gecko-inspired climbing as an example, we show that the process of extracting principles from animals and adapting them to robots provides insights for both robotics and biology. PMID:26464786
Advanced wireless mobile collaborative sensing network for tactical and strategic missions
NASA Astrophysics Data System (ADS)
Xu, Hao
2017-05-01
In this paper, an advanced wireless mobile collaborative sensing network will be developed. Through properly combining wireless sensor network, emerging mobile robots and multi-antenna sensing/communication techniques, we could demonstrate superiority of developed sensing network. To be concrete, heterogeneous mobile robots including unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) are equipped with multi-model sensors and wireless transceiver antennas. Through real-time collaborative formation control, multiple mobile robots can team the best formation that can provide most accurate sensing results. Also, formatting multiple mobile robots can also construct a multiple-input multiple-output (MIMO) communication system that can provide a reliable and high performance communication network.
Sports Training Support Method by Self-Coaching with Humanoid Robot
NASA Astrophysics Data System (ADS)
Toyama, S.; Ikeda, F.; Yasaka, T.
2016-09-01
This paper proposes a new training support method called self-coaching with humanoid robots. In the proposed method, two small size inexpensive humanoid robots are used because of their availability. One robot called target robot reproduces motion of a target player and another robot called reference robot reproduces motion of an expert player. The target player can recognize a target technique from the reference robot and his/her inadequate skill from the target robot. Modifying the motion of the target robot as self-coaching, the target player could get advanced cognition. Some experimental results show some possibility as the new training method and some issues of the self-coaching interface program as a future work.
Zeng, Xiangfeng; Zhu, Guoli; Zhang, Mingming; Xie, Sheng Q
2018-01-01
This review aims to provide a systematical investigation of clinical effectiveness of active training strategies applied in platform-based ankle robots. English-language studies published from Jan 1980 to Aug 2017 were searched from four databases using key words of "Ankle ∗ " AND "Robot ∗ " AND "Effect ∗ OR Improv ∗ OR Increas ∗ ." Following an initial screening, three rounds of discrimination were successively conducted based on the title, the abstract, and the full paper. A total of 21 studies were selected with 311 patients involved; of them, 13 studies applied a single group while another eight studies used different groups for comparison to verify the therapeutic effect. Virtual-reality (VR) game training was applied in 19 studies, while two studies used proprioceptive neuromuscular facilitation (PNF) training. Active training techniques delivered by platform ankle rehabilitation robots have been demonstrated with great potential for clinical applications. Training strategies are mostly combined with one another by considering rehabilitation schemes and motion ability of ankle joints. VR game environment has been commonly used with active ankle training. Bioelectrical signals integrated with VR game training can implement intelligent identification of movement intention and assessment. These further provide the foundation for advanced interactive training strategies that can lead to enhanced training safety and confidence for patients and better treatment efficacy.
The evolving application of single-port robotic surgery in general surgery.
Qadan, Motaz; Curet, Myriam J; Wren, Sherry M
2014-01-01
Advances in the field of minimally invasive surgery have grown since the original advent of conventional multiport laparoscopic surgery. The recent development of single incision laparoscopic surgery remains a relatively novel technique, and has had mixed reviews as to whether it has been associated with lower pain scores, shorter hospital stays, and higher satisfaction levels among patients undergoing procedures through cosmetically-appeasing single incisions. However, due to technical difficulties that arise from the clustering of laparoscopic instruments through a confined working space, such as loss of instrument triangulation, poor surgical exposure, and instrument clashing, uptake by surgeons without a specific interest and expertise in cutting-edge minimally invasive approaches has been limited. The parallel use of robotic surgery with single-port platforms, however, appears to counteract technical issues associated with single incision laparoscopic surgery through significant ergonomic improvements, including enhanced instrument triangulation, organ retraction, and camera localization within the surgical field. By combining the use of the robot with the single incision platform, the recognized challenges of single incision laparoscopic surgery are simplified, while maintaining potential advantages of the single-incision minimally invasive approach. This review provides a comprehensive report of the evolving application single-port robotic surgery in the field of general surgery today. © 2013 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
Computer based guidance in the modern operating room: a historical perspective.
Bova, Frank
2010-01-01
The past few decades have seen the introduction of many different and innovative approaches aimed at enhancing surgical technique. As microprocessors have decreased in size and increased in processing power, more sophisticated systems have been developed. Some systems have attempted to provide enhanced instrument control while others have attempted to provide tools for surgical guidance. These systems include robotics, image enhancements, and frame-based and frameless guidance procedures. In almost every case the system's design goals were achieved and surgical outcomes were enhanced, yet a vast majority of today's surgical procedures are conducted without the aid of these advances. As new tools are developed and existing tools refined, special attention to the systems interface and integration into the operating room environment will be required before increased utilization of these technologies can be realized.
Huang, Yu-Min; Huang, Yan Jiun; Wei, Po-Li
2017-01-01
Abstract Randomized controlled trials have demonstrated that laparoscopic surgery for rectal cancer is safe and can accelerate recovery without compromising oncological outcomes. However, such a surgery is technically demanding, limiting its application in nonspecialized centers. The operational features of a robotic system may facilitate overcoming this limitation. Studies have reported the potential advantages of robotic surgery. However, only a few of them have featured the application of this surgery in patients with advanced rectal cancer undergoing neoadjuvant chemoradiation therapy (nCRT). From January 2012 to April 2015, after undergoing nCRT, 40 patients with mid or low rectal cancer were operated using the robotic approach at our institution. Another 38 patients who were operated using the conventional laparoscopic approach were matched to patients in the robotic group by sex, age, the body mass index, and procedure. All operations were performed by a single surgical team. The clinicopathological characteristics and short-term outcomes of these patients were compared. To assess the effect of the learning curve on the outcomes, patients in the robotic group were further subdivided into 2 groups according to the sequential order of their procedures, with an equal number of patients in each group. Their outcome measures were compared. The robotic and laparoscopic groups were comparable with regard to pretreatment characteristics, rectal resection type, and pathological examination result. After undergoing nCRT, more patients in the robotic group exhibited clinically advanced diseases. The complication rate was similar between the 2 groups. The operation time and the time to the resumption of a soft diet were significantly prolonged in the robotic group. Further analysis revealed that the difference was mainly observed in the first robotic group. No significant difference was observed between the second robotic and laparoscopic groups. Although the robotic approach may offer potential advantages for rectal surgery, comparable short-term outcomes may be achieved when laparoscopic surgery is performed by experienced surgeons. However, our results suggested a shorter learning curve for robotic surgery for rectal cancer, even in patients who exhibited more advanced disease after undergoing nCRT. PMID:28984767
Space station automation: the role of robotics and artificial intelligence (Invited Paper)
NASA Astrophysics Data System (ADS)
Park, W. T.; Firschein, O.
1985-12-01
Automation of the space station is necessary to make more effective use of the crew, to carry out repairs that are impractical or dangerous, and to monitor and control the many space station subsystems. Intelligent robotics and expert systems play a strong role in automation, and both disciplines are highly dependent on a common artificial intelligence (Al) technology base. The AI technology base provides the reasoning and planning capabilities needed in robotic tasks, such as perception of the environment and planning a path to a goal, and in expert systems tasks, such as control of subsystems and maintenance of equipment. This paper describes automation concepts for the space station, the specific robotic and expert systems required to attain this automation, and the research and development required. It also presents an evolutionary development plan that leads to fully automatic mobile robots for servicing satellites. Finally, we indicate the sequence of demonstrations and the research and development needed to confirm the automation capabilities. We emphasize that advanced robotics requires AI, and that to advance, AI needs the "real-world" problems provided by robotics.
Swerdlow, Daniel R; Cleary, Kevin; Wilson, Emmanuel; Azizi-Koutenaei, Bamshad; Monfaredi, Reza
2017-04-01
Ultrasound imaging requires trained personnel. Advances in robotics and data transmission create the possibility of telesonography. This review introduces clinicians to current technical work in and potential applications of this developing capability. Telesonography offers advantages in hazardous or remote environments. Robotically assisted ultrasound can reduce stress injuries in sonographers and has potential utility during robotic surgery and interventional procedures.
Machine intelligence and robotics: Report of the NASA study group
NASA Technical Reports Server (NTRS)
1980-01-01
Opportunities for the application of machine intelligence and robotics in NASA missions and systems were identified. The benefits of successful adoption of machine intelligence and robotics techniques were estimated and forecasts were prepared to show their growth potential. Program options for research, advanced development, and implementation of machine intelligence and robot technology for use in program planning are presented.
Space Station as a vital focus for advancing the technologies of automation and robotics
NASA Technical Reports Server (NTRS)
Varsi, G.; Herman, D. H.
1986-01-01
The application of robotics and automation technologies to the Space Station design is examined. Experiments being conducted in the fields of autonomy and robotics, and the benefits provided by these technologies are discussed. The use of automation and robotics in the operation management, the power system, and telerobot of the Space Station is described.
Three upper limb robotic devices for stroke rehabilitation: a review and clinical perspective.
Bishop, Lauri; Stein, Joel
2013-01-01
Stroke is a leading cause of disability worldwide. Many survivors of stroke remain with residual disabilities, even years later. Advances in technology have led to the development of a variety of robotic devices for use in rehabilitation. The integration of robotics in the delivery of neurorehabilitation is promising, but still not widely used in clinical settings. The aim of this review is to discuss the general design of three typical upper limb robotic devices, and examine the practical considerations for their use in a clinical environment. Each device is described, the available clinical literature is reviewed and a clinical perspective is given on the usefulness of these robotic devices in rehabilitation of this population. Current literature supports the use of robotics in the clinical environment. However, claims that robotic therapy is more effective than traditional treatment is not substantially supported. The majority of clinical trials reported are small, and lack the use of a control group for comparison treatment. The use of robotics in stroke rehabilitation is still a relatively new treatment platform, and still evolving. As technological advances are made, there is much potential for growth in this field.
Single actuator wave-like robot (SAW): design, modeling, and experiments.
Zarrouk, David; Mann, Moshe; Degani, Nir; Yehuda, Tal; Jarbi, Nissan; Hess, Amotz
2016-07-01
In this paper, we present a single actuator wave-like robot, a novel bioinspired robot which can move forward or backward by producing a continuously advancing wave. The robot has a unique minimalistic mechanical design and produces an advancing sine wave, with a large amplitude, using only a single motor but with no internal straight spine. Over horizontal surfaces, the robot does not slide relative to the surface and its direction of locomotion is determined by the direction of rotation of the motor. We developed a kinematic model of the robot that accounts for the two-dimensional mechanics of motion and yields the speed of the links relative to the motor. Based on the optimization of the kinematic model, and accounting for the mechanical constraints, we have designed and built multiple versions of the robot with different sizes and experimentally tested them (see movie). The experimental results were within a few percentages of the expectations. The larger version attained a top speed of 57 cm s(-1) over a horizontal surface and is capable of climbing vertically when placed between two walls. By optimizing the parameters, we succeeded in making the robot travel by 13% faster than its own wave speed.
Motivating Students with Robotics
ERIC Educational Resources Information Center
Brand, Brenda; Collver, Michael; Kasarda, Mary
2008-01-01
In recent years, the need to advance the number of individuals pursuing science, technology, engineering, and mathematics fields has gained much attention. The Montgomery County/Virginia Tech Robotics Collaborative (MCVTRC), a yearlong high school robotics program housed in an educational shop facility in Montgomery County, Virginia, seeks to…
NASA Technical Reports Server (NTRS)
Chen, Alexander Y.
1990-01-01
Scientific research associates advanced robotic system (SRAARS) is an intelligent robotic system which has autonomous learning capability in geometric reasoning. The system is equipped with one global intelligence center (GIC) and eight local intelligence centers (LICs). It controls mainly sixteen links with fourteen active joints, which constitute two articulated arms, an extensible lower body, a vision system with two CCD cameras and a mobile base. The on-board knowledge-based system supports the learning controller with model representations of both the robot and the working environment. By consecutive verifying and planning procedures, hypothesis-and-test routines and learning-by-analogy paradigm, the system would autonomously build up its own understanding of the relationship between itself (i.e., the robot) and the focused environment for the purposes of collision avoidance, motion analysis and object manipulation. The intelligence of SRAARS presents a valuable technical advantage to implement robotic systems for space exploration and space station operations.
Lindsay, Sally; Hounsell, Kara Grace
2017-10-01
Youth with disabilities are under-represented in science, technology, engineering, and math (STEM) in school and in the workforce. One encouraging approach to engage youth's interest in STEM is through robotics; however, such programs are mostly for typically developing youth. The purpose of this study was to understand the development and implementation of an adapted robotics program for children and youth with disabilities and their experiences within it. Our mixed methods pilot study (pre- and post-workshop surveys, observations, and interviews) involved 41 participants including: 18 youth (aged 6-13), 12 parents and 11 key informants. The robotics program involved 6, two-hour workshops held at a paediatric hospital. Our findings showed that several adaptations made to the robotics program helped to enhance the participation of children with disabilities. Adaptations addressed the educational/curriculum, cognitive and learning, physical and social needs of the children. In regards to experiences within the adapted hospital program, our findings highlight that children enjoyed the program and learned about computer programming and building robots. Clinicians and educators should consider engaging youth with disabilities in robotics to enhance learning and interest in STEM. Implications for Rehabilitation Clinicians and educators should consider adapting curriculum content and mode of delivery of LEGO ® robotics programs to include youth with disabilities. Appropriate staffing including clinicians and educators who are knowledgeable about youth with disabilities and LEGO ® robotics are needed. Clinicians should consider engaging youth with disabilities in LEGO ® to enhance learning and interest in STEM.
Integration of advanced teleoperation technologies for control of space robots
NASA Technical Reports Server (NTRS)
Stagnaro, Michael J.
1993-01-01
Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.
NASA Technical Reports Server (NTRS)
Pedersen, L.; Kortenkamp, D.; Wettergreen, D.; Nourbakhsh, I.; Korsmeyer, David (Technical Monitor)
2003-01-01
In this paper we summarize a survey conducted by NASA to determine the state-of-the-art in space robotics and to predict future robotic capabilities under either nominal and intensive development effort. The space robotics assessment study examined both in-space operations including assembly, inspection, and maintenance and planetary surface operations like mobility and exploration. Applications of robotic autonomy and human-robot cooperation were considered. The study group devised a decomposition of robotic capabilities and then suggested metrics to specify the technical challenges associated with each. The conclusion of this paper identifies possible areas in which investment in space robotics could lead to significant advances of important technologies.
Robotic Surgical Training in an Academic Institution
Chitwood, W. Randolph; Nifong, L. Wiley; Chapman, William H. H.; Felger, Jason E.; Bailey, B. Marcus; Ballint, Tara; Mendleson, Kim G.; Kim, Victor B.; Young, James A.; Albrecht, Robert A.
2001-01-01
Objective To detail robotic procedure development and clinical applications for mitral valve, biliary, and gastric reflux operations, and to implement a multispecialty robotic surgery training curriculum for both surgeons and surgical teams. Summary Background Data Remote, accurate telemanipulation of intracavitary instruments by general and cardiac surgeons is now possible. Complex technologic advancements in surgical robotics require well-designed training programs. Moreover, efficient robotic surgical procedures must be developed methodically and safely implemented clinically. Methods Advanced training on robotic systems provides surgeon confidence when operating in tiny intracavitary spaces. Three-dimensional vision and articulated instrument control are essential. The authors’ two da Vinci robotic systems have been dedicated to procedure development, clinical surgery, and training of surgical specialists. Their center has been the first United States site to train surgeons formally in clinical robotics. Results Established surgeons and residents have been trained using a defined robotic surgical educational curriculum. Also, 30 multispecialty teams have been trained in robotic mechanics and electronics. Initially, robotic procedures were developed experimentally and are described. In the past year the authors have performed 52 robotic-assisted clinical operations: 18 mitral valve repairs, 20 cholecystectomies, and 14 Nissen fundoplications. These respective operations required 108, 28, and 73 minutes of robotic telemanipulation to complete. Procedure times for the last half of the abdominal operations decreased significantly, as did the knot-tying time in mitral operations. There have been no deaths and few complications. One mitral patient had postoperative bleeding. Conclusion Robotic surgery can be performed safely with excellent results. The authors have developed an effective curriculum for training teams in robotic surgery. After training, surgeons have applied these methods effectively and safely. PMID:11573041
Stoianovici, D
2000-09-01
The industrial revolution demonstrated the capability of robotic systems to facilitate and improve manufacturing. As a result, robotics extended to various other domains, including the delivery of health care. Hence, robots have been developed to assist hospital staff, to facilitate laboratory analyses, to augment patient rehabilitation, and even to advance surgical performance. As robotics lead usefulness and gain wider acceptance among the surgical community, the urologist should become familiar with this new interdisciplinary field and its "URobotics" subset: robotics applied to urology. This article reviews the current applications and experience, issues and debates in surgical robotics, and highlights future directions in the field.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
2017-01-01
Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, planetary spacecraft, and astronomy, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions are presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Saturn moon exploration with chemical propulsion and nuclear electric propulsion options are discussed. Issues with using in-situ resource utilization on Mercury missions are discussed. At Saturn, the best locations for exploration and the use of the moons Titan and Enceladus as central locations for Saturn moon exploration is assessed.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2016-01-01
Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed. In-situ resource utilization was found to be critical in making Mercury missions more amenable for human visits. At Saturn, refueling using local atmospheric mining was found to be difficult to impractical, while refueling the Saturn missions from Uranus was more practical and less complex.
2016-01-01
satisfying journeys in my life. I would like to thank Ryan for his guidance through the truly exciting world of mobile robotics and robotic perception. Thank...Multi-session and Multi-robot SLAM . . . . . . . . . . . . . . . 15 1.3.3 Robust Techniques for SLAM Backends . . . . . . . . . . . . . . 18 1.4 A...sonar. xv CHAPTER 1 Introduction 1.1 The Importance of SLAM in Autonomous Robotics Autonomous mobile robots are becoming a promising aid in a wide
NASA Astrophysics Data System (ADS)
Kaplan, M.; Tadros, A.
2017-02-01
Obtaining answers to questions posed by planetary scientists over the next several decades will require the ability to travel further while exploring and gathering data in more remote locations of our solar system. Timely investments need to be made in developing and demonstrating solar electric propulsion and advanced space robotics technologies.
Boninger, Michael L; Wechsler, Lawrence R; Stein, Joel
2014-11-01
The aim of this study was to describe the current state and latest advances in robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery for stroke. The authors of this summary recently reviewed this work as part of a national presentation. The article represents the information included in each area. Each area has seen great advances and challenges as products move to market and experiments are ongoing. Robotics, stem cells, and brain-computer interfaces all have tremendous potential to reduce disability and lead to better outcomes for patients with stroke. Continued research and investment will be needed as the field moves forward. With this investment, the potential for recovery of function is likely substantial.
Autonomous space processor for orbital debris
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar; Campbell, David; Marine, Micky; Saad, Mohamad; Bertles, Daniel; Nichols, Dave
1990-01-01
Advanced designs are being continued to develop the ultimate goal of a GETAWAY special to demonstrate economical removal of orbital debris utilizing local resources in orbit. The fundamental technical feasibility was demonstrated in 1988 through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design and a subcase model. Last year improvements were made to the solar cutter and the robotic arm. Also performed last year was a mission analysis which showed the feasibility of retrieve at least four large (greater than 1500 kg) pieces of debris. Advances made during this reporting period are the incorporation of digital control with the existing placement arm, the development of a new robotic manipulator arm, and the study of debris spin attenuation. These advances are discussed.
Boninger, Michael L; Wechsler, Lawrence R.; Stein, Joel
2014-01-01
Objective To describe the current state and latest advances in robotics, stem cells, and brain computer interfaces in rehabilitation and recovery for stroke. Design The authors of this summary recently reviewed this work as part of a national presentation. The paper represents the information included in each area. Results Each area has seen great advances and challenges as products move to market and experiments are ongoing. Conclusion Robotics, stem cells, and brain computer interfaces all have tremendous potential to reduce disability and lead to better outcomes for patients with stroke. Continued research and investment will be needed as the field moves forward. With this investment, the potential for recovery of function is likely substantial PMID:25313662
Environments for online maritime simulators with cloud computing capabilities
NASA Astrophysics Data System (ADS)
Raicu, Gabriel; Raicu, Alexandra
2016-12-01
This paper presents the cloud computing environments, network principles and methods for graphical development in realistic naval simulation, naval robotics and virtual interactions. The aim of this approach is to achieve a good simulation quality in large networked environments using open source solutions designed for educational purposes. Realistic rendering of maritime environments requires near real-time frameworks with enhanced computing capabilities during distance interactions. E-Navigation concepts coupled with the last achievements in virtual and augmented reality will enhance the overall experience leading to new developments and innovations. We have to deal with a multiprocessing situation using advanced technologies and distributed applications using remote ship scenario and automation of ship operations.
Application of ant colony algorithm in path planning of the data center room robot
NASA Astrophysics Data System (ADS)
Wang, Yong; Ma, Jianming; Wang, Ying
2017-05-01
According to the Internet Data Center (IDC) room patrol robot as the background, the robot in the search path of autonomous obstacle avoidance and path planning ability, worked out in advance of the robot room patrol mission. The simulation experimental results show that the improved ant colony algorithm for IDC room patrol robot obstacle avoidance planning, makes the robot along an optimal or suboptimal and safe obstacle avoidance path to reach the target point to complete the task. To prove the feasibility of the method.
Wiener, Scott; Haddock, Peter; Shichman, Steven; Dorin, Ryan
2015-11-01
To define the time needed by urology residents to attain proficiency in computer-aided robotic surgery to aid in the refinement of a robotic surgery simulation curriculum. We undertook a retrospective review of robotic skills training data acquired during January 2012 to December 2014 from junior (postgraduate year [PGY] 2-3) and senior (PGY4-5) urology residents using the da Vinci Skills Simulator. We determined the number of training sessions attended and the level of proficiency achieved by junior and senior residents in attempting 11 basic or 6 advanced tasks, respectively. Junior residents successfully completed 9.9 ± 1.8 tasks, with 62.5% completing all 11 basic tasks. The maximal cumulative success rate of junior residents completing basic tasks was 89.8%, which was achieved within 7.0 ± 1.5 hours of training. Of senior residents, 75% successfully completed all six advanced tasks. Senior residents attended 6.3 ± 3.5 hours of training during which 5.1 ± 1.6 tasks were completed. The maximal cumulative success rate of senior residents completing advanced tasks was 85.4%. When designing and implementing an effective robotic surgical training curriculum, an allocation of 10 hours of training may be optimal to allow junior and senior residents to achieve an acceptable level of surgical proficiency in basic and advanced robotic surgical skills, respectively. These data help guide the design and scheduling of a residents training curriculum within the time constraints of a resident's workload.
2016-06-14
Nature is a major source of inspiration for robotics and aerospace engineering, giving rise to biologically inspired structures. Tensegrity robots mimic a structure similar to muscles and bones to produce a robust three-dimensional skeletal structure that is able to adapt. Vytas SunSpiral will present his work on biologically inspired robotics for advancing NASA space exploration missions.
ERIC Educational Resources Information Center
Arita, A.; Hiraki, K.; Kanda, T.; Ishiguro, H.
2005-01-01
As technology advances, many human-like robots are being developed. Although these humanoid robots should be classified as objects, they share many properties with human beings. This raises the question of how infants classify them. Based on the looking-time paradigm used by [Legerstee, M., Barna, J., & DiAdamo, C., (2000). Precursors to the…
A multimodal interface for real-time soldier-robot teaming
NASA Astrophysics Data System (ADS)
Barber, Daniel J.; Howard, Thomas M.; Walter, Matthew R.
2016-05-01
Recent research and advances in robotics have led to the development of novel platforms leveraging new sensing capabilities for semantic navigation. As these systems becoming increasingly more robust, they support highly complex commands beyond direct teleoperation and waypoint finding facilitating a transition away from robots as tools to robots as teammates. Supporting future Soldier-Robot teaming requires communication capabilities on par with human-human teams for successful integration of robots. Therefore, as robots increase in functionality, it is equally important that the interface between the Soldier and robot advances as well. Multimodal communication (MMC) enables human-robot teaming through redundancy and levels of communications more robust than single mode interaction. Commercial-off-the-shelf (COTS) technologies released in recent years for smart-phones and gaming provide tools for the creation of portable interfaces incorporating MMC through the use of speech, gestures, and visual displays. However, for multimodal interfaces to be successfully used in the military domain, they must be able to classify speech, gestures, and process natural language in real-time with high accuracy. For the present study, a prototype multimodal interface supporting real-time interactions with an autonomous robot was developed. This device integrated COTS Automated Speech Recognition (ASR), a custom gesture recognition glove, and natural language understanding on a tablet. This paper presents performance results (e.g. response times, accuracy) of the integrated device when commanding an autonomous robot to perform reconnaissance and surveillance activities in an unknown outdoor environment.
Simulation and control for telerobots in space medicine
NASA Astrophysics Data System (ADS)
Haidegger, Tamás; Kovács, Levente; Precup, Radu-Emil; Benyó, Balázs; Benyó, Zoltán; Preitl, Stefan
2012-12-01
Human space exploration is continuously advancing despite the current financial difficulties, and the new missions are targeting the Moon and the Mars with more effective human-robot collaborative systems. The continuous development of robotic technology should lead to the advancement of automated technology, including space medicine. Telesurgery has already proved its effectiveness through various telemedicine procedures on Earth, and it has the potential to provide medical assistance in space as well. Aeronautical agencies have already conducted numerous experiments and developed various setups to push the boundaries of teleoperation under extreme conditions. Different control schemes have been proposed and tested to facilitate and enhance telepresence and to ensure transparency, sufficient bandwidth and latency-tolerance. This paper focuses on the modeling of a generic telesurgery setup, supported by a cascade control approach. The minimalistic models were tested with linear and PID-fuzzy control options to provide a simple, universal and scalable solution for the challenges of telesurgery over large distances. In our simulations, the control structures were capable of providing good dynamic performance indices and robustness with respect to the gain in the human operator model. This is a promising result towards the support of future teleoperational missions.
The Interdependence of Computers, Robots, and People.
ERIC Educational Resources Information Center
Ludden, Laverne; And Others
Computers and robots are becoming increasingly more advanced, with smaller and cheaper computers now doing jobs once reserved for huge multimillion dollar computers and with robots performing feats such as painting cars and using television cameras to simulate vision as they perform factory tasks. Technicians expect computers to become even more…
Automation and robotics for the Space Station - An ATAC perspective
NASA Technical Reports Server (NTRS)
Nunamaker, Robert R.
1989-01-01
The study of automation and robotics for the Space Station by the Advanced Technology Advisory Committee is surveyed. The formation of the committee and the methodology for the Space Station automation study are discussed. The committee's recommendations for automation and robotics research and development are listed.
Robotic technology evolution and transfer
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.
1992-01-01
A report concerning technology transfer in the area of robotics is presented in vugraph form. The following topics are discussed: definition of technology innovation and tech-transfer; concepts relevant for understanding tech-transfer; models advanced to portray tech-transfer process; factors identified as promoting tech-transfer; factors identified as impeding tech-transfer; what important roles do individuals fulfill in tech-transfer; federal infrastructure for promoting tech-transfer; federal infrastructure for promoting tech-transfer; robotic technology evolution; robotic technology transferred; and recommendations for successful robotics tech-transfer.
The effect of collision avoidance for autonomous robot team formation
NASA Astrophysics Data System (ADS)
Seidman, Mark H.; Yang, Shanchieh J.
2007-04-01
As technology and research advance to the era of cooperative robots, many autonomous robot team algorithms have emerged. Shape formation is a common and critical task in many cooperative robot applications. While theoretical studies of robot team formation have shown success, it is unclear whether such algorithms will perform well in a real-world environment. This work examines the effect of collision avoidance schemes on an ideal circle formation algorithm, but behaves similarly if robot-to-robot communications are in place. Our findings reveal that robots with basic collision avoidance capabilities are still able to form into a circle, under most conditions. Moreover, the robot sizes, sensing ranges, and other critical physical parameters are examined to determine their effects on algorithm's performance.
In-Space Propulsion Technologies for Robotic Exploration of the Solar System
NASA Technical Reports Server (NTRS)
Johnson, Les; Meyer, Rae Ann; Frame, Kyle
2006-01-01
Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.
Surgical robot setup simulation with consistent kinematics and haptics for abdominal surgery.
Hayashibe, Mitsuhiro; Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Konishi, Kozo; Kakeji, Yoshihiro; Hashizume, Makoto
2005-01-01
Preoperative simulation and planning of surgical robot setup should accompany advanced robotic surgery if their advantages are to be further pursued. Feedback from the planning system will plays an essential role in computer-aided robotic surgery in addition to preoperative detailed geometric information from patient CT/MRI images. Surgical robot setup simulation systems for appropriate trocar site placement have been developed especially for abdominal surgery. The motion of the surgical robot can be simulated and rehearsed with kinematic constraints at the trocar site, and the inverse-kinematics of the robot. Results from simulation using clinical patient data verify the effectiveness of the proposed system.
Effect of Robotics-Enhanced Inquiry-Based Learning in Elementary Science Education in South Korea
ERIC Educational Resources Information Center
Park, Jungho
2015-01-01
Much research has been conducted in educational robotics, a new instructional technology, for K-12 education. However, there are arguments on the effect of robotics and limited empirical evidence to investigate the impact of robotics in science learning. Also most robotics studies were carried in an informal educational setting. This study…
Towards a Standard Mixed-Signal Parallel Processing Architecture for Miniature and Microrobotics.
Sadler, Brian M; Hoyos, Sebastian
2014-01-01
The conventional analog-to-digital conversion (ADC) and digital signal processing (DSP) architecture has led to major advances in miniature and micro-systems technology over the past several decades. The outlook for these systems is significantly enhanced by advances in sensing, signal processing, communications and control, and the combination of these technologies enables autonomous robotics on the miniature to micro scales. In this article we look at trends in the combination of analog and digital (mixed-signal) processing, and consider a generalized sampling architecture. Employing a parallel analog basis expansion of the input signal, this scalable approach is adaptable and reconfigurable, and is suitable for a large variety of current and future applications in networking, perception, cognition, and control.
Towards a Standard Mixed-Signal Parallel Processing Architecture for Miniature and Microrobotics
Sadler, Brian M; Hoyos, Sebastian
2014-01-01
The conventional analog-to-digital conversion (ADC) and digital signal processing (DSP) architecture has led to major advances in miniature and micro-systems technology over the past several decades. The outlook for these systems is significantly enhanced by advances in sensing, signal processing, communications and control, and the combination of these technologies enables autonomous robotics on the miniature to micro scales. In this article we look at trends in the combination of analog and digital (mixed-signal) processing, and consider a generalized sampling architecture. Employing a parallel analog basis expansion of the input signal, this scalable approach is adaptable and reconfigurable, and is suitable for a large variety of current and future applications in networking, perception, cognition, and control. PMID:26601042
Aerospace Communications Technologies in Support of NASA Mission
NASA Technical Reports Server (NTRS)
Miranda, Felix A.
2016-01-01
NASA is endeavoring in expanding communications capabilities to enable and enhance robotic and human exploration of space and to advance aero communications here on Earth. This presentation will discuss some of the research and technology development work being performed at the NASA Glenn Research Center in aerospace communications in support of NASAs mission. An overview of the work conducted in-house and in collaboration with academia, industry, and other government agencies (OGA) to advance radio frequency (RF) and optical communications technologies in the areas of antennas, ultra-sensitive receivers, power amplifiers, among others, will be presented. In addition, the role of these and other related RF and optical communications technologies in enabling the NASA next generation aerospace communications architecture will be also discussed.
Autonomy in Materials Research: A Case Study in Carbon Nanotube Growth (Postprint)
2016-10-21
built an Autonomous Research System (ARES)—an autonomous research robot capable of first-of-its-kind closed-loop iterative materials experimentation...ARES exploits advances in autonomous robotics , artificial intelligence, data sciences, and high-throughput and in situ techniques, and is able to...roles of humans and autonomous research robots , and for human-machine partnering. We believe autonomous research robots like ARES constitute a
Hakim, Renée M; Tunis, Brandon G; Ross, Michael D
2017-11-01
The focus of research using technological innovations such as robotic devices has been on interventions to improve upper extremity function in neurologic populations, particularly patients with stroke. There is a growing body of evidence describing rehabilitation programs using various types of supportive/assistive and/or resistive robotic and virtual reality-enhanced devices to improve outcomes for patients with neurologic disorders. The most promising approaches are task-oriented, based on current concepts of motor control/learning and practice-induced neuroplasticity. Based on this evidence, we describe application and feasibility of virtual reality-enhanced robotics integrated with current concepts in orthopaedic rehabilitation shifting from an impairment-based focus to inclusion of more intense, task-specific training for patients with upper extremity disorders, specifically emphasizing the wrist and hand. The purpose of this paper is to describe virtual reality-enhanced rehabilitation robotic devices, review evidence of application in patients with upper extremity deficits related to neurologic disorders, and suggest how this technology and task-oriented rehabilitation approach can also benefit patients with orthopaedic disorders of the wrist and hand. We will also discuss areas for further research and development using a task-oriented approach and a commercially available haptic robotic device to focus on training of grasp and manipulation tasks. Implications for Rehabilitation There is a growing body of evidence describing rehabilitation programs using various types of supportive/assistive and/or resistive robotic and virtual reality-enhanced devices to improve outcomes for patients with neurologic disorders. The most promising approaches using rehabilitation robotics are task-oriented, based on current concepts of motor control/learning and practice-induced neuroplasticity. Based on the evidence in neurologic populations, virtual reality-enhanced robotics may be integrated with current concepts in orthopaedic rehabilitation shifting from an impairment-based focus to inclusion of more intense, task-specific training for patients with UE disorders, specifically emphasizing the wrist and hand. Clinical application of a task-oriented approach may be accomplished using commercially available haptic robotic device to focus on training of grasp and manipulation tasks.
Brain-machine interfaces for controlling lower-limb powered robotic systems.
He, Yongtian; Eguren, David; Azorín, José M; Grossman, Robert G; Luu, Trieu Phat; Contreras-Vidal, Jose L
2018-04-01
Lower-limb, powered robotics systems such as exoskeletons and orthoses have emerged as novel robotic interventions to assist or rehabilitate people with walking disabilities. These devices are generally controlled by certain physical maneuvers, for example pressing buttons or shifting body weight. Although effective, these control schemes are not what humans naturally use. The usability and clinical relevance of these robotics systems could be further enhanced by brain-machine interfaces (BMIs). A number of preliminary studies have been published on this topic, but a systematic understanding of the experimental design, tasks, and performance of BMI-exoskeleton systems for restoration of gait is lacking. To address this gap, we applied standard systematic review methodology for a literature search in PubMed and EMBASE databases and identified 11 studies involving BMI-robotics systems. The devices, user population, input and output of the BMIs and robot systems respectively, neural features, decoders, denoising techniques, and system performance were reviewed and compared. Results showed BMIs classifying walk versus stand tasks are the most common. The results also indicate that electroencephalography (EEG) is the only recording method for humans. Performance was not clearly presented in most of the studies. Several challenges were summarized, including EEG denoising, safety, responsiveness and others. We conclude that lower-body powered exoskeletons with automated gait intention detection based on BMIs open new possibilities in the assistance and rehabilitation fields, although the current performance, clinical benefits and several key challenging issues indicate that additional research and development is required to deploy these systems in the clinic and at home. Moreover, rigorous EEG denoising techniques, suitable performance metrics, consistent trial reporting, and more clinical trials are needed to advance the field.
Brain-machine interfaces for controlling lower-limb powered robotic systems
NASA Astrophysics Data System (ADS)
He, Yongtian; Eguren, David; Azorín, José M.; Grossman, Robert G.; Phat Luu, Trieu; Contreras-Vidal, Jose L.
2018-04-01
Objective. Lower-limb, powered robotics systems such as exoskeletons and orthoses have emerged as novel robotic interventions to assist or rehabilitate people with walking disabilities. These devices are generally controlled by certain physical maneuvers, for example pressing buttons or shifting body weight. Although effective, these control schemes are not what humans naturally use. The usability and clinical relevance of these robotics systems could be further enhanced by brain-machine interfaces (BMIs). A number of preliminary studies have been published on this topic, but a systematic understanding of the experimental design, tasks, and performance of BMI-exoskeleton systems for restoration of gait is lacking. Approach. To address this gap, we applied standard systematic review methodology for a literature search in PubMed and EMBASE databases and identified 11 studies involving BMI-robotics systems. The devices, user population, input and output of the BMIs and robot systems respectively, neural features, decoders, denoising techniques, and system performance were reviewed and compared. Main results. Results showed BMIs classifying walk versus stand tasks are the most common. The results also indicate that electroencephalography (EEG) is the only recording method for humans. Performance was not clearly presented in most of the studies. Several challenges were summarized, including EEG denoising, safety, responsiveness and others. Significance. We conclude that lower-body powered exoskeletons with automated gait intention detection based on BMIs open new possibilities in the assistance and rehabilitation fields, although the current performance, clinical benefits and several key challenging issues indicate that additional research and development is required to deploy these systems in the clinic and at home. Moreover, rigorous EEG denoising techniques, suitable performance metrics, consistent trial reporting, and more clinical trials are needed to advance the field.
Autonomous space processor for orbital debris
NASA Technical Reports Server (NTRS)
1990-01-01
This work continues to develop advanced designs toward the ultimate goal of a Get Away Special to demonstrate economical removal of orbital debris using local resources in orbit. The fundamental technical feasibility was demonstrated in 1988 through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design, and a subscale model. Last year improvements were made to the solar cutter and the robotic arm. Also performed last year was a mission analysis that showed the feasibility of retrieving at least four large (greater than 1500-kg) pieces of debris. Advances made during this reporting period are the incorporation of digital control with the existing placement arm, the development of a new robotic manipulator arm, and the study of debris spin attenuation. These advances are discussed here.
... to improve mobility a ventilator to support breathing robotics to help perform routine daily tasks Physical Therapy ... to meet their needs as muscle deterioration advances. Robotic technologies also are under development to help kids ...
Envisioning Cognitive Robots for Future Space Exploration
NASA Technical Reports Server (NTRS)
Huntsberger, Terry; Stoica, Adrian
2010-01-01
Cognitive robots in the context of space exploration are envisioned with advanced capabilities of model building, continuous planning/re-planning, self-diagnosis, as well as the ability to exhibit a level of 'understanding' of new situations. An overview of some JPL components (e.g. CASPER, CAMPOUT) and a description of the architecture CARACaS (Control Architecture for Robotic Agent Command and Sensing) that combines these in the context of a cognitive robotic system operating in a various scenarios are presented. Finally, two examples of typical scenarios of a multi-robot construction mission and a human-robot mission, involving direct collaboration with humans is given.
... the use of leading-edge technology such as robotics, tissue engineering, and nanotechnology to design and build ... advantage of the latest advances in computer and robotics technology. www.research.va.gov 23 va research ...
Evolving technologies in robotic surgery for minimally invasive treatment of gynecologic cancers.
Levinson, Kimberly L; Auer, Melinda; Escobar, Pedro F
2013-09-01
Since the introduction of robotic technology, there have been significant changes to the field of gynecologic oncology. The number of minimally invasive procedures has drastically increased, with robotic procedures rising remarkably. With recent evidence suggesting that minimally invasive techniques should be the standard of care for early endometrial and cervical cancers, the push for new technology and advancements has continued. Several emerging robotic technologies have significant potential in the field of gynecologic oncology. The single-site robotic platform enables robotic surgery through a single incision; the Firefly camera detects the fluorescent dye indocyanine green, which may improve sensitivity in sentinel lymph node biopsy; and a robotic vessel-sealing device and stapler will continue to improve efficiency of the robotic surgeon.
2011-10-01
performance metrics; and development of Robotic OR Team training including crisis management. Q3: During the third quarter of this project, the...literature review for robot-assisted surgical skill training/performance metrics; development of Robotic OR Team training materials including crisis ... crisis management situations. Q2: Contract negotiations for the purchase of the da Vinci Skills Simulator are completed and we anticipate the
Augmented Robotics Dialog System for Enhancing Human–Robot Interaction
Alonso-Martín, Fernando; Castro-González, Aívaro; de Gorostiza Luengo, Francisco Javier Fernandez; Salichs, Miguel Ángel
2015-01-01
Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human–robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human–robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications. PMID:26151202
Augmented Robotics Dialog System for Enhancing Human-Robot Interaction.
Alonso-Martín, Fernando; Castro-González, Aĺvaro; Luengo, Francisco Javier Fernandez de Gorostiza; Salichs, Miguel Ángel
2015-07-03
Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human-robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human-robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications.
NASA Technical Reports Server (NTRS)
Weeks, David J.; Zimmerman, Wayne F.; Swietek, Gregory E.; Reid, David H.; Hoffman, Ronald B.; Stammerjohn, Lambert W., Jr.; Stoney, William; Ghovanlou, Ali H.
1990-01-01
This report presents the results of a study performed in support of the Space Station Freedom Advanced Development Program, under the sponsorship of the Space Station Engineering (Code MT), Office of Space Flight. The study consisted of the collection, compilation, and analysis of lessons learned, crew time requirements, and other factors influencing the application of advanced automation and robotics, with emphasis on potential improvements in productivity. The lessons learned data collected were based primarily on Skylab, Spacelab, and other Space Shuttle experiences, consisting principally of interviews with current and former crew members and other NASA personnel with relevant experience. The objectives of this report are to present a summary of this data and its analysis, and to present conclusions regarding promising areas for the application of advanced automation and robotics technology to the Space Station Freedom and the potential benefits in terms of increased productivity. In this study, primary emphasis was placed on advanced automation technology because of its fairly extensive utilization within private industry including the aerospace sector. In contrast, other than the Remote Manipulator System (RMS), there has been relatively limited experience with advanced robotics technology applicable to the Space Station. This report should be used as a guide and is not intended to be used as a substitute for official Astronaut Office crew positions on specific issues.
Soft Robotics: New Perspectives for Robot Bodyware and Control
Laschi, Cecilia; Cianchetti, Matteo
2014-01-01
The remarkable advances of robotics in the last 50 years, which represent an incredible wealth of knowledge, are based on the fundamental assumption that robots are chains of rigid links. The use of soft materials in robotics, driven not only by new scientific paradigms (biomimetics, morphological computation, and others), but also by many applications (biomedical, service, rescue robots, and many more), is going to overcome these basic assumptions and makes the well-known theories and techniques poorly applicable, opening new perspectives for robot design and control. The current examples of soft robots represent a variety of solutions for actuation and control. Though very first steps, they have the potential for a radical technological change. Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in our natural environments. PMID:25022259
Experiments in autonomous robotics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamel, W.R.
1987-01-01
The Center for Engineering Systems Advanced Research (CESAR) is performing basic research in autonomous robotics for energy-related applications in hazardous environments. The CESAR research agenda includes a strong experimental component to assure practical evaluation of new concepts and theories. An evolutionary sequence of mobile research robots has been planned to support research in robot navigation, world sensing, and object manipulation. A number of experiments have been performed in studying robot navigation and path planning with planar sonar sensing. Future experiments will address more complex tasks involving three-dimensional sensing, dexterous manipulation, and human-scale operations.
Automation and robotics for the Space Exploration Initiative: Results from Project Outreach
NASA Technical Reports Server (NTRS)
Gonzales, D.; Criswell, D.; Heer, E.
1991-01-01
A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested.
Robotics crosscutting program: Technology summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Office of Environmental Management (EM) is responsible for cleaning up the legacy of radioactive and chemically hazardous waste at contaminated sites and facilities throughout the U.S. Department of Energy (DOE) nuclear weapons complex, preventing further environmental contamination, and instituting responsible environmental management. Initial efforts to achieve this mission resulted in the establishment of environmental restoration and waste management programs. However, as EM began to execute its responsibilities, decision makers became aware that the complexity and magnitude of this mission could not be achieved efficiently, affordably, safely, or reasonably with existing technology. Once the need for advanced cleanup technologies becamemore » evident, EM established an aggressive, innovative program of applied research and technology development. The Office of Technology Development (OTD) was established in November 1989 to advance new and improved environmental restoration and waste management technologies that would reduce risks to workers, the public, and the environment; reduce cleanup costs; and devise methods to correct cleanup problems that currently have no solutions. In 1996, OTD added two new responsibilities - management of a Congressionally mandated environmental science program and development of risk policy, requirements, and guidance. OTD was renamed the Office of Science and Technology (OST). This documents presents information concerning robotics tank waste retrieval overview, robotic chemical analysis automation, robotics decontamination and dismantlement, and robotics crosscutting and advanced technology.« less
Advanced computer graphic techniques for laser range finder (LRF) simulation
NASA Astrophysics Data System (ADS)
Bedkowski, Janusz; Jankowski, Stanislaw
2008-11-01
This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.
New developments in stroke rehabilitation.
Rocksmith, Eugenio R; Reding, Michael J
2002-07-01
There is increasing evidence that environmental and neuropharmacologic treatments enhance stroke recovery. Functional magnetic resonance imaging and transcranial magnetic stimulation have significantly broadened our understanding of the neuroanatomic relationships involved in recovery from brain injury due to stroke. These tools have also demonstrated the role for pharmacologic enhancement of cortical plasticity coupled with behavioral interventions. Robot-assisted therapy and partial body weight-supported treadmill gait training have demonstrated the role for technologic intervention in the modern neuro-rehabilitation setting. Current research using hemi-field ocular prisms and patching techniques suggest a role in the rehabilitation of hemianopsia and visual neglect. Finally, many advances have been made in the understanding of common stroke complications, such as depression, dysphagia, venous thromboembolic disease, incontinence, and spasticity.
Passive Maple-Seed Robotic Fliers for Education, Research and Entrepreneurship
ERIC Educational Resources Information Center
Aslam, D. M.; Abu-Ageel, A.; Alfatlawi, M.; Varney, M. W.; Thompson, C. M.; Aslam, S. K.
2014-01-01
As inspirations from flora and fauna have led to many advances in modern technology, the concept of drawing ideas from nature for design should be reflected in engineering education. This paper focuses on a maple-seed robotic flier (MRF) with various complexities, a robotic platform modeled after the samaras of maple or ash trees, to teach STEM…
Referral of sensation to an advanced humanoid robotic hand prosthesis.
Rosén, Birgitta; Ehrsson, H Henrik; Antfolk, Christian; Cipriani, Christian; Sebelius, Fredrik; Lundborg, Göran
2009-01-01
Hand prostheses that are currently available on the market are used by amputees to only a limited extent, partly because of lack of sensory feedback from the artificial hand. We report a pilot study that showed how amputees can experience a robot-like advanced hand prosthesis as part of their own body. We induced a perceptual illusion by which touch applied to the stump of the arm was experienced from the artificial hand. This illusion was elicited by applying synchronous tactile stimulation to the hidden amputation stump and the robotic hand prosthesis in full view. In five people who had had upper limb amputations this stimulation caused referral touch sensation from the stump to the artificial hand, and the prosthesis was experienced more like a real hand. We also showed that this illusion can work when the amputee controls the movements of the artificial hand by recordings of the arm muscle activity with electromyograms. These observations indicate that the previously described "rubber hand illusion" is also valid for an advanced hand prosthesis, even when it has a robotic-like appearance.
The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering
NASA Technical Reports Server (NTRS)
Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen
2006-01-01
This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.
Automatic Operation For A Robot Lawn Mower
NASA Astrophysics Data System (ADS)
Huang, Y. Y.; Cao, Z. L.; Oh, S. J.; Kattan, E. U.; Hall, E. L.
1987-02-01
A domestic mobile robot, lawn mower, which performs the automatic operation mode, has been built up in the Center of Robotics Research, University of Cincinnati. The robot lawn mower automatically completes its work with the region filling operation, a new kind of path planning for mobile robots. Some strategies for region filling of path planning have been developed for a partly-known or a unknown environment. Also, an advanced omnidirectional navigation system and a multisensor-based control system are used in the automatic operation. Research on the robot lawn mower, especially on the region filling of path planning, is significant in industrial and agricultural applications.
NASA Technical Reports Server (NTRS)
1987-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fifth in a series of progress updates and covers the period between 16 May 1987 and 30 September 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the mandate of Congress is that an advanced automation and robotics technology be built to support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy.
Physical and digital simulations for IVA robotics
NASA Technical Reports Server (NTRS)
Hinman, Elaine; Workman, Gary L.
1992-01-01
Space based materials processing experiments can be enhanced through the use of IVA robotic systems. A program to determine requirements for the implementation of robotic systems in a microgravity environment and to develop some preliminary concepts for acceleration control of small, lightweight arms has been initiated with the development of physical and digital simulation capabilities. The physical simulation facilities incorporate a robotic workcell containing a Zymark Zymate II robot instrumented for acceleration measurements, which is able to perform materials transfer functions while flying on NASA's KC-135 aircraft during parabolic manuevers to simulate reduced gravity. Measurements of accelerations occurring during the reduced gravity periods will be used to characterize impacts of robotic accelerations in a microgravity environment in space. Digital simulations are being performed with TREETOPS, a NASA developed software package which is used for the dynamic analysis of systems with a tree topology. Extensive use of both simulation tools will enable the design of robotic systems with enhanced acceleration control for use in the space manufacturing environment.
An intelligent robotic aid system for human services
NASA Technical Reports Server (NTRS)
Kawamura, K.; Bagchi, S.; Iskarous, M.; Pack, R. T.; Saad, A.
1994-01-01
The long term goal of our research at the Intelligent Robotic Laboratory at Vanderbilt University is to develop advanced intelligent robotic aid systems for human services. As a first step toward our goal, the current thrusts of our R&D are centered on the development of an intelligent robotic aid called the ISAC (Intelligent Soft Arm Control). In this paper, we describe the overall system architecture and current activities in intelligent control, adaptive/interactive control and task learning.
NASA Technical Reports Server (NTRS)
Matijevic, Jacob R.; Zimmerman, Wayne F.; Dolinsky, Shlomo
1990-01-01
Assembly of electromechanical and electronic equipment (including computers) constitutes test bed for development of advanced robotic systems for remote manipulation. Combines features not found in commercial systems. Its architecture allows easy growth in complexity and level of automation. System national resource for validation of new telerobotic technology. Intended primarily for robots used in outer space, test bed adapted to development of advanced terrestrial telerobotic systems for handling radioactive materials, dangerous chemicals, and explosives.
Overview and Updated Status of the Asteroid Redirect Mission (ARM)
NASA Astrophysics Data System (ADS)
Abell, Paul; Mazanek, Daniel D.; Reeves, David M.; Chodas, Paul; Gates, Michele; Johnson, Lindley N.; Ticker, Ronald
2016-10-01
The National Aeronautics and Space Administration (NASA) is developing a mission to visit a large near-Earth asteroid (NEA), collect a multi-ton boulder and regolith samples from its surface, demonstrate a planetary defense technique known as the enhanced gravity tractor, and return the asteroidal material to a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts will explore the boulder and return to Earth with samples. This Asteroid Redirect Mission (ARM) is part of NASA's plan to advance the technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s and other destinations, as well as provide other broader benefits. Subsequent human and robotic missions to the asteroidal material would also be facilitated by its return to cislunar space. Although ARM is primarily a capability demonstration mission (i.e., technologies and associated operations), there exist significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, asteroidal resources and in-situ resource utilization (ISRU), and capability and technology demonstrations. Current plans are for the robotic mission to be launched in late 2021 with the crewed mission segment conducted using an Orion capsule via a Space Launch System rocket in 2026. In order to maximize the knowledge return from the mission, NASA is providing accommodations for payloads to be carried on the robotic segment of the mission and also organizing an ARM Investigation Team. The Investigation Team will be comprised of scientists, technologists, and other qualified and interested individuals from US industry, government, academia, and international institutions to help plan the implementation and execution of ARM. The presentation will provide a mission overview and the most recent update concerning the robotic and crewed segments of ARM, including the mission requirements, and potential NEA targets. Details about the mission operations for each segment will also be provided along with a discussion of the potential opportunities associated with the mission.
Son, Jaebum; Cho, Chang Nho; Kim, Kwang Gi; Chang, Tae Young; Jung, Hyunchul; Kim, Sung Chun; Kim, Min-Tae; Yang, Nari; Kim, Tae-Yun; Sohn, Dae Kyung
2015-06-01
Natural orifice transluminal endoscopic surgery (NOTES) is an emerging surgical technique. We aimed to design, create, and evaluate a new semi-automatic snake robot for NOTES. The snake robot employs the characteristics of both a manual endoscope and a multi-segment snake robot. This robot is inserted and retracted manually, like a classical endoscope, while its shape is controlled using embedded robot technology. The feasibility of a prototype robot for NOTES was evaluated in animals and human cadavers. The transverse stiffness and maneuverability of the snake robot appeared satisfactory. It could be advanced through the anus as far as the peritoneal cavity without any injury to adjacent organs. Preclinical tests showed that the device could navigate the peritoneal cavity. The snake robot has advantages of high transverse force and intuitive control. This new robot may be clinically superior to conventional tools for transanal NOTES.
NASA Astrophysics Data System (ADS)
Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio
2014-03-01
We explore fish-robot interactions in a comprehensive set of experiments designed to highlight the effects of speed and configuration of bioinspired robots on live zebrafish. The robot design and movement is inspired by salient features of attraction in zebrafish and includes enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiformlocomotion. The robots are autonomously controlled to swim in circular trajectories in the presence of live fish. Our results indicate that robot configuration significantly affects both the fish distance to the robots and the time spent near them.
Canedo-Rodriguez, Adrián; Iglesias, Roberto; Regueiro, Carlos V.; Alvarez-Santos, Victor; Pardo, Xose Manuel
2013-01-01
To bring cutting edge robotics from research centres to social environments, the robotics community must start providing affordable solutions: the costs must be reduced and the quality and usefulness of the robot services must be enhanced. Unfortunately, nowadays the deployment of robots and the adaptation of their services to new environments are tasks that usually require several days of expert work. With this in view, we present a multi-agent system made up of intelligent cameras and autonomous robots, which is easy and fast to deploy in different environments. The cameras will enhance the robot perceptions and allow them to react to situations that require their services. Additionally, the cameras will support the movement of the robots. This will enable our robots to navigate even when there are not maps available. The deployment of our system does not require expertise and can be done in a short period of time, since neither software nor hardware tuning is needed. Every system task is automatic, distributed and based on self-organization processes. Our system is scalable, robust, and flexible to the environment. We carried out several real world experiments, which show the good performance of our proposal. PMID:23271604
Thepsoonthorn, Chidchanok; Ogawa, Ken-Ichiro; Miyake, Yoshihiro
2018-05-30
At current state, although robotics technology has been immensely developed, the uncertainty to completely engage in human-robot interaction is still growing among people. Many current studies then started to concern about human factors that might influence human's likability like human's personality, and found that compatibility between human's and robot's personality (expressions of personality characteristics) can enhance human's likability. However, it is still unclear whether specific means and strategy of robot's nonverbal behaviours enhances likability from human with different personality traits and whether there is a relationship between robot's nonverbal behaviours and human's likability based on human's personality. In this study, we investigated and focused on the interaction via gaze and head nodding behaviours (mutual gaze convergence and head nodding synchrony) between introvert/extravert participants and robot in two communication strategies (Backchanneling and Turn-taking). Our findings reveal that the introvert participants are positively affected by backchanneling in robot's head nodding behaviour, which results in substantial head nodding synchrony whereas the extravert participants are positively influenced by turn-taking in gaze behaviour, which leads to significant mutual gaze convergence. This study demonstrates that there is a relationship between robot's nonverbal behaviour and human's likability based on human's personality.
Canedo-Rodriguez, Adrián; Iglesias, Roberto; Regueiro, Carlos V; Alvarez-Santos, Victor; Pardo, Xose Manuel
2012-12-27
To bring cutting edge robotics from research centres to social environments, the robotics community must start providing affordable solutions: the costs must be reduced and the quality and usefulness of the robot services must be enhanced. Unfortunately, nowadays the deployment of robots and the adaptation of their services to new environments are tasks that usually require several days of expert work. With this in view, we present a multi-agent system made up of intelligent cameras and autonomous robots, which is easy and fast to deploy in different environments. The cameras will enhance the robot perceptions and allow them to react to situations that require their services. Additionally, the cameras will support the movement of the robots. This will enable our robots to navigate even when there are not maps available. The deployment of our system does not require expertise and can be done in a short period of time, since neither software nor hardware tuning is needed. Every system task is automatic, distributed and based on self-organization processes. Our system is scalable, robust, and flexible to the environment. We carried out several real world experiments, which show the good performance of our proposal.
NASA's In Space Propulsion Technology Program Accomplishments and Lessons Learned
NASA Technical Reports Server (NTRS)
Johnson, Les C.; Harris, David
2008-01-01
NASA's In-Space Propulsion Technology (ISPT) Program was managed for 5 years at the NASA MSFC and significant strides were made in the advancement of key transportation technologies that will enable or enhance future robotic science and deep space exploration missions. At the program's inception, a set of technology investment priorities were established using an NASA-wide, mission-driven prioritization process and, for the most part, these priorities changed little - thus allowing a consistent framework in which to fund and manage technology development. Technologies in the portfolio included aerocapture, advanced chemical propulsion, solar electric propulsion, solar sail propulsion, electrodynamic and momentum transfer tethers, and various very advanced propulsion technologies with significantly lower technology readiness. The program invested in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program was to lay the technological foundation for travel to nearby interstellar space. The ambitious goals of the program at its inception included supporting the development of technologies that could support all of NASA's missions, both human and robotic. As time went on and budgets were never as high as planned, the scope of the program was reduced almost every year, forcing the elimination of not only the broader goals of the initial program, but also of funding for over half of the technologies in the original portfolio. In addition, the frequency at which the application requirements for the program changed exceeded the development time required to mature technologies: forcing sometimes radical rescoping of research efforts already halfway (or more) to completion. At the end of its fifth year, both the scope and funding of the program were at a minimum despite the program successfully meeting all of it's initial high priority objectives. This paper will describe the program, its requirements, technology portfolio, and technology maturation processes. Also discussed will be the major technology milestones achieved and the lessons learned from managing a $100M+ technology program.
Simulation and animation of sensor-driven robots.
Chen, C; Trivedi, M M; Bidlack, C R
1994-10-01
Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aid the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the users visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.
Bilateral Impedance Control For Telemanipulators
NASA Technical Reports Server (NTRS)
Moore, Christopher L.
1993-01-01
Telemanipulator system includes master robot manipulated by human operator, and slave robot performing tasks at remote location. Two robots electronically coupled so slave robot moves in response to commands from master robot. Teleoperation greatly enhanced if forces acting on slave robot fed back to operator, giving operator feeling he or she manipulates remote environment directly. Main advantage of bilateral impedance control: enables arbitrary specification of desired performance characteristics for telemanipulator system. Relationship between force and position modulated at both ends of system to suit requirements of task.
Moving NASA Beyond Low Earth Orbit: Future Human-Automation-Robotic Integration Challenges
NASA Technical Reports Server (NTRS)
Marquez, Jessica
2016-01-01
This presentation will provide an overview of current human spaceflight operations. It will also describe how future exploration missions will have to adapt and evolve in order to deal with more complex missions and communication latencies. Additionally, there are many implications regarding advanced automation and robotics, and this presentation will outline future human-automation-robotic integration challenges.
Medical robotics: the impact on perioperative nursing practice.
Francis, Paula; Winfield, Howard N
2006-04-01
Robotic technology and the increased use of minimally invasive surgery approaches is altering the environment in which operating room personnel work and affecting how nurses must care for patients. An understanding of the history of robotics, current applications of the technology, and perioperative nursing responsibilities is needed to assure quality patient care in the wake of continued advances in technology.
Robotics and Science Literacy: Thinking Skills, Science Process Skills and Systems Understanding
ERIC Educational Resources Information Center
Sullivan, Florence R.
2008-01-01
This paper reports the results of a study of the relationship of robotics activity to the use of science literacy skills and the development of systems understanding in middle school students. Twenty-six 11-12-year-olds (22 males and 4 females) attending an intensive robotics course offered at a summer camp for academically advanced students…
NASA Astrophysics Data System (ADS)
Sholihin; Susanti, Eka
2018-02-01
The development of increasingly advanced technology, make people want to be more developed and curiosity to know more to determine the development of advanced technology. Robot is a tool that can be used as a tool for people who have several advantages. Basically humanoid robot is a robot that resembles a human being with all the driving structure. In the application of this humanoid robot manufacture researchers use MPU6050 module which is an important component of the robot because it can provide a response to the angle reference axis X and Y reference axis, the reading corner still has noise if not filtered out beforehand. On the other hand the use of Complementary filters are the answer to reduce the noise. By arranging the filter coefficients and time sampling filter that affects the signal updates corner. The angle value will be the value of the sensor to the process to the PID system which generates output values that are integrated with the servo pulses. Researchers will test to get a reading of the most stable angle for this experiment is the "a" or the value of the filter coefficient = 0.96 and "dt" or the sampling time = 10 ms.
Semi autonomous mine detection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas Few; Roelof Versteeg; Herman Herman
2010-04-01
CMMAD is a risk reduction effort for the AMDS program. As part of CMMAD, multiple instances of semi autonomous robotic mine detection systems were created. Each instance consists of a robotic vehicle equipped with sensors required for navigation and marking, a countermine sensors and a number of integrated software packages which provide for real time processing of the countermine sensor data as well as integrated control of the robotic vehicle, the sensor actuator and the sensor. These systems were used to investigate critical interest functions (CIF) related to countermine robotic systems. To address the autonomy CIF, the INL developed RIKmore » was extended to allow for interaction with a mine sensor processing code (MSPC). In limited field testing this system performed well in detecting, marking and avoiding both AT and AP mines. Based on the results of the CMMAD investigation we conclude that autonomous robotic mine detection is feasible. In addition, CMMAD contributed critical technical advances with regard to sensing, data processing and sensor manipulation, which will advance the performance of future fieldable systems. As a result, no substantial technical barriers exist which preclude – from an autonomous robotic perspective – the rapid development and deployment of fieldable systems.« less
Vocal emotion of humanoid robots: a study from brain mechanism.
Wang, Youhui; Hu, Xiaohua; Dai, Weihui; Zhou, Jie; Kuo, Taitzong
2014-01-01
Driven by rapid ongoing advances in humanoid robot, increasing attention has been shifted into the issue of emotion intelligence of AI robots to facilitate the communication between man-machines and human beings, especially for the vocal emotion in interactive system of future humanoid robots. This paper explored the brain mechanism of vocal emotion by studying previous researches and developed an experiment to observe the brain response by fMRI, to analyze vocal emotion of human beings. Findings in this paper provided a new approach to design and evaluate the vocal emotion of humanoid robots based on brain mechanism of human beings.
Advanced Applications of Robotics in Digestive Surgery
Patriti, Alberto; Addeo, Pietro; Buchs, Nicolas; Casciola, Luciano; Morel, Philippe
2011-01-01
Laparoscopy is widely recognized as feasible and safe approach to many oncologic and benign digestive conditions and is associated with an improved early outcome. Robotic surgery promises to overcome intrinsic limitations of laparoscopic surgery by a three-dimensional view and wristed instruments widening indications for a minimally invasive approach. To date, the more interesting applications of robotic surgery are those operations restricted to one abdominal quadrant and requiring a fine dissection and digestive reconstruction. While robot-assisted rectal and gastric surgery are becoming well-accepted options among the surgical community, applications of robotics in hepato-biliary and pancreatic surgery are still debated. PMID:23905029
NASA Technical Reports Server (NTRS)
Zimmerman, W. F.; Matijevic, J. R.
1987-01-01
Novel system engineering techniques have been developed and applied to establishing structured design and performance objectives for the Telerobotics Testbed that reduce technical risk while still allowing the testbed to demonstrate an advancement in state-of-the-art robotic technologies. To estblish the appropriate tradeoff structure and balance of technology performance against technical risk, an analytical data base was developed which drew on: (1) automation/robot-technology availability projections, (2) typical or potential application mission task sets, (3) performance simulations, (4) project schedule constraints, and (5) project funding constraints. Design tradeoffs and configuration/performance iterations were conducted by comparing feasible technology/task set configurations against schedule/budget constraints as well as original program target technology objectives. The final system configuration, task set, and technology set reflected a balanced advancement in state-of-the-art robotic technologies, while meeting programmatic objectives and schedule/cost constraints.
Robotic CCD microscope for enhanced crystal recognition
Segelke, Brent W.; Toppani, Dominique
2007-11-06
A robotic CCD microscope and procedures to automate crystal recognition. The robotic CCD microscope and procedures enables more accurate crystal recognition, leading to fewer false negative and fewer false positives, and enable detection of smaller crystals compared to other methods available today.
Overview of NASA's In Space Robotic Servicing
NASA Technical Reports Server (NTRS)
Reed, Benjamin B.
2015-01-01
The panel discussion will start with a presentation of the work of the Satellite Servicing Capabilities Office (SSCO), a team responsible for the overall management, coordination, and implementation of satellite servicing technologies and capabilities for NASA. Born from the team that executed the five Hubble servicing missions, SSCO is now maturing a core set of technologies that support both servicing goals and NASA's exploration and science objectives, including: autonomous rendezvous and docking systems; dexterous robotics; high-speed, fault-tolerant computing; advanced robotic tools, and propellant transfer systems. SSCOs proposed Restore-L mission, under development since 2009, is rapidly advancing the core capabilities the fledgling satellite-servicing industry needs to jumpstart a new national industry. Restore-L is also providing key technologies and core expertise to the Asteroid Redirect Robotic Mission (ARRM), with SSCO serving as the capture module lead for the ARRM effort. Reed will present a brief overview of SSCOs history, capabilities and technologies.
Computational needs survey of NASA automation and robotics missions. Volume 1: Survey and results
NASA Technical Reports Server (NTRS)
Davis, Gloria J.
1991-01-01
NASA's operational use of advanced processor technology in space systems lags behind its commercial development by more than eight years. One of the factors contributing to this is that mission computing requirements are frequently unknown, unstated, misrepresented, or simply not available in a timely manner. NASA must provide clear common requirements to make better use of available technology, to cut development lead time on deployable architectures, and to increase the utilization of new technology. A preliminary set of advanced mission computational processing requirements of automation and robotics (A&R) systems are provided for use by NASA, industry, and academic communities. These results were obtained in an assessment of the computational needs of current projects throughout NASA. The high percent of responses indicated a general need for enhanced computational capabilities beyond the currently available 80386 and 68020 processor technology. Because of the need for faster processors and more memory, 90 percent of the polled automation projects have reduced or will reduce the scope of their implementation capabilities. The requirements are presented with respect to their targeted environment, identifying the applications required, system performance levels necessary to support them, and the degree to which they are met with typical programmatic constraints. Volume one includes the survey and results. Volume two contains the appendixes.
Computational needs survey of NASA automation and robotics missions. Volume 2: Appendixes
NASA Technical Reports Server (NTRS)
Davis, Gloria J.
1991-01-01
NASA's operational use of advanced processor technology in space systems lags behind its commercial development by more than eight years. One of the factors contributing to this is the fact that mission computing requirements are frequency unknown, unstated, misrepresented, or simply not available in a timely manner. NASA must provide clear common requirements to make better use of available technology, to cut development lead time on deployable architectures, and to increase the utilization of new technology. Here, NASA, industry and academic communities are provided with a preliminary set of advanced mission computational processing requirements of automation and robotics (A and R) systems. The results were obtained in an assessment of the computational needs of current projects throughout NASA. The high percent of responses indicated a general need for enhanced computational capabilities beyond the currently available 80386 and 68020 processor technology. Because of the need for faster processors and more memory, 90 percent of the polled automation projects have reduced or will reduce the scope of their implemented capabilities. The requirements are presented with respect to their targeted environment, identifying the applications required, system performance levels necessary to support them, and the degree to which they are met with typical programmatic constraints. Here, appendixes are provided.
Forming Human-Robot Teams Across Time and Space
NASA Technical Reports Server (NTRS)
Hambuchen, Kimberly; Burridge, Robert R.; Ambrose, Robert O.; Bluethmann, William J.; Diftler, Myron A.; Radford, Nicolaus A.
2012-01-01
NASA pushes telerobotics to distances that span the Solar System. At this scale, time of flight for communication is limited by the speed of light, inducing long time delays, narrow bandwidth and the real risk of data disruption. NASA also supports missions where humans are in direct contact with robots during extravehicular activity (EVA), giving a range of zero to hundreds of millions of miles for NASA s definition of "tele". . Another temporal variable is mission phasing. NASA missions are now being considered that combine early robotic phases with later human arrival, then transition back to robot only operations. Robots can preposition, scout, sample or construct in advance of human teammates, transition to assistant roles when the crew are present, and then become care-takers when the crew returns to Earth. This paper will describe advances in robot safety and command interaction approaches developed to form effective human-robot teams, overcoming challenges of time delay and adapting as the team transitions from robot only to robots and crew. The work is predicated on the idea that when robots are alone in space, they are still part of a human-robot team acting as surrogates for people back on Earth or in other distant locations. Software, interaction modes and control methods will be described that can operate robots in all these conditions. A novel control mode for operating robots across time delay was developed using a graphical simulation on the human side of the communication, allowing a remote supervisor to drive and command a robot in simulation with no time delay, then monitor progress of the actual robot as data returns from the round trip to and from the robot. Since the robot must be responsible for safety out to at least the round trip time period, the authors developed a multi layer safety system able to detect and protect the robot and people in its workspace. This safety system is also running when humans are in direct contact with the robot, so it involves both internal fault detection as well as force sensing for unintended external contacts. The designs for the supervisory command mode and the redundant safety system will be described. Specific implementations were developed and test results will be reported. Experiments were conducted using terrestrial analogs for deep space missions, where time delays were artificially added to emulate the longer distances found in space.
Interactive robots in experimental biology.
Krause, Jens; Winfield, Alan F T; Deneubourg, Jean-Louis
2011-07-01
Interactive robots have the potential to revolutionise the study of social behaviour because they provide several methodological advances. In interactions with live animals, the behaviour of robots can be standardised, morphology and behaviour can be decoupled (so that different morphologies and behavioural strategies can be combined), behaviour can be manipulated in complex interaction sequences and models of behaviour can be embodied by the robot and thereby be tested. Furthermore, robots can be used as demonstrators in experiments on social learning. As we discuss here, the opportunities that robots create for new experimental approaches have far-reaching consequences for research in fields such as mate choice, cooperation, social learning, personality studies and collective behaviour. Copyright © 2011 Elsevier Ltd. All rights reserved.
Execution monitoring for a mobile robot system
NASA Technical Reports Server (NTRS)
Miller, David P.
1990-01-01
Due to sensor errors, uncertainty, incomplete knowledge, and a dynamic world, robot plans will not always be executed exactly as planned. This paper describes an implemented robot planning system that enhances the traditional sense-think-act cycle in ways that allow the robot system monitor its behavior and react in emergencies in real-time. A proposal on how robot systems can completely break away from the traditional three-step cycle is also made.
YADCLAN: yet another digitally-controlled linear artificial neuron.
Frenger, Paul
2003-01-01
This paper updates the author's 1999 RMBS presentation on digitally controlled linear artificial neuron design. Each neuron is based on a standard operational amplifier having excitatory and inhibitory inputs, variable gain, an amplified linear analog output and an adjustable threshold comparator for digital output. This design employs a 1-wire serial network of digitally controlled potentiometers and resistors whose resistance values are set and read back under microprocessor supervision. This system embodies several unique and useful features, including: enhanced neuronal stability, dynamic reconfigurability and network extensibility. This artificial neuronal is being employed for feature extraction and pattern recognition in an advanced robotic application.
Tactile Gloves for Autonomous Grasping With the NASA/DARPA Robonaut
NASA Technical Reports Server (NTRS)
Martin, T. B.; Ambrose, R. O.; Diftler, M. A.; Platt, R., Jr.; Butzer, M. J.
2004-01-01
Tactile data from rugged gloves are providing the foundation for developing autonomous grasping skills for the NASA/DARPA Robonaut, a dexterous humanoid robot. These custom gloves compliment the human like dexterity available in the Robonaut hands. Multiple versions of the gloves are discussed, showing a progression in using advanced materials and construction techniques to enhance sensitivity and overall sensor coverage. The force data provided by the gloves can be used to improve dexterous, tool and power grasping primitives. Experiments with the latest gloves focus on the use of tools, specifically a power drill used to approximate an astronaut's torque tool.
Anthropomorphic Robot Design and User Interaction Associated with Motion
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.
2016-01-01
Though in its original concept a robot was conceived to have some human-like shape, most robots now in use have specific industrial purposes and do not closely resemble humans. Nevertheless, robots that resemble human form in some way have continued to be introduced. They are called anthropomorphic robots. The fact that the user interface to all robots is now highly mediated means that the form of the user interface is not necessarily connected to the robots form, human or otherwise. Consequently, the unique way the design of anthropomorphic robots affects their user interaction is through their general appearance and the way they move. These robots human-like appearance acts as a kind of generalized predictor that gives its operators, and those with whom they may directly work, the expectation that they will behave to some extent like a human. This expectation is especially prominent for interactions with social robots, which are built to enhance it. Often interaction with them may be mainly cognitive because they are not necessarily kinematically intricate enough for complex physical interaction. Their body movement, for example, may be limited to simple wheeled locomotion. An anthropomorphic robot with human form, however, can be kinematically complex and designed, for example, to reproduce the details of human limb, torso, and head movement. Because of the mediated nature of robot control, there remains in general no necessary connection between the specific form of user interface and the anthropomorphic form of the robot. But their anthropomorphic kinematics and dynamics imply that the impact of their design shows up in the way the robot moves. The central finding of this report is that the control of this motion is a basic design element through which the anthropomorphic form can affect user interaction. In particular, designers of anthropomorphic robots can take advantage of the inherent human-like movement to 1) improve the users direct manual control over robot limbs and body positions, 2) improve users ability to detect anomalous robot behavior which could signal malfunction, and 3) enable users to be better able to infer the intent of robot movement. These three benefits of anthropomorphic design are inherent implications of the anthropomorphic form but they need to be recognized by designers as part of anthropomorphic design and explicitly enhanced to maximize their beneficial impact. Examples of such enhancements are provided in this report. If implemented, these benefits of anthropomorphic design can help reduce the risk of Inadequate Design of Human and Automation Robotic Integration (HARI) associated with the HARI-01 gap by providing efficient and dexterous operator control over robots and by improving operator ability to detect malfunctions and understand the intention of robot movement.
Dynamic modeling and optimal joint torque coordination of advanced robotic systems
NASA Astrophysics Data System (ADS)
Kang, Hee-Jun
The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving, highly versatile, advanced robotic systems. Therefore, finally, a module based dynamic modeling algorithm is presented for the dynamic coordination of such reconfigurable modular robotic systems. A user interactive module based manipulator analysis program (MBMAP) has been coded in C language running on 4D/70 Silicon Graphics.
NASA Technical Reports Server (NTRS)
Wilcox, Brian H.; Tso, Kam S.; Litwin, Todd E.; Hayati, Samad A.; Bon, Bruce B.
1991-01-01
Experimental robotic system semiautomatically grasps rotating object, stops rotation, and pulls object to rest in fixture. Based on combination of advanced techniques for sensing and control, constructed to test concepts for robotic recapture of spinning artificial satellites. Potential terrestrial applications for technology developed with help of system includes tracking and grasping of industrial parts on conveyor belts, tracking of vehicles and animals, and soft grasping of moving objects in general.
Women Warriors: Why the Robotics Revolution Changes the Combat Equation
2015-01-01
combat fight due in large part to advances in robotics and autonomous systems. From exoskeletons to robotic mules, technology is reducing the...kick-started innovation in this area in 2001 by funding labs, industry, and universities under the Exoskeletons for Human Performance Augmentation...and fledgling programs of record. The Human Load Carrier (HULC), for example, is a hydraulic- powered exoskeleton made of titanium that allows
ERIC Educational Resources Information Center
Wagemaker, Eline; Dekkers, Tycho J.; Agelink van Rentergem, Joost A.; Volkers, Karin M.; Huizenga, Hilde M.
2017-01-01
Background: The evidence base for psychological treatments for autism and mood disorders in people with moderate to severe intellectual disabilities (ID) is limited. Recent promising robot-based innovations in mental health care suggest that robot-based animal assisted therapy (AAT) could be useful to improve social skills and mood in people with…
Herrero, Héctor; Outón, Jose Luis; Puerto, Mildred; Sallé, Damien; López de Ipiña, Karmele
2017-01-01
This paper presents a state machine-based architecture, which enhances the flexibility and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed architecture, in addition to allowing absolute control of the execution, eases the programming of new applications by increasing the reusability of the developed modules. Through an easy-to-use graphical user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is presented for evaluating the presented approach versus traditional robot programming techniques. PMID:28561750
Herrero, Héctor; Outón, Jose Luis; Puerto, Mildred; Sallé, Damien; López de Ipiña, Karmele
2017-05-31
This paper presents a state machine-based architecture, which enhances the flexibility and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed architecture, in addition to allowing absolute control of the execution, eases the programming of new applications by increasing the reusability of the developed modules. Through an easy-to-use graphical user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is presented for evaluating the presented approach versus traditional robot programming techniques.
Bio-applications of ionic polymer metal composite transducers
NASA Astrophysics Data System (ADS)
Aw, K. C.; McDaid, A. J.
2014-07-01
Traditional robotic actuators have advanced performance which in some aspects can surpass that of humans, however they are lacking when it comes to developing devices which are capable of operating together with humans. Bio-inspired transducers, for example ionic polymer metal composites (IPMC), which have similar properties to human tissue and muscle, demonstrate much future promise as candidates for replacing traditional robotic actuators in medical robotics applications. This paper outlines four biomedical robotics applications, an IPMC stepper motor, an assistive glove exoskeleton/prosthetic hand, a surgical robotic tool and a micromanipulation system. These applications have been developed using mechanical design/modelling techniques with IPMC ‘artificial muscle’ as the actuation system. The systems are designed by first simulating the performance using an IPMC model and dynamic models of the mechanical system; the appropriate advanced adaptive control schemes are then implemented to ensure that the IPMCs operate in the correct manner, robustly over time. This paper serves as an overview of the applications and concludes with some discussion on the future challenges of developing real-world IPMC applications.
Cognitive and sociocultural aspects of robotized technology: innovative processes of adaptation
NASA Astrophysics Data System (ADS)
Kvesko, S. B.; Kvesko, B. B.; Kornienko, M. A.; Nikitina, Y. A.; Pankova, N. M.
2018-05-01
The paper dwells upon interaction between socio-cultural phenomena and cognitive characteristics of robotized technology. The interdisciplinary approach was employed in order to cast light on the manifold and multilevel identity of scientific advance in terms of robotized technology within the mental realm. Analyzing robotized technology from the viewpoint of its significance for the modern society is one of the upcoming trends in the contemporary scientific realm. The robots under production are capable of interacting with people; this results in a growing necessity for the studies on social status of robotized technological items. Socio-cultural aspect of cognitive robotized technology is reflected in the fact that the nature becomes ‘aware’ of itself via human brain, a human being tends to strives for perfection in their intellectual and moral dimensions.
Real-World Evolution of Robot Morphologies: A Proof of Concept.
Jelisavcic, Milan; de Carlo, Matteo; Hupkes, Elte; Eustratiadis, Panagiotis; Orlowski, Jakub; Haasdijk, Evert; Auerbach, Joshua E; Eiben, A E
2017-01-01
Evolutionary robotics using real hardware has been almost exclusively restricted to evolving robot controllers, but the technology for evolvable morphologies is advancing quickly. We discuss a proof-of-concept study to demonstrate real robots that can reproduce. Following a general system plan, we implement a robotic habitat that contains all system components in the simplest possible form. We create an initial population of two robots and run a complete life cycle, resulting in a new robot, parented by the first two. Even though the individual steps are simplified to the maximum, the whole system validates the underlying concepts and provides a generic workflow for the creation of more complex incarnations. This hands-on experience provides insights and helps us elaborate on interesting research directions for future development.
Robotic assisted andrological surgery
Parekattil, Sijo J; Gudeloglu, Ahmet
2013-01-01
The introduction of the operative microscope for andrological surgery in the 1970s provided enhanced magnification and accuracy, unparalleled to any previous visual loop or magnification techniques. This technology revolutionized techniques for microsurgery in andrology. Today, we may be on the verge of a second such revolution by the incorporation of robotic assisted platforms for microsurgery in andrology. Robotic assisted microsurgery is being utilized to a greater degree in andrology and a number of other microsurgical fields, such as ophthalmology, hand surgery, plastics and reconstructive surgery. The potential advantages of robotic assisted platforms include elimination of tremor, improved stability, surgeon ergonomics, scalability of motion, multi-input visual interphases with up to three simultaneous visual views, enhanced magnification, and the ability to manipulate three surgical instruments and cameras simultaneously. This review paper begins with the historical development of robotic microsurgery. It then provides an in-depth presentation of the technique and outcomes of common robotic microsurgical andrological procedures, such as vasectomy reversal, subinguinal varicocelectomy, targeted spermatic cord denervation (for chronic orchialgia) and robotic assisted microsurgical testicular sperm extraction (microTESE). PMID:23241637
Space station as a vital focus for advancing the technologies of automation and robotics
NASA Technical Reports Server (NTRS)
Varsi, Giulio; Herman, Daniel H.
1988-01-01
A major guideline for the design of the U.S. Space Station is that the Space Station address a wide variety of functions. These functions include the servicing of unmanned assets in space, the support of commercial labs in space and the efficient management of the Space Station itself; the largest space asset. The technologies of Automation and Robotics have the promise to help in reducing Space Station operating costs and to achieve a highly efficient use of the human in space. The use of advanced automation and artificial intelligence techniques, such as expert systems, in Space Station subsystems for activity planning and failure mode management will enable us to reduce dependency on a mission control center and could ultimately result in breaking the umbilical link from Earth to the Space Station. The application of robotic technologies with advanced perception capability and hierarchical intelligent control to servicing system will enable the servicing of assets either in space or in situ with a high degree of human efficiency. The results of studies leading toward the formulation of an automation and robotics plan for Space Station development are presented.
NASA Technical Reports Server (NTRS)
Smith, Bryan K.; Nazario, Margaret L.; Manzella, David H.
2012-01-01
Solar Electric Propulsion has evolved into a demonstrated operational capability performing station keeping for geosynchronous satellites, enabling challenging deep-space science missions, and assisting in the transfer of satellites from an elliptical orbit Geostationary Transfer Orbit (GTO) to a Geostationary Earth Orbit (GEO). Advancing higher power SEP systems will enable numerous future applications for human, robotic, and commercial missions. These missions are enabled by either the increased performance of the SEP system or by the cost reductions when compared to conventional chemical propulsion systems. Higher power SEP systems that provide very high payload for robotic missions also trade favorably for the advancement of human exploration beyond low Earth orbit. Demonstrated reliable systems are required for human space flight and due to their successful present day widespread use and inherent high reliability, SEP systems have progressively become a viable entrant into these future human exploration architectures. NASA studies have identified a 30 kW-class SEP capability as the next appropriate evolutionary step, applicable to wide range of both human and robotic missions. This paper describes the planning options, mission applications, and technology investments for representative 30kW-class SEP mission concepts under consideration by NASA
Robotics and systems technology for advanced endoscopic procedures: experiences in general surgery.
Schurr, M O; Arezzo, A; Buess, G F
1999-11-01
The advent of endoscopic techniques changed surgery in many regards. This paper intends to describe an overview about technologies to facilitate endoscopic surgery. The systems described have been developed for the use in general surgery, but an easy application also in the field of cardiac surgery seems realistic. The introduction of system technology and robotic technology enables today to design a highly ergonomic solo-surgery platform. To relief the surgeon from fatigue we developed a new chair dedicated to the functional needs of endoscopic surgery. The foot pedals for high frequency, suction and irrigation are integrated into the basis of the chair. The chair is driven by electric motors controlled with an additional foot pedal joystick to achieve the desired position in the OR. A major enhancement for endoscopic technology is the introduction of robotic technology to design assisting devices for solo-surgery and manipulators for microsurgical instrumentation. A further step in the employment of robotic technology is the design of 'master-slave manipulators' to provide the surgeon with additional degrees of freedom of instrumentation. In 1996 a first prototype of an endoscopic manipulator system. named ARTEMIS, could be used in experimental applications. The system consists of a user station (master) and an instrument station (slave). The surgeon sits at a console which integrates endoscopic monitors, communication facilities and two master devices to control the two slave arms which are mounted to the operating table. Clinical use of the system, however, will require further development in the area of slave mechanics and the control system. Finally the implementation of telecommunication technology in combination with robotic instruments will open new frontiers, such as teleconsulting, teleassistance and telemanipulation.
[History of robotics: from archytas of tarentum until Da Vinci robot. (Part II)].
Sánchez-Martín, F M; Jiménez Schlegl, P; Millán Rodríguez, F; Salvador-Bayarri, J; Monllau Font, V; Palou Redorta, J; Villavicencio Mavrich, H
2007-03-01
Robotic surgery is a reality. In order to to understand how new robots work is interesting to know the history of ancient (see part i) and modern robotics. The desire to design automatic machines imitating humans continued for more than 4000 years. Archytas of Tarentum (at around 400 a.C.), Heron of Alexandria, Hsieh-Fec, Al-Jazari, Bacon, Turriano, Leonardo da Vinci, Vaucanson o von Kempelen were robot inventors. At 1942 Asimov published the three robotics laws. Mechanics, electronics and informatics advances at XXth century developed robots to be able to do very complex self governing works. At 1985 the robot PUMA 560 was employed to introduce a needle inside the brain. Later on, they were designed surgical robots like World First, Robodoc, Gaspar o Acrobot, Zeus, AESOP, Probot o PAKI-RCP. At 2000 the FDA approved the da Vinci Surgical System (Intuitive Surgical Inc, Sunnyvale, CA, USA), a very sophisticated robot to assist surgeons. Currently urological procedures like prostatectomy, cystectomy and nephrectomy are performed with the da Vinci, so urology has become a very suitable speciality to robotic surgery.
Developing a successful robotics program.
Luthringer, Tyler; Aleksic, Ilija; Caire, Arthur; Albala, David M
2012-01-01
Advancements in the robotic surgical technology have revolutionized the standard of care for many surgical procedures. The purpose of this review is to evaluate the important considerations in developing a new robotics program at a given healthcare institution. Patients' interest in robotic-assisted surgery has and continues to grow because of improved outcomes and decreased periods of hospitalization. Resulting market forces have created a solid foundation for the implementation of robotic surgery into surgical practice. Given proper surgeon experience and an efficient system, robotic-assisted procedures have been cost comparable to open surgical alternatives. Surgeon training and experience is closely linked to the efficiency of a new robotics program. Formally trained robotic surgeons have better patient outcomes and shorter operative times. Training in robotics has shown no negative impact on patient outcomes or mentor learning curves. Individual economic factors of local healthcare settings must be evaluated when planning for a new robotics program. The high cost of the robotic surgical platform is best offset with a large surgical volume. A mature, experienced surgeon is integral to the success of a new robotics program.
Simulation and animation of sensor-driven robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C.; Trivedi, M.M.; Bidlack, C.R.
1994-10-01
Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aide the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the usersmore » visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.« less
Robotics Competitions: The Choice Is up to You!
ERIC Educational Resources Information Center
Johnson, Richard T.; Londt, Susan E.
2010-01-01
Competitive robotics as an interactive experience can increase the level of student participation in technology education, inspire students to consider careers in technical fields, and enhance the visibility of technology education programs. Implemented correctly, a competitive robotics program can provide a stimulating learning environment for…
Cooper, Carol; Penders, Jacques; Procter, Paula M
2016-01-01
The merging of the human world and the information technology world is advancing at a pace, even for those with dementia there are many useful smart 'phone applications including reminders, family pictures display, GPS functions and video communications. This paper will report upon initial collaborative work developing a robotic solution to engaging individuals with advancing dementia in safe exercise regimes. The research team has been driven by the needs of people with advancing dementia and their carers through a focus group methodology, the format, discussions and outcomes of these groups will be reported. The plans for the next stage of the research will be outlined including the continuing collaboration with advancing dementia and their carers.
Liu, W; Mukherjee, M; Tsaur, Y; Kim, S H; Liu, H; Natarajan, P; Agah, A
2009-01-01
Functional impairment of the upper limb is a major challenge faced by many stroke survivors. The present study aimed at developing a novel sensory-enhanced robot-aided motor training program and testing its feasibility in stroke rehabilitation. A specially designed robot handle was developed as an attachment to the Inmotion2 robotic system. This handle provided sensory stimulation through pins connected to small servo motors inside the handle. Vibration of the pins was activated during motor training once pressure on the handle reached a certain threshold indicating an active motion of the study subject. Nine chronic stroke survivors were randomly assigned to either a sensory-enhanced robot-aided motor training group (SERMT) or robot-aided motor training only group (RMT). All participants underwent a 6-week motor training program, performing target reaching movements with the specialized handle with or without vibration stimulation during training. Motor Status (MS) scores were measured for functional outcome prior to and after training. The results showed significant improvement in the total MS scores after training in both experimental groups. However, MS sub-scores for the shoulder/elbow and the wrist/hand increased significantly only in the SERMT group (p<0.05). Future studies are required to confirm these preliminary findings.
Watkinson, William; Raison, Nicholas; Abe, Takashige; Harrison, Patrick; Khan, Shamim; Van der Poel, Henk; Dasgupta, Prokar; Ahmed, Kamran
2018-05-01
To establish objective benchmarks at the level of a competent robotic surgeon across different exercises and metrics for the RobotiX Mentor virtual reality (VR) simulator suitable for use within a robotic surgical training curriculum. This retrospective observational study analysed results from multiple data sources, all of which used the RobotiX Mentor VR simulator. 123 participants with varying experience from novice to expert completed the exercises. Competency was established as the 25th centile of the mean advanced intermediate score. Three basic skill exercises and two advanced skill exercises were used. King's College London. 84 Novice, 26 beginner intermediates, 9 advanced intermediates and 4 experts were used in this retrospective observational study. Objective benchmarks derived from the 25th centile of the mean scores of the advanced intermediates provided suitably challenging yet also achievable targets for training surgeons. The disparity in scores was greatest for the advanced exercises. Novice surgeons are able to achieve the benchmarks across all exercises in the majority of metrics. We have successfully created this proof-of-concept study, which requires validation in a larger cohort. Objective benchmarks obtained from the 25th centile of the mean scores of advanced intermediates provide clinically relevant benchmarks at the standard of a competent robotic surgeon that are challenging yet also attainable. That can be used within a VR training curriculum allowing participants to track and monitor their progress in a structured and progressional manner through five exercises. Providing clearly defined targets, ensuring that a universal training standard has been achieved across training surgeons. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Intelligent manipulation technique for multi-branch robotic systems
NASA Technical Reports Server (NTRS)
Chen, Alexander Y. K.; Chen, Eugene Y. S.
1990-01-01
New analytical development in kinematics planning is reported. The INtelligent KInematics Planner (INKIP) consists of the kinematics spline theory and the adaptive logic annealing process. Also, a novel framework of robot learning mechanism is introduced. The FUzzy LOgic Self Organized Neural Networks (FULOSONN) integrates fuzzy logic in commands, control, searching, and reasoning, the embedded expert system for nominal robotics knowledge implementation, and the self organized neural networks for the dynamic knowledge evolutionary process. Progress on the mechanical construction of SRA Advanced Robotic System (SRAARS) and the real time robot vision system is also reported. A decision was made to incorporate the Local Area Network (LAN) technology in the overall communication system.
Vocal Emotion of Humanoid Robots: A Study from Brain Mechanism
Wang, Youhui; Hu, Xiaohua; Zhou, Jie; Kuo, Taitzong
2014-01-01
Driven by rapid ongoing advances in humanoid robot, increasing attention has been shifted into the issue of emotion intelligence of AI robots to facilitate the communication between man-machines and human beings, especially for the vocal emotion in interactive system of future humanoid robots. This paper explored the brain mechanism of vocal emotion by studying previous researches and developed an experiment to observe the brain response by fMRI, to analyze vocal emotion of human beings. Findings in this paper provided a new approach to design and evaluate the vocal emotion of humanoid robots based on brain mechanism of human beings. PMID:24587712
Conceptual Study of LSTAT Integration to Robotics and Other Advanced Medical Technologies
2004-07-31
Robotic Manipulators............................................................................... 37 3.2.4 Digital X -ray...11 Figure 7 OEC 9800 digital x -ray system (GE Healthcare) ....................................................... 21 Figure 8 portable...digital x -ray equipment (Varian, Inc.) ........................................................... 22 Figure 9 Portable ultrasound units
Sabanović, Selma
2014-06-01
Using interviews, participant observation, and published documents, this article analyzes the co-construction of robotics and culture in Japan through the technical discourse and practices of robotics researchers. Three cases from current robotics research--the seal-like robot PARO, the Humanoid Robotics Project HRP-2 humanoid, and 'kansei robotics' - show the different ways in which scientists invoke culture to provide epistemological grounding and possibilities for social acceptance of their work. These examples show how the production and consumption of social robotic technologies are associated with traditional crafts and values, how roboticists negotiate among social, technical, and cultural constraints while designing robots, and how humans and robots are constructed as cultural subjects in social robotics discourse. The conceptual focus is on the repeated assembly of cultural models of social behavior, organization, cognition, and technology through roboticists' narratives about the development of advanced robotic technologies. This article provides a picture of robotics as the dynamic construction of technology and culture and concludes with a discussion of the limits and possibilities of this vision in promoting a culturally situated understanding of technology and a multicultural view of science.
Electroactive polymer (EAP) actuators for future humanlike robots
NASA Astrophysics Data System (ADS)
Bar-Cohen, Yoseph
2009-03-01
Human-like robots are increasingly becoming an engineering reality thanks to recent technology advances. These robots, which are inspired greatly by science fiction, were originated from the desire to reproduce the human appearance, functions and intelligence and they may become our household appliance or even companion. The development of such robots is greatly supported by emerging biologically inspired technologies. Potentially, electroactive polymer (EAP) materials are offering actuation capabilities that allow emulating the action of our natural muscles for making such machines perform lifelike. There are many technical issues related to making such robots including the need for EAP materials that can operate as effective actuators. Beside the technology challenges these robots also raise concerns that need to be addressed prior to forming super capable robots. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper, the potential EAP actuators and the challenges that these robots may pose will be reviewed.
NASA Technical Reports Server (NTRS)
1990-01-01
The present conference on artificial intelligence (AI), robotics, and automation in space encompasses robot systems, lunar and planetary robots, advanced processing, expert systems, knowledge bases, issues of operation and management, manipulator control, and on-orbit service. Specific issues addressed include fundamental research in AI at NASA, the FTS dexterous telerobot, a target-capture experiment by a free-flying robot, the NASA Planetary Rover Program, the Katydid system for compiling KEE applications to Ada, and speech recognition for robots. Also addressed are a knowledge base for real-time diagnosis, a pilot-in-the-loop simulation of an orbital docking maneuver, intelligent perturbation algorithms for space scheduling optimization, a fuzzy control method for a space manipulator system, hyperredundant manipulator applications, robotic servicing of EOS instruments, and a summary of astronaut inputs on automation and robotics for the Space Station Freedom.
Electroactive Polymer (EAP) Actuators for Future Humanlike Robots
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
2009-01-01
Human-like robots are increasingly becoming an engineering reality thanks to recent technology advances. These robots, which are inspired greatly by science fiction, were originated from the desire to reproduce the human appearance, functions and intelligence and they may become our household appliance or even companion. The development of such robots is greatly supported by emerging biologically inspired technologies. Potentially, electroactive polymer (EAP) materials are offering actuation capabilities that allow emulating the action of our natural muscles for making such machines perform lifelike. There are many technical issues related to making such robots including the need for EAP materials that can operate as effective actuators. Beside the technology challenges these robots also raise concerns that need to be addressed prior to forming super capable robots. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper, the potential EAP actuators and the challenges that these robots may pose will be reviewed.
Can Robotic Interaction Improve Joint Attention Skills?
Zheng, Zhi; Swanson, Amy R.; Bekele, Esubalew; Zhang, Lian; Crittendon, Julie A.; Weitlauf, Amy F.; Sarkar, Nilanjan
2013-01-01
Although it has often been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorder (ASD), relatively few investigations have indexed the impact of intervention and feedback approaches. This pilot study investigated the application of a novel robotic interaction system capable of administering and adjusting joint attention prompts to a small group (n = 6) of children with ASD. Across a series of four sessions, children improved in their ability to orient to prompts administered by the robotic system and continued to display strong attention toward the humanoid robot over time. The results highlight both potential benefits of robotic systems for directed intervention approaches as well as potent limitations of existing humanoid robotic platforms. PMID:24014194
Can Robotic Interaction Improve Joint Attention Skills?
Warren, Zachary E; Zheng, Zhi; Swanson, Amy R; Bekele, Esubalew; Zhang, Lian; Crittendon, Julie A; Weitlauf, Amy F; Sarkar, Nilanjan
2015-11-01
Although it has often been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorder (ASD), relatively few investigations have indexed the impact of intervention and feedback approaches. This pilot study investigated the application of a novel robotic interaction system capable of administering and adjusting joint attention prompts to a small group (n = 6) of children with ASD. Across a series of four sessions, children improved in their ability to orient to prompts administered by the robotic system and continued to display strong attention toward the humanoid robot over time. The results highlight both potential benefits of robotic systems for directed intervention approaches as well as potent limitations of existing humanoid robotic platforms.
Robotics in space-age manufacturing
NASA Technical Reports Server (NTRS)
Jones, Chip
1991-01-01
Robotics technologies are developed to improve manufacturing of space hardware. The following applications of robotics are covered: (1) welding for the space shuttle and space station Freedom programs; (2) manipulation of high-pressure water for shuttle solid rocket booster refurbishment; (3) automating the application of insulation materials; (4) precision application of sealants; and (5) automation of inspection procedures. Commercial robots are used for these development programs, but they are teamed with advanced sensors, process controls, and computer simulation to form highly productive manufacturing systems. Many of the technologies are also being actively pursued in private sector manufacturing operations.
Solar Electric Propulsion (SEP) Tug Power System Considerations
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Bury, Kristen M.; Hojinicki, Jeffrey S.; Sajdak, Adam M.; Scheiddegger, Robert J.
2011-01-01
Solar electric propulsion (SEP) technology is truly at the "intersection of commercial and military space" as well as the intersection of NASA robotic and human space missions. Building on the use of SEP for geosynchronous spacecraft station keeping, there are numerous potential commercial and military mission applications for SEP stages operating in Earth orbit. At NASA, there is a resurgence of interest in robotic SEP missions for Earth orbit raising applications, 1-AU class heliocentric missions to near Earth objects (NEOs) and SEP spacecraft technology demonstrations. Beyond these nearer term robotic missions, potential future human space flight missions to NEOs with high-power SEP stages are being considered. To enhance or enable this broad class of commercial, military and NASA missions, advancements in the power level and performance of SEP technologies are needed. This presentation will focus on design considerations for the solar photovoltaic array (PVA) and electric power system (EPS) vital to the design and operation of an SEP stage. The engineering and programmatic pros and cons of various PVA and EPS technologies and architectures will be discussed in the context of operating voltage and power levels. The impacts of PVA and EPS design options on the remaining SEP stage subsystem designs, as well as spacecraft operations, will also be discussed.
Land, sea, and air unmanned systems research and development at SPAWAR Systems Center Pacific
NASA Astrophysics Data System (ADS)
Nguyen, Hoa G.; Laird, Robin; Kogut, Greg; Andrews, John; Fletcher, Barbara; Webber, Todd; Arrieta, Rich; Everett, H. R.
2009-05-01
The Space and Naval Warfare (SPAWAR) Systems Center Pacific (SSC Pacific) has a long and extensive history in unmanned systems research and development, starting with undersea applications in the 1960s and expanding into ground and air systems in the 1980s. In the ground domain, we are addressing force-protection scenarios using large unmanned ground vehicles (UGVs) and fixed sensors, and simultaneously pursuing tactical and explosive ordnance disposal (EOD) operations with small man-portable robots. Technology thrusts include improving robotic intelligence and functionality, autonomous navigation and world modeling in urban environments, extended operational range of small teleoperated UGVs, enhanced human-robot interaction, and incorporation of remotely operated weapon systems. On the sea surface, we are pushing the envelope on dynamic obstacle avoidance while conforming to established nautical rules-of-the-road. In the air, we are addressing cooperative behaviors between UGVs and small vertical-takeoff- and-landing unmanned air vehicles (UAVs). Underwater applications involve very shallow water mine countermeasures, ship hull inspection, oceanographic data collection, and deep ocean access. Specific technology thrusts include fiber-optic communications, adaptive mission controllers, advanced navigation techniques, and concepts of operations (CONOPs) development. This paper provides a review of recent accomplishments and current status of a number of projects in these areas.
ERIC Educational Resources Information Center
Lye, Ngit Chan; Wong, Kok Wai; Chiou, Andrew
2013-01-01
Educational robotics involves using robots as an educational tool to provide a long term, and progressive learning activity, to cater to different age group. The current concern is that, using robots in education should not be an instance of a one-off project for the sole purpose of participating in a competitive event. Instead, it should be a…
Psychouli, Pavlina; Cheng, Pericles; Dimopoulos, Christos
2017-01-01
This paper presents a novel robotic system, which aims to enhance children's motivation through the gamification of the CIMT process. The system offers adjustability of the required movement skills, ensuring children will put increasingly more effort to achieve the rehabilitation goal, while keeping the task fun and engaging.
Development of Advanced Robotic Hand System for space application
NASA Technical Reports Server (NTRS)
Machida, Kazuo; Akita, Kenzo; Mikami, Tatsuo; Komada, Satoru
1994-01-01
The Advanced Robotic Hand System (ARH) is a precise telerobotics system with a semi dexterous hand for future space application. The ARH will be tested in space as one of the missions of the Engineering Tests Satellite 7 (ETS-7) which will be launched in 1997. The objectives of the ARH development are to evaluate the capability of a possible robot hand for precise and delicate tasks and to validate the related technologies implemented in the system. The ARH is designed to be controlled both from ground as a teleoperation and by locally autonomous control. This paper presents the overall system design and the functional capabilities of the ARH as well as its mission outline as the preliminary design has been completed.
Advanced Interval Type-2 Fuzzy Sliding Mode Control for Robot Manipulator.
Hwang, Ji-Hwan; Kang, Young-Chang; Park, Jong-Wook; Kim, Dong W
2017-01-01
In this paper, advanced interval type-2 fuzzy sliding mode control (AIT2FSMC) for robot manipulator is proposed. The proposed AIT2FSMC is a combination of interval type-2 fuzzy system and sliding mode control. For resembling a feedback linearization (FL) control law, interval type-2 fuzzy system is designed. For compensating the approximation error between the FL control law and interval type-2 fuzzy system, sliding mode controller is designed, respectively. The tuning algorithms are derived in the sense of Lyapunov stability theorem. Two-link rigid robot manipulator with nonlinearity is used to test and the simulation results are presented to show the effectiveness of the proposed method that can control unknown system well.
Towards Rehabilitation Robotics: Off-the-Shelf BCI Control of Anthropomorphic Robotic Arms.
Athanasiou, Alkinoos; Xygonakis, Ioannis; Pandria, Niki; Kartsidis, Panagiotis; Arfaras, George; Kavazidi, Kyriaki Rafailia; Foroglou, Nicolas; Astaras, Alexander; Bamidis, Panagiotis D
2017-01-01
Advances in neural interfaces have demonstrated remarkable results in the direction of replacing and restoring lost sensorimotor function in human patients. Noninvasive brain-computer interfaces (BCIs) are popular due to considerable advantages including simplicity, safety, and low cost, while recent advances aim at improving past technological and neurophysiological limitations. Taking into account the neurophysiological alterations of disabled individuals, investigating brain connectivity features for implementation of BCI control holds special importance. Off-the-shelf BCI systems are based on fast, reproducible detection of mental activity and can be implemented in neurorobotic applications. Moreover, social Human-Robot Interaction (HRI) is increasingly important in rehabilitation robotics development. In this paper, we present our progress and goals towards developing off-the-shelf BCI-controlled anthropomorphic robotic arms for assistive technologies and rehabilitation applications. We account for robotics development, BCI implementation, and qualitative assessment of HRI characteristics of the system. Furthermore, we present two illustrative experimental applications of the BCI-controlled arms, a study of motor imagery modalities on healthy individuals' BCI performance, and a pilot investigation on spinal cord injured patients' BCI control and brain connectivity. We discuss strengths and limitations of our design and propose further steps on development and neurophysiological study, including implementation of connectivity features as BCI modality.
Towards Rehabilitation Robotics: Off-the-Shelf BCI Control of Anthropomorphic Robotic Arms
Xygonakis, Ioannis; Pandria, Niki; Kartsidis, Panagiotis; Arfaras, George; Kavazidi, Kyriaki Rafailia; Foroglou, Nicolas
2017-01-01
Advances in neural interfaces have demonstrated remarkable results in the direction of replacing and restoring lost sensorimotor function in human patients. Noninvasive brain-computer interfaces (BCIs) are popular due to considerable advantages including simplicity, safety, and low cost, while recent advances aim at improving past technological and neurophysiological limitations. Taking into account the neurophysiological alterations of disabled individuals, investigating brain connectivity features for implementation of BCI control holds special importance. Off-the-shelf BCI systems are based on fast, reproducible detection of mental activity and can be implemented in neurorobotic applications. Moreover, social Human-Robot Interaction (HRI) is increasingly important in rehabilitation robotics development. In this paper, we present our progress and goals towards developing off-the-shelf BCI-controlled anthropomorphic robotic arms for assistive technologies and rehabilitation applications. We account for robotics development, BCI implementation, and qualitative assessment of HRI characteristics of the system. Furthermore, we present two illustrative experimental applications of the BCI-controlled arms, a study of motor imagery modalities on healthy individuals' BCI performance, and a pilot investigation on spinal cord injured patients' BCI control and brain connectivity. We discuss strengths and limitations of our design and propose further steps on development and neurophysiological study, including implementation of connectivity features as BCI modality. PMID:28948168
Surgical robotics for patient safety in the perioperative environment: realizing the promise.
Fuji Lai; Louw, Deon
2007-06-01
Surgery is at a crossroads of complexity. However, there is a potential path toward patient safety. One such course is to leverage computer and robotic assist techniques in the reduction and interception of error in the perioperative environment. This white paper attempts to facilitate the road toward realizing that promise by outlining a research agenda. The paper will briefly review the current status of surgical robotics and summarize any conclusions that can be reached to date based on existing research. It will then lay out a roadmap for future research to determine how surgical robots should be optimally designed and integrated into the perioperative workflow and process. Successful movement down this path would involve focused efforts and multiagency collaboration to address the research priorities outlined, thereby realizing the full potential of surgical robotics to augment human capabilities, enhance task performance, extend the reach of surgical care, improve health care quality, and ultimately enhance patient safety.
Enhanced operator perception through 3D vision and haptic feedback
NASA Astrophysics Data System (ADS)
Edmondson, Richard; Light, Kenneth; Bodenhamer, Andrew; Bosscher, Paul; Wilkinson, Loren
2012-06-01
Polaris Sensor Technologies (PST) has developed a stereo vision upgrade kit for TALON® robot systems comprised of a replacement gripper camera and a replacement mast zoom camera on the robot, and a replacement display in the Operator Control Unit (OCU). Harris Corporation has developed a haptic manipulation upgrade for TALON® robot systems comprised of a replacement arm and gripper and an OCU that provides haptic (force) feedback. PST and Harris have recently collaborated to integrate the 3D vision system with the haptic manipulation system. In multiple studies done at Fort Leonard Wood, Missouri it has been shown that 3D vision and haptics provide more intuitive perception of complicated scenery and improved robot arm control, allowing for improved mission performance and the potential for reduced time on target. This paper discusses the potential benefits of these enhancements to robotic systems used for the domestic homeland security mission.
NASA Technical Reports Server (NTRS)
Jacobus, Heidi; Riggs, Alan J.; Jacobus, Charles; Weinstein, Yechiel
1991-01-01
Teleoperated control requires a master human interface device that can provide haptic input and output which reflect the responses of a slave robotic system. The effort reported in this paper addresses the design and prototyping of a six degree-of-freedom (DOF) Cartesian coordinate hand controller for this purpose. The device design recommended is an XYZ stage attached to a three-roll wrist which positions a flight-type handgrip. Six degrees of freedom are transduced and control brushless DC motor servo electronics similar in design to those used in computer controlled robotic manipulators. This general approach supports scaled force, velocity, and position feedback to aid an operator in achieving telepresence. The generality of the device and control system characteristics allow the use of inverse dynamics robotic control methodology to project slave robot system forces and inertias to the operator (in scaled form) and at the same time to reduce the apparent inertia of the robotic handcontroller itself. The current control design, which is not multiple fault tolerant, can be extended to make flight control or space use possible. The proposed handcontroller will have advantages in space-based applications where an operator must control several robot arms in a simultaneous and coordinated fashion. It will also have applications in intravehicular activities (within the Space Station) such as microgravity experiments in metallurgy and biological experiments that require isolation from the astronauts' environment. For ground applications, the handcontroller will be useful in underwater activities where the generality of the proposed handcontroller becomes an asset for operation of many different manipulator types. Also applications will emerge in the Military, Construction, and Maintenance/Manufacturing areas including ordnance handling, mine removal, NBC (Nuclear, Chemical, Biological) operations, control of vehicles, and operating strength and agility enhanced machines. Future avionics applications including advanced helicopter and aircraft control may also become important.
Overcoming extreme obesity with robotic surgery.
Stone, Pamela; Burnett, Alexander; Burton, Brian; Roman, Juan
2010-12-01
Obesity is often associated with endometrial cancer and has posed a challenge in surgical management. Complications such as wound breakdown, respiratory challenges, cardiac complications and difficult intubations are associated with obesity. For the patient with uterine cancer, surgery is necessary for staging, control of symptoms and cure. With the advent of the da Vinci(™) intuitive robot, alternative surgical options can now be offered to these patients. While surgery is the principal modality for the treatment and management of uterine cancer, the morbidly obese patient faces increased complications and longer postoperative recovery. As studied in the LAP2, comparable outcomes have been noted in laparotomy vs laparoscopic surgery. Recently, minimally invasive surgery has been refined with the advent of the da Vinci robotic system. Applying a minimally invasive technique further enhanced with the da Vinci robotic system, a total laparoscopic hysterectomy with bilateral salpingo-oophorectomy was performed on a patient with a BMI of 98. A 35 year-old G0 woman with a BMI of 98 presented with heavy vaginal bleeding and anaemia. She was diagnosed with endometrioid adenocarcinoma of the uterus, FIGO grade 1. She was treated with a robotically assisted total laparoscopic hysterectomy and bilateral salpingo-oophorectomy. Her postoperative course was uncomplicated and she was discharged home on post-operative day 1. Since obesity is a significant risk factor for endometrial cancer and the prevalence of obesity is increasing, developing surgical techniques to appropriately manage these patients is important. Minimally invasive surgery, specifically with robotic assistance, has increased the possibilities of performing minimally invasive surgery in morbidly obese women. It allows navigation around anatomical barriers and decreases the fatigue experienced by the surgeons. With the increasing obesity of our population and the high prevalence of uterine cancer, further advancement of equipment, anaesthesia and surgical techniques to accommodate the larger patient while decreasing complications have yet to be standardized. Copyright © 2010 John Wiley & Sons, Ltd.
Combined virtual and real robotic test-bed for single operator control of multiple robots
NASA Astrophysics Data System (ADS)
Lee, Sam Y.-S.; Hunt, Shawn; Cao, Alex; Pandya, Abhilash
2010-04-01
Teams of heterogeneous robots with different dynamics or capabilities could perform a variety of tasks such as multipoint surveillance, cooperative transport and explorations in hazardous environments. In this study, we work with heterogeneous robots of semi-autonomous ground and aerial robots for contaminant localization. We developed a human interface system which linked every real robot to its virtual counterpart. A novel virtual interface has been integrated with Augmented Reality that can monitor the position and sensory information from video feed of ground and aerial robots in the 3D virtual environment, and improve user situational awareness. An operator can efficiently control the real multi-robots using the Drag-to-Move method on the virtual multi-robots. This enables an operator to control groups of heterogeneous robots in a collaborative way for allowing more contaminant sources to be pursued simultaneously. The advanced feature of the virtual interface system is guarded teleoperation. This can be used to prevent operators from accidently driving multiple robots into walls and other objects. Moreover, the feature of the image guidance and tracking is able to reduce operator workload.
Guerrero, Carlos Rodriguez; Fraile Marinero, Juan Carlos; Turiel, Javier Perez; Muñoz, Victor
2013-11-01
Human motor performance, speed and variability are highly susceptible to emotional states. This paper reviews the impact of the emotions on the motor control performance, and studies the possibility of improving the perceived skill/challenge relation on a multimodal neural rehabilitation scenario, by means of a biocybernetic controller that modulates the assistance provided by a haptic controlled robot in reaction to undesirable physical and mental states. Results from psychophysiological, performance and self assessment data for closed loop experiments in contrast with their open loop counterparts, suggest that the proposed method had a positive impact on the overall challenge/skill relation leading to an enhanced physical human-robot interaction experience. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Real-time adaptive off-road vehicle navigation and terrain classification
NASA Astrophysics Data System (ADS)
Muller, Urs A.; Jackel, Lawrence D.; LeCun, Yann; Flepp, Beat
2013-05-01
We are developing a complete, self-contained autonomous navigation system for mobile robots that learns quickly, uses commodity components, and has the added benefit of emitting no radiation signature. It builds on the autonomous navigation technology developed by Net-Scale and New York University during the Defense Advanced Research Projects Agency (DARPA) Learning Applied to Ground Robots (LAGR) program and takes advantage of recent scientific advancements achieved during the DARPA Deep Learning program. In this paper we will present our approach and algorithms, show results from our vision system, discuss lessons learned from the past, and present our plans for further advancing vehicle autonomy.
Advanced Space Surface Systems Operations
NASA Technical Reports Server (NTRS)
Huffaker, Zachary Lynn; Mueller, Robert P.
2014-01-01
The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in further detail, as well as the full scope of the contributions made during this opportunity.
[History of robotics: from Archytas of Tarentum until da Vinci robot. (Part I)].
Sánchez Martín, F M; Millán Rodríguez, F; Salvador Bayarri, J; Palou Redorta, J; Rodríguez Escovar, F; Esquena Fernández, S; Villavicencio Mavrich, H
2007-02-01
Robotic surgery is the newst technologic option in urology. To understand how new robots work is interesting to know their history. The desire to design machines imitating humans continued for more than 4000 years. There are references to King-su Tse (clasic China) making up automaton at 500 a. C. Archytas of Tarentum (at around 400 a.C.) is considered the father of mechanical engineering, and one of the occidental robotics classic referents. Heron of Alexandria, Hsieh-Fec, Al-Jazari, Roger Bacon, Juanelo Turriano, Leonardo da Vinci, Vaucanson o von Kempelen were robot inventors in the middle age, renaissance and classicism. At the XIXth century, automaton production underwent a peak and all engineering branches suffered a great development. At 1942 Asimov published the three robotics laws, based on mechanics, electronics and informatics advances. At XXth century robots able to do very complex self governing works were developed, like da Vinci Surgical System (Intuitive Surgical Inc, Sunnyvale, CA, USA), a very sophisticated robot to assist surgeons.
3D printing of soft robotic systems
NASA Astrophysics Data System (ADS)
Wallin, T. J.; Pikul, J.; Shepherd, R. F.
2018-06-01
Soft robots are capable of mimicking the complex motion of animals. Soft robotic systems are defined by their compliance, which allows for continuous and often responsive localized deformation. These features make soft robots especially interesting for integration with human tissues, for example, the implementation of biomedical devices, and for robotic performance in harsh or uncertain environments, for example, exploration in confined spaces or locomotion on uneven terrain. Advances in soft materials and additive manufacturing technologies have enabled the design of soft robots with sophisticated capabilities, such as jumping, complex 3D movements, gripping and releasing. In this Review, we examine the essential soft material properties for different elements of soft robots, highlighting the most relevant polymer systems. Advantages and limitations of different additive manufacturing processes, including 3D printing, fused deposition modelling, direct ink writing, selective laser sintering, inkjet printing and stereolithography, are discussed, and the different techniques are investigated for their application in soft robotic fabrication. Finally, we explore integrated robotic systems and give an outlook for the future of the field and remaining challenges.
Robotic technology in surgery: past, present, and future.
Camarillo, David B; Krummel, Thomas M; Salisbury, J Kenneth
2004-10-01
It has been nearly 20 years since the first appearance of robotics in the operating room. In that time, much progress has been made in integrating robotic technologies with surgical instrumentation, as evidenced by the many thousands of successful robot-assisted cases. However, to build on past success and to fully leverage the potential of surgical robotics in the future, it is essential to maximize a shared understanding and communication among surgeons, engineers, entrepreneurs, and healthcare administrators. This article provides an introduction to medical robotic technologies, develops a possible taxonomy, reviews the evolution of a surgical robot, and discusses future prospects for innovation. Robotic surgery has demonstrated some clear benefits. It remains to be seen where these benefits will outweigh the associated costs over the long term. In the future, surgical robots should be smaller, less expensive, easier to operate, and should seamlessly integrate emerging technologies from a number of different fields. Such advances will enable continued progress in surgical instrumentation and, ultimately, surgical care.
Liang, Yuhua Jake; Lee, Seungcheol Austin
2016-09-01
Human-robot interaction (HRI) will soon transform and shift the communication landscape such that people exchange messages with robots. However, successful HRI requires people to trust robots, and, in turn, the trust affects the interaction. Although prior research has examined the determinants of human-robot trust (HRT) during HRI, no research has examined the messages that people received before interacting with robots and their effect on HRT. We conceptualize these messages as SMART (Strategic Messages Affecting Robot Trust). Moreover, we posit that SMART can ultimately affect actual HRI outcomes (i.e., robot evaluations, robot credibility, participant mood) by affording the persuasive influences from user-generated content (UGC) on participatory Web sites. In Study 1, participants were assigned to one of two conditions (UGC/control) in an original experiment of HRT. Compared with the control (descriptive information only), results showed that UGC moderated the correlation between HRT and interaction outcomes in a positive direction (average Δr = +0.39) for robots as media and robots as tools. In Study 2, we explored the effect of robot-generated content but did not find similar moderation effects. These findings point to an important empirical potential to employ SMART in future robot deployment.
Toolkits Control Motion of Complex Robotics
NASA Technical Reports Server (NTRS)
2010-01-01
That space is a hazardous environment for humans is common knowledge. Even beyond the obvious lack of air and gravity, the extreme temperatures and exposure to radiation make the human exploration of space a complicated and risky endeavor. The conditions of space and the space suits required to conduct extravehicular activities add layers of difficulty and danger even to tasks that would be simple on Earth (tightening a bolt, for example). For these reasons, the ability to scout distant celestial bodies and perform maintenance and construction in space without direct human involvement offers significant appeal. NASA has repeatedly turned to complex robotics for solutions to extend human presence deep into space at reduced risk and cost and to enhance space operations in low Earth orbit. At Johnson Space Center, engineers explore the potential applications of dexterous robots capable of performing tasks like those of an astronaut during extravehicular activities and even additional ones too delicate or dangerous for human participation. Johnson's Dexterous Robotics Laboratory experiments with a wide spectrum of robot manipulators, such as the Mitsubishi PA-10 and the Robotics Research K-1207i robotic arms. To simplify and enhance the use of these robotic systems, Johnson researchers sought generic control methods that could work effectively across every system.
The use of automation and robotic systems to establish and maintain lunar base operations
NASA Technical Reports Server (NTRS)
Petrosky, Lyman J.
1992-01-01
Robotic systems provide a means of performing many of the operations required to establish and maintain a lunar base. They form a synergistic system when properly used in concert with human activities. This paper discusses the various areas where robotics and automation may be used to enhance lunar base operations. Robots are particularly well suited for surface operations (exterior to the base habitat modules) because they can be designed to operate in the extreme temperatures and vacuum conditions of the Moon (or Mars). In this environment, the capabilities of semi-autonomous robots would surpass that of humans in all but the most complex tasks. Robotic surface operations include such activities as long range geological and mineralogical surveys with sample return, materials movement in and around the base, construction of radiation barriers around habitats, transfer of materials over large distances, and construction of outposts. Most of the above operations could be performed with minor modifications to a single basic robotic rover. Within the lunar base habitats there are a few areas where robotic operations would be preferable to human operations. Such areas include routine inspections for leakage in the habitat and its systems, underground transfer of materials between habitats, and replacement of consumables. In these and many other activities, robotic systems will greatly enhance lunar base operations. The robotic systems described in this paper are based on what is realistically achievable with relatively near term technology. A lunar base can be built and maintained if we are willing.
Space station automation and robotics study. Operator-systems interface
NASA Technical Reports Server (NTRS)
1984-01-01
This is the final report of a Space Station Automation and Robotics Planning Study, which was a joint project of the Boeing Aerospace Company, Boeing Commercial Airplane Company, and Boeing Computer Services Company. The study is in support of the Advanced Technology Advisory Committee established by NASA in accordance with a mandate by the U.S. Congress. Boeing support complements that provided to the NASA Contractor study team by four aerospace contractors, the Stanford Research Institute (SRI), and the California Space Institute. This study identifies automation and robotics (A&R) technologies that can be advanced by requirements levied by the Space Station Program. The methodology used in the study is to establish functional requirements for the operator system interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with extravehicular (EV) robot operations.
Virtual reality and robotics for stroke rehabilitation: where do we go from here?
Wade, Eric; Winstein, Carolee J
2011-01-01
Promoting functional recovery after stroke requires collaborative and innovative approaches to neurorehabilitation research. Task-oriented training (TOT) approaches that include challenging, adaptable, and meaningful activities have led to successful outcomes in several large-scale multisite definitive trials. This, along with recent technological advances of virtual reality and robotics, provides a fertile environment for furthering clinical research in neurorehabilitation. Both virtual reality and robotics make use of multimodal sensory interfaces to affect human behavior. In the therapeutic setting, these systems can be used to quantitatively monitor, manipulate, and augment the users' interaction with their environment, with the goal of promoting functional recovery. This article describes recent advances in virtual reality and robotics and the synergy with best clinical practice. Additionally, we describe the promise shown for automated assessments and in-home activity-based interventions. Finally, we propose a broader approach to ensuring that technology-based assessment and intervention complement evidence-based practice and maintain a patient-centered perspective.
Bhatia, Parisha; Mohamed, Hossam Eldin; Kadi, Abida; Walvekar, Rohan R.
2015-01-01
Robot assisted thyroid surgery has been the latest advance in the evolution of thyroid surgery after endoscopy assisted procedures. The advantage of a superior field vision and technical advancements of robotic technology have permitted novel remote access (trans-axillary and retro-auricular) surgical approaches. Interestingly, several remote access surgical ports using robot surgical system and endoscopic technique have been customized to avoid the social stigma of a visible scar. Current literature has displayed their various advantages in terms of post-operative outcomes; however, the associated financial burden and also additional training and expertise necessary hinder its widespread adoption into endocrine surgery practices. These approaches offer excellent cosmesis, with a shorter learning curve and reduce discomfort to surgeons operating ergonomically through a robotic console. This review aims to provide details of various remote access techniques that are being offered for thyroid resection. Though these have been reported to be safe and feasible approaches for thyroid surgery, further evaluation for their efficacy still remains. PMID:26425450
Artificial intelligence and robot responsibilities: innovating beyond rights.
Ashrafian, Hutan
2015-04-01
The enduring innovations in artificial intelligence and robotics offer the promised capacity of computer consciousness, sentience and rationality. The development of these advanced technologies have been considered to merit rights, however these can only be ascribed in the context of commensurate responsibilities and duties. This represents the discernable next-step for evolution in this field. Addressing these needs requires attention to the philosophical perspectives of moral responsibility for artificial intelligence and robotics. A contrast to the moral status of animals may be considered. At a practical level, the attainment of responsibilities by artificial intelligence and robots can benefit from the established responsibilities and duties of human society, as their subsistence exists within this domain. These responsibilities can be further interpreted and crystalized through legal principles, many of which have been conserved from ancient Roman law. The ultimate and unified goal of stipulating these responsibilities resides through the advancement of mankind and the enduring preservation of the core tenets of humanity.
Cost effectiveness of robotic mitral valve surgery.
Moss, Emmanuel; Halkos, Michael E
2017-01-01
Significant technological advances have led to an impressive evolution in mitral valve surgery over the last two decades, allowing surgeons to safely perform less invasive operations through the right chest. Most new technology comes with an increased upfront cost that must be measured against postoperative savings and other advantages such as decreased perioperative complications, faster recovery, and earlier return to preoperative level of functioning. The Da Vinci robot is an example of such a technology, combining the significant benefits of minimally invasive surgery with a "gold standard" valve repair. Although some have reported that robotic surgery is associated with increased overall costs, there is literature suggesting that efficient perioperative care and shorter lengths of stay can offset the increased capital and intraoperative expenses. While data on current cost is important to consider, one must also take into account future potential value resulting from technological advancement when evaluating cost-effectiveness. Future refinements that will facilitate more effective surgery, coupled with declining cost of technology will further increase the value of robotic surgery compared to traditional approaches.
Movement Anticipation and EEG: Implications for BCI-Contingent Robot Therapy
Norman, Sumner L.; Dennison, Mark; Wolbrecht, Eric; Cramer, Steven C.; Srinivasan, Ramesh; Reinkensmeyer, David J.
2017-01-01
Brain-computer interfacing is a technology that has the potential to improve patient engagement in robot-assisted rehabilitation therapy. For example, movement intention reduces mu (8-13 Hz) oscillation amplitude over the sensorimotor cortex, a phenomenon referred to as event-related desynchronization (ERD). In an ERD-contingent assistance paradigm, initial BCI-enhanced robotic therapy studies have used ERD to provide robotic assistance for movement. Here we investigated how ERD changed as a function of audio-visual stimuli, overt movement from the participant, and robotic assistance. Twelve unimpaired subjects played a computer game designed for rehabilitation therapy with their fingers using the FINGER robotic exoskeleton. In the game, the participant and robot matched movement timing to audio-visual stimuli in the form of notes approaching a target on the screen set to the consistent beat of popular music. The audio-visual stimulation of the game alone did not cause ERD, before or after training. In contrast, overt movement by the subject caused ERD, whether or not the robot assisted the finger movement. Notably, ERD was also present when the subjects remained passive and the robot moved their fingers to play the game. This ERD occurred in anticipation of the passive finger movement with similar onset timing as for the overt movement conditions. These results demonstrate that ERD can be contingent on expectation of robotic assistance; that is, the brain generates an anticipatory ERD in expectation of a robot-imposed but predictable movement. This is a caveat that should be considered in designing BCIs for enhancing patient effort in roboticallyassisted therapy. PMID:26891487
High level functions for the intuitive use of an assistive robot.
Lebec, Olivier; Ben Ghezala, Mohamed Walid; Leynart, Violaine; Laffont, Isabelle; Fattal, Charles; Devilliers, Laurence; Chastagnol, Clement; Martin, Jean-Claude; Mezouar, Youcef; Korrapatti, Hermanth; Dupourqué, Vincent; Leroux, Christophe
2013-06-01
This document presents the research project ARMEN (Assistive Robotics to Maintain Elderly People in a Natural environment), aimed at the development of a user friendly robot with advanced functions for assistance to elderly or disabled persons at home. Focus is given to the robot SAM (Smart Autonomous Majordomo) and its new features of navigation, manipulation, object recognition, and knowledge representation developed for the intuitive supervision of the robot. The results of the technical evaluations show the value and potential of these functions for practical applications. The paper also documents the details of the clinical evaluations carried out with elderly and disabled persons in a therapeutic setting to validate the project.
Machine intelligence and robotics: Report of the NASA study group. Executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
A brief overview of applications of machine intelligence and robotics in the space program is given. These space exploration robots, global service robots to collect data for public service use on soil conditions, sea states, global crop conditions, weather, geology, disasters, etc., from Earth orbit, space industrialization and processing technologies, and construction of large structures in space. Program options for research, advanced development, and implementation of machine intelligence and robot technology for use in program planning are discussed. A vigorous and long-range program to incorporate and keep pace with state of the art developments in computer technology, both in spaceborne and ground-based computer systems is recommended.
Developments in brain-machine interfaces from the perspective of robotics.
Kim, Hyun K; Park, Shinsuk; Srinivasan, Mandayam A
2009-04-01
Many patients suffer from the loss of motor skills, resulting from traumatic brain and spinal cord injuries, stroke, and many other disabling conditions. Thanks to technological advances in measuring and decoding the electrical activity of cortical neurons, brain-machine interfaces (BMI) have become a promising technology that can aid paralyzed individuals. In recent studies on BMI, robotic manipulators have demonstrated their potential as neuroprostheses. Restoring motor skills through robot manipulators controlled by brain signals may improve the quality of life of people with disability. This article reviews current robotic technologies that are relevant to BMI and suggests strategies that could improve the effectiveness of a brain-operated neuroprosthesis through robotics.
Robotic bees for crop pollination: Why drones cannot replace biodiversity.
Potts, Simon G; Neumann, Peter; Vaissière, Bernard; Vereecken, Nicolas J
2018-06-14
The notion that robotic crop pollination will solve the decline in pollinators has gained wide popularity recently (Fig. 1), and in March 2018 Walmart filed a patent for autonomous robot bees. However, w present six arguments showing that this is a technically and economically inviable 'solution' at present and poses substantial ecological and moral risks: (1) despite recent advances, robotic pollination is far from being able to replace bees to pollinate crops efficiently; (2) using robots is very unlikely to be economically viable; (3) there would be unacceptably high environmental costs; (4) wider ecosystems would be damaged; (5) it would erode the values of biodiversity; and, (6) relying on robotic pollination could actually lead to major food insecurity. Copyright © 2018 Elsevier B.V. All rights reserved.
Honda humanoid robots development.
Hirose, Masato; Ogawa, Kenichi
2007-01-15
Honda has been doing research on robotics since 1986 with a focus upon bipedal walking technology. The research started with straight and static walking of the first prototype two-legged robot. Now, the continuous transition from walking in a straight line to making a turn has been achieved with the latest humanoid robot ASIMO. ASIMO is the most advanced robot of Honda so far in the mechanism and the control system. ASIMO's configuration allows it to operate freely in the human living space. It could be of practical help to humans with its ability of five-finger arms as well as its walking function. The target of further development of ASIMO is to develop a robot to improve life in human society. Much development work will be continued both mechanically and electronically, staying true to Honda's 'challenging spirit'.
Robotic surgery - advance or gimmick?
De Wilde, Rudy L; Herrmann, Anja
2013-06-01
Robotic surgery is increasingly implemented as a minimally invasive approach to a variety of gynaecological procedures. The use of conventional laparoscopy by a broad range of surgeons, especially in complex procedures, is hampered by several drawbacks. Robotic surgery was created with the aim of overcoming some of the limitations. Although robotic surgery has many advantages, it is also associated with clear disadvantages. At present, the proof of superiority over access by laparotomy or laparoscopy through large randomised- controlled trials is still lacking. Until results of such trials are present, a firm conclusion about the usefulness of robotic surgery cannot be drawn. Robotic surgery is promising, making the advantages of minimally invasive surgery potentially available to a large number of surgeons and patients in the future. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pilot clinical application of an adaptive robotic system for young children with autism
Bekele, Esubalew; Crittendon, Julie A; Swanson, Amy; Sarkar, Nilanjan; Warren, Zachary E
2013-01-01
It has been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders. This pilot feasibility study evaluated the application of a novel adaptive robot-mediated system capable of both administering and automatically adjusting joint attention prompts to a small group of preschool children with autism spectrum disorders (n = 6) and a control group (n = 6). Children in both groups spent more time looking at the humanoid robot and were able to achieve a high level of accuracy across trials. However, across groups, children required higher levels of prompting to successfully orient within robot-administered trials. The results highlight both the potential benefits of closed-loop adaptive robotic systems as well as current limitations of existing humanoid-robotic platforms. PMID:24104517
Robot Manipulator Technologies for Planetary Exploration
NASA Technical Reports Server (NTRS)
Das, H.; Bao, X.; Bar-Cohen, Y.; Bonitz, R.; Lindemann, R.; Maimone, M.; Nesnas, I.; Voorhees, C.
1999-01-01
NASA exploration missions to Mars, initiated by the Mars Pathfinder mission in July 1997, will continue over the next decade. The missions require challenging innovations in robot design and improvements in autonomy to meet ambitious objectives under tight budget and time constraints. The authors are developing design tools, component technologies and capabilities to address these needs for manipulation with robots for planetary exploration. The specific developments are: 1) a software analysis tool to reduce robot design iteration cycles and optimize on design solutions, 2) new piezoelectric ultrasonic motors (USM) for light-weight and high torque actuation in planetary environments, 3) use of advanced materials and structures for strong and light-weight robot arms and 4) intelligent camera-image coordinated autonomous control of robot arms for instrument placement and sample acquisition from a rover vehicle.
NASA Technical Reports Server (NTRS)
Mann, R. C.; Fujimura, K.; Unseren, M. A.
1992-01-01
One of the frontiers in intelligent machine research is the understanding of how constructive cooperation among multiple autonomous agents can be effected. The effort at the Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) focuses on two problem areas: (1) cooperation by multiple mobile robots in dynamic, incompletely known environments; and (2) cooperating robotic manipulators. Particular emphasis is placed on experimental evaluation of research and developments using the CESAR robot system testbeds, including three mobile robots, and a seven-axis, kinematically redundant mobile manipulator. This paper summarizes initial results of research addressing the decoupling of position and force control for two manipulators holding a common object, and the path planning for multiple robots in a common workspace.
Experiences with the JPL telerobot testbed: Issues and insights
NASA Technical Reports Server (NTRS)
Stone, Henry W.; Balaram, Bob; Beahan, John
1989-01-01
The Jet Propulsion Laboratory's (JPL) Telerobot Testbed is an integrated robotic testbed used to develop, implement, and evaluate the performance of advanced concepts in autonomous, tele-autonomous, and tele-operated control of robotic manipulators. Using the Telerobot Testbed, researchers demonstrated several of the capabilities and technological advances in the control and integration of robotic systems which have been under development at JPL for several years. In particular, the Telerobot Testbed was recently employed to perform a near completely automated, end-to-end, satellite grapple and repair sequence. The task of integrating existing as well as new concepts in robot control into the Telerobot Testbed has been a very difficult and timely one. Now that researchers have completed the first major milestone (i.e., the end-to-end demonstration) it is important to reflect back upon experiences and to collect the knowledge that has been gained so that improvements can be made to the existing system. It is also believed that the experiences are of value to the others in the robotics community. Therefore, the primary objective here will be to use the Telerobot Testbed as a case study to identify real problems and technological gaps which exist in the areas of robotics and in particular systems integration. Such problems have surely hindered the development of what could be reasonably called an intelligent robot. In addition to identifying such problems, researchers briefly discuss what approaches have been taken to resolve them or, in several cases, to circumvent them until better approaches can be developed.
Robot therapy: a new approach for mental healthcare of the elderly - a mini-review.
Shibata, Takanori; Wada, Kazuyoshi
2011-01-01
Mental healthcare of elderly people is a common problem in advanced countries. Recently, high technology has developed robots for use not only in factories but also for our living environment. In particular, human-interactive robots for psychological enrichment, which provide services by interacting with humans while stimulating their minds, are rapidly spreading. Such robots not only simply entertain but also render assistance, guide, provide therapy, educate, enable communication, and so on. Robot therapy, which uses robots as a substitution for animals in animal-assisted therapy and activity, is a new application of robots and is attracting the attention of many researchers and psychologists. The seal robot named Paro was developed especially for robot therapy and was used at hospitals and facilities for elderly people in several countries. Recent research has revealed that robot therapy has the same effects on people as animal therapy. In addition, it is being recognized as a new method of mental healthcare for elderly people. In this mini review, we introduce the merits and demerits of animal therapy. Then we explain the human-interactive robot for psychological enrichment, the required functions for therapeutic robots, and the seal robot. Finally, we provide examples of robot therapy for elderly people, including dementia patients. Copyright © 2010 S. Karger AG, Basel.
Robotic renal surgery: The future or a passing curiosity?
Warren, Jeff; da Silva, Vitor; Caumartin, Yves; Luke, Patrick P.W.
2009-01-01
The development, advancement and clinical integration of robotic technology in surgery continue at a staggering pace. In no other discipline has this rapid evolution occurred to a greater degree than in urology. Although radical prostatectomy has grown to become the prototypical application for the robot, the role of the robot in renal surgery remains controversial. Herein we review the literature on robotic renal surgery. A comprehensive PubMed literature search was performed to identify all published reports relating to robotic renal surgery. All clinically related articles involving human participants were critically appraised in this review. Fifty-one clinical articles were included, encompassing robot-assisted pyeloplasty, nephrectomy, nephroureterectomy, living-donor nephrectomy and partial nephrectomy. Feasibility has been shown for each of these procedures. Robot-assisted techniques have been described for almost all renal-related procedures. However, the intersect between feasibility and necessity as it pertains to robotic renal surgery has yet to be defined. Also, the high cost of surgical robotic technology mandates critical appraisal before adoption, especially in a publicly funded health care system, such as the one present in Canada. PMID:19543471
Morimoto, Jun; Kawato, Mitsuo
2015-03-06
In the past two decades, brain science and robotics have made gigantic advances in their own fields, and their interactions have generated several interdisciplinary research fields. First, in the 'understanding the brain by creating the brain' approach, computational neuroscience models have been applied to many robotics problems. Second, such brain-motivated fields as cognitive robotics and developmental robotics have emerged as interdisciplinary areas among robotics, neuroscience and cognitive science with special emphasis on humanoid robots. Third, in brain-machine interface research, a brain and a robot are mutually connected within a closed loop. In this paper, we review the theoretical backgrounds of these three interdisciplinary fields and their recent progress. Then, we introduce recent efforts to reintegrate these research fields into a coherent perspective and propose a new direction that integrates brain science and robotics where the decoding of information from the brain, robot control based on the decoded information and multimodal feedback to the brain from the robot are carried out in real time and in a closed loop. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Creating the brain and interacting with the brain: an integrated approach to understanding the brain
Morimoto, Jun; Kawato, Mitsuo
2015-01-01
In the past two decades, brain science and robotics have made gigantic advances in their own fields, and their interactions have generated several interdisciplinary research fields. First, in the ‘understanding the brain by creating the brain’ approach, computational neuroscience models have been applied to many robotics problems. Second, such brain-motivated fields as cognitive robotics and developmental robotics have emerged as interdisciplinary areas among robotics, neuroscience and cognitive science with special emphasis on humanoid robots. Third, in brain–machine interface research, a brain and a robot are mutually connected within a closed loop. In this paper, we review the theoretical backgrounds of these three interdisciplinary fields and their recent progress. Then, we introduce recent efforts to reintegrate these research fields into a coherent perspective and propose a new direction that integrates brain science and robotics where the decoding of information from the brain, robot control based on the decoded information and multimodal feedback to the brain from the robot are carried out in real time and in a closed loop. PMID:25589568
Technological Advances in Interventions to Enhance Post-Stroke Gait
Sheffler, Lynne R.; Chae, John
2012-01-01
Synopsis This article provides a comprehensive review of specific rehabilitation interventions used to enhance hemiparetic gait following stroke. Neurologic rehabilitation interventions may be either therapeutic resulting in enhanced motor recovery or compensatory whereby assistance or substitution for neurological deficits results in improved functional performance. Included in this review are lower extremity functional electrical stimulation (FES), body-weight supported treadmill training (BWSTT), and lower extremity robotic-assisted gait training. These post-stroke gait training therapies are predicated on activity-dependent neuroplasticity which is the concept that cortical reorganization following central nervous system injury may be induced by repetitive, skilled, and cognitively engaging active movement. All three interventions have been trialed extensively in both research and clinical settings to demonstrate a positive effect on various gait parameters and measures of walking performance. However, more evidence is necessary to determine if specific technology-enhanced gait training methods are superior to conventional gait training methods. This review provides an overview of evidence-based research which supports the efficacy of these three interventions to improve gait, as well as provide perspective on future developments to enhance post-stroke gait in neurologic rehabilitation. PMID:23598265
Robotic inspection of fiber reinforced composites using phased array UT
NASA Astrophysics Data System (ADS)
Stetson, Jeffrey T.; De Odorico, Walter
2014-02-01
Ultrasound is the current NDE method of choice to inspect large fiber reinforced airframe structures. Over the last 15 years Cartesian based scanning machines using conventional ultrasound techniques have been employed by all airframe OEMs and their top tier suppliers to perform these inspections. Technical advances in both computing power and commercially available, multi-axis robots now facilitate a new generation of scanning machines. These machines use multiple end effector tools taking full advantage of phased array ultrasound technologies yielding substantial improvements in inspection quality and productivity. This paper outlines the general architecture for these new robotic scanning systems as well as details the variety of ultrasonic techniques available for use with them including advances such as wide area phased array scanning and sound field adaptation for non-flat, non-parallel surfaces.
A Blueprint of an International Lunar Robotic Village
NASA Technical Reports Server (NTRS)
Alkalai, Leon
2012-01-01
Human civilization is destined to look, find and develop a second habitable destination in our Solar System, besides Earth: Moon and Mars are the two most likely and credible places based on proximity, available local resources and economics Recent international missions have brought back valuable information on both Moon and Mars. The vision is: A permanent presence on the Moon using advanced robotic systems as precursors to the future human settlement of the Moon is possible in the near-term. An international effort should be initiated to create a permanent robotic village to demonstrate and validate advanced technologies and systems across international boundaries, conduct broad science, explore new regions of the Moon and Mars, develop infrastructure, human habitats and shelters, facilitate development of commerce and stimulate public involvement and education.
The coming revolution in personal care robotics: what does it mean for nurses?
Sharts-Hopko, Nancy C
2014-01-01
The business sector provides regular reportage on the development of personal care robots to enable elders and people with disabilities to remain in their homes. Technology in this area is advancing rapidly in Asia, Europe, and North America. To date, the nursing literature has not addressed how nurses will assist these vulnerable populations in the selection and use of robotic technology or how robotics could effect nursing care and patient outcomes. This article provides an overview of development in the area of personal care robotics to address societal needs reflecting demographic trends. Selected relevant issues related to the human-robotic interface including ethical concerns are identified. Implications for nursing education and the delivery of nursing services are identified. Collaboration with engineers in the development of personal care robotic technology has the potential to contribute to the creation of products that optimally address the needs of elders and people with disabilities.
[Service robots in elderly care. Possible application areas and current state of developments].
Graf, B; Heyer, T; Klein, B; Wallhoff, F
2013-08-01
The term "Service robotics" describes semi- or fully autonomous technical systems able to perform services useful to the well-being of humans. Service robots have the potential to support and disburden both persons in need of care as well as nursing care staff. In addition, they can be used in prevention and rehabilitation in order to reduce or avoid the need for help. Products currently available to support people in domestic environments are mainly cleaning or remote-controlled communication robots. Examples of current research activities are the (further) development of mobile robots as advanced communication assistants or the development of (semi) autonomous manipulation aids and multifunctional household assistants. Transport robots are commonly used in many hospitals. In nursing care facilities, the first evaluations have already been made. So-called emotional robots are now sold as products and can be used for therapeutic, occupational, or entertainment activities.
NASA Technical Reports Server (NTRS)
Komendera, Erik E.; Adhikari, Shaurav; Glassner, Samantha; Kishen, Ashwin; Quartaro, Amy
2017-01-01
Autonomous robotic assembly by mobile field robots has seen significant advances in recent decades, yet practicality remains elusive. Identified challenges include better use of state estimation to and reasoning with uncertainty, spreading out tasks to specialized robots, and implementing representative joining methods. This paper proposes replacing 1) self-correcting mechanical linkages with generalized joints for improved applicability, 2) assembly serial manipulators with parallel manipulators for higher precision and stability, and 3) all-in-one robots with a heterogeneous team of specialized robots for agent simplicity. This paper then describes a general assembly algorithm utilizing state estimation. Finally, these concepts are tested in the context of solar array assembly, requiring a team of robots to assemble, bond, and deploy a set of solar panel mockups to a backbone truss to an accuracy not built into the parts. This paper presents the results of these tests.
Robotics in Orthopedics: A Brave New World.
Parsley, Brian S
2018-02-16
Future health-care projection projects a significant growth in population by 2020. Health care has seen an exponential growth in technology to address the growing population with the decreasing number of physicians and health-care workers. Robotics in health care has been introduced to address this growing need. Early adoption of robotics was limited because of the limited application of the technology, the cumbersome nature of the equipment, and technical complications. A continued improvement in efficacy, adaptability, and cost reduction has stimulated increased interest in robotic-assisted surgery. The evolution in orthopedic surgery has allowed for advanced surgical planning, precision robotic machining of bone, improved implant-bone contact, optimization of implant placement, and optimization of the mechanical alignment. The potential benefits of robotic surgery include improved surgical work flow, improvements in efficacy and reduction in surgical time. Robotic-assisted surgery will continue to evolve in the orthopedic field. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1987-01-01
Potential applications of robots for cost effective commercial microelectronic processes in space were studied and the associated robotic requirements were defined. Potential space application areas include advanced materials processing, bulk crystal growth, and epitaxial thin film growth and related processes. All possible automation of these processes was considered, along with energy and environmental requirements. Aspects of robot capabilities considered include system intelligence, ROM requirements, kinematic and dynamic specifications, sensor design and configuration, flexibility and maintainability. Support elements discussed included facilities, logistics, ground support, launch and recovery, and management systems.
TRICCS: A proposed teleoperator/robot integrated command and control system for space applications
NASA Technical Reports Server (NTRS)
Will, R. W.
1985-01-01
Robotic systems will play an increasingly important role in space operations. An integrated command and control system based on the requirements of space-related applications and incorporating features necessary for the evolution of advanced goal-directed robotic systems is described. These features include: interaction with a world model or domain knowledge base, sensor feedback, multiple-arm capability and concurrent operations. The system makes maximum use of manual interaction at all levels for debug, monitoring, and operational reliability. It is shown that the robotic command and control system may most advantageously be implemented as packages and tasks in Ada.
Kang, Chang Moo; Chi, Hoon Sang; Hyeung, Woo Jin; Kim, Kyung Sik; Choi, Jin Sub; Kim, Byong Ro
2007-01-01
With the advancement of laparoscopic instruments and computer sciences, complex surgical procedures are expected to be safely performed by robot assisted telemanipulative laparoscopic surgery. The da Vinci system (Intuitive Surgical, Mountain View, CA, USA) became available at the many surgical fields. The wrist like movements of the instrument's tip, as well as 3-dimensional vision, could be expected to facilitate more complex laparoscopic procedure. Here, we present the first Korean experience of da Vinci robotic assisted laparoscopic cholecystectomy and discuss the introduction and perspectives of this robotic system. PMID:17594166
New Developments in Robotics and Single-site Gynecologic Surgery.
Matthews, Catherine A
2017-06-01
Within the last 10 years there have been significant advances in minimal-access surgery. Although no emerging technology has demonstrated improved outcomes or fewer complications than standard laparoscopy, the introduction of the robotic surgical platform has significantly lowered abdominal hysterectomy rates. While operative time and cost were higher in robotic-assisted procedures when the technology was first introduced, newer studies demonstrate equivalent or improved robotic surgical efficiency with increased experience. Single-port hysterectomy has not improved postoperative pain or subjective cosmetic results. Emerging platforms with flexible, articulating instruments may increase the uptake of single-port procedures including natural orifice transluminal endoscopic cases.
Manufacturing implementation of off-line programming for the Space Shuttle Main Engines
NASA Technical Reports Server (NTRS)
Sliwinski, K. E.; Pierson, B. L.; Anderson, R. R.; Guthmiller, W. A.
1989-01-01
An account is given of the efforts made to implement an off-line programming (OLP) system for a gas tungsten arc welding robot in actual manufacturing operations, namely those involved in the manufacture of the SSMEs. In conjunction with a real-time sensor control system, the OLP constitutes the Advanced Robotic Welding System, or 'AROWS'. OLP's task is to develop a robot-motion path without the initial use of the robot to 'teach' the characteristics of such motion; actual process parameters are recorded by OLP and correlated with the position along the weld.
NASA Technical Reports Server (NTRS)
Parness, Aaron
2012-01-01
Three robots that extend microspine technology to enable advanced mobility are presented. First, the Durable Reconnaissance and Observation Platform (DROP) and the ReconRobotics Scout platform use a new rotary configuration of microspines to provide improved soldier-portable reconnaissance by moving rapidly over curbs and obstacles, transitioning from horizontal to vertical surfaces, climbing rough walls and surviving impacts. Next, the four-legged LEMUR robot uses new configurations of opposed microspines to anchor to both manmade and natural rough surfaces. Using these anchors as feet enables mobility in unstructured environments, from urban disaster areas to deserts and caves.
The phantom robot - Predictive displays for teleoperation with time delay
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.; Kim, Won S.; Venema, Steven C.
1990-01-01
An enhanced teleoperation technique for time-delayed bilateral teleoperator control is discussed. The control technique selected for time delay is based on the use of a high-fidelity graphics phantom robot that is being controlled in real time (without time delay) against the static task image. Thus, the motion of the phantom robot image on the monitor predicts the motion of the real robot. The real robot's motion will follow the phantom robot's motion on the monitor with the communication time delay implied in the task. Real-time high-fidelity graphics simulation of a PUMA arm is generated and overlaid on the actual camera view of the arm. A simple camera calibration technique is used for calibrated graphics overlay. A preliminary experiment is performed with the predictive display by using a very simple tapping task. The results with this simple task indicate that predictive display enhances the human operator's telemanipulation task performance significantly during free motion when there is a long time delay. It appears, however, that either two-view or stereoscopic predictive displays are necessary for general three-dimensional tasks.
Robotics Workshop for High School and College Instructors
NASA Astrophysics Data System (ADS)
Holberg, Kathy; Reimers, Peggy
2010-03-01
Twenty-first century learners need critical thinking and effective communications skills. Practicing higher level cognitive skills are fun and engaging for students and teachers using LEGO Robotics. Come delve into the latest robotics technology from LEGO Education. Participants will construct and program robots with the new Technic Building System and NXT-G programming software. Attendees will take back instructional strategies and ideas on how to implement robotics into their classroom, school or district. Come, connect, explore, learn, enhance and have fun. Limited to 18 participants - 3 hours - Cost: 2.00
Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.
ERIC Educational Resources Information Center
Moore, Gwendolyn B.; And Others
1986-01-01
Describes possible applications of new technologies to special education. Discusses results of a study designed to explore the use of robotics, artificial intelligence, and computer simulations to aid people with handicapping conditions. Presents several scenarios in which specific technological advances may contribute to special education…
Can Robotic Interaction Improve Joint Attention Skills?
ERIC Educational Resources Information Center
Warren, Zachary E.; Zheng, Zhi; Swanson, Amy R.; Bekele, Esubalew; Zhang, Lian; Crittendon, Julie A.; Weitlauf, Amy F.; Sarkar, Nilanjan
2015-01-01
Although it has often been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorder (ASD), relatively few investigations have indexed the impact of intervention and feedback approaches. This pilot study investigated the application of a novel robotic interaction…
It's 1984 and Robots Are in the Classroom.
ERIC Educational Resources Information Center
Howe, Samuel F.
1984-01-01
Describes the features of TOPO, HERO, RB5X, and Tasman Turtle, personal robots used in elementary and secondary schools and colleges to introduce concepts of artificial intelligence, advanced high school and college computer science, and elementary level programming. Mechanical arms are also briefly mentioned. (MBR)
NASA Technical Reports Server (NTRS)
1992-01-01
The PER-Force robotic handcontroller provides a sense of touch or "feel" to an operator manipulating robots. The force simulation and wide range of motion greatly enhances the efficiency of robotic and computer operations. The handcontroller was developed for the Space Station by Cybernet Systems Corporation under a Small Business Innovation Research (SBIR) contract. Commercial applications include underwater use, underground excavations, research laboratories, hazardous waste handling and in manufacturing operations in which it is unsafe or impractical for humans to work.
Supervised autonomous robotic soft tissue surgery.
Shademan, Azad; Decker, Ryan S; Opfermann, Justin D; Leonard, Simon; Krieger, Axel; Kim, Peter C W
2016-05-04
The current paradigm of robot-assisted surgeries (RASs) depends entirely on an individual surgeon's manual capability. Autonomous robotic surgery-removing the surgeon's hands-promises enhanced efficacy, safety, and improved access to optimized surgical techniques. Surgeries involving soft tissue have not been performed autonomously because of technological limitations, including lack of vision systems that can distinguish and track the target tissues in dynamic surgical environments and lack of intelligent algorithms that can execute complex surgical tasks. We demonstrate in vivo supervised autonomous soft tissue surgery in an open surgical setting, enabled by a plenoptic three-dimensional and near-infrared fluorescent (NIRF) imaging system and an autonomous suturing algorithm. Inspired by the best human surgical practices, a computer program generates a plan to complete complex surgical tasks on deformable soft tissue, such as suturing and intestinal anastomosis. We compared metrics of anastomosis-including the consistency of suturing informed by the average suture spacing, the pressure at which the anastomosis leaked, the number of mistakes that required removing the needle from the tissue, completion time, and lumen reduction in intestinal anastomoses-between our supervised autonomous system, manual laparoscopic surgery, and clinically used RAS approaches. Despite dynamic scene changes and tissue movement during surgery, we demonstrate that the outcome of supervised autonomous procedures is superior to surgery performed by expert surgeons and RAS techniques in ex vivo porcine tissues and in living pigs. These results demonstrate the potential for autonomous robots to improve the efficacy, consistency, functional outcome, and accessibility of surgical techniques. Copyright © 2016, American Association for the Advancement of Science.
Software for project-based learning of robot motion planning
NASA Astrophysics Data System (ADS)
Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.
2013-12-01
Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can be explained in a simplified two-dimensional setting, but this masks many of the subtleties and complexities of the underlying problem. We have developed software for project-based learning of motion planning that enables deep learning. The projects that we have developed allow advanced undergraduate students and graduate students to reflect on the performance of existing textbook algorithms and their own variations on such algorithms. Formative assessment has been conducted at three institutions. The core of the software used for this teaching module is also used within the Robot Operating System, a widely adopted platform by the robotics research community. This allows for transfer of knowledge and skills to robotics research projects involving a large variety robot hardware platforms.
Emergent of Burden Sharing of Robots with Emotion Model
NASA Astrophysics Data System (ADS)
Kusano, Takuya; Nozawa, Akio; Ide, Hideto
Cooperated multi robots system has much dominance in comparison with single robot system. Multi robots system is able to adapt to various circumstances and has a flexibility for variation of tasks. Robots are necessary that build a cooperative relations and acts as an organization to attain a purpose in multi robots system. Then, group behavior of insects which doesn't have advanced ability is observed. For example, ants called a sociality insect emerge systematic activities by the interaction with using a very simple way. Though ants make a communication with chemical matter, a human plans a communication by words and gestures. In this paper, we paid attention to the interaction based on psychological viewpoint. And a human's emotion model was used for the parameter which became a base of the motion planning of robots. These robots were made to do both-way action in test field with obstacle. As a result, a burden sharing like guide or carrier was seen even though those had a simple setup.
Cianchetti, Matteo; Laschi, Cecilia
2016-01-01
Open your Internet browser and search for videos showing the most advanced humanoid robots. Look at how they move and walk. Observe their motion and their interaction with the environment (the ground, users, target objects). Now, search for a video of your favorite sports player. Despite the undoubtedly great achievements of modern robotics, it will become quite evident that a lot of work still remains.
Air & Space Power Journal. Volume 29, Number 5, September-October 2015
2015-10-01
Views Changing the Tooth-to-Tail Ratio Using Robotics and Automation to Beat Sequestration ❙ 75 Capt Rachael L. Nussbaum, USAF Twenty-First-Century Air...technophobes who see this aircraft as some sort of advanced war-fighting robot . As with any other aircraft, the heart of the system remains the aircrew...technology -quarterly/21567205-abe-karem-created- robotic -plane-transformed-way-modern-warfare. 36. Blair and Helms, “Swarm, the Cloud,” 29–33. 37
Unmanned Ground Vehicles in Support of Irregular War: A Non-lethal Approach
2011-03-15
days to clear all buildings in a very fluid and dynamic operation.43 Given the fact that no UGV can climb stairs at the same rate a human can, one can...Naval Research Lab and Carnegie Mellon University’s Robotics Institute/National Robotics Engineering Consortium for designing the early test systems...Concept Technology Demonstrations (ACTD) paved the way for follow-on development of systems like the Modular Advanced Armed Robotic System (MAARS), an
Madder, Ryan D; VanOosterhout, Stacie M; Jacoby, Mark E; Collins, J Stewart; Borgman, Andrew S; Mulder, Abbey N; Elmore, Matthew A; Campbell, Jessica L; McNamara, Richard F; Wohns, David H
2017-01-20
The present study explores the feasibility of telestenting, wherein a physician operator performs stenting on a patient in a separate physical location using a combination of robotics and telecommunications. Patients undergoing robotic stenting were eligible for inclusion. All manipulations of guidewires, balloons, and stents were performed robotically by a physician operator located in an isolated separate room outside the procedure room housing the patient. Communication between the operating physician and laboratory personnel was via telecommunication devices providing real-time audio and video connectivity. Among 20 patients who consented to participate, technical success, defined as successful advancement and retraction of guidewires, balloons, and stents by the robotic system without conversion to manual operation, was achieved in 19 of 22 lesions (86.4%). Procedural success, defined as <30% residual stenosis upon completion of the procedure in the absence of death or repeat revascularisation prior to hospital discharge, was achieved in 19 of 20 patients (95.0%). There were no deaths or repeat revascularisations prior to hospital discharge. To the best of our knowledge, the present study is the first to explore the feasibility of telestenting. Additional studies are required to determine if future advancements in robotics will facilitate telestenting over greater geographic distances.
NASA Astrophysics Data System (ADS)
Yoo, Hosun; Kwon, Ohbyung; Lee, Namyeon
2016-07-01
With advances in robot technology, interest in robotic e-learning systems has increased. In some laboratories, experiments are being conducted with humanoid robots as artificial tutors because of their likeness to humans, the rich possibilities of using this type of media, and the multimodal interaction capabilities of these robots. The robot-assisted learning system, a special type of e-learning system, aims to increase the learner's concentration, pleasure, and learning performance dramatically. However, very few empirical studies have examined the effect on learning performance of incorporating humanoid robot technology into e-learning systems or people's willingness to accept or adopt robot-assisted learning systems. In particular, human likeness, the essential characteristic of humanoid robots as compared with conventional e-learning systems, has not been discussed in a theoretical context. Hence, the purpose of this study is to propose a theoretical model to explain the process of adoption of robot-assisted learning systems. In the proposed model, human likeness is conceptualized as a combination of media richness, multimodal interaction capabilities, and para-social relationships; these factors are considered as possible determinants of the degree to which human cognition and affection are related to the adoption of robot-assisted learning systems.
LAZARIDOU, ASIMINA; ASTRAKAS, LOUKAS; MINTZOPOULOS, DIONYSSIOS; KHANICHEH, AZADEH; SINGHAL, ANEESH B.; MOSKOWITZ, MICHAEL A.; ROSEN, BRUCE; TZIKA, ARIA A.
2013-01-01
Stroke is the third leading cause of mortality and a frequent cause of long-term adult impairment. Improved strategies to enhance motor function in individuals with chronic disability from stroke are thus required. Post-stroke therapy may improve rehabilitation and reduce long-term disability; however, objective methods for evaluating the specific impact of rehabilitation are rare. Brain imaging studies on patients with chronic stroke have shown evidence for reorganization of areas showing functional plasticity after a stroke. In this study, we hypothesized that brain mapping using a novel magnetic resonance (MR)-compatible hand device in conjunction with state-of-the-art magnetic resonance imaging (MRI) can serve as a novel biomarker for brain plasticity induced by rehabilitative motor training in patients with chronic stroke. This hypothesis is based on the premises that robotic devices, by stimulating brain plasticity, can assist in restoring movement compromised by stroke-induced pathological changes in the brain and that these changes can then be monitored by advanced MRI. We serially examined 15 healthy controls and 4 patients with chronic stroke. We employed a combination of diffusion tensor imaging (DTI) and volumetric MRI using a 3-tesla (3T) MRI system using a 12-channel Siemens Tim coil and a novel MR-compatible hand-induced robotic device. DTI data revealed that the number of fibers and the average tract length significantly increased after 8 weeks of hand training by 110% and 64%, respectively (p<0.001). New corticospinal tract (CST) fibers projecting progressively closer to the motor cortex appeared during training. Volumetric data analysis showed a statistically significant increase in the cortical thickness of the ventral postcentral gyrus areas of patients after training relative to pre-training cortical thickness (p<0.001). We suggest that rehabilitation is possible for a longer period of time after stroke than previously thought, showing that structural plasticity is possible even after 6 months due to retained neuroplasticity. Our study is an example of personalized medicine using advanced neuroimaging methods in conjunction with robotics in the molecular medicine era. PMID:23982596
Conjugate Gradient Algorithms For Manipulator Simulation
NASA Technical Reports Server (NTRS)
Fijany, Amir; Scheid, Robert E.
1991-01-01
Report discusses applicability of conjugate-gradient algorithms to computation of forward dynamics of robotic manipulators. Rapid computation of forward dynamics essential to teleoperation and other advanced robotic applications. Part of continuing effort to find algorithms meeting requirements for increased computational efficiency and speed. Method used for iterative solution of systems of linear equations.
Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.
ERIC Educational Resources Information Center
Moore, Gwendolyn B.; And Others
The report describes three advanced technologies--robotics, artificial intelligence, and computer simulation--and identifies the ways in which they might contribute to special education. A hybrid methodology was employed to identify existing technology and forecast future needs. Following this framework, each of the technologies is defined,…
None
2018-04-16
Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.
Competitive Robotics Brings out the Best in Students
ERIC Educational Resources Information Center
Caron, Darrell
2010-01-01
This article features Advanced Competitive Science (ACS), a two-year course introduced by a science teacher, Joe Pouliot, in 2004 at Trinity High School in Manchester, New Hampshire. More than a traditional STEM (science, technology, engineering, and math) course, ACS harnesses the excitement of robotics competitions to promote student…
NASA Technical Reports Server (NTRS)
Ridley, Justin; Bluethmann, Bill
2015-01-01
The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.
An Engineering Mentor's Take on "FIRST" Robotics
ERIC Educational Resources Information Center
Jackson, Jim
2013-01-01
In this article, the author describes a program that he says has "made being smart cool." "FIRST" (For Inspiration and Recognition of Science and Technology) Robotics has made a significant contribution toward progress in advancing science, technology, engineering, and mathematics (STEM) courses and STEM careers with young people. "FIRST" Robotics…
Approaches to automated protein crystal harvesting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deller, Marc C., E-mail: mdeller@scripps.edu; Rupp, Bernhard, E-mail: mdeller@scripps.edu
Approaches to automated and robot-assisted harvesting of protein crystals are critically reviewed. While no true turn-key solutions for automation of protein crystal harvesting are currently available, systems incorporating advanced robotics and micro-electromechanical systems represent exciting developments with the potential to revolutionize the way in which protein crystals are harvested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.
Use of automation and robotics for the Space Station
NASA Technical Reports Server (NTRS)
Cohen, Aaron
1987-01-01
An overview is presented of the various possible applications of automation and robotics technology to the Space Station system. The benefits of such technology to the private sector and the national economy are addressed. NASA's overall approach to incorporating advanced technology into the Space Station is examined.
ERIC Educational Resources Information Center
Hansen, Janus Halkier; Traeholt, Rune
2007-01-01
For the last four years, Soenderholm School, near the town of Aalborg, Northjutland, Denmark, has had an optional subject in the seventh grade called First "Lego" League (FLL). FLL is an international contest which aims to advance pupils' scientific interest. The task is for participants to build and program a "Lego" robot able…
Advanced Electricity. Microprocessors and Robotics. Curriculum Development. Bulletin 1803.
ERIC Educational Resources Information Center
Southeastern Louisiana Univ., Hammond.
This model instructional unit was developed to aid industrial arts/technology education teachers in Louisiana to teach a course on microprocessors and robotics in grades 11 and 12. It provides guidance on model performance objectives, current technology content, sources, and supplemental materials. Following a course description, rationale, and…
1982-09-17
Potential .............. 11-21 G. Socialogical Impactso... ..... .................... 11-23 H. Summary ....................... o................. 11-26...productivity by enhancin- or eliminating the human presence, has been veil applied in the Navy’s industrial segment. There remains a strong resistance to the
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
Team KuuKulgur waits to begin the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harber, K.S.; Pin, F.G.
1990-03-01
The US DOE Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) and the Commissariat a l'Energie Atomique's (CEA) Office de Robotique et Productique within the Directorat a la Valorization are working toward a long-term cooperative agreement and relationship in the area of Intelligent Systems Research (ISR). This report presents the proceedings of the first CESAR/CEA Workshop on Autonomous Mobile Robots which took place at ORNL on May 30, 31 and June 1, 1989. The purpose of the workshop was to present and discuss methodologies and algorithms under development at the two facilities in themore » area of perception and navigation for autonomous mobile robots in unstructured environments. Experimental demonstration of the algorithms and comparison of some of their features were proposed to take place within the framework of a previously mutually agreed-upon demonstration scenario or base-case.'' The base-case scenario described in detail in Appendix A, involved autonomous navigation by the robot in an a priori unknown environment with dynamic obstacles, in order to reach a predetermined goal. From the intermediate goal location, the robot had to search for and locate a control panel, move toward it, and dock in front of the panel face. The CESAR demonstration was successfully accomplished using the HERMIES-IIB robot while subsets of the CEA demonstration performed using the ARES robot simulation and animation system were presented. The first session of the workshop focused on these experimental demonstrations and on the needs and considerations for establishing benchmarks'' for testing autonomous robot control algorithms.« less
NASA Technical Reports Server (NTRS)
Boston, Penelope J.
2016-01-01
The search for life and its study is known as astrobiology. Conducting that search on other planets in our Solar System is a major goal of NASA and other space agencies, and a driving passion of the community of scientists and engineers around the world. We practice for that search in many ways, from exploring and studying extreme environments on Earth, to developing robots to go to other planets and help us look for any possible life that may be there or may have been there in the past. The unique challenges of space exploration make collaborations between robots and humans essential. The products of those collaborations will be novel and driven by the features of wholly new environments. For space and planetary environments that are intolerable for humans or where humans present an unacceptable risk to possible biologically sensitive sites, autonomous robots or telepresence offer excellent choices. The search for life signs on Mars fits within this category, especially in advance of human landed missions there, but also as assistants and tools once humans reach the Red Planet. For planetary destinations where we do not envision humans ever going in person, like bitterly cold icy moons, or ocean worlds with thick ice roofs that essentially make them planetary-sized ice caves, we will rely on robots alone to visit those environments for us and enable us to explore and understand any life that we may find there. Current generation robots are not quite ready for some of the tasks that we need them to do, so there are many opportunities for roboticists of the future to advance novel types of mobility, autonomy, and bio-inspired robotic designs to help us accomplish our astrobiological goals. We see an exciting partnership between robotics and astrobiology continually strengthening as we jointly pursue the quest to find extraterrestrial life.
Pilot clinical application of an adaptive robotic system for young children with autism.
Bekele, Esubalew; Crittendon, Julie A; Swanson, Amy; Sarkar, Nilanjan; Warren, Zachary E
2014-07-01
It has been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders. This pilot feasibility study evaluated the application of a novel adaptive robot-mediated system capable of both administering and automatically adjusting joint attention prompts to a small group of preschool children with autism spectrum disorders (n = 6) and a control group (n = 6). Children in both groups spent more time looking at the humanoid robot and were able to achieve a high level of accuracy across trials. However, across groups, children required higher levels of prompting to successfully orient within robot-administered trials. The results highlight both the potential benefits of closed-loop adaptive robotic systems as well as current limitations of existing humanoid-robotic platforms. © The Author(s) 2013.
Liability exposure for surgical robotics instructors.
Lee, Yu L; Kilic, Gokhan; Phelps, John Y
2012-01-01
Surgical robotics instructors provide an essential service in improving the competency of novice gynecologic surgeons learning robotic surgery and advancing surgical skills on behalf of patients. However, despite best intentions, robotics instructors and the gynecologists who use their services expose themselves to liability. The fear of litigation in the event of a surgical complication may reduce the availability and utility of robotics instructors. A better understanding of the principles of duty of care and the physician-patient relationship, and their potential applicability in a court of law likely will help to dismantle some concerns and uncertainties about liability. This commentary is not meant to discourage current and future surgical instructors but to raise awareness of liability issues among robotics instructors and their students and to recommend certain preventive measures to curb potential liability risks. Published by Elsevier Inc.
A survey of snake-inspired robot designs.
Hopkins, James K; Spranklin, Brent W; Gupta, Satyandra K
2009-06-01
Body undulation used by snakes and the physical architecture of a snake body may offer significant benefits over typical legged or wheeled locomotion designs in certain types of scenarios. A large number of research groups have developed snake-inspired robots to exploit these benefits. The purpose of this review is to report different types of snake-inspired robot designs and categorize them based on their main characteristics. For each category, we discuss their relative advantages and disadvantages. This review will assist in familiarizing a newcomer to the field with the existing designs and their distinguishing features. We hope that by studying existing robots, future designers will be able to create new designs by adopting features from successful robots. The review also summarizes the design challenges associated with the further advancement of the field and deploying snake-inspired robots in practice.
[Advanced Development for Space Robotics With Emphasis on Fault Tolerance Technology
NASA Technical Reports Server (NTRS)
Tesar, Delbert
1997-01-01
This report describes work developing fault tolerant redundant robotic architectures and adaptive control strategies for robotic manipulator systems which can dynamically accommodate drastic robot manipulator mechanism, sensor or control failures and maintain stable end-point trajectory control with minimum disturbance. Kinematic designs of redundant, modular, reconfigurable arms for fault tolerance were pursued at a fundamental level. The approach developed robotic testbeds to evaluate disturbance responses of fault tolerant concepts in robotic mechanisms and controllers. The development was implemented in various fault tolerant mechanism testbeds including duality in the joint servo motor modules, parallel and serial structural architectures, and dual arms. All have real-time adaptive controller technologies to react to mechanism or controller disturbances (failures) to perform real-time reconfiguration to continue the task operations. The developments fall into three main areas: hardware, software, and theoretical.
Artificial heart for humanoid robot
NASA Astrophysics Data System (ADS)
Potnuru, Akshay; Wu, Lianjun; Tadesse, Yonas
2014-03-01
A soft robotic device inspired by the pumping action of a biological heart is presented in this study. Developing artificial heart to a humanoid robot enables us to make a better biomedical device for ultimate use in humans. As technology continues to become more advanced, the methods in which we implement high performance and biomimetic artificial organs is getting nearer each day. In this paper, we present the design and development of a soft artificial heart that can be used in a humanoid robot and simulate the functions of a human heart using shape memory alloy technology. The robotic heart is designed to pump a blood-like fluid to parts of the robot such as the face to simulate someone blushing or when someone is angry by the use of elastomeric substrates and certain features for the transport of fluids.
Kwok, Ka-Wai; Tsoi, Kuen Hung; Vitiello, Valentina; Clark, James; Chow, Gary C. T.; Luk, Wayne; Yang, Guang-Zhong
2014-01-01
This paper presents a real-time control framework for a snake robot with hyper-kinematic redundancy under dynamic active constraints for minimally invasive surgery. A proximity query (PQ) formulation is proposed to compute the deviation of the robot motion from predefined anatomical constraints. The proposed method is generic and can be applied to any snake robot represented as a set of control vertices. The proposed PQ formulation is implemented on a graphic processing unit, allowing for fast updates over 1 kHz. We also demonstrate that the robot joint space can be characterized into lower dimensional space for smooth articulation. A novel motion parameterization scheme in polar coordinates is proposed to describe the transition of motion, thus allowing for direct manual control of the robot using standard interface devices with limited degrees of freedom. Under the proposed framework, the correct alignment between the visual and motor axes is ensured, and haptic guidance is provided to prevent excessive force applied to the tissue by the robot body. A resistance force is further incorporated to enhance smooth pursuit movement matched to the dynamic response and actuation limit of the robot. To demonstrate the practical value of the proposed platform with enhanced ergonomic control, detailed quantitative performance evaluation was conducted on a group of subjects performing simulated intraluminal and intracavity endoscopic tasks. PMID:24741371
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, R.C.; Fujimura, K.; Unseren, M.A.
One of the frontiers in intelligent machine research is the understanding of how constructive cooperation among multiple autonomous agents can be effected. The effort at the Center for Engineering Systems Advanced Research (CESAR)at the Oak Ridge National Laboratory (ORNL) focuses on two problem areas: (1) cooperation by multiple mobile robots in dynamic, incompletely known environments; and (2) cooperating robotic manipulators. Particular emphasis is placed on experimental evaluation of research and developments using the CESAR robot system testbeds, including three mobile robots, and a seven-axis, kinematically redundant mobile manipulator. This paper summarizes initial results of research addressing the decoupling of positionmore » and force control for two manipulators holding a common object, and the path planning for multiple robots in a common workspace. 15 refs., 3 figs.« less
Tsekos, Nikolaos V; Khanicheh, Azadeh; Christoforou, Eftychios; Mavroidis, Constantinos
2007-01-01
The continuous technological progress of magnetic resonance imaging (MRI), as well as its widespread clinical use as a highly sensitive tool in diagnostics and advanced brain research, has brought a high demand for the development of magnetic resonance (MR)-compatible robotic/mechatronic systems. Revolutionary robots guided by real-time three-dimensional (3-D)-MRI allow reliable and precise minimally invasive interventions with relatively short recovery times. Dedicated robotic interfaces used in conjunction with fMRI allow neuroscientists to investigate the brain mechanisms of manipulation and motor learning, as well as to improve rehabilitation therapies. This paper gives an overview of the motivation, advantages, technical challenges, and existing prototypes for MR-compatible robotic/mechatronic devices.
Robotics in Colorectal Surgery
Weaver, Allison; Steele, Scott
2016-01-01
Over the past few decades, robotic surgery has developed from a futuristic dream to a real, widely used technology. Today, robotic platforms are used for a range of procedures and have added a new facet to the development and implementation of minimally invasive surgeries. The potential advantages are enormous, but the current progress is impeded by high costs and limited technology. However, recent advances in haptic feedback systems and single-port surgical techniques demonstrate a clear role for robotics and are likely to improve surgical outcomes. Although robotic surgeries have become the gold standard for a number of procedures, the research in colorectal surgery is not definitive and more work needs to be done to prove its safety and efficacy to both surgeons and patients. PMID:27746895
Robotics in general surgery: an evidence-based review.
Baek, Se-Jin; Kim, Seon-Hahn
2014-05-01
Since its introduction, robotic surgery has been rapidly adopted to the extent that it has already assumed an important position in the field of general surgery. This rapid progress is quantitative as well as qualitative. In this review, we focus on the relatively common procedures to which robotic surgery has been applied in several fields of general surgery, including gastric, colorectal, hepato-biliary-pancreatic, and endocrine surgery, and we discuss the results to date and future possibilities. In addition, the advantages and limitations of the current robotic system are reviewed, and the advanced technologies and instruments to be applied in the near future are introduced. Such progress is expected to facilitate the widespread introduction of robotic surgery in additional fields and to solve existing problems.
Innovations in surgical stone disease.
Antonelli, Jodi A
2016-05-01
Urinary stone disease is a condition characterized by a rich history of surgical innovation. Herein, we review the new ideas, devices and methods that are the cornerstones of contemporary surgical innovation in stone disease, specifically flexible ureteroscopy and percutaneous nephrolithotomy. The new ideas being applied to flexible ureteroscopy include extending the boundaries of surgical indications and eliminating the need for intraoperative fluoroscopy. Device advancements include disposable ureteroscopes and flexi semirigid ureteroscopes. Robotic flexible ureteroscopy, the use of magnets and mobile technology applications represent progress in methods of performing flexible ureteroscopy. Three-dimensional computed tomography and printing technology are enhancing percutaneous renal access. Novel image-guided access techniques are improving the accuracy of percutaneous surgery particularly for complex cases. New ideas, devices and methods are continuing to reshape the landscape of surgical stone treatment and in so doing not only have the potential to improve surgical outcomes but also to cultivate further scientific and technological advancements in this area.
Radioisotope Electric Propulsion (REP): A Near-Term Approach to Nuclear Propulsion
NASA Technical Reports Server (NTRS)
Schmidt, George R.; Manzella, David H.; Kamhawi, Hani; Kremic, Tibor; Oleson, Steven R.; Dankanich, John W.; Dudzinski, Leonard A.
2009-01-01
Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft. Future use of REP requires development of radioisotope power sources with system specific powers well above that of current systems. The US Department of Energy and NASA have developed an advanced Stirling radioisotope generator (ASRG) engineering unit, which was subjected to rigorous flight qualification-level tests in 2008, and began extended lifetime testing later that year. This advancement, along with recent work on small ion thrusters and life extension technology for Hall thrusters, could enable missions using REP sometime during the next decade.
Targeted radiotherapy with gold nanoparticles: current status and future perspectives
Ngwa, Wilfred; Kumar, Rajiv; Sridhar, Srinivas; Korideck, Houari; Zygmanski, Piotr; Cormack, Robert A; Berbeco, Ross; Makrigiorgos, G Mike
2014-01-01
Radiation therapy (RT) is the treatment of cancer and other diseases with ionizing radiation. The ultimate goal of RT is to destroy all the disease cells while sparing healthy tissue. Towards this goal, RT has advanced significantly over the past few decades in part due to new technologies including: multileaf collimator-assisted modulation of radiation beams, improved computer-assisted inverse treatment planning, image guidance, robotics with more precision, better motion management strategies, stereotactic treatments and hypofractionation. With recent advances in nanotechnology, targeted RT with gold nanoparticles (GNPs) is actively being investigated as a means to further increase the RT therapeutic ratio. In this review, we summarize the current status of research and development towards the use of GNPs to enhance RT. We highlight the promising emerging modalities for targeted RT with GNPs and the corresponding preclinical evidence supporting such promise towards potential clinical translation. Future prospects and perspectives are discussed. PMID:24978464
Computer-enhanced robotic telesurgery minimizes esophageal perforation during Heller myotomy.
Melvin, W Scott; Dundon, John M; Talamini, Mark; Horgan, Santiago
2005-10-01
Laparoscopic Heller myotomy has emerged as the treatment of choice for achalasia. However, intraoperative esophageal perforation remains a significant complication. Computer-enhanced operative techniques have the potential to improve outcomes for certain operative procedures. Robotic, computer-enhanced laparoscopic telemanipulators using 3-dimensional magnified imaging and motion scaling are designed uniquely to facilitate certain operations requiring fine-tissue manipulation. We hypothesized that computer-enhanced robotic Heller myotomy would reduce intraoperative complications compared with laparoscopic techniques. All patients undergoing an operation for achalasia at 3 institutions with a robotic surgery system (DaVinci; Intuitive Surgical Corporation, Sunnyvale, Calif) were followed-up prospectively. Demographics, perioperative course, complications, and hospital stay were recorded. Follow-up evaluation was obtained via a standardized symptom survey, office visits, and medical records. Data were compared with preoperative symptoms using a Mann-Whitney U test, and operating times were compared using the ANOVA test. Between August 2000 and August 2004 there were 104 patients who underwent a robotic Heller myotomy with partial fundoplicaton. There were 53 women and 51 men. All patients were symptomatic. The operative time was 140.55 minutes overall, but improved from 162.63 minutes to 113.50 minutes from 2000-2002 to 2003-2004 (P = .0001). There were no esophageal perforations. There were 8 minor complications and 1 patient required conversion to an open operation. Sixty-six (62.3%) patients were discharged on the first postoperative day and the average hospital stay was 1.5 days. A symptom survey was completed in 79 of 104 patients (76%) at follow-up evaluation. Symptoms improved in all patients with an average follow-up symptom score of 0.48 compared with 5.0 before the operation (P = .0001). Forty-three of the 79 patients from whom follow-up data were collected had a minimum follow-up period of 1 year. The follow-up period averaged 16 months. No patients required reoperation. Computer-enhanced robotic laparoscopic techniques provide a clear advantage over standard laparoscopy for the operative treatment of achalasia. We have shown in this large series that Heller myotomy can be completed using this technology without esophageal perforation. The application of computer-enhanced operative techniques appears to provide superior outcomes in selected procedures.
Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio
2014-12-15
In animal studies, robots have been recently used as a valid tool for testing a wide spectrum of hypotheses. These robots often exploit visual or auditory cues to modulate animal behavior. The propensity of zebrafish, a model organism in biological studies, toward fish with similar color patterns and shape has been leveraged to design biologically inspired robots that successfully attract zebrafish in preference tests. With an aim of extending the application of such robots to field studies, here, we investigate the response of zebrafish to multiple robotic fish swimming at different speeds and in varying arrangements. A soft real-time multi-target tracking and control system remotely steers the robots in circular trajectories during the experimental trials. Our findings indicate a complex behavioral response of zebrafish to biologically inspired robots. More robots produce a significant change in salient measures of stress, with a fast robot swimming alone causing more freezing and erratic activity than two robots swimming slowly together. In addition, fish spend more time in the proximity of a robot when they swim far apart than when the robots swim close to each other. Increase in the number of robots also significantly alters the degree of alignment of fish motion with a robot. Results from this study are expected to advance our understanding of robot perception by live animals and aid in hypothesis-driven studies in unconstrained free-swimming environments. Copyright © 2014 Elsevier B.V. All rights reserved.
2011-06-01
effective way- point navigation algorithm that interfaced with a Java based graphical user interface (GUI), written by Uzun, for a robot named Bender [2...the angular acceleration, θ̈, or angular rate, θ̇. When considering a joint driven by an electric motor, the inertia and friction can be divided into...interactive simulations that can receive input from user controls, scripts , and other applications, such as Excel and MATLAB. One drawback is that the
Case Study: Review of Operating Room Utilization at Mayo Clinic Arizona (MCA)
2008-05-01
or CRNA in training. The training of staff and the use of advanced technology, such as the Davinci Surgical Robot, may lead to an increase in time...gynecology performed during block-time will involve the use of the Davinci robot. When using the robot for a case, the set-up and prep-time before...1999). It is because of the cost of surgical staff that block-time lost to delays is concerning. MCA implemented block-time because it provides a tool
Visual Navigation Constructing and Utilizing Simple Maps of an Indoor Environment
1989-03-01
places are con- nected to eachother , so that the robot may plan routes. On a more advanced level. navigation nmay require an understanding of the meaning...two vertical lines, suitably separated from eachother . through which it tries to lead the robot. CHAPTER 1. L’TRODUCTION 14 1.4 Context of the Project...the observer will have no trouble in determining where the wall is. A robot, with far less processing power than humans have. might be able determine
2017-04-12
RASSOR 2.0, a mining robot in work for the moon or Mars, shows off its dexterity in the Regolith Bin at Kennedy Space Center. RASSOR stands for Regolith Advanced Surface Systems Operations Robot. On the surface of Mars, mining robots like RASSOR will dig down into the regolith and take the material to a processing plant where usable elements such as hydrogen, oxygen and water can be extracted for life support systems. Regolith also shows promise for both construction and creating elements for rocket fuel.
The JAU-JPL anthropomorphic telerobot
NASA Technical Reports Server (NTRS)
Jau, Bruno M.
1989-01-01
Work in progress on the new anthropomorphic telerobot is described. The initial robot configuration consists of a seven DOF arm and a sixteen DOF hand, having three fingers and a thumb. The robot has active compliance, enabling subsequent dual arm manipulations. To control the rather complex configuration of this robot, an exoskeleton master arm harness and a glove controller were built. The controller will be used for teleoperational tasks and as a research tool to efficiently teach the computer controller advanced manipulation techniques.
Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects.
Lo, Ho Shing; Xie, Sheng Quan
2012-04-01
Current health services are struggling to provide optimal rehabilitation therapy to victims of stroke. This has motivated researchers to explore the use of robotic devices to provide rehabilitation therapy for strokepatients. This paper reviews the recent progress of upper limb exoskeleton robots for rehabilitation treatment of patients with neuromuscular disorders. Firstly, a brief introduction to rehabilitation robots will be given along with examples of existing commercial devices. The advancements in upper limb exoskeleton technology and the fundamental challenges in developing these devices are described. Potential areas for future research are discussed. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
2018-01-01
Objective This review aims to provide a systematical investigation of clinical effectiveness of active training strategies applied in platform-based ankle robots. Method English-language studies published from Jan 1980 to Aug 2017 were searched from four databases using key words of “Ankle∗” AND “Robot∗” AND “Effect∗ OR Improv∗ OR Increas∗.” Following an initial screening, three rounds of discrimination were successively conducted based on the title, the abstract, and the full paper. Result A total of 21 studies were selected with 311 patients involved; of them, 13 studies applied a single group while another eight studies used different groups for comparison to verify the therapeutic effect. Virtual-reality (VR) game training was applied in 19 studies, while two studies used proprioceptive neuromuscular facilitation (PNF) training. Conclusion Active training techniques delivered by platform ankle rehabilitation robots have been demonstrated with great potential for clinical applications. Training strategies are mostly combined with one another by considering rehabilitation schemes and motion ability of ankle joints. VR game environment has been commonly used with active ankle training. Bioelectrical signals integrated with VR game training can implement intelligent identification of movement intention and assessment. These further provide the foundation for advanced interactive training strategies that can lead to enhanced training safety and confidence for patients and better treatment efficacy. PMID:29675142
Robotic assisted gastrectomy compared with open resection: a case-matched study.
Caruso, Riccardo; Vicente, Emilio; Quijano, Yolanda; Ielpo, Benedetto; Duran, Hipolito; Diaz, Eduardo; Fabra, Isabel; Ferri, Valentina
2018-05-04
In recent years, increasingly sophisticated tools have allowed for more complex robotic surgery. Robotic gastrectomy, however, is adopted in only a few selected centers. The goals of this study were to examine the adoption of robotic gastrectomy and to compare outcomes between open and robotic gastric resections. This is a case-matched analysis of patients who underwent robotic and open gastric resection performed at Sanchinarro University Hospital, Madrid from November 2011 to February 2017. Patient data were obtained retrospectively. Clinicopathologic characteristics and perioperative and postoperative outcomes were recorded and analyzed. Two groups of demographically similar patients were analyzed: the robotic group (n = 20) and the open surgery group (n = 19). The patient characteristics of the two groups have been compared. Robotic resection resulted in less blood loss, shorter postoperative hospital stay, and a longer operating time. The two groups had similar complication rates. Pathological data were similar for both procedures. Robotic gastrectomy for locally advanced gastric carcinoma is safe, and long-term outcomes are comparable to those patients who underwent open resection. Robotic gastrectomy resulted in a shorter hospital stay, less blood loss and morbidity comparable with the outcomes of open gastrectomy.
An integrated design and fabrication strategy for entirely soft, autonomous robots.
Wehner, Michael; Truby, Ryan L; Fitzgerald, Daniel J; Mosadegh, Bobak; Whitesides, George M; Lewis, Jennifer A; Wood, Robert J
2016-08-25
Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.
An Overview of Power Capability Requirements for Exploration Missions
NASA Technical Reports Server (NTRS)
Davis, Jose M.; Cataldo, Robert L.; Soeder, James F.; Manzo, Michelle A.; Hakimzadeh, Roshanak
2005-01-01
Advanced power is one of the key capabilities that will be needed to achieve NASA's missions of exploration and scientific advancement. Significant gaps exist in advanced power capabilities that are on the critical path to enabling human exploration beyond Earth orbit and advanced robotic exploration of the solar system. Focused studies and investment are needed to answer key development issues for all candidate technologies before down-selection. The viability of candidate power technology alternatives will be a major factor in determining what exploration mission architectures are possible. Achieving the capabilities needed to enable the CEV, Moon, and Mars missions is dependent on adequate funding. Focused investment in advanced power technologies for human and robotic exploration missions is imperative now to reduce risk and to make informed decisions on potential exploration mission decisions beginning in 2008. This investment would begin the long lead-time needed to develop capabilities for human exploration missions in the 2015 to 2030 timeframe. This paper identifies some of the key technologies that will be needed to fill these power capability gaps. Recommendations are offered to address capability gaps in advanced power for Crew Exploration Vehicle (CEV) power, surface nuclear power systems, surface mobile power systems, high efficiency power systems, and space transportation power systems. These capabilities fill gaps that are on the critical path to enabling robotic and human exploration missions. The recommendations address the following critical technology areas: Energy Conversion, Energy Storage, and Power Management and Distribution.
Pilot clinical trial of a robot-aided neuro-rehabilitation workstation with stroke patients
NASA Astrophysics Data System (ADS)
Krebs, Hermano I.; Hogan, Neville; Aisen, Mindy L.; Volpe, Bruce T.
1996-12-01
This paper summarizes our efforts to apply robotics and automation technology to assist, enhance, quantify, and document neuro-rehabilitation. It reviews a pilot clinical trial involving twenty stroke patients with a prototype robot-aided rehabilitation facility developed at MIT and tested at Burke Rehabilitation Hospital. In particular, we present a few results: (a) on the patient's tolerance of the procedure, (b) whether peripheral manipulation of the impaired limb influences brain recovery, (c) on the development of a robot-aided assessment procedure.
ERIC Educational Resources Information Center
Matson, Eric; DeLoach, Scott; Pauly, Robyn
2004-01-01
The "Robot Roadshow Program" is designed to increase the interest of elementary school children in technical disciplines, specifically math and science. The program focuses on children from schools categorized as rural or underserved, which often have limited access to advanced technical resources. We developed the program using robots…
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This document contains the materials required for presenting an 8-day competency-based technology learning activity (TLA) designed to introduce students in grades 6-10 to advances and career opportunities in the field of robotics-control technology. The guide uses hands-on exploratory experiences into which activities to help students develop…
Pilot Clinical Application of an Adaptive Robotic System for Young Children with Autism
ERIC Educational Resources Information Center
Bekele, Esubalew; Crittendon, Julie A.; Swanson, Amy; Sarkar, Nilanjan; Warren, Zachary E.
2014-01-01
It has been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders. This pilot feasibility study evaluated the application of a novel adaptive robot-mediated system capable of both administering and automatically adjusting joint attention prompts to a small…
Force Myography to Control Robotic Upper Extremity Prostheses: A Feasibility Study
Cho, Erina; Chen, Richard; Merhi, Lukas-Karim; Xiao, Zhen; Pousett, Brittany; Menon, Carlo
2016-01-01
Advancement in assistive technology has led to the commercial availability of multi-dexterous robotic prostheses for the upper extremity. The relatively low performance of the currently used techniques to detect the intention of the user to control such advanced robotic prostheses, however, limits their use. This article explores the use of force myography (FMG) as a potential alternative to the well-established surface electromyography. Specifically, the use of FMG to control different grips of a commercially available robotic hand, Bebionic3, is investigated. Four male transradially amputated subjects participated in the study, and a protocol was developed to assess the prediction accuracy of 11 grips. Different combinations of grips were examined, ranging from 6 up to 11 grips. The results indicate that it is possible to classify six primary grips important in activities of daily living using FMG with an accuracy of above 70% in the residual limb. Additional strategies to increase classification accuracy, such as using the available modes on the Bebionic3, allowed results to improve up to 88.83 and 89.00% for opposed thumb and non-opposed thumb modes, respectively. PMID:27014682
ERIC Educational Resources Information Center
Leonard, Jacqueline; Buss, Alan; Gamboa, Ruben; Mitchell, Monica; Fashola, Olatokunbo S.; Hubert, Tarcia; Almughyirah, Sultan
2016-01-01
This paper describes the findings of a pilot study that used robotics and game design to develop middle school students' computational thinking strategies. One hundred and twenty-four students engaged in LEGO® EV3 robotics and created games using Scalable Game Design software. The results of the study revealed students' pre-post self-efficacy…
Bergamasco, Massimo; Frisoli, Antonio; Fontana, Marco; Loconsole, Claudio; Leonardis, Daniele; Troncossi, Marco; Foumashi, Mohammad Mozaffari; Parenti-Castelli, Vincenzo
2011-01-01
This paper presents the preliminary results of the project BRAVO (Brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks). The objective of this project is to define a new approach to the development of assistive and rehabilitative robots for motor impaired users to perform complex visuomotor tasks that require a sequence of reaches, grasps and manipulations of objects. BRAVO aims at developing new robotic interfaces and HW/SW architectures for rehabilitation and regain/restoration of motor function in patients with upper limb sensorimotor impairment through extensive rehabilitation therapy and active assistance in the execution of Activities of Daily Living. The final system developed within this project will include a robotic arm exoskeleton and a hand orthosis that will be integrated together for providing force assistance. The main novelty that BRAVO introduces is the control of the robotic assistive device through the active prediction of intention/action. The system will actually integrate the information about the movement carried out by the user with a prediction of the performed action through an interpretation of current gaze of the user (measured through eye-tracking), brain activation (measured through BCI) and force sensor measurements. © 2011 IEEE
Robotics Technology Crosscutting Program. Technology summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Robotics Technology Development Program (RTDP) is a needs-driven effort. A length series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the resulting robotics needs assessment revealed several common threads running through the sites: Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination and Dismantlement (D and D). The RTDP Group also realized that some of the technology development in these four areas had commonmore » (Cross Cutting-CC) needs, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT and E) process urged an additional organizational breakdown between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). These factors lead to the formation of the fifth application area for Crosscutting and Advanced Technology (CC and AT) development. The RTDP is thus organized around these application areas -- TWR, CAA, MWO, D and D, and CC and AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.« less
NASA Technical Reports Server (NTRS)
Erickson, J. D.; Eckelkamp, R. E.; Barta, D. J.; Dragg, J.; Henninger, D. L. (Principal Investigator)
1996-01-01
This paper examines mission simulation as an approach to develop requirements for automation and robotics for Advanced Life Support Systems (ALSS). The focus is on requirements and applications for command and control, control and monitoring, situation assessment and response, diagnosis and recovery, adaptive planning and scheduling, and other automation applications in addition to mechanized equipment and robotics applications to reduce the excessive human labor requirements to operate and maintain an ALSS. Based on principles of systems engineering, an approach is proposed to assess requirements for automation and robotics using mission simulation tools. First, the story of a simulated mission is defined in terms of processes with attendant types of resources needed, including options for use of automation and robotic systems. Next, systems dynamics models are used in simulation to reveal the implications for selected resource allocation schemes in terms of resources required to complete operational tasks. The simulations not only help establish ALSS design criteria, but also may offer guidance to ALSS research efforts by identifying gaps in knowledge about procedures and/or biophysical processes. Simulations of a planned one-year mission with 4 crewmembers in a Human Rated Test Facility are presented as an approach to evaluation of mission feasibility and definition of automation and robotics requirements.
Robotic-assisted surgery in gynecologic oncology.
Sinno, Abdulrahman K; Fader, Amanda N
2014-10-01
The quest for improved patient outcomes has been a driving force for adoption of novel surgical innovations across surgical subspecialties. Gynecologic oncology is one such surgical discipline in which minimally invasive surgery has had a robust and evolving role in defining standards of care. Robotic-assisted surgery has developed during the past two decades as a more technologically advanced form of minimally invasive surgery in an effort to mitigate the limitations of conventional laparoscopy and improved patient outcomes. Robotically assisted technology offers potential advantages that include improved three-dimensional stereoscopic vision, wristed instruments that improve surgeon dexterity, and tremor canceling software that improves surgical precision. These technological advances may allow the gynecologic oncology surgeon to perform increasingly radical oncologic surgeries in complex patients. However, the platform is not without limitations, including high cost, lack of haptic feedback, and the requirement for additional training to achieve competence. This review describes the role of robotic-assisted surgery in the management of endometrial, cervical, and ovarian cancer, with an emphasis on comparison with laparotomy and conventional laparoscopy. The literature on novel robotic innovations, special patient populations, cost effectiveness, and fellowship training is also appraised critically in this regard. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Weinstein, Ronald S; Graham, Anna R; Lian, Fangru; Braunhut, Beth L; Barker, Gail R; Krupinski, Elizabeth A; Bhattacharyya, Achyut K
2012-04-01
Telepathology, the distant service component of digital pathology, is a growth industry. The word "telepathology" was introduced into the English Language in 1986. Initially, two different, competing imaging modalities were used for telepathology. These were dynamic (real time) robotic telepathology and static image (store-and-forward) telepathology. In 1989, a hybrid dynamic robotic/static image telepathology system was developed in Norway. This hybrid imaging system bundled these two primary pathology imaging modalities into a single multi-modality pathology imaging system. Similar hybrid systems were subsequently developed and marketed in other countries as well. It is noteworthy that hybrid dynamic robotic/static image telepathology systems provided the infrastructure for the first truly sustainable telepathology services. Since then, impressive progress has been made in developing another telepathology technology, so-called "virtual microscopy" telepathology (also called "whole slide image" telepathology or "WSI" telepathology). Over the past decade, WSI has appeared to be emerging as the preferred digital telepathology digital imaging modality. However, recently, there has been a re-emergence of interest in dynamic-robotic telepathology driven, in part, by concerns over the lack of a means for up-and-down focusing (i.e., Z-axis focusing) using early WSI processors. In 2010, the initial two U.S. patents for robotic telepathology (issued in 1993 and 1994) expired enabling many digital pathology equipment companies to incorporate dynamic-robotic telepathology modules into their WSI products for the first time. The dynamic-robotic telepathology module provided a solution to the up-and-down focusing issue. WSI and dynamic robotic telepathology are now, rapidly, being bundled into a new class of telepathology/digital pathology imaging system, the "WSI-enhanced dynamic robotic telepathology system". To date, six major WSI processor equipment companies have embraced the approach and developed WSI-enhanced dynamic-robotic digital telepathology systems, marketed under a variety of labels. Successful commercialization of such systems could help overcome the current resistance of some pathologists to incorporate digital pathology, and telepathology, into their routine and esoteric laboratory services. Also, WSI-enhanced dynamic robotic telepathology could be useful for providing general pathology and subspecialty pathology services to many of the world's underserved populations in the decades ahead. This could become an important enabler for the delivery of patient-centered healthcare in the future. © 2012 The Authors APMIS © 2012 APMIS.
NASA Astrophysics Data System (ADS)
Rucinski, Marek; Coates, Adam; Montano, Giuseppe; Allouis, Elie; Jameux, David
2015-09-01
The Lightweight Advanced Robotic Arm Demonstrator (LARAD) is a state-of-the-art, two-meter long robotic arm for planetary surface exploration currently being developed by a UK consortium led by Airbus Defence and Space Ltd under contract to the UK Space Agency (CREST-2 programme). LARAD has a modular design, which allows for experimentation with different electronics and control software. The control system architecture includes the on-board computer, control software and firmware, and the communication infrastructure (e.g. data links, switches) connecting on-board computer(s), sensors, actuators and the end-effector. The purpose of the control system is to operate the arm according to pre-defined performance requirements, monitoring its behaviour in real-time and performing safing/recovery actions in case of faults. This paper reports on the results of a recent study about the feasibility of the development and integration of a novel control system architecture for LARAD fully based on the SpaceWire protocol. The current control system architecture is based on the combination of two communication protocols, Ethernet and CAN. The new SpaceWire-based control system will allow for improved monitoring and telecommanding performance thanks to higher communication data rate, allowing for the adoption of advanced control schemes, potentially based on multiple vision sensors, and for the handling of sophisticated end-effectors that require fine control, such as science payloads or robotic hands.
Some aspects of robotics calibration, design and control
NASA Technical Reports Server (NTRS)
Tawfik, Hazem
1990-01-01
The main objective is to introduce techniques in the areas of testing and calibration, design, and control of robotic systems. A statistical technique is described that analyzes a robot's performance and provides quantitative three-dimensional evaluation of its repeatability, accuracy, and linearity. Based on this analysis, a corrective action should be taken to compensate for any existing errors and enhance the robot's overall accuracy and performance. A comparison between robotics simulation software packages that were commercially available (SILMA, IGRIP) and that of Kennedy Space Center (ROBSIM) is also included. These computer codes simulate the kinematics and dynamics patterns of various robot arm geometries to help the design engineer in sizing and building the robot manipulator and control system. A brief discussion on an adaptive control algorithm is provided.
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-12
Sample Return Robot Challenge staff members confer before the team Survey robots makes it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
A robot from the University of Waterloo Robotics Team is seen during the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
Biomimetics and the Development of Humanlike Robots as the Ultimate Challenge
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
2011-01-01
Evolution led to effective solutions to nature's challenges and they were improved over millions of years. Humans have always made efforts to use nature as a model for innovation and problems solving. These efforts became more intensive in recent years where systematic studies of nature are being made towards better understanding and applying more sophisticated capabilities. Making humanlike robots, including the appearance, functions and intelligence, poses the ultimate challenges to biomimetics. For many years, making such robots was considered science fiction, but as a result of significant advances in biologically inspired technologies, such robots are increasingly becoming an engineering reality. There are already humanlike robots that walk, talk, interpret speech, make eye-contact and facial expressions, as well as perform many other humanlike functions. In this paper, the state-of-the-art of humanlike robots, potential applications and issues of concern will be reviewed.
NASA Technical Reports Server (NTRS)
1988-01-01
Martin Marietta Aero and Naval Systems has advanced the CAD art to a very high level at its Robotics Laboratory. One of the company's major projects is construction of a huge Field Material Handling Robot for the Army's Human Engineering Lab. Design of FMR, intended to move heavy and dangerous material such as ammunition, was a triumph in CAD Engineering. Separate computer problems modeled the robot's kinematics and dynamics, yielding such parameters as the strength of materials required for each component, the length of the arms, their degree of freedom and power of hydraulic system needed. The Robotics Lab went a step further and added data enabling computer simulation and animation of the robot's total operational capability under various loading and unloading conditions. NASA computer program (IAC), integrated Analysis Capability Engineering Database was used. Program contains a series of modules that can stand alone or be integrated with data from sensors or software tools.
The future of cerebral surgery: a kaleidoscope of opportunities.
Elder, James B; Hoh, Daniel J; Oh, Bryan C; Heller, A Chris; Liu, Charles Y; Apuzzo, Michael L J
2008-06-01
The emerging future of cerebral surgery will witness the refined evolution of current techniques, as well as the introduction of numerous novel concepts. Clinical practice and basic science research will benefit greatly from their application. The sum of these efforts will result in continued minimalism and improved accuracy and efficiency of neurosurgical diagnostic and therapeutic methodologies.Initially, the refinement of current technologies will further enhance various aspects of cerebral surgery. Advances in computing power and information technology will speed data acquisition, storage, and transfer. Miniaturization of current devices will impact diverse areas, such as modulation of endoscopy and endovascular techniques. The increased penetrance of surgical technologies such as stereotactic radiosurgery, neuronavigation, intraoperative imaging, and implantable electrodes for neurodegenerative disorders and epilepsy will enhance the knowledge and experience in these areas and facilitate refinements and advances in these technologies. Further into the future, technologies that are currently relatively remote to surgical events will fundamentally alter the complexity and scale at which a neurological disease may be treated or investigated. Seemingly futuristic concepts will become ubiquitous in the daily experience of the neurosurgeon. These include diverse fields such as nanotechnology, virtual reality, and robotics. Ultimately, combining advances in multiple fields will yield progress in diverse realms such as brain tumor therapy, neuromodulation for psychiatric diseases, and neuroprosthetics. Operating room equipment and design will benefit from each of the aforementioned advances. In this work, we discuss new developments in three parts. In Part I, concepts in minimalism important for future cerebral surgery are discussed. These include concrete and abstract ideas in miniaturization, as well as recent and future work in microelectromechanical systems and nanotechnology. Part II presents advances in computational sciences and technological fields dependent on these developments. Future breakthroughs in the components of the "computer," including data storage, electrical circuitry, and computing hardware and techniques, are discussed. Additionally, important concepts in the refinement of virtual environments and the brain-machine interface are presented, as their incorporation into cerebral surgery is closely linked to advances in computing and electronics. Finally, Part III offers insights into the future evolution of surgical and nonsurgical diagnostic and therapeutic modalities that are important for the future cerebral surgeon. A number of topics relevant to cerebral surgery are discussed, including the operative environment, imaging technologies, endoscopy, robotics, neuromodulation, stem cell therapy, radiosurgery, and technical methods of restoration of neural function. Cerebral surgery in the near and distant future will reflect the application of these emerging technologies. As this article indicates, the key to maximizing the impact of these advancements in the clinical arena is continued collaboration between scientists and neurosurgeons, as well as the emergence of a neurosurgeon whose scientific grounding and technical focus are far removed from those of his predecessors.
Cater, Dan; Vyas, Arpita; Vyas, Dinesh
2015-01-01
Colorectal cancer is the second leading cause of mortality in men and women in the United States. While there is a definite advantage regarding the use of colonoscopies in screening, there is still a lack of widespread acceptance of colonoscopy use in the general public. This is evident by the fact that up to 75% of patients diagnosed with colorectal cancer present with locally advanced disease. In order to make colonoscopy and in turn colorectal cancer screening a patient friendly and a comfortable test some changes in tool are necessary. The conventional colonoscope has not changed much since its development. There are several new advances in colorectal screening practices. One of the most promising new advances is the advent of robotic endoscopic techniques. PMID:26380845
ISAAC - A Testbed for Advanced Composites Research
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.
2014-01-01
The NASA Langley Research Center is acquiring a state-of-art composites fabrication environment to support the Center's research and technology development mission. This overall system described in this paper is named ISAAC, or Integrated Structural Assembly of Advanced Composites. ISAAC's initial operational capability is a commercial robotic automated fiber placement system from Electroimpact, Inc. that consists of a multi-degree of freedom commercial robot platform, a tool changer mechanism, and a specialized automated fiber placement end effector. Examples are presented of how development of advanced composite materials, structures, fabrication processes and technology are enabled by utilizing the fiber placement end effector directly or with appropriate modifications. Alternatively, end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.
Can robots patch-clamp as well as humans? Characterization of a novel sodium channel mutation
Estacion, M; Choi, J S; Eastman, E M; Lin, Z; Li, Y; Tyrrell, L; Yang, Y; Dib-Hajj, S D; Waxman, S G
2010-01-01
Ion channel missense mutations cause disorders of excitability by changing channel biophysical properties. As an increasing number of new naturally occurring mutations have been identified, and the number of other mutations produced by molecular approaches such as in situ mutagenesis has increased, the need for functional analysis by patch-clamp has become rate limiting. Here we compare a patch-clamp robot using planar-chip technology with human patch-clamp in a functional assessment of a previously undescribed Nav1.7 sodium channel mutation, S211P, which causes erythromelalgia. This robotic patch-clamp device can increase throughput (the number of cells analysed per day) by 3- to 10-fold. Both modes of analysis show that the mutation hyperpolarizes activation voltage dependence (−8 mV by manual profiling, −11 mV by robotic profiling), alters steady-state fast inactivation so that it requires an additional Boltzmann function for a second fraction of total current (∼20% manual, ∼40% robotic), and enhances slow inactivation (hyperpolarizing shift −15 mV by human, −13 mV robotic). Manual patch-clamping demonstrated slower deactivation and enhanced (∼2-fold) ramp response for the mutant channel while robotic recording did not, possibly due to increased temperature and reduced signal-to-noise ratio on the robotic platform. If robotic profiling is used to screen ion channel mutations, we recommend that each measurement or protocol be validated by initial comparison to manual recording. With this caveat, we suggest that, if results are interpreted cautiously, robotic patch-clamp can be used with supervision and subsequent confirmation from human physiologists to facilitate the initial profiling of a variety of electrophysiological parameters of ion channel mutations. PMID:20123784
Development of the HERMIES III mobile robot research testbed at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manges, W.W.; Hamel, W.R.; Weisbin, C.R.
1988-01-01
The latest robot in the Hostile Environment Robotic Machine Intelligence Experiment Series (HERMIES) is now under development at the Center for Engineering Systems Advanced Research (CESAR) in the Oak Ridge National Laboratory. The HERMIES III robot incorporates a larger than human size 7-degree-of-freedom manipulator mounted on a 2-degree-of-freedom mobile platform including a variety of sensors and computers. The deployment of this robot represents a significant increase in research capabilities for the CESAR laboratory. The initial on-board computer capacity of the robot exceeds that of 20 Vax 11/780s. The navigation and vision algorithms under development make extensive use of the on-boardmore » NCUBE hypercube computer while the sensors are interfaced through five VME computers running the OS-9 real-time, multitasking operating system. This paper describes the motivation, key issues, and detailed design trade-offs of implementing the first phase (basic functionality) of the HERMIES III robot. 10 refs., 7 figs.« less
[Robotic assistance in gynaecological surgery: State-of-the-art].
Monsarrat, N; Collinet, P; Narducci, F; Leblanc, E; Vinatier, D
2009-05-01
From the Automated Endoscopic System for Optimal Positioning (AESOP), a robotic arm which operates the laparoscope, to the robots Zeus and da Vinci, robotic assistance in gynaecological endoscopic surgery has continuously evolved for the last fifteen years or so. It has brought about new technical advancements: the last generation robots offer a steady three-dimensional image, improved instrument dexterity and precision, higher ergonomics and comfort for the surgeon. The da Vinci robotic system has been used without evincing any specific morbidity in various cases, notably for tubal reanastomosis, myomectomy, hysterectomy, pelvic and para-aortic lymphadenectomy or sacrocolpopexy amongst others. Robotic assistance in gynaecology is thus feasible. Like conventional laparoscopic surgery, it allows decreased blood loss and morbidity as well as shorter hospital stay, as compared to laparotomy. It might indeed allow many surgical teams to perform minimally invasive surgical procedures which they were not used to performing by laparoscopy. Randomized prospective studies are needed to define its indications more precisely. Besides, its medico-financial impact should be evaluated too.
The Evolution of Image-Free Robotic Assistance in Unicompartmental Knee Arthroplasty.
Lonner, Jess H; Moretti, Vincent M
2016-01-01
Semiautonomous robotic technology has been introduced to optimize accuracy of bone preparation, implant positioning, and soft tissue balance in unicompartmental knee arthroplasty (UKA), with the expectation that there will be a resultant improvement in implant durability and survivorship. Currently, roughly one-fifth of UKAs in the US are being performed with robotic assistance, and it is anticipated that there will be substantial growth in market penetration of robotics over the next decade. First-generation robotic technology improved substantially implant position compared to conventional methods; however, high capital costs, uncertainty regarding the value of advanced technologies, and the need for preoperative computed tomography (CT) scans were barriers to broader adoption. Newer image-free semiautonomous robotic technology optimizes both implant position and soft tissue balance, without the need for preoperative CT scans and with pricing and portability that make it suitable for use in an ambulatory surgery center setting, where approximately 40% of these systems are currently being utilized. This article will review the robotic experience for UKA, including rationale, system descriptions, and outcomes.
2008-01-01
Robotic colorectal surgery has gradually been performed more with the help of the technological advantages of the da Vinci® system. Advanced technological advantages of the da Vinci® system compared with standard laparoscopic colorectal surgery have been reported. These are a stable camera platform, three-dimensional imaging, excellent ergonomics, tremor elimination, ambidextrous capability, motion scaling, and instruments with multiple degrees of freedom. However, despite these technological advantages, most studies did not report the clinical advantages of robotic colorectal surgery compared to standard laparoscopic colorectal surgery. Only one study recently implies the real benefits of robotic rectal cancer surgery. The purpose of this review article is to outline the early concerns of robotic colorectal surgery using the da Vinci® system, to present early clinical outcomes from the most current series, and to discuss not only the safety and the feasibility but also the real benefits of robotic colorectal surgery. Moreover, this article will comment on the possible future clinical advantages and limitations of the da Vinci® system in robotic colorectal surgery. PMID:19108010
Virtual reality-assisted robotic surgery simulation.
Albani, Justin M; Lee, David I
2007-03-01
For more than a decade, advancing computer technologies have allowed incorporation of virtual reality (VR) into surgical training. This has become especially important in training for laparoscopic procedures, which often are complex and leave little room for error. With the advent of robotic surgery and the development and prevalence of a commercial surgical system (da Vinci robot; Intuitive Surgical, Sunnyvale, CA), a valid VR-assisted robotic surgery simulator could minimize the steep learning curve associated with many of these complex procedures and thus enable better outcomes. To date, such simulation does not exist; however, several agencies and corporations are involved in making this dream a reality. We review the history and progress of VR simulation in surgical training, its promising applications in robotic-assisted surgery, and the remaining challenges to implementation.
Zhang, He; Gonenc, Berk; Iordachita, Iulian
2017-10-01
Retinal vein occlusion is one of the most common retinovascular diseases. Retinal vein cannulation is a potentially effective treatment method for this condition that currently lies, however, at the limits of human capabilities. In this work, the aim is to use robotic systems and advanced instrumentation to alleviate these challenges, and assist the procedure via a human-robot collaborative mode based on our earlier work on the Steady-Hand Eye Robot and force-sensing instruments. An admittance control method is employed to stabilize the cannula relative to the vein and maintain it inside the lumen during the injection process. A pre-stress strategy is used to prevent the tip of microneedle from getting out of vein in in prolonged infusions, and the performance is verified through simulations.
Robotics in urologic oncology.
Jain, Saurabh; Gautam, Gagan
2015-01-01
Robotic surgery was initially developed to overcome problems faced during conventional laparoscopic surgeries and to perform telesurgery at distant locations. It has now established itself as the epitome of minimally invasive surgery (MIS). It is one of the most significant advances in MIS in recent years and is considered by many as a revolutionary technology, capable of influencing the future of surgery. After its introduction to urology, robotic surgery has redefined the management of urological malignancies. It promises to make difficult urological surgeries easier, safer and more acceptable to both the surgeon and the patient. Robotic surgery is slowly, but surely establishing itself in India. In this article, we provide an overview of the advantages, disadvantages, current status, and future applications of robotic surgery for urologic cancers in the context of the Indian scenario.
Update on laparoscopic, robotic, and minimally invasive vaginal surgery for pelvic floor repair.
Ross, J W; Preston, M R
2009-06-01
Advanced laparoscopic surgery marked the beginning of minimally invasive pelvic surgery. This technique lead to the development of laparoscopic hysterectomy, colposuspension, paravaginal repair, uterosacral suspension, and sacrocolpopexy without an abdominal incision. With laparoscopy there is a significant decrease in postoperative pain, shorter length of hospital stay, and a faster return to normal activities. These advantages made laparoscopy very appealing to patients. Advanced laparoscopy requires a special set of surgical skills and in the early phase of development training was not readily available. Advanced laparoscopy was developed by practicing physicians, instead of coming down through the more usual academic channels. The need for special training did hinder widespread acceptance. Nonetheless by physician to physician training and society training courses it has continued to grow and now has been incorporated in most medical school curriculums. In the last few years there has been new interest in laparoscopy because of the development of robotic assistance. The 3D vision and 720 degree articulating arms with robotics have made suture intensive procedures much easier. Laparosco-pic robotic-assisted sacrocolpopexy is in the reach of most surgeons. This field is so new that there is very little data to evaluate at this time. There are short comings with laparoscopy and even with robotic-assisted procedures it is not the cure all for pelvic floor surgery. Laparoscopic procedures are long and many patients requiring pelvic floor surgery have medical conditions preventing long anesthesia. Minimally invasive vaginal surgery has developed from the concept of tissue replacement by synthetic mesh. Initially sheets of synthetic mesh were tailored by physicians to repair the anterior and posterior vaginal compartment. The use of mesh by general surgeons for hernia repair has served as a model for urogynecology. There have been rapid improvements in biomaterials and specialized kits have been developed by industry. The purpose of this article is to present an update in urogynecologic laparoscopy, robotic surgery, and minimally invasive vaginal surgery.
The use of soft robotics in cardiovascular therapy.
Wamala, Isaac; Roche, Ellen T; Pigula, Frank A
2017-10-01
Robots have been employed in cardiovascular therapy as surgical tools and for automation of hospital systems. Soft robots are a new kind of robot made of soft deformable materials, that are uniquely suited for biomedical applications because they are inherently less likely to injure body tissues and more likely to adapt to biological environments. Awareness of the soft robotic systems under development will help promote clinician involvement in their successful clinical translation. Areas covered: The most advanced soft robotic systems, across the size scale from nano to macro, that have shown the most promise for clinical application in cardiovascular therapy because they offer solutions where a clear therapeutic need still exists. We discuss nano and micro scale technology that could help improve targeted therapy for cardiac regeneration in ischemic heart disease, and soft robots for mechanical circulatory support. Additionally, we suggest where the gaps in the technology currently lie. Expert commentary: Soft robotic technology has now matured from the proof-of-concept phase to successful animal testing. With further refinement in materials and clinician guided application, they will be a useful complement for cardiovascular therapy.
Thubagere, Anupama J; Li, Wei; Johnson, Robert F; Chen, Zibo; Doroudi, Shayan; Lee, Yae Lim; Izatt, Gregory; Wittman, Sarah; Srinivas, Niranjan; Woods, Damien; Winfree, Erik; Qian, Lulu
2017-09-15
Two critical challenges in the design and synthesis of molecular robots are modularity and algorithm simplicity. We demonstrate three modular building blocks for a DNA robot that performs cargo sorting at the molecular level. A simple algorithm encoding recognition between cargos and their destinations allows for a simple robot design: a single-stranded DNA with one leg and two foot domains for walking, and one arm and one hand domain for picking up and dropping off cargos. The robot explores a two-dimensional testing ground on the surface of DNA origami, picks up multiple cargos of two types that are initially at unordered locations, and delivers them to specified destinations until all molecules are sorted into two distinct piles. The robot is designed to perform a random walk without any energy supply. Exploiting this feature, a single robot can repeatedly sort multiple cargos. Localization on DNA origami allows for distinct cargo-sorting tasks to take place simultaneously in one test tube or for multiple robots to collectively perform the same task. Copyright © 2017, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisbin, C.R.
1987-03-01
This document reviews research accomplishments achieved by the staff of the Center for Engineering Systems Advanced Research (CESAR) during the fiscal years 1984 through 1987. The manuscript also describes future CESAR objectives for the 1988-1991 planning horizon, and beyond. As much as possible, the basic research goals are derived from perceived Department of Energy (DOE) needs for increased safety, productivity, and competitiveness in the United States energy producing and consuming facilities. Research areas covered include the HERMIES-II Robot, autonomous robot navigation, hypercube computers, machine vision, and manipulators.
Performance of advanced missions using fusion propulsion
NASA Technical Reports Server (NTRS)
Friedlander, Alan; Mcadams, Jim; Schulze, Norm
1989-01-01
A quantitive evaluation of the premise that nuclear fusion propulsion offers benefits as compared to other propulsion technologies for carrying out a program of advanced exploration of the solar system and beyond is presented. Using a simplified analytical model of trajectory performance, numerical results of mass requirements versus trip time are given for robotic missions beyond the solar system that include flyby and rendezvous with the Oort cloud of comets and with the star system Alpha Centauri. Round trip missions within the solar system, including robotic sample returns from the outer planet moons and multiple asteroid targets, and manned Mars exploration are also described.
NASA Astrophysics Data System (ADS)
McCain, Harry G.; Andary, James F.; Hewitt, Dennis R.; Haley, Dennis C.
The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the general nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.
McCain, H G; Andary, J F; Hewitt, D R; Haley, D C
1991-01-01
The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station) Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.
NASA Technical Reports Server (NTRS)
McCain, H. G.; Andary, J. F.; Hewitt, D. R.; Haley, D. C.
1991-01-01
The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station) Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.
NASA Technical Reports Server (NTRS)
Tunstel, E.; Howard, A.; Edwards, D.; Carlson, A.
2001-01-01
This paper presents a technique for learning to assess terrain traversability for outdoor mobile robot navigation using human-embedded logic and real-time perception of terrain features extracted from image data.
Kinematic synthesis of adjustable robotic mechanisms
NASA Astrophysics Data System (ADS)
Chuenchom, Thatchai
1993-01-01
Conventional hard automation, such as a linkage-based or a cam-driven system, provides high speed capability and repeatability but not the flexibility required in many industrial applications. The conventional mechanisms, that are typically single-degree-of-freedom systems, are being increasingly replaced by multi-degree-of-freedom multi-actuators driven by logic controllers. Although this new trend in sophistication provides greatly enhanced flexibility, there are many instances where the flexibility needs are exaggerated and the associated complexity is unnecessary. Traditional mechanism-based hard automation, on the other hand, neither can fulfill multi-task requirements nor are cost-effective mainly due to lack of methods and tools to design-in flexibility. This dissertation attempts to bridge this technological gap by developing Adjustable Robotic Mechanisms (ARM's) or 'programmable mechanisms' as a middle ground between high speed hard automation and expensive serial jointed-arm robots. This research introduces the concept of adjustable robotic mechanisms towards cost-effective manufacturing automation. A generalized analytical synthesis technique has been developed to support the computational design of ARM's that lays the theoretical foundation for synthesis of adjustable mechanisms. The synthesis method developed in this dissertation, called generalized adjustable dyad and triad synthesis, advances the well-known Burmester theory in kinematics to a new level. While this method provides planar solutions, a novel patented scheme is utilized for converting prescribed three-dimensional motion specifications into sets of planar projections. This provides an analytical and a computational tool for designing adjustable mechanisms that satisfy multiple sets of three-dimensional motion specifications. Several design issues were addressed, including adjustable parameter identification, branching defect, and mechanical errors. An efficient mathematical scheme for identification of adjustable member was also developed. The analytical synthesis techniques developed in this dissertation were successfully implemented in a graphic-intensive user-friendly computer program. A physical prototype of a general purpose adjustable robotic mechanism has been constructed to serve as a proof-of-concept model.
Review on design and control aspects of ankle rehabilitation robots.
Jamwal, Prashant K; Hussain, Shahid; Xie, Sheng Q
2015-03-01
Ankle rehabilitation robots can play an important role in improving outcomes of the rehabilitation treatment by assisting therapists and patients in number of ways. Consequently, few robot designs have been proposed by researchers which fall under either of the two categories, namely, wearable robots or platform-based robots. This paper presents a review of both kinds of ankle robots along with a brief analysis of their design, actuation and control approaches. While reviewing these designs it was observed that most of them are undesirably inspired by industrial robot designs. Taking note of the design concerns of current ankle robots, few improvements in the ankle robot designs have also been suggested. Conventional position control or force control approaches, being used in the existing ankle robots, have been reviewed. Apparently, opportunities of improvement also exist in the actuation as well as control of ankle robots. Subsequently, a discussion on most recent research in the development of novel actuators and advanced controllers based on appropriate physical and cognitive human-robot interaction has also been included in this review. Implications for Rehabilitation Ankle joint functions are restricted/impaired as a consequence of stroke or injury during sports or otherwise. Robots can help in reinstating functions faster and can also work as tool for recording rehabilitation data useful for further analysis. Evolution of ankle robots with respect to their design and control aspects has been discussed in the present paper and a novel design with futuristic control approach has been proposed.
Rantanen, Pekka; Parkkari, Timo; Leikola, Saija; Airaksinen, Marja; Lyles, Alan
2017-05-01
We examined the safety profile and usability of an integrated advanced robotic device and telecare system to promote medication adherence for elderly home-care patients. There were two phases. Phase I aimed to verify under controlled conditions in a single nursing home (n = 17 patients) that no robotic malfunctions would hinder the device's safe use. Phase II involved home-care patients from 3 sites (n = 27) who were on long-term medication. On-time dispensing and missed doses were recorded by the robotic system. Patients' and nurses' experiences were assessed with structured interviews. The 17 nursing home patients had 457 total days using the device (Phase I; mean, 26.9 per patient). On-time sachet retrieval occurred with 97.7% of the alerts, and no medication doses were missed. At baseline, Phase II home-dwelling patients reported difficulty remembering to take their medicines (23%), and 18% missed at least 2 doses per week. Most Phase II patients (78%) lived alone. The device delivered and patients retrieved medicine sachets for 99% of the alerts. All patients and 96% of nurses reported the device was easy to use. This trial demonstrated the safety profile and usability of an in-home advanced robotic device and telecare system and its acceptability to patients and nurses. It supports individualized patient dosing schedules, patient-provider communications, and on-time, in-home medication delivery to promote adherence. Real time dose-by-dose monitoring and communication with providers if a dose is missed provide oversight generally not seen in home care. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Control of free-flying space robot manipulator systems
NASA Technical Reports Server (NTRS)
Cannon, Robert H., Jr.
1977-01-01
To accelerate the development of multi-armed, free-flying satellite manipulators, a fixed-base cooperative manipulation facility is being developed. The work performed on multiple arm cooperation on a free-flying robot is summarized. Research is also summarized on global navigation and control of free-flying space robots. The Locomotion Enhancement via Arm Pushoff (LEAP) approach is described and progress to date is presented.
Miniaturized soft bio-hybrid robotics: a step forward into healthcare applications.
Patino, T; Mestre, R; Sánchez, S
2016-10-07
Soft robotics is an emerging discipline that employs soft flexible materials such as fluids, gels and elastomers in order to enhance the use of robotics in healthcare applications. Compared to their rigid counterparts, soft robotic systems have flexible and rheological properties that are closely related to biological systems, thus allowing the development of adaptive and flexible interactions with complex dynamic environments. With new technologies arising in bioengineering, the integration of living cells into soft robotic systems offers the possibility of accomplishing multiple complex functions such as sensing and actuating upon external stimuli. These emerging bio-hybrid systems are showing promising outcomes and opening up new avenues in the field of soft robotics for applications in healthcare and other fields.
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
Team KuuKulgur watches as their robots attempt the level one competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
The Retrievers team robot is seen as it attempts the level one challenge the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
Robot-Aided Neurorehabilitation
Krebs, Hermano Igo; Hogan, Neville; Aisen, Mindy L.; Volpe, Bruce T.
2009-01-01
Our goal is to apply robotics and automation technology to assist, enhance, quantify, and document neurorehabilitation. This paper reviews a clinical trial involving 20 stroke patients with a prototype robot-aided rehabilitation facility developed at the Massachusetts Institute of Technology, Cambridge, (MIT) and tested at Burke Rehabilitation Hospital, White Plains, NY. It also presents our approach to analyze kinematic data collected in the robot-aided assessment procedure. In particular, we present evidence 1) that robot-aided therapy does not have adverse effects, 2) that patients tolerate the procedure, and 3) that peripheral manipulation of the impaired limb may influence brain recovery. These results are based on standard clinical assessment procedures. We also present one approach using kinematic data in a robot-aided assessment procedure. PMID:9535526
A Filtering Approach for Image-Guided Surgery With a Highly Articulated Surgical Snake Robot.
Tully, Stephen; Choset, Howie
2016-02-01
The objective of this paper is to introduce a probabilistic filtering approach to estimate the pose and internal shape of a highly flexible surgical snake robot during minimally invasive surgery. Our approach renders a depiction of the robot that is registered to preoperatively reconstructed organ models to produce a 3-D visualization that can be used for surgical feedback. Our filtering method estimates the robot shape using an extended Kalman filter that fuses magnetic tracker data with kinematic models that define the motion of the robot. Using Lie derivative analysis, we show that this estimation problem is observable, and thus, the shape and configuration of the robot can be successfully recovered with a sufficient number of magnetic tracker measurements. We validate this study with benchtop and in-vivo image-guidance experiments in which the surgical robot was driven along the epicardial surface of a porcine heart. This paper introduces a filtering approach for shape estimation that can be used for image guidance during minimally invasive surgery. The methods being introduced in this paper enable informative image guidance for highly articulated surgical robots, which benefits the advancement of robotic surgery.
Current status of robotic simulators in acquisition of robotic surgical skills.
Kumar, Anup; Smith, Roger; Patel, Vipul R
2015-03-01
This article provides an overview of the current status of simulator systems in robotic surgery training curriculum, focusing on available simulators for training, their comparison, new technologies introduced in simulation focusing on concepts of training along with existing challenges and future perspectives of simulator training in robotic surgery. The different virtual reality simulators available in the market like dVSS, dVT, RoSS, ProMIS and SEP have shown face, content and construct validity in robotic skills training for novices outside the operating room. Recently, augmented reality simulators like HoST, Maestro AR and RobotiX Mentor have been introduced in robotic training providing a more realistic operating environment, emphasizing more on procedure-specific robotic training . Further, the Xperience Team Trainer, which provides training to console surgeon and bed-side assistant simultaneously, has been recently introduced to emphasize the importance of teamwork and proper coordination. Simulator training holds an important place in current robotic training curriculum of future robotic surgeons. There is a need for more procedure-specific augmented reality simulator training, utilizing advancements in computing and graphical capabilities for new innovations in simulator technology. Further studies are required to establish its cost-benefit ratio along with concurrent and predictive validity.
Medical Robotic and Telesurgical Simulation and Education Research
2014-09-01
versions of the device for sale . A B 13 C D Figure 6: The Computer Aided Design of the Dome (A-B) and the last High Fidelity Prototype (C...FRxS Advanced Etc. Etc. Virtual Worlds for Robotic Surgery 31 HumanSim Preview for iPad is available on iTunes VIRTURLHEROES OMS ION O F
Diving beneath the Surface: Underwater Robotics Lessons Bring STEM to Life for Teachers in Guam
ERIC Educational Resources Information Center
Tweed, Anne; Arndt, Laura
2017-01-01
In spring 2014, education leaders from across Micronesia came together on the island of Guam to learn about underwater robotics and Marine Advanced Technology Education (MATE), a program based at Monterey Peninsula College in Monterey, California. Participants listened intently as they learned about building and participating in competitions with…
MIT CSAIL and Lincoln Laboratory Task Force Report
2016-08-01
projects have been very diverse, spanning several areas of CSAIL concentration, including robotics, big data analytics , wireless communications...spanning several areas of CSAIL concentration, including robotics, big data analytics , wireless communications, computing architectures and...to machine learning systems and algorithms, such as recommender systems, and “Big Data ” analytics . Advanced computing architectures broadly refer to
Yanggang Feng; Jinying Zhu; Qining Wang
2016-08-01
Recent advances in robotic technology are facilitating the development of robotic prostheses. Our previous studies proposed a lightweight robotic transtibial prosthesis with a damping control strategy. To improve the performance of power assistance, in this paper, we redesign the prosthesis and improve the control strategy by supplying extra push-off power. A male transtibial amputee subject volunteered to participate in the study. Preliminary experimental results show that the proposed prosthesis with push-off control improves energy expenditure by a percentage ranged from 9.72 % to 14.99 % for level-ground walking compared with the one using non-push-off control.
Challenges of In Space Robotic Servicing
NASA Technical Reports Server (NTRS)
Roberts, Brian John
2015-01-01
As future space missions extend beyond the friendly confines of low earth orbit, robots are becoming an increasingly vital component on flight manifests. While the main focus to-date has been on satellite servicing due to its high commercial potential, robots are also being considered for orbital debris removal, space construction, and asteroid sample retrieval. The robotic technologies and automation required to carry out these missions represent a significant advancement beyond the manipulation technology used previously on the Space Shuttle, the International Space Station, and planetary rovers. While higher demands are being driven by the more ambitious nature of the tasks, the handling of uncooperative targets such as satellites and asteroids, present a greater challenge.
Flexible robotics in pelvic disease: does the catheter increase applicability of embolic therapy?
Rueda, Maria A; Riga, Celia; Hamady, Mohamad S
2018-06-01
Interventional radiology procedures, equipment, and techniques as well as image guidance have developed dramatically over the last few decades. The evidence for minimally invasive interventions in vascular and oncology fields is rapidly growing and several procedures are considered the first line management. However, radiation exposure, image guidance and innovative solutions to known anatomical challenges are still lagging behind. Robotic technology and its role in surgery have been developing at a steady speed. Endovascular robotics are following suit with a different set of problems and targets. This article discusses the advances and limitations in one aspects of endovascular robotic, namely pelvic pathology that includes aneurysms, fibroids, benign prostatic hypertrophy and vascular malformation.
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
The University of Waterloo Robotics Team, from Canada, prepares to place their robot on the start platform during the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-10
The University of Waterloo Robotics Team, from Ontario, Canada, prepares their robot for the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The team from the University of Waterloo is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
NASA Technical Reports Server (NTRS)
Laurini, Kathleen C.; Hufenbach, Bernhard; Satoh, Maoki; Piedboeuf, Jean-Claude; Neumann, Benjamin
2010-01-01
Advancing critical and enhancing technologies is considered essential to enabling sustainable and affordable human space exploration. Critical technologies are those that enable a certain class of mission, such as technologies necessary for safe landing on the Martian surface, advanced propulsion, and closed loop life support. Others enhance the mission by leading to a greater satisfaction of mission objectives or increased probability of mission success. Advanced technologies are needed to reduce mass and cost. Many space agencies have studied exploration mission architectures and scenarios with the resulting lists of critical and enhancing technologies being very similar. With this in mind, and with the recognition that human space exploration will only be enabled by agencies working together to address these challenges, interested agencies participating in the International Space Exploration Coordination Group (ISECG) have agreed to perform a technology assessment as an important step in exploring cooperation opportunities for future exploration mission scenarios. "The Global Exploration Strategy: The Framework for Coordination" was developed by fourteen space agencies and released in May 2007. Since the fall of 2008, several International Space Exploration Coordination Group (ISECG) participating space agencies have been studying concepts for human exploration of the moon. They have identified technologies considered critical and enhancing of sustainable space exploration. Technologies such as in-situ resource utilization, advanced power generation/energy storage systems, reliable dust resistant mobility systems, and closed loop life support systems are important examples. Similarly, agencies such as NASA, ESA, and Russia have studied Mars exploration missions and identified critical technologies. They recognize that human and robotic precursor missions to destinations such as LEO, moon, and near earth objects provide opportunities to demonstrate the technologies needed for Mars mission. Agencies see the importance of assessing gaps and overlaps in their plans to advance technologies in order to leverage their investments and enable exciting missions as soon as practical. They see the importance of respecting the ability of any agency to invest in any technologies considered interesting or strategic. This paper will describe the importance of developing an appropriate international strategy for technology development and ideas for effective mechanisms for advancing an international strategy. This work will both inform and be informed by the development of an ISECG Global Exploration Roadmap and serve as a concrete step forward in advancing the Global Exploration Strategy.
Design And Control Of Agricultural Robot For Tomato Plants Treatment And Harvesting
NASA Astrophysics Data System (ADS)
Sembiring, Arnes; Budiman, Arif; Lestari, Yuyun D.
2017-12-01
Although Indonesia is one of the biggest agricultural country in the world, implementation of robotic technology, otomation and efficiency enhancement in agriculture process hasn’t extensive yet. This research proposed a low cost agricultural robot architecture. The robot could help farmer to survey their farm area, treat the tomato plants and harvest the ripe tomatoes. Communication between farmer and robot was facilitated by wireless line using radio wave to reach wide area (120m radius). The radio wave was combinated with Bluetooth to simplify the communication between robot and farmer’s Android smartphone. The robot was equipped with a camera, so the farmers could survey the farm situation through 7 inch monitor display real time. The farmers controlled the robot and arm movement through an user interface in Android smartphone. The user interface contains control icons that allow farmers to control the robot movement (formard, reverse, turn right and turn left) and cut the spotty leaves or harvest the ripe tomatoes.
NASA Technical Reports Server (NTRS)
Brewer, W. V.; Rasis, E. P.; Shih, H. R.
1993-01-01
Results from NASA/HBCU Grant No. NAG-1-1125 are summarized. Designs developed for model fabrication, exploratory concepts drafted, interface of computer with robot and end-effector, and capability enhancement are discussed.
The Role of Robots and Automation in Space
NASA Technical Reports Server (NTRS)
Heer, E.
1978-01-01
Advanced space transportation systems based on the shuttle and interim upper stage will open the way to the use of large-scale industrial and commercial systems in space. The role of robot and automation technology in the cost-effective implementation and operation of such systems in the next two decades is discussed. Planning studies initiated by NASA are described as applied to space exploration, global services, and space industrialization, and a forecast of potential missions in each category is presented. The appendix lists highlights of space robot technology from 1967 to the present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Robert J.
2011-01-01
Improvised Explosive Device (IED) defeat (IEDD) operations can involve intricate operations that exceed the current capabilities of the grippers on board current bombsquad robots. The Shadow Dexterous Hand from the Shadow Robot Company or 'ShadowHand' for short (www.shadowrobot.com) is the first commercially available robot hand that realistically replicates the motion, degrees-of-freedom and dimensions of a human hand (Figure 1). In this study we evaluate the potential for the ShadowHand to perform potential IED defeat tasks on a mobile platform.
Real time AI expert system for robotic applications
NASA Technical Reports Server (NTRS)
Follin, John F.
1987-01-01
A computer controlled multi-robot process cell to demonstrate advanced technologies for the demilitarization of obsolete chemical munitions was developed. The methods through which the vision system and other sensory inputs were used by the artificial intelligence to provide the information required to direct the robots to complete the desired task are discussed. The mechanisms that the expert system uses to solve problems (goals), the different rule data base, and the methods for adapting this control system to any device that can be controlled or programmed through a high level computer interface are discussed.
Implementing Speed and Separation Monitoring in Collaborative Robot Workcells.
Marvel, Jeremy A; Norcross, Rick
2017-04-01
We provide an overview and guidance for the Speed and Separation Monitoring methodology as presented in the International Organization of Standardization's technical specification 15066 on collaborative robot safety. Such functionality is provided by external, intelligent observer systems integrated into a robotic workcell. The SSM minimum protective distance function equation is discussed in detail, with consideration for the input values, implementation specifications, and performance expectations. We provide analytical analyses and test results of the current equation, discuss considerations for implementing SSM in human-occupied environments, and provide directions for technological advancements toward standardization.
Implementing Speed and Separation Monitoring in Collaborative Robot Workcells
Marvel, Jeremy A.; Norcross, Rick
2016-01-01
We provide an overview and guidance for the Speed and Separation Monitoring methodology as presented in the International Organization of Standardization's technical specification 15066 on collaborative robot safety. Such functionality is provided by external, intelligent observer systems integrated into a robotic workcell. The SSM minimum protective distance function equation is discussed in detail, with consideration for the input values, implementation specifications, and performance expectations. We provide analytical analyses and test results of the current equation, discuss considerations for implementing SSM in human-occupied environments, and provide directions for technological advancements toward standardization. PMID:27885312
Analysis of a concentric-tube robot design and feasibility for endoscopic deployment
NASA Astrophysics Data System (ADS)
Ponten, Ryan; Black, Caroline B.; Russ, Andrew J.; Rucker, D. Caleb
2017-03-01
An intraluminal endoscopic approach is desirable for most colonoscopic procedures and is growing in favor for other surgeries as tools are enhanced. Flexible robotic manipulators could further enhance the dexterity and precision of commercial endoscopic systems. In this paper, we explore the capabilities of concentric tube robots to work as tool manipulators at the tip of a colonoscope to perform endoscopic submucousal dissection (ESD) and endoscopic full thickness resection (EFTR). We provide an overview of the kinematic modeling of these manipulators, a design of a prototype manipulator and the transmission actuation system. Our analysis examines the workspace and stiffness of these manipulators being controlled at the tip of a colonoscope. We compare the results to reported surgical requirements and propose solutions for enhancing their effectiveness including notching tubes with a larger Young's Modulus. We also determine the resolution and accuracy of the actuation system.
Autonomous space processor for orbital debris
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar; Campbell, David; Brockman, Jeff P.; Carter, Bruce; Donelson, Leslie; John, Lawrence E.; Marine, Micky C.; Rodina, Dan D.
1989-01-01
This work continues to develop advanced designs toward the ultimate goal of a GETAWAY SPECIAL to demonstrate economical removal of orbital debris utilizing local resources in orbit. The fundamental technical feasibility was demonstrated last year through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design and a subscale model. During this reporting period, several improvements are made in the solar cutter, such as auto track capabilities, better quality reflectors and a more versatile framework. The major advance has been in the design, fabrication and working demonstration of a ROBOTIC ARM that has several degrees of freedom. The functions were specifically tailored for the orbital debris handling. These advances are discussed here. Also a small fraction of the resources were allocated towards research in flame augmentation in SCRAMJETS for the NASP. Here, the fundamental advance was the attainment of Mach numbers up to 0.6 in the flame zone and a vastly improved injection system; the current work is expected to achieve supersonic combustion in the laboratory and an advanced monitoring system.
A secure and easy-to-implement web-based communication framework for caregiving robot teams
NASA Astrophysics Data System (ADS)
Tuna, G.; Daş, R.; Tuna, A.; Örenbaş, H.; Baykara, M.; Gülez, K.
2016-03-01
In recent years, robots have started to become more commonplace in our lives, from factory floors to museums, festivals and shows. They have started to change how we work and play. With an increase in the population of the elderly, they have also been started to be used for caregiving services, and hence many countries have been investing in the robot development. The advancements in robotics and wireless communications has led to the emergence of autonomous caregiving robot teams which cooperate to accomplish a set of tasks assigned by human operators. Although wireless communications and devices are flexible and convenient, they are vulnerable to many risks compared to traditional wired networks. Since robots with wireless communication capability transmit all data types, including sensory, coordination, and control, through radio frequencies, they are open to intruders and attackers unless protected and their openness may lead to many security issues such as data theft, passive listening, and service interruption. In this paper, a secure web-based communication framework is proposed to address potential security threats due to wireless communication in robot-robot and human-robot interaction. The proposed framework is simple and practical, and can be used by caregiving robot teams in the exchange of sensory data as well as coordination and control data.
New Trends in Robotics for Agriculture: Integration and Assessment of a Real Fleet of Robots
Gonzalez-de-Soto, Mariano; Pajares, Gonzalo
2014-01-01
Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis. PMID:25143976
NASA Astrophysics Data System (ADS)
Lee, Sam; Lucas, Nathan P.; Ellis, R. Darin; Pandya, Abhilash
2012-06-01
This paper presents a seamlessly controlled human multi-robot system comprised of ground and aerial robots of semiautonomous nature for source localization tasks. The system combines augmented reality interfaces capabilities with human supervisor's ability to control multiple robots. The role of this human multi-robot interface is to allow an operator to control groups of heterogeneous robots in real time in a collaborative manner. It used advanced path planning algorithms to ensure obstacles are avoided and that the operators are free for higher-level tasks. Each robot knows the environment and obstacles and can automatically generate a collision-free path to any user-selected target. It displayed sensor information from each individual robot directly on the robot in the video view. In addition, a sensor data fused AR view is displayed which helped the users pin point source information or help the operator with the goals of the mission. The paper studies a preliminary Human Factors evaluation of this system in which several interface conditions are tested for source detection tasks. Results show that the novel Augmented Reality multi-robot control (Point-and-Go and Path Planning) reduced mission completion times compared to the traditional joystick control for target detection missions. Usability tests and operator workload analysis are also investigated.
New trends in robotics for agriculture: integration and assessment of a real fleet of robots.
Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo
2014-01-01
Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis.
Elastic Inflatable Actuators for Soft Robotic Applications.
Gorissen, Benjamin; Reynaerts, Dominiek; Konishi, Satoshi; Yoshida, Kazuhiro; Kim, Joon-Wan; De Volder, Michael
2017-11-01
The 20th century's robotic systems have been made from stiff materials, and much of the developments have pursued ever more accurate and dynamic robots, which thrive in industrial automation, and will probably continue to do so for decades to come. However, the 21st century's robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfill the role of robotic link and actuator, where prime focus is on design and fabrication of robotic hardware instead of software control. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics, and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators. This article reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies, and on the other hand by a market pull from applications. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication, and applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Does Robotic Telerounding Enhance Nurse-Physician Collaboration Satisfaction About Care Decisions?
Bettinelli, Michele; Lei, Yuxiu; Beane, Matt; Mackey, Caleb; Liesching, Timothy N
2015-08-01
Delivering healthcare using remote robotic telepresence is an evolving practice in medical and surgical intensive critical care units and will likely have varied implications for work practices and working relationships in intensive care units. Our study assessed the nurse-physician collaboration satisfaction about care decisions from surgical intensive critical care nurses during remote robotic telepresence night rounds in comparison with conventional telephone night rounds. This study used a randomized trial to test whether robotic telerounding enhances the nurse-physician collaboration satisfaction about care decisions. A physician randomly used either the conventional telephone or the RP-7 robot (InTouch(®) Health, Santa Barbara, CA) to perform nighttime rounding in a surgical intensive care unit. The Collaboration and Satisfaction About Care Decisions (CSACD) survey instrument was used to measure the nurse-physician collaboration. The CSACD scores were compared using the signed-rank test with a significant p value of ≤0.05. From December 1, 2011 to December 13, 2012, 20 off-shift nurses submitted 106 surveys during telephone rounds and 108 surveys during robot rounds. The median score of surveys during robot rounds was slightly but not significantly higher than telephone rounds (51.3 versus 50.5; p=0.3). However, the CSACD score was significantly increased from baseline with robot rounds (51.3 versus 43.0; p=0.01), in comparison with telephone rounds (50.5 versus 43.0; p=0.09). The mediators, including age, working experience, and robot acceptance, were not significantly (p>0.1) correlated with the CSACD score difference (robot versus telephone). Robot rounding in the intensive care unit was comparable but not superior to the telephone in regard to the nurse-physician collaboration and satisfaction about care decision. The working experience and technology acceptance of intensive care nurses did not contribute to the preference of night shift rounding method from the aspect of collaboration with the physician about care decision-making.
Robot-assisted general surgery.
Hazey, Jeffrey W; Melvin, W Scott
2004-06-01
With the initiation of laparoscopic techniques in general surgery, we have seen a significant expansion of minimally invasive techniques in the last 16 years. More recently, robotic-assisted laparoscopy has moved into the general surgeon's armamentarium to address some of the shortcomings of laparoscopic surgery. AESOP (Computer Motion, Goleta, CA) addressed the issue of visualization as a robotic camera holder. With the introduction of the ZEUS robotic surgical system (Computer Motion), the ability to remotely operate laparoscopic instruments became a reality. US Food and Drug Administration approval in July 2000 of the da Vinci robotic surgical system (Intuitive Surgical, Sunnyvale, CA) further defined the ability of a robotic-assist device to address limitations in laparoscopy. This includes a significant improvement in instrument dexterity, dampening of natural hand tremors, three-dimensional visualization, ergonomics, and camera stability. As experience with robotic technology increased and its applications to advanced laparoscopic procedures have become more understood, more procedures have been performed with robotic assistance. Numerous studies have shown equivalent or improved patient outcomes when robotic-assist devices are used. Initially, robotic-assisted laparoscopic cholecystectomy was deemed safe, and now robotics has been shown to be safe in foregut procedures, including Nissen fundoplication, Heller myotomy, gastric banding procedures, and Roux-en-Y gastric bypass. These techniques have been extrapolated to solid-organ procedures (splenectomy, adrenalectomy, and pancreatic surgery) as well as robotic-assisted laparoscopic colectomy. In this chapter, we review the evolution of robotic technology and its applications in general surgical procedures.
Pilot study on effectiveness of simulation for surgical robot design using manipulability.
Kawamura, Kazuya; Seno, Hiroto; Kobayashi, Yo; Fujie, Masakatsu G
2011-01-01
Medical technology has advanced with the introduction of robot technology, which facilitates some traditional medical treatments that previously were very difficult. However, at present, surgical robots are used in limited medical domains because these robots are designed using only data obtained from adult patients and are not suitable for targets having different properties, such as children. Therefore, surgical robots are required to perform specific functions for each clinical case. In addition, the robots must exhibit sufficiently high movability and operability for each case. In the present study, we focused on evaluation of the mechanism and configuration of a surgical robot by a simulation based on movability and operability during an operation. We previously proposed the development of a simulator system that reproduces the conditions of a robot and a target in a virtual patient body to evaluate the operability of the surgeon during an operation. In the present paper, we describe a simple experiment to verify the condition of the surgical assisting robot during an operation. In this experiment, the operation imitating suturing motion was carried out in a virtual workspace, and the surgical robot was evaluated based on manipulability as an indicator of movability. As the result, it was confirmed that the robot was controlled with low manipulability of the left side manipulator during the suturing. This simulation system can verify the less movable condition of a robot before developing an actual robot. Our results show the effectiveness of this proposed simulation system.
Robotic Precursor Missions for Mars Habitats
NASA Technical Reports Server (NTRS)
Huntsberger, Terry; Pirjanian, Paolo; Schenker, Paul S.; Trebi-Ollennu, Ashitey; Das, Hari; Joshi, Sajay
2000-01-01
Infrastructure support for robotic colonies, manned Mars habitat, and/or robotic exploration of planetary surfaces will need to rely on the field deployment of multiple robust robots. This support includes such tasks as the deployment and servicing of power systems and ISRU generators, construction of beaconed roadways, and the site preparation and deployment of manned habitat modules. The current level of autonomy of planetary rovers such as Sojourner will need to be greatly enhanced for these types of operations. In addition, single robotic platforms will not be capable of complicated construction scenarios. Precursor robotic missions to Mars that involve teams of multiple cooperating robots to accomplish some of these tasks is a cost effective solution to the possible long timeline necessary for the deployment of a manned habitat. Ongoing work at JPL under the Mars Outpost Program in the area of robot colonies is investigating many of the technology developments necessary for such an ambitious undertaking. Some of the issues that are being addressed include behavior-based control systems for multiple cooperating robots (CAMPOUT), development of autonomous robotic systems for the rescue/repair of trapped or disabled robots, and the design and development of robotic platforms for construction tasks such as material transport and surface clearing.
Bernardo, Antonio
2017-10-01
Quality of neurosurgical care and patient outcomes are inextricably linked to surgical and technical proficiency and a thorough working knowledge of microsurgical anatomy. Neurosurgical laboratory-based cadaveric training is essential for the development and refinement of technical skills before their use on a living patient. Recent biotechnological advances including 3-dimensional (3D) microscopy and endoscopy, 3D printing, virtual reality, surgical simulation, surgical robotics, and advanced neuroimaging have proved to reduce the learning curve, improve conceptual understanding of complex anatomy, and enhance visuospatial skills in neurosurgical training. Until recently, few means have allowed surgeons to obtain integrated surgical and technological training in an operating room setting. We report on a new model, currently in use at our institution, for technologically integrated surgical training and innovation using a next-generation microneurosurgery skull base laboratory designed to recreate the setting of a working operating room. Each workstation is equipped with a 3D surgical microscope, 3D endoscope, surgical drills, operating table with a Mayfield head holder, and a complete set of microsurgical tools. The laboratory also houses a neuronavigation system, a surgical robotic, a surgical planning system, 3D visualization, virtual reality, and computerized simulation for training of surgical procedures and visuospatial skills. In addition, the laboratory is equipped with neurophysiological monitoring equipment in order to conduct research into human factors in surgery and the respective roles of workload and fatigue on surgeons' performance. Copyright © 2017 Elsevier Inc. All rights reserved.
A Dual Launch Robotic and Human Lunar Mission Architecture
NASA Technical Reports Server (NTRS)
Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David
2010-01-01
This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This paper describes a complete transportation architecture including the analysis of transportation element options and sensitivities including: transportation element mass to surface landed mass; lander propellant options; and mission crew size. Based on this analysis, initial design concepts for the launch vehicle, crew module and lunar lander are presented. The paper also describes how the dual launch lunar mission architecture would fit into a more general overarching human space exploration philosophy that would allow expanded application of mission transportation elements for missions beyond the Earth-moon realm.
Adverse Events in Robotic Surgery: A Retrospective Study of 14 Years of FDA Data
Alemzadeh, Homa; Raman, Jaishankar; Leveson, Nancy; Kalbarczyk, Zbigniew; Iyer, Ravishankar K.
2016-01-01
Background Use of robotic systems for minimally invasive surgery has rapidly increased during the last decade. Understanding the causes of adverse events and their impact on patients in robot-assisted surgery will help improve systems and operational practices to avoid incidents in the future. Methods By developing an automated natural language processing tool, we performed a comprehensive analysis of the adverse events reported to the publicly available MAUDE database (maintained by the U.S. Food and Drug Administration) from 2000 to 2013. We determined the number of events reported per procedure and per surgical specialty, the most common types of device malfunctions and their impact on patients, and the potential causes for catastrophic events such as patient injuries and deaths. Results During the study period, 144 deaths (1.4% of the 10,624 reports), 1,391 patient injuries (13.1%), and 8,061 device malfunctions (75.9%) were reported. The numbers of injury and death events per procedure have stayed relatively constant (mean = 83.4, 95% confidence interval (CI), 74.2–92.7 per 100,000 procedures) over the years. Surgical specialties for which robots are extensively used, such as gynecology and urology, had lower numbers of injuries, deaths, and conversions per procedure than more complex surgeries, such as cardiothoracic and head and neck (106.3 vs. 232.9 per 100,000 procedures, Risk Ratio = 2.2, 95% CI, 1.9–2.6). Device and instrument malfunctions, such as falling of burnt/broken pieces of instruments into the patient (14.7%), electrical arcing of instruments (10.5%), unintended operation of instruments (8.6%), system errors (5%), and video/imaging problems (2.6%), constituted a major part of the reports. Device malfunctions impacted patients in terms of injuries or procedure interruptions. In 1,104 (10.4%) of all the events, the procedure was interrupted to restart the system (3.1%), to convert the procedure to non-robotic techniques (7.3%), or to reschedule it (2.5%). Conclusions Despite widespread adoption of robotic systems for minimally invasive surgery in the U.S., a non-negligible number of technical difficulties and complications are still being experienced during procedures. Adoption of advanced techniques in design and operation of robotic surgical systems and enhanced mechanisms for adverse event reporting may reduce these preventable incidents in the future. PMID:27097160
Electromagnetic navigational bronchoscopy and robotic-assisted thoracic surgery.
Christie, Sara
2014-06-01
With the use of electromagnetic navigational bronchoscopy and robotics, lung lesions can be diagnosed and resected during one surgical procedure. Global positioning system technology allows surgeons to identify and mark a thoracic tumor, and then robotics technology allows them to perform minimally invasive resection and cancer staging procedures. Nurses on the perioperative robotics team must consider the logistics of providing safe and competent care when performing combined procedures during one surgical encounter. Instrumentation, OR organization and room setup, and patient positioning are important factors to consider to complete the procedure systematically and efficiently. This revolutionary concept of combining navigational bronchoscopy with robotics requires a team of dedicated nurses to facilitate the sequence of events essential for providing optimal patient outcomes in highly advanced surgical procedures. Copyright © 2014 AORN, Inc. Published by Elsevier Inc. All rights reserved.
Novel Selective Detection Method of Tumor Angiogenesis Factors Using Living Nano-Robots.
Al-Fandi, Mohamed; Alshraiedeh, Nida; Owies, Rami; Alshdaifat, Hala; Al-Mahaseneh, Omamah; Al-Tall, Khadijah; Alawneh, Rawan
2017-07-14
This paper reports a novel self-detection method for tumor cells using living nano-robots. These living robots are a nonpathogenic strain of E. coli bacteria equipped with naturally synthesized bio-nano-sensory systems that have an affinity to VEGF, an angiogenic factor overly-expressed by cancer cells. The VEGF-affinity/chemotaxis was assessed using several assays including the capillary chemotaxis assay, chemotaxis assay on soft agar, and chemotaxis assay on solid agar. In addition, a microfluidic device was developed to possibly discover tumor cells through the overexpressed vascular endothelial growth factor (VEGF). Various experiments to study the sensing characteristic of the nano-robots presented a strong response toward the VEGF. Thus, a new paradigm of selective targeting therapies for cancer can be advanced using swimming E. coli as self-navigator miniaturized robots as well as drug-delivery vehicles.
Reactive, Safe Navigation for Lunar and Planetary Robots
NASA Technical Reports Server (NTRS)
Utz, Hans; Ruland, Thomas
2008-01-01
When humans return to the moon, Astronauts will be accompanied by robotic helpers. Enabling robots to safely operate near astronauts on the lunar surface has the potential to significantly improve the efficiency of crew surface operations. Safely operating robots in close proximity to astronauts on the lunar surface requires reactive obstacle avoidance capabilities not available on existing planetary robots. In this paper we present work on safe, reactive navigation using a stereo based high-speed terrain analysis and obstacle avoidance system. Advances in the design of the algorithms allow it to run terrain analysis and obstacle avoidance algorithms at full frame rate (30Hz) on off the shelf hardware. The results of this analysis are fed into a fast, reactive path selection module, enforcing the safety of the chosen actions. The key components of the system are discussed and test results are presented.
Raison, Nicholas; Ahmed, Kamran; Fossati, Nicola; Buffi, Nicolò; Mottrie, Alexandre; Dasgupta, Prokar; Van Der Poel, Henk
2017-05-01
To develop benchmark scores of competency for use within a competency based virtual reality (VR) robotic training curriculum. This longitudinal, observational study analysed results from nine European Association of Urology hands-on-training courses in VR simulation. In all, 223 participants ranging from novice to expert robotic surgeons completed 1565 exercises. Competency was set at 75% of the mean expert score. Benchmark scores for all general performance metrics generated by the simulator were calculated. Assessment exercises were selected by expert consensus and through learning-curve analysis. Three basic skill and two advanced skill exercises were identified. Benchmark scores based on expert performance offered viable targets for novice and intermediate trainees in robotic surgery. Novice participants met the competency standards for most basic skill exercises; however, advanced exercises were significantly more challenging. Intermediate participants performed better across the seven metrics but still did not achieve the benchmark standard in the more difficult exercises. Benchmark scores derived from expert performances offer relevant and challenging scores for trainees to achieve during VR simulation training. Objective feedback allows both participants and trainers to monitor educational progress and ensures that training remains effective. Furthermore, the well-defined goals set through benchmarking offer clear targets for trainees and enable training to move to a more efficient competency based curriculum. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.
Towards Autonomous Operations of the Robonaut 2 Humanoid Robotic Testbed
NASA Technical Reports Server (NTRS)
Badger, Julia; Nguyen, Vienny; Mehling, Joshua; Hambuchen, Kimberly; Diftler, Myron; Luna, Ryan; Baker, William; Joyce, Charles
2016-01-01
The Robonaut project has been conducting research in robotics technology on board the International Space Station (ISS) since 2012. Recently, the original upper body humanoid robot was upgraded by the addition of two climbing manipulators ("legs"), more capable processors, and new sensors, as shown in Figure 1. While Robonaut 2 (R2) has been working through checkout exercises on orbit following the upgrade, technology development on the ground has continued to advance. Through the Active Reduced Gravity Offload System (ARGOS), the Robonaut team has been able to develop technologies that will enable full operation of the robotic testbed on orbit using similar robots located at the Johnson Space Center. Once these technologies have been vetted in this way, they will be implemented and tested on the R2 unit on board the ISS. The goal of this work is to create a fully-featured robotics research platform on board the ISS to increase the technology readiness level of technologies that will aid in future exploration missions. Technology development has thus far followed two main paths, autonomous climbing and efficient tool manipulation. Central to both technologies has been the incorporation of a human robotic interaction paradigm that involves the visualization of sensory and pre-planned command data with models of the robot and its environment. Figure 2 shows screenshots of these interactive tools, built in rviz, that are used to develop and implement these technologies on R2. Robonaut 2 is designed to move along the handrails and seat track around the US lab inside the ISS. This is difficult for many reasons, namely the environment is cluttered and constrained, the robot has many degrees of freedom (DOF) it can utilize for climbing, and remote commanding for precision tasks such as grasping handrails is time-consuming and difficult. Because of this, it is important to develop the technologies needed to allow the robot to reach operator-specified positions as autonomously as possible. The most important progress in this area has been the work towards efficient path planning for high DOF, highly constrained systems. Other advances include machine vision algorithms for localizing and automatically docking with handrails, the ability of the operator to place obstacles in the robot's virtual environment, autonomous obstacle avoidance techniques, and constraint management.
Energy-Saving Control of a Novel Hydraulic Drive System for Field Walking Robot
NASA Astrophysics Data System (ADS)
Fang, Delei; Shang, Jianzhong; Xue, Yong; Yang, Junhong; Wang, Zhuo
2018-01-01
To improve the efficiency of the hydraulic drive system in field walking robot, this paper proposed a novel hydraulic system based on two-stage pressure source. Based on the analysis of low efficiency of robot single-stage hydraulic system, the paper firstly introduces the concept and design of two-stage pressure source drive system. Then, the new hydraulic system energy-saving control is planned according to the characteristics of walking robot. The feasibility of the new hydraulic system is proved by the simulation of the walking robot squatting. Finally, the efficiencies of two types hydraulic system are calculated, indicating that the novel hydraulic system can increase the efficiency by 41.5%, which can contribute to enhance knowledge about hydraulic drive system for field walking robot.
Detection of Subtle Context-Dependent Model Inaccuracies in High-Dimensional Robot Domains.
Mendoza, Juan Pablo; Simmons, Reid; Veloso, Manuela
2016-12-01
Autonomous robots often rely on models of their sensing and actions for intelligent decision making. However, when operating in unconstrained environments, the complexity of the world makes it infeasible to create models that are accurate in every situation. This article addresses the problem of using potentially large and high-dimensional sets of robot execution data to detect situations in which a robot model is inaccurate-that is, detecting context-dependent model inaccuracies in a high-dimensional context space. To find inaccuracies tractably, the robot conducts an informed search through low-dimensional projections of execution data to find parametric Regions of Inaccurate Modeling (RIMs). Empirical evidence from two robot domains shows that this approach significantly enhances the detection power of existing RIM-detection algorithms in high-dimensional spaces.
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-10
A team KuuKulgur Robot from Estonia is seen on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team KuuKulgur is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
Sam Ortega, NASA program manager of Centennial Challenges, watches as robots attempt the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-12
The team Survey robot retrieves a sample during a demonstration of the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
The team AERO robot drives off the starting platform during the level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
Team Cephal's robot is seen on the starting platform during a rerun of the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)