Borges, F S; Protachevicz, P R; Lameu, E L; Bonetti, R C; Iarosz, K C; Caldas, I L; Baptista, M S; Batista, A M
2017-06-01
We have studied neuronal synchronisation in a random network of adaptive exponential integrate-and-fire neurons. We study how spiking or bursting synchronous behaviour appears as a function of the coupling strength and the probability of connections, by constructing parameter spaces that identify these synchronous behaviours from measurements of the inter-spike interval and the calculation of the order parameter. Moreover, we verify the robustness of synchronisation by applying an external perturbation to each neuron. The simulations show that bursting synchronisation is more robust than spike synchronisation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Step Detection Robust against the Dynamics of Smartphones
Lee, Hwan-hee; Choi, Suji; Lee, Myeong-jin
2015-01-01
A novel algorithm is proposed for robust step detection irrespective of step mode and device pose in smartphone usage environments. The dynamics of smartphones are decoupled into a peak-valley relationship with adaptive magnitude and temporal thresholds. For extracted peaks and valleys in the magnitude of acceleration, a step is defined as consisting of a peak and its adjacent valley. Adaptive magnitude thresholds consisting of step average and step deviation are applied to suppress pseudo peaks or valleys that mostly occur during the transition among step modes or device poses. Adaptive temporal thresholds are applied to time intervals between peaks or valleys to consider the time-varying pace of human walking or running for the correct selection of peaks or valleys. From the experimental results, it can be seen that the proposed step detection algorithm shows more than 98.6% average accuracy for any combination of step mode and device pose and outperforms state-of-the-art algorithms. PMID:26516857
Zeghlache, Samir; Benslimane, Tarak; Bouguerra, Abderrahmen
2017-11-01
In this paper, a robust controller for a three degree of freedom (3 DOF) helicopter control is proposed in presence of actuator and sensor faults. For this purpose, Interval type-2 fuzzy logic control approach (IT2FLC) and sliding mode control (SMC) technique are used to design a controller, named active fault tolerant interval type-2 Fuzzy Sliding mode controller (AFTIT2FSMC) based on non-linear adaptive observer to estimate and detect the system faults for each subsystem of the 3-DOF helicopter. The proposed control scheme allows avoiding difficult modeling, attenuating the chattering effect of the SMC, reducing the rules number of the fuzzy controller. Exponential stability of the closed loop is guaranteed by using the Lyapunov method. The simulation results show that the AFTIT2FSMC can greatly alleviate the chattering effect, providing good tracking performance, even in presence of actuator and sensor faults. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Tsung-Chih
2010-12-01
In this paper, a novel direct adaptive interval type-2 fuzzy-neural tracking control equipped with sliding mode and Lyapunov synthesis approach is proposed to handle the training data corrupted by noise or rule uncertainties for nonlinear SISO nonlinear systems involving external disturbances. By employing adaptive fuzzy-neural control theory, the update laws will be derived for approximating the uncertain nonlinear dynamical system. In the meantime, the sliding mode control method and the Lyapunov stability criterion are incorporated into the adaptive fuzzy-neural control scheme such that the derived controller is robust with respect to unmodeled dynamics, external disturbance and approximation errors. In comparison with conventional methods, the advocated approach not only guarantees closed-loop stability but also the output tracking error of the overall system will converge to zero asymptotically without prior knowledge on the upper bound of the lumped uncertainty. Furthermore, chattering effect of the control input will be substantially reduced by the proposed technique. To illustrate the performance of the proposed method, finally simulation example will be given.
Adaptive Detection and ISI Mitigation for Mobile Molecular Communication.
Chang, Ge; Lin, Lin; Yan, Hao
2018-03-01
Current studies on modulation and detection schemes in molecular communication mainly focus on the scenarios with static transmitters and receivers. However, mobile molecular communication is needed in many envisioned applications, such as target tracking and drug delivery. Until now, investigations about mobile molecular communication have been limited. In this paper, a static transmitter and a mobile bacterium-based receiver performing random walk are considered. In this mobile scenario, the channel impulse response changes due to the dynamic change of the distance between the transmitter and the receiver. Detection schemes based on fixed distance fail in signal detection in such a scenario. Furthermore, the intersymbol interference (ISI) effect becomes more complex due to the dynamic character of the signal which makes the estimation and mitigation of the ISI even more difficult. In this paper, an adaptive ISI mitigation method and two adaptive detection schemes are proposed for this mobile scenario. In the proposed scheme, adaptive ISI mitigation, estimation of dynamic distance, and the corresponding impulse response reconstruction are performed in each symbol interval. Based on the dynamic channel impulse response in each interval, two adaptive detection schemes, concentration-based adaptive threshold detection and peak-time-based adaptive detection, are proposed for signal detection. Simulations demonstrate that the ISI effect is significantly reduced and the adaptive detection schemes are reliable and robust for mobile molecular communication.
Aagten-Murphy, David; Cappagli, Giulia; Burr, David
2014-03-01
Expert musicians are able to time their actions accurately and consistently during a musical performance. We investigated how musical expertise influences the ability to reproduce auditory intervals and how this generalises across different techniques and sensory modalities. We first compared various reproduction strategies and interval length, to examine the effects in general and to optimise experimental conditions for testing the effect of music, and found that the effects were robust and consistent across different paradigms. Focussing on a 'ready-set-go' paradigm subjects reproduced time intervals drawn from distributions varying in total length (176, 352 or 704 ms) or in the number of discrete intervals within the total length (3, 5, 11 or 21 discrete intervals). Overall, Musicians performed more veridical than Non-Musicians, and all subjects reproduced auditory-defined intervals more accurately than visually-defined intervals. However, Non-Musicians, particularly with visual stimuli, consistently exhibited a substantial and systematic regression towards the mean interval. When subjects judged intervals from distributions of longer total length they tended to regress more towards the mean, while the ability to discriminate between discrete intervals within the distribution had little influence on subject error. These results are consistent with a Bayesian model that minimizes reproduction errors by incorporating a central tendency prior weighted by the subject's own temporal precision relative to the current distribution of intervals. Finally a strong correlation was observed between all durations of formal musical training and total reproduction errors in both modalities (accounting for 30% of the variance). Taken together these results demonstrate that formal musical training improves temporal reproduction, and that this improvement transfers from audition to vision. They further demonstrate the flexibility of sensorimotor mechanisms in adapting to different task conditions to minimise temporal estimation errors. © 2013.
A robust adaptive load frequency control for micro-grids.
Khooban, Mohammad-Hassan; Niknam, Taher; Blaabjerg, Frede; Davari, Pooya; Dragicevic, Tomislav
2016-11-01
The goal of this study is to introduce a novel robust load frequency control (LFC) strategy for micro-grid(s) (MG(s)) in islanded mode operation. Admittedly, power generators in MG(s) cannot supply steady electric power output and sometimes cause unbalance between supply and demand. Battery energy storage system (BESS) is one of the effective solutions to these problems. Due to the high cost of the BESS, a new idea of Vehicle-to-Grid (V2G) is that a battery of Electric-Vehicle (EV) can be applied as a tantamount large-scale BESS in MG(s). As a result, a new robust control strategy for an islanded micro-grid (MG) is introduced that can consider electric vehicles׳ (EV(s)) effect. Moreover, in this paper, a new combination of the General Type II Fuzzy Logic Sets (GT2FLS) and the Modified Harmony Search Algorithm (MHSA) technique is applied for adaptive tuning of proportional-integral (PI) controller. Implementing General Type II Fuzzy Systems is computationally expensive. However, using a recently introduced α-plane representation, GT2FLS can be seen as a composition of several Interval Type II Fuzzy Logic Systems (IT2FLS) with a corresponding level of α for each. Real-data from an offshore wind farm in Sweden and solar radiation data in Aberdeen (United Kingdom) was used in order to examine the performance of the proposed novel controller. A comparison is made between the achieved results of Optimal Fuzzy-PI (OFPI) controller and those of Optimal Interval Type II Fuzzy-PI (IT2FPI) controller, which are of most recent advances in the area at hand. The Simulation results prove the successfulness and effectiveness of the proposed controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Tian, Xiaochun; Chen, Jiabin; Han, Yongqiang; Shang, Jianyu; Li, Nan
2016-01-01
Zero velocity update (ZUPT) plays an important role in pedestrian navigation algorithms with the premise that the zero velocity interval (ZVI) should be detected accurately and effectively. A novel adaptive ZVI detection algorithm based on a smoothed pseudo Wigner–Ville distribution to remove multiple frequencies intelligently (SPWVD-RMFI) is proposed in this paper. The novel algorithm adopts the SPWVD-RMFI method to extract the pedestrian gait frequency and to calculate the optimal ZVI detection threshold in real time by establishing the function relationships between the thresholds and the gait frequency; then, the adaptive adjustment of thresholds with gait frequency is realized and improves the ZVI detection precision. To put it into practice, a ZVI detection experiment is carried out; the result shows that compared with the traditional fixed threshold ZVI detection method, the adaptive ZVI detection algorithm can effectively reduce the false and missed detection rate of ZVI; this indicates that the novel algorithm has high detection precision and good robustness. Furthermore, pedestrian trajectory positioning experiments at different walking speeds are carried out to evaluate the influence of the novel algorithm on positioning precision. The results show that the ZVI detected by the adaptive ZVI detection algorithm for pedestrian trajectory calculation can achieve better performance. PMID:27669266
Angular velocity estimation from measurement vectors of star tracker.
Liu, Hai-bo; Yang, Jun-cai; Yi, Wen-jun; Wang, Jiong-qi; Yang, Jian-kun; Li, Xiu-jian; Tan, Ji-chun
2012-06-01
In most spacecraft, there is a need to know the craft's angular rate. Approaches with least squares and an adaptive Kalman filter are proposed for estimating the angular rate directly from the star tracker measurements. In these approaches, only knowledge of the vector measurements and sampling interval is required. The designed adaptive Kalman filter can filter out noise without information of the dynamic model and inertia dyadic. To verify the proposed estimation approaches, simulations based on the orbit data of the challenging minisatellite payload (CHAMP) satellite and experimental tests with night-sky observation are performed. Both the simulations and experimental testing results have demonstrated that the proposed approach performs well in terms of accuracy, robustness, and performance.
Nie, Xianghui; Huang, Guo H; Li, Yongping
2009-11-01
This study integrates the concepts of interval numbers and fuzzy sets into optimization analysis by dynamic programming as a means of accounting for system uncertainty. The developed interval fuzzy robust dynamic programming (IFRDP) model improves upon previous interval dynamic programming methods. It allows highly uncertain information to be effectively communicated into the optimization process through introducing the concept of fuzzy boundary interval and providing an interval-parameter fuzzy robust programming method for an embedded linear programming problem. Consequently, robustness of the optimization process and solution can be enhanced. The modeling approach is applied to a hypothetical problem for the planning of waste-flow allocation and treatment/disposal facility expansion within a municipal solid waste (MSW) management system. Interval solutions for capacity expansion of waste management facilities and relevant waste-flow allocation are generated and interpreted to provide useful decision alternatives. The results indicate that robust and useful solutions can be obtained, and the proposed IFRDP approach is applicable to practical problems that are associated with highly complex and uncertain information.
On adaptive robustness approach to Anti-Jam signal processing
NASA Astrophysics Data System (ADS)
Poberezhskiy, Y. S.; Poberezhskiy, G. Y.
An effective approach to exploiting statistical differences between desired and jamming signals named adaptive robustness is proposed and analyzed in this paper. It combines conventional Bayesian, adaptive, and robust approaches that are complementary to each other. This combining strengthens the advantages and mitigates the drawbacks of the conventional approaches. Adaptive robustness is equally applicable to both jammers and their victim systems. The capabilities required for realization of adaptive robustness in jammers and victim systems are determined. The employment of a specific nonlinear robust algorithm for anti-jam (AJ) processing is described and analyzed. Its effectiveness in practical situations has been proven analytically and confirmed by simulation. Since adaptive robustness can be used by both sides in electronic warfare, it is more advantageous for the fastest and most intelligent side. Many results obtained and discussed in this paper are also applicable to commercial applications such as communications in unregulated or poorly regulated frequency ranges and systems with cognitive capabilities.
Li, Zukui; Ding, Ran; Floudas, Christodoulos A.
2011-01-01
Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263
The 32nd CDC: Robust stabilizer synthesis for interval plants using Nevanlina-pick theory
NASA Technical Reports Server (NTRS)
Bhattacharya, Saikat; Keel, L. H.; Bhattacharyya, S. P.
1989-01-01
The synthesis of robustly stabilizing compensators for interval plants, i.e., plants whose parameters vary within prescribed ranges is discussed. Well-known H(sup infinity) methods are used to establish robust stabilizability conditions for a family of plants and also to synthesize controllers that would stabilize the whole family. Though conservative, these methods give a very simple way to come up with a family of robust stabilizers for an interval plant.
Robust adaptive vibration control of a flexible structure.
Khoshnood, A M; Moradi, H M
2014-07-01
Different types of L1 adaptive control systems show that using robust theories with adaptive control approaches has produced high performance controllers. In this study, a model reference adaptive control scheme considering robust theories is used to propose a practical control system for vibration suppression of a flexible launch vehicle (FLV). In this method, control input of the system is shaped from the dynamic model of the vehicle and components of the control input are adaptively constructed by estimating the undesirable vibration frequencies. Robust stability of the adaptive vibration control system is guaranteed by using the L1 small gain theorem. Simulation results of the robust adaptive vibration control strategy confirm that the effects of vibration on the vehicle performance considerably decrease without the loss of the phase margin of the system. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Robust portfolio selection based on asymmetric measures of variability of stock returns
NASA Astrophysics Data System (ADS)
Chen, Wei; Tan, Shaohua
2009-10-01
This paper addresses a new uncertainty set--interval random uncertainty set for robust optimization. The form of interval random uncertainty set makes it suitable for capturing the downside and upside deviations of real-world data. These deviation measures capture distributional asymmetry and lead to better optimization results. We also apply our interval random chance-constrained programming to robust mean-variance portfolio selection under interval random uncertainty sets in the elements of mean vector and covariance matrix. Numerical experiments with real market data indicate that our approach results in better portfolio performance.
Robust Optimal Adaptive Control Method with Large Adaptive Gain
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2009-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.
Model reference tracking control of an aircraft: a robust adaptive approach
NASA Astrophysics Data System (ADS)
Tanyer, Ilker; Tatlicioglu, Enver; Zergeroglu, Erkan
2017-05-01
This work presents the design and the corresponding analysis of a nonlinear robust adaptive controller for model reference tracking of an aircraft that has parametric uncertainties in its system matrices and additive state- and/or time-dependent nonlinear disturbance-like terms in its dynamics. Specifically, robust integral of the sign of the error feedback term and an adaptive term is fused with a proportional integral controller. Lyapunov-based stability analysis techniques are utilised to prove global asymptotic convergence of the output tracking error. Extensive numerical simulations are presented to illustrate the performance of the proposed robust adaptive controller.
Bootstrapping Confidence Intervals for Robust Measures of Association.
ERIC Educational Resources Information Center
King, Jason E.
A Monte Carlo simulation study was conducted to determine the bootstrap correction formula yielding the most accurate confidence intervals for robust measures of association. Confidence intervals were generated via the percentile, adjusted, BC, and BC(a) bootstrap procedures and applied to the Winsorized, percentage bend, and Pearson correlation…
Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders
NASA Astrophysics Data System (ADS)
Meng, Deyuan; Tao, Guoliang; Zhu, Xiaocong
2013-09-01
This paper studies the precision motion trajectory tracking control of a pneumatic cylinder driven by a proportional-directional control valve. An integrated direct/indirect adaptive robust controller is proposed. The controller employs a physical model based indirect-type parameter estimation to obtain reliable estimates of unknown model parameters, and utilises a robust control method with dynamic compensation type fast adaptation to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Due to the use of projection mapping, the robust control law and the parameter adaption algorithm can be designed separately. Since the system model uncertainties are unmatched, the recursive backstepping technology is adopted to design the robust control law. Extensive comparative experimental results are presented to illustrate the effectiveness of the proposed controller and its performance robustness to parameter variations and sudden disturbances.
NASA Astrophysics Data System (ADS)
Olafsdottir, Kristin B.; Mudelsee, Manfred
2013-04-01
Estimation of the Pearson's correlation coefficient between two time series to evaluate the influences of one time depended variable on another is one of the most often used statistical method in climate sciences. Various methods are used to estimate confidence interval to support the correlation point estimate. Many of them make strong mathematical assumptions regarding distributional shape and serial correlation, which are rarely met. More robust statistical methods are needed to increase the accuracy of the confidence intervals. Bootstrap confidence intervals are estimated in the Fortran 90 program PearsonT (Mudelsee, 2003), where the main intention was to get an accurate confidence interval for correlation coefficient between two time series by taking the serial dependence of the process that generated the data into account. However, Monte Carlo experiments show that the coverage accuracy for smaller data sizes can be improved. Here we adapt the PearsonT program into a new version called PearsonT3, by calibrating the confidence interval to increase the coverage accuracy. Calibration is a bootstrap resampling technique, which basically performs a second bootstrap loop or resamples from the bootstrap resamples. It offers, like the non-calibrated bootstrap confidence intervals, robustness against the data distribution. Pairwise moving block bootstrap is used to preserve the serial correlation of both time series. The calibration is applied to standard error based bootstrap Student's t confidence intervals. The performances of the calibrated confidence intervals are examined with Monte Carlo simulations, and compared with the performances of confidence intervals without calibration, that is, PearsonT. The coverage accuracy is evidently better for the calibrated confidence intervals where the coverage error is acceptably small (i.e., within a few percentage points) already for data sizes as small as 20. One form of climate time series is output from numerical models which simulate the climate system. The method is applied to model data from the high resolution ocean model, INALT01 where the relationship between the Agulhas Leakage and the North Brazil Current is evaluated. Preliminary results show significant correlation between the two variables when there is 10 year lag between them, which is more or less the time that takes the Agulhas Leakage water to reach the North Brazil Current. Mudelsee, M., 2003. Estimating Pearson's correlation coefficient with bootstrap confidence interval from serially dependent time series. Mathematical Geology 35, 651-665.
Robust motion tracking based on adaptive speckle decorrelation analysis of OCT signal.
Wang, Yuewen; Wang, Yahui; Akansu, Ali; Belfield, Kevin D; Hubbi, Basil; Liu, Xuan
2015-11-01
Speckle decorrelation analysis of optical coherence tomography (OCT) signal has been used in motion tracking. In our previous study, we demonstrated that cross-correlation coefficient (XCC) between Ascans had an explicit functional dependency on the magnitude of lateral displacement (δx). In this study, we evaluated the sensitivity of speckle motion tracking using the derivative of function XCC(δx) on variable δx. We demonstrated the magnitude of the derivative can be maximized. In other words, the sensitivity of OCT speckle tracking can be optimized by using signals with appropriate amount of decorrelation for XCC calculation. Based on this finding, we developed an adaptive speckle decorrelation analysis strategy to achieve motion tracking with optimized sensitivity. Briefly, we used subsequently acquired Ascans and Ascans obtained with larger time intervals to obtain multiple values of XCC and chose the XCC value that maximized motion tracking sensitivity for displacement calculation. Instantaneous motion speed can be calculated by dividing the obtained displacement with time interval between Ascans involved in XCC calculation. We implemented the above-described algorithm in real-time using graphic processing unit (GPU) and demonstrated its effectiveness in reconstructing distortion-free OCT images using data obtained from a manually scanned OCT probe. The adaptive speckle tracking method was validated in manually scanned OCT imaging, on phantom as well as in vivo skin tissue.
Robust motion tracking based on adaptive speckle decorrelation analysis of OCT signal
Wang, Yuewen; Wang, Yahui; Akansu, Ali; Belfield, Kevin D.; Hubbi, Basil; Liu, Xuan
2015-01-01
Speckle decorrelation analysis of optical coherence tomography (OCT) signal has been used in motion tracking. In our previous study, we demonstrated that cross-correlation coefficient (XCC) between Ascans had an explicit functional dependency on the magnitude of lateral displacement (δx). In this study, we evaluated the sensitivity of speckle motion tracking using the derivative of function XCC(δx) on variable δx. We demonstrated the magnitude of the derivative can be maximized. In other words, the sensitivity of OCT speckle tracking can be optimized by using signals with appropriate amount of decorrelation for XCC calculation. Based on this finding, we developed an adaptive speckle decorrelation analysis strategy to achieve motion tracking with optimized sensitivity. Briefly, we used subsequently acquired Ascans and Ascans obtained with larger time intervals to obtain multiple values of XCC and chose the XCC value that maximized motion tracking sensitivity for displacement calculation. Instantaneous motion speed can be calculated by dividing the obtained displacement with time interval between Ascans involved in XCC calculation. We implemented the above-described algorithm in real-time using graphic processing unit (GPU) and demonstrated its effectiveness in reconstructing distortion-free OCT images using data obtained from a manually scanned OCT probe. The adaptive speckle tracking method was validated in manually scanned OCT imaging, on phantom as well as in vivo skin tissue. PMID:26600996
Direct adaptive robust tracking control for 6 DOF industrial robot with enhanced accuracy.
Yin, Xiuxing; Pan, Li
2018-01-01
A direct adaptive robust tracking control is proposed for trajectory tracking of 6 DOF industrial robot in the presence of parametric uncertainties, external disturbances and uncertain nonlinearities. The controller is designed based on the dynamic characteristics in the working space of the end-effector of the 6 DOF robot. The controller includes robust control term and model compensation term that is developed directly based on the input reference or desired motion trajectory. A projection-type parametric adaptation law is also designed to compensate for parametric estimation errors for the adaptive robust control. The feasibility and effectiveness of the proposed direct adaptive robust control law and the associated projection-type parametric adaptation law have been comparatively evaluated based on two 6 DOF industrial robots. The test results demonstrate that the proposed control can be employed to better maintain the desired trajectory tracking even in the presence of large parametric uncertainties and external disturbances as compared with PD controller and nonlinear controller. The parametric estimates also eventually converge to the real values along with the convergence of tracking errors, which further validate the effectiveness of the proposed parametric adaption law. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Multilayer Perceptron for Robust Nonlinear Interval Regression Analysis Using Genetic Algorithms
2014-01-01
On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets. PMID:25110755
Multilayer perceptron for robust nonlinear interval regression analysis using genetic algorithms.
Hu, Yi-Chung
2014-01-01
On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets.
Online adaptation and verification of VMAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crijns, Wouter, E-mail: wouter.crijns@uzleuven.be; Defraene, Gilles; Depuydt, Tom
2015-07-15
Purpose: This work presents a method for fast volumetric modulated arc therapy (VMAT) adaptation in response to interfraction anatomical variations. Additionally, plan parameters extracted from the adapted plans are used to verify the quality of these plans. The methods were tested as a prostate class solution and compared to replanning and to their current clinical practice. Methods: The proposed VMAT adaptation is an extension of their previous intensity modulated radiotherapy (IMRT) adaptation. It follows a direct (forward) planning approach: the multileaf collimator (MLC) apertures are corrected in the beam’s eye view (BEV) and the monitor units (MUs) are corrected usingmore » point dose calculations. All MLC and MU corrections are driven by the positions of four fiducial points only, without need for a full contour set. Quality assurance (QA) of the adapted plans is performed using plan parameters that can be calculated online and that have a relation to the delivered dose or the plan quality. Five potential parameters are studied for this purpose: the number of MU, the equivalent field size (EqFS), the modulation complexity score (MCS), and the components of the MCS: the aperture area variability (AAV) and the leaf sequence variability (LSV). The full adaptation and its separate steps were evaluated in simulation experiments involving a prostate phantom subjected to various interfraction transformations. The efficacy of the current VMAT adaptation was scored by target mean dose (CTV{sub mean}), conformity (CI{sub 95%}), tumor control probability (TCP), and normal tissue complication probability (NTCP). The impact of the adaptation on the plan parameters (QA) was assessed by comparison with prediction intervals (PI) derived from a statistical model of the typical variation of these parameters in a population of VMAT prostate plans (n = 63). These prediction intervals are the adaptation equivalent of the tolerance tables for couch shifts in the current clinical practice. Results: The proposed adaptation of a two-arc VMAT plan resulted in the intended CTV{sub mean} (Δ ≤ 3%) and TCP (ΔTCP ≤ 0.001). Moreover, the method assures the intended CI{sub 95%} (Δ ≤ 11%) resulting in lowered rectal NTCP for all cases. Compared to replanning, their adaptation is faster (13 s vs 10 min) and more intuitive. Compared to the current clinical practice, it has a better protection of the healthy tissue. Compared to IMRT, VMAT is more robust to anatomical variations, but it is also less sensitive to the different correction steps. The observed variations of the plan parameters in their database included a linear dependence on the date of treatment planning and on the target radius. The MCS is not retained as QA metric due to a contrasting behavior of its components (LSV and AAV). If three out of four plan parameters (MU, EqFS, AAV, and LSV) need to lie inside a 50% prediction interval (3/4—50%PI), all adapted plans will be accepted. In contrast, all replanned plans do not meet this loose criterion, mainly because they have no connection to the initially optimized and verified plan. Conclusions: A direct (forward) VMAT adaptation performs equally well as (inverse) replanning but is faster and can be extended to real-time adaptation. The prediction intervals for the machine parameters are equivalent to the tolerance tables for couch shifts in the current clinical practice. A 3/4—50%PI QA criterion accepts all the adapted plans but rejects all the replanned plans.« less
Inherent robustness of discrete-time adaptive control systems
NASA Technical Reports Server (NTRS)
Ma, C. C. H.
1986-01-01
Global stability robustness with respect to unmodeled dynamics, arbitrary bounded internal noise, as well as external disturbance is shown to exist for a class of discrete-time adaptive control systems when the regressor vectors of these systems are persistently exciting. Although fast adaptation is definitely undesirable, so far as attaining the greatest amount of global stability robustness is concerned, slow adaptation is shown to be not necessarily beneficial. The entire analysis in this paper holds for systems with slowly varying return difference matrices; the plants in these systems need not be slowly varying.
Robust adaptive tracking control for nonholonomic mobile manipulator with uncertainties.
Peng, Jinzhu; Yu, Jie; Wang, Jie
2014-07-01
In this paper, mobile manipulator is divided into two subsystems, that is, nonholonomic mobile platform subsystem and holonomic manipulator subsystem. First, the kinematic controller of the mobile platform is derived to obtain a desired velocity. Second, regarding the coupling between the two subsystems as disturbances, Lyapunov functions of the two subsystems are designed respectively. Third, a robust adaptive tracking controller is proposed to deal with the unknown upper bounds of parameter uncertainties and disturbances. According to the Lyapunov stability theory, the derived robust adaptive controller guarantees global stability of the closed-loop system, and the tracking errors and adaptive coefficient errors are all bounded. Finally, simulation results show that the proposed robust adaptive tracking controller for nonholonomic mobile manipulator is effective and has good tracking capacity. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Seong-woo; Park, Young-cheol; Seo, Young-soo; Youn, Dae Hee
2014-12-01
In this paper, we propose a high-order lattice adaptive notch filter (LANF) that can robustly track multiple sinusoids. Unlike the conventional cascade structure, the proposed high-order LANF has robust tracking characteristics regardless of the frequencies of reference sinusoids and initial notch frequencies. The proposed high-order LANF is applied to a narrowband adaptive noise cancellation (ANC) to mitigate the effect of the broadband disturbance in the reference signal. By utilizing the gradient adaptive lattice (GAL) ANC algorithm and approximately combining it with the proposed high-order LANF, a computationally efficient narrowband ANC system is obtained. Experimental results demonstrate the robustness of the proposed high-order LANF and the effectiveness of the obtained narrowband ANC system.
A robust approach for ECG-based analysis of cardiopulmonary coupling.
Zheng, Jiewen; Wang, Weidong; Zhang, Zhengbo; Wu, Dalei; Wu, Hao; Peng, Chung-Kang
2016-07-01
Deriving respiratory signal from a surface electrocardiogram (ECG) measurement has advantage of simultaneously monitoring of cardiac and respiratory activities. ECG-based cardiopulmonary coupling (CPC) analysis estimated by heart period variability and ECG-derived respiration (EDR) shows promising applications in medical field. The aim of this paper is to provide a quantitative analysis of the ECG-based CPC, and further improve its performance. Two conventional strategies were tested to obtain EDR signal: R-S wave amplitude and area of the QRS complex. An adaptive filter was utilized to extract the common component of inter-beat interval (RRI) and EDR, generating enhanced versions of EDR signal. CPC is assessed through probing the nonlinear phase interactions between RRI series and respiratory signal. Respiratory oscillations presented in both RRI series and respiratory signals were extracted by ensemble empirical mode decomposition for coupling analysis via phase synchronization index. The results demonstrated that CPC estimated from conventional EDR series exhibits constant and proportional biases, while that estimated from enhanced EDR series is more reliable. Adaptive filtering can improve the accuracy of the ECG-based CPC estimation significantly and achieve robust CPC analysis. The improved ECG-based CPC estimation may provide additional prognostic information for both sleep medicine and autonomic function analysis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Robust control for a biaxial servo with time delay system based on adaptive tuning technique.
Chen, Tien-Chi; Yu, Chih-Hsien
2009-07-01
A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.
NASA Astrophysics Data System (ADS)
Jha, Mayank Shekhar; Dauphin-Tanguy, G.; Ould-Bouamama, B.
2016-06-01
The paper's main objective is to address the problem of health monitoring of system parameters in Bond Graph (BG) modeling framework, by exploiting its structural and causal properties. The system in feedback control loop is considered uncertain globally. Parametric uncertainty is modeled in interval form. The system parameter is undergoing degradation (prognostic candidate) and its degradation model is assumed to be known a priori. The detection of degradation commencement is done in a passive manner which involves interval valued robust adaptive thresholds over the nominal part of the uncertain BG-derived interval valued analytical redundancy relations (I-ARRs). The latter forms an efficient diagnostic module. The prognostics problem is cast as joint state-parameter estimation problem, a hybrid prognostic approach, wherein the fault model is constructed by considering the statistical degradation model of the system parameter (prognostic candidate). The observation equation is constructed from nominal part of the I-ARR. Using particle filter (PF) algorithms; the estimation of state of health (state of prognostic candidate) and associated hidden time-varying degradation progression parameters is achieved in probabilistic terms. A simplified variance adaptation scheme is proposed. Associated uncertainties which arise out of noisy measurements, parametric degradation process, environmental conditions etc. are effectively managed by PF. This allows the production of effective predictions of the remaining useful life of the prognostic candidate with suitable confidence bounds. The effectiveness of the novel methodology is demonstrated through simulations and experiments on a mechatronic system.
Quality Scalability Aware Watermarking for Visual Content.
Bhowmik, Deepayan; Abhayaratne, Charith
2016-11-01
Scalable coding-based content adaptation poses serious challenges to traditional watermarking algorithms, which do not consider the scalable coding structure and hence cannot guarantee correct watermark extraction in media consumption chain. In this paper, we propose a novel concept of scalable blind watermarking that ensures more robust watermark extraction at various compression ratios while not effecting the visual quality of host media. The proposed algorithm generates scalable and robust watermarked image code-stream that allows the user to constrain embedding distortion for target content adaptations. The watermarked image code-stream consists of hierarchically nested joint distortion-robustness coding atoms. The code-stream is generated by proposing a new wavelet domain blind watermarking algorithm guided by a quantization based binary tree. The code-stream can be truncated at any distortion-robustness atom to generate the watermarked image with the desired distortion-robustness requirements. A blind extractor is capable of extracting watermark data from the watermarked images. The algorithm is further extended to incorporate a bit-plane discarding-based quantization model used in scalable coding-based content adaptation, e.g., JPEG2000. This improves the robustness against quality scalability of JPEG2000 compression. The simulation results verify the feasibility of the proposed concept, its applications, and its improved robustness against quality scalable content adaptation. Our proposed algorithm also outperforms existing methods showing 35% improvement. In terms of robustness to quality scalable video content adaptation using Motion JPEG2000 and wavelet-based scalable video coding, the proposed method shows major improvement for video watermarking.
NASA Astrophysics Data System (ADS)
Sun, Y.; Li, Y. P.; Huang, G. H.
2012-06-01
In this study, a queuing-theory-based interval-fuzzy robust two-stage programming (QB-IRTP) model is developed through introducing queuing theory into an interval-fuzzy robust two-stage (IRTP) optimization framework. The developed QB-IRTP model can not only address highly uncertain information for the lower and upper bounds of interval parameters but also be used for analysing a variety of policy scenarios that are associated with different levels of economic penalties when the promised targets are violated. Moreover, it can reflect uncertainties in queuing theory problems. The developed method has been applied to a case of long-term municipal solid waste (MSW) management planning. Interval solutions associated with different waste-generation rates, different waiting costs and different arriving rates have been obtained. They can be used for generating decision alternatives and thus help managers to identify desired MSW management policies under various economic objectives and system reliability constraints.
Neural robust stabilization via event-triggering mechanism and adaptive learning technique.
Wang, Ding; Liu, Derong
2018-06-01
The robust control synthesis of continuous-time nonlinear systems with uncertain term is investigated via event-triggering mechanism and adaptive critic learning technique. We mainly focus on combining the event-triggering mechanism with adaptive critic designs, so as to solve the nonlinear robust control problem. This can not only make better use of computation and communication resources, but also conduct controller design from the view of intelligent optimization. Through theoretical analysis, the nonlinear robust stabilization can be achieved by obtaining an event-triggered optimal control law of the nominal system with a newly defined cost function and a certain triggering condition. The adaptive critic technique is employed to facilitate the event-triggered control design, where a neural network is introduced as an approximator of the learning phase. The performance of the event-triggered robust control scheme is validated via simulation studies and comparisons. The present method extends the application domain of both event-triggered control and adaptive critic control to nonlinear systems possessing dynamical uncertainties. Copyright © 2018 Elsevier Ltd. All rights reserved.
Highly accurate adaptive TOF determination method for ultrasonic thickness measurement
NASA Astrophysics Data System (ADS)
Zhou, Lianjie; Liu, Haibo; Lian, Meng; Ying, Yangwei; Li, Te; Wang, Yongqing
2018-04-01
Determining the time of flight (TOF) is very critical for precise ultrasonic thickness measurement. However, the relatively low signal-to-noise ratio (SNR) of the received signals would induce significant TOF determination errors. In this paper, an adaptive time delay estimation method has been developed to improve the TOF determination’s accuracy. An improved variable step size adaptive algorithm with comprehensive step size control function is proposed. Meanwhile, a cubic spline fitting approach is also employed to alleviate the restriction of finite sampling interval. Simulation experiments under different SNR conditions were conducted for performance analysis. Simulation results manifested the performance advantage of proposed TOF determination method over existing TOF determination methods. When comparing with the conventional fixed step size, and Kwong and Aboulnasr algorithms, the steady state mean square deviation of the proposed algorithm was generally lower, which makes the proposed algorithm more suitable for TOF determination. Further, ultrasonic thickness measurement experiments were performed on aluminum alloy plates with various thicknesses. They indicated that the proposed TOF determination method was more robust even under low SNR conditions, and the ultrasonic thickness measurement accuracy could be significantly improved.
Ni, Xiao Yu; Drengstig, Tormod; Ruoff, Peter
2009-09-02
Organisms have the property to adapt to a changing environment and keep certain components within a cell regulated at the same level (homeostasis). "Perfect adaptation" describes an organism's response to an external stepwise perturbation by regulating some of its variables/components precisely to their original preperturbation values. Numerous examples of perfect adaptation/homeostasis have been found, as for example, in bacterial chemotaxis, photoreceptor responses, MAP kinase activities, or in metal-ion homeostasis. Two concepts have evolved to explain how perfect adaptation may be understood: In one approach (robust perfect adaptation), the adaptation is a network property, which is mostly, but not entirely, independent of rate constant values; in the other approach (nonrobust perfect adaptation), a fine-tuning of rate constant values is needed. Here we identify two classes of robust molecular homeostatic mechanisms, which compensate for environmental variations in a controlled variable's inflow or outflow fluxes, and allow for the presence of robust temperature compensation. These two classes of homeostatic mechanisms arise due to the fact that concentrations must have positive values. We show that the concept of integral control (or integral feedback), which leads to robust homeostasis, is associated with a control species that has to work under zero-order flux conditions and does not necessarily require the presence of a physico-chemical feedback structure. There are interesting links between the two identified classes of homeostatic mechanisms and molecular mechanisms found in mammalian iron and calcium homeostasis, indicating that homeostatic mechanisms may underlie similar molecular control structures.
Robust allocation of a defensive budget considering an attacker's private information.
Nikoofal, Mohammad E; Zhuang, Jun
2012-05-01
Attackers' private information is one of the main issues in defensive resource allocation games in homeland security. The outcome of a defense resource allocation decision critically depends on the accuracy of estimations about the attacker's attributes. However, terrorists' goals may be unknown to the defender, necessitating robust decisions by the defender. This article develops a robust-optimization game-theoretical model for identifying optimal defense resource allocation strategies for a rational defender facing a strategic attacker while the attacker's valuation of targets, being the most critical attribute of the attacker, is unknown but belongs to bounded distribution-free intervals. To our best knowledge, no previous research has applied robust optimization in homeland security resource allocation when uncertainty is defined in bounded distribution-free intervals. The key features of our model include (1) modeling uncertainty in attackers' attributes, where uncertainty is characterized by bounded intervals; (2) finding the robust-optimization equilibrium for the defender using concepts dealing with budget of uncertainty and price of robustness; and (3) applying the proposed model to real data. © 2011 Society for Risk Analysis.
TU-H-CAMPUS-JeP3-01: Towards Robust Adaptive Radiation Therapy Strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boeck, M; KTH Royal Institute of Technology, Stockholm; Eriksson, K
Purpose: To set up a framework combining robust treatment planning with adaptive reoptimization in order to maintain high treatment quality, to respond to interfractional variations and to identify those patients who will benefit the most from an adaptive fractionation schedule. Methods: We propose adaptive strategies based on stochastic minimax optimization for a series of simulated treatments on a one-dimensional patient phantom. The plan should be able to handle anticipated systematic and random errors and is applied during the first fractions. Information on the individual geometric variations is gathered at each fraction. At scheduled fractions, the impact of the measured errorsmore » on the delivered dose distribution is evaluated. For a patient that receives a dose that does not satisfy specified plan quality criteria, the plan is reoptimized based on these individual measurements using one of three different adaptive strategies. The reoptimized plan is then applied during future fractions until a new scheduled adaptation becomes necessary. In the first adaptive strategy the measured systematic and random error scenarios and their assigned probabilities are updated to guide the robust reoptimization. The focus of the second strategy lies on variation of the fraction of the worst scenarios taken into account during robust reoptimization. In the third strategy the uncertainty margins around the target are recalculated with the measured errors. Results: By studying the effect of the three adaptive strategies combined with various adaptation schedules on the same patient population, the group which benefits from adaptation is identified together with the most suitable strategy and schedule. Preliminary computational results indicate when and how best to adapt for the three different strategies. Conclusion: A workflow is presented that provides robust adaptation of the treatment plan throughout the course of treatment and useful measures to identify patients in need for an adaptive treatment strategy.« less
Tail mean and related robust solution concepts
NASA Astrophysics Data System (ADS)
Ogryczak, Włodzimierz
2014-01-01
Robust optimisation might be viewed as a multicriteria optimisation problem where objectives correspond to the scenarios although their probabilities are unknown or imprecise. The simplest robust solution concept represents a conservative approach focused on the worst-case scenario results optimisation. A softer concept allows one to optimise the tail mean thus combining performances under multiple worst scenarios. We show that while considering robust models allowing the probabilities to vary only within given intervals, the tail mean represents the robust solution for only upper bounded probabilities. For any arbitrary intervals of probabilities the corresponding robust solution may be expressed by the optimisation of appropriately combined mean and tail mean criteria thus remaining easily implementable with auxiliary linear inequalities. Moreover, we use the tail mean concept to develope linear programming implementable robust solution concepts related to risk averse optimisation criteria.
Robustness of non-interdependent and interdependent networks against dependent and adaptive attacks
NASA Astrophysics Data System (ADS)
Tyra, Adam; Li, Jingtao; Shang, Yilun; Jiang, Shuo; Zhao, Yanjun; Xu, Shouhuai
2017-09-01
Robustness of complex networks has been extensively studied via the notion of site percolation, which typically models independent and non-adaptive attacks (or disruptions). However, real-life attacks are often dependent and/or adaptive. This motivates us to characterize the robustness of complex networks, including non-interdependent and interdependent ones, against dependent and adaptive attacks. For this purpose, dependent attacks are accommodated by L-hop percolation where the nodes within some L-hop (L ≥ 0) distance of a chosen node are all deleted during one attack (with L = 0 degenerating to site percolation). Whereas, adaptive attacks are launched by attackers who can make node-selection decisions based on the network state in the beginning of each attack. The resulting characterization enriches the body of knowledge with new insights, such as: (i) the Achilles' Heel phenomenon is only valid for independent attacks, but not for dependent attacks; (ii) powerful attack strategies (e.g., targeted attacks and dependent attacks, dependent attacks and adaptive attacks) are not compatible and cannot help the attacker when used collectively. Our results shed some light on the design of robust complex networks.
Robust guaranteed-cost adaptive quantum phase estimation
NASA Astrophysics Data System (ADS)
Roy, Shibdas; Berry, Dominic W.; Petersen, Ian R.; Huntington, Elanor H.
2017-05-01
Quantum parameter estimation plays a key role in many fields like quantum computation, communication, and metrology. Optimal estimation allows one to achieve the most precise parameter estimates, but requires accurate knowledge of the model. Any inevitable uncertainty in the model parameters may heavily degrade the quality of the estimate. It is therefore desired to make the estimation process robust to such uncertainties. Robust estimation was previously studied for a varying phase, where the goal was to estimate the phase at some time in the past, using the measurement results from both before and after that time within a fixed time interval up to current time. Here, we consider a robust guaranteed-cost filter yielding robust estimates of a varying phase in real time, where the current phase is estimated using only past measurements. Our filter minimizes the largest (worst-case) variance in the allowable range of the uncertain model parameter(s) and this determines its guaranteed cost. It outperforms in the worst case the optimal Kalman filter designed for the model with no uncertainty, which corresponds to the center of the possible range of the uncertain parameter(s). Moreover, unlike the Kalman filter, our filter in the worst case always performs better than the best achievable variance for heterodyne measurements, which we consider as the tolerable threshold for our system. Furthermore, we consider effective quantum efficiency and effective noise power, and show that our filter provides the best results by these measures in the worst case.
NASA Astrophysics Data System (ADS)
Fakhari, Vahid; Choi, Seung-Bok; Cho, Chang-Hyun
2015-04-01
This work presents a new robust model reference adaptive control (MRAC) for vibration control caused from vehicle engine using an electromagnetic type of active engine mount. Vibration isolation performances of the active mount associated with the robust controller are evaluated in the presence of large uncertainties. As a first step, an active mount with linear solenoid actuator is prepared and its dynamic model is identified via experimental test. Subsequently, a new robust MRAC based on the gradient method with σ-modification is designed by selecting a proper reference model. In designing the robust adaptive control, structured (parametric) uncertainties in the stiffness of the passive part of the mount and in damping ratio of the active part of the mount are considered to investigate the robustness of the proposed controller. Experimental and simulation results are presented to evaluate performance focusing on the robustness behavior of the controller in the face of large uncertainties. The obtained results show that the proposed controller can sufficiently provide the robust vibration control performance even in the presence of large uncertainties showing an effective vibration isolation.
Adaptive integral robust control and application to electromechanical servo systems.
Deng, Wenxiang; Yao, Jianyong
2017-03-01
This paper proposes a continuous adaptive integral robust control with robust integral of the sign of the error (RISE) feedback for a class of uncertain nonlinear systems, in which the RISE feedback gain is adapted online to ensure the robustness against disturbances without the prior bound knowledge of the additive disturbances. In addition, an adaptive compensation integrated with the proposed adaptive RISE feedback term is also constructed to further reduce design conservatism when the system also exists parametric uncertainties. Lyapunov analysis reveals the proposed controllers could guarantee the tracking errors are asymptotically converging to zero with continuous control efforts. To illustrate the high performance nature of the developed controllers, numerical simulations are provided. At the end, an application case of an actual electromechanical servo system driven by motor is also studied, with some specific design consideration, and comparative experimental results are obtained to verify the effectiveness of the proposed controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Steiner, Christopher F.
2012-01-01
The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions. PMID:23284934
Adaptive Critic Nonlinear Robust Control: A Survey.
Wang, Ding; He, Haibo; Liu, Derong
2017-10-01
Adaptive dynamic programming (ADP) and reinforcement learning are quite relevant to each other when performing intelligent optimization. They are both regarded as promising methods involving important components of evaluation and improvement, at the background of information technology, such as artificial intelligence, big data, and deep learning. Although great progresses have been achieved and surveyed when addressing nonlinear optimal control problems, the research on robustness of ADP-based control strategies under uncertain environment has not been fully summarized. Hence, this survey reviews the recent main results of adaptive-critic-based robust control design of continuous-time nonlinear systems. The ADP-based nonlinear optimal regulation is reviewed, followed by robust stabilization of nonlinear systems with matched uncertainties, guaranteed cost control design of unmatched plants, and decentralized stabilization of interconnected systems. Additionally, further comprehensive discussions are presented, including event-based robust control design, improvement of the critic learning rule, nonlinear H ∞ control design, and several notes on future perspectives. By applying the ADP-based optimal and robust control methods to a practical power system and an overhead crane plant, two typical examples are provided to verify the effectiveness of theoretical results. Overall, this survey is beneficial to promote the development of adaptive critic control methods with robustness guarantee and the construction of higher level intelligent systems.
A frequency-domain estimator for use in adaptive control systems
NASA Technical Reports Server (NTRS)
Lamaire, Richard O.; Valavani, Lena; Athans, Michael; Stein, Gunter
1991-01-01
This paper presents a frequency-domain estimator that can identify both a parametrized nominal model of a plant as well as a frequency-domain bounding function on the modeling error associated with this nominal model. This estimator, which we call a robust estimator, can be used in conjunction with a robust control-law redesign algorithm to form a robust adaptive controller.
Accatino, F; Sabatier, R; De Michele, C; Ward, D; Wiegand, K; Meyer, K M
2014-08-01
Rangelands provide the main forage resource for livestock in many parts of the world, but maintaining long-term productivity and providing sufficient income for the rancher remains a challenge. One key issue is to maintain the rangeland in conditions where the rancher has the greatest possibility to adapt his/her management choices to a highly fluctuating and uncertain environment. In this study, we address management robustness and adaptability, which increase the resilience of a rangeland. After reviewing how the concept of resilience evolved in parallel to modelling views on rangelands, we present a dynamic model of rangelands to which we applied the mathematical framework of viability theory to quantify the management adaptability of the system in a stochastic environment. This quantification is based on an index that combines the robustness of the system to rainfall variability and the ability of the rancher to adjust his/her management through time. We evaluated the adaptability for four possible scenarios combining two rainfall regimes (high or low) with two herding strategies (grazers only or mixed herd). Results show that pure grazing is viable only for high-rainfall regimes, and that the use of mixed-feeder herds increases the adaptability of the management. The management is the most adaptive with mixed herds and in rangelands composed of an intermediate density of trees and grasses. In such situations, grass provides high quantities of biomass and woody plants ensure robustness to droughts. Beyond the implications for management, our results illustrate the relevance of viability theory for addressing the issue of robustness and adaptability in non-equilibrium environments.
A Robust Design Methodology for Optimal Microscale Secondary Flow Control in Compact Inlet Diffusers
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Keller, Dennis J.
2001-01-01
It is the purpose of this study to develop an economical Robust design methodology for microscale secondary flow control in compact inlet diffusers. To illustrate the potential of economical Robust Design methodology, two different mission strategies were considered for the subject inlet, namely Maximum Performance and Maximum HCF Life Expectancy. The Maximum Performance mission maximized total pressure recovery while the Maximum HCF Life Expectancy mission minimized the mean of the first five Fourier harmonic amplitudes, i.e., 'collectively' reduced all the harmonic 1/2 amplitudes of engine face distortion. Each of the mission strategies was subject to a low engine face distortion constraint, i.e., DC60<0.10, which is a level acceptable for commercial engines. For each of these missions strategies, an 'Optimal Robust' (open loop control) and an 'Optimal Adaptive' (closed loop control) installation was designed over a twenty degree angle-of-incidence range. The Optimal Robust installation used economical Robust Design methodology to arrive at a single design which operated over the entire angle-of-incident range (open loop control). The Optimal Adaptive installation optimized all the design parameters at each angle-of-incidence. Thus, the Optimal Adaptive installation would require a closed loop control system to sense a proper signal for each effector and modify that effector device, whether mechanical or fluidic, for optimal inlet performance. In general, the performance differences between the Optimal Adaptive and Optimal Robust installation designs were found to be marginal. This suggests, however, that Optimal Robust open loop installation designs can be very competitive with Optimal Adaptive close loop designs. Secondary flow control in inlets is inherently robust, provided it is optimally designed. Therefore, the new methodology presented in this paper, combined array 'Lower Order' approach to Robust DOE, offers the aerodynamicist a very viable and economical way of exploring the concept of Robust inlet design, where the mission variables are brought directly into the inlet design process and insensitivity or robustness to the mission variables becomes a design objective.
Adaptive torque estimation of robot joint with harmonic drive transmission
NASA Astrophysics Data System (ADS)
Shi, Zhiguo; Li, Yuankai; Liu, Guangjun
2017-11-01
Robot joint torque estimation using input and output position measurements is a promising technique, but the result may be affected by the load variation of the joint. In this paper, a torque estimation method with adaptive robustness and optimality adjustment according to load variation is proposed for robot joint with harmonic drive transmission. Based on a harmonic drive model and a redundant adaptive robust Kalman filter (RARKF), the proposed approach can adapt torque estimation filtering optimality and robustness to the load variation by self-tuning the filtering gain and self-switching the filtering mode between optimal and robust. The redundant factor of RARKF is designed as a function of the motor current for tolerating the modeling error and load-dependent filtering mode switching. The proposed joint torque estimation method has been experimentally studied in comparison with a commercial torque sensor and two representative filtering methods. The results have demonstrated the effectiveness of the proposed torque estimation technique.
Robust high-performance control for robotic manipulators
NASA Technical Reports Server (NTRS)
Seraji, H.
1989-01-01
A robust control scheme to accomplish accurate trajectory tracking for an integrated system of manipulator-plus-actuators is proposed. The control scheme comprises a feedforward and a feedback controller. The feedforward controller contains any known part of the manipulator dynamics that can be used for online control. The feedback controller consists of adaptive position and velocity feedback gains and an auxiliary signal which is simply generated by a fixed-gain proportional/integral/derivative controller. The feedback controller is updated by very simple adaptation laws which contain both proportional and integral adaptation terms. By introduction of a simple sigma modification to the adaptation laws, robustness is guaranteed in the presence of unmodeled dynamics and disturbances.
Fuzzy Intervals for Designing Structural Signature: An Application to Graphic Symbol Recognition
NASA Astrophysics Data System (ADS)
Luqman, Muhammad Muzzamil; Delalandre, Mathieu; Brouard, Thierry; Ramel, Jean-Yves; Lladós, Josep
The motivation behind our work is to present a new methodology for symbol recognition. The proposed method employs a structural approach for representing visual associations in symbols and a statistical classifier for recognition. We vectorize a graphic symbol, encode its topological and geometrical information by an attributed relational graph and compute a signature from this structural graph. We have addressed the sensitivity of structural representations to noise, by using data adapted fuzzy intervals. The joint probability distribution of signatures is encoded by a Bayesian network, which serves as a mechanism for pruning irrelevant features and choosing a subset of interesting features from structural signatures of underlying symbol set. The Bayesian network is deployed in a supervised learning scenario for recognizing query symbols. The method has been evaluated for robustness against degradations & deformations on pre-segmented 2D linear architectural & electronic symbols from GREC databases, and for its recognition abilities on symbols with context noise i.e. cropped symbols.
Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model
NASA Technical Reports Server (NTRS)
Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.
2010-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.
The 32nd CDC: System identification using interval dynamic models
NASA Technical Reports Server (NTRS)
Keel, L. H.; Lew, J. S.; Bhattacharyya, S. P.
1992-01-01
Motivated by the recent explosive development of results in the area of parametric robust control, a new technique to identify a family of uncertain systems is identified. The new technique takes the frequency domain input and output data obtained from experimental test signals and produces an 'interval transfer function' that contains the complete frequency domain behavior with respect to the test signals. This interval transfer function is one of the key concepts in the parametric robust control approach and identification with such an interval model allows one to predict the worst case performance and stability margins using recent results on interval systems. The algorithm is illustrated by applying it to an 18 bay Mini-Mast truss structure.
Faydasicok, Ozlem; Arik, Sabri
2013-08-01
The main problem with the analysis of robust stability of neural networks is to find the upper bound norm for the intervalized interconnection matrices of neural networks. In the previous literature, the major three upper bound norms for the intervalized interconnection matrices have been reported and they have been successfully applied to derive new sufficient conditions for robust stability of delayed neural networks. One of the main contributions of this paper will be the derivation of a new upper bound for the norm of the intervalized interconnection matrices of neural networks. Then, by exploiting this new upper bound norm of interval matrices and using stability theory of Lyapunov functionals and the theory of homomorphic mapping, we will obtain new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for the class of neural networks with discrete time delays under parameter uncertainties and with respect to continuous and slope-bounded activation functions. The results obtained in this paper will be shown to be new and they can be considered alternative results to previously published corresponding results. We also give some illustrative and comparative numerical examples to demonstrate the effectiveness and applicability of the proposed robust stability condition. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Xianshun; Feng, Liang; Ong, Yew Soon
2012-07-01
In this article, we proposed a self-adaptive memeplex robust search (SAMRS) for finding robust and reliable solutions that are less sensitive to stochastic behaviours of customer demands and have low probability of route failures, respectively, in vehicle routing problem with stochastic demands (VRPSD). In particular, the contribution of this article is three-fold. First, the proposed SAMRS employs the robust solution search scheme (RS 3) as an approximation of the computationally intensive Monte Carlo simulation, thus reducing the computation cost of fitness evaluation in VRPSD, while directing the search towards robust and reliable solutions. Furthermore, a self-adaptive individual learning based on the conceptual modelling of memeplex is introduced in the SAMRS. Finally, SAMRS incorporates a gene-meme co-evolution model with genetic and memetic representation to effectively manage the search for solutions in VRPSD. Extensive experimental results are then presented for benchmark problems to demonstrate that the proposed SAMRS serves as an efficable means of generating high-quality robust and reliable solutions in VRPSD.
Jepsen, Karl J; Evans, Rachel; Negus, Charles H; Gagnier, Joel J; Centi, Amanda; Erlich, Tomer; Hadid, Amir; Yanovich, Ran; Moran, Daniel S
2013-06-01
Physiological systems like bone respond to many genetic and environmental factors by adjusting traits in a highly coordinated, compensatory manner to establish organ-level function. To be mechanically functional, a bone should be sufficiently stiff and strong to support physiological loads. Factors impairing this process are expected to compromise strength and increase fracture risk. We tested the hypotheses that individuals with reduced stiffness relative to body size will show an increased risk of fracturing and that reduced strength arises from the acquisition of biologically distinct sets of traits (ie, different combinations of morphological and tissue-level mechanical properties). We assessed tibial functionality retrospectively for 336 young adult women and men engaged in military training, and calculated robustness (total area/bone length), cortical area (Ct.Ar), and tissue-mineral density (TMD). These three traits explained 69% to 72% of the variation in tibial stiffness (p < 0.0001). Having reduced stiffness relative to body size (body weight × bone length) was associated with odds ratios of 1.5 (95% confidence interval [CI], 0.5-4.3) and 7.0 (95% CI, 2.0-25.1) for women and men, respectively, for developing a stress fracture based on radiography and scintigraphy. K-means cluster analysis was used to segregate men and women into subgroups based on robustness, Ct.Ar, and TMD adjusted for body size. Stiffness varied 37% to 42% among the clusters (p < 0.0001, ANOVA). For men, 78% of stress fracture cases segregated to three clusters (p < 0.03, chi-square). Clusters showing reduced function exhibited either slender tibias with the expected Ct.Ar and TMD relative to body size and robustness (ie, well-adapted bones) or robust tibias with reduced residuals for Ct.Ar or TMD relative to body size and robustness (ie, poorly adapted bones). Thus, we show there are multiple biomechanical and thus biological pathways leading to reduced function and increased fracture risk. Our results have important implications for developing personalized preventative diagnostics and treatments. Copyright © 2013 American Society for Bone and Mineral Research.
Analysis and Synthesis of Robust Data Structures
1990-08-01
1.3.2 Multiversion Software. .. .. .. .. .. .... .. ... .. ...... 5 1.3.3 Robust Data Structure .. .. .. .. .. .. .. .. .. ... .. ..... 6 1.4...context are 0 multiversion software, which is an adaptation oi N-modulo redundancy (NMR) tech- nique. * recovery blocks, which is an adaptation of...implementations using these features for such a hybrid approach. 1.3.2 Multiversion Software Avizienis [AC77] was the first to adapt NMR technique into
The topological requirements for robust perfect adaptation in networks of any size.
Araujo, Robyn P; Liotta, Lance A
2018-05-01
Robustness, and the ability to function and thrive amid changing and unfavorable environments, is a fundamental requirement for living systems. Until now it has been an open question how large and complex biological networks can exhibit robust behaviors, such as perfect adaptation to a variable stimulus, since complexity is generally associated with fragility. Here we report that all networks that exhibit robust perfect adaptation (RPA) to a persistent change in stimulus are decomposable into well-defined modules, of which there exist two distinct classes. These two modular classes represent a topological basis for all RPA-capable networks, and generate the full set of topological realizations of the internal model principle for RPA in complex, self-organizing, evolvable bionetworks. This unexpected result supports the notion that evolutionary processes are empowered by simple and scalable modular design principles that promote robust performance no matter how large or complex the underlying networks become.
Huang, X N; Ren, H P
2016-05-13
Robust adaptation is a critical ability of gene regulatory network (GRN) to survive in a fluctuating environment, which represents the system responding to an input stimulus rapidly and then returning to its pre-stimulus steady state timely. In this paper, the GRN is modeled using the Michaelis-Menten rate equations, which are highly nonlinear differential equations containing 12 undetermined parameters. The robust adaption is quantitatively described by two conflicting indices. To identify the parameter sets in order to confer the GRNs with robust adaptation is a multi-variable, multi-objective, and multi-peak optimization problem, which is difficult to acquire satisfactory solutions especially high-quality solutions. A new best-neighbor particle swarm optimization algorithm is proposed to implement this task. The proposed algorithm employs a Latin hypercube sampling method to generate the initial population. The particle crossover operation and elitist preservation strategy are also used in the proposed algorithm. The simulation results revealed that the proposed algorithm could identify multiple solutions in one time running. Moreover, it demonstrated a superior performance as compared to the previous methods in the sense of detecting more high-quality solutions within an acceptable time. The proposed methodology, owing to its universality and simplicity, is useful for providing the guidance to design GRN with superior robust adaptation.
NASA Technical Reports Server (NTRS)
Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje Srinvas
2009-01-01
This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a linear damaged twin-engine generic transport model of aircraft. The analysis shows that the system with the adjusted adaptive gain becomes more robust to unmodeled dynamics or time delay.
Im, Subin; Min, Soonhong
2013-04-01
Exploratory factor analyses of the Kirton Adaption-Innovation Inventory (KAI), which serves to measure individual cognitive styles, generally indicate three factors: sufficiency of originality, efficiency, and rule/group conformity. In contrast, a 2005 study by Im and Hu using confirmatory factor analysis supported a four-factor structure, dividing the sufficiency of originality dimension into two subdimensions, idea generation and preference for change. This study extends Im and Hu's (2005) study of a derived version of the KAI by providing additional evidence of the four-factor structure. Specifically, the authors test the robustness of the parameter estimates to the violation of normality assumptions in the sample using bootstrap methods. A bias-corrected confidence interval bootstrapping procedure conducted among a sample of 356 participants--members of the Arkansas Household Research Panel, with middle SES and average age of 55.6 yr. (SD = 13.9)--showed that the four-factor model with two subdimensions of sufficiency of originality fits the data significantly better than the three-factor model in non-normality conditions.
Relevance of phenotypic noise to adaptation and evolution.
Kaneko, K; Furusawa, C
2008-09-01
Biological processes are inherently noisy, as highlighted in recent measurements of stochasticity in gene expression. Here, the authors show that such phenotypic noise is essential to the adaptation of organisms to a variety of environments and also to the evolution of robustness against mutations. First, the authors show that for any growing cell showing stochastic gene expression, the adaptive cellular state is inevitably selected by noise, without the use of a specific signal transduction network. In general, changes in any protein concentration in a cell are products of its synthesis minus dilution and degradation, both of which are proportional to the rate of cell growth. In an adaptive state, both the synthesis and dilution terms of proteins are large, and so the adaptive state is less affected by stochasticity in gene expression, whereas for a non-adaptive state, both terms are smaller, and so cells are easily knocked out of their original state by noise. This leads to a novel, generic mechanism for the selection of adaptive states. The authors have confirmed this selection by model simulations. Secondly, the authors consider the evolution of gene networks to acquire robustness of the phenotype against noise and mutation. Through simulations using a simple stochastic gene expression network that undergoes mutation and selection, the authors show that a threshold level of noise in gene expression is required for the network to acquire both types of robustness. The results reveal how the noise that cells encounter during growth and development shapes any network's robustness, not only to noise but also to mutations. The authors also establish a relationship between developmental and mutational robustness.
Li, Zukui; Floudas, Christodoulos A.
2012-01-01
Probabilistic guarantees on constraint satisfaction for robust counterpart optimization are studied in this paper. The robust counterpart optimization formulations studied are derived from box, ellipsoidal, polyhedral, “interval+ellipsoidal” and “interval+polyhedral” uncertainty sets (Li, Z., Ding, R., and Floudas, C.A., A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear and Robust Mixed Integer Linear Optimization, Ind. Eng. Chem. Res, 2011, 50, 10567). For those robust counterpart optimization formulations, their corresponding probability bounds on constraint satisfaction are derived for different types of uncertainty characteristic (i.e., bounded or unbounded uncertainty, with or without detailed probability distribution information). The findings of this work extend the results in the literature and provide greater flexibility for robust optimization practitioners in choosing tighter probability bounds so as to find less conservative robust solutions. Extensive numerical studies are performed to compare the tightness of the different probability bounds and the conservatism of different robust counterpart optimization formulations. Guiding rules for the selection of robust counterpart optimization models and for the determination of the size of the uncertainty set are discussed. Applications in production planning and process scheduling problems are presented. PMID:23329868
Wang, Ding; Liu, Derong; Zhang, Yun; Li, Hongyi
2018-01-01
In this paper, we aim to tackle the neural robust tracking control problem for a class of nonlinear systems using the adaptive critic technique. The main contribution is that a neural-network-based robust tracking control scheme is established for nonlinear systems involving matched uncertainties. The augmented system considering the tracking error and the reference trajectory is formulated and then addressed under adaptive critic optimal control formulation, where the initial stabilizing controller is not needed. The approximate control law is derived via solving the Hamilton-Jacobi-Bellman equation related to the nominal augmented system, followed by closed-loop stability analysis. The robust tracking control performance is guaranteed theoretically via Lyapunov approach and also verified through simulation illustration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Song, Qiankun; Yu, Qinqin; Zhao, Zhenjiang; Liu, Yurong; Alsaadi, Fuad E
2018-07-01
In this paper, the boundedness and robust stability for a class of delayed complex-valued neural networks with interval parameter uncertainties are investigated. By using Homomorphic mapping theorem, Lyapunov method and inequality techniques, sufficient condition to guarantee the boundedness of networks and the existence, uniqueness and global robust stability of equilibrium point is derived for the considered uncertain neural networks. The obtained robust stability criterion is expressed in complex-valued LMI, which can be calculated numerically using YALMIP with solver of SDPT3 in MATLAB. An example with simulations is supplied to show the applicability and advantages of the acquired result. Copyright © 2018 Elsevier Ltd. All rights reserved.
Robust design of configurations and parameters of adaptable products
NASA Astrophysics Data System (ADS)
Zhang, Jian; Chen, Yongliang; Xue, Deyi; Gu, Peihua
2014-03-01
An adaptable product can satisfy different customer requirements by changing its configuration and parameter values during the operation stage. Design of adaptable products aims at reducing the environment impact through replacement of multiple different products with single adaptable ones. Due to the complex architecture, multiple functional requirements, and changes of product configurations and parameter values in operation, impact of uncertainties to the functional performance measures needs to be considered in design of adaptable products. In this paper, a robust design approach is introduced to identify the optimal design configuration and parameters of an adaptable product whose functional performance measures are the least sensitive to uncertainties. An adaptable product in this paper is modeled by both configurations and parameters. At the configuration level, methods to model different product configuration candidates in design and different product configuration states in operation to satisfy design requirements are introduced. At the parameter level, four types of product/operating parameters and relations among these parameters are discussed. A two-level optimization approach is developed to identify the optimal design configuration and its parameter values of the adaptable product. A case study is implemented to illustrate the effectiveness of the newly developed robust adaptable design method.
NASA Technical Reports Server (NTRS)
Burken, John J.
2005-01-01
This viewgraph presentation reviews the use of a Robust Servo Linear Quadratic Regulator (LQR) and a Radial Basis Function (RBF) Neural Network in reconfigurable flight control designs in adaptation to a aircraft part failure. The method uses a robust LQR servomechanism design with model Reference adaptive control, and RBF neural networks. During the failure the LQR servomechanism behaved well, and using the neural networks improved the tracking.
Reservoir adaptive operating rules based on both of historical streamflow and future projections
NASA Astrophysics Data System (ADS)
Zhang, Wei; Liu, Pan; Wang, Hao; Chen, Jie; Lei, Xiaohui; Feng, Maoyuan
2017-10-01
Climate change is affecting hydrological variables and consequently is impacting water resources management. Historical strategies are no longer applicable under climate change. Therefore, adaptive management, especially adaptive operating rules for reservoirs, has been developed to mitigate the possible adverse effects of climate change. However, to date, adaptive operating rules are generally based on future projections involving uncertainties under climate change, yet ignoring historical information. To address this, we propose an approach for deriving adaptive operating rules considering both historical information and future projections, namely historical and future operating rules (HAFOR). A robustness index was developed by comparing benefits from HAFOR with benefits from conventional operating rules (COR). For both historical and future streamflow series, maximizations of both average benefits and the robustness index were employed as objectives, and four trade-offs were implemented to solve the multi-objective problem. Based on the integrated objective, the simulation-based optimization method was used to optimize the parameters of HAFOR. Using the Dongwushi Reservoir in China as a case study, HAFOR was demonstrated to be an effective and robust method for developing adaptive operating rules under the uncertain changing environment. Compared with historical or projected future operating rules (HOR or FPOR), HAFOR can reduce the uncertainty and increase the robustness for future projections, especially regarding results of reservoir releases and volumes. HAFOR, therefore, facilitates adaptive management in the context that climate change is difficult to predict accurately.
Zhang, Zhiyong; Yuan, Ke-Hai
2016-06-01
Cronbach's coefficient alpha is a widely used reliability measure in social, behavioral, and education sciences. It is reported in nearly every study that involves measuring a construct through multiple items. With non-tau-equivalent items, McDonald's omega has been used as a popular alternative to alpha in the literature. Traditional estimation methods for alpha and omega often implicitly assume that data are complete and normally distributed. This study proposes robust procedures to estimate both alpha and omega as well as corresponding standard errors and confidence intervals from samples that may contain potential outlying observations and missing values. The influence of outlying observations and missing data on the estimates of alpha and omega is investigated through two simulation studies. Results show that the newly developed robust method yields substantially improved alpha and omega estimates as well as better coverage rates of confidence intervals than the conventional nonrobust method. An R package coefficientalpha is developed and demonstrated to obtain robust estimates of alpha and omega.
Zhang, Zhiyong; Yuan, Ke-Hai
2015-01-01
Cronbach’s coefficient alpha is a widely used reliability measure in social, behavioral, and education sciences. It is reported in nearly every study that involves measuring a construct through multiple items. With non-tau-equivalent items, McDonald’s omega has been used as a popular alternative to alpha in the literature. Traditional estimation methods for alpha and omega often implicitly assume that data are complete and normally distributed. This study proposes robust procedures to estimate both alpha and omega as well as corresponding standard errors and confidence intervals from samples that may contain potential outlying observations and missing values. The influence of outlying observations and missing data on the estimates of alpha and omega is investigated through two simulation studies. Results show that the newly developed robust method yields substantially improved alpha and omega estimates as well as better coverage rates of confidence intervals than the conventional nonrobust method. An R package coefficientalpha is developed and demonstrated to obtain robust estimates of alpha and omega. PMID:29795870
NASA Astrophysics Data System (ADS)
Murphy, Conor; Bastola, Satish; Sweeney, John
2013-04-01
Climate change impact and adaptation assessments have traditionally adopted a 'top-down' scenario based approach, where information from different Global Climate Models (GCMs) and emission scenarios are employed to develop impacts led adaptation strategies. Due to the tradeoffs in the computational cost and need to include a wide range of GCMs for fuller characterization of uncertainties, scenarios are better used for sensitivity testing and adaptation options appraisal. One common approach to adaptation that has been defined as robust is the use of safety margins. In this work the sensitivity of safety margins that have been adopted by the agency responsible for flood risk management in Ireland, to the uncertainty in future projections are examined. The sensitivity of fluvial flood risk to climate change is assessed for four Irish catchments using a large number of GCMs (17) forced with three emissions scenarios (SRES A1B, A2, B1) as input to four hydrological models. Both uncertainty within and between hydrological models is assessed using the GLUE framework. Regionalisation is achieved using a change factor method to infer changes in the parameters of a weather generator using monthly output from the GCMs, while flood frequency analysis is conducted using the method of probability weighted moments to fit the Generalised Extreme Value distribution to ~20,000 annual maxima series. The sensitivity of design margins to the uncertainty space considered is visualised using risk response surfaces. The hydrological sensitivity is measured as the percentage change in flood peak for specified recurrence intervals. Results indicate that there is a considerable residual risk associated with allowances of +20% when uncertainties are accounted for and that the risk of exceedence of design allowances is greatest for more extreme, low frequency events with considerable implication for critical infrastructure, e.g., culverts, bridges, flood defences whose designs are normally associated with such return periods. Sensitivity results show that the impact of climate change is not as great for flood peaks with higher return periods. The average width of the uncertainty range and the size of the range for each catchment reveals that the uncertainties in low frequency events are greater than high frequency events. In addition, the uncertainty interval, estimated as the average width of the uncertainty range of flow for the five return periods, grows wider with a decrease in the runoff coefficient and wetness index of each catchment, both of which tend to increase the nonlinearity in the rainfall response. A key management question that emerges is the acceptability of residual risk where high exposure of vulnerable populations and/or critical infrastructure coincide with high costs of additional capacity in safety margins.
Lee, Ji Min; Park, Sung Hwan; Kim, Jong Shik
2013-01-01
A robust control scheme is proposed for the position control of the electrohydrostatic actuator (EHA) when considering hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. To reduce overshoot due to a saturation of electric motor and to realize robustness against load disturbance and lumped system uncertainties such as varying parameters and modeling error, this paper proposes an adaptive antiwindup PID sliding mode scheme as a robust position controller for the EHA system. An optimal PID controller and an optimal anti-windup PID controller are also designed to compare control performance. An EHA prototype is developed, carrying out system modeling and parameter identification in designing the position controller. The simply identified linear model serves as the basis for the design of the position controllers, while the robustness of the control systems is compared by experiments. The adaptive anti-windup PID sliding mode controller has been found to have the desired performance and become robust against hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. PMID:23983640
Robust, Causal, and Incremental Approaches to Investigating Linguistic Adaptation
Roberts, Seán G.
2018-01-01
This paper discusses the maximum robustness approach for studying cases of adaptation in language. We live in an age where we have more data on more languages than ever before, and more data to link it with from other domains. This should make it easier to test hypotheses involving adaptation, and also to spot new patterns that might be explained by adaptation. However, there is not much discussion of the overall approach to research in this area. There are outstanding questions about how to formalize theories, what the criteria are for directing research and how to integrate results from different methods into a clear assessment of a hypothesis. This paper addresses some of those issues by suggesting an approach which is causal, incremental and robust. It illustrates the approach with reference to a recent claim that dry environments select against the use of precise contrasts in pitch. Study 1 replicates a previous analysis of the link between humidity and lexical tone with an alternative dataset and finds that it is not robust. Study 2 performs an analysis with a continuous measure of tone and finds no significant correlation. Study 3 addresses a more recent analysis of the link between humidity and vowel use and finds that it is robust, though the effect size is small and the robustness of the measurement of vowel use is low. Methodological robustness of the general theory is addressed by suggesting additional approaches including iterated learning, a historical case study, corpus studies, and studying individual speech. PMID:29515487
Designing Dynamic Adaptive Policy Pathways using Many-Objective Robust Decision Making
NASA Astrophysics Data System (ADS)
Kwakkel, Jan; Haasnoot, Marjolijn
2017-04-01
Dealing with climate risks in water management requires confronting a wide variety of deeply uncertain factors, while navigating a many dimensional space of trade-offs amongst objectives. There is an emerging body of literature on supporting this type of decision problem, under the label of decision making under deep uncertainty. Two approaches within this literature are Many-Objective Robust Decision Making, and Dynamic Adaptive Policy Pathways. In recent work, these approaches have been compared. One of the main conclusions of this comparison was that they are highly complementary. Many-Objective Robust Decision Making is a model based decision support approach, while Dynamic Adaptive Policy Pathways is primarily a conceptual framework for the design of flexible strategies that can be adapted over time in response to how the future is actually unfolding. In this research we explore this complementarity in more detail. Specifically, we demonstrate how Many-Objective Robust Decision Making can be used to design adaptation pathways. We demonstrate this combined approach using a water management problem, in the Netherlands. The water level of Lake IJselmeer, the main fresh water resource of the Netherlands, is currently managed through discharge by gravity. Due to climate change, this won't be possible in the future, unless water levels are changed. Changing the water level has undesirable flood risk and spatial planning consequences. The challenge is to find promising adaptation pathways that balance objectives related to fresh water supply, flood risk, and spatial issues, while accounting for uncertain climatic and land use change. We conclude that the combination of Many-Objective Robust Decision Making and Dynamic Adaptive Policy Pathways is particularly suited for dealing with deeply uncertain climate risks.
ECG on the road: robust and unobtrusive estimation of heart rate.
Wartzek, Tobias; Eilebrecht, Benjamin; Lem, Jeroen; Lindner, Hans-Joachim; Leonhardt, Steffen; Walter, Marian
2011-11-01
Modern automobiles include an increasing number of assistance systems to increase the driver's safety. This feasibility study investigated unobtrusive capacitive ECG measurements in an automotive environment. Electrodes integrated into the driving seat allowed to measure a reliable ECG in 86% of the drivers; when only (light) cotton clothing was worn by the drivers, this value increased to 95%. Results show that an array of sensors is needed that can adapt to the different drivers and sitting positions. Measurements while driving show that traveling on the highway does not distort the signal any more than with the car engine turned OFF, whereas driving in city traffic results in a lowered detection rate due to the driver's heavier movements. To enable robust and reliable estimation of heart rate, an algorithm is presented (based on principal component analysis) to detect and discard time intervals with artifacts. This, then, allows a reliable estimation of heart rate of up to 61% in city traffic and up to 86% on the highway: as a percentage of the total driving period with at least four consecutive QRS complexes.
Adaptive Core Simulation Employing Discrete Inverse Theory - Part II: Numerical Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Khalik, Hany S.; Turinsky, Paul J.
2005-07-15
Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. The companion paper, ''Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory,'' describes in detail the theoretical background of the proposed adaptive techniques. This paper, Part II, demonstrates several computational experiments conducted to assess the fidelity and robustness of the proposed techniques. The intentmore » is to check the ability of the adapted core simulator model to predict future core observables that are not included in the adaption or core observables that are recorded at core conditions that differ from those at which adaption is completed. Also, this paper demonstrates successful utilization of an efficient sensitivity analysis approach to calculate the sensitivity information required to perform the adaption for millions of input core parameters. Finally, this paper illustrates a useful application for adaptive simulation - reducing the inconsistencies between two different core simulator code systems, where the multitudes of input data to one code are adjusted to enhance the agreement between both codes for important core attributes, i.e., core reactivity and power distribution. Also demonstrated is the robustness of such an application.« less
Decentralized adaptive control of robot manipulators with robust stabilization design
NASA Technical Reports Server (NTRS)
Yuan, Bau-San; Book, Wayne J.
1988-01-01
Due to geometric nonlinearities and complex dynamics, a decentralized technique for adaptive control for multilink robot arms is attractive. Lyapunov-function theory for stability analysis provides an approach to robust stabilization. Each joint of the arm is treated as a component subsystem. The adaptive controller is made locally stable with servo signals including proportional and integral gains. This results in the bound on the dynamical interactions with other subsystems. A nonlinear controller which stabilizes the system with uniform boundedness is used to improve the robustness properties of the overall system. As a result, the robot tracks the reference trajectories with convergence. This strategy makes computation simple and therefore facilitates real-time implementation.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Ishihara, Abraham; Stepanyan, Vahram; Boskovic, Jovan
2009-01-01
Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. The model matching conditions in the transformed time coordinate results in increase in the feedback gain and modification of the adaptive law.
Application of Bounded Linear Stability Analysis Method for Metrics-Driven Adaptive Control
NASA Technical Reports Server (NTRS)
Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje
2009-01-01
This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics-driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a second order system that represents a pitch attitude control of a generic transport aircraft. The analysis shows that the system with the metrics-conforming variable adaptive gain becomes more robust to unmodeled dynamics or time delay. The effect of analysis time-window for BLSA is also evaluated in order to meet the stability margin criteria.
Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics
NASA Technical Reports Server (NTRS)
Rohrs, C. E.; Valavani, L.; Athans, M.; Stein, G.
1985-01-01
This paper examines the robustness properties of existing adaptive control algorithms to unmodeled plant high-frequency dynamics and unmeasurable output disturbances. It is demonstrated that there exist two infinite-gain operators in the nonlinear dynamic system which determines the time-evolution of output and parameter errors. The pragmatic implications of the existence of such infinite-gain operators is that: (1) sinusoidal reference inputs at specific frequencies and/or (2) sinusoidal output disturbances at any frequency (including dc), can cause the loop gain to increase without bound, thereby exciting the unmodeled high-frequency dynamics, and yielding an unstable control system. Hence, it is concluded that existing adaptive control algorithms as they are presented in the literature referenced in this paper, cannot be used with confidence in practical designs where the plant contains unmodeled dynamics because instability is likely to result. Further understanding is required to ascertain how the currently implemented adaptive systems differ from the theoretical systems studied here and how further theoretical development can improve the robustness of adaptive controllers.
NASA Astrophysics Data System (ADS)
Kwakkel, Jan; Haasnoot, Marjolijn
2015-04-01
In response to climate and socio-economic change, in various policy domains there is increasingly a call for robust plans or policies. That is, plans or policies that performs well in a very large range of plausible futures. In the literature, a wide range of alternative robustness metrics can be found. The relative merit of these alternative conceptualizations of robustness has, however, received less attention. Evidently, different robustness metrics can result in different plans or policies being adopted. This paper investigates the consequences of several robustness metrics on decision making, illustrated here by the design of a flood risk management plan. A fictitious case, inspired by a river reach in the Netherlands is used. The performance of this system in terms of casualties, damages, and costs for flood and damage mitigation actions is explored using a time horizon of 100 years, and accounting for uncertainties pertaining to climate change and land use change. A set of candidate policy options is specified up front. This set of options includes dike raising, dike strengthening, creating more space for the river, and flood proof building and evacuation options. The overarching aim is to design an effective flood risk mitigation strategy that is designed from the outset to be adapted over time in response to how the future actually unfolds. To this end, the plan will be based on the dynamic adaptive policy pathway approach (Haasnoot, Kwakkel et al. 2013) being used in the Dutch Delta Program. The policy problem is formulated as a multi-objective robust optimization problem (Kwakkel, Haasnoot et al. 2014). We solve the multi-objective robust optimization problem using several alternative robustness metrics, including both satisficing robustness metrics and regret based robustness metrics. Satisficing robustness metrics focus on the performance of candidate plans across a large ensemble of plausible futures. Regret based robustness metrics compare the performance of a candidate plan with the performance of other candidate plans across a large ensemble of plausible futures. Initial results suggest that the simplest satisficing metric, inspired by the signal to noise ratio, results in very risk averse solutions. Other satisficing metrics, which handle the average performance and the dispersion around the average separately, provide substantial additional insights into the trade off between the average performance, and the dispersion around this average. In contrast, the regret-based metrics enhance insight into the relative merits of candidate plans, while being less clear on the average performance or the dispersion around this performance. These results suggest that it is beneficial to use multiple robustness metrics when doing a robust decision analysis study. Haasnoot, M., J. H. Kwakkel, W. E. Walker and J. Ter Maat (2013). "Dynamic Adaptive Policy Pathways: A New Method for Crafting Robust Decisions for a Deeply Uncertain World." Global Environmental Change 23(2): 485-498. Kwakkel, J. H., M. Haasnoot and W. E. Walker (2014). "Developing Dynamic Adaptive Policy Pathways: A computer-assisted approach for developing adaptive strategies for a deeply uncertain world." Climatic Change.
NASA Astrophysics Data System (ADS)
van de Water, Steven; Albertini, Francesca; Weber, Damien C.; Heijmen, Ben J. M.; Hoogeman, Mischa S.; Lomax, Antony J.
2018-01-01
The aim of this study is to develop an anatomical robust optimization method for intensity-modulated proton therapy (IMPT) that accounts for interfraction variations in nasal cavity filling, and to compare it with conventional single-field uniform dose (SFUD) optimization and online plan adaptation. We included CT data of five patients with tumors in the sinonasal region. Using the planning CT, we generated for each patient 25 ‘synthetic’ CTs with varying nasal cavity filling. The robust optimization method available in our treatment planning system ‘Erasmus-iCycle’ was extended to also account for anatomical uncertainties by including (synthetic) CTs with varying patient anatomy as error scenarios in the inverse optimization. For each patient, we generated treatment plans using anatomical robust optimization and, for benchmarking, using SFUD optimization and online plan adaptation. Clinical target volume (CTV) and organ-at-risk (OAR) doses were assessed by recalculating the treatment plans on the synthetic CTs, evaluating dose distributions individually and accumulated over an entire fractionated 50 GyRBE treatment, assuming each synthetic CT to correspond to a 2 GyRBE fraction. Treatment plans were also evaluated using actual repeat CTs. Anatomical robust optimization resulted in adequate CTV doses (V95% ⩾ 98% and V107% ⩽ 2%) if at least three synthetic CTs were included in addition to the planning CT. These CTV requirements were also fulfilled for online plan adaptation, but not for the SFUD approach, even when applying a margin of 5 mm. Compared with anatomical robust optimization, OAR dose parameters for the accumulated dose distributions were on average 5.9 GyRBE (20%) higher when using SFUD optimization and on average 3.6 GyRBE (18%) lower for online plan adaptation. In conclusion, anatomical robust optimization effectively accounted for changes in nasal cavity filling during IMPT, providing substantially improved CTV and OAR doses compared with conventional SFUD optimization. OAR doses can be further reduced by using online plan adaptation.
NASA Astrophysics Data System (ADS)
Pan, Yongping; Huang, Daoping
2011-03-01
In this comment, we point out the inappropriateness of Theorem 1 in the article [Tsung-Chih Lin, Mehdi Roopaei. Based on interval type-2 adaptive fuzzy H∞ tracking controller for SISO time-delay nonlinear systems. Commun Nonlinear Sci Numer Simulat 2010;15:4065-75]. For solving this problem, some formular mistakes are corrected and novel parameter adaptive laws of interval type-2 fuzzy neural network system are given.
Boukattaya, Mohamed; Mezghani, Neila; Damak, Tarak
2018-06-01
In this paper, robust and adaptive nonsingular fast terminal sliding-mode (NFTSM) control schemes for the trajectory tracking problem are proposed with known or unknown upper bound of the system uncertainty and external disturbances. The developed controllers take the advantage of the NFTSM theory to ensure fast convergence rate, singularity avoidance, and robustness against uncertainties and external disturbances. First, a robust NFTSM controller is proposed which guarantees that sliding surface and equilibrium point can be reached in a short finite-time from any initial state. Then, in order to cope with the unknown upper bound of the system uncertainty which may be occurring in practical applications, a new adaptive NFTSM algorithm is developed. One feature of the proposed control law is their adaptation techniques where the prior knowledge of parameters uncertainty and disturbances is not needed. However, the adaptive tuning law can estimate the upper bound of these uncertainties using only position and velocity measurements. Moreover, the proposed controller eliminates the chattering effect without losing the robustness property and the precision. Stability analysis is performed using the Lyapunov stability theory, and simulation studies are conducted to verify the effectiveness of the developed control schemes. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Chen, Wen; Chowdhury, Fahmida N; Djuric, Ana; Yeh, Chih-Ping
2014-09-01
This paper provides a new design of robust fault detection for turbofan engines with adaptive controllers. The critical issue is that the adaptive controllers can depress the faulty effects such that the actual system outputs remain the pre-specified values, making it difficult to detect faults/failures. To solve this problem, a Total Measurable Fault Information Residual (ToMFIR) technique with the aid of system transformation is adopted to detect faults in turbofan engines with adaptive controllers. This design is a ToMFIR-redundancy-based robust fault detection. The ToMFIR is first introduced and existing results are also summarized. The Detailed design process of the ToMFIRs is presented and a turbofan engine model is simulated to verify the effectiveness of the proposed ToMFIR-based fault-detection strategy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Sliding Mode Control of Dynamic Voltage Restorer by Using a New Adaptive Reaching Law
NASA Astrophysics Data System (ADS)
Pandey, Achala; Agrawal, Rekha; Mandloi, Ravindra S.; Sarkar, Biswaroop
2017-12-01
This paper presents a new kind of adaptive reaching law for sliding mode control of Dynamic Voltage Restorer (DVR). Such an adaptive reaching law follows under-damped sinusoidal nature that causes the initial state to reach the sliding regime in extremely less time with negligible chattering. Moreover, it is robust in the sense the trajectory does not deviate from the sliding surface. This new approach is developed and successfully applied to DVR. The simulation results are presented that show its robustness.
NASA Astrophysics Data System (ADS)
Wang, Zhuozheng; Deller, J. R.; Fleet, Blair D.
2016-01-01
Acquired digital images are often corrupted by a lack of camera focus, faulty illumination, or missing data. An algorithm is presented for fusion of multiple corrupted images of a scene using the lifting wavelet transform. The method employs adaptive fusion arithmetic based on matrix completion and self-adaptive regional variance estimation. Characteristics of the wavelet coefficients are used to adaptively select fusion rules. Robust principal component analysis is applied to low-frequency image components, and regional variance estimation is applied to high-frequency components. Experiments reveal that the method is effective for multifocus, visible-light, and infrared image fusion. Compared with traditional algorithms, the new algorithm not only increases the amount of preserved information and clarity but also improves robustness.
Addressing Climate Change in Long-Term Water Planning Using Robust Decisionmaking
NASA Astrophysics Data System (ADS)
Groves, D. G.; Lempert, R.
2008-12-01
Addressing climate change in long-term natural resource planning is difficult because future management conditions are deeply uncertain and the range of possible adaptation options are so extensive. These conditions pose challenges to standard optimization decision-support techniques. This talk will describe a methodology called Robust Decisionmaking (RDM) that can complement more traditional analytic approaches by utilizing screening-level water management models to evaluate large numbers of strategies against a wide range of plausible future scenarios. The presentation will describe a recent application of the methodology to evaluate climate adaptation strategies for the Inland Empire Utilities Agency in Southern California. This project found that RDM can provide a useful way for addressing climate change uncertainty and identify robust adaptation strategies.
Estimation of bias and variance of measurements made from tomography scans
NASA Astrophysics Data System (ADS)
Bradley, Robert S.
2016-09-01
Tomographic imaging modalities are being increasingly used to quantify internal characteristics of objects for a wide range of applications, from medical imaging to materials science research. However, such measurements are typically presented without an assessment being made of their associated variance or confidence interval. In particular, noise in raw scan data places a fundamental lower limit on the variance and bias of measurements made on the reconstructed 3D volumes. In this paper, the simulation-extrapolation technique, which was originally developed for statistical regression, is adapted to estimate the bias and variance for measurements made from a single scan. The application to x-ray tomography is considered in detail and it is demonstrated that the technique can also allow the robustness of automatic segmentation strategies to be compared.
O'Gorman, Thomas W
2018-05-01
In the last decade, it has been shown that an adaptive testing method could be used, along with the Robbins-Monro search procedure, to obtain confidence intervals that are often narrower than traditional confidence intervals. However, these confidence interval limits require a great deal of computation and some familiarity with stochastic search methods. We propose a method for estimating the limits of confidence intervals that uses only a few tests of significance. We compare these limits to those obtained by a lengthy Robbins-Monro stochastic search and find that the proposed method is nearly as accurate as the Robbins-Monro search. Adaptive confidence intervals that are produced by the proposed method are often narrower than traditional confidence intervals when the distributions are long-tailed, skewed, or bimodal. Moreover, the proposed method of estimating confidence interval limits is easy to understand, because it is based solely on the p-values from a few tests of significance.
NASA Astrophysics Data System (ADS)
Chiron, L.; Oger, G.; de Leffe, M.; Le Touzé, D.
2018-02-01
While smoothed-particle hydrodynamics (SPH) simulations are usually performed using uniform particle distributions, local particle refinement techniques have been developed to concentrate fine spatial resolutions in identified areas of interest. Although the formalism of this method is relatively easy to implement, its robustness at coarse/fine interfaces can be problematic. Analysis performed in [16] shows that the radius of refined particles should be greater than half the radius of unrefined particles to ensure robustness. In this article, the basics of an Adaptive Particle Refinement (APR) technique, inspired by AMR in mesh-based methods, are presented. This approach ensures robustness with alleviated constraints. Simulations applying the new formalism proposed achieve accuracy comparable to fully refined spatial resolutions, together with robustness, low CPU times and maintained parallel efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayanan, Venkatachalam; Sànchez i Nogué, Violeta; van Niel, Ed W. J.
Here, lignocellulosic bioethanol from renewable feedstocks using Saccharomyces cerevisiae is a promising alternative to fossil fuels owing to environmental challenges. S. cerevisiae is frequently challenged by bacterial contamination and a combination of lignocellulosic inhibitors formed during the pre-treatment, in terms of growth, ethanol yield and productivity. We investigated the phenotypic robustness of a brewing yeast strain TMB3500 and its ability to adapt to low pH thereby preventing bacterial contamination along with lignocellulosic inhibitors by short-term adaptation and adaptive lab evolution (ALE). The short-term adaptation strategy was used to investigate the inherent ability of strain TMB3500 to activate a robust phenotypemore » involving pre-culturing yeast cells in defined medium with lignocellulosic inhibitors at pH 5.0 until late exponential phase prior to inoculating them in defined media with the same inhibitor cocktail at pH 3.7. Adapted cells were able to grow aerobically, ferment anaerobically (glucose exhaustion by 19 +/- 5 h to yield 0.45 +/- 0.01 g ethanol g glucose -1) and portray significant detoxification of inhibitors at pH 3.7, when compared to non-adapted cells. ALE was performed to investigate whether a stable strain could be developed to grow and ferment at low pH with lignocellulosic inhibitors in a continuous suspension culture. Though a robust population was obtained after 3600 h with an ability to grow and ferment at pH 3.7 with inhibitors, inhibitor robustness was not stable as indicated by the characterisation of the evolved culture possibly due to phenotypic plasticity. With further research, this short-term adaptation and low pH strategy could be successfully applied in lignocellulosic ethanol plants to prevent bacterial contamination.« less
Narayanan, Venkatachalam; Sànchez i Nogué, Violeta; van Niel, Ed W. J.; ...
2016-08-26
Here, lignocellulosic bioethanol from renewable feedstocks using Saccharomyces cerevisiae is a promising alternative to fossil fuels owing to environmental challenges. S. cerevisiae is frequently challenged by bacterial contamination and a combination of lignocellulosic inhibitors formed during the pre-treatment, in terms of growth, ethanol yield and productivity. We investigated the phenotypic robustness of a brewing yeast strain TMB3500 and its ability to adapt to low pH thereby preventing bacterial contamination along with lignocellulosic inhibitors by short-term adaptation and adaptive lab evolution (ALE). The short-term adaptation strategy was used to investigate the inherent ability of strain TMB3500 to activate a robust phenotypemore » involving pre-culturing yeast cells in defined medium with lignocellulosic inhibitors at pH 5.0 until late exponential phase prior to inoculating them in defined media with the same inhibitor cocktail at pH 3.7. Adapted cells were able to grow aerobically, ferment anaerobically (glucose exhaustion by 19 +/- 5 h to yield 0.45 +/- 0.01 g ethanol g glucose -1) and portray significant detoxification of inhibitors at pH 3.7, when compared to non-adapted cells. ALE was performed to investigate whether a stable strain could be developed to grow and ferment at low pH with lignocellulosic inhibitors in a continuous suspension culture. Though a robust population was obtained after 3600 h with an ability to grow and ferment at pH 3.7 with inhibitors, inhibitor robustness was not stable as indicated by the characterisation of the evolved culture possibly due to phenotypic plasticity. With further research, this short-term adaptation and low pH strategy could be successfully applied in lignocellulosic ethanol plants to prevent bacterial contamination.« less
Chang, Yeong-Chan
2005-12-01
This paper addresses the problem of designing adaptive fuzzy-based (or neural network-based) robust controls for a large class of uncertain nonlinear time-varying systems. This class of systems can be perturbed by plant uncertainties, unmodeled perturbations, and external disturbances. Nonlinear H(infinity) control technique incorporated with adaptive control technique and VSC technique is employed to construct the intelligent robust stabilization controller such that an H(infinity) control is achieved. The problem of the robust tracking control design for uncertain robotic systems is employed to demonstrate the effectiveness of the developed robust stabilization control scheme. Therefore, an intelligent robust tracking controller for uncertain robotic systems in the presence of high-degree uncertainties can easily be implemented. Its solution requires only to solve a linear algebraic matrix inequality and a satisfactorily transient and asymptotical tracking performance is guaranteed. A simulation example is made to confirm the performance of the developed control algorithms.
Plaza-Díaz, Julio; Ruiz-Ojeda, Francisco J.; Aragón-Vela, Jerónimo; Robles-Sanchez, Cándido; Nordsborg, Nikolai B.; Hebberecht, Marina; Salmeron, Luis M.; Huertas, Jesus R.
2017-01-01
We aimed to test whether high-intensity high-volume training (HIHVT) swimming would induce more robust signaling than sprint interval training (SIT) swimming within the m. triceps brachii due to lower metabolic and oxidation. Nine well-trained swimmers performed the two training procedures on separate randomized days. Muscle biopsies from m. triceps brachii and blood samples were collected at three different time points: a) before the intervention (pre), b) immediately after the swimming procedures (post) and c) after 3 h of rest (3 h). Hydroperoxides, creatine kinase (CK), and lactate dehydrogenase (LDH) were quantified from blood samples, and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and the AMPKpTHR172/AMPK ratio were quantified by Western blot analysis. PGC-1α, sirtuin 3 (SIRT3), superoxide-dismutase 2 (SOD2), and vascular endothelial growth factor (VEGF) mRNA levels were also quantified. SIT induced a higher release of LDH (p < 0.01 at all time points) and CK (p < 0.01 at post) than HIHVT, but neither SIT nor HIHVT altered systemic hydroperoxides. Additionally, neither SIRT3 nor SOD2 mRNA levels increased, while PGC-1α transcription increased at 3 h after SIT (p < 0.01) and after HIHVT (p < 0.001). However, PGC-1α protein was higher after HIHVT than after SIT (p < 0.05). Moreover, the AMPKpTHR172/AMPK ratio increased at post after SIT (p < 0.05), whereas this effect was delayed after HIHVT as it increased after 3 h (p < 0.05). In addition, VEGF transcription was higher in response to HIHVT (p < 0.05). In conclusion, SIT induces higher muscular stress than HIHVT without increasing systemic oxidation. In addition, HIHVT may induce more robust oxidative adaptations through PGC-1α and AMPK. PMID:28973039
Casuso, Rafael A; Plaza-Díaz, Julio; Ruiz-Ojeda, Francisco J; Aragón-Vela, Jerónimo; Robles-Sanchez, Cándido; Nordsborg, Nikolai B; Hebberecht, Marina; Salmeron, Luis M; Huertas, Jesus R
2017-01-01
We aimed to test whether high-intensity high-volume training (HIHVT) swimming would induce more robust signaling than sprint interval training (SIT) swimming within the m. triceps brachii due to lower metabolic and oxidation. Nine well-trained swimmers performed the two training procedures on separate randomized days. Muscle biopsies from m. triceps brachii and blood samples were collected at three different time points: a) before the intervention (pre), b) immediately after the swimming procedures (post) and c) after 3 h of rest (3 h). Hydroperoxides, creatine kinase (CK), and lactate dehydrogenase (LDH) were quantified from blood samples, and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and the AMPKpTHR172/AMPK ratio were quantified by Western blot analysis. PGC-1α, sirtuin 3 (SIRT3), superoxide-dismutase 2 (SOD2), and vascular endothelial growth factor (VEGF) mRNA levels were also quantified. SIT induced a higher release of LDH (p < 0.01 at all time points) and CK (p < 0.01 at post) than HIHVT, but neither SIT nor HIHVT altered systemic hydroperoxides. Additionally, neither SIRT3 nor SOD2 mRNA levels increased, while PGC-1α transcription increased at 3 h after SIT (p < 0.01) and after HIHVT (p < 0.001). However, PGC-1α protein was higher after HIHVT than after SIT (p < 0.05). Moreover, the AMPKpTHR172/AMPK ratio increased at post after SIT (p < 0.05), whereas this effect was delayed after HIHVT as it increased after 3 h (p < 0.05). In addition, VEGF transcription was higher in response to HIHVT (p < 0.05). In conclusion, SIT induces higher muscular stress than HIHVT without increasing systemic oxidation. In addition, HIHVT may induce more robust oxidative adaptations through PGC-1α and AMPK.
Filter-based multiscale entropy analysis of complex physiological time series.
Xu, Yuesheng; Zhao, Liang
2013-08-01
Multiscale entropy (MSE) has been widely and successfully used in analyzing the complexity of physiological time series. We reinterpret the averaging process in MSE as filtering a time series by a filter of a piecewise constant type. From this viewpoint, we introduce filter-based multiscale entropy (FME), which filters a time series to generate multiple frequency components, and then we compute the blockwise entropy of the resulting components. By choosing filters adapted to the feature of a given time series, FME is able to better capture its multiscale information and to provide more flexibility for studying its complexity. Motivated by the heart rate turbulence theory, which suggests that the human heartbeat interval time series can be described in piecewise linear patterns, we propose piecewise linear filter multiscale entropy (PLFME) for the complexity analysis of the time series. Numerical results from PLFME are more robust to data of various lengths than those from MSE. The numerical performance of the adaptive piecewise constant filter multiscale entropy without prior information is comparable to that of PLFME, whose design takes prior information into account.
A Chinese cave links climate change, social impacts, and human adaptation over the last 500 years.
Tan, Liangcheng; Cai, Yanjun; An, Zhisheng; Cheng, Hai; Shen, Chuan-Chou; Breitenbach, Sebastian F M; Gao, Yongli; Edwards, R Lawrence; Zhang, Haiwei; Du, Yajuan
2015-08-13
The collapse of some pre-historical and historical cultures, including Chinese dynasties were presumably linked to widespread droughts, on the basis of synchronicities of societal crises and proxy-based climate events. Here, we present a comparison of ancient inscriptions in Dayu Cave from Qinling Mountains, central China, which described accurate times and detailed impacts of seven drought events during the period of 1520-1920 CE, with high-resolution speleothem records from the same cave. The comparable results provide unique and robust tests on relationships among speleothem δ(18)O changes, drought events, and societal unrest. With direct historical evidences, our results suggest that droughts and even modest events interrupting otherwise wet intervals can cause serious social crises. Modeling results of speleothem δ(18)O series suggest that future precipitation in central China may be below the average of the past 500 years. As Qinling Mountain is the main recharge area of two large water transfer projects and habitats of many endangered species, it is imperative to explore an adaptive strategy for the decline in precipitation and/or drought events.
A Chinese cave links climate change, social impacts, and human adaptation over the last 500 years
Tan, Liangcheng; Cai, Yanjun; An, Zhisheng; Cheng, Hai; Shen, Chuan-Chou; Breitenbach, Sebastian F. M.; Gao, Yongli; Edwards, R. Lawrence; Zhang, Haiwei; Du, Yajuan
2015-01-01
The collapse of some pre-historical and historical cultures, including Chinese dynasties were presumably linked to widespread droughts, on the basis of synchronicities of societal crises and proxy-based climate events. Here, we present a comparison of ancient inscriptions in Dayu Cave from Qinling Mountains, central China, which described accurate times and detailed impacts of seven drought events during the period of 1520–1920 CE, with high-resolution speleothem records from the same cave. The comparable results provide unique and robust tests on relationships among speleothem δ18O changes, drought events, and societal unrest. With direct historical evidences, our results suggest that droughts and even modest events interrupting otherwise wet intervals can cause serious social crises. Modeling results of speleothem δ18O series suggest that future precipitation in central China may be below the average of the past 500 years. As Qinling Mountain is the main recharge area of two large water transfer projects and habitats of many endangered species, it is imperative to explore an adaptive strategy for the decline in precipitation and/or drought events. PMID:26270656
Robust time and frequency domain estimation methods in adaptive control
NASA Technical Reports Server (NTRS)
Lamaire, Richard Orville
1987-01-01
A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.
NASA Astrophysics Data System (ADS)
Phu, Do Xuan; Huy, Ta Duc; Mien, Van; Choi, Seung-Bok
2018-07-01
This work proposes a novel composite adaptive controller based on the prescribed performance of the sliding surface and applies it to vibration control of a semi-active vehicle seat suspension system subjected to severe external disturbances. As a first step, the online fast interval type 2 fuzzy neural network system is adopted to establish a model and two sliding surfaces are used; conventional surface and prescribed surface. Then, an equivalent control is determined by assuming the derivative of the prescribed surface is zero, followed by the design of a controller which can guarantee both stability and robustness. Then, two controllers are combined and integrated with adaptation laws using the projection algorithm. The effectiveness of the proposed composite controller is validated through both simulation and experiment by undertaking vibration control of a semi-active seat suspension system equipped with a magneto-rheological (MR) damper. It is shown from both simulation and experimental realization that excellent vibration control performances are achieved with a small tracking error between the proposed and prescribed objectives. In addition, the control superiority of the proposed controller to conventional sliding mode controller featuring one sliding surface and proportional-integral-derivative (PID) controllers are demonstrated through a comparative work.
Robust distributed control of spacecraft formation flying with adaptive network topology
NASA Astrophysics Data System (ADS)
Shasti, Behrouz; Alasty, Aria; Assadian, Nima
2017-07-01
In this study, the distributed six degree-of-freedom (6-DOF) coordinated control of spacecraft formation flying in low earth orbit (LEO) has been investigated. For this purpose, an accurate coupled translational and attitude relative dynamics model of the spacecraft with respect to the reference orbit (virtual leader) is presented by considering the most effective perturbation acceleration forces on LEO satellites, i.e. the second zonal harmonic and the atmospheric drag. Subsequently, the 6-DOF coordinated control of spacecraft in formation is studied. During the mission, the spacecraft communicate with each other through a switching network topology in which the weights of its graph Laplacian matrix change adaptively based on a distance-based connectivity function between neighboring agents. Because some of the dynamical system parameters such as spacecraft masses and moments of inertia may vary with time, an adaptive law is developed to estimate the parameter values during the mission. Furthermore, for the case that there is no knowledge of the unknown and time-varying parameters of the system, a robust controller has been developed. It is proved that the stability of the closed-loop system coupled with adaptation in network topology structure and optimality and robustness in control is guaranteed by the robust contraction analysis as an incremental stability method for multiple synchronized systems. The simulation results show the effectiveness of each control method in the presence of uncertainties and parameter variations. The adaptive and robust controllers show their superiority in reducing the state error integral as well as decreasing the control effort and settling time.
Robust speech perception: Recognize the familiar, generalize to the similar, and adapt to the novel
Kleinschmidt, Dave F.; Jaeger, T. Florian
2016-01-01
Successful speech perception requires that listeners map the acoustic signal to linguistic categories. These mappings are not only probabilistic, but change depending on the situation. For example, one talker’s /p/ might be physically indistinguishable from another talker’s /b/ (cf. lack of invariance). We characterize the computational problem posed by such a subjectively non-stationary world and propose that the speech perception system overcomes this challenge by (1) recognizing previously encountered situations, (2) generalizing to other situations based on previous similar experience, and (3) adapting to novel situations. We formalize this proposal in the ideal adapter framework: (1) to (3) can be understood as inference under uncertainty about the appropriate generative model for the current talker, thereby facilitating robust speech perception despite the lack of invariance. We focus on two critical aspects of the ideal adapter. First, in situations that clearly deviate from previous experience, listeners need to adapt. We develop a distributional (belief-updating) learning model of incremental adaptation. The model provides a good fit against known and novel phonetic adaptation data, including perceptual recalibration and selective adaptation. Second, robust speech recognition requires listeners learn to represent the structured component of cross-situation variability in the speech signal. We discuss how these two aspects of the ideal adapter provide a unifying explanation for adaptation, talker-specificity, and generalization across talkers and groups of talkers (e.g., accents and dialects). The ideal adapter provides a guiding framework for future investigations into speech perception and adaptation, and more broadly language comprehension. PMID:25844873
Petrie, Joshua G; Eisenberg, Marisa C; Ng, Sophia; Malosh, Ryan E; Lee, Kyu Han; Ohmit, Suzanne E; Monto, Arnold S
2017-12-15
Household cohort studies are an important design for the study of respiratory virus transmission. Inferences from these studies can be improved through the use of mechanistic models to account for household structure and risk as an alternative to traditional regression models. We adapted a previously described individual-based transmission hazard (TH) model and assessed its utility for analyzing data from a household cohort maintained in part for study of influenza vaccine effectiveness (VE). Households with ≥4 individuals, including ≥2 children <18 years of age, were enrolled and followed during the 2010-2011 influenza season. VE was estimated in both TH and Cox proportional hazards (PH) models. For each individual, TH models estimated hazards of infection from the community and each infected household contact. Influenza A(H3N2) infection was laboratory-confirmed in 58 (4%) subjects. VE estimates from both models were similarly low overall (Cox PH: 20%, 95% confidence interval: -57, 59; TH: 27%, 95% credible interval: -23, 58) and highest for children <9 years of age (Cox PH: 40%, 95% confidence interval: -49, 76; TH: 52%, 95% credible interval: 7, 75). VE estimates were robust to model choice, although the ability of the TH model to accurately describe transmission of influenza presents continued opportunity for analyses. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Experimental Validation of L1 Adaptive Control: Rohrs' Counterexample in Flight
NASA Technical Reports Server (NTRS)
Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Issac; Kitsios, Ioannis; Cao, Chengyu; Gregory, Irene M.; Valavani, Lena
2010-01-01
The paper presents new results on the verification and in-flight validation of an L1 adaptive flight control system, and proposes a general methodology for verification and validation of adaptive flight control algorithms. The proposed framework is based on Rohrs counterexample, a benchmark problem presented in the early 80s to show the limitations of adaptive controllers developed at that time. In this paper, the framework is used to evaluate the performance and robustness characteristics of an L1 adaptive control augmentation loop implemented onboard a small unmanned aerial vehicle. Hardware-in-the-loop simulations and flight test results confirm the ability of the L1 adaptive controller to maintain stability and predictable performance of the closed loop adaptive system in the presence of general (artificially injected) unmodeled dynamics. The results demonstrate the advantages of L1 adaptive control as a verifiable robust adaptive control architecture with the potential of reducing flight control design costs and facilitating the transition of adaptive control into advanced flight control systems.
Trong Bui, Duong; Nguyen, Nhan Duc; Jeong, Gu-Min
2018-06-25
Human activity recognition and pedestrian dead reckoning are an interesting field because of their importance utilities in daily life healthcare. Currently, these fields are facing many challenges, one of which is the lack of a robust algorithm with high performance. This paper proposes a new method to implement a robust step detection and adaptive distance estimation algorithm based on the classification of five daily wrist activities during walking at various speeds using a smart band. The key idea is that the non-parametric adaptive distance estimator is performed after two activity classifiers and a robust step detector. In this study, two classifiers perform two phases of recognizing five wrist activities during walking. Then, a robust step detection algorithm, which is integrated with an adaptive threshold, peak and valley correction algorithm, is applied to the classified activities to detect the walking steps. In addition, the misclassification activities are fed back to the previous layer. Finally, three adaptive distance estimators, which are based on a non-parametric model of the average walking speed, calculate the length of each strike. The experimental results show that the average classification accuracy is about 99%, and the accuracy of the step detection is 98.7%. The error of the estimated distance is 2.2⁻4.2% depending on the type of wrist activities.
Distributed robust adaptive control of high order nonlinear multi agent systems.
Hashemi, Mahnaz; Shahgholian, Ghazanfar
2018-03-01
In this paper, a robust adaptive neural network based controller is presented for multi agent high order nonlinear systems with unknown nonlinear functions, unknown control gains and unknown actuator failures. At first, Neural Network (NN) is used to approximate the nonlinear uncertainty terms derived from the controller design procedure for the followers. Then, a novel distributed robust adaptive controller is developed by combining the backstepping method and the Dynamic Surface Control (DSC) approach. The proposed controllers are distributed in the sense that the designed controller for each follower agent only requires relative state information between itself and its neighbors. By using the Young's inequality, only few parameters need to be tuned regardless of NN nodes number. Accordingly, the problems of dimensionality curse and explosion of complexity are counteracted, simultaneously. New adaptive laws are designed by choosing the appropriate Lyapunov-Krasovskii functionals. The proposed approach proves the boundedness of all the closed-loop signals in addition to the convergence of the distributed tracking errors to a small neighborhood of the origin. Simulation results indicate that the proposed controller is effective and robust. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Robust local search for spacecraft operations using adaptive noise
NASA Technical Reports Server (NTRS)
Fukunaga, Alex S.; Rabideau, Gregg; Chien, Steve
2004-01-01
Randomization is a standard technique for improving the performance of local search algorithms for constraint satisfaction. However, it is well-known that local search algorithms are constraints satisfaction. However, it is well-known that local search algorithms are to the noise values selected. We investigate the use of an adaptive noise mechanism in an iterative repair-based planner/scheduler for spacecraft operations. Preliminary results indicate that adaptive noise makes the use of randomized repair moves safe and robust; that is, using adaptive noise makes it possible to consistently achieve, performance comparable with the best tuned noise setting without the need for manually tuning the noise parameter.
Addressing uncertainty in adaptation planning for agriculture.
Vermeulen, Sonja J; Challinor, Andrew J; Thornton, Philip K; Campbell, Bruce M; Eriyagama, Nishadi; Vervoort, Joost M; Kinyangi, James; Jarvis, Andy; Läderach, Peter; Ramirez-Villegas, Julian; Nicklin, Kathryn J; Hawkins, Ed; Smith, Daniel R
2013-05-21
We present a framework for prioritizing adaptation approaches at a range of timeframes. The framework is illustrated by four case studies from developing countries, each with associated characterization of uncertainty. Two cases on near-term adaptation planning in Sri Lanka and on stakeholder scenario exercises in East Africa show how the relative utility of capacity vs. impact approaches to adaptation planning differ with level of uncertainty and associated lead time. An additional two cases demonstrate that it is possible to identify uncertainties that are relevant to decision making in specific timeframes and circumstances. The case on coffee in Latin America identifies altitudinal thresholds at which incremental vs. transformative adaptation pathways are robust options. The final case uses three crop-climate simulation studies to demonstrate how uncertainty can be characterized at different time horizons to discriminate where robust adaptation options are possible. We find that impact approaches, which use predictive models, are increasingly useful over longer lead times and at higher levels of greenhouse gas emissions. We also find that extreme events are important in determining predictability across a broad range of timescales. The results demonstrate the potential for robust knowledge and actions in the face of uncertainty.
Addressing uncertainty in adaptation planning for agriculture
Vermeulen, Sonja J.; Challinor, Andrew J.; Thornton, Philip K.; Campbell, Bruce M.; Eriyagama, Nishadi; Vervoort, Joost M.; Kinyangi, James; Jarvis, Andy; Läderach, Peter; Ramirez-Villegas, Julian; Nicklin, Kathryn J.; Hawkins, Ed; Smith, Daniel R.
2013-01-01
We present a framework for prioritizing adaptation approaches at a range of timeframes. The framework is illustrated by four case studies from developing countries, each with associated characterization of uncertainty. Two cases on near-term adaptation planning in Sri Lanka and on stakeholder scenario exercises in East Africa show how the relative utility of capacity vs. impact approaches to adaptation planning differ with level of uncertainty and associated lead time. An additional two cases demonstrate that it is possible to identify uncertainties that are relevant to decision making in specific timeframes and circumstances. The case on coffee in Latin America identifies altitudinal thresholds at which incremental vs. transformative adaptation pathways are robust options. The final case uses three crop–climate simulation studies to demonstrate how uncertainty can be characterized at different time horizons to discriminate where robust adaptation options are possible. We find that impact approaches, which use predictive models, are increasingly useful over longer lead times and at higher levels of greenhouse gas emissions. We also find that extreme events are important in determining predictability across a broad range of timescales. The results demonstrate the potential for robust knowledge and actions in the face of uncertainty. PMID:23674681
Adaptation to visual or auditory time intervals modulates the perception of visual apparent motion
Zhang, Huihui; Chen, Lihan; Zhou, Xiaolin
2012-01-01
It is debated whether sub-second timing is subserved by a centralized mechanism or by the intrinsic properties of task-related neural activity in specific modalities (Ivry and Schlerf, 2008). By using a temporal adaptation task, we investigated whether adapting to different time intervals conveyed through stimuli in different modalities (i.e., frames of a visual Ternus display, visual blinking discs, or auditory beeps) would affect the subsequent implicit perception of visual timing, i.e., inter-stimulus interval (ISI) between two frames in a Ternus display. The Ternus display can induce two percepts of apparent motion (AM), depending on the ISI between the two frames: “element motion” for short ISIs, in which the endmost disc is seen as moving back and forth while the middle disc at the overlapping or central position remains stationary; “group motion” for longer ISIs, in which both discs appear to move in a manner of lateral displacement as a whole. In Experiment 1, participants adapted to either the typical “element motion” (ISI = 50 ms) or the typical “group motion” (ISI = 200 ms). In Experiments 2 and 3, participants adapted to a time interval of 50 or 200 ms through observing a series of two paired blinking discs at the center of the screen (Experiment 2) or hearing a sequence of two paired beeps (with pitch 1000 Hz). In Experiment 4, participants adapted to sequences of paired beeps with either low pitches (500 Hz) or high pitches (5000 Hz). After adaptation in each trial, participants were presented with a Ternus probe in which the ISI between the two frames was equal to the transitional threshold of the two types of motions, as determined by a pretest. Results showed that adapting to the short time interval in all the situations led to more reports of “group motion” in the subsequent Ternus probes; adapting to the long time interval, however, caused no aftereffect for visual adaptation but significantly more reports of group motion for auditory adaptation. These findings, suggesting amodal representation for sub-second timing across modalities, are interpreted in the framework of temporal pacemaker model. PMID:23133408
Lyu, Weiwei; Cheng, Xianghong
2017-11-28
Transfer alignment is always a key technology in a strapdown inertial navigation system (SINS) because of its rapidity and accuracy. In this paper a transfer alignment model is established, which contains the SINS error model and the measurement model. The time delay in the process of transfer alignment is analyzed, and an H∞ filtering method with delay compensation is presented. Then the H∞ filtering theory and the robust mechanism of H∞ filter are deduced and analyzed in detail. In order to improve the transfer alignment accuracy in SINS with time delay, an adaptive H∞ filtering method with delay compensation is proposed. Since the robustness factor plays an important role in the filtering process and has effect on the filtering accuracy, the adaptive H∞ filter with delay compensation can adjust the value of robustness factor adaptively according to the dynamic external environment. The vehicle transfer alignment experiment indicates that by using the adaptive H∞ filtering method with delay compensation, the transfer alignment accuracy and the pure inertial navigation accuracy can be dramatically improved, which demonstrates the superiority of the proposed filtering method.
Egbert, Matthew D.; Pérez-Mercader, Juan
2016-01-01
Genetic mutations, infection by parasites or symbionts, and other events can transform the way that an organism’s internal state changes in response to a given environment. We use a minimalistic computational model to support an argument that by behaving “interoceptively,” i.e. responding to internal state rather than to the environment, organisms can be robust to these organisational-transformations. We suggest that the robustness of interoceptive behaviour is due, in part, to the asymmetrical relationship between an organism and its environment, where the latter more substantially influences the former than vice versa. This relationship means that interoceptive behaviour can respond to the environment, the internal state and the interaction between the two, while exteroceptive behaviour can only respond to the environment. We discuss the possibilities that (i) interoceptive behaviour may play an important role of facilitating adaptive evolution (especially in the early evolution of primitive life) and (ii) interoceptive mechanisms could prove useful in efforts to create more robust synthetic life-forms. PMID:26743579
Variable Neural Adaptive Robust Control: A Switched System Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.
2015-05-01
Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewisemore » quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.« less
Reciprocity Between Robustness of Period and Plasticity of Phase in Biological Clocks
NASA Astrophysics Data System (ADS)
Hatakeyama, Tetsuhiro S.; Kaneko, Kunihiko
2015-11-01
Circadian clocks exhibit the robustness of period and plasticity of phase against environmental changes such as temperature and nutrient conditions. Thus far, however, it is unclear how both are simultaneously achieved. By investigating distinct models of circadian clocks, we demonstrate reciprocity between robustness and plasticity: higher robustness in the period implies higher plasticity in the phase, where changes in period and in phase follow a linear relationship with a negative coefficient. The robustness of period is achieved by the adaptation on the limit cycle via a concentration change of a buffer molecule, whose temporal change leads to a phase shift following a shift of the limit-cycle orbit in phase space. Generality of reciprocity in clocks with the adaptation mechanism is confirmed with theoretical analysis of simple models, while biological significance is discussed.
Modeling and quantification of repolarization feature dependency on heart rate.
Minchole, A; Zacur, E; Pueyo, E; Laguna, P
2014-01-01
This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Studying Cardiovascular and Respiratory Systems". This work aims at providing an efficient method to estimate the parameters of a non linear model including memory, previously proposed to characterize rate adaptation of repolarization indices. The physiological restrictions on the model parameters have been included in the cost function in such a way that unconstrained optimization techniques such as descent optimization methods can be used for parameter estimation. The proposed method has been evaluated on electrocardiogram (ECG) recordings of healthy subjects performing a tilt test, where rate adaptation of QT and Tpeak-to-Tend (Tpe) intervals has been characterized. The proposed strategy results in an efficient methodology to characterize rate adaptation of repolarization features, improving the convergence time with respect to previous strategies. Moreover, Tpe interval adapts faster to changes in heart rate than the QT interval. In this work an efficient estimation of the parameters of a model aimed at characterizing rate adaptation of repolarization features has been proposed. The Tpe interval has been shown to be rate related and with a shorter memory lag than the QT interval.
Advances in Adaptive Control Methods
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2009-01-01
This poster presentation describes recent advances in adaptive control technology developed by NASA. Optimal Control Modification is a novel adaptive law that can improve performance and robustness of adaptive control systems. A new technique has been developed to provide an analytical method for computing time delay stability margin for adaptive control systems.
Robust adaptive multichannel SAR processing based on covariance matrix reconstruction
NASA Astrophysics Data System (ADS)
Tan, Zhen-ya; He, Feng
2018-04-01
With the combination of digital beamforming (DBF) processing, multichannel synthetic aperture radar(SAR) systems in azimuth promise well in high-resolution and wide-swath imaging, whereas conventional processing methods don't take the nonuniformity of scattering coefficient into consideration. This paper brings up a robust adaptive Multichannel SAR processing method which utilizes the Capon spatial spectrum estimator to obtain the spatial spectrum distribution over all ambiguous directions first, and then the interference-plus-noise covariance Matrix is reconstructed based on definition to acquire the Multichannel SAR processing filter. The performance of processing under nonuniform scattering coefficient is promoted by this novel method and it is robust again array errors. The experiments with real measured data demonstrate the effectiveness and robustness of the proposed method.
Model-based ultrasound temperature visualization during and following HIFU exposure.
Ye, Guoliang; Smith, Penny Probert; Noble, J Alison
2010-02-01
This paper describes the application of signal processing techniques to improve the robustness of ultrasound feedback for displaying changes in temperature distribution in treatment using high-intensity focused ultrasound (HIFU), especially at the low signal-to-noise ratios that might be expected in in vivo abdominal treatment. Temperature estimation is based on the local displacements in ultrasound images taken during HIFU treatment, and a method to improve robustness to outliers is introduced. The main contribution of the paper is in the application of a Kalman filter, a statistical signal processing technique, which uses a simple analytical temperature model of heat dispersion to improve the temperature estimation from the ultrasound measurements during and after HIFU exposure. To reduce the sensitivity of the method to previous assumptions on the material homogeneity and signal-to-noise ratio, an adaptive form is introduced. The method is illustrated using data from HIFU exposure of ex vivo bovine liver. A particular advantage of the stability it introduces is that the temperature can be visualized not only in the intervals between HIFU exposure but also, for some configurations, during the exposure itself. 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Climate Change: From Science to Practice.
Wheeler, Nicola; Watts, Nick
2018-03-01
Climate change poses a significant threat to human health. Understanding how climate science can be translated into public health practice is an essential first step in enabling robust adaptation and improving resiliency to climate change. Recent research highlights the importance of iterative approaches to public health adaptation to climate change, enabling uncertainties of health impacts and barriers to adaptation to be accounted for. There are still significant barriers to adaptation, which are context-specific and thus present unique challenges to public health practice. The implementation of flexible adaptation approaches, using frameworks targeted for public health, is key to ensuring robust adaptation to climate change in public health practice. The BRACE framework provides an excellent approach for health adaptation to climate change. Combining this with the insights provided and by the adaptation pathways approach allows for more deliberate accounting of long-term uncertainties. The mainstreaming of climate change adaptation into public health practice and planning is important in facilitating this approach and overcoming the significant barriers to effective adaptation. Yet, the immediate and future limits to adaptation provide clear justification for urgent and accelerated efforts to mitigate climate change.
Raiche, Gilles; Blais, Jean-Guy
2009-01-01
In a computerized adaptive test, we would like to obtain an acceptable precision of the proficiency level estimate using an optimal number of items. Unfortunately, decreasing the number of items is accompanied by a certain degree of bias when the true proficiency level differs significantly from the a priori estimate. The authors suggest that it is possible to reduced the bias, and even the standard error of the estimate, by applying to each provisional estimation one or a combination of the following strategies: adaptive correction for bias proposed by Bock and Mislevy (1982), adaptive a priori estimate, and adaptive integration interval.
Robust stability of interval bidirectional associative memory neural network with time delays.
Liao, Xiaofeng; Wong, Kwok-wo
2004-04-01
In this paper, the conventional bidirectional associative memory (BAM) neural network with signal transmission delay is intervalized in order to study the bounded effect of deviations in network parameters and external perturbations. The resultant model is referred to as a novel interval dynamic BAM (IDBAM) model. By combining a number of different Lyapunov functionals with the Razumikhin technique, some sufficient conditions for the existence of unique equilibrium and robust stability are derived. These results are fairly general and can be verified easily. To go further, we extend our investigation to the time-varying delay case. Some robust stability criteria for BAM with perturbations of time-varying delays are derived. Besides, our approach for the analysis allows us to consider several different types of activation functions, including piecewise linear sigmoids with bounded activations as well as the usual C1-smooth sigmoids. We believe that the results obtained have leading significance in the design and application of BAM neural networks.
Robust adaptive uniform exact tracking control for uncertain Euler-Lagrange system
NASA Astrophysics Data System (ADS)
Yang, Yana; Hua, Changchun; Li, Junpeng; Guan, Xinping
2017-12-01
This paper offers a solution to the robust adaptive uniform exact tracking control for uncertain nonlinear Euler-Lagrange (EL) system. An adaptive finite-time tracking control algorithm is designed by proposing a novel nonsingular integral terminal sliding-mode surface. Moreover, a new adaptive parameter tuning law is also developed by making good use of the system tracking errors and the adaptive parameter estimation errors. Thus, both the trajectory tracking and the parameter estimation can be achieved in a guaranteed time adjusted arbitrarily based on practical demands, simultaneously. Additionally, the control result for the EL system proposed in this paper can be extended to high-order nonlinear systems easily. Finally, a test-bed 2-DOF robot arm is set-up to demonstrate the performance of the new control algorithm.
Liu, Xing-Cai; He, Shi-Wei; Song, Rui; Sun, Yang; Li, Hao-Dong
2014-01-01
Railway freight center location problem is an important issue in railway freight transport programming. This paper focuses on the railway freight center location problem in uncertain environment. Seeing that the expected value model ignores the negative influence of disadvantageous scenarios, a robust optimization model was proposed. The robust optimization model takes expected cost and deviation value of the scenarios as the objective. A cloud adaptive clonal selection algorithm (C-ACSA) was presented. It combines adaptive clonal selection algorithm with Cloud Model which can improve the convergence rate. Design of the code and progress of the algorithm were proposed. Result of the example demonstrates the model and algorithm are effective. Compared with the expected value cases, the amount of disadvantageous scenarios in robust model reduces from 163 to 21, which prove the result of robust model is more reliable.
Robust control of accelerators
NASA Astrophysics Data System (ADS)
Joel, W.; Johnson, D.; Chaouki, Abdallah T.
1991-07-01
The problem of controlling the variations in the rf power system can be effectively cast as an application of modern control theory. Two components of this theory are obtaining a model and a feedback structure. The model inaccuracies influence the choice of a particular controller structure. Because of the modelling uncertainty, one has to design either a variable, adaptive controller or a fixed, robust controller to achieve the desired objective. The adaptive control scheme usually results in very complex hardware; and, therefore, shall not be pursued in this research. In contrast, the robust control method leads to simpler hardware. However, robust control requires a more accurate mathematical model of the physical process than is required by adaptive control. Our research at the Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) has led to the development and implementation of a new robust rf power feedback system. In this article, we report on our research progress. In section 1, the robust control problem for the rf power system and the philosophy adopted for the beginning phase of our research is presented. In section 2, the results of our proof-of-principle experiments are presented. In section 3, we describe the actual controller configuration that is used in LANL FEL physics experiments. The novelty of our approach is that the control hardware is implemented directly in rf. without demodulating, compensating, and then remodulating.
Control algorithms for aerobraking in the Martian atmosphere
NASA Technical Reports Server (NTRS)
Ward, Donald T.; Shipley, Buford W., Jr.
1991-01-01
The Analytic Predictor Corrector (APC) and Energy Controller (EC) atmospheric guidance concepts were adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. Changes are made to the APC to improve its robustness to density variations. These changes include adaptation of a new exit phase algorithm, an adaptive transition velocity to initiate the exit phase, refinement of the reference dynamic pressure calculation and two improved density estimation techniques. The modified controller with the hybrid density estimation technique is called the Mars Hybrid Predictor Corrector (MHPC), while the modified controller with a polynomial density estimator is called the Mars Predictor Corrector (MPC). A Lyapunov Steepest Descent Controller (LSDC) is adapted to control the vehicle. The LSDC lacked robustness, so a Lyapunov tracking exit phase algorithm is developed to guide the vehicle along a reference trajectory. This algorithm, when using the hybrid density estimation technique to define the reference path, is called the Lyapunov Hybrid Tracking Controller (LHTC). With the polynomial density estimator used to define the reference trajectory, the algorithm is called the Lyapunov Tracking Controller (LTC). These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. The MHPC, MPC, LHTC, and LTC show dramatic improvements in robustness over the APC and EC.
Shiau, LieJune; Schwalger, Tilo; Lindner, Benjamin
2015-06-01
We study the spike statistics of an adaptive exponential integrate-and-fire neuron stimulated by white Gaussian current noise. We derive analytical approximations for the coefficient of variation and the serial correlation coefficient of the interspike interval assuming that the neuron operates in the mean-driven tonic firing regime and that the stochastic input is weak. Our result for the serial correlation coefficient has the form of a geometric sequence and is confirmed by the comparison to numerical simulations. The theory predicts various patterns of interval correlations (positive or negative at lag one, monotonically decreasing or oscillating) depending on the strength of the spike-triggered and subthreshold components of the adaptation current. In particular, for pure subthreshold adaptation we find strong positive ISI correlations that are usually ascribed to positive correlations in the input current. Our results i) provide an alternative explanation for interspike-interval correlations observed in vivo, ii) may be useful in fitting point neuron models to experimental data, and iii) may be instrumental in exploring the role of adaptation currents for signal detection and signal transmission in single neurons.
Robust Mean and Covariance Structure Analysis through Iteratively Reweighted Least Squares.
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Bentler, Peter M.
2000-01-01
Adapts robust schemes to mean and covariance structures, providing an iteratively reweighted least squares approach to robust structural equation modeling. Each case is weighted according to its distance, based on first and second order moments. Test statistics and standard error estimators are given. (SLD)
Lyu, Weiwei
2017-01-01
Transfer alignment is always a key technology in a strapdown inertial navigation system (SINS) because of its rapidity and accuracy. In this paper a transfer alignment model is established, which contains the SINS error model and the measurement model. The time delay in the process of transfer alignment is analyzed, and an H∞ filtering method with delay compensation is presented. Then the H∞ filtering theory and the robust mechanism of H∞ filter are deduced and analyzed in detail. In order to improve the transfer alignment accuracy in SINS with time delay, an adaptive H∞ filtering method with delay compensation is proposed. Since the robustness factor plays an important role in the filtering process and has effect on the filtering accuracy, the adaptive H∞ filter with delay compensation can adjust the value of robustness factor adaptively according to the dynamic external environment. The vehicle transfer alignment experiment indicates that by using the adaptive H∞ filtering method with delay compensation, the transfer alignment accuracy and the pure inertial navigation accuracy can be dramatically improved, which demonstrates the superiority of the proposed filtering method. PMID:29182592
Robust adaptive precision motion control of hydraulic actuators with valve dead-zone compensation.
Deng, Wenxiang; Yao, Jianyong; Ma, Dawei
2017-09-01
This paper addresses the high performance motion control of hydraulic actuators with parametric uncertainties, unmodeled disturbances and unknown valve dead-zone. By constructing a smooth dead-zone inverse, a robust adaptive controller is proposed via backstepping method, in which adaptive law is synthesized to deal with parametric uncertainties and a continuous nonlinear robust control law to suppress unmodeled disturbances. Since the unknown dead-zone parameters can be estimated by adaptive law and then the effect of dead-zone can be compensated effectively via inverse operation, improved tracking performance can be expected. In addition, the disturbance upper bounds can also be updated online by adaptive laws, which increases the controller operability in practice. The Lyapunov based stability analysis shows that excellent asymptotic output tracking with zero steady-state error can be achieved by the developed controller even in the presence of unmodeled disturbance and unknown valve dead-zone. Finally, the proposed control strategy is experimentally tested on a servovalve controlled hydraulic actuation system subjected to an artificial valve dead-zone. Comparative experimental results are obtained to illustrate the effectiveness of the proposed control scheme. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Military Applicability of Interval Training for Health and Performance.
Gibala, Martin J; Gagnon, Patrick J; Nindl, Bradley C
2015-11-01
Militaries from around the globe have predominantly used endurance training as their primary mode of aerobic physical conditioning, with historical emphasis placed on the long distance run. In contrast to this traditional exercise approach to training, interval training is characterized by brief, intermittent bouts of intense exercise, separated by periods of lower intensity exercise or rest for recovery. Although hardly a novel concept, research over the past decade has shed new light on the potency of interval training to elicit physiological adaptations in a time-efficient manner. This work has largely focused on the benefits of low-volume interval training, which involves a relatively small total amount of exercise, as compared with the traditional high-volume approach to training historically favored by militaries. Studies that have directly compared interval and moderate-intensity continuous training have shown similar improvements in cardiorespiratory fitness and the capacity for aerobic energy metabolism, despite large differences in total exercise and training time commitment. Interval training can also be applied in a calisthenics manner to improve cardiorespiratory fitness and strength, and this approach could easily be incorporated into a military conditioning environment. Although interval training can elicit physiological changes in men and women, the potential for sex-specific adaptations in the adaptive response to interval training warrants further investigation. Additional work is needed to clarify adaptations occurring over the longer term; however, interval training deserves consideration from a military applicability standpoint as a time-efficient training strategy to enhance soldier health and performance. There is value for military leaders in identifying strategies that reduce the time required for exercise, but nonetheless provide an effective training stimulus.
Ye, Jinzuo; Chi, Chongwei; Xue, Zhenwen; Wu, Ping; An, Yu; Xu, Han; Zhang, Shuang; Tian, Jie
2014-02-01
Fluorescence molecular tomography (FMT), as a promising imaging modality, can three-dimensionally locate the specific tumor position in small animals. However, it remains challenging for effective and robust reconstruction of fluorescent probe distribution in animals. In this paper, we present a novel method based on sparsity adaptive subspace pursuit (SASP) for FMT reconstruction. Some innovative strategies including subspace projection, the bottom-up sparsity adaptive approach, and backtracking technique are associated with the SASP method, which guarantees the accuracy, efficiency, and robustness for FMT reconstruction. Three numerical experiments based on a mouse-mimicking heterogeneous phantom have been performed to validate the feasibility of the SASP method. The results show that the proposed SASP method can achieve satisfactory source localization with a bias less than 1mm; the efficiency of the method is much faster than mainstream reconstruction methods; and this approach is robust even under quite ill-posed condition. Furthermore, we have applied this method to an in vivo mouse model, and the results demonstrate the feasibility of the practical FMT application with the SASP method.
Perceived face size in healthy adults.
D'Amour, Sarah; Harris, Laurence R
2017-01-01
Perceptual body size distortions have traditionally been studied using subjective, qualitative measures that assess only one type of body representation-the conscious body image. Previous research on perceived body size has typically focused on measuring distortions of the entire body and has tended to overlook the face. Here, we present a novel psychophysical method for determining perceived body size that taps into implicit body representation. Using a two-alternative forced choice (2AFC), participants were sequentially shown two life-size images of their own face, viewed upright, upside down, or tilted 90°. In one interval, the width or length dimension was varied, while the other interval contained an undistorted image. Participants reported which image most closely matched their own face. An adaptive staircase adjusted the distorted image to hone in on the image that was equally likely to be judged as matching their perceived face as the accurate image. When viewed upright or upside down, face width was overestimated and length underestimated, whereas perception was accurate for the on-side views. These results provide the first psychophysically robust measurements of how accurately healthy participants perceive the size of their face, revealing distortions of the implicit body representation independent of the conscious body image.
Dehydration Parameters and Standards for Laboratory Mice
Bekkevold, Christine M; Robertson, Kimberly L; Reinhard, Mary K; Battles, August H; Rowland, Neil E
2013-01-01
Water deprivation and restriction are common features of many physiologic and behavioral studies; however, there are no data-driven humane standards regarding mice on water deprivation or restriction studies to guide IACUC, investigators, and veterinarians. Here we acutely deprived outbred CD1 mice of water for as long as 48 h or restricted them to a 75% or 50% water ration; physical and physiologic indicators of dehydration were measured. With acute water deprivation, the appearance and attitude of mice deteriorated after 24 h, and weight loss exceeded 15%. Plasma osmolality was increased, and plasma volume decreased with each time interval. Plasma corticosterone concentration increased with duration of deprivation. There were no differences in any dehydration measures between mice housed in conventional static cages or ventilated racks. Chronic water restriction induced no significant changes compared with ad libitum availability. We conclude that acute water deprivation of as long as 24 h produces robust physiologic changes; however, deprivation in excess of 24 h is not recommended in light of apparent animal distress. Although clearly thirsty, mice adapt to chronic water restriction of as much as 50% of the ad libitum daily ration that is imposed over an interval of as long as 8 d. PMID:23849404
Reference Intervals of Common Clinical Chemistry Analytes for Adults in Hong Kong.
Lo, Y C; Armbruster, David A
2012-04-01
Defining reference intervals is a major challenge because of the difficulty in recruiting volunteers to participate and testing samples from a significant number of healthy reference individuals. Historical literature citation intervals are often suboptimal because they're be based on obsolete methods and/or only a small number of poorly defined reference samples. Blood donors in Hong Kong gave permission for additional blood to be collected for reference interval testing. The samples were tested for twenty-five routine analytes on the Abbott ARCHITECT clinical chemistry system. Results were analyzed using the Rhoads EP evaluator software program, which is based on the CLSI/IFCC C28-A guideline, and defines the reference interval as the 95% central range. Method specific reference intervals were established for twenty-five common clinical chemistry analytes for a Chinese ethnic population. The intervals were defined for each gender separately and for genders combined. Gender specific or combined gender intervals were adapted as appropriate for each analyte. A large number of healthy, apparently normal blood donors from a local ethnic population were tested to provide current reference intervals for a new clinical chemistry system. Intervals were determined following an accepted international guideline. Laboratories using the same or similar methodologies may adapt these intervals if deemed validated and deemed suitable for their patient population. Laboratories using different methodologies may be able to successfully adapt the intervals for their facilities using the reference interval transference technique based on a method comparison study.
A robust data scaling algorithm to improve classification accuracies in biomedical data.
Cao, Xi Hang; Stojkovic, Ivan; Obradovic, Zoran
2016-09-09
Machine learning models have been adapted in biomedical research and practice for knowledge discovery and decision support. While mainstream biomedical informatics research focuses on developing more accurate models, the importance of data preprocessing draws less attention. We propose the Generalized Logistic (GL) algorithm that scales data uniformly to an appropriate interval by learning a generalized logistic function to fit the empirical cumulative distribution function of the data. The GL algorithm is simple yet effective; it is intrinsically robust to outliers, so it is particularly suitable for diagnostic/classification models in clinical/medical applications where the number of samples is usually small; it scales the data in a nonlinear fashion, which leads to potential improvement in accuracy. To evaluate the effectiveness of the proposed algorithm, we conducted experiments on 16 binary classification tasks with different variable types and cover a wide range of applications. The resultant performance in terms of area under the receiver operation characteristic curve (AUROC) and percentage of correct classification showed that models learned using data scaled by the GL algorithm outperform the ones using data scaled by the Min-max and the Z-score algorithm, which are the most commonly used data scaling algorithms. The proposed GL algorithm is simple and effective. It is robust to outliers, so no additional denoising or outlier detection step is needed in data preprocessing. Empirical results also show models learned from data scaled by the GL algorithm have higher accuracy compared to the commonly used data scaling algorithms.
Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.
Fei, Juntao; Zhu, Yunkai
2017-01-01
In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.
A Hybrid Interval-Robust Optimization Model for Water Quality Management.
Xu, Jieyu; Li, Yongping; Huang, Guohe
2013-05-01
In water quality management problems, uncertainties may exist in many system components and pollution-related processes ( i.e. , random nature of hydrodynamic conditions, variability in physicochemical processes, dynamic interactions between pollutant loading and receiving water bodies, and indeterminacy of available water and treated wastewater). These complexities lead to difficulties in formulating and solving the resulting nonlinear optimization problems. In this study, a hybrid interval-robust optimization (HIRO) method was developed through coupling stochastic robust optimization and interval linear programming. HIRO can effectively reflect the complex system features under uncertainty, where implications of water quality/quantity restrictions for achieving regional economic development objectives are studied. By delimiting the uncertain decision space through dimensional enlargement of the original chemical oxygen demand (COD) discharge constraints, HIRO enhances the robustness of the optimization processes and resulting solutions. This method was applied to planning of industry development in association with river-water pollution concern in New Binhai District of Tianjin, China. Results demonstrated that the proposed optimization model can effectively communicate uncertainties into the optimization process and generate a spectrum of potential inexact solutions supporting local decision makers in managing benefit-effective water quality management schemes. HIRO is helpful for analysis of policy scenarios related to different levels of economic penalties, while also providing insight into the tradeoff between system benefits and environmental requirements.
Confidence intervals for correlations when data are not normal.
Bishara, Anthony J; Hittner, James B
2017-02-01
With nonnormal data, the typical confidence interval of the correlation (Fisher z') may be inaccurate. The literature has been unclear as to which of several alternative methods should be used instead, and how extreme a violation of normality is needed to justify an alternative. Through Monte Carlo simulation, 11 confidence interval methods were compared, including Fisher z', two Spearman rank-order methods, the Box-Cox transformation, rank-based inverse normal (RIN) transformation, and various bootstrap methods. Nonnormality often distorted the Fisher z' confidence interval-for example, leading to a 95 % confidence interval that had actual coverage as low as 68 %. Increasing the sample size sometimes worsened this problem. Inaccurate Fisher z' intervals could be predicted by a sample kurtosis of at least 2, an absolute sample skewness of at least 1, or significant violations of normality hypothesis tests. Only the Spearman rank-order and RIN transformation methods were universally robust to nonnormality. Among the bootstrap methods, an observed imposed bootstrap came closest to accurate coverage, though it often resulted in an overly long interval. The results suggest that sample nonnormality can justify avoidance of the Fisher z' interval in favor of a more robust alternative. R code for the relevant methods is provided in supplementary materials.
Using Asymptotic Results to Obtain a Confidence Interval for the Population Median
ERIC Educational Resources Information Center
Jamshidian, M.; Khatoonabadi, M.
2007-01-01
Almost all introductory and intermediate level statistics textbooks include the topic of confidence interval for the population mean. Almost all these texts introduce the median as a robust measure of central tendency. Only a few of these books, however, cover inference on the population median and in particular confidence interval for the median.…
NASA Astrophysics Data System (ADS)
Hsieh, Cheng-Ta; Huang, Kae-Horng; Lee, Chang-Hsing; Han, Chin-Chuan; Fan, Kuo-Chin
2017-12-01
Robust face recognition under illumination variations is an important and challenging task in a face recognition system, particularly for face recognition in the wild. In this paper, a face image preprocessing approach, called spatial adaptive shadow compensation (SASC), is proposed to eliminate shadows in the face image due to different lighting directions. First, spatial adaptive histogram equalization (SAHE), which uses face intensity prior model, is proposed to enhance the contrast of each local face region without generating visible noises in smooth face areas. Adaptive shadow compensation (ASC), which performs shadow compensation in each local image block, is then used to produce a wellcompensated face image appropriate for face feature extraction and recognition. Finally, null-space linear discriminant analysis (NLDA) is employed to extract discriminant features from SASC compensated images. Experiments performed on the Yale B, Yale B extended, and CMU PIE face databases have shown that the proposed SASC always yields the best face recognition accuracy. That is, SASC is more robust to face recognition under illumination variations than other shadow compensation approaches.
Intelligent robust tracking control for a class of uncertain strict-feedback nonlinear systems.
Chang, Yeong-Chan
2009-02-01
This paper addresses the problem of designing robust tracking controls for a large class of strict-feedback nonlinear systems involving plant uncertainties and external disturbances. The input and virtual input weighting matrices are perturbed by bounded time-varying uncertainties. An adaptive fuzzy-based (or neural-network-based) dynamic feedback tracking controller will be developed such that all the states and signals of the closed-loop system are bounded and the trajectory tracking error should be as small as possible. First, the adaptive approximators with linearly parameterized models are designed, and a partitioned procedure with respect to the developed adaptive approximators is proposed such that the implementation of the fuzzy (or neural network) basis functions depends only on the state variables but does not depend on the tuning approximation parameters. Furthermore, we extend to design the nonlinearly parameterized adaptive approximators. Consequently, the intelligent robust tracking control schemes developed in this paper possess the properties of computational simplicity and easy implementation. Finally, simulation examples are presented to demonstrate the effectiveness of the proposed control algorithms.
Dalamitros, Athanasios A; Zafeiridis, Andreas S; Toubekis, Argyris G; Tsalis, George A; Pelarigo, Jailton G; Manou, Vasiliki; Kellis, Spiridon
2016-10-01
Dalamitros, AA, Zafeiridis, AS, Toubekis, AG, Tsalis, GA, Pelarigo, JG, Manou, V, and Kellis, S. Effects of short-interval and long-interval swimming protocols on performance, aerobic adaptations, and technical parameters: A training study. J Strength Cond Res 30(10): 2871-2879, 2016-This study compared 2-interval swimming training programs of different work interval durations, matched for total distance and exercise intensity, on swimming performance, aerobic adaptations, and technical parameters. Twenty-four former swimmers were equally divided to short-interval training group (INT50, 12-16 × 50 m with 15 seconds rest), long-interval training group (INT100, 6-8 × 100 m with 30 seconds rest), and a control group (CON). The 2 experimental groups followed the specified swimming training program for 8 weeks. Before and after training, swimming performance, technical parameters, and indices of aerobic adaptations were assessed. ΙΝΤ50 and ΙΝΤ100 improved swimming performance in 100 and 400-m tests and the maximal aerobic speed (p ≤ 0.05); the performance in the 50-m swim did not change. Posttraining V[Combining Dot Above]O2max values were higher compared with pretraining values in both training groups (p ≤ 0.05), whereas peak aerobic power output increased only in INT100 (p ≤ 0.05). The 1-minute heart rate and blood lactate recovery values decreased after training in both groups (p < 0.01). Stroke length increased in 100 and 400-m swimming tests after training in both groups (p ≤ 0.05); no changes were observed in stroke rate after training. Comparisons between groups on posttraining mean values, after adjusting for pretraining values, revealed no significant differences between ΙΝΤ50 and ΙΝΤ100 for all variables; however, all measures were improved vs. the respective values in the CON (p < 0.001-0.05). In conclusion, when matched for distance and exercise intensity, the short-interval (50 m) and long-interval (100 m) protocols confer analogous improvements in swimming performance, in stroke cycle parameters, and in indices of aerobic adaptations after 8 weeks of training.
A hybrid robust fault tolerant control based on adaptive joint unscented Kalman filter.
Shabbouei Hagh, Yashar; Mohammadi Asl, Reza; Cocquempot, Vincent
2017-01-01
In this paper, a new hybrid robust fault tolerant control scheme is proposed. A robust H ∞ control law is used in non-faulty situation, while a Non-Singular Terminal Sliding Mode (NTSM) controller is activated as soon as an actuator fault is detected. Since a linear robust controller is designed, the system is first linearized through the feedback linearization method. To switch from one controller to the other, a fuzzy based switching system is used. An Adaptive Joint Unscented Kalman Filter (AJUKF) is used for fault detection and diagnosis. The proposed method is based on the simultaneous estimation of the system states and parameters. In order to show the efficiency of the proposed scheme, a simulated 3-DOF robotic manipulator is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kobravi, Hamid-Reza; Erfanian, Abbas
2009-08-01
A decentralized control methodology is designed for the control of ankle dorsiflexion and plantarflexion in paraplegic subjects with electrical stimulation of tibialis anterior and calf muscles. Each muscle joint is considered as a subsystem and individual controllers are designed for each subsystem. Each controller operates solely on its associated subsystem, with no exchange of information between the subsystems. The interactions between the subsystems are taken as external disturbances for each isolated subsystem. In order to achieve robustness with respect to external disturbances, unmodeled dynamics, model uncertainty and time-varying properties of muscle-joint dynamics, a robust control framework is proposed which is based on the synergistic combination of an adaptive nonlinear compensator with a sliding mode control and is referred to as an adaptive robust control. Extensive simulations and experiments on healthy and paraplegic subjects were performed to demonstrate the robustness against the time-varying properties of muscle-joint dynamics, day-to-day variations, subject-to-subject variations, fast convergence, stability and tracking accuracy of the proposed method. The results indicate that the decentralized robust control provides excellent tracking control for different reference trajectories and can generate control signals to compensate the muscle fatigue and reject the external disturbance. Moreover, the controller is able to automatically regulate the interaction between agonist and antagonist muscles under different conditions of operating without any preprogrammed antagonist activities.
Kobravi, Hamid-Reza; Erfanian, Abbas
2009-08-01
A decentralized control methodology is designed for the control of ankle dorsiflexion and plantarflexion in paraplegic subjects with electrical stimulation of tibialis anterior and calf muscles. Each muscle joint is considered as a subsystem and individual controllers are designed for each subsystem. Each controller operates solely on its associated subsystem, with no exchange of information between the subsystems. The interactions between the subsystems are taken as external disturbances for each isolated subsystem. In order to achieve robustness with respect to external disturbances, unmodeled dynamics, model uncertainty and time-varying properties of muscle-joint dynamics, a robust control framework is proposed which is based on the synergistic combination of an adaptive nonlinear compensator with a sliding mode control and is referred to as an adaptive robust control. Extensive simulations and experiments on healthy and paraplegic subjects were performed to demonstrate the robustness against the time-varying properties of muscle-joint dynamics, day-to-day variations, subject-to-subject variations, fast convergence, stability and tracking accuracy of the proposed method. The results indicate that the decentralized robust control provides excellent tracking control for different reference trajectories and can generate control signals to compensate the muscle fatigue and reject the external disturbance. Moreover, the controller is able to automatically regulate the interaction between agonist and antagonist muscles under different conditions of operating without any preprogrammed antagonist activities.
Verification and Tuning of an Adaptive Controller for an Unmanned Air Vehicle
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Matsutani, Megumi; Annaswamy, Anuradha M.
2010-01-01
This paper focuses on the analysis and tuning of a controller based on the Adaptive Control Technology for Safe Flight (ACTS) architecture. The ACTS architecture consists of a nominal, non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off-nominal ones. A framework unifying control verification and gain tuning is used to make the controller s ability to satisfy the closed-loop requirements more robust to uncertainty. In this paper we tune the gains of both controllers using this approach. Some advantages and drawbacks of adaptation are identified by performing a global robustness assessment of both the adaptive controller and its non-adaptive counterpart. The analyses used to determine these characteristics are based on evaluating the degradation in closed-loop performance resulting from uncertainties having increasing levels of severity. The specific adverse conditions considered can be grouped into three categories: aerodynamic uncertainties, structural damage, and actuator failures. These failures include partial and total loss of control effectiveness, locked-in-place control surface deflections, and engine out conditions. The requirements considered are the peak structural loading, the ability of the controller to track pilot commands, the ability of the controller to keep the aircraft s state within the reliable flight envelope, and the handling/riding qualities of the aircraft. The nominal controller resulting from these tuning strategies was successfully validated using the NASA GTM Flight Test Vehicle.
Adaptive Spike Threshold Enables Robust and Temporally Precise Neuronal Encoding
Resnik, Andrey; Celikel, Tansu; Englitz, Bernhard
2016-01-01
Neural processing rests on the intracellular transformation of information as synaptic inputs are translated into action potentials. This transformation is governed by the spike threshold, which depends on the history of the membrane potential on many temporal scales. While the adaptation of the threshold after spiking activity has been addressed before both theoretically and experimentally, it has only recently been demonstrated that the subthreshold membrane state also influences the effective spike threshold. The consequences for neural computation are not well understood yet. We address this question here using neural simulations and whole cell intracellular recordings in combination with information theoretic analysis. We show that an adaptive spike threshold leads to better stimulus discrimination for tight input correlations than would be achieved otherwise, independent from whether the stimulus is encoded in the rate or pattern of action potentials. The time scales of input selectivity are jointly governed by membrane and threshold dynamics. Encoding information using adaptive thresholds further ensures robust information transmission across cortical states i.e. decoding from different states is less state dependent in the adaptive threshold case, if the decoding is performed in reference to the timing of the population response. Results from in vitro neural recordings were consistent with simulations from adaptive threshold neurons. In summary, the adaptive spike threshold reduces information loss during intracellular information transfer, improves stimulus discriminability and ensures robust decoding across membrane states in a regime of highly correlated inputs, similar to those seen in sensory nuclei during the encoding of sensory information. PMID:27304526
Adaptive Spike Threshold Enables Robust and Temporally Precise Neuronal Encoding.
Huang, Chao; Resnik, Andrey; Celikel, Tansu; Englitz, Bernhard
2016-06-01
Neural processing rests on the intracellular transformation of information as synaptic inputs are translated into action potentials. This transformation is governed by the spike threshold, which depends on the history of the membrane potential on many temporal scales. While the adaptation of the threshold after spiking activity has been addressed before both theoretically and experimentally, it has only recently been demonstrated that the subthreshold membrane state also influences the effective spike threshold. The consequences for neural computation are not well understood yet. We address this question here using neural simulations and whole cell intracellular recordings in combination with information theoretic analysis. We show that an adaptive spike threshold leads to better stimulus discrimination for tight input correlations than would be achieved otherwise, independent from whether the stimulus is encoded in the rate or pattern of action potentials. The time scales of input selectivity are jointly governed by membrane and threshold dynamics. Encoding information using adaptive thresholds further ensures robust information transmission across cortical states i.e. decoding from different states is less state dependent in the adaptive threshold case, if the decoding is performed in reference to the timing of the population response. Results from in vitro neural recordings were consistent with simulations from adaptive threshold neurons. In summary, the adaptive spike threshold reduces information loss during intracellular information transfer, improves stimulus discriminability and ensures robust decoding across membrane states in a regime of highly correlated inputs, similar to those seen in sensory nuclei during the encoding of sensory information.
Efficient robust doubly adaptive regularized regression with applications.
Karunamuni, Rohana J; Kong, Linglong; Tu, Wei
2018-01-01
We consider the problem of estimation and variable selection for general linear regression models. Regularized regression procedures have been widely used for variable selection, but most existing methods perform poorly in the presence of outliers. We construct a new penalized procedure that simultaneously attains full efficiency and maximum robustness. Furthermore, the proposed procedure satisfies the oracle properties. The new procedure is designed to achieve sparse and robust solutions by imposing adaptive weights on both the decision loss and the penalty function. The proposed method of estimation and variable selection attains full efficiency when the model is correct and, at the same time, achieves maximum robustness when outliers are present. We examine the robustness properties using the finite-sample breakdown point and an influence function. We show that the proposed estimator attains the maximum breakdown point. Furthermore, there is no loss in efficiency when there are no outliers or the error distribution is normal. For practical implementation of the proposed method, we present a computational algorithm. We examine the finite-sample and robustness properties using Monte Carlo studies. Two datasets are also analyzed.
An adaptive discontinuous Galerkin solver for aerodynamic flows
NASA Astrophysics Data System (ADS)
Burgess, Nicholas K.
This work considers the accuracy, efficiency, and robustness of an unstructured high-order accurate discontinuous Galerkin (DG) solver for computational fluid dynamics (CFD). Recently, there has been a drive to reduce the discretization error of CFD simulations using high-order methods on unstructured grids. However, high-order methods are often criticized for lacking robustness and having high computational cost. The goal of this work is to investigate methods that enhance the robustness of high-order discontinuous Galerkin (DG) methods on unstructured meshes, while maintaining low computational cost and high accuracy of the numerical solutions. This work investigates robustness enhancement of high-order methods by examining effective non-linear solvers, shock capturing methods, turbulence model discretizations and adaptive refinement techniques. The goal is to develop an all encompassing solver that can simulate a large range of physical phenomena, where all aspects of the solver work together to achieve a robust, efficient and accurate solution strategy. The components and framework for a robust high-order accurate solver that is capable of solving viscous, Reynolds Averaged Navier-Stokes (RANS) and shocked flows is presented. In particular, this work discusses robust discretizations of the turbulence model equation used to close the RANS equations, as well as stable shock capturing strategies that are applicable across a wide range of discretization orders and applicable to very strong shock waves. Furthermore, refinement techniques are considered as both efficiency and robustness enhancement strategies. Additionally, efficient non-linear solvers based on multigrid and Krylov subspace methods are presented. The accuracy, efficiency, and robustness of the solver is demonstrated using a variety of challenging aerodynamic test problems, which include turbulent high-lift and viscous hypersonic flows. Adaptive mesh refinement was found to play a critical role in obtaining a robust and efficient high-order accurate flow solver. A goal-oriented error estimation technique has been developed to estimate the discretization error of simulation outputs. For high-order discretizations, it is shown that functional output error super-convergence can be obtained, provided the discretization satisfies a property known as dual consistency. The dual consistency of the DG methods developed in this work is shown via mathematical analysis and numerical experimentation. Goal-oriented error estimation is also used to drive an hp-adaptive mesh refinement strategy, where a combination of mesh or h-refinement, and order or p-enrichment, is employed based on the smoothness of the solution. The results demonstrate that the combination of goal-oriented error estimation and hp-adaptation yield superior accuracy, as well as enhanced robustness and efficiency for a variety of aerodynamic flows including flows with strong shock waves. This work demonstrates that DG discretizations can be the basis of an accurate, efficient, and robust CFD solver. Furthermore, enhancing the robustness of DG methods does not adversely impact the accuracy or efficiency of the solver for challenging and complex flow problems. In particular, when considering the computation of shocked flows, this work demonstrates that the available shock capturing techniques are sufficiently accurate and robust, particularly when used in conjunction with adaptive mesh refinement . This work also demonstrates that robust solutions of the Reynolds Averaged Navier-Stokes (RANS) and turbulence model equations can be obtained for complex and challenging aerodynamic flows. In this context, the most robust strategy was determined to be a low-order turbulence model discretization coupled to a high-order discretization of the RANS equations. Although RANS solutions using high-order accurate discretizations of the turbulence model were obtained, the behavior of current-day RANS turbulence models discretized to high-order was found to be problematic, leading to solver robustness issues. This suggests that future work is warranted in the area of turbulence model formulation for use with high-order discretizations. Alternately, the use of Large-Eddy Simulation (LES) subgrid scale models with high-order DG methods offers the potential to leverage the high accuracy of these methods for very high fidelity turbulent simulations. This thesis has developed the algorithmic improvements that will lay the foundation for the development of a three-dimensional high-order flow solution strategy that can be used as the basis for future LES simulations.
Failure of Anisotropic Unstructured Mesh Adaption Based on Multidimensional Residual Minimization
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
2003-01-01
An automated anisotropic unstructured mesh adaptation strategy is proposed, implemented, and assessed for the discretization of viscous flows. The adaption criteria is based upon the minimization of the residual fluctuations of a multidimensional upwind viscous flow solver. For scalar advection, this adaption strategy has been shown to use fewer grid points than gradient based adaption, naturally aligning mesh edges with discontinuities and characteristic lines. The adaption utilizes a compact stencil and is local in scope, with four fundamental operations: point insertion, point deletion, edge swapping, and nodal displacement. Evaluation of the solution-adaptive strategy is performed for a two-dimensional blunt body laminar wind tunnel case at Mach 10. The results demonstrate that the strategy suffers from a lack of robustness, particularly with regard to alignment of the bow shock in the vicinity of the stagnation streamline. In general, constraining the adaption to such a degree as to maintain robustness results in negligible improvement to the solution. Because the present method fails to consistently or significantly improve the flow solution, it is rejected in favor of simple uniform mesh refinement.
How MAP kinase modules function as robust, yet adaptable, circuits.
Tian, Tianhai; Harding, Angus
2014-01-01
Genetic and biochemical studies have revealed that the diversity of cell types and developmental patterns evident within the animal kingdom is generated by a handful of conserved, core modules. Core biological modules must be robust, able to maintain functionality despite perturbations, and yet sufficiently adaptable for random mutations to generate phenotypic variation during evolution. Understanding how robust, adaptable modules have influenced the evolution of eukaryotes will inform both evolutionary and synthetic biology. One such system is the MAP kinase module, which consists of a 3-tiered kinase circuit configuration that has been evolutionarily conserved from yeast to man. MAP kinase signal transduction pathways are used across eukaryotic phyla to drive biological functions that are crucial for life. Here we ask the fundamental question, why do MAPK modules follow a conserved 3-tiered topology rather than some other number? Using computational simulations, we identify a fundamental 2-tiered circuit topology that can be readily reconfigured by feedback loops and scaffolds to generate diverse signal outputs. When this 2-kinase circuit is connected to proximal input kinases, a 3-tiered modular configuration is created that is both robust and adaptable, providing a biological circuit that can regulate multiple phenotypes and maintain functionality in an uncertain world. We propose that the 3-tiered signal transduction module has been conserved through positive selection, because it facilitated the generation of phenotypic variation during eukaryotic evolution.
How MAP kinase modules function as robust, yet adaptable, circuits
Tian, Tianhai; Harding, Angus
2014-01-01
Genetic and biochemical studies have revealed that the diversity of cell types and developmental patterns evident within the animal kingdom is generated by a handful of conserved, core modules. Core biological modules must be robust, able to maintain functionality despite perturbations, and yet sufficiently adaptable for random mutations to generate phenotypic variation during evolution. Understanding how robust, adaptable modules have influenced the evolution of eukaryotes will inform both evolutionary and synthetic biology. One such system is the MAP kinase module, which consists of a 3-tiered kinase circuit configuration that has been evolutionarily conserved from yeast to man. MAP kinase signal transduction pathways are used across eukaryotic phyla to drive biological functions that are crucial for life. Here we ask the fundamental question, why do MAPK modules follow a conserved 3-tiered topology rather than some other number? Using computational simulations, we identify a fundamental 2-tiered circuit topology that can be readily reconfigured by feedback loops and scaffolds to generate diverse signal outputs. When this 2-kinase circuit is connected to proximal input kinases, a 3-tiered modular configuration is created that is both robust and adaptable, providing a biological circuit that can regulate multiple phenotypes and maintain functionality in an uncertain world. We propose that the 3-tiered signal transduction module has been conserved through positive selection, because it facilitated the generation of phenotypic variation during eukaryotic evolution. PMID:25483189
Urich, Christian; Rauch, Wolfgang
2014-12-01
Long-term projections for key drivers needed in urban water infrastructure planning such as climate change, population growth, and socio-economic changes are deeply uncertain. Traditional planning approaches heavily rely on these projections, which, if a projection stays unfulfilled, can lead to problematic infrastructure decisions causing high operational costs and/or lock-in effects. New approaches based on exploratory modelling take a fundamentally different view. Aim of these is, to identify an adaptation strategy that performs well under many future scenarios, instead of optimising a strategy for a handful. However, a modelling tool to support strategic planning to test the implication of adaptation strategies under deeply uncertain conditions for urban water management does not exist yet. This paper presents a first step towards a new generation of such strategic planning tools, by combing innovative modelling tools, which coevolve the urban environment and urban water infrastructure under many different future scenarios, with robust decision making. The developed approach is applied to the city of Innsbruck, Austria, which is spatially explicitly evolved 20 years into the future under 1000 scenarios to test the robustness of different adaptation strategies. Key findings of this paper show that: (1) Such an approach can be used to successfully identify parameter ranges of key drivers in which a desired performance criterion is not fulfilled, which is an important indicator for the robustness of an adaptation strategy; and (2) Analysis of the rich dataset gives new insights into the adaptive responses of agents to key drivers in the urban system by modifying a strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Data-Adaptive Bias-Reduced Doubly Robust Estimation.
Vermeulen, Karel; Vansteelandt, Stijn
2016-05-01
Doubly robust estimators have now been proposed for a variety of target parameters in the causal inference and missing data literature. These consistently estimate the parameter of interest under a semiparametric model when one of two nuisance working models is correctly specified, regardless of which. The recently proposed bias-reduced doubly robust estimation procedure aims to partially retain this robustness in more realistic settings where both working models are misspecified. These so-called bias-reduced doubly robust estimators make use of special (finite-dimensional) nuisance parameter estimators that are designed to locally minimize the squared asymptotic bias of the doubly robust estimator in certain directions of these finite-dimensional nuisance parameters under misspecification of both parametric working models. In this article, we extend this idea to incorporate the use of data-adaptive estimators (infinite-dimensional nuisance parameters), by exploiting the bias reduction estimation principle in the direction of only one nuisance parameter. We additionally provide an asymptotic linearity theorem which gives the influence function of the proposed doubly robust estimator under correct specification of a parametric nuisance working model for the missingness mechanism/propensity score but a possibly misspecified (finite- or infinite-dimensional) outcome working model. Simulation studies confirm the desirable finite-sample performance of the proposed estimators relative to a variety of other doubly robust estimators.
Fernandez-Leon, Jose A; Acosta, Gerardo G; Rozenfeld, Alejandro
2014-10-01
Researchers in diverse fields, such as in neuroscience, systems biology and autonomous robotics, have been intrigued by the origin and mechanisms for biological robustness. Darwinian evolution, in general, has suggested that adaptive mechanisms as a way of reaching robustness, could evolve by natural selection acting successively on numerous heritable variations. However, is this understanding enough for realizing how biological systems remain robust during their interactions with the surroundings? Here, we describe selected studies of bio-inspired systems that show behavioral robustness. From neurorobotics, cognitive, self-organizing and artificial immune system perspectives, our discussions focus mainly on how robust behaviors evolve or emerge in these systems, having the capacity of interacting with their surroundings. These descriptions are twofold. Initially, we introduce examples from autonomous robotics to illustrate how the process of designing robust control can be idealized in complex environments for autonomous navigation in terrain and underwater vehicles. We also include descriptions of bio-inspired self-organizing systems. Then, we introduce other studies that contextualize experimental evolution with simulated organisms and physical robots to exemplify how the process of natural selection can lead to the evolution of robustness by means of adaptive behaviors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Yoo, Sung Jin; Park, Jin Bae; Choi, Yoon Ho
2006-12-01
A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides the ability to overcome the "explosion of complexity" problem in backstepping controllers. The SRWNNs are used to observe the arbitrary model uncertainties of FJ robots, and all their weights are trained online. From the Lyapunov stability analysis, their adaptation laws are induced, and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a three-link FJ robot are utilized to validate the good position tracking performance and robustness against payload uncertainties and external disturbances of the proposed control system.
Adaptive fuzzy sliding control of single-phase PV grid-connected inverter
Zhu, Yunkai
2017-01-01
In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance. PMID:28797060
Robust Adaptive Modified Newton Algorithm for Generalized Eigendecomposition and Its Application
NASA Astrophysics Data System (ADS)
Yang, Jian; Yang, Feng; Xi, Hong-Sheng; Guo, Wei; Sheng, Yanmin
2007-12-01
We propose a robust adaptive algorithm for generalized eigendecomposition problems that arise in modern signal processing applications. To that extent, the generalized eigendecomposition problem is reinterpreted as an unconstrained nonlinear optimization problem. Starting from the proposed cost function and making use of an approximation of the Hessian matrix, a robust modified Newton algorithm is derived. A rigorous analysis of its convergence properties is presented by using stochastic approximation theory. We also apply this theory to solve the signal reception problem of multicarrier DS-CDMA to illustrate its practical application. The simulation results show that the proposed algorithm has fast convergence and excellent tracking capability, which are important in a practical time-varying communication environment.
NASA Astrophysics Data System (ADS)
Terando, A. J.; Reich, B. J.; Pacifici, K.
2013-12-01
Fire is an important disturbance process in many coupled natural-human systems. Changes in the frequency and severity of fires due to anthropogenic climate change could have significant costs to society and the plant and animal communities that are adapted to a particular fire regime Planning for these changes requires a robust model of the relationship between climate and fire that accounts for multiple sources of uncertainty that are present when simulating ecological and climatological processes. Here we model how anthropogenic climate change could affect the wildfire regime for a region in the Southeast US whose natural ecosystems are dependent on frequent, low-intensity fires while humans are at risk from large catastrophic fires. We develop a modeling framework that incorporates three major sources of uncertainty: (1) uncertainty in the ecological drivers of expected monthly area burned, (2) uncertainty in the environmental drivers influencing the probability of an extreme fire event, and (3) structural uncertainty in different downscaled climate models. In addition we use two policy-relevant emission scenarios (climate stabilization and 'business-as-usual') to characterize the uncertainty in future greenhouse gas forcings. We use a Bayesian framework to incorporate different sources of uncertainty including simulation of predictive errors and Stochastic Search Variable Selection. Our results suggest that although the mean process remains stationary, the probability of extreme fires declines through time, owing to the persistence of high atmospheric moisture content during the peak fire season that dampens the effect of increasing temperatures. Including multiple sources of uncertainty leads to wide prediction intervals, but is potentially more useful for decision-makers that will require adaptation strategies that are robust to rapid but uncertain climate and ecological change.
Interval data clustering using self-organizing maps based on adaptive Mahalanobis distances.
Hajjar, Chantal; Hamdan, Hani
2013-10-01
The self-organizing map is a kind of artificial neural network used to map high dimensional data into a low dimensional space. This paper presents a self-organizing map for interval-valued data based on adaptive Mahalanobis distances in order to do clustering of interval data with topology preservation. Two methods based on the batch training algorithm for the self-organizing maps are proposed. The first method uses a common Mahalanobis distance for all clusters. In the second method, the algorithm starts with a common Mahalanobis distance per cluster and then switches to use a different distance per cluster. This process allows a more adapted clustering for the given data set. The performances of the proposed methods are compared and discussed using artificial and real interval data sets. Copyright © 2013 Elsevier Ltd. All rights reserved.
Thin-Layering Effect On Estimating Seismic Attenuation In Methane Hydrate-Bearing Sediments
NASA Astrophysics Data System (ADS)
Lee, K.; Matsushima, J.
2012-12-01
Seismic attenuation is one of the important parameters that provide information concerning both the detection and quantitative assessment of gas-hydrates. We estimated seismic attenuation (1/Q) from surface seismic data acquired at Nankai Trough in Japan. We adapt the Q-versus offset (QVO) method to calculate robust and continuous interval attenuations from CMP gathers. We could observe high attenuation in methane hydrate bearing sediments over the BSR region. However some negative 1/Q values are also shown. This means that the amplitude of high frequency components is increasing with depth. Such results may be due to tuning effect. Here, we carried out numerical test to see how thin-layering effect influences on seismic attenuation results. The results showed that tuning considerably influences the attenuation results, and causes the lower 1/Q values (lower attenuation) and negative 1/Q values.
NASA Astrophysics Data System (ADS)
Choi, Y.; Park, S.; Baik, S.; Jung, J.; Lee, S.; Yoo, J.
A small scale laboratory adaptive optics system using a Shack-Hartmann wave-front sensor (WFS) and a membrane deformable mirror (DM) has been built for robust image acquisition. In this study, an adaptive limited control technique is adopted to maintain the long-term correction stability of an adaptive optics system. To prevent the waste of dynamic correction range for correcting small residual wave-front distortions which are inefficient to correct, the built system tries to limit wave-front correction when a similar small difference wave-front pattern is repeatedly generated. Also, the effect of mechanical distortion in an adaptive optics system is studied and a pre-recognition method for the distortion is devised to prevent low-performance system operation. A confirmation process for a balanced work assignment among deformable mirror (DM) actuators is adopted for the pre-recognition. The corrected experimental results obtained by using a built small scale adaptive optics system are described in this paper.
On decentralized adaptive full-order sliding mode control of multiple UAVs.
Xiang, Xianbo; Liu, Chao; Su, Housheng; Zhang, Qin
2017-11-01
In this study, a novel decentralized adaptive full-order sliding mode control framework is proposed for the robust synchronized formation motion of multiple unmanned aerial vehicles (UAVs) subject to system uncertainty. First, a full-order sliding mode surface in a decentralized manner is designed to incorporate both the individual position tracking error and the synchronized formation error while the UAV group is engaged in building a certain desired geometric pattern in three dimensional space. Second, a decentralized virtual plant controller is constructed which allows the embedded low-pass filter to attain the chattering free property of the sliding mode controller. In addition, robust adaptive technique is integrated in the decentralized chattering free sliding control design in order to handle unknown bounded uncertainties, without requirements for assuming a priori knowledge of bounds on the system uncertainties as stated in conventional chattering free control methods. Subsequently, system robustness as well as stability of the decentralized full-order sliding mode control of multiple UAVs is synthesized. Numerical simulation results illustrate the effectiveness of the proposed control framework to achieve robust 3D formation flight of the multi-UAV system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Robust adaptive sliding mode control for uncertain systems with unknown time-varying delay input.
Benamor, Anouar; Messaoud, Hassani
2018-05-02
This article focuses on robust adaptive sliding mode control law for uncertain discrete systems with unknown time-varying delay input, where the uncertainty is assumed unknown. The main results of this paper are divided into three phases. In the first phase, we propose a new sliding surface is derived within the Linear Matrix Inequalities (LMIs). In the second phase, using the new sliding surface, the novel Robust Sliding Mode Control (RSMC) is proposed where the upper bound of uncertainty is supposed known. Finally, the novel approach of Robust Adaptive Sliding ModeControl (RASMC) has been defined for this type of systems, where the upper limit of uncertainty which is assumed unknown. In this new approach, we have estimate the upper limit of uncertainties and we have determined the control law based on a sliding surface that will converge to zero. This novel control laws are been validated in simulation on an uncertain numerical system with good results and comparative study. This efficiency is emphasized through the application of the new controls on the two physical systems which are the process trainer PT326 and hydraulic system two tanks. Published by Elsevier Ltd.
Event-Based Robust Control for Uncertain Nonlinear Systems Using Adaptive Dynamic Programming.
Zhang, Qichao; Zhao, Dongbin; Wang, Ding
2018-01-01
In this paper, the robust control problem for a class of continuous-time nonlinear system with unmatched uncertainties is investigated using an event-based control method. First, the robust control problem is transformed into a corresponding optimal control problem with an augmented control and an appropriate cost function. Under the event-based mechanism, we prove that the solution of the optimal control problem can asymptotically stabilize the uncertain system with an adaptive triggering condition. That is, the designed event-based controller is robust to the original uncertain system. Note that the event-based controller is updated only when the triggering condition is satisfied, which can save the communication resources between the plant and the controller. Then, a single network adaptive dynamic programming structure with experience replay technique is constructed to approach the optimal control policies. The stability of the closed-loop system with the event-based control policy and the augmented control policy is analyzed using the Lyapunov approach. Furthermore, we prove that the minimal intersample time is bounded by a nonzero positive constant, which excludes Zeno behavior during the learning process. Finally, two simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.
Accelerated gradient-based free form deformable registration for online adaptive radiotherapy
NASA Astrophysics Data System (ADS)
Yu, Gang; Liang, Yueqiang; Yang, Guanyu; Shu, Huazhong; Li, Baosheng; Yin, Yong; Li, Dengwang
2015-04-01
The registration of planning fan-beam computed tomography (FBCT) and daily cone-beam CT (CBCT) is a crucial step in adaptive radiation therapy. The current intensity-based registration algorithms, such as Demons, may fail when they are used to register FBCT and CBCT, because the CT numbers in CBCT cannot exactly correspond to the electron densities. In this paper, we investigated the effects of CBCT intensity inaccuracy on the registration accuracy and developed an accurate gradient-based free form deformation algorithm (GFFD). GFFD distinguishes itself from other free form deformable registration algorithms by (a) measuring the similarity using the 3D gradient vector fields to avoid the effect of inconsistent intensities between the two modalities; (b) accommodating image sampling anisotropy using the local polynomial approximation-intersection of confidence intervals (LPA-ICI) algorithm to ensure a smooth and continuous displacement field; and (c) introducing a ‘bi-directional’ force along with an adaptive force strength adjustment to accelerate the convergence process. It is expected that such a strategy can decrease the effect of the inconsistent intensities between the two modalities, thus improving the registration accuracy and robustness. Moreover, for clinical application, the algorithm was implemented by graphics processing units (GPU) through OpenCL framework. The registration time of the GFFD algorithm for each set of CT data ranges from 8 to 13 s. The applications of on-line adaptive image-guided radiation therapy, including auto-propagation of contours, aperture-optimization and dose volume histogram (DVH) in the course of radiation therapy were also studied by in-house-developed software.
Robustness of reduced-order multivariable state-space self-tuning controller
NASA Technical Reports Server (NTRS)
Yuan, Zhuzhi; Chen, Zengqiang
1994-01-01
In this paper, we present a quantitative analysis of the robustness of a reduced-order pole-assignment state-space self-tuning controller for a multivariable adaptive control system whose order of the real process is higher than that of the model used in the controller design. The result of stability analysis shows that, under a specific bounded modelling error, the adaptively controlled closed-loop real system via the reduced-order state-space self-tuner is BIBO stable in the presence of unmodelled dynamics.
Adaptive transmission disequilibrium test for family trio design.
Yuan, Min; Tian, Xin; Zheng, Gang; Yang, Yaning
2009-01-01
The transmission disequilibrium test (TDT) is a standard method to detect association using family trio design. It is optimal for an additive genetic model. Other TDT-type tests optimal for recessive and dominant models have also been developed. Association tests using family data, including the TDT-type statistics, have been unified to a class of more comprehensive and flexable family-based association tests (FBAT). TDT-type tests have high efficiency when the genetic model is known or correctly specified, but may lose power if the model is mis-specified. Hence tests that are robust to genetic model mis-specification yet efficient are preferred. Constrained likelihood ratio test (CLRT) and MAX-type test have been shown to be efficiency robust. In this paper we propose a new efficiency robust procedure, referred to as adaptive TDT (aTDT). It uses the Hardy-Weinberg disequilibrium coefficient to identify the potential genetic model underlying the data and then applies the TDT-type test (or FBAT for general applications) corresponding to the selected model. Simulation demonstrates that aTDT is efficiency robust to model mis-specifications and generally outperforms the MAX test and CLRT in terms of power. We also show that aTDT has power close to, but much more robust, than the optimal TDT-type test based on a single genetic model. Applications to real and simulated data from Genetic Analysis Workshop (GAW) illustrate the use of our adaptive TDT.
Calculation of a double reactive azeotrope using stochastic optimization approaches
NASA Astrophysics Data System (ADS)
Mendes Platt, Gustavo; Pinheiro Domingos, Roberto; Oliveira de Andrade, Matheus
2013-02-01
An homogeneous reactive azeotrope is a thermodynamic coexistence condition of two phases under chemical and phase equilibrium, where compositions of both phases (in the Ung-Doherty sense) are equal. This kind of nonlinear phenomenon arises from real world situations and has applications in chemical and petrochemical industries. The modeling of reactive azeotrope calculation is represented by a nonlinear algebraic system with phase equilibrium, chemical equilibrium and azeotropy equations. This nonlinear system can exhibit more than one solution, corresponding to a double reactive azeotrope. The robust calculation of reactive azeotropes can be conducted by several approaches, such as interval-Newton/generalized bisection algorithms and hybrid stochastic-deterministic frameworks. In this paper, we investigate the numerical aspects of the calculation of reactive azeotropes using two metaheuristics: the Luus-Jaakola adaptive random search and the Firefly algorithm. Moreover, we present results for a system (with industrial interest) with more than one azeotrope, the system isobutene/methanol/methyl-tert-butyl-ether (MTBE). We present convergence patterns for both algorithms, illustrating - in a bidimensional subdomain - the identification of reactive azeotropes. A strategy for calculation of multiple roots in nonlinear systems is also applied. The results indicate that both algorithms are suitable and robust when applied to reactive azeotrope calculations for this "challenging" nonlinear system.
Robust lane detection and tracking using multiple visual cues under stochastic lane shape conditions
NASA Astrophysics Data System (ADS)
Huang, Zhi; Fan, Baozheng; Song, Xiaolin
2018-03-01
As one of the essential components of environment perception techniques for an intelligent vehicle, lane detection is confronted with challenges including robustness against the complicated disturbance and illumination, also adaptability to stochastic lane shapes. To overcome these issues, we proposed a robust lane detection method named classification-generation-growth-based (CGG) operator to the detected lines, whereby the linear lane markings are identified by synergizing multiple visual cues with the a priori knowledge and spatial-temporal information. According to the quality of linear lane fitting, the linear and linear-parabolic models are dynamically switched to describe the actual lane. The Kalman filter with adaptive noise covariance and the region of interests (ROI) tracking are applied to improve the robustness and efficiency. Experiments were conducted with images covering various challenging scenarios. The experimental results evaluate the effectiveness of the presented method for complicated disturbances, illumination, and stochastic lane shapes.
Robust control of electrostatic torsional micromirrors using adaptive sliding-mode control
NASA Astrophysics Data System (ADS)
Sane, Harshad S.; Yazdi, Navid; Mastrangelo, Carlos H.
2005-01-01
This paper presents high-resolution control of torsional electrostatic micromirrors beyond their inherent pull-in instability using robust sliding-mode control (SMC). The objectives of this paper are two-fold - firstly, to demonstrate the applicability of SMC for MEMS devices; secondly - to present a modified SMC algorithm that yields improved control accuracy. SMC enables compact realization of a robust controller tolerant of device characteristic variations and nonlinearities. Robustness of the control loop is demonstrated through extensive simulations and measurements on MEMS with a wide range in their characteristics. Control of two-axis gimbaled micromirrors beyond their pull-in instability with overall 10-bit pointing accuracy is confirmed experimentally. In addition, this paper presents an analysis of the sources of errors in discrete-time implementation of the control algorithm. To minimize these errors, we present an adaptive version of the SMC algorithm that yields substantial performance improvement without considerably increasing implementation complexity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Benjamin L.; Mustelin, Johanna; Maloney, Megan C.
The adaptation science enterprise has expanded rapidly in recent years, presumably in response to growth in demand for knowledge that can facilitate adaptation policy and practice. However, evidence suggests such investments in adaptation science have not necessarily translated into adaptation implementation. One potential constraint on adaptation may be the underlying heuristics that are used as the foundation for both adaptation research and practice. In this paper, we explore the adaptation academic literature with the objective of identifying adaptation heuristics, assessing the extent to which they have become entrenched within the adaptation discourse, and discussing potential weaknesses in their framing thatmore » could undermine adaptation efforts. This investigation is supported by a multi-method analysis that includes both a quantitative content analysis of the adaptation literature that evidences the use of adaptation heuristics and a qualitative analysis of the implications of such heuristics for enhancing or hindering the implementation of adaptation. Results demonstrate that a number of heuristic devices are commonly used in both the peer-reviewed adaptation literature as well as within grey literature designed to inform adaptation practitioners. Furthermore, the apparent lack of critical reflection upon the robustness of these heuristics for diverse contexts may contribute to potential cognitive bias with respect to the framing of adaptation by both researchers and practitioners. Finally, we discuss this phenomenon by drawing upon heuristic-analytic theory, which has explanatory utility in understanding both the origins of such heuristics as well as the measures that can be pursued toward the co-generation of more robust approaches to adaptation problem-solving.« less
NASA Astrophysics Data System (ADS)
Bhave, Ajay; Dessai, Suraje; Conway, Declan; Stainforth, David
2016-04-01
Deep uncertainty in future climate change and socio-economic conditions necessitates the use of assess-risk-of-policy approaches over predict-then-act approaches for adaptation decision making. Robust Decision Making (RDM) approaches embody this principle and help evaluate the ability of adaptation options to satisfy stakeholder preferences under wide-ranging future conditions. This study involves the simultaneous application of two RDM approaches; qualitative and quantitative, in the Cauvery River Basin in Karnataka (population ~23 million), India. The study aims to (a) determine robust water resources adaptation options for the 2030s and 2050s and (b) compare the usefulness of a qualitative stakeholder-driven approach with a quantitative modelling approach. For developing a large set of future scenarios a combination of climate narratives and socio-economic narratives was used. Using structured expert elicitation with a group of climate experts in the Indian Summer Monsoon, climatic narratives were developed. Socio-economic narratives were developed to reflect potential future urban and agricultural water demand. In the qualitative RDM approach, a stakeholder workshop helped elicit key vulnerabilities, water resources adaptation options and performance criteria for evaluating options. During a second workshop, stakeholders discussed and evaluated adaptation options against the performance criteria for a large number of scenarios of climatic and socio-economic change in the basin. In the quantitative RDM approach, a Water Evaluation And Planning (WEAP) model was forced by precipitation and evapotranspiration data, coherent with the climatic narratives, together with water demand data based on socio-economic narratives. We find that compared to business-as-usual conditions options addressing urban water demand satisfy performance criteria across scenarios and provide co-benefits like energy savings and reduction in groundwater depletion, while options reducing agricultural water demand significantly affect downstream water availability. Water demand options demonstrate potential to improve environmental flow conditions and satisfy legal water supply requirements for downstream riparian states. On the other hand, currently planned large scale infrastructural projects demonstrate reduced value in certain scenarios, illustrating the impacts of lock-in effects of large scale infrastructure. From a methodological perspective, we find that while the stakeholder-driven approach revealed robust options in a resource-light manner and helped initiate much needed interaction amongst stakeholders, the modelling approach provides complementary quantitative information. The study reveals robust adaptation options for this important basin and provides a strong methodological basis for carrying out future studies that support adaptation decision making.
Real-Time Robust Adaptive Modeling and Scheduling for an Electronic Commerce Server
NASA Astrophysics Data System (ADS)
Du, Bing; Ruan, Chun
With the increasing importance and pervasiveness of Internet services, it is becoming a challenge for the proliferation of electronic commerce services to provide performance guarantees under extreme overload. This paper describes a real-time optimization modeling and scheduling approach for performance guarantee of electronic commerce servers. We show that an electronic commerce server may be simulated as a multi-tank system. A robust adaptive server model is subject to unknown additive load disturbances and uncertain model matching. Overload control techniques are based on adaptive admission control to achieve timing guarantees. We evaluate the performance of the model using a complex simulation that is subjected to varying model parameters and massive overload.
Wang, Tianbo; Zhou, Wuneng; Zhao, Shouwei; Yu, Weiqin
2014-03-01
In this paper, the robust exponential synchronization problem for a class of uncertain delayed master-slave dynamical system is investigated by using the adaptive control method. Different from some existing master-slave models, the considered master-slave system includes bounded unmodeled dynamics. In order to compensate the effect of unmodeled dynamics and effectively achieve synchronization, a novel adaptive controller with simple updated laws is proposed. Moreover, the results are given in terms of LMIs, which can be easily solved by LMI Toolbox in Matlab. A numerical example is given to illustrate the effectiveness of the method. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Xia, Kewei; Huo, Wei
2016-05-01
This paper presents a robust adaptive neural networks control strategy for spacecraft rendezvous and docking with the coupled position and attitude dynamics under input saturation. Backstepping technique is applied to design a relative attitude controller and a relative position controller, respectively. The dynamics uncertainties are approximated by radial basis function neural networks (RBFNNs). A novel switching controller consists of an adaptive neural networks controller dominating in its active region combined with an extra robust controller to avoid invalidation of the RBFNNs destroying stability of the system outside the neural active region. An auxiliary signal is introduced to compensate the input saturation with anti-windup technique, and a command filter is employed to approximate derivative of the virtual control in the backstepping procedure. Globally uniformly ultimately bounded of the relative states is proved via Lyapunov theory. Simulation example demonstrates effectiveness of the proposed control scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Design of Robust Adaptive Unbalance Response Controllers for Rotors with Magnetic Bearings
NASA Technical Reports Server (NTRS)
Knospe, Carl R.; Tamer, Samir M.; Fedigan, Stephen J.
1996-01-01
Experimental results have recently demonstrated that an adaptive open loop control strategy can be highly effective in the suppression of unbalance induced vibration on rotors supported in active magnetic bearings. This algorithm, however, relies upon a predetermined gain matrix. Typically, this matrix is determined by an optimal control formulation resulting in the choice of the pseudo-inverse of the nominal influence coefficient matrix as the gain matrix. This solution may result in problems with stability and performance robustness since the estimated influence coefficient matrix is not equal to the actual influence coefficient matrix. Recently, analysis tools have been developed to examine the robustness of this control algorithm with respect to structured uncertainty. Herein, these tools are extended to produce a design procedure for determining the adaptive law's gain matrix. The resulting control algorithm has a guaranteed convergence rate and steady state performance in spite of the uncertainty in the rotor system. Several examples are presented which demonstrate the effectiveness of this approach and its advantages over the standard optimal control formulation.
NASA Astrophysics Data System (ADS)
Kim, Y.; Chung, E. S.
2014-12-01
This study suggests a robust prioritization framework for climate change adaptation strategies under multiple climate change scenarios with a case study of selecting sites for reusing treated wastewater (TWW) in a Korean urban watershed. The framework utilizes various multi-criteria decision making techniques, including the VIKOR method and the Shannon entropy-based weights. In this case study, the sustainability of TWW use is quantified with indicator-based approaches with the DPSIR framework, which considers both hydro-environmental and socio-economic aspects of the watershed management. Under the various climate change scenarios, the hydro-environmental responses to reusing TWW in potential alternative sub-watersheds are determined using the Hydrologic Simulation Program in Fortran (HSPF). The socio-economic indicators are obtained from the statistical databases. Sustainability scores for multiple scenarios are estimated individually and then integrated with the proposed approach. At last, the suggested framework allows us to prioritize adaptation strategies in a robust manner with varying levels of compromise between utility-based and regret-based strategies.
Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution.
Tung, Ching-Wei; Hsu, Ying-Ya; Shen, Yen-Ping; Zheng, Yixin; Chan, Ting-Shan; Sheu, Hwo-Shuenn; Cheng, Yuan-Chung; Chen, Hao Ming
2015-08-28
Electrochemically converting water into oxygen/hydrogen gas is ideal for high-density renewable energy storage in which robust electrocatalysts for efficient oxygen evolution play crucial roles. To date, however, electrocatalysts with long-term stability have remained elusive. Here we report that single-crystal Co3O4 nanocube underlay with a thin CoO layer results in a high-performance and high-stability electrocatalyst in oxygen evolution reaction. An in situ X-ray diffraction method is developed to observe a strong correlation between the initialization of the oxygen evolution and the formation of active metal oxyhydroxide phase. The lattice of skin layer adapts to the structure of the active phase, which enables a reversible facile structural change that facilitates the chemical reactions without breaking the scaffold of the electrocatalysts. The single-crystal nanocube electrode exhibits stable, continuous oxygen evolution for >1,000 h. This robust stability is attributed to the complementary nature of defect-free single-crystal electrocatalyst and the reversible adapting layer.
Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images
Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi
2016-01-01
Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms. PMID:27399704
Robustness study of the pseudo open-loop controller for multiconjugate adaptive optics.
Piatrou, Piotr; Gilles, Luc
2005-02-20
Robustness of the recently proposed "pseudo open-loop control" algorithm against various system errors has been investigated for the representative example of the Gemini-South 8-m telescope multiconjugate adaptive-optics system. The existing model to represent the adaptive-optics system with pseudo open-loop control has been modified to account for misalignments, noise and calibration errors in deformable mirrors, and wave-front sensors. Comparison with the conventional least-squares control model has been done. We show with the aid of both transfer-function pole-placement analysis and Monte Carlo simulations that POLC remains remarkably stable and robust against very large levels of system errors and outperforms in this respect least-squares control. Approximate stability margins as well as performance metrics such as Strehl ratios and rms wave-front residuals averaged over a 1-arc min field of view have been computed for different types and levels of system errors to quantify the expected performance degradation.
How protein materials balance strength, robustness, and adaptability
Buehler, Markus J.; Yung, Yu Ching
2010-01-01
Proteins form the basis of a wide range of biological materials such as hair, skin, bone, spider silk, or cells, which play an important role in providing key functions to biological systems. The focus of this article is to discuss how protein materials are capable of balancing multiple, seemingly incompatible properties such as strength, robustness, and adaptability. To illustrate this, we review bottom-up materiomics studies focused on the mechanical behavior of protein materials at multiple scales, from nano to macro. We focus on alpha-helix based intermediate filament proteins as a model system to explain why the utilization of hierarchical structural features is vital to their ability to combine strength, robustness, and adaptability. Experimental studies demonstrating the activation of angiogenesis, the growth of new blood vessels, are presented as an example of how adaptability of structure in biological tissue is achieved through changes in gene expression that result in an altered material structure. We analyze the concepts in light of the universality and diversity of the structural makeup of protein materials and discuss the findings in the context of potential fundamental evolutionary principles that control their nanoscale structure. We conclude with a discussion of multiscale science in biology and de novo materials design. PMID:20676305
Heading Estimation for Pedestrian Dead Reckoning Based on Robust Adaptive Kalman Filtering.
Wu, Dongjin; Xia, Linyuan; Geng, Jijun
2018-06-19
Pedestrian dead reckoning (PDR) using smart phone-embedded micro-electro-mechanical system (MEMS) sensors plays a key role in ubiquitous localization indoors and outdoors. However, as a relative localization method, it suffers from the problem of error accumulation which prevents it from long term independent running. Heading estimation error is one of the main location error sources, and therefore, in order to improve the location tracking performance of the PDR method in complex environments, an approach based on robust adaptive Kalman filtering (RAKF) for estimating accurate headings is proposed. In our approach, outputs from gyroscope, accelerometer, and magnetometer sensors are fused using the solution of Kalman filtering (KF) that the heading measurements derived from accelerations and magnetic field data are used to correct the states integrated from angular rates. In order to identify and control measurement outliers, a maximum likelihood-type estimator (M-estimator)-based model is used. Moreover, an adaptive factor is applied to resist the negative effects of state model disturbances. Extensive experiments under static and dynamic conditions were conducted in indoor environments. The experimental results demonstrate the proposed approach provides more accurate heading estimates and supports more robust and dynamic adaptive location tracking, compared with methods based on conventional KF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleijnen, J; Asselen, B van; Burbach, M
2015-06-15
Purpose: Purpose of this study is to find the optimal trade-off between adaptation interval and margin reduction and to define the implications of motion for rectal cancer boost radiotherapy on a MR-linac. Methods: Daily MRI scans were acquired of 16 patients, diagnosed with rectal cancer, prior to each radiotherapy fraction in one week (N=76). Each scan session consisted of T2-weighted and three 2D sagittal cine-MRI, at begin (t=0 min), middle (t=9:30 min) and end (t=18:00 min) of scan session, for 1 minute at 2 Hz temporal resolution. Tumor and clinical target volume (CTV) were delineated on each T2-weighted scan andmore » transferred to each cine-MRI. The start frame of the begin scan was used as reference and registered to frames at time-points 15, 30 and 60 seconds, 9:30 and 18:00 minutes and 1, 2, 3 and 4 days later. Per time-point, motion of delineated voxels was evaluated using the deformation vector fields of the registrations and the 95th percentile distance (dist95%) was calculated as measure of motion. Per time-point, the distance that includes 90% of all cases was taken as estimate of required planning target volume (PTV)-margin. Results: Highest motion reduction is observed going from 9:30 minutes to 60 seconds. We observe a reduction in margin estimates from 10.6 to 2.7 mm and 16.1 to 4.6 mm for tumor and CTV, respectively, when adapting every 60 seconds compared to not adapting treatment. A 75% and 71% reduction, respectively. Further reduction in adaptation time-interval yields only marginal motion reduction. For adaptation intervals longer than 18:00 minutes only small motion reductions are observed. Conclusion: The optimal adaptation interval for adaptive rectal cancer (boost) treatments on a MR-linac is 60 seconds. This results in substantial smaller PTV-margin estimates. Adaptation intervals of 18:00 minutes and higher, show little improvement in motion reduction.« less
Zeghlache, Samir; Kara, Kamel; Saigaa, Djamel
2015-11-01
In this paper, a robust controller for a Six Degrees of Freedom (6 DOF) coaxial trirotor helicopter control is proposed in presence of defects in the system. A control strategy based on the coupling of the interval type-2 fuzzy logic control and sliding mode control technique are used to design a controller. The main purpose of this work is to eliminate the chattering phenomenon and guaranteeing the stability and the robustness of the system. In order to achieve this goal, interval type-2 fuzzy logic control has been used to generate the discontinuous control signal. The simulation results have shown that the proposed control strategy can greatly alleviate the chattering effect, and perform good reference tracking in presence of defects in the system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Goldman, Amy E.; Graham, Emily B.; Crump, Alex R.; Kennedy, David W.; Romero, Elvira B.; Anderson, Carolyn G.; Dana, Karl L.; Resch, Charles T.; Fredrickson, Jim K.; Stegen, James C.
2017-09-01
The parafluvial hyporheic zone combines the heightened biogeochemical and microbial interactions indicative of a hyporheic region with direct atmospheric/terrestrial inputs and the effects of wet-dry cycles. Therefore, understanding biogeochemical cycling and microbial interactions in this ecotone is fundamental to understanding biogeochemical cycling at the aquatic-terrestrial interface and to creating robust hydrobiogeochemical models of dynamic river corridors. We aimed to (i) characterize biogeochemical and microbial differences in the parafluvial hyporheic zone across a small spatial domain (6 lateral meters) that spans a breadth of inundation histories and (ii) examine how parafluvial hyporheic sediments respond to laboratory-simulated re-inundation. Surface sediment was collected at four elevations along transects perpendicular to flow of the Columbia River, eastern WA, USA. The sediments were inundated by the river 0, 13, 127, and 398 days prior to sampling. Spatial variation in environmental variables (organic matter, moisture, nitrate, glucose, % C, % N) and microbial communities (16S and internal transcribed spacer (ITS) rRNA gene sequencing, qPCR) were driven by differences in inundation history. Microbial respiration did not differ significantly across inundation histories prior to forced inundation in laboratory incubations. Forced inundation suppressed microbial respiration across all histories, but the degree of suppression was dramatically different between the sediments saturated and unsaturated at the time of sample collection, indicating a binary threshold response to re-inundation. We present a conceptual model in which irregular hydrologic fluctuations facilitate microbial communities adapted to local conditions and a relatively high flux of CO2. Upon rewetting, microbial communities are initially suppressed metabolically, which results in lower CO2 flux rates primarily due to suppression of fungal respiration. Following prolonged inundation, the microbial community adapts to saturation by shifting composition, and the CO2 flux rebounds to prior levels due to the subsequent change in respiration. Our results indicate that the time between inundation events can push the system into alternate states: we suggest (i) that, above some threshold of inundation interval, re-inundation suppresses respiration to a consistent, low rate and (ii) that, below some inundation interval, re-inundation has a minor effect on respiration. Extending reactive transport models to capture processes that govern such dynamics will provide more robust predictions of river corridor biogeochemical function under altered surface water flow regimes in both managed and natural watersheds.
Robustness of critical points in a complex adaptive system: Effects of hedge behavior
NASA Astrophysics Data System (ADS)
Liang, Yuan; Huang, Ji-Ping
2013-08-01
In our recent papers, we have identified a class of phase transitions in the market-directed resource-allocation game, and found that there exists a critical point at which the phase transitions occur. The critical point is given by a certain resource ratio. Here, by performing computer simulations and theoretical analysis, we report that the critical point is robust against various kinds of human hedge behavior where the numbers of herds and contrarians can be varied widely. This means that the critical point can be independent of the total number of participants composed of normal agents, herds and contrarians, under some conditions. This finding means that the critical points we identified in this complex adaptive system (with adaptive agents) may also be an intensive quantity, similar to those revealed in traditional physical systems (with non-adaptive units).
Ao, Wei; Song, Yongdong; Wen, Changyun
2017-05-01
In this paper, we investigate the adaptive control problem for a class of nonlinear uncertain MIMO systems with actuator faults and quantization effects. Under some mild conditions, an adaptive robust fault-tolerant control is developed to compensate the affects of uncertainties, actuator failures and errors caused by quantization, and a range of the parameters for these quantizers is established. Furthermore, a Lyapunov-like approach is adopted to demonstrate that the ultimately uniformly bounded output tracking error is guaranteed by the controller, and the signals of the closed-loop system are ensured to be bounded, even in the presence of at most m-q actuators stuck or outage. Finally, numerical simulations are provided to verify and illustrate the effectiveness of the proposed adaptive schemes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Bohoudi, O; Bruynzeel, A M E; Senan, S; Cuijpers, J P; Slotman, B J; Lagerwaard, F J; Palacios, M A
2017-12-01
To implement a robust and fast stereotactic MR-guided adaptive radiation therapy (SMART) online strategy in locally advanced pancreatic cancer (LAPC). SMART strategy for plan adaptation was implemented with the MRIdian system (ViewRay Inc.). At each fraction, OAR (re-)contouring is done within a distance of 3cm from the PTV surface. Online plan re-optimization is based on robust prediction of OAR dose and optimization objectives, obtained by building an artificial neural network (ANN). Proposed limited re-contouring strategy for plan adaptation (SMART 3CM ) is evaluated by comparing 50 previously delivered fractions against a standard (re-)planning method using full-scale OAR (re-)contouring (FULLOAR). Plan quality was assessed using PTV coverage (V 95% , D mean , D 1cc ) and institutional OAR constraints (e.g. V 33Gy ). SMART 3CM required a significant lower number of optimizations than FULLOAR (4 vs 18 on average) to generate a plan meeting all objectives and institutional OAR constraints. PTV coverage with both strategies was identical (mean V 95% =89%). Adaptive plans with SMART 3CM exhibited significant lower intermediate and high doses to all OARs than FULLOAR, which also failed in 36% of the cases to adhere to the V 33Gy dose constraint. SMART 3CM approach for LAPC allows good OAR sparing and adequate target coverage while requiring only limited online (re-)contouring from clinicians. Copyright © 2017 Elsevier B.V. All rights reserved.
Carmena, Jose M.
2016-01-01
Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter initialization. Finally, the architecture extended control to tasks beyond those used for CLDA training. These results have significant implications towards the development of clinically-viable neuroprosthetics. PMID:27035820
NASA Astrophysics Data System (ADS)
Jin, Yulin; Lu, Kuan; Hou, Lei; Chen, Yushu
2017-12-01
The proper orthogonal decomposition (POD) method is a main and efficient tool for order reduction of high-dimensional complex systems in many research fields. However, the robustness problem of this method is always unsolved, although there are some modified POD methods which were proposed to solve this problem. In this paper, a new adaptive POD method called the interpolation Grassmann manifold (IGM) method is proposed to address the weakness of local property of the interpolation tangent-space of Grassmann manifold (ITGM) method in a wider parametric region. This method is demonstrated here by a nonlinear rotor system of 33-degrees of freedom (DOFs) with a pair of liquid-film bearings and a pedestal looseness fault. The motion region of the rotor system is divided into two parts: simple motion region and complex motion region. The adaptive POD method is compared with the ITGM method for the large and small spans of parameter in the two parametric regions to present the advantage of this method and disadvantage of the ITGM method. The comparisons of the responses are applied to verify the accuracy and robustness of the adaptive POD method, as well as the computational efficiency is also analyzed. As a result, the new adaptive POD method has a strong robustness and high computational efficiency and accuracy in a wide scope of parameter.
Chin, Diana D; Matloff, Laura Y; Stowers, Amanda Kay; Tucci, Emily R; Lentink, David
2017-06-01
Harnessing flight strategies refined by millions of years of evolution can help expedite the design of more efficient, manoeuvrable and robust flying robots. This review synthesizes recent advances and highlights remaining gaps in our understanding of how bird and bat wing adaptations enable effective flight. Included in this discussion is an evaluation of how current robotic analogues measure up to their biological sources of inspiration. Studies of vertebrate wings have revealed skeletal systems well suited for enduring the loads required during flight, but the mechanisms that drive coordinated motions between bones and connected integuments remain ill-described. Similarly, vertebrate flight muscles have adapted to sustain increased wing loading, but a lack of in vivo studies limits our understanding of specific muscular functions. Forelimb adaptations diverge at the integument level, but both bird feathers and bat membranes yield aerodynamic surfaces with a level of robustness unparalleled by engineered wings. These morphological adaptations enable a diverse range of kinematics tuned for different flight speeds and manoeuvres. By integrating vertebrate flight specializations-particularly those that enable greater robustness and adaptability-into the design and control of robotic wings, engineers can begin narrowing the wide margin that currently exists between flying robots and vertebrates. In turn, these robotic wings can help biologists create experiments that would be impossible in vivo . © 2017 The Author(s).
Climate adaptation heuristics and the science/policy divide
Preston, Benjamin L.; Mustelin, Johanna; Maloney, Megan C.
2013-09-05
The adaptation science enterprise has expanded rapidly in recent years, presumably in response to growth in demand for knowledge that can facilitate adaptation policy and practice. However, evidence suggests such investments in adaptation science have not necessarily translated into adaptation implementation. One potential constraint on adaptation may be the underlying heuristics that are used as the foundation for both adaptation research and practice. In this paper, we explore the adaptation academic literature with the objective of identifying adaptation heuristics, assessing the extent to which they have become entrenched within the adaptation discourse, and discussing potential weaknesses in their framing thatmore » could undermine adaptation efforts. This investigation is supported by a multi-method analysis that includes both a quantitative content analysis of the adaptation literature that evidences the use of adaptation heuristics and a qualitative analysis of the implications of such heuristics for enhancing or hindering the implementation of adaptation. Results demonstrate that a number of heuristic devices are commonly used in both the peer-reviewed adaptation literature as well as within grey literature designed to inform adaptation practitioners. Furthermore, the apparent lack of critical reflection upon the robustness of these heuristics for diverse contexts may contribute to potential cognitive bias with respect to the framing of adaptation by both researchers and practitioners. Finally, we discuss this phenomenon by drawing upon heuristic-analytic theory, which has explanatory utility in understanding both the origins of such heuristics as well as the measures that can be pursued toward the co-generation of more robust approaches to adaptation problem-solving.« less
Robustness-Based Design Optimization Under Data Uncertainty
NASA Technical Reports Server (NTRS)
Zaman, Kais; McDonald, Mark; Mahadevan, Sankaran; Green, Lawrence
2010-01-01
This paper proposes formulations and algorithms for design optimization under both aleatory (i.e., natural or physical variability) and epistemic uncertainty (i.e., imprecise probabilistic information), from the perspective of system robustness. The proposed formulations deal with epistemic uncertainty arising from both sparse and interval data without any assumption about the probability distributions of the random variables. A decoupled approach is proposed in this paper to un-nest the robustness-based design from the analysis of non-design epistemic variables to achieve computational efficiency. The proposed methods are illustrated for the upper stage design problem of a two-stage-to-orbit (TSTO) vehicle, where the information on the random design inputs are only available as sparse point and/or interval data. As collecting more data reduces uncertainty but increases cost, the effect of sample size on the optimality and robustness of the solution is also studied. A method is developed to determine the optimal sample size for sparse point data that leads to the solutions of the design problem that are least sensitive to variations in the input random variables.
NASA Astrophysics Data System (ADS)
Sun, Chao; Zhang, Chunran; Gu, Xinfeng; Liu, Bin
2017-10-01
Constraints of the optimization objective are often unable to be met when predictive control is applied to industrial production process. Then, online predictive controller will not find a feasible solution or a global optimal solution. To solve this problem, based on Back Propagation-Auto Regressive with exogenous inputs (BP-ARX) combined control model, nonlinear programming method is used to discuss the feasibility of constrained predictive control, feasibility decision theorem of the optimization objective is proposed, and the solution method of soft constraint slack variables is given when the optimization objective is not feasible. Based on this, for the interval control requirements of the controlled variables, the slack variables that have been solved are introduced, the adaptive weighted interval predictive control algorithm is proposed, achieving adaptive regulation of the optimization objective and automatically adjust of the infeasible interval range, expanding the scope of the feasible region, and ensuring the feasibility of the interval optimization objective. Finally, feasibility and effectiveness of the algorithm is validated through the simulation comparative experiments.
Robust Confidence Interval for a Ratio of Standard Deviations
ERIC Educational Resources Information Center
Bonett, Douglas G.
2006-01-01
Comparing variability of test scores across alternate forms, test conditions, or subpopulations is a fundamental problem in psychometrics. A confidence interval for a ratio of standard deviations is proposed that performs as well as the classic method with normal distributions and performs dramatically better with nonnormal distributions. A simple…
Robust Stability and Control of Multi-Body Ground Vehicles with Uncertain Dynamics and Failures
2010-01-01
and N. Zhang, 2008. “Robust stability control of vehicle rollover subject to actuator time delay”. Proc. IMechE Part I: J. of systems and control ...Dynamic Systems and Control Conference, Boston, MA, Sept 2010 R.K. Yedavalli,”Robust Stability of Linear Interval Parameter Matrix Family Problem...for control coupled output regulation for a class of systems is presented. In section 2.1.7, the control design algorithm developed in section
Agricultural Adaptations to Climate Changes in West Africa
NASA Astrophysics Data System (ADS)
Guan, K.; Sultan, B.; Lobell, D. B.; Biasutti, M.; Piani, C.; Hammer, G. L.; McLean, G.
2014-12-01
Agricultural production in West Africa is highly vulnerable to climate variability and change and a fast growing demand for food adds yet another challenge. Assessing possible adaptation strategies of crop production in West Africa under climate change is thus critical for ensuring regional food security and improving human welfare. Our previous efforts have identified as the main features of climate change in West Africa a robust increase in temperature and a complex shift in the rainfall pattern (i.e. seasonality delay and total amount change). Unaddressed, these robust climate changes would reduce regional crop production by up to 20%. In the current work, we use two well-validated crop models (APSIM and SARRA-H) to comprehensively assess different crop adaptation options under future climate scenarios. Particularly, we assess adaptations in both the choice of crop types and management strategies. The expected outcome of this study is to provide West Africa with region-specific adaptation recommendations that take into account both climate variability and climate change.
Robustness of Ability Estimation to Multidimensionality in CAST with Implications to Test Assembly
ERIC Educational Resources Information Center
Zhang, Yanwei; Nandakumar, Ratna
2006-01-01
Computer Adaptive Sequential Testing (CAST) is a test delivery model that combines features of the traditional conventional paper-and-pencil testing and item-based computerized adaptive testing (CAT). The basic structure of CAST is a panel composed of multiple testlets adaptively administered to examinees at different stages. Current applications…
Track and vertex reconstruction: From classical to adaptive methods
NASA Astrophysics Data System (ADS)
Strandlie, Are; Frühwirth, Rudolf
2010-04-01
This paper reviews classical and adaptive methods of track and vertex reconstruction in particle physics experiments. Adaptive methods have been developed to meet the experimental challenges at high-energy colliders, in particular, the CERN Large Hadron Collider. They can be characterized by the obliteration of the traditional boundaries between pattern recognition and statistical estimation, by the competition between different hypotheses about what constitutes a track or a vertex, and by a high level of flexibility and robustness achieved with a minimum of assumptions about the data. The theoretical background of some of the adaptive methods is described, and it is shown that there is a close connection between the two main branches of adaptive methods: neural networks and deformable templates, on the one hand, and robust stochastic filters with annealing, on the other hand. As both classical and adaptive methods of track and vertex reconstruction presuppose precise knowledge of the positions of the sensitive detector elements, the paper includes an overview of detector alignment methods and a survey of the alignment strategies employed by past and current experiments.
A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance.
Zheng, Binqi; Fu, Pengcheng; Li, Baoqing; Yuan, Xiaobing
2018-03-07
The Unscented Kalman filter (UKF) may suffer from performance degradation and even divergence while mismatch between the noise distribution assumed as a priori by users and the actual ones in a real nonlinear system. To resolve this problem, this paper proposes a robust adaptive UKF (RAUKF) to improve the accuracy and robustness of state estimation with uncertain noise covariance. More specifically, at each timestep, a standard UKF will be implemented first to obtain the state estimations using the new acquired measurement data. Then an online fault-detection mechanism is adopted to judge if it is necessary to update current noise covariance. If necessary, innovation-based method and residual-based method are used to calculate the estimations of current noise covariance of process and measurement, respectively. By utilizing a weighting factor, the filter will combine the last noise covariance matrices with the estimations as the new noise covariance matrices. Finally, the state estimations will be corrected according to the new noise covariance matrices and previous state estimations. Compared with the standard UKF and other adaptive UKF algorithms, RAUKF converges faster to the actual noise covariance and thus achieves a better performance in terms of robustness, accuracy, and computation for nonlinear estimation with uncertain noise covariance, which is demonstrated by the simulation results.
A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance
Zheng, Binqi; Yuan, Xiaobing
2018-01-01
The Unscented Kalman filter (UKF) may suffer from performance degradation and even divergence while mismatch between the noise distribution assumed as a priori by users and the actual ones in a real nonlinear system. To resolve this problem, this paper proposes a robust adaptive UKF (RAUKF) to improve the accuracy and robustness of state estimation with uncertain noise covariance. More specifically, at each timestep, a standard UKF will be implemented first to obtain the state estimations using the new acquired measurement data. Then an online fault-detection mechanism is adopted to judge if it is necessary to update current noise covariance. If necessary, innovation-based method and residual-based method are used to calculate the estimations of current noise covariance of process and measurement, respectively. By utilizing a weighting factor, the filter will combine the last noise covariance matrices with the estimations as the new noise covariance matrices. Finally, the state estimations will be corrected according to the new noise covariance matrices and previous state estimations. Compared with the standard UKF and other adaptive UKF algorithms, RAUKF converges faster to the actual noise covariance and thus achieves a better performance in terms of robustness, accuracy, and computation for nonlinear estimation with uncertain noise covariance, which is demonstrated by the simulation results. PMID:29518960
Pilot Evaluation of Adaptive Control in Motion-Based Flight Simulator
NASA Technical Reports Server (NTRS)
Kaneshige, John T.; Campbell, Stefan Forrest
2009-01-01
The objective of this work is to assess the strengths, weaknesses, and robustness characteristics of several MRAC (Model-Reference Adaptive Control) based adaptive control technologies garnering interest from the community as a whole. To facilitate this, a control study using piloted and unpiloted simulations to evaluate sensitivities and handling qualities was conducted. The adaptive control technologies under consideration were ALR (Adaptive Loop Recovery), BLS (Bounded Linear Stability), Hybrid Adaptive Control, L1, OCM (Optimal Control Modification), PMRAC (Predictor-based MRAC), and traditional MRAC
Friggens, N C; Blanc, F; Berry, D P; Puillet, L
2017-12-01
As the environments in which livestock are reared become more variable, animal robustness becomes an increasingly valuable attribute. Consequently, there is increasing focus on managing and breeding for it. However, robustness is a difficult phenotype to properly characterise because it is a complex trait composed of multiple components, including dynamic elements such as the rates of response to, and recovery from, environmental perturbations. In this review, the following definition of robustness is used: the ability, in the face of environmental constraints, to carry on doing the various things that the animal needs to do to favour its future ability to reproduce. The different elements of this definition are discussed to provide a clearer understanding of the components of robustness. The implications for quantifying robustness are that there is no single measure of robustness but rather that it is the combination of multiple and interacting component mechanisms whose relative value is context dependent. This context encompasses both the prevailing environment and the prevailing selection pressure. One key issue for measuring robustness is to be clear on the use to which the robustness measurements will employed. If the purpose is to identify biomarkers that may be useful for molecular phenotyping or genotyping, the measurements should focus on the physiological mechanisms underlying robustness. However, if the purpose of measuring robustness is to quantify the extent to which animals can adapt to limiting conditions then the measurements should focus on the life functions, the trade-offs between them and the animal's capacity to increase resource acquisition. The time-related aspect of robustness also has important implications. Single time-point measurements are of limited value because they do not permit measurement of responses to (and recovery from) environmental perturbations. The exception being single measurements of the accumulated consequence of a good (or bad) adaptive capacity, such as productive longevity and lifetime efficiency. In contrast, repeated measurements over time have a high potential for quantification of the animal's ability to cope with environmental challenges. Thus, we should be able to quantify differences in adaptive capacity from the data that are increasingly becoming available with the deployment of automated monitoring technology on farm. The challenge for future management and breeding will be how to combine various proxy measures to obtain reliable estimates of robustness components in large populations. A key aspect for achieving this is to define phenotypes from consideration of their biological properties and not just from available measures.
Real-time control systems: feedback, scheduling and robustness
NASA Astrophysics Data System (ADS)
Simon, Daniel; Seuret, Alexandre; Sename, Olivier
2017-08-01
The efficient control of real-time distributed systems, where continuous components are governed through digital devices and communication networks, needs a careful examination of the constraints arising from the different involved domains inside co-design approaches. Thanks to the robustness of feedback control, both new control methodologies and slackened real-time scheduling schemes are proposed beyond the frontiers between these traditionally separated fields. A methodology to design robust aperiodic controllers is provided, where the sampling interval is considered as a control variable of the system. Promising experimental results are provided to show the feasibility and robustness of the approach.
An adaptive deep-coupled GNSS/INS navigation system with hybrid pre-filter processing
NASA Astrophysics Data System (ADS)
Wu, Mouyan; Ding, Jicheng; Zhao, Lin; Kang, Yingyao; Luo, Zhibin
2018-02-01
The deep-coupling of a global navigation satellite system (GNSS) with an inertial navigation system (INS) can provide accurate and reliable navigation information. There are several kinds of deeply-coupled structures. These can be divided mainly into coherent and non-coherent pre-filter based structures, which have their own strong advantages and disadvantages, especially in accuracy and robustness. In this paper, the existing pre-filters of the deeply-coupled structures are analyzed and modified to improve them firstly. Then, an adaptive GNSS/INS deeply-coupled algorithm with hybrid pre-filters processing is proposed to combine the advantages of coherent and non-coherent structures. An adaptive hysteresis controller is designed to implement the hybrid pre-filters processing strategy. The simulation and vehicle test results show that the adaptive deeply-coupled algorithm with hybrid pre-filters processing can effectively improve navigation accuracy and robustness, especially in a GNSS-challenged environment.
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz-Delgado, Kenneth; Bayard, David S.
1992-01-01
A new class of joint level control laws for all-revolute robot arms is introduced. The analysis is similar to a recently proposed energy-like Liapunov function approach, except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. This approach gives way to a much simpler analysis and leads to a new class of control designs which guarantee both global asymptotic stability and local exponential stability. When Coulomb and viscous friction and parameter uncertainty are present as model perturbations, a sliding mode-like modification of the control law results in a robustness-enhancing outer loop. Adaptive control is formulated within the same framework. A linear-in-the-parameters formulation is adopted and globally asymptotically stable adaptive control laws are derived by simply replacing unknown model parameters by their estimates (i.e., certainty equivalence adaptation).
NASA Astrophysics Data System (ADS)
Ulrich, Steve; de Lafontaine, Jean
2007-12-01
Upcoming landing missions to Mars will require on-board guidance and control systems in order to meet the scientific requirement of landing safely within hundreds of meters to the target of interest. More specifically, in the longitudinal plane, the first objective of the entry guidance and control system is to bring the vehicle to its specified velocity at the specified altitude (as required for safe parachute deployment), while the second objective is to reach the target position in the longitudinal plane. This paper proposes an improvement to the robustness of the constant flight path angle guidance law for achieving the first objective. The improvement consists of combining this guidance law with a novel adaptive control scheme, derived from the so-called Simple Adaptive Control (SAC) technique. Monte-Carlo simulation results are shown to demonstrate the accuracy and the robustness of the proposed guidance and adaptive control system.
Robust Adaptive Thresholder For Document Scanning Applications
NASA Astrophysics Data System (ADS)
Hsing, To R.
1982-12-01
In document scanning applications, thresholding is used to obtain binary data from a scanner. However, due to: (1) a wide range of different color backgrounds; (2) density variations of printed text information; and (3) the shading effect caused by the optical systems, the use of adaptive thresholding to enhance the useful information is highly desired. This paper describes a new robust adaptive thresholder for obtaining valid binary images. It is basically a memory type algorithm which can dynamically update the black and white reference level to optimize a local adaptive threshold function. The results of high image quality from different types of simulate test patterns can be obtained by this algorithm. The software algorithm is described and experiment results are present to describe the procedures. Results also show that the techniques described here can be used for real-time signal processing in the varied applications.
Adaptive Fuzzy Output Feedback Control for Switched Nonlinear Systems With Unmodeled Dynamics.
Tong, Shaocheng; Li, Yongming
2017-02-01
This paper investigates a robust adaptive fuzzy control stabilization problem for a class of uncertain nonlinear systems with arbitrary switching signals that use an observer-based output feedback scheme. The considered switched nonlinear systems possess the unstructured uncertainties, unmodeled dynamics, and without requiring the states being available for measurement. A state observer which is independent of switching signals is designed to solve the problem of unmeasured states. Fuzzy logic systems are used to identify unknown lumped nonlinear functions so that the problem of unstructured uncertainties can be solved. By combining adaptive backstepping design principle and small-gain approach, a novel robust adaptive fuzzy output feedback stabilization control approach is developed. The stability of the closed-loop system is proved via the common Lyapunov function theory and small-gain theorem. Finally, the simulation results are given to demonstrate the validity and performance of the proposed control strategy.
Barbosa, Carolina; Bray, Jeremy W; Dowd, William N; Mills, Michael J; Moen, Phyllis; Wipfli, Brad; Olson, Ryan; Kelly, Erin L
2015-09-01
To estimate the return on investment (ROI) of a workplace initiative to reduce work-family conflict in a group-randomized 18-month field experiment in an information technology firm in the United States. Intervention resources were micro-costed; benefits included medical costs, productivity (presenteeism), and turnover. Regression models were used to estimate the ROI, and cluster-robust bootstrap was used to calculate its confidence interval. For each participant, model-adjusted costs of the intervention were $690 and company savings were $1850 (2011 prices). The ROI was 1.68 (95% confidence interval, -8.85 to 9.47) and was robust in sensitivity analyses. The positive ROI indicates that employers' investment in an intervention to reduce work-family conflict can enhance their business. Although this was the first study to present a confidence interval for the ROI, results are comparable with the literature.
Funke, K; Wörgötter, F
1995-01-01
1. The spike interval pattern during the light responses of 155 on- and 81 off-centre cells of the dorsal lateral geniculate nucleus (LGN) was studied in anaesthetized and paralysed cats by the use of a novel analysis. Temporally localized interval distributions were computed from a 100 ms time window, which was shifted along the time axis in 10 ms steps, resulting in a 90% overlap between two adjacent windows. For each step the interval distribution was computed inside the time window with 1 ms resolution, and plotted as a greyscale-coded pixel line orthogonal to the time axis. For visual stimulation, light or dark spots of different size and contrast were presented with different background illumination levels. 2. Two characteristic interval patterns were observed during the sustained response component of the cells. Mainly on-cells (77%) responded with multimodal interval distributions, resulting in elongated 'bands' in the 2-dimensional time window plots. In similar situations, the interval distributions for most (71%) off-cells were rather wide and featureless. In those cases where interval bands (i.e. multimodal interval distributions) were observed for off-cells (14%), they were always much wider than for the on-cells. This difference between the on- and off-cell population was independent of the background illumination and the contrast of the stimulus. Y on-cells also tended to produce wider interval bands than X on-cells. 3. For most stimulation situations the first interval band was centred around 6-9 ms, which has been called the fundamental interval; higher order bands are multiples thereof. The fundamental interval shifted towards larger sizes with decreasing stimulus contrast. Increasing stimulus size, on the other hand, resulted in a redistribution of the intervals into higher order bands, while at the same time the location of the fundamental interval remained largely unaffected. This was interpreted as an effect of the increasing surround inhibition at the geniculate level, by which individual retinal EPSPs were cancelled. A changing level of adaptation can result in a mixed shift/redistribution effect because of the changing stimulus contrast and changing level of tonic inhibition. 4. The occurrence of interval bands is not directly related to the shape of the autocorrelation function, which can be flat, weakly oscillatory or strongly oscillatory, regardless of the interval band pattern. 5. A simple computer model was devised to account for the observed cell behaviour. The model is highly robust against parameter variations.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 15 PMID:7562612
He, Fei; Fromion, Vincent; Westerhoff, Hans V
2013-11-21
Metabolic control analysis (MCA) and supply-demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply-demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. This study integrates control engineering and classical MCA augmented with supply-demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the 'integral control' (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of 'integral control' should rarely be expected to lead to the 'perfect adaptation': although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and are being identified by genomics and systems biology, correspond to the 'perfect' regulatory structures designed by control engineering vis-à-vis optimal functions such as robustness. To the extent that they are not, the analyses suggest how they may become so and this in turn should facilitate synthetic biology and metabolic engineering.
A Generally Robust Approach for Testing Hypotheses and Setting Confidence Intervals for Effect Sizes
ERIC Educational Resources Information Center
Keselman, H. J.; Algina, James; Lix, Lisa M.; Wilcox, Rand R.; Deering, Kathleen N.
2008-01-01
Standard least squares analysis of variance methods suffer from poor power under arbitrarily small departures from normality and fail to control the probability of a Type I error when standard assumptions are violated. This article describes a framework for robust estimation and testing that uses trimmed means with an approximate degrees of…
ERIC Educational Resources Information Center
Wilcox, Rand R.; Serang, Sarfaraz
2017-01-01
The article provides perspectives on p values, null hypothesis testing, and alternative techniques in light of modern robust statistical methods. Null hypothesis testing and "p" values can provide useful information provided they are interpreted in a sound manner, which includes taking into account insights and advances that have…
Stimulated Deep Neural Network for Speech Recognition
2016-09-08
making network regularization and robust adaptation challenging. Stimulated training has recently been proposed to address this problem by encouraging...potential to improve regularization and adaptation. This paper investigates stimulated training of DNNs for both of these options. These schemes take
NASA Astrophysics Data System (ADS)
Luo, Jianjun; Wei, Caisheng; Dai, Honghua; Yuan, Jianping
2018-03-01
This paper focuses on robust adaptive control for a class of uncertain nonlinear systems subject to input saturation and external disturbance with guaranteed predefined tracking performance. To reduce the limitations of classical predefined performance control method in the presence of unknown initial tracking errors, a novel predefined performance function with time-varying design parameters is first proposed. Then, aiming at reducing the complexity of nonlinear approximations, only two least-square-support-vector-machine-based (LS-SVM-based) approximators with two design parameters are required through norm form transformation of the original system. Further, a novel LS-SVM-based adaptive constrained control scheme is developed under the time-vary predefined performance using backstepping technique. Wherein, to avoid the tedious analysis and repeated differentiations of virtual control laws in the backstepping technique, a simple and robust finite-time-convergent differentiator is devised to only extract its first-order derivative at each step in the presence of external disturbance. In this sense, the inherent demerit of backstepping technique-;explosion of terms; brought by the recursive virtual controller design is conquered. Moreover, an auxiliary system is designed to compensate the control saturation. Finally, three groups of numerical simulations are employed to validate the effectiveness of the newly developed differentiator and the proposed adaptive constrained control scheme.
Cold adaptation shapes the robustness of metabolic networks in Drosophila melanogaster
Williams, CM; Watanabe, M; Guarracino, MR; Ferraro, MB; Edison, AS; Morgan, TJ; Boroujerdi, AFB; Hahn, DA
2015-01-01
When ectotherms are exposed to low temperatures, they enter a cold-induced coma (chill coma) that prevents resource acquisition, mating, oviposition, and escape from predation. There is substantial variation in time taken to recover from chill coma both within and among species, and this variation is correlated with habitat temperatures such that insects from cold environments recover more quickly. This suggests an adaptive response, but the mechanisms underlying variation in recovery times are unknown, making it difficult to decisively test adaptive hypotheses. We use replicated lines of Drosophila melanogaster selected in the laboratory for fast (hardy) or slow (susceptible) chill-coma recovery times to investigate modifications to metabolic profiles associated with cold adaptation. We measured metabolite concentrations of flies before, during, and after cold exposure using NMR spectroscopy to test the hypotheses that hardy flies maintain metabolic homeostasis better during cold exposure and recovery, and that their metabolic networks are more robust to cold-induced perturbations. The metabolites of cold-hardy flies were less cold responsive and their metabolic networks during cold exposure were more robust, supporting our hypotheses. Metabolites involved in membrane lipid synthesis, tryptophan metabolism, oxidative stress, energy balance, and proline metabolism were altered by selection on cold tolerance. We discuss the potential significance of these alterations. PMID:25308124
Inspiration for wing design: how forelimb specialization enables active flight in modern vertebrates
2017-01-01
Harnessing flight strategies refined by millions of years of evolution can help expedite the design of more efficient, manoeuvrable and robust flying robots. This review synthesizes recent advances and highlights remaining gaps in our understanding of how bird and bat wing adaptations enable effective flight. Included in this discussion is an evaluation of how current robotic analogues measure up to their biological sources of inspiration. Studies of vertebrate wings have revealed skeletal systems well suited for enduring the loads required during flight, but the mechanisms that drive coordinated motions between bones and connected integuments remain ill-described. Similarly, vertebrate flight muscles have adapted to sustain increased wing loading, but a lack of in vivo studies limits our understanding of specific muscular functions. Forelimb adaptations diverge at the integument level, but both bird feathers and bat membranes yield aerodynamic surfaces with a level of robustness unparalleled by engineered wings. These morphological adaptations enable a diverse range of kinematics tuned for different flight speeds and manoeuvres. By integrating vertebrate flight specializations—particularly those that enable greater robustness and adaptability—into the design and control of robotic wings, engineers can begin narrowing the wide margin that currently exists between flying robots and vertebrates. In turn, these robotic wings can help biologists create experiments that would be impossible in vivo. PMID:28592663
An adaptive robust controller for time delay maglev transportation systems
NASA Astrophysics Data System (ADS)
Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza
2012-12-01
For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.
Adaptive Control for Uncertain Nonlinear Multi-Input Multi-Output Systems
NASA Technical Reports Server (NTRS)
Cao, Chengyu (Inventor); Hovakimyan, Naira (Inventor); Xargay, Enric (Inventor)
2014-01-01
Systems and methods of adaptive control for uncertain nonlinear multi-input multi-output systems in the presence of significant unmatched uncertainty with assured performance are provided. The need for gain-scheduling is eliminated through the use of bandwidth-limited (low-pass) filtering in the control channel, which appropriately attenuates the high frequencies typically appearing in fast adaptation situations and preserves the robustness margins in the presence of fast adaptation.
Development of An Intelligent Flight Propulsion Control System
NASA Technical Reports Server (NTRS)
Calise, A. J.; Rysdyk, R. T.; Leonhardt, B. K.
1999-01-01
The initial design and demonstration of an Intelligent Flight Propulsion and Control System (IFPCS) is documented. The design is based on the implementation of a nonlinear adaptive flight control architecture. This initial design of the IFPCS enhances flight safety by using propulsion sources to provide redundancy in flight control. The IFPCS enhances the conventional gain scheduled approach in significant ways: (1) The IFPCS provides a back up flight control system that results in consistent responses over a wide range of unanticipated failures. (2) The IFPCS is applicable to a variety of aircraft models without redesign and,(3) significantly reduces the laborious research and design necessary in a gain scheduled approach. The control augmentation is detailed within an approximate Input-Output Linearization setting. The availability of propulsion only provides two control inputs, symmetric and differential thrust. Earlier Propulsion Control Augmentation (PCA) work performed by NASA provided for a trajectory controller with pilot command input of glidepath and heading. This work is aimed at demonstrating the flexibility of the IFPCS in providing consistency in flying qualities under a variety of failure scenarios. This report documents the initial design phase where propulsion only is used. Results confirm that the engine dynamics and associated hard nonlineaaities result in poor handling qualities at best. However, as demonstrated in simulation, the IFPCS is capable of results similar to the gain scheduled designs of the NASA PCA work. The IFPCS design uses crude estimates of aircraft behaviour. The adaptive control architecture demonstrates robust stability and provides robust performance. In this work, robust stability means that all states, errors, and adaptive parameters remain bounded under a wide class of uncertainties and input and output disturbances. Robust performance is measured in the quality of the tracking. The results demonstrate the flexibility of the IFPCS architecture and the ability to provide robust performance under a broad range of uncertainty. Robust stability is proved using Lyapunov like analysis. Future development of the IFPCS will include integration of conventional control surfaces with the use of propulsion augmentation, and utilization of available lift and drag devices, to demonstrate adaptive control capability under a greater variety of failure scenarios. Further work will specifically address the effects of actuator saturation.
Resolving Multi-Stakeholder Robustness Asymmetries in Coupled Agricultural and Urban Systems
NASA Astrophysics Data System (ADS)
Li, Yu; Giuliani, Matteo; Castelletti, Andrea; Reed, Patrick
2016-04-01
The evolving pressures from a changing climate and society are increasingly motivating decision support frameworks that consider the robustness of management actions across many possible futures. Focusing on robustness is helpful for investigating key vulnerabilities within current water systems and for identifying potential tradeoffs across candidate adaptation responses. To date, most robustness studies assume a social planner perspective by evaluating highly aggregated measures of system performance. This aggregate treatment of stakeholders does not explore the equity or intrinsic multi-stakeholder conflicts implicit to the system-wide measures of performance benefits and costs. The commonly present heterogeneity across complex management interests, however, may produce strong asymmetries for alternative adaptation options, designed to satisfy system-level targets. In this work, we advance traditional robustness decision frameworks by replacing the centralized social planner with a bottom-up, agent-based approach, where stakeholders are modeled as individuals, and represented as potentially self-interested agents. This agent-based model enables a more explicit exploration of the potential inequities and asymmetries in the distribution of the system-wide benefit. The approach is demonstrated by exploring the potential conflicts between urban flooding and agricultural production in the Lake Como system (Italy). Lake Como is a regulated lake that is operated to supply water to the downstream agricultural district (Muzza as the pilot study area in this work) composed of a set of farmers with heterogeneous characteristics in terms of water allocation, cropping patterns, and land properties. Supplying water to farmers increases the risk of floods along the lakeshore and therefore the system is operated based on the tradeoff between these two objectives. We generated an ensemble of co-varying climate and socio-economic conditions and evaluated the robustness of the current Lake Como system management as well as of possible adaptation options (e.g., improved irrigation efficiency or changes in the dam operating rules). Numerical results show that crops prices and costs are the main drivers of the simulated system failures when evaluated in terms of system-level expected profitability. Analysis conducted at the farmer-agent scale highlights alternatively that temperature and inflows are the critical drivers leading to failures. Finally, we show that the robustness of the considered adaptation options varies spatially, strongly influenced by stakeholders' context, the metrics used to define success, and the assumed preferences for reservoir operations in balancing urban flooding and agricultural productivity.
Interval Analysis Approach to Prototype the Robust Control of the Laboratory Overhead Crane
NASA Astrophysics Data System (ADS)
Smoczek, J.; Szpytko, J.; Hyla, P.
2014-07-01
The paper describes the software-hardware equipment and control-measurement solutions elaborated to prototype the laboratory scaled overhead crane control system. The novelty approach to crane dynamic system modelling and fuzzy robust control scheme design is presented. The iterative procedure for designing a fuzzy scheduling control scheme is developed based on the interval analysis of discrete-time closed-loop system characteristic polynomial coefficients in the presence of rope length and mass of a payload variation to select the minimum set of operating points corresponding to the midpoints of membership functions at which the linear controllers are determined through desired poles assignment. The experimental results obtained on the laboratory stand are presented.
Isarida, Takeo; Sakai, Tetsuya; Kubota, Takayuki; Koga, Miho; Katayama, Yu; Isarida, Toshiko K
2014-04-01
The present study investigated context effects of incidental odors in free recall after a short retention interval (5 min). With a short retention interval, the results are not confounded by extraneous odors or encounters with the experimental odor and possible rehearsal during a long retention interval. A short study time condition (4 s per item), predicted not to be affected by adaptation to the odor, and a long study time condition (8 s per item) were used. Additionally, we introduced a new method for recovery from adaptation, where a dissimilar odor was briefly presented at the beginning of the retention interval, and we demonstrated the effectiveness of this technique. An incidental learning paradigm was used to prevent overshadowing from confounding the results. In three experiments, undergraduates (N = 200) incidentally studied words presented one-by-one and received a free recall test. Two pairs of odors and a third odor having different semantic-differential characteristics were selected from 14 familiar odors. One of the odors was presented during encoding, and during the test, the same odor (same-context condition) or the other odor within the pair (different-context condition) was presented. Without using a recovery-from-adaptation method, a significant odor-context effect appeared in the 4-s/item condition, but not in the 8-s/item condition. Using the recovery-from-adaptation method, context effects were found for both the 8- and the 4-s/item conditions. The size of the recovered odor-context effect did not change with study time. There were no serial position effects. Implications of the present findings are discussed.
A Comprehensive Robust Adaptive Controller for Gust Load Alleviation
Quagliotti, Fulvia
2014-01-01
The objective of this paper is the implementation and validation of an adaptive controller for aircraft gust load alleviation. The contribution of this paper is the design of a robust controller that guarantees the reduction of the gust loads, even when the nominal conditions change. Some preliminary results are presented, considering the symmetric aileron deflection as control device. The proposed approach is validated on subsonic transport aircraft for different mass and flight conditions. Moreover, if the controller parameters are tuned for a specific gust model, even if the gust frequency changes, no parameter retuning is required. PMID:24688411
Adaptive Filter Design Using Type-2 Fuzzy Cerebellar Model Articulation Controller.
Lin, Chih-Min; Yang, Ming-Shu; Chao, Fei; Hu, Xiao-Min; Zhang, Jun
2016-10-01
This paper aims to propose an efficient network and applies it as an adaptive filter for the signal processing problems. An adaptive filter is proposed using a novel interval type-2 fuzzy cerebellar model articulation controller (T2FCMAC). The T2FCMAC realizes an interval type-2 fuzzy logic system based on the structure of the CMAC. Due to the better ability of handling uncertainties, type-2 fuzzy sets can solve some complicated problems with outstanding effectiveness than type-1 fuzzy sets. In addition, the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so that the convergence of the filtering error can be guaranteed. In order to demonstrate the performance of the proposed adaptive T2FCMAC filter, it is tested in signal processing applications, including a nonlinear channel equalization system, a time-varying channel equalization system, and an adaptive noise cancellation system. The advantages of the proposed filter over the other adaptive filters are verified through simulations.
Adaptive 3D single-block grids for the computation of viscous flows around wings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagmeijer, R.; Kok, J.C.
1996-12-31
A robust algorithm for the adaption of a 3D single-block structured grid suitable for the computation of viscous flows around a wing is presented and demonstrated by application to the ONERA M6 wing. The effects of grid adaption on the flow solution and accuracy improvements is analyzed. Reynolds number variations are studied.
Effect Sizes and their Intervals: The Two-Level Repeated Measures Case
ERIC Educational Resources Information Center
Algina, James; Keselman, H. J.; Penfield, Randall D.
2005-01-01
Probability coverage for eight different confidence intervals (CIs) of measures of effect size (ES) in a two-level repeated measures design was investigated. The CIs and measures of ES differed with regard to whether they used least squares or robust estimates of central tendency and variability, whether the end critical points of the interval…
Bone turnover marker reference intervals in young females.
Callegari, Emma T; Gorelik, Alexandra; Garland, Suzanne M; Chiang, Cherie Y; Wark, John D
2017-07-01
Background The use of bone turnover markers in clinical practice and research in younger people is limited by the lack of normative data and understanding of common causes of variation in bone turnover marker values in this demographic. To appropriately interpret bone turnover markers, robust reference intervals specific to age, development and sex are necessary. This study aimed to determine reference intervals of bone turnover markers in females aged 16-25 years participating in the Safe-D study. Methods Participants were recruited through social networking site Facebook and were asked to complete an extensive, online questionnaire and attend a site visit. Participants were tested for serum carboxy-terminal cross-linking telopeptide of type 1 collagen and total procollagen type 1 N-propeptide using the Roche Elecsys automated analyser. Reference intervals were determined using the 2.5th to 97.5th percentiles of normalized bone turnover marker values. Results Of 406 participants, 149 were excluded due to medical conditions or medication use (except hormonal contraception) which may affect bone metabolism. In the remaining 257 participants, the reference interval was 230-1000 ng/L for serum carboxy-terminal cross-linking telopeptide of type 1 collagen and 27-131 µg/L for procollagen type 1 N-propeptide. Both marker concentrations were inversely correlated with age and oral contraceptive pill use. Therefore, intervals specific to these variables were calculated. Conclusions We defined robust reference intervals for cross-linking telopeptide of type 1 collagen and procollagen type 1 N-propeptide in young females grouped by age and contraceptive pill use. We examined bone turnover markers' relationship with several lifestyle, clinical and demographic factors. Our normative intervals should aid interpretation of bone turnover markers in young females particularly in those aged 16 to 19 years where reference intervals are currently provisional.
An Analysis of the Optimal Control Modification Method Applied to Flutter Suppression
NASA Technical Reports Server (NTRS)
Drew, Michael; Nguyen, Nhan T.; Hashemi, Kelley E.; Ting, Eric; Chaparro, Daniel
2017-01-01
Unlike basic Model Reference Adaptive Control (MRAC)l, Optimal Control Modification (OCM) has been shown to be a promising MRAC modification with robustness and analytical properties not present in other adaptive control methods. This paper presents an analysis of the OCM method, and how the asymptotic property of OCM is useful for analyzing and tuning the controller. We begin with a Lyapunov stability proof of an OCM controller having two adaptive gain terms, then the less conservative and easily analyzed OCM asymptotic property is presented. Two numerical examples are used to show how this property can accurately predict steady state stability and quantitative robustness in the presence of time delay, and relative to linear plant perturbations, and nominal Loop Transfer Recovery (LTR) tuning. The asymptotic property of the OCM controller is then used as an aid in tuning the controller applied to a large scale aeroservoelastic longitudinal aircraft model for flutter suppression. Control with OCM adaptive augmentation is shown to improve performance over that of the nominal non-adaptive controller when significant disparities exist between the controller/observer model and the true plant model.
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter
Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Gu, Chengfan
2018-01-01
This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation. PMID:29415509
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter.
Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan
2018-02-06
This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.
Mechanisms for Robust Cognition.
Walsh, Matthew M; Gluck, Kevin A
2015-08-01
To function well in an unpredictable environment using unreliable components, a system must have a high degree of robustness. Robustness is fundamental to biological systems and is an objective in the design of engineered systems such as airplane engines and buildings. Cognitive systems, like biological and engineered systems, exist within variable environments. This raises the question, how do cognitive systems achieve similarly high degrees of robustness? The aim of this study was to identify a set of mechanisms that enhance robustness in cognitive systems. We identify three mechanisms that enhance robustness in biological and engineered systems: system control, redundancy, and adaptability. After surveying the psychological literature for evidence of these mechanisms, we provide simulations illustrating how each contributes to robust cognition in a different psychological domain: psychomotor vigilance, semantic memory, and strategy selection. These simulations highlight features of a mathematical approach for quantifying robustness, and they provide concrete examples of mechanisms for robust cognition. © 2014 Cognitive Science Society, Inc.
Robust mobility in human-populated environments
NASA Astrophysics Data System (ADS)
Gonzalez, Juan Pablo; Phillips, Mike; Neuman, Brad; Likhachev, Max
2012-06-01
Creating robots that can help humans in a variety of tasks requires robust mobility and the ability to safely navigate among moving obstacles. This paper presents an overview of recent research in the Robotics Collaborative Technology Alliance (RCTA) that addresses many of the core requirements for robust mobility in human-populated environments. Safe Interval Path Planning (SIPP) allows for very fast planning in dynamic environments when planning timeminimal trajectories. Generalized Safe Interval Path Planning extends this concept to trajectories that minimize arbitrary cost functions. Finally, generalized PPCP algorithm is used to generate plans that reason about the uncertainty in the predicted trajectories of moving obstacles and try to actively disambiguate the intentions of humans whenever necessary. We show how these approaches consider moving obstacles and temporal constraints and produce high-fidelity paths. Experiments in simulated environments show the performance of the algorithms under different controlled conditions, and experiments on physical mobile robots interacting with humans show how the algorithms perform under the uncertainties of the real world.
Physiological adaptations to interval training and the role of exercise intensity.
MacInnis, Martin J; Gibala, Martin J
2017-05-01
Interval exercise typically involves repeated bouts of relatively intense exercise interspersed by short periods of recovery. A common classification scheme subdivides this method into high-intensity interval training (HIIT; 'near maximal' efforts) and sprint interval training (SIT; 'supramaximal' efforts). Both forms of interval training induce the classic physiological adaptations characteristic of moderate-intensity continuous training (MICT) such as increased aerobic capacity (V̇O2 max ) and mitochondrial content. This brief review considers the role of exercise intensity in mediating physiological adaptations to training, with a focus on the capacity for aerobic energy metabolism. With respect to skeletal muscle adaptations, cellular stress and the resultant metabolic signals for mitochondrial biogenesis depend largely on exercise intensity, with limited work suggesting that increases in mitochondrial content are superior after HIIT compared to MICT, at least when matched-work comparisons are made within the same individual. It is well established that SIT increases mitochondrial content to a similar extent to MICT despite a reduced exercise volume. At the whole-body level, V̇O2 max is generally increased more by HIIT than MICT for a given training volume, whereas SIT and MICT similarly improve V̇O2 max despite differences in training volume. There is less evidence available regarding the role of exercise intensity in mediating changes in skeletal muscle capillary density, maximum stroke volume and cardiac output, and blood volume. Furthermore, the interactions between intensity and duration and frequency have not been thoroughly explored. While interval training is clearly a potent stimulus for physiological remodelling in humans, the integrative response to this type of exercise warrants further attention, especially in comparison to traditional endurance training. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Physiological adaptations to interval training and the role of exercise intensity
MacInnis, Martin J.
2016-01-01
Abstract Interval exercise typically involves repeated bouts of relatively intense exercise interspersed by short periods of recovery. A common classification scheme subdivides this method into high‐intensity interval training (HIIT; ‘near maximal’ efforts) and sprint interval training (SIT; ‘supramaximal’ efforts). Both forms of interval training induce the classic physiological adaptations characteristic of moderate‐intensity continuous training (MICT) such as increased aerobic capacity (V˙O2 max ) and mitochondrial content. This brief review considers the role of exercise intensity in mediating physiological adaptations to training, with a focus on the capacity for aerobic energy metabolism. With respect to skeletal muscle adaptations, cellular stress and the resultant metabolic signals for mitochondrial biogenesis depend largely on exercise intensity, with limited work suggesting that increases in mitochondrial content are superior after HIIT compared to MICT, at least when matched‐work comparisons are made within the same individual. It is well established that SIT increases mitochondrial content to a similar extent to MICT despite a reduced exercise volume. At the whole‐body level, V˙O2 max is generally increased more by HIIT than MICT for a given training volume, whereas SIT and MICT similarly improve V˙O2 max despite differences in training volume. There is less evidence available regarding the role of exercise intensity in mediating changes in skeletal muscle capillary density, maximum stroke volume and cardiac output, and blood volume. Furthermore, the interactions between intensity and duration and frequency have not been thoroughly explored. While interval training is clearly a potent stimulus for physiological remodelling in humans, the integrative response to this type of exercise warrants further attention, especially in comparison to traditional endurance training. PMID:27748956
Stock, J T
2006-10-01
Human skeletal robusticity is influenced by a number of factors, including habitual behavior, climate, and physique. Conflicting evidence as to the relative importance of these factors complicates our ability to interpret variation in robusticity in the past. It remains unclear how the pattern of robusticity in the skeleton relates to adaptive constraints on skeletal morphology. This study investigates variation in robusticity in claviculae, humeri, ulnae, femora, and tibiae among human foragers, relative to climate and habitual behavior. Cross-sectional geometric properties of the diaphyses are compared among hunter-gatherers from southern Africa (n = 83), the Andaman Islands (n = 32), Tierra del Fuego (n = 34), and the Great Lakes region (n = 15). The robusticity of both proximal and distal limb segments correlates negatively with climate and positively with patterns of terrestrial and marine mobility among these groups. However, the relative correspondence between robusticity and these factors varies throughout the body. In the lower limb, partial correlations between polar second moment of area (J(0.73)) and climate decrease from proximal to distal section locations, while this relationship increases from proximal to distal in the upper limb. Patterns of correlation between robusticity and mobility, either terrestrial or marine, generally increase from proximal to distal in the lower and upper limbs, respectively. This suggests that there may be a stronger relationship between observed patterns of diaphyseal hypertrophy and behavioral differences between populations in distal elements. Despite this trend, strength circularity indices at the femoral midshaft show the strongest correspondence with terrestrial mobility, particularly among males.
A Framework for Speech Activity Detection Using Adaptive Auditory Receptive Fields.
Carlin, Michael A; Elhilali, Mounya
2015-12-01
One of the hallmarks of sound processing in the brain is the ability of the nervous system to adapt to changing behavioral demands and surrounding soundscapes. It can dynamically shift sensory and cognitive resources to focus on relevant sounds. Neurophysiological studies indicate that this ability is supported by adaptively retuning the shapes of cortical spectro-temporal receptive fields (STRFs) to enhance features of target sounds while suppressing those of task-irrelevant distractors. Because an important component of human communication is the ability of a listener to dynamically track speech in noisy environments, the solution obtained by auditory neurophysiology implies a useful adaptation strategy for speech activity detection (SAD). SAD is an important first step in a number of automated speech processing systems, and performance is often reduced in highly noisy environments. In this paper, we describe how task-driven adaptation is induced in an ensemble of neurophysiological STRFs, and show how speech-adapted STRFs reorient themselves to enhance spectro-temporal modulations of speech while suppressing those associated with a variety of nonspeech sounds. We then show how an adapted ensemble of STRFs can better detect speech in unseen noisy environments compared to an unadapted ensemble and a noise-robust baseline. Finally, we use a stimulus reconstruction task to demonstrate how the adapted STRF ensemble better captures the spectrotemporal modulations of attended speech in clean and noisy conditions. Our results suggest that a biologically plausible adaptation framework can be applied to speech processing systems to dynamically adapt feature representations for improving noise robustness.
Robust functional regression model for marginal mean and subject-specific inferences.
Cao, Chunzheng; Shi, Jian Qing; Lee, Youngjo
2017-01-01
We introduce flexible robust functional regression models, using various heavy-tailed processes, including a Student t-process. We propose efficient algorithms in estimating parameters for the marginal mean inferences and in predicting conditional means as well as interpolation and extrapolation for the subject-specific inferences. We develop bootstrap prediction intervals (PIs) for conditional mean curves. Numerical studies show that the proposed model provides a robust approach against data contamination or distribution misspecification, and the proposed PIs maintain the nominal confidence levels. A real data application is presented as an illustrative example.
Robust estimation approach for blind denoising.
Rabie, Tamer
2005-11-01
This work develops a new robust statistical framework for blind image denoising. Robust statistics addresses the problem of estimation when the idealized assumptions about a system are occasionally violated. The contaminating noise in an image is considered as a violation of the assumption of spatial coherence of the image intensities and is treated as an outlier random variable. A denoised image is estimated by fitting a spatially coherent stationary image model to the available noisy data using a robust estimator-based regression method within an optimal-size adaptive window. The robust formulation aims at eliminating the noise outliers while preserving the edge structures in the restored image. Several examples demonstrating the effectiveness of this robust denoising technique are reported and a comparison with other standard denoising filters is presented.
Environmental change makes robust ecological networks fragile
Strona, Giovanni; Lafferty, Kevin D.
2016-01-01
Complex ecological networks appear robust to primary extinctions, possibly due to consumers’ tendency to specialize on dependable (available and persistent) resources. However, modifications to the conditions under which the network has evolved might alter resource dependability. Here, we ask whether adaptation to historical conditions can increase community robustness, and whether such robustness can protect communities from collapse when conditions change. Using artificial life simulations, we first evolved digital consumer-resource networks that we subsequently subjected to rapid environmental change. We then investigated how empirical host–parasite networks would respond to historical, random and expected extinction sequences. In both the cases, networks were far more robust to historical conditions than new ones, suggesting that new environmental challenges, as expected under global change, might collapse otherwise robust natural ecosystems.
Absolute phase estimation: adaptive local denoising and global unwrapping.
Bioucas-Dias, Jose; Katkovnik, Vladimir; Astola, Jaakko; Egiazarian, Karen
2008-10-10
The paper attacks absolute phase estimation with a two-step approach: the first step applies an adaptive local denoising scheme to the modulo-2 pi noisy phase; the second step applies a robust phase unwrapping algorithm to the denoised modulo-2 pi phase obtained in the first step. The adaptive local modulo-2 pi phase denoising is a new algorithm based on local polynomial approximations. The zero-order and the first-order approximations of the phase are calculated in sliding windows of varying size. The zero-order approximation is used for pointwise adaptive window size selection, whereas the first-order approximation is used to filter the phase in the obtained windows. For phase unwrapping, we apply the recently introduced robust (in the sense of discontinuity preserving) PUMA unwrapping algorithm [IEEE Trans. Image Process.16, 698 (2007)] to the denoised wrapped phase. Simulations give evidence that the proposed algorithm yields state-of-the-art performance, enabling strong noise attenuation while preserving image details. (c) 2008 Optical Society of America
The role of adaptive immunity as an ecological filter on the gut microbiota in zebrafish.
Stagaman, Keaton; Burns, Adam R; Guillemin, Karen; Bohannan, Brendan Jm
2017-07-01
All animals live in intimate association with communities of microbes, collectively referred to as their microbiota. Certain host traits can influence which microbial taxa comprise the microbiota. One potentially important trait in vertebrate animals is the adaptive immune system, which has been hypothesized to act as an ecological filter, promoting the presence of some microbial taxa over others. Here we surveyed the intestinal microbiota of 68 wild-type zebrafish, with functional adaptive immunity, and 61 rag1 - zebrafish, lacking functional B- and T-cell receptors, to test the role of adaptive immunity as an ecological filter on the intestinal microbiota. In addition, we tested the robustness of adaptive immunity's filtering effects to host-host interaction by comparing the microbiota of fish populations segregated by genotype to those containing both genotypes. The presence of adaptive immunity individualized the gut microbiota and decreased the contributions of neutral processes to gut microbiota assembly. Although mixing genotypes led to increased phylogenetic diversity in each, there was no significant effect of adaptive immunity on gut microbiota composition in either housing condition. Interestingly, the most robust effect on microbiota composition was co-housing within a tank. In all, these results suggest that adaptive immunity has a role as an ecological filter of the zebrafish gut microbiota, but it can be overwhelmed by other factors, including transmission of microbes among hosts.
Feedback system design with an uncertain plant
NASA Technical Reports Server (NTRS)
Milich, D.; Valavani, L.; Athans, M.
1986-01-01
A method is developed to design a fixed-parameter compensator for a linear, time-invariant, SISO (single-input single-output) plant model characterized by significant structured, as well as unstructured, uncertainty. The controller minimizes the H(infinity) norm of the worst-case sensitivity function over the operating band and the resulting feedback system exhibits robust stability and robust performance. It is conjectured that such a robust nonadaptive control design technique can be used on-line in an adaptive control system.
Assessing climate change-robustness of protected area management plans-The case of Germany.
Geyer, Juliane; Kreft, Stefan; Jeltsch, Florian; Ibisch, Pierre L
2017-01-01
Protected areas are arguably the most important instrument of biodiversity conservation. To keep them fit under climate change, their management needs to be adapted to address related direct and indirect changes. In our study we focus on the adaptation of conservation management planning, evaluating management plans of 60 protected areas throughout Germany with regard to their climate change-robustness. First, climate change-robust conservation management was defined using 11 principles and 44 criteria, which followed an approach similar to sustainability standards. We then evaluated the performance of individual management plans concerning the climate change-robustness framework. We found that climate change-robustness of protected areas hardly exceeded 50 percent of the potential performance, with most plans ranking in the lower quarter. Most Natura 2000 protected areas, established under conservation legislation of the European Union, belong to the sites with especially poor performance, with lower values in smaller areas. In general, the individual principles showed very different rates of accordance with our principles, but similarly low intensity. Principles with generally higher performance values included holistic knowledge management, public accountability and acceptance as well as systemic and strategic coherence. Deficiencies were connected to dealing with the future and uncertainty. Lastly, we recommended the presented principles and criteria as essential guideposts that can be used as a checklist for working towards more climate change-robust planning.
Assessing climate change-robustness of protected area management plans—The case of Germany
Geyer, Juliane; Kreft, Stefan; Jeltsch, Florian; Ibisch, Pierre L.
2017-01-01
Protected areas are arguably the most important instrument of biodiversity conservation. To keep them fit under climate change, their management needs to be adapted to address related direct and indirect changes. In our study we focus on the adaptation of conservation management planning, evaluating management plans of 60 protected areas throughout Germany with regard to their climate change-robustness. First, climate change-robust conservation management was defined using 11 principles and 44 criteria, which followed an approach similar to sustainability standards. We then evaluated the performance of individual management plans concerning the climate change-robustness framework. We found that climate change-robustness of protected areas hardly exceeded 50 percent of the potential performance, with most plans ranking in the lower quarter. Most Natura 2000 protected areas, established under conservation legislation of the European Union, belong to the sites with especially poor performance, with lower values in smaller areas. In general, the individual principles showed very different rates of accordance with our principles, but similarly low intensity. Principles with generally higher performance values included holistic knowledge management, public accountability and acceptance as well as systemic and strategic coherence. Deficiencies were connected to dealing with the future and uncertainty. Lastly, we recommended the presented principles and criteria as essential guideposts that can be used as a checklist for working towards more climate change-robust planning. PMID:28982187
Astorino, Todd A.; Schubert, Matthew M.
2014-01-01
Alterations in maximal oxygen uptake (VO2max), heart rate (HR), and fat oxidation occur in response to chronic endurance training. However, many studies report frequent incidence of “non-responders” who do not adapt to continuous moderate exercise. Whether this is the case in response to high intensity interval training (HIT), which elicits similar adaptations as endurance training, is unknown. The aim of this retrospective study was to examine individual responses to two paradigms of interval training. In the first study (study 1), twenty active men and women (age and baseline VO2max = 24.0±4.6 yr and 42.8±4.8 mL/kg/min) performed 6 d of sprint interval training (SIT) consisting of 4–6 Wingate tests per day, while in a separate study (study 2), 20 sedentary women (age and baseline VO2max = 23.7±6.2 yr and 30.0±4.9 mL/kg/min) performed 12 wk of high-volume HIT at workloads ranging from 60–90% maximal workload. Individual changes in VO2max, HR, and fat oxidation were examined in each study, and multiple regression analysis was used to identify predictors of training adaptations to SIT and HIT. Data showed high frequency of increased VO2max (95%) and attenuated exercise HR (85%) in response to HIT, and low frequency of response for VO2max (65%) and exercise HR (55%) via SIT. Frequency of improved fat oxidation was similar (60–65%) across regimens. Only one participant across both interventions showed non-response for all variables. Baseline values of VO2max, exercise HR, respiratory exchange ratio, and body fat were significant predictors of adaptations to interval training. Frequency of positive responses to interval training seems to be greater in response to prolonged, higher volume interval training compared to similar durations of endurance training. PMID:24847797
Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors
Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin
2018-01-01
Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison. PMID:29614028
Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors.
Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin
2018-04-03
Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison.
Scale-adaptive compressive tracking with feature integration
NASA Astrophysics Data System (ADS)
Liu, Wei; Li, Jicheng; Chen, Xiao; Li, Shuxin
2016-05-01
Numerous tracking-by-detection methods have been proposed for robust visual tracking, among which compressive tracking (CT) has obtained some promising results. A scale-adaptive CT method based on multifeature integration is presented to improve the robustness and accuracy of CT. We introduce a keypoint-based model to achieve the accurate scale estimation, which can additionally give a prior location of the target. Furthermore, by the high efficiency of data-independent random projection matrix, multiple features are integrated into an effective appearance model to construct the naïve Bayes classifier. At last, an adaptive update scheme is proposed to update the classifier conservatively. Experiments on various challenging sequences demonstrate substantial improvements by our proposed tracker over CT and other state-of-the-art trackers in terms of dealing with scale variation, abrupt motion, deformation, and illumination changes.
Zhang, Zhongcai; Wu, Yuqiang; Huang, Jinming
2016-11-01
The antiswing control and accurate positioning are simultaneously investigated for underactuated crane systems in the presence of two parallel payloads on the trolley and rail length limitation. The equations of motion for the crane system in question are established via the Euler-Lagrange equation. An adaptive control strategy is proposed with the help of system energy function and energy shaping technique. Stability analysis shows that under the designed adaptive controller, the payload swings can be suppressed ultimately and the trolley can be regulated to the destination while not exceeding the pre-specified boundaries. Simulation results are provided to show the satisfactory control performances of the presented control method in terms of working efficiency as well as robustness with respect to external disturbances. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Wharfe, Michaela D; Wyrwoll, Caitlin S; Waddell, Brendan J; Mark, Peter J
2016-09-01
Maternal adaptations in lipid metabolism are crucial for pregnancy success due to the role of white adipose tissue as an energy store and the dynamic nature of energy needs across gestation. Because lipid metabolism is regulated by the rhythmic expression of clock genes, it was hypothesized that maternal metabolic adaptations involve changes in both adipose clock gene expression and the rhythmic expression of downstream metabolic genes. Maternal core body temperature (Tc) was investigated as a possible mechanism driving pregnancy-induced changes in clock gene expression. Gonadal adipose tissue and plasma were collected from C57BL/6J mice before and on days 6, 10, 14, and 18 of pregnancy (term 19 d) at 4-hour intervals across a 24-hour period. Adipose expression of clock genes and downstream metabolic genes were determined by quantitative RT-PCR, and Tc was measured by intraperitoneal temperature loggers. Adipose clock gene expression showed robust rhythmicity throughout pregnancy, but absolute levels varied substantially across gestation. Rhythmic expression of the metabolic genes Lipe, Pnpla2, and Lpl was clearly evident before pregnancy; however, this rhythmicity was lost with the onset of pregnancy. Tc rhythm was significantly altered by pregnancy, with a 65% decrease in amplitude by term and a 0.61°C decrease in mesor between days 6 and 18. These changes in Tc, however, did not appear to be linked to adipose clock gene expression across pregnancy. Overall, our data show marked adaptations in the adipose clock in pregnancy, with an apparent decoupling of adipose clock and lipolytic/lipogenic gene rhythms from early in gestation.
ERIC Educational Resources Information Center
Algina, James; Keselman, H. J.; Penfield, Randall D.
2005-01-01
The authors argue that a robust version of Cohen's effect size constructed by replacing population means with 20% trimmed means and the population standard deviation with the square root of a 20% Winsorized variance is a better measure of population separation than is Cohen's effect size. The authors investigated coverage probability for…
Reasoned Decision Making Without Math? Adaptability and Robustness in Response to Surprise.
Smithson, Michael; Ben-Haim, Yakov
2015-10-01
Many real-world planning and decision problems are far too uncertain, too variable, and too complicated to support realistic mathematical models. Nonetheless, we explain the usefulness, in these situations, of qualitative insights from mathematical decision theory. We demonstrate the integration of info-gap robustness in decision problems in which surprise and ignorance are predominant and where personal and collective psychological factors are critical. We present practical guidelines for employing adaptable-choice strategies as a proxy for robustness against uncertainty. These guidelines include being prepared for more surprises than we intuitively expect, retaining sufficiently many options to avoid premature closure and conflicts among preferences, and prioritizing outcomes that are steerable, whose consequences are observable, and that do not entail sunk costs, resource depletion, or high transition costs. We illustrate these concepts and guidelines with the example of the medical management of the 2003 SARS outbreak in Vietnam. © 2015 Society for Risk Analysis.
Khan, Arif Ul Maula; Torelli, Angelo; Wolf, Ivo; Gretz, Norbert
2018-05-08
In biological assays, automated cell/colony segmentation and counting is imperative owing to huge image sets. Problems occurring due to drifting image acquisition conditions, background noise and high variation in colony features in experiments demand a user-friendly, adaptive and robust image processing/analysis method. We present AutoCellSeg (based on MATLAB) that implements a supervised automatic and robust image segmentation method. AutoCellSeg utilizes multi-thresholding aided by a feedback-based watershed algorithm taking segmentation plausibility criteria into account. It is usable in different operation modes and intuitively enables the user to select object features interactively for supervised image segmentation method. It allows the user to correct results with a graphical interface. This publicly available tool outperforms tools like OpenCFU and CellProfiler in terms of accuracy and provides many additional useful features for end-users.
NASA Technical Reports Server (NTRS)
Siwakosit, W.; Hess, R. A.; Bacon, Bart (Technical Monitor); Burken, John (Technical Monitor)
2000-01-01
A multi-input, multi-output reconfigurable flight control system design utilizing a robust controller and an adaptive filter is presented. The robust control design consists of a reduced-order, linear dynamic inversion controller with an outer-loop compensation matrix derived from Quantitative Feedback Theory (QFT). A principle feature of the scheme is placement of the adaptive filter in series with the QFT compensator thus exploiting the inherent robustness of the nominal flight control system in the presence of plant uncertainties. An example of the scheme is presented in a pilot-in-the-loop computer simulation using a simplified model of the lateral-directional dynamics of the NASA F18 High Angle of Attack Research Vehicle (HARV) that included nonlinear anti-wind up logic and actuator limitations. Prediction of handling qualities and pilot-induced oscillation tendencies in the presence of these nonlinearities is included in the example.
Robust Video Stabilization Using Particle Keypoint Update and l1-Optimized Camera Path
Jeon, Semi; Yoon, Inhye; Jang, Jinbeum; Yang, Seungji; Kim, Jisung; Paik, Joonki
2017-01-01
Acquisition of stabilized video is an important issue for various type of digital cameras. This paper presents an adaptive camera path estimation method using robust feature detection to remove shaky artifacts in a video. The proposed algorithm consists of three steps: (i) robust feature detection using particle keypoints between adjacent frames; (ii) camera path estimation and smoothing; and (iii) rendering to reconstruct a stabilized video. As a result, the proposed algorithm can estimate the optimal homography by redefining important feature points in the flat region using particle keypoints. In addition, stabilized frames with less holes can be generated from the optimal, adaptive camera path that minimizes a temporal total variation (TV). The proposed video stabilization method is suitable for enhancing the visual quality for various portable cameras and can be applied to robot vision, driving assistant systems, and visual surveillance systems. PMID:28208622
Robust Adaptive Control Using a Filtering Action
2009-09-01
research performed on this class of control systems , sensitivity to external disturbances and modeling errors together with poor transient response...dissertation, we address the problems of designing a class of Adaptive Control systems which yield fast adaptation, thus good transient response, and...unable to stabilize the system . Although this approach requires more knowledge about the system in order to control it, it is still attractive in cases
Yazdani, Sahar; Haeri, Mohammad
2017-11-01
In this work, we study the flocking problem of multi-agent systems with uncertain dynamics subject to actuator failure and external disturbances. By considering some standard assumptions, we propose a robust adaptive fault tolerant protocol for compensating of the actuator bias fault, the partial loss of actuator effectiveness fault, the model uncertainties, and external disturbances. Under the designed protocol, velocity convergence of agents to that of virtual leader is guaranteed while the connectivity preservation of network and collision avoidance among agents are ensured as well. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Robust Adaptive Dynamic Programming of Two-Player Zero-Sum Games for Continuous-Time Linear Systems.
Fu, Yue; Fu, Jun; Chai, Tianyou
2015-12-01
In this brief, an online robust adaptive dynamic programming algorithm is proposed for two-player zero-sum games of continuous-time unknown linear systems with matched uncertainties, which are functions of system outputs and states of a completely unknown exosystem. The online algorithm is developed using the policy iteration (PI) scheme with only one iteration loop. A new analytical method is proposed for convergence proof of the PI scheme. The sufficient conditions are given to guarantee globally asymptotic stability and suboptimal property of the closed-loop system. Simulation studies are conducted to illustrate the effectiveness of the proposed method.
Iqbal, Muhammad; Rehan, Muhammad; Hong, Keum-Shik
2018-01-01
This paper exploits the dynamical modeling, behavior analysis, and synchronization of a network of four different FitzHugh–Nagumo (FHN) neurons with unknown parameters linked in a ring configuration under direction-dependent coupling. The main purpose is to investigate a robust adaptive control law for the synchronization of uncertain and perturbed neurons, communicating in a medium of bidirectional coupling. The neurons are assumed to be different and interconnected in a ring structure. The strength of the gap junctions is taken to be different for each link in the network, owing to the inter-neuronal coupling medium properties. Robust adaptive control mechanism based on Lyapunov stability analysis is employed and theoretical criteria are derived to realize the synchronization of the network of four FHN neurons in a ring form with unknown parameters under direction-dependent coupling and disturbances. The proposed scheme for synchronization of dissimilar neurons, under external electrical stimuli, coupled in a ring communication topology, having all parameters unknown, and subject to directional coupling medium and perturbations, is addressed for the first time as per our knowledge. To demonstrate the efficacy of the proposed strategy, simulation results are provided. PMID:29535622
Simple robust control laws for robot manipulators. Part 1: Non-adaptive case
NASA Technical Reports Server (NTRS)
Wen, J. T.; Bayard, D. S.
1987-01-01
A new class of exponentially stabilizing control laws for joint level control of robot arms is introduced. It has been recently recognized that the nonlinear dynamics associated with robotic manipulators have certain inherent passivity properties. More specifically, the derivation of the robotic dynamic equations from the Hamilton's principle gives rise to natural Lyapunov functions for control design based on total energy considerations. Through a slight modification of the energy Lyapunov function and the use of a convenient lemma to handle third order terms in the Lyapunov function derivatives, closed loop exponential stability for both the set point and tracking control problem is demonstrated. The exponential convergence property also leads to robustness with respect to frictions, bounded modeling errors and instrument noise. In one new design, the nonlinear terms are decoupled from real-time measurements which completely removes the requirement for on-line computation of nonlinear terms in the controller implementation. In general, the new class of control laws offers alternatives to the more conventional computed torque method, providing tradeoffs between robustness, computation and convergence properties. Furthermore, these control laws have the unique feature that they can be adapted in a very simple fashion to achieve asymptotically stable adaptive control.
Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory
Tao, Qing
2017-01-01
Online time series prediction is the mainstream method in a wide range of fields, ranging from speech analysis and noise cancelation to stock market analysis. However, the data often contains many outliers with the increasing length of time series in real world. These outliers can mislead the learned model if treated as normal points in the process of prediction. To address this issue, in this paper, we propose a robust and adaptive online gradient learning method, RoAdam (Robust Adam), for long short-term memory (LSTM) to predict time series with outliers. This method tunes the learning rate of the stochastic gradient algorithm adaptively in the process of prediction, which reduces the adverse effect of outliers. It tracks the relative prediction error of the loss function with a weighted average through modifying Adam, a popular stochastic gradient method algorithm for training deep neural networks. In our algorithm, the large value of the relative prediction error corresponds to a small learning rate, and vice versa. The experiments on both synthetic data and real time series show that our method achieves better performance compared to the existing methods based on LSTM. PMID:29391864
Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory.
Yang, Haimin; Pan, Zhisong; Tao, Qing
2017-01-01
Online time series prediction is the mainstream method in a wide range of fields, ranging from speech analysis and noise cancelation to stock market analysis. However, the data often contains many outliers with the increasing length of time series in real world. These outliers can mislead the learned model if treated as normal points in the process of prediction. To address this issue, in this paper, we propose a robust and adaptive online gradient learning method, RoAdam (Robust Adam), for long short-term memory (LSTM) to predict time series with outliers. This method tunes the learning rate of the stochastic gradient algorithm adaptively in the process of prediction, which reduces the adverse effect of outliers. It tracks the relative prediction error of the loss function with a weighted average through modifying Adam, a popular stochastic gradient method algorithm for training deep neural networks. In our algorithm, the large value of the relative prediction error corresponds to a small learning rate, and vice versa. The experiments on both synthetic data and real time series show that our method achieves better performance compared to the existing methods based on LSTM.
Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang
2010-09-01
This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.
Assessing climate adaptation options and uncertainties for cereal systems in West Africa
NASA Astrophysics Data System (ADS)
Guan, K.; Sultan, B.; Biasutti, M.; Lobell, D. B.
2015-12-01
The already fragile agriculture production system in West Africa faces further challenges in meeting food security in the coming decades, primarily due to a fast increasing population and risks of climate change. Successful adaptation of agriculture should not only benefit in the current climate but should also reduce negative (or enhance positive) impacts for climate change. Assessment of various possible adaptation options and their uncertainties provides key information for prioritizing adaptation investments. Here, based on the several robust aspects of climate projections in this region (i.e. temperature increases and rainfall pattern shifts), we use two well-validated crop models (i.e. APSIM and SARRA-H) and an ensemble of downscaled climate forcing to assess five possible and realistic adaptation options (late sowing, intensification, thermal time increase, water harvesting and increased resilience to heat stress) in West Africa for the staple crop production of sorghum. We adopt a new assessment framework to account for both the impacts of adaptation options in current climate and their ability to reduce impacts of future climate change, and also consider changes in both mean yield and its variability. Our results reveal that most proposed "adaptation options" are not more beneficial in the future than in the current climate, i.e. not really reduce the climate change impacts. Increased temperature resilience during grain number formation period is the main adaptation that emerges. We also find that changing from the traditional to modern cultivar, and later sowing in West Sahel appear to be robust adaptations.
Schlecht, Stephen H; Jepsen, Karl J
2013-09-01
Understanding the functional integration of skeletal traits and how they naturally vary within and across populations will benefit assessments of functional adaptation directed towards interpreting bone stiffness in contemporary and past humans. Moreover, investigating how these traits intraskeletally vary will guide us closer towards predicting fragility from a single skeletal site. Using an osteological collection of 115 young adult male and female African-Americans, we assessed the functional relationship between bone robustness (i.e. total area/length), cortical tissue mineral density (Ct.TMD), and cortical area (Ct.Ar) for the upper and lower limbs. All long bones demonstrated significant trait covariance (p < 0.005) independent of body size, with slender bones having 25-50% less Ct.Ar and 5-8% higher Ct.TMD compared to robust bones. Robustness statistically explained 10.2-28% of Ct.TMD and 26.6-64.6% of Ct.Ar within male and female skeletal elements. This covariance is systemic throughout the skeleton, with either the slender or robust phenotype consistently represented within all long bones for each individual. These findings suggest that each person attains a unique trait set by adulthood that is both predictable by robustness and partially independent of environmental influences. The variation in these functionally integrated traits allows for the maximization of tissue stiffness and minimization of mass so that regardless of which phenotype is present, a given bone is reasonably stiff and strong, and sufficiently adapted to perform routine, habitual loading activities. Covariation intrinsic to functional adaptation suggests that whole bone stiffness depends upon particular sets of traits acquired during growth, presumably through differing levels of cellular activity, resulting in differing tissue morphology and composition. The outcomes of this intraskeletal examination of robustness and its correlates may have significant value in our progression towards improved clinical assessments of bone strength and fragility. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, Amy E.; Graham, Emily B.; Crump, Alex R.
The parafluvial hyporheic zone combines the heightened biogeochemical and microbial interactions indicative of a hyporheic region with direct atmospheric/terrestrial inputs and the effects of wet–dry cycles. Therefore, understanding biogeochemical cycling and microbial interactions in this ecotone is fundamental to understanding biogeochemical cycling at the aquatic–terrestrial interface and to creating robust hydrobiogeochemical models of dynamic river corridors. We aimed to (i) characterize biogeochemical and microbial differences in the parafluvial hyporheic zone across a small spatial domain (6 lateral meters) that spans a breadth of inundation histories and (ii) examine how parafluvial hyporheic sediments respond to laboratory-simulated re-inundation. Surface sediment was collected at fourmore » elevations along transects perpendicular to flow of the Columbia River, eastern WA, USA. The sediments were inundated by the river 0, 13, 127, and 398 days prior to sampling. Spatial variation in environmental variables (organic matter, moisture, nitrate, glucose, %C, %N) and microbial communities (16S and internal transcribed spacer (ITS) rRNA gene sequencing, qPCR) were driven by differences in inundation history. Microbial respiration did not differ significantly across inundation histories prior to forced inundation in laboratory incubations. Forced inundation suppressed microbial respiration across all histories, but the degree of suppression was dramatically different between the sediments saturated and unsaturated at the time of sample collection, indicating a binary threshold response to re-inundation. We present a conceptual model in which irregular hydrologic fluctuations facilitate microbial communities adapted to local conditions and a relatively high flux of CO 2. Upon rewetting, microbial communities are initially suppressed metabolically, which results in lower CO 2 flux rates primarily due to suppression of fungal respiration. Following prolonged inundation, the microbial community adapts to saturation by shifting composition, and the CO 2 flux rebounds to prior levels due to the subsequent change in respiration. Our results indicate that the time between inundation events can push the system into alternate states: we suggest (i) that, above some threshold of inundation interval, re-inundation suppresses respiration to a consistent, low rate and (ii) that, below some inundation interval, re-inundation has a minor effect on respiration. In conclusion, extending reactive transport models to capture processes that govern such dynamics will provide more robust predictions of river corridor biogeochemical function under altered surface water flow regimes in both managed and natural watersheds.« less
Goldman, Amy E.; Graham, Emily B.; Crump, Alex R.; ...
2017-09-21
The parafluvial hyporheic zone combines the heightened biogeochemical and microbial interactions indicative of a hyporheic region with direct atmospheric/terrestrial inputs and the effects of wet–dry cycles. Therefore, understanding biogeochemical cycling and microbial interactions in this ecotone is fundamental to understanding biogeochemical cycling at the aquatic–terrestrial interface and to creating robust hydrobiogeochemical models of dynamic river corridors. We aimed to (i) characterize biogeochemical and microbial differences in the parafluvial hyporheic zone across a small spatial domain (6 lateral meters) that spans a breadth of inundation histories and (ii) examine how parafluvial hyporheic sediments respond to laboratory-simulated re-inundation. Surface sediment was collected at fourmore » elevations along transects perpendicular to flow of the Columbia River, eastern WA, USA. The sediments were inundated by the river 0, 13, 127, and 398 days prior to sampling. Spatial variation in environmental variables (organic matter, moisture, nitrate, glucose, %C, %N) and microbial communities (16S and internal transcribed spacer (ITS) rRNA gene sequencing, qPCR) were driven by differences in inundation history. Microbial respiration did not differ significantly across inundation histories prior to forced inundation in laboratory incubations. Forced inundation suppressed microbial respiration across all histories, but the degree of suppression was dramatically different between the sediments saturated and unsaturated at the time of sample collection, indicating a binary threshold response to re-inundation. We present a conceptual model in which irregular hydrologic fluctuations facilitate microbial communities adapted to local conditions and a relatively high flux of CO 2. Upon rewetting, microbial communities are initially suppressed metabolically, which results in lower CO 2 flux rates primarily due to suppression of fungal respiration. Following prolonged inundation, the microbial community adapts to saturation by shifting composition, and the CO 2 flux rebounds to prior levels due to the subsequent change in respiration. Our results indicate that the time between inundation events can push the system into alternate states: we suggest (i) that, above some threshold of inundation interval, re-inundation suppresses respiration to a consistent, low rate and (ii) that, below some inundation interval, re-inundation has a minor effect on respiration. In conclusion, extending reactive transport models to capture processes that govern such dynamics will provide more robust predictions of river corridor biogeochemical function under altered surface water flow regimes in both managed and natural watersheds.« less
Organizational Adaptative Behavior: The Complex Perspective of Individuals-Tasks Interaction
NASA Astrophysics Data System (ADS)
Wu, Jiang; Sun, Duoyong; Hu, Bin; Zhang, Yu
Organizations with different organizational structures have different organizational behaviors when responding environmental changes. In this paper, we use a computational model to examine organizational adaptation on four dimensions: Agility, Robustness, Resilience, and Survivability. We analyze the dynamics of organizational adaptation by a simulation study from a complex perspective of the interaction between tasks and individuals in a sales enterprise. The simulation studies in different scenarios show that more flexible communication between employees and less hierarchy level with the suitable centralization can improve organizational adaptation.
Asymptotic Linearity of Optimal Control Modification Adaptive Law with Analytical Stability Margins
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
Optimal control modification has been developed to improve robustness to model-reference adaptive control. For systems with linear matched uncertainty, optimal control modification adaptive law can be shown by a singular perturbation argument to possess an outer solution that exhibits a linear asymptotic property. Analytical expressions of phase and time delay margins for the outer solution can be obtained. Using the gradient projection operator, a free design parameter of the adaptive law can be selected to satisfy stability margins.
Environmental change makes robust ecological networks fragile
Strona, Giovanni; Lafferty, Kevin D.
2016-01-01
Complex ecological networks appear robust to primary extinctions, possibly due to consumers' tendency to specialize on dependable (available and persistent) resources. However, modifications to the conditions under which the network has evolved might alter resource dependability. Here, we ask whether adaptation to historical conditions can increase community robustness, and whether such robustness can protect communities from collapse when conditions change. Using artificial life simulations, we first evolved digital consumer-resource networks that we subsequently subjected to rapid environmental change. We then investigated how empirical host–parasite networks would respond to historical, random and expected extinction sequences. In both the cases, networks were far more robust to historical conditions than new ones, suggesting that new environmental challenges, as expected under global change, might collapse otherwise robust natural ecosystems. PMID:27511722
Flecainide attenuates rate adaptation of ventricular repolarization in guinea-pig heart.
Osadchii, Oleg E
2016-01-01
Flecainide is class Ic antiarrhythmic agent that was found to increase the risk of sudden cardiac death. Arrhythmic responses to flecainide could be precipitated by exercise, suggesting a role played by inappropriate rate adaptation of ventricular repolarization. This study therefore examined flecainide effect on adaptation of the QT interval and ventricular action potential duration (APD) to abrupt reductions of the cardiac cycle length. ECG and ventricular epicardial and endocardial monophasic APD were recorded in isolated, perfused guinea-pig heart preparations upon a sustained cardiac acceleration (rapid pacing for 30 s), and following a single perturbation of the cycle length evoked by extrasystolic stimulation. Sustained increase in heart rate was associated with progressive bi-exponential shortening of the QT interval and APD. Flecainide prolonged ventricular repolarization, delayed its rate adaptation, and decreased the amplitude of QT interval and APD shortening upon rapid cardiac pacing. During extrasystolic stimulation, flecainide attenuated APD shortening in premature ventricular beats, with effect being greater upon using a longer basic drive cycle length (S1-S1=550 ms versus S1-S1=300 ms). Flecainide-induced arrhythmia may be partly accounted for by attenuated adaptation of ventricular repolarization to sudden changes in cardiac cycle length provoked by transient tachycardia or ectopic beats.
Robust and adaptive band-to-band image transform of UAS miniature multi-lens multispectral camera
NASA Astrophysics Data System (ADS)
Jhan, Jyun-Ping; Rau, Jiann-Yeou; Haala, Norbert
2018-03-01
Utilizing miniature multispectral (MS) or hyperspectral (HS) cameras by mounting them on an Unmanned Aerial System (UAS) has the benefits of convenience and flexibility to collect remote sensing imagery for precision agriculture, vegetation monitoring, and environment investigation applications. Most miniature MS cameras adopt a multi-lens structure to record discrete MS bands of visible and invisible information. The differences in lens distortion, mounting positions, and viewing angles among lenses mean that the acquired original MS images have significant band misregistration errors. We have developed a Robust and Adaptive Band-to-Band Image Transform (RABBIT) method for dealing with the band co-registration of various types of miniature multi-lens multispectral cameras (Mini-MSCs) to obtain band co-registered MS imagery for remote sensing applications. The RABBIT utilizes modified projective transformation (MPT) to transfer the multiple image geometry of a multi-lens imaging system to one sensor geometry, and combines this with a robust and adaptive correction (RAC) procedure to correct several systematic errors and to obtain sub-pixel accuracy. This study applies three state-of-the-art Mini-MSCs to evaluate the RABBIT method's performance, specifically the Tetracam Miniature Multiple Camera Array (MiniMCA), Micasense RedEdge, and Parrot Sequoia. Six MS datasets acquired at different target distances and dates, and locations are also applied to prove its reliability and applicability. Results prove that RABBIT is feasible for different types of Mini-MSCs with accurate, robust, and rapid image processing efficiency.
Ghabraei, Soheil; Moradi, Hamed; Vossoughi, Gholamreza
2015-09-01
To guarantee the safety and efficient performance of the power plant, a robust controller for the boiler-turbine unit is needed. In this paper, a robust adaptive sliding mode controller (RASMC) is proposed to control a nonlinear multi-input multi-output (MIMO) model of industrial boiler-turbine unit, in the presence of unknown bounded uncertainties and external disturbances. To overcome the coupled nonlinearities and investigate the zero dynamics, input-output linearization is performed, and then the new decoupled inputs are derived. To tackle the uncertainties and external disturbances, appropriate adaption laws are introduced. For constructing the RASMC, suitable sliding surface is considered. To guarantee the sliding motion occurrence, appropriate control laws are constructed. Then the robustness and stability of the proposed RASMC is proved via Lyapunov stability theory. To compare the performance of the purposed RASMC with traditional control schemes, a type-I servo controller is designed. To evaluate the performance of the proposed control schemes, simulation studies on nonlinear MIMO dynamic system in the presence of high frequency bounded uncertainties and external disturbances are conducted and compared. Comparison of the results reveals the superiority of proposed RASMC over the traditional control schemes. RAMSC acts efficiently in disturbance rejection and keeping the system behavior in desirable tracking objectives, without the existence of unstable quasi-periodic solutions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mendoza, G.; Tkach, M.; Kucharski, J.; Chaudhry, R.
2017-12-01
This discussion is focused around the application of a bottom-up vulnerability assessment procedure for planning of climate resilience to a water treament plant for teh city of Iolanda, Zambia. This project is a Millennium Challenge Corporation (MCC) innitiaive with technical support by the UNESCO category II, International Center for Integrated Water Resources Management (ICIWaRM) with secretariat at the US Army Corps of Engineers Institute for Water Resources. The MCC is an innovative and independent U.S. foreign aid agency that is helping lead the fight against global poverty. The bottom-up vulnerability assessmentt framework examines critical performance thresholds, examines the external drivers that would lead to failure, establishes plausibility and analytical uncertainty that would lead to failure, and provides the economic justification for robustness or adaptability. This presentation will showcase the experiences in the application of the bottom-up framework to a region that is very vulnerable to climate variability, has poor instituional capacities, and has very limited data. It will illustrate the technical analysis and a decision process that led to a non-obvious climate robust solution. Most importantly it will highlight the challenges of utilizing discounted cash flow analysis (DCFA), such as net present value, in justifying robust or adaptive solutions, i.e. comparing solution under different future risks. We highlight a solution to manage the potential biases these DCFA procedures can incur.
Adaptive control of a manipulator with a flexible link
NASA Technical Reports Server (NTRS)
Yang, Y. P.; Gibson, J. S.
1988-01-01
An adaptive controller for a manipulator with one rigid link and one flexible link is presented. The performance and robustness of the controller are demonstrated by numerical simulation results. In the simulations, the manipulator moves in a gravitational field and a finite element model represents the flexible link.
Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Khalik, Hany S.; Turinsky, Paul J.
2005-07-15
Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. A meaningful adaption will result in high-fidelity and robust adapted core simulator models. To perform adaption, we propose an inverse theory approach in which the multitudes of input data to core simulators, i.e., reactor physics and thermal-hydraulic data, are to be adjusted to improve agreement withmore » measured observables while keeping core simulator models unadapted. At first glance, devising such adaption for typical core simulators with millions of input and observables data would spawn not only several prohibitive challenges but also numerous disparaging concerns. The challenges include the computational burdens of the sensitivity-type calculations required to construct Jacobian operators for the core simulator models. Also, the computational burdens of the uncertainty-type calculations required to estimate the uncertainty information of core simulator input data present a demanding challenge. The concerns however are mainly related to the reliability of the adjusted input data. The methodologies of adaptive simulation are well established in the literature of data adjustment. We adopt the same general framework for data adjustment; however, we refrain from solving the fundamental adjustment equations in a conventional manner. We demonstrate the use of our so-called Efficient Subspace Methods (ESMs) to overcome the computational and storage burdens associated with the core adaption problem. We illustrate the successful use of ESM-based adaptive techniques for a typical boiling water reactor core simulator adaption problem.« less
Optimal structure of metaplasticity for adaptive learning
2017-01-01
Learning from reward feedback in a changing environment requires a high degree of adaptability, yet the precise estimation of reward information demands slow updates. In the framework of estimating reward probability, here we investigated how this tradeoff between adaptability and precision can be mitigated via metaplasticity, i.e. synaptic changes that do not always alter synaptic efficacy. Using the mean-field and Monte Carlo simulations we identified ‘superior’ metaplastic models that can substantially overcome the adaptability-precision tradeoff. These models can achieve both adaptability and precision by forming two separate sets of meta-states: reservoirs and buffers. Synapses in reservoir meta-states do not change their efficacy upon reward feedback, whereas those in buffer meta-states can change their efficacy. Rapid changes in efficacy are limited to synapses occupying buffers, creating a bottleneck that reduces noise without significantly decreasing adaptability. In contrast, more-populated reservoirs can generate a strong signal without manifesting any observable plasticity. By comparing the behavior of our model and a few competing models during a dynamic probability estimation task, we found that superior metaplastic models perform close to optimally for a wider range of model parameters. Finally, we found that metaplastic models are robust to changes in model parameters and that metaplastic transitions are crucial for adaptive learning since replacing them with graded plastic transitions (transitions that change synaptic efficacy) reduces the ability to overcome the adaptability-precision tradeoff. Overall, our results suggest that ubiquitous unreliability of synaptic changes evinces metaplasticity that can provide a robust mechanism for mitigating the tradeoff between adaptability and precision and thus adaptive learning. PMID:28658247
Projection Operator: A Step Towards Certification of Adaptive Controllers
NASA Technical Reports Server (NTRS)
Larchev, Gregory V.; Campbell, Stefan F.; Kaneshige, John T.
2010-01-01
One of the major barriers to wider use of adaptive controllers in commercial aviation is the lack of appropriate certification procedures. In order to be certified by the Federal Aviation Administration (FAA), an aircraft controller is expected to meet a set of guidelines on functionality and reliability while not negatively impacting other systems or safety of aircraft operations. Due to their inherent time-variant and non-linear behavior, adaptive controllers cannot be certified via the metrics used for linear conventional controllers, such as gain and phase margin. Projection Operator is a robustness augmentation technique that bounds the output of a non-linear adaptive controller while conforming to the Lyapunov stability rules. It can also be used to limit the control authority of the adaptive component so that the said control authority can be arbitrarily close to that of a linear controller. In this paper we will present the results of applying the Projection Operator to a Model-Reference Adaptive Controller (MRAC), varying the amount of control authority, and comparing controller s performance and stability characteristics with those of a linear controller. We will also show how adjusting Projection Operator parameters can make it easier for the controller to satisfy the certification guidelines by enabling a tradeoff between controller s performance and robustness.
Many-objective robust decision making for water allocation under climate change.
Yan, Dan; Ludwig, Fulco; Huang, He Qing; Werners, Saskia E
2017-12-31
Water allocation is facing profound challenges due to climate change uncertainties. To identify adaptive water allocation strategies that are robust to climate change uncertainties, a model framework combining many-objective robust decision making and biophysical modeling is developed for large rivers. The framework was applied to the Pearl River basin (PRB), China where sufficient flow to the delta is required to reduce saltwater intrusion in the dry season. Before identifying and assessing robust water allocation plans for the future, the performance of ten state-of-the-art MOEAs (multi-objective evolutionary algorithms) is evaluated for the water allocation problem in the PRB. The Borg multi-objective evolutionary algorithm (Borg MOEA), which is a self-adaptive optimization algorithm, has the best performance during the historical periods. Therefore it is selected to generate new water allocation plans for the future (2079-2099). This study shows that robust decision making using carefully selected MOEAs can help limit saltwater intrusion in the Pearl River Delta. However, the framework could perform poorly due to larger than expected climate change impacts on water availability. Results also show that subjective design choices from the researchers and/or water managers could potentially affect the ability of the model framework, and cause the most robust water allocation plans to fail under future climate change. Developing robust allocation plans in a river basin suffering from increasing water shortage requires the researchers and water managers to well characterize future climate change of the study regions and vulnerabilities of their tools. Copyright © 2017 Elsevier B.V. All rights reserved.
From Fault-Diagnosis and Performance Recovery of a Controlled System to Chaotic Secure Communication
NASA Astrophysics Data System (ADS)
Hsu, Wen-Teng; Tsai, Jason Sheng-Hong; Guo, Fang-Cheng; Guo, Shu-Mei; Shieh, Leang-San
Chaotic systems are often applied to encryption on secure communication, but they may not provide high-degree security. In order to improve the security of communication, chaotic systems may need to add other secure signals, but this may cause the system to diverge. In this paper, we redesign a communication scheme that could create secure communication with additional secure signals, and the proposed scheme could keep system convergence. First, we introduce the universal state-space adaptive observer-based fault diagnosis/estimator and the high-performance tracker for the sampled-data linear time-varying system with unanticipated decay factors in actuators/system states. Besides, robustness, convergence in the mean, and tracking ability are given in this paper. A residual generation scheme and a mechanism for auto-tuning switched gain is also presented, so that the introduced methodology is applicable for the fault detection and diagnosis (FDD) for actuator and state faults to yield a high tracking performance recovery. The evolutionary programming-based adaptive observer is then applied to the problem of secure communication. Whenever the tracker induces a large control input which might not conform to the input constraint of some physical systems, the proposed modified linear quadratic optimal tracker (LQT) can effectively restrict the control input within the specified constraint interval, under the acceptable tracking performance. The effectiveness of the proposed design methodology is illustrated through tracking control simulation examples.
Robust Approach for Nonuniformity Correction in Infrared Focal Plane Array.
Boutemedjet, Ayoub; Deng, Chenwei; Zhao, Baojun
2016-11-10
In this paper, we propose a new scene-based nonuniformity correction technique for infrared focal plane arrays. Our work is based on the use of two well-known scene-based methods, namely, adaptive and interframe registration-based exploiting pure translation motion model between frames. The two approaches have their benefits and drawbacks, which make them extremely effective in certain conditions and not adapted for others. Following on that, we developed a method robust to various conditions, which may slow or affect the correction process by elaborating a decision criterion that adapts the process to the most effective technique to ensure fast and reliable correction. In addition to that, problems such as bad pixels and ghosting artifacts are also dealt with to enhance the overall quality of the correction. The performance of the proposed technique is investigated and compared to the two state-of-the-art techniques cited above.
Robust Approach for Nonuniformity Correction in Infrared Focal Plane Array
Boutemedjet, Ayoub; Deng, Chenwei; Zhao, Baojun
2016-01-01
In this paper, we propose a new scene-based nonuniformity correction technique for infrared focal plane arrays. Our work is based on the use of two well-known scene-based methods, namely, adaptive and interframe registration-based exploiting pure translation motion model between frames. The two approaches have their benefits and drawbacks, which make them extremely effective in certain conditions and not adapted for others. Following on that, we developed a method robust to various conditions, which may slow or affect the correction process by elaborating a decision criterion that adapts the process to the most effective technique to ensure fast and reliable correction. In addition to that, problems such as bad pixels and ghosting artifacts are also dealt with to enhance the overall quality of the correction. The performance of the proposed technique is investigated and compared to the two state-of-the-art techniques cited above. PMID:27834893
A video-based real-time adaptive vehicle-counting system for urban roads.
Liu, Fei; Zeng, Zhiyuan; Jiang, Rong
2017-01-01
In developing nations, many expanding cities are facing challenges that result from the overwhelming numbers of people and vehicles. Collecting real-time, reliable and precise traffic flow information is crucial for urban traffic management. The main purpose of this paper is to develop an adaptive model that can assess the real-time vehicle counts on urban roads using computer vision technologies. This paper proposes an automatic real-time background update algorithm for vehicle detection and an adaptive pattern for vehicle counting based on the virtual loop and detection line methods. In addition, a new robust detection method is introduced to monitor the real-time traffic congestion state of road section. A prototype system has been developed and installed on an urban road for testing. The results show that the system is robust, with a real-time counting accuracy exceeding 99% in most field scenarios.
NASA Astrophysics Data System (ADS)
Gao, Gang; Wang, Jinzhi; Wang, Xianghua
2017-05-01
This paper investigates fault-tolerant control (FTC) for feedback linearisable systems (FLSs) and its application to an aircraft. To ensure desired transient and steady-state behaviours of the tracking error under actuator faults, the dynamic effect caused by the actuator failures on the error dynamics of a transformed model is analysed, and three control strategies are designed. The first FTC strategy is proposed as a robust controller, which relies on the explicit information about several parameters of the actuator faults. To eliminate the need for these parameters and the input chattering phenomenon, the robust control law is later combined with the adaptive technique to generate the adaptive FTC law. Next, the adaptive control law is further improved to achieve the prescribed performance under more severe input disturbance. Finally, the proposed control laws are applied to an air-breathing hypersonic vehicle (AHV) subject to actuator failures, which confirms the effectiveness of the proposed strategies.
A video-based real-time adaptive vehicle-counting system for urban roads
2017-01-01
In developing nations, many expanding cities are facing challenges that result from the overwhelming numbers of people and vehicles. Collecting real-time, reliable and precise traffic flow information is crucial for urban traffic management. The main purpose of this paper is to develop an adaptive model that can assess the real-time vehicle counts on urban roads using computer vision technologies. This paper proposes an automatic real-time background update algorithm for vehicle detection and an adaptive pattern for vehicle counting based on the virtual loop and detection line methods. In addition, a new robust detection method is introduced to monitor the real-time traffic congestion state of road section. A prototype system has been developed and installed on an urban road for testing. The results show that the system is robust, with a real-time counting accuracy exceeding 99% in most field scenarios. PMID:29135984
Optimal Appearance Model for Visual Tracking
Wang, Yuru; Jiang, Longkui; Liu, Qiaoyuan; Yin, Minghao
2016-01-01
Many studies argue that integrating multiple cues in an adaptive way increases tracking performance. However, what is the definition of adaptiveness and how to realize it remains an open issue. On the premise that the model with optimal discriminative ability is also optimal for tracking the target, this work realizes adaptiveness and robustness through the optimization of multi-cue integration models. Specifically, based on prior knowledge and current observation, a set of discrete samples are generated to approximate the foreground and background distribution. With the goal of optimizing the classification margin, an objective function is defined, and the appearance model is optimized by introducing optimization algorithms. The proposed optimized appearance model framework is embedded into a particle filter for a field test, and it is demonstrated to be robust against various kinds of complex tracking conditions. This model is general and can be easily extended to other parameterized multi-cue models. PMID:26789639
Zaafouri, Abderrahmen; Regaya, Chiheb Ben; Azza, Hechmi Ben; Châari, Abdelkader
2016-01-01
This paper presents a modified structure of the backstepping nonlinear control of the induction motor (IM) fitted with an adaptive backstepping speed observer. The control design is based on the backstepping technique complemented by the introduction of integral tracking errors action to improve its robustness. Unlike other research performed on backstepping control with integral action, the control law developed in this paper does not propose the increase of the number of system state so as not increase the complexity of differential equations resolution. The digital simulation and experimental results show the effectiveness of the proposed control compared to the conventional PI control. The results analysis shows the characteristic robustness of the adaptive control to disturbances of the load, the speed variation and low speed. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz, Kenneth; Bayard, David S.
1988-01-01
A class of joint-level control laws for all-revolute robot arms is introduced. The analysis is similar to the recently proposed energy Liapunov function approach except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. By using energy Liapunov functions with the modified potential energy, a much simpler analysis can be used to show closed-loop global asymptotic stability and local exponential stability. When Coulomb and viscous friction and model parameter errors are present, a sliding-mode-like modification of the control law is proposed to add a robustness-enhancing outer loop. Adaptive control is also addressed within the same framework. A linear-in-the-parameters formulation is adopted, and globally asymptotically stable adaptive control laws are derived by replacing the model parameters in the nonadaptive control laws by their estimates.
Adaptive Sparse Representation for Source Localization with Gain/Phase Errors
Sun, Ke; Liu, Yimin; Meng, Huadong; Wang, Xiqin
2011-01-01
Sparse representation (SR) algorithms can be implemented for high-resolution direction of arrival (DOA) estimation. Additionally, SR can effectively separate the coherent signal sources because the spectrum estimation is based on the optimization technique, such as the L1 norm minimization, but not on subspace orthogonality. However, in the actual source localization scenario, an unknown gain/phase error between the array sensors is inevitable. Due to this nonideal factor, the predefined overcomplete basis mismatches the actual array manifold so that the estimation performance is degraded in SR. In this paper, an adaptive SR algorithm is proposed to improve the robustness with respect to the gain/phase error, where the overcomplete basis is dynamically adjusted using multiple snapshots and the sparse solution is adaptively acquired to match with the actual scenario. The simulation results demonstrate the estimation robustness to the gain/phase error using the proposed method. PMID:22163875
ERIC Educational Resources Information Center
Raiche, Gilles; Blais, Jean-Guy
In a computerized adaptive test (CAT), it would be desirable to obtain an acceptable precision of the proficiency level estimate using an optimal number of items. Decreasing the number of items is accompanied, however, by a certain degree of bias when the true proficiency level differs significantly from the a priori estimate. G. Raiche (2000) has…
2013-01-01
Background Metabolic control analysis (MCA) and supply–demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply–demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. Results This study integrates control engineering and classical MCA augmented with supply–demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the ‘integral control’ (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of ‘integral control’ should rarely be expected to lead to the ‘perfect adaptation’: although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. Conclusions A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and are being identified by genomics and systems biology, correspond to the ‘perfect’ regulatory structures designed by control engineering vis-à-vis optimal functions such as robustness. To the extent that they are not, the analyses suggest how they may become so and this in turn should facilitate synthetic biology and metabolic engineering. PMID:24261908
Robust power spectral estimation for EEG data
Melman, Tamar; Victor, Jonathan D.
2016-01-01
Background Typical electroencephalogram (EEG) recordings often contain substantial artifact. These artifacts, often large and intermittent, can interfere with quantification of the EEG via its power spectrum. To reduce the impact of artifact, EEG records are typically cleaned by a preprocessing stage that removes individual segments or components of the recording. However, such preprocessing can introduce bias, discard available signal, and be labor-intensive. With this motivation, we present a method that uses robust statistics to reduce dependence on preprocessing by minimizing the effect of large intermittent outliers on the spectral estimates. New method Using the multitaper method[1] as a starting point, we replaced the final step of the standard power spectrum calculation with a quantile-based estimator, and the Jackknife approach to confidence intervals with a Bayesian approach. The method is implemented in provided MATLAB modules, which extend the widely used Chronux toolbox. Results Using both simulated and human data, we show that in the presence of large intermittent outliers, the robust method produces improved estimates of the power spectrum, and that the Bayesian confidence intervals yield close-to-veridical coverage factors. Comparison to existing method The robust method, as compared to the standard method, is less affected by artifact: inclusion of outliers produces fewer changes in the shape of the power spectrum as well as in the coverage factor. Conclusion In the presence of large intermittent outliers, the robust method can reduce dependence on data preprocessing as compared to standard methods of spectral estimation. PMID:27102041
Robust power spectral estimation for EEG data.
Melman, Tamar; Victor, Jonathan D
2016-08-01
Typical electroencephalogram (EEG) recordings often contain substantial artifact. These artifacts, often large and intermittent, can interfere with quantification of the EEG via its power spectrum. To reduce the impact of artifact, EEG records are typically cleaned by a preprocessing stage that removes individual segments or components of the recording. However, such preprocessing can introduce bias, discard available signal, and be labor-intensive. With this motivation, we present a method that uses robust statistics to reduce dependence on preprocessing by minimizing the effect of large intermittent outliers on the spectral estimates. Using the multitaper method (Thomson, 1982) as a starting point, we replaced the final step of the standard power spectrum calculation with a quantile-based estimator, and the Jackknife approach to confidence intervals with a Bayesian approach. The method is implemented in provided MATLAB modules, which extend the widely used Chronux toolbox. Using both simulated and human data, we show that in the presence of large intermittent outliers, the robust method produces improved estimates of the power spectrum, and that the Bayesian confidence intervals yield close-to-veridical coverage factors. The robust method, as compared to the standard method, is less affected by artifact: inclusion of outliers produces fewer changes in the shape of the power spectrum as well as in the coverage factor. In the presence of large intermittent outliers, the robust method can reduce dependence on data preprocessing as compared to standard methods of spectral estimation. Copyright © 2016 Elsevier B.V. All rights reserved.
Schoch, Sarah F; Cordi, Maren J; Rasch, Björn
2017-11-01
Emotionality can increase recall probability of memories as emotional information is highly relevant for future adaptive behavior. It has been proposed that memory processes acting during sleep selectively promote the consolidation of emotional memories, so that neutral memories no longer profit from sleep consolidation after learning. This appears as a selective effect of sleep for emotional memories. However, other factors contribute to the appearance of a consolidation benefit and influence this interpretation. Here we show that the strength of the memory trace before sleep and the sensitivity of the retrieval test after sleep are critical factors contributing to the detection of the benefit of sleep on memory for emotional and neutral stimuli. 228 subjects learned emotional and neutral pictures and completed a free recall after a 12-h retention interval of either sleep or wakefulness. We manipulated memory strength by including an immediate retrieval test before the retention interval in half of the participants. In addition, we varied the sensitivity of the retrieval test by including an interference learning task before retrieval testing in half of the participants. We show that a "selective" benefit of sleep for emotional memories only occurs in the condition with high memory strength. Furthermore, this "selective" benefit disappeared when we controlled for the memory strength before the retention interval and used a highly sensitive retrieval test. Our results indicate that although sleep benefits are more robust for emotional memories, neutral memories similarly profit from sleep after learning when more sensitive indicators are used. We conclude that whether sleep benefits on memory appear depends on several factors, including emotion, memory strength and sensitivity of the retrieval test. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Löwe, Roland; Urich, Christian; Sto. Domingo, Nina; Mark, Ole; Deletic, Ana; Arnbjerg-Nielsen, Karsten
2017-07-01
We present a new framework for flexible testing of flood risk adaptation strategies in a variety of urban development and climate scenarios. This framework couples the 1D-2D hydrodynamic simulation package MIKE FLOOD with the agent-based urban development model DAnCE4Water and provides the possibility to systematically test various flood risk adaptation measures ranging from large infrastructure changes over decentralised water management to urban planning policies. We have tested the framework in a case study in Melbourne, Australia considering 9 scenarios for urban development and climate and 32 potential combinations of flood adaptation measures. We found that the performance of adaptation measures strongly depended on the considered climate and urban development scenario and the other implementation measures implemented, suggesting that adaptive strategies are preferable over one-off investments. Urban planning policies proved to be an efficient means for the reduction of flood risk, while implementing property buyback and pipe increases in a guideline-oriented manner was too costly. Random variations in location and time point of urban development could have significant impact on flood risk and would in some cases outweigh the benefits of less efficient adaptation strategies. The results of our setup can serve as an input for robust decision making frameworks and thus support the identification of flood risk adaptation measures that are economically efficient and robust to variations of climate and urban layout.
Adaptive vehicle motion estimation and prediction
NASA Astrophysics Data System (ADS)
Zhao, Liang; Thorpe, Chuck E.
1999-01-01
Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.
The beauty of simple adaptive control and new developments in nonlinear systems stability analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkana, Itzhak, E-mail: ibarkana@gmail.com
Although various adaptive control techniques have been around for a long time and in spite of successful proofs of stability and even successful demonstrations of performance, the eventual use of adaptive control methodologies in practical real world systems has met a rather strong resistance from practitioners and has remained limited. Apparently, it is difficult to guarantee or even understand the conditions that can guarantee stable operations of adaptive control systems under realistic operational environments. Besides, it is difficult to measure the robustness of adaptive control system stability and allow it to be compared with the common and widely used measuremore » of phase margin and gain margin that is utilized by present, mainly LTI, controllers. Furthermore, customary stability analysis methods seem to imply that the mere stability of adaptive systems may be adversely affected by any tiny deviation from the pretty idealistic and assumably required stability conditions. This paper first revisits the fundamental qualities of customary direct adaptive control methodologies, in particular the classical Model Reference Adaptive Control, and shows that some of their basic drawbacks have been addressed and eliminated within the so-called Simple Adaptive Control methodology. Moreover, recent developments in the stability analysis methods of nonlinear systems show that prior conditions that were customarily assumed to be needed for stability are only apparent and can be eliminated. As a result, sufficient conditions that guarantee stability are clearly stated and lead to similarly clear proofs of stability. As many real-world applications show, once robust stability of the adaptive systems can be guaranteed, the added value of using Add-On Adaptive Control along with classical Control design techniques is pushing the desired performance beyond any previous limits.« less
Adaptive low-rank subspace learning with online optimization for robust visual tracking.
Liu, Risheng; Wang, Di; Han, Yuzhuo; Fan, Xin; Luo, Zhongxuan
2017-04-01
In recent years, sparse and low-rank models have been widely used to formulate appearance subspace for visual tracking. However, most existing methods only consider the sparsity or low-rankness of the coefficients, which is not sufficient enough for appearance subspace learning on complex video sequences. Moreover, as both the low-rank and the column sparse measures are tightly related to all the samples in the sequences, it is challenging to incrementally solve optimization problems with both nuclear norm and column sparse norm on sequentially obtained video data. To address above limitations, this paper develops a novel low-rank subspace learning with adaptive penalization (LSAP) framework for subspace based robust visual tracking. Different from previous work, which often simply decomposes observations as low-rank features and sparse errors, LSAP simultaneously learns the subspace basis, low-rank coefficients and column sparse errors to formulate appearance subspace. Within LSAP framework, we introduce a Hadamard production based regularization to incorporate rich generative/discriminative structure constraints to adaptively penalize the coefficients for subspace learning. It is shown that such adaptive penalization can significantly improve the robustness of LSAP on severely corrupted dataset. To utilize LSAP for online visual tracking, we also develop an efficient incremental optimization scheme for nuclear norm and column sparse norm minimizations. Experiments on 50 challenging video sequences demonstrate that our tracker outperforms other state-of-the-art methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Xian-Ming; Han, Qing-Long; Ge, Xiaohua
2017-09-22
This paper is concerned with the problem of robust H∞ control of an uncertain discrete-time Takagi-Sugeno fuzzy system with an interval-like time-varying delay. A novel finite-sum inequality-based method is proposed to provide a tighter estimation on the forward difference of certain Lyapunov functional, leading to a less conservative result. First, an auxiliary vector function is used to establish two finite-sum inequalities, which can produce tighter bounds for the finite-sum terms appearing in the forward difference of the Lyapunov functional. Second, a matrix-based quadratic convex approach is employed to equivalently convert the original matrix inequality including a quadratic polynomial on the time-varying delay into two boundary matrix inequalities, which delivers a less conservative bounded real lemma (BRL) for the resultant closed-loop system. Third, based on the BRL, a novel sufficient condition on the existence of suitable robust H∞ fuzzy controllers is derived. Finally, two numerical examples and a computer-simulated truck-trailer system are provided to show the effectiveness of the obtained results.
Predictor-Based Model Reference Adaptive Control
NASA Technical Reports Server (NTRS)
Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.
2009-01-01
This paper is devoted to robust, Predictor-based Model Reference Adaptive Control (PMRAC) design. The proposed adaptive system is compared with the now-classical Model Reference Adaptive Control (MRAC) architecture. Simulation examples are presented. Numerical evidence indicates that the proposed PMRAC tracking architecture has better than MRAC transient characteristics. In this paper, we presented a state-predictor based direct adaptive tracking design methodology for multi-input dynamical systems, with partially known dynamics. Efficiency of the design was demonstrated using short period dynamics of an aircraft. Formal proof of the reported PMRAC benefits constitute future research and will be reported elsewhere.
Dual-thread parallel control strategy for ophthalmic adaptive optics.
Yu, Yongxin; Zhang, Yuhua
To improve ophthalmic adaptive optics speed and compensate for ocular wavefront aberration of high temporal frequency, the adaptive optics wavefront correction has been implemented with a control scheme including 2 parallel threads; one is dedicated to wavefront detection and the other conducts wavefront reconstruction and compensation. With a custom Shack-Hartmann wavefront sensor that measures the ocular wave aberration with 193 subapertures across the pupil, adaptive optics has achieved a closed loop updating frequency up to 110 Hz, and demonstrated robust compensation for ocular wave aberration up to 50 Hz in an adaptive optics scanning laser ophthalmoscope.
Dual-thread parallel control strategy for ophthalmic adaptive optics
Yu, Yongxin; Zhang, Yuhua
2015-01-01
To improve ophthalmic adaptive optics speed and compensate for ocular wavefront aberration of high temporal frequency, the adaptive optics wavefront correction has been implemented with a control scheme including 2 parallel threads; one is dedicated to wavefront detection and the other conducts wavefront reconstruction and compensation. With a custom Shack-Hartmann wavefront sensor that measures the ocular wave aberration with 193 subapertures across the pupil, adaptive optics has achieved a closed loop updating frequency up to 110 Hz, and demonstrated robust compensation for ocular wave aberration up to 50 Hz in an adaptive optics scanning laser ophthalmoscope. PMID:25866498
Evolutionary transitions in controls reconcile adaptation with continuity of evolution.
Badyaev, Alexander V
2018-05-19
Evolution proceeds by accumulating functional solutions, necessarily forming an uninterrupted lineage from past solutions of ancestors to the current design of extant forms. At the population level, this process requires an organismal architecture in which the maintenance of local adaptation does not preclude the ability to innovate in the same traits and their continuous evolution. Representing complex traits as networks enables us to visualize a fundamental principle that resolves tension between adaptation and continuous evolution: phenotypic states encompassing adaptations traverse the continuous multi-layered landscape of past physical, developmental and functional associations among traits. The key concept that captures such traversing is network controllability - the ability to move a network from one state into another while maintaining its functionality (reflecting evolvability) and to efficiently propagate information or products through the network within a phenotypic state (maintaining its robustness). Here I suggest that transitions in network controllability - specifically in the topology of controls - help to explain how robustness and evolvability are balanced during evolution. I will focus on evolutionary transitions in degeneracy of metabolic networks - a ubiquitous property of phenotypic robustness where distinct pathways achieve the same end product - to suggest that associated changes in network controls is a common rule underlying phenomena as distinct as phenotypic plasticity, organismal accommodation of novelties, genetic assimilation, and macroevolutionary diversification. Capitalizing on well understood principles by which network structure translates into function of control nodes, I show that accumulating redundancy in one type of network controls inevitably leads to the emergence of another type of controls, forming evolutionary cycles of network controllability that, ultimately, reconcile local adaptation with continuity of evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Gadient, ROss; Lavretsky, Eugene
2011-01-01
This paper presents flight test results of a robust linear baseline controller with and without composite adaptive control augmentation. The flight testing was conducted using the NASA Generic Transport Model as part of the Airborne Subscale Transport Aircraft Research system at NASA Langley Research Center.
Modeling Students' Memory for Application in Adaptive Educational Systems
ERIC Educational Resources Information Center
Pelánek, Radek
2015-01-01
Human memory has been thoroughly studied and modeled in psychology, but mainly in laboratory setting under simplified conditions. For application in practical adaptive educational systems we need simple and robust models which can cope with aspects like varied prior knowledge or multiple-choice questions. We discuss and evaluate several models of…
Building the Army: A Strategic Review of a Complex Problem
2013-03-01
is more than a true chameleon that slightly adapts its characteristics to the given case.”2 One cannot predict the shifting colors/characteristics...Strategy (NMS) of the United States of America calling for a flexible, agile, and adaptive Joint Force capable of full spectrum operations that...or may not be remedied, one can safely certify TAA as a robust and proven process based solely on the adaptable and tailorable Army that exists
Bagheri, Pedram; Sun, Qiao
2016-07-01
In this paper, a novel synthesis of Nussbaum-type functions, and an adaptive radial-basis function neural network is proposed to design controllers for variable-speed, variable-pitch wind turbines. Dynamic equations of the wind turbine are highly nonlinear, uncertain, and affected by unknown disturbance sources. Furthermore, the dynamic equations are non-affine with respect to the pitch angle, which is a control input. To address these problems, a Nussbaum-type function, along with a dynamic control law are adopted to resolve the non-affine nature of the equations. Moreover, an adaptive radial-basis function neural network is designed to approximate non-parametric uncertainties. Further, the closed-loop system is made robust to unknown disturbance sources, where no prior knowledge of disturbance bound is assumed in advance. Finally, the Lyapunov stability analysis is conducted to show the stability of the entire closed-loop system. In order to verify analytical results, a simulation is presented and the results are compared to both a PI and an existing adaptive controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Sliding Mode Fault Tolerant Control with Adaptive Diagnosis for Aircraft Engines
NASA Astrophysics Data System (ADS)
Xiao, Lingfei; Du, Yanbin; Hu, Jixiang; Jiang, Bin
2018-03-01
In this paper, a novel sliding mode fault tolerant control method is presented for aircraft engine systems with uncertainties and disturbances on the basis of adaptive diagnostic observer. By taking both sensors faults and actuators faults into account, the general model of aircraft engine control systems which is subjected to uncertainties and disturbances, is considered. Then, the corresponding augmented dynamic model is established in order to facilitate the fault diagnosis and fault tolerant controller design. Next, a suitable detection observer is designed to detect the faults effectively. Through creating an adaptive diagnostic observer and based on sliding mode strategy, the sliding mode fault tolerant controller is constructed. Robust stabilization is discussed and the closed-loop system can be stabilized robustly. It is also proven that the adaptive diagnostic observer output errors and the estimations of faults converge to a set exponentially, and the converge rate greater than some value which can be adjusted by choosing designable parameters properly. The simulation on a twin-shaft aircraft engine verifies the applicability of the proposed fault tolerant control method.
A Robust Cooperated Control Method with Reinforcement Learning and Adaptive H∞ Control
NASA Astrophysics Data System (ADS)
Obayashi, Masanao; Uchiyama, Shogo; Kuremoto, Takashi; Kobayashi, Kunikazu
This study proposes a robust cooperated control method combining reinforcement learning with robust control to control the system. A remarkable characteristic of the reinforcement learning is that it doesn't require model formula, however, it doesn't guarantee the stability of the system. On the other hand, robust control system guarantees stability and robustness, however, it requires model formula. We employ both the actor-critic method which is a kind of reinforcement learning with minimal amount of computation to control continuous valued actions and the traditional robust control, that is, H∞ control. The proposed system was compared method with the conventional control method, that is, the actor-critic only used, through the computer simulation of controlling the angle and the position of a crane system, and the simulation result showed the effectiveness of the proposed method.
Synchronic interval Gaussian mixed-integer programming for air quality management.
Cheng, Guanhui; Huang, Guohe Gordon; Dong, Cong
2015-12-15
To reveal the synchronism of interval uncertainties, the tradeoff between system optimality and security, the discreteness of facility-expansion options, the uncertainty of pollutant dispersion processes, and the seasonality of wind features in air quality management (AQM) systems, a synchronic interval Gaussian mixed-integer programming (SIGMIP) approach is proposed in this study. A robust interval Gaussian dispersion model is developed for approaching the pollutant dispersion process under interval uncertainties and seasonal variations. The reflection of synchronic effects of interval uncertainties in the programming objective is enabled through introducing interval functions. The proposition of constraint violation degrees helps quantify the tradeoff between system optimality and constraint violation under interval uncertainties. The overall optimality of system profits of an SIGMIP model is achieved based on the definition of an integrally optimal solution. Integer variables in the SIGMIP model are resolved by the existing cutting-plane method. Combining these efforts leads to an effective algorithm for the SIGMIP model. An application to an AQM problem in a region in Shandong Province, China, reveals that the proposed SIGMIP model can facilitate identifying the desired scheme for AQM. The enhancement of the robustness of optimization exercises may be helpful for increasing the reliability of suggested schemes for AQM under these complexities. The interrelated tradeoffs among control measures, emission sources, flow processes, receptors, influencing factors, and economic and environmental goals are effectively balanced. Interests of many stakeholders are reasonably coordinated. The harmony between economic development and air quality control is enabled. Results also indicate that the constraint violation degree is effective at reflecting the compromise relationship between constraint-violation risks and system optimality under interval uncertainties. This can help decision makers mitigate potential risks, e.g. insufficiency of pollutant treatment capabilities, exceedance of air quality standards, deficiency of pollution control fund, or imbalance of economic or environmental stress, in the process of guiding AQM. Copyright © 2015 Elsevier B.V. All rights reserved.
Robust Mokken Scale Analysis by Means of the Forward Search Algorithm for Outlier Detection
ERIC Educational Resources Information Center
Zijlstra, Wobbe P.; van der Ark, L. Andries; Sijtsma, Klaas
2011-01-01
Exploratory Mokken scale analysis (MSA) is a popular method for identifying scales from larger sets of items. As with any statistical method, in MSA the presence of outliers in the data may result in biased results and wrong conclusions. The forward search algorithm is a robust diagnostic method for outlier detection, which we adapt here to…
Long, Katherine; Prothero, Donald; Madan, Meena; Syverson, Valerie J P
2017-01-01
Previous studies have demonstrated that the Pleistocene saber-toothed cat Smilodon fatalis had many forelimb adaptations for increased strength, presumably to grapple with and subdue prey. The Rancho La Brea tar pits yield large samples of juvenile limb bones forming a growth series that allow us to examine how Smilodon kittens grew up. Almost all available juvenile limb bones were measured, and reduced major axis fits were calculated to determine the allometric growth trends. Contrary to expectations based on their robust limbs, Smilodon kittens show the typical pattern of growth found in other large felids (such as the Ice Age lion, Panthera atrox, as well as living tigers, cougars, servals, and wildcats) where the limb grows longer and more slender faster than they grow thick. This adaptation is thought to give felids greater running speed. Smilodon kittens do not grow increasingly more robust with age. Instead, they start out robust and follow the ancestral felid growth pattern, while maintaining their robustness compared to other felids. Apparently, the growth of felid forelimbs is highly canalized and their ontogeny is tightly constrained.
Directional selection causes decanalization in a group I ribozyme.
Hayden, Eric J; Weikert, Christian; Wagner, Andreas
2012-01-01
A canalized genotype is robust to environmental or genetic perturbations. Canalization is expected to result from stabilizing selection on a well-adapted phenotype. Decanalization, the loss of robustness, might follow periods of directional selection toward a new optimum. The evolutionary forces causing decanalization are still unknown, in part because it is difficult to determine the fitness effects of mutations in populations of organisms with complex genotypes and phenotypes. Here, we report direct experimental measurements of robustness in a system with a simple genotype and phenotype, the catalytic activity of an RNA enzyme. We find that the robustness of a population of RNA enzymes decreases during a period of directional selection in the laboratory. The decrease in robustness is primarily caused by the selective sweep of a genotype that is decanalized relative to the wild-type, both in terms of mutational robustness and environmental robustness (thermodynamic stability). Our results experimentally demonstrate that directional selection can cause decanalization on short time scales, and demonstrate co-evolution of mutational and environmental robustness.
Krishnan, Sunder Ram; Seelamantula, Chandra Sekhar; Bouwens, Arno; Leutenegger, Marcel; Lasser, Theo
2012-10-01
We address the problem of high-resolution reconstruction in frequency-domain optical-coherence tomography (FDOCT). The traditional method employed uses the inverse discrete Fourier transform, which is limited in resolution due to the Heisenberg uncertainty principle. We propose a reconstruction technique based on zero-crossing (ZC) interval analysis. The motivation for our approach lies in the observation that, for a multilayered specimen, the backscattered signal may be expressed as a sum of sinusoids, and each sinusoid manifests as a peak in the FDOCT reconstruction. The successive ZC intervals of a sinusoid exhibit high consistency, with the intervals being inversely related to the frequency of the sinusoid. The statistics of the ZC intervals are used for detecting the frequencies present in the input signal. The noise robustness of the proposed technique is improved by using a cosine-modulated filter bank for separating the input into different frequency bands, and the ZC analysis is carried out on each band separately. The design of the filter bank requires the design of a prototype, which we accomplish using a Kaiser window approach. We show that the proposed method gives good results on synthesized and experimental data. The resolution is enhanced, and noise robustness is higher compared with the standard Fourier reconstruction.
Robust Alternatives to the Standard Deviation in Processing of Physics Experimental Data
NASA Astrophysics Data System (ADS)
Shulenin, V. P.
2016-10-01
Properties of robust estimations of the scale parameter are studied. It is noted that the median of absolute deviations and the modified estimation of the average Gini differences have asymptotically normal distributions and bounded influence functions, are B-robust estimations, and hence, unlike the estimation of the standard deviation, are protected from the presence of outliers in the sample. Results of comparison of estimations of the scale parameter are given for a Gaussian model with contamination. An adaptive variant of the modified estimation of the average Gini differences is considered.
Hamilton, Lindsay; Franklin, Robin J M; Jeffery, Nick D
2007-09-18
Clinical spinal cord injury in domestic dogs provides a model population in which to test the efficacy of putative therapeutic interventions for human spinal cord injury. To achieve this potential a robust method of functional analysis is required so that statistical comparison of numerical data derived from treated and control animals can be achieved. In this study we describe the use of digital motion capture equipment combined with mathematical analysis to derive a simple quantitative parameter - 'the mean diagonal coupling interval' - to describe coordination between forelimb and hindlimb movement. In normal dogs this parameter is independent of size, conformation, speed of walking or gait pattern. We show here that mean diagonal coupling interval is highly sensitive to alterations in forelimb-hindlimb coordination in dogs that have suffered spinal cord injury, and can be accurately quantified, but is unaffected by orthopaedic perturbations of gait. Mean diagonal coupling interval is an easily derived, highly robust measurement that provides an ideal method to compare the functional effect of therapeutic interventions after spinal cord injury in quadrupeds.
Female mating preferences determine system-level evolution in a gene network model.
Fierst, Janna L
2013-06-01
Environmental patterns of directional, stabilizing and fluctuating selection can influence the evolution of system-level properties like evolvability and mutational robustness. Intersexual selection produces strong phenotypic selection and these dynamics may also affect the response to mutation and the potential for future adaptation. In order to to assess the influence of mating preferences on these evolutionary properties, I modeled a male trait and female preference determined by separate gene regulatory networks. I studied three sexual selection scenarios: sexual conflict, a Gaussian model of the Fisher process described in Lande (in Proc Natl Acad Sci 78(6):3721-3725, 1981) and a good genes model in which the male trait signalled his mutational condition. I measured the effects these mating preferences had on the potential for traits and preferences to evolve towards new states, and mutational robustness of both the phenotype and the individual's overall viability. All types of sexual selection increased male phenotypic robustness relative to a randomly mating population. The Fisher model also reduced male evolvability and mutational robustness for viability. Under good genes sexual selection, males evolved an increased mutational robustness for viability. Females choosing their mates is a scenario that is sufficient to create selective forces that impact genetic evolution and shape the evolutionary response to mutation and environmental selection. These dynamics will inevitably develop in any population where sexual selection is operating, and affect the potential for future adaptation.
Tian, Zhen; Yuan, Jingqi; Xu, Liang; Zhang, Xiang; Wang, Jingcheng
2018-05-25
As higher requirements are proposed for the load regulation and efficiency enhancement, the control performance of boiler-turbine systems has become much more important. In this paper, a novel robust control approach is proposed to improve the coordinated control performance for subcritical boiler-turbine units. To capture the key features of the boiler-turbine system, a nonlinear control-oriented model is established and validated with the history operation data of a 300 MW unit. To achieve system linearization and decoupling, an adaptive feedback linearization strategy is proposed, which could asymptotically eliminate the linearization error caused by the model uncertainties. Based on the linearized boiler-turbine system, a second-order sliding mode controller is designed with the super-twisting algorithm. Moreover, the closed-loop system is proved robustly stable with respect to uncertainties and disturbances. Simulation results are presented to illustrate the effectiveness of the proposed control scheme, which achieves excellent tracking performance, strong robustness and chattering reduction. Copyright © 2018. Published by Elsevier Ltd.
Precup, Radu-Emil; David, Radu-Codrut; Petriu, Emil M; Radac, Mircea-Bogdan; Preitl, Stefan
2014-11-01
This paper suggests a new generation of optimal PI controllers for a class of servo systems characterized by saturation and dead zone static nonlinearities and second-order models with an integral component. The objective functions are expressed as the integral of time multiplied by absolute error plus the weighted sum of the integrals of output sensitivity functions of the state sensitivity models with respect to two process parametric variations. The PI controller tuning conditions applied to a simplified linear process model involve a single design parameter specific to the extended symmetrical optimum (ESO) method which offers the desired tradeoff to several control system performance indices. An original back-calculation and tracking anti-windup scheme is proposed in order to prevent the integrator wind-up and to compensate for the dead zone nonlinearity of the process. The minimization of the objective functions is carried out in the framework of optimization problems with inequality constraints which guarantee the robust stability with respect to the process parametric variations and the controller robustness. An adaptive gravitational search algorithm (GSA) solves the optimization problems focused on the optimal tuning of the design parameter specific to the ESO method and of the anti-windup tracking gain. A tuning method for PI controllers is proposed as an efficient approach to the design of resilient control systems. The tuning method and the PI controllers are experimentally validated by the adaptive GSA-based tuning of PI controllers for the angular position control of a laboratory servo system.
NASA Astrophysics Data System (ADS)
Sandhu, Amit
A sequential quadratic programming method is proposed for solving nonlinear optimal control problems subject to general path constraints including mixed state-control and state only constraints. The proposed algorithm further develops on the approach proposed in [1] with objective to eliminate the use of a high number of time intervals for arriving at an optimal solution. This is done by introducing an adaptive time discretization to allow formation of a desirable control profile without utilizing a lot of intervals. The use of fewer time intervals reduces the computation time considerably. This algorithm is further used in this thesis to solve a trajectory planning problem for higher elevation Mars landing.
Mooney, Ronan A; Cirillo, John; Byblow, Winston D
2018-06-01
Primary motor cortex excitability can be modulated by anodal and cathodal transcranial direct current stimulation (tDCS). These neuromodulatory effects may, in part, be dependent on modulation within gamma-aminobutyric acid (GABA)-mediated inhibitory networks. GABAergic function can be quantified non-invasively using adaptive threshold hunting paired-pulse transcranial magnetic stimulation (TMS). The previous studies have used TMS with posterior-anterior (PA) induced current to assess tDCS effects on inhibition. However, TMS with anterior-posterior (AP) induced current in the brain provides a more robust measure of GABA-mediated inhibition. The aim of the present study was to assess the modulation of corticomotor excitability and inhibition after anodal and cathodal tDCS using TMS with PA- and AP-induced current. In 16 young adults (26 ± 1 years), we investigated the response to anodal, cathodal, and sham tDCS in a repeated-measures double-blinded crossover design. Adaptive threshold hunting paired-pulse TMS with PA- and AP-induced current was used to examine separate interneuronal populations within M1 and their influence on corticomotor excitability and short- and long-interval inhibition (SICI and LICI) for up to 60 min after tDCS. Unexpectedly, cathodal tDCS increased corticomotor excitability assessed with AP (P = 0.047) but not PA stimulation (P = 0.74). SICI AP was reduced after anodal tDCS compared with sham (P = 0.040). Pearson's correlations indicated that SICI AP and LICI AP modulation was associated with corticomotor excitability after anodal (P = 0.027) and cathodal tDCS (P = 0.042). The after-effects of tDCS on corticomotor excitability may depend on the direction of the TMS-induced current used to make assessments, and on modulation within GABA-mediated inhibitory circuits.
Robust interval-based regulation for anaerobic digestion processes.
Alcaraz-González, V; Harmand, J; Rapaport, A; Steyer, J P; González-Alvarez, V; Pelayo-Ortiz, C
2005-01-01
A robust regulation law is applied to the stabilization of a class of biochemical reactors exhibiting partially known highly nonlinear dynamic behavior. An uncertain environment with the presence of unknown inputs is considered. Based on some structural and operational conditions, this regulation law is shown to exponentially stabilize the aforementioned bioreactors around a desired set-point. This approach is experimentally applied and validated on a pilot-scale (1 m3) anaerobic digestion process for the treatment of raw industrial wine distillery wastewater where the objective is the regulation of the chemical oxygen demand (COD) by using the dilution rate as the manipulated variable. Despite large disturbances on the input COD and state and parametric uncertainties, this regulation law gave excellent performances leading the output COD towards its set-point and keeping it inside a pre-specified interval.
Robust Control Design via Linear Programming
NASA Technical Reports Server (NTRS)
Keel, L. H.; Bhattacharyya, S. P.
1998-01-01
This paper deals with the problem of synthesizing or designing a feedback controller of fixed dynamic order. The closed loop specifications considered here are given in terms of a target performance vector representing a desired set of closed loop transfer functions connecting various signals. In general these point targets are unattainable with a fixed order controller. By enlarging the target from a fixed point set to an interval set the solvability conditions with a fixed order controller are relaxed and a solution is more easily enabled. Results from the parametric robust control literature can be used to design the interval target family so that the performance deterioration is acceptable, even when plant uncertainty is present. It is shown that it is possible to devise a computationally simple linear programming approach that attempts to meet the desired closed loop specifications.
Three-Dimensional Unsteady Separation at Low Reynolds Numbers
1990-07-01
novel, robust adaptive- grid technique for incompressible flow (Shen & Reed 1990a "Shepard’s Interpolation for Solution-Adaptive Methods" submitted to...3-D adaptive- grid schemes developed for flat plate for full, unsteady, incompressible Navier Stokes. 4. 2-D and 3-D unsteady, vortex-lattice code...perforated to tailor suction through wall. Honeycomb and contractiong uide flow uniformly crons "a dn muwet a m Fiur32 c ic R n R ev lving -disc seals
Adaptive Tracking Control for Robots With an Interneural Computing Scheme.
Tsai, Feng-Sheng; Hsu, Sheng-Yi; Shih, Mau-Hsiang
2018-04-01
Adaptive tracking control of mobile robots requires the ability to follow a trajectory generated by a moving target. The conventional analysis of adaptive tracking uses energy minimization to study the convergence and robustness of the tracking error when the mobile robot follows a desired trajectory. However, in the case that the moving target generates trajectories with uncertainties, a common Lyapunov-like function for energy minimization may be extremely difficult to determine. Here, to solve the adaptive tracking problem with uncertainties, we wish to implement an interneural computing scheme in the design of a mobile robot for behavior-based navigation. The behavior-based navigation adopts an adaptive plan of behavior patterns learning from the uncertainties of the environment. The characteristic feature of the interneural computing scheme is the use of neural path pruning with rewards and punishment interacting with the environment. On this basis, the mobile robot can be exploited to change its coupling weights in paths of neural connections systematically, which can then inhibit or enhance the effect of flow elimination in the dynamics of the evolutionary neural network. Such dynamical flow translation ultimately leads to robust sensory-to-motor transformations adapting to the uncertainties of the environment. A simulation result shows that the mobile robot with the interneural computing scheme can perform fault-tolerant behavior of tracking by maintaining suitable behavior patterns at high frequency levels.
ERIC Educational Resources Information Center
Kochanska, Grazyna; Koenig, Jamie L.; Barry, Robin A.; Kim, Sanghag; Yoon, Jeung Eun
2010-01-01
We investigated whether children's robust conscience, formed during early family socialization, promotes their future adaptive and competent functioning in expanded ecologies. We assessed two dimensions of conscience in young children (N = 100) at 25, 38, and 52 months in scripted laboratory contexts: internalization of their mothers' and fathers'…
Computations of Aerodynamic Performance Databases Using Output-Based Refinement
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.
2009-01-01
Objectives: Handle complex geometry problems; Control discretization errors via solution-adaptive mesh refinement; Focus on aerodynamic databases of parametric and optimization studies: 1. Accuracy: satisfy prescribed error bounds 2. Robustness and speed: may require over 105 mesh generations 3. Automation: avoid user supervision Obtain "expert meshes" independent of user skill; and Run every case adaptively in production settings.
S. Tian; X.L. Luo; X.S. Yang; J.Y. Zhu
2010-01-01
This study reports an ethanol yield of 270 L/ton wood from lodgepole pine pretreated with sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) using an adapted strain, Saccharomyces cerevisiae Y5, without detoxification. The enzymatic hydrolysate produced from pretreated cellulosic solids substrate was combined with pretreatment hydrolysate before...
Less can be more: How to make operations more flexible and robust with fewer resources
NASA Astrophysics Data System (ADS)
Haksöz, ćaǧrı; Katsikopoulos, Konstantinos; Gigerenzer, Gerd
2018-06-01
We review empirical evidence from practice and general theoretical conditions, under which simple rules of thumb can help to make operations flexible and robust. An operation is flexible when it responds adaptively to adverse events such as natural disasters; an operation is robust when it is less affected by adverse events in the first place. We illustrate the relationship between flexibility and robustness in the context of supply chain risk. In addition to increasing flexibility and robustness, simple rules simultaneously reduce the need for resources such as time, money, information, and computation. We illustrate the simple-rules approach with an easy-to-use graphical aid for diagnosing and managing supply chain risk. More generally, we recommend a four-step process for determining the amount of resources that decision makers should invest in so as to increase flexibility and robustness.
Modelling and regulating of cardio-respiratory response for the enhancement of interval training
2014-01-01
Background The interval training method has been a well known exercise protocol which helps strengthen and improve one’s cardiovascular fitness. Purpose To develop an effective training protocol to improve cardiovascular fitness based on modelling and analysis of Heart Rate (HR) and Oxygen Uptake (VO2) dynamics. Methods In order to model the cardiorespiratory response to the onset and offset exercises, the (K4b2, Cosmed) gas analyzer was used to monitor and record the heart rate and oxygen uptake for ten healthy male subjects. An interval training protocol was developed for young health users and was simulated using a proposed RC switching model which was presented to accommodate the variations of the cardiorespiratory dynamics to running exercises. A hybrid system model was presented to describe the adaptation process and a multi-loop PI control scheme was designed for the tuning of interval training regime. Results By observing the original data for each subject, we can clearly identify that all subjects have similar HR and VO2 profiles. The proposed model is capable to simulate the exercise responses during onset and offset exercises; it ensures the continuity of the outputs within the interval training protocol. Under some mild assumptions, a hybrid system model can describe the adaption process and accordingly a multi-loop PI controller can be designed for the tuning of interval training protocol. The self-adaption feature of the proposed controller gives the exerciser the opportunity to reach his desired setpoints after a certain number of training sessions. Conclusions The established interval training protocol targets a range of 70-80% of HRmax which is mainly a training zone for the purpose of cardiovascular system development and improvement. Furthermore, the proposed multi-loop feedback controller has the potential to tune the interval training protocol according to the feedback from an individual exerciser. PMID:24499131
Normalised subband adaptive filtering with extended adaptiveness on degree of subband filters
NASA Astrophysics Data System (ADS)
Samuyelu, Bommu; Rajesh Kumar, Pullakura
2017-12-01
This paper proposes an adaptive normalised subband adaptive filtering (NSAF) to accomplish the betterment of NSAF performance. In the proposed NSAF, an extended adaptiveness is introduced from its variants in two ways. In the first way, the step-size is set adaptive, and in the second way, the selection of subbands is set adaptive. Hence, the proposed NSAF is termed here as variable step-size-based NSAF with selected subbands (VS-SNSAF). Experimental investigations are carried out to demonstrate the performance (in terms of convergence) of the VS-SNSAF against the conventional NSAF and its state-of-the-art adaptive variants. The results report the superior performance of VS-SNSAF over the traditional NSAF and its variants. It is also proved for its stability, robustness against noise and substantial computing complexity.
NASA Astrophysics Data System (ADS)
Hou, Liqiang; Cai, Yuanli; Liu, Jin; Hou, Chongyuan
2016-04-01
A variable fidelity robust optimization method for pulsed laser orbital debris removal (LODR) under uncertainty is proposed. Dempster-shafer theory of evidence (DST), which merges interval-based and probabilistic uncertainty modeling, is used in the robust optimization. The robust optimization method optimizes the performance while at the same time maximizing its belief value. A population based multi-objective optimization (MOO) algorithm based on a steepest descent like strategy with proper orthogonal decomposition (POD) is used to search robust Pareto solutions. Analytical and numerical lifetime predictors are used to evaluate the debris lifetime after the laser pulses. Trust region based fidelity management is designed to reduce the computational cost caused by the expensive model. When the solutions fall into the trust region, the analytical model is used to reduce the computational cost. The proposed robust optimization method is first tested on a set of standard problems and then applied to the removal of Iridium 33 with pulsed lasers. It will be shown that the proposed approach can identify the most robust solutions with minimum lifetime under uncertainty.
Image-adaptive and robust digital wavelet-domain watermarking for images
NASA Astrophysics Data System (ADS)
Zhao, Yi; Zhang, Liping
2018-03-01
We propose a new frequency domain wavelet based watermarking technique. The key idea of our scheme is twofold: multi-tier solution representation of image and odd-even quantization embedding/extracting watermark. Because many complementary watermarks need to be hidden, the watermark image designed is image-adaptive. The meaningful and complementary watermark images was embedded into the original image (host image) by odd-even quantization modifying coefficients, which was selected from the detail wavelet coefficients of the original image, if their magnitudes are larger than their corresponding Just Noticeable Difference thresholds. The tests show good robustness against best-known attacks such as noise addition, image compression, median filtering, clipping as well as geometric transforms. Further research may improve the performance by refining JND thresholds.
Liu, Wei; Huang, Jie
2018-03-01
This paper studies the cooperative global robust output regulation problem for a class of heterogeneous second-order nonlinear uncertain multiagent systems with jointly connected switching networks. The main contributions consist of the following three aspects. First, we generalize the result of the adaptive distributed observer from undirected jointly connected switching networks to directed jointly connected switching networks. Second, by performing a new coordinate and input transformation, we convert our problem into the cooperative global robust stabilization problem of a more complex augmented system via the distributed internal model principle. Third, we solve the stabilization problem by a distributed state feedback control law. Our result is illustrated by the leader-following consensus problem for a group of Van der Pol oscillators.
Application of simple adaptive control to water hydraulic servo cylinder system
NASA Astrophysics Data System (ADS)
Ito, Kazuhisa; Yamada, Tsuyoshi; Ikeo, Shigeru; Takahashi, Koji
2012-09-01
Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.
Whitacre, James M; Rohlfshagen, Philipp; Bender, Axel; Yao, Xin
2012-09-01
Engineered systems are designed to deftly operate under predetermined conditions yet are notoriously fragile when unexpected perturbations arise. In contrast, biological systems operate in a highly flexible manner; learn quickly adequate responses to novel conditions, and evolve new routines and traits to remain competitive under persistent environmental change. A recent theory on the origins of biological flexibility has proposed that degeneracy-the existence of multi-functional components with partially overlapping functions-is a primary determinant of the robustness and adaptability found in evolved systems. While degeneracy's contribution to biological flexibility is well documented, there has been little investigation of degeneracy design principles for achieving flexibility in systems engineering. Actually, the conditions that can lead to degeneracy are routinely eliminated in engineering design. With the planning of transportation vehicle fleets taken as a case study, this article reports evidence that degeneracy improves the robustness and adaptability of a simulated fleet towards unpredicted changes in task requirements without incurring costs to fleet efficiency. We find that degeneracy supports faster rates of design adaptation and ultimately leads to better fleet designs. In investigating the limitations of degeneracy as a design principle, we consider decision-making difficulties that arise from degeneracy's influence on fleet complexity. While global decision-making becomes more challenging, we also find degeneracy accommodates rapid distributed decision-making leading to (near-optimal) robust system performance. Given the range of conditions where favorable short-term and long-term performance outcomes are observed, we propose that degeneracy may fundamentally alter the propensity for adaptation and is useful within different engineering and planning contexts.
NASA Astrophysics Data System (ADS)
Yang, Xinxin; Ge, Shuzhi Sam; He, Wei
2018-04-01
In this paper, both the closed-form dynamics and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances are developed. The dynamic model of the system is described with assumed modes approach and Lagrangian method. The flexible manipulators are represented as Euler-Bernoulli beams. Based on singular perturbation technique, the displacements/joint angles and flexible modes are modelled as slow and fast variables, respectively. A sliding mode control is designed for trajectories tracking of the slow subsystem under unknown but bounded disturbances, and an adaptive sliding mode control is derived for slow subsystem under unknown slowly time-varying disturbances. An optimal linear quadratic regulator method is proposed for the fast subsystem to damp out the vibrations of the flexible manipulators. Theoretical analysis validates the stability of the proposed composite controller. Numerical simulation results demonstrate the performance of the closed-loop flexible space robot system.
Performance study of LMS based adaptive algorithms for unknown system identification
NASA Astrophysics Data System (ADS)
Javed, Shazia; Ahmad, Noor Atinah
2014-07-01
Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.
Performance study of LMS based adaptive algorithms for unknown system identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javed, Shazia; Ahmad, Noor Atinah
Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signalmore » is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.« less
Robust output feedback stabilization for a flexible marine riser system.
Zhao, Zhijia; Liu, Yu; Guo, Fang
2017-12-06
The aim of this paper is to develop a boundary control for the vibration reduction of a flexible marine riser system in the presence of parametric uncertainties and system states obtained inaccurately. To this end, an adaptive output feedback boundary control is proposed to suppress the riser's vibration fusing with observer-based backstepping, high-gain observers and robust adaptive control theory. In addition, the parameter adaptive laws are designed to compensate for the system parametric uncertainties, and the disturbance observer is introduced to mitigate the effects of external environmental disturbance. The uniformly bounded stability of the closed-loop system is achieved through rigorous Lyapunov analysis without any discretisation or simplification of the dynamics in the time and space, and the state observer error is ensured to exponentially converge to zero as time grows to infinity. In the end, the simulation and comparison studies are carried out to illustrate the performance of the proposed control under the proper choice of the design parameters. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A robust adaptive observer for a class of singular nonlinear uncertain systems
NASA Astrophysics Data System (ADS)
Arefinia, Elaheh; Talebi, Heidar Ali; Doustmohammadi, Ali
2017-05-01
This paper proposes a robust adaptive observer for a class of singular nonlinear non-autonomous uncertain systems with unstructured unknown system and derivative matrices, and unknown bounded nonlinearities. Unlike many existing observers, no strong assumption such as Lipschitz condition is imposed on the recommended system. An augmented system is constructed, and the unknown bounds are calculated online using adaptive bounding technique. Considering the continuous nonlinear gain removes the chattering which may appear in practical applications such as analysis of electrical circuits and estimation of interaction force in beating heart robotic-assisted surgery. Moreover, a simple yet precise structure is attained which is easy to implement in many systems with significant uncertainties. The existence conditions of the standard form observer are obtained in terms of linear matrix inequality and the constrained generalised Sylvester's equations, and global stability is ensured. Finally, simulation results are obtained to evaluate the performance of the proposed estimator and demonstrate the effectiveness of the developed scheme.
Enhanced echolocation via robust statistics and super-resolution of sonar images
NASA Astrophysics Data System (ADS)
Kim, Kio
Echolocation is a process in which an animal uses acoustic signals to exchange information with environments. In a recent study, Neretti et al. have shown that the use of robust statistics can significantly improve the resiliency of echolocation against noise and enhance its accuracy by suppressing the development of sidelobes in the processing of an echo signal. In this research, the use of robust statistics is extended to problems in underwater explorations. The dissertation consists of two parts. Part I describes how robust statistics can enhance the identification of target objects, which in this case are cylindrical containers filled with four different liquids. Particularly, this work employs a variation of an existing robust estimator called an L-estimator, which was first suggested by Koenker and Bassett. As pointed out by Au et al.; a 'highlight interval' is an important feature, and it is closely related with many other important features that are known to be crucial for dolphin echolocation. A varied L-estimator described in this text is used to enhance the detection of highlight intervals, which eventually leads to a successful classification of echo signals. Part II extends the problem into 2 dimensions. Thanks to the advances in material and computer technology, various sonar imaging modalities are available on the market. By registering acoustic images from such video sequences, one can extract more information on the region of interest. Computer vision and image processing allowed application of robust statistics to the acoustic images produced by forward looking sonar systems, such as Dual-frequency Identification Sonar and ProViewer. The first use of robust statistics for sonar image enhancement in this text is in image registration. Random Sampling Consensus (RANSAC) is widely used for image registration. The registration algorithm using RANSAC is optimized for sonar image registration, and the performance is studied. The second use of robust statistics is in fusing the images. It is shown that the maximum a posteriori fusion method can be formulated in a Kalman filter-like manner, and also that the resulting expression is identical to a W-estimator with a specific weight function.
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Kaneshige, John T.; Nguyen, Nhan T.; Krishakumar, Kalmanje S.
2010-01-01
Presented here is the evaluation of multiple adaptive control technologies for a generic transport aircraft simulation. For this study, seven model reference adaptive control (MRAC) based technologies were considered. Each technology was integrated into an identical dynamic-inversion control architecture and tuned using a methodology based on metrics and specific design requirements. Simulation tests were then performed to evaluate each technology s sensitivity to time-delay, flight condition, model uncertainty, and artificially induced cross-coupling. The resulting robustness and performance characteristics were used to identify potential strengths, weaknesses, and integration challenges of the individual adaptive control technologies
Real-time range acquisition by adaptive structured light.
Koninckx, Thomas P; Van Gool, Luc
2006-03-01
The goal of this paper is to provide a "self-adaptive" system for real-time range acquisition. Reconstructions are based on a single frame structured light illumination. Instead of using generic, static coding that is supposed to work under all circumstances, system adaptation is proposed. This occurs on-the-fly and renders the system more robust against instant scene variability and creates suitable patterns at startup. A continuous trade-off between speed and quality is made. A weighted combination of different coding cues--based upon pattern color, geometry, and tracking--yields a robust way to solve the correspondence problem. The individual coding cues are automatically adapted within a considered family of patterns. The weights to combine them are based on the average consistency with the result within a small time-window. The integration itself is done by reformulating the problem as a graph cut. Also, the camera-projector configuration is taken into account for generating the projection patterns. The correctness of the range maps is not guaranteed, but an estimation of the uncertainty is provided for each part of the reconstruction. Our prototype is implemented using unmodified consumer hardware only and, therefore, is cheap. Frame rates vary between 10 and 25 fps, dependent on scene complexity.
Parametric synthesis of a robust controller on a base of mathematical programming method
NASA Astrophysics Data System (ADS)
Khozhaev, I. V.; Gayvoronskiy, S. A.; Ezangina, T. A.
2018-05-01
Considered paper is dedicated to deriving sufficient conditions, linking root indices of robust control quality with coefficients of interval characteristic polynomial, on the base of mathematical programming method. On the base of these conditions, a method of PI- and PID-controllers, providing aperiodic transient process with acceptable stability degree and, subsequently, acceptable setting time, synthesis was developed. The method was applied to a problem of synthesizing a controller for a depth control system of an unmanned underwater vehicle.
UAV Mission Planning under Uncertainty
2006-06-01
algorithm , adapted from [13] . 57 4-5 Robust Optimization considers only a subset of the feasible region . 61 5-1 Overview of simulation with parameter...incorporates the robust optimization method suggested by Bertsimas and Sim [12], and is solved with a standard Branch- and-Cut algorithm . The chapter... algorithms , and the heuristic methods of Local Search methods and Simulated Annealing. With each method, we attempt to give a review of research that has
Flexible design in water and wastewater engineering--definitions, literature and decision guide.
Spiller, Marc; Vreeburg, Jan H G; Leusbrock, Ingo; Zeeman, Grietje
2015-02-01
Urban water and wastewater systems face uncertain developments including technological progress, climate change and urban development. To ensure the sustainability of these systems under dynamic conditions it has been proposed that technologies and infrastructure should be flexible, adaptive and robust. However, in literature it is often unclear what these technologies and infrastructure are. Furthermore, the terms flexible, adaptive and robust are often used interchangeably, despite important differences. In this paper we will i) define the terminology, ii) provide an overview of the status of flexible infrastructure design alternatives for water and wastewater networks and treatment, and iii) develop guidelines for the selection of flexible design alternatives. Results indicate that, with the exception of Net Present Valuation methods, there is little research available on the design and evaluation of technologies that can enable flexibility. Flexible design alternatives reviewed include robust design, phased design, modular design, modular/component platform design and design for remanufacturing. As developments in the water sector are driven by slow variables (climate change, urban development), rather than market forces, it is suggested that phased design or component platform designs are suitable for responding to change, while robust design is an option when operations face highly dynamic variability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Autonomic adaptation after traditional and reverse swimming training periodizations.
Clemente-Suárez, Vicente Javier; Fernandes, R J; Arroyo-Toledo, J J; Figueiredo, P; González-Ravé, J M; Vilas-Boas, J P
2015-03-01
The objective of the present study was to analyze the autonomic response of trained swimmers to traditional and reverse training periodization models. Seventeen swimmers were divided in two groups, performing a traditional periodization (TPG) or a reverse periodization (RPG) during a period of 10 weeks. Heart rate variability and 50 m swimming performance were analyzed before and after the training programs. After training, the TPG decreased the values of the high frequency band (HF), the number of differences between adjacent normal R-R intervals longer than 50 ms (NN50) and the percentage of differences between adjacent normal R-R intervals more than 50 ms (pNN50), and the RPG increased the values of HF and square root of the mean of the sum of the squared differences between adjacent normal R-R intervals (RMSSD). None of the groups improved significantly their performance in the 50-m test. The autonomic response of swimmers was different depending on the periodization performed, with the reverse periodization model leading to higher autonomic adaption. Complementary, the data suggests that autonomic adaptations were not critical for the 50-m swimming performance.
Transformation of temporal sequences in the zebra finch auditory system
Lim, Yoonseob; Lagoy, Ryan; Shinn-Cunningham, Barbara G; Gardner, Timothy J
2016-01-01
This study examines how temporally patterned stimuli are transformed as they propagate from primary to secondary zones in the thalamorecipient auditory pallium in zebra finches. Using a new class of synthetic click stimuli, we find a robust mapping from temporal sequences in the primary zone to distinct population vectors in secondary auditory areas. We tested whether songbirds could discriminate synthetic click sequences in an operant setup and found that a robust behavioral discrimination is present for click sequences composed of intervals ranging from 11 ms to 40 ms, but breaks down for stimuli composed of longer inter-click intervals. This work suggests that the analog of the songbird auditory cortex transforms temporal patterns to sequence-selective population responses or ‘spatial codes', and that these distinct population responses contribute to behavioral discrimination of temporally complex sounds. DOI: http://dx.doi.org/10.7554/eLife.18205.001 PMID:27897971
Critical Dynamics in Genetic Regulatory Networks: Examples from Four Kingdoms
Balleza, Enrique; Alvarez-Buylla, Elena R.; Chaos, Alvaro; Kauffman, Stuart; Shmulevich, Ilya; Aldana, Maximino
2008-01-01
The coordinated expression of the different genes in an organism is essential to sustain functionality under the random external perturbations to which the organism might be subjected. To cope with such external variability, the global dynamics of the genetic network must possess two central properties. (a) It must be robust enough as to guarantee stability under a broad range of external conditions, and (b) it must be flexible enough to recognize and integrate specific external signals that may help the organism to change and adapt to different environments. This compromise between robustness and adaptability has been observed in dynamical systems operating at the brink of a phase transition between order and chaos. Such systems are termed critical. Thus, criticality, a precise, measurable, and well characterized property of dynamical systems, makes it possible for robustness and adaptability to coexist in living organisms. In this work we investigate the dynamical properties of the gene transcription networks reported for S. cerevisiae, E. coli, and B. subtilis, as well as the network of segment polarity genes of D. melanogaster, and the network of flower development of A. thaliana. We use hundreds of microarray experiments to infer the nature of the regulatory interactions among genes, and implement these data into the Boolean models of the genetic networks. Our results show that, to the best of the current experimental data available, the five networks under study indeed operate close to criticality. The generality of this result suggests that criticality at the genetic level might constitute a fundamental evolutionary mechanism that generates the great diversity of dynamically robust living forms that we observe around us. PMID:18560561
Face adaptation does not improve performance on search or discrimination tasks
Ng, Minna; Boynton, Geoffrey M.; Fine, Ione
2011-01-01
The face adaptation effect, as described by M. A. Webster and O. H. MacLin (1999), is a robust perceptual shift in the appearance of faces after a brief adaptation period. For example, prolonged exposure to Asian faces causes a Eurasian face to appear distinctly Caucasian. This adaptation effect has been documented for general configural effects, as well as for the facial properties of gender, ethnicity, expression, and identity. We began by replicating the finding that adaptation to ethnicity, gender, and a combination of both features induces selective shifts in category appearance. We then investigated whether this adaptation has perceptual consequences beyond a shift in the perceived category boundary by measuring the effects of adaptation on RSVP, spatial search, and discrimination tasks. Adaptation had no discernable effect on performance for any of these tasks. PMID:18318604
Method and apparatus for adaptive force and position control of manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1989-01-01
The present invention discloses systematic methods and apparatus for the design of real time controllers. Real-time control employs adaptive force/position by use of feedforward and feedback controllers, with the feedforward controller being the inverse of the linearized model of robot dynamics and containing only proportional-double-derivative terms is disclosed. The feedback controller, of the proportional-integral-derivative type, ensures that manipulator joints follow reference trajectories and the feedback controller achieves robust tracking of step-plus-exponential trajectories, all in real time. The adaptive controller includes adaptive force and position control within a hybrid control architecture. The adaptive controller, for force control, achieves tracking of desired force setpoints, and the adaptive position controller accomplishes tracking of desired position trajectories. Circuits in the adaptive feedback and feedforward controllers are varied by adaptation laws.
Face adaptation does not improve performance on search or discrimination tasks.
Ng, Minna; Boynton, Geoffrey M; Fine, Ione
2008-01-04
The face adaptation effect, as described by M. A. Webster and O. H. MacLin (1999), is a robust perceptual shift in the appearance of faces after a brief adaptation period. For example, prolonged exposure to Asian faces causes a Eurasian face to appear distinctly Caucasian. This adaptation effect has been documented for general configural effects, as well as for the facial properties of gender, ethnicity, expression, and identity. We began by replicating the finding that adaptation to ethnicity, gender, and a combination of both features induces selective shifts in category appearance. We then investigated whether this adaptation has perceptual consequences beyond a shift in the perceived category boundary by measuring the effects of adaptation on RSVP, spatial search, and discrimination tasks. Adaptation had no discernable effect on performance for any of these tasks.
New Approaches to Robust Confidence Intervals for Location: A Simulation Study.
1984-06-01
obtain a denominator for the test statistic. Those statistics based on location estimates derived from Hampel’s redescending influence function or v...defined an influence function for a test in terms of the behavior of its P-values when the data are sampled from a model distribution modified by point...proposal could be used for interval estimation as well as hypothesis testing, the extension is immediate. Once an influence function has been defined
An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Krishnakumar, Kalmanje; Boskovic, Jovan
2008-01-01
This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error rapidly. High gain control creates high-frequency oscillations that can excite unmodeled dynamics and can lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking error, which is formulated as an optimal control problem. The necessary condition of optimality is used to derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness of the tracking error by means of the Lyapunov s direct method. Furthermore, this adaptive law allows a large adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the proposed method.
Juang, Chia-Feng; Hsu, Chia-Hung
2009-12-01
This paper proposes a new reinforcement-learning method using online rule generation and Q-value-aided ant colony optimization (ORGQACO) for fuzzy controller design. The fuzzy controller is based on an interval type-2 fuzzy system (IT2FS). The antecedent part in the designed IT2FS uses interval type-2 fuzzy sets to improve controller robustness to noise. There are initially no fuzzy rules in the IT2FS. The ORGQACO concurrently designs both the structure and parameters of an IT2FS. We propose an online interval type-2 rule generation method for the evolution of system structure and flexible partitioning of the input space. Consequent part parameters in an IT2FS are designed using Q -values and the reinforcement local-global ant colony optimization algorithm. This algorithm selects the consequent part from a set of candidate actions according to ant pheromone trails and Q-values, both of which are updated using reinforcement signals. The ORGQACO design method is applied to the following three control problems: 1) truck-backing control; 2) magnetic-levitation control; and 3) chaotic-system control. The ORGQACO is compared with other reinforcement-learning methods to verify its efficiency and effectiveness. Comparisons with type-1 fuzzy systems verify the noise robustness property of using an IT2FS.
A Limitation of the Applicability of Interval Shift Analysis to Program Evaluation
ERIC Educational Resources Information Center
Hardy, Roy
1975-01-01
Interval Shift Analysis (ISA) is an adaptation of the linear programming model used to determine maximum benefits or minimal losses in quantifiable economics problems. ISA is applied to pre and posttest score distributions for 43 classes of second graders. (RC)
Adaptive radial basis function mesh deformation using data reduction
NASA Astrophysics Data System (ADS)
Gillebaart, T.; Blom, D. S.; van Zuijlen, A. H.; Bijl, H.
2016-09-01
Radial Basis Function (RBF) mesh deformation is one of the most robust mesh deformation methods available. Using the greedy (data reduction) method in combination with an explicit boundary correction, results in an efficient method as shown in literature. However, to ensure the method remains robust, two issues are addressed: 1) how to ensure that the set of control points remains an accurate representation of the geometry in time and 2) how to use/automate the explicit boundary correction, while ensuring a high mesh quality. In this paper, we propose an adaptive RBF mesh deformation method, which ensures the set of control points always represents the geometry/displacement up to a certain (user-specified) criteria, by keeping track of the boundary error throughout the simulation and re-selecting when needed. Opposed to the unit displacement and prescribed displacement selection methods, the adaptive method is more robust, user-independent and efficient, for the cases considered. Secondly, the analysis of a single high aspect ratio cell is used to formulate an equation for the correction radius needed, depending on the characteristics of the correction function used, maximum aspect ratio, minimum first cell height and boundary error. Based on the analysis two new radial basis correction functions are derived and proposed. This proposed automated procedure is verified while varying the correction function, Reynolds number (and thus first cell height and aspect ratio) and boundary error. Finally, the parallel efficiency is studied for the two adaptive methods, unit displacement and prescribed displacement for both the CPU as well as the memory formulation with a 2D oscillating and translating airfoil with oscillating flap, a 3D flexible locally deforming tube and deforming wind turbine blade. Generally, the memory formulation requires less work (due to the large amount of work required for evaluating RBF's), but the parallel efficiency reduces due to the limited bandwidth available between CPU and memory. In terms of parallel efficiency/scaling the different studied methods perform similarly, with the greedy algorithm being the bottleneck. In terms of absolute computational work the adaptive methods are better for the cases studied due to their more efficient selection of the control points. By automating most of the RBF mesh deformation, a robust, efficient and almost user-independent mesh deformation method is presented.
Xiao, Jingjing; Stolkin, Rustam; Gao, Yuqing; Leonardis, Ales
2017-09-06
This paper presents a novel robust method for single target tracking in RGB-D images, and also contributes a substantial new benchmark dataset for evaluating RGB-D trackers. While a target object's color distribution is reasonably motion-invariant, this is not true for the target's depth distribution, which continually varies as the target moves relative to the camera. It is therefore nontrivial to design target models which can fully exploit (potentially very rich) depth information for target tracking. For this reason, much of the previous RGB-D literature relies on color information for tracking, while exploiting depth information only for occlusion reasoning. In contrast, we propose an adaptive range-invariant target depth model, and show how both depth and color information can be fully and adaptively fused during the search for the target in each new RGB-D image. We introduce a new, hierarchical, two-layered target model (comprising local and global models) which uses spatio-temporal consistency constraints to achieve stable and robust on-the-fly target relearning. In the global layer, multiple features, derived from both color and depth data, are adaptively fused to find a candidate target region. In ambiguous frames, where one or more features disagree, this global candidate region is further decomposed into smaller local candidate regions for matching to local-layer models of small target parts. We also note that conventional use of depth data, for occlusion reasoning, can easily trigger false occlusion detections when the target moves rapidly toward the camera. To overcome this problem, we show how combining target information with contextual information enables the target's depth constraint to be relaxed. Our adaptively relaxed depth constraints can robustly accommodate large and rapid target motion in the depth direction, while still enabling the use of depth data for highly accurate reasoning about occlusions. For evaluation, we introduce a new RGB-D benchmark dataset with per-frame annotated attributes and extensive bias analysis. Our tracker is evaluated using two different state-of-the-art methodologies, VOT and object tracking benchmark, and in both cases it significantly outperforms four other state-of-the-art RGB-D trackers from the literature.
Climate Risk Informed Decision Analysis: A Hypothetical Application to the Waas Region
NASA Astrophysics Data System (ADS)
Gilroy, Kristin; Mens, Marjolein; Haasnoot, Marjolijn; Jeuken, Ad
2016-04-01
More frequent and intense hydrologic events under climate change are expected to enhance water security and flood risk management challenges worldwide. Traditional planning approaches must be adapted to address climate change and develop solutions with an appropriate level of robustness and flexibility. The Climate Risk Informed Decision Analysis (CRIDA) method is a novel planning approach embodying a suite of complementary methods, including decision scaling and adaptation pathways. Decision scaling offers a bottom-up approach to assess risk and tailors the complexity of the analysis to the problem at hand and the available capacity. Through adaptation pathway,s an array of future strategies towards climate robustness are developed, ranging in flexibility and immediacy of investments. Flexible pathways include transfer points to other strategies to ensure that the system can be adapted if future conditions vary from those expected. CRIDA combines these two approaches in a stakeholder driven process which guides decision makers through the planning and decision process, taking into account how the confidence in the available science, the consequences in the system, and the capacity of institutions should influence strategy selection. In this presentation, we will explain the CRIDA method and compare it to existing planning processes, such as the US Army Corps of Engineers Principles and Guidelines as well as Integrated Water Resources Management Planning. Then, we will apply the approach to a hypothetical case study for the Waas Region, a large downstream river basin facing rapid development threatened by increased flood risks. Through the case study, we will demonstrate how a stakeholder driven process can be used to evaluate system robustness to climate change; develop adaptation pathways for multiple objectives and criteria; and illustrate how varying levels of confidence, consequences, and capacity would play a role in the decision making process, specifically in regards to the level of robustness and flexibility in the selected strategy. This work will equip practitioners and decision makers with an example of a structured process for decision making under climate uncertainty that can be scaled as needed to the problem at hand. This presentation builds further on another submitted abstract "Climate Risk Informed Decision Analysis (CRIDA): A novel practical guidance for Climate Resilient Investments and Planning" by Jeuken et al.
Mullen, Kathy T; Chang, Dorita H F; Hess, Robert F
2015-12-01
There is controversy as to how responses to colour in the human brain are organized within the visual pathways. A key issue is whether there are modular pathways that respond selectively to colour or whether there are common neural substrates for both colour and achromatic (Ach) contrast. We used functional magnetic resonance imaging (fMRI) adaptation to investigate the responses of early and extrastriate visual areas to colour and Ach contrast. High-contrast red-green (RG) and Ach sinewave rings (0.5 cycles/degree, 2 Hz) were used as both adapting stimuli and test stimuli in a block design. We found robust adaptation to RG or Ach contrast in all visual areas. Cross-adaptation between RG and Ach contrast occurred in all areas indicating the presence of integrated, colour and Ach responses. Notably, we revealed contrasting trends for the two test stimuli. For the RG test, unselective processing (robust adaptation to both RG and Ach contrast) was most evident in the early visual areas (V1 and V2), but selective responses, revealed as greater adaptation between the same stimuli than cross-adaptation between different stimuli, emerged in the ventral cortex, in V4 and VO in particular. For the Ach test, unselective responses were again most evident in early visual areas but Ach selectivity emerged in the dorsal cortex (V3a and hMT+). Our findings support a strong presence of integrated mechanisms for colour and Ach contrast across the visual hierarchy, with a progression towards selective processing in extrastriate visual areas. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Optimal Control Modification Adaptive Law for Time-Scale Separated Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.
Robust adaptive relative position and attitude control for spacecraft autonomous proximity.
Sun, Liang; Huo, Wei; Jiao, Zongxia
2016-07-01
This paper provides new results of the dynamical modeling and controller designing for autonomous close proximity phase during rendezvous and docking in the presence of kinematic couplings and model uncertainties. A globally defined relative motion mechanical model for close proximity operations is introduced firstly. Then, in spite of the kinematic couplings and thrust misalignment between relative rotation and relative translation, robust adaptive relative position and relative attitude controllers are designed successively. Finally, stability of the overall system is proved that the relative position and relative attitude are uniformly ultimately bounded, and the size of the ultimate bound can be regulated small enough by control system parameters. Performance of the controlled overall system is demonstrated via a representative numerical example. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Schwacke, Lori H; Hall, Ailsa J; Townsend, Forrest I; Wells, Randall S; Hansen, Larry J; Hohn, Aleta A; Bossart, Gregory D; Fair, Patricia A; Rowles, Teresa K
2009-08-01
To develop robust reference intervals for hematologic and serum biochemical variables by use of data derived from free-ranging bottlenose dolphins (Tursiops truncatus) and examine potential variation in distributions of clinicopathologic values related to sampling sites' geographic locations. 255 free-ranging bottlenose dolphins. Data from samples collected during multiple bottlenose dolphin capture-release projects conducted at 4 southeastern US coastal locations in 2000 through 2006 were combined to determine reference intervals for 52 clinicopathologic variables. A nonparametric bootstrap approach was applied to estimate 95th percentiles and associated 90% confidence intervals; the need for partitioning by length and sex classes was determined by testing for differences in estimated thresholds with a bootstrap method. When appropriate, quantile regression was used to determine continuous functions for 95th percentiles dependent on length. The proportion of out-of-range samples for all clinicopathologic measurements was examined for each geographic site, and multivariate ANOVA was applied to further explore variation in leukocyte subgroups. A need for partitioning by length and sex classes was indicated for many clinicopathologic variables. For each geographic site, few significant deviations from expected number of out-of-range samples were detected. Although mean leukocyte counts did not vary among sites, differences in the mean counts for leukocyte subgroups were identified. Although differences in the centrality of distributions for some variables were detected, the 95th percentiles estimated from the pooled data were robust and applicable across geographic sites. The derived reference intervals provide critical information for conducting bottlenose dolphin population health studies.
Robust optical flow using adaptive Lorentzian filter for image reconstruction under noisy condition
NASA Astrophysics Data System (ADS)
Kesrarat, Darun; Patanavijit, Vorapoj
2017-02-01
In optical flow for motion allocation, the efficient result in Motion Vector (MV) is an important issue. Several noisy conditions may cause the unreliable result in optical flow algorithms. We discover that many classical optical flows algorithms perform better result under noisy condition when combined with modern optimized model. This paper introduces effective robust models of optical flow by using Robust high reliability spatial based optical flow algorithms using the adaptive Lorentzian norm influence function in computation on simple spatial temporal optical flows algorithm. Experiment on our proposed models confirm better noise tolerance in optical flow's MV under noisy condition when they are applied over simple spatial temporal optical flow algorithms as a filtering model in simple frame-to-frame correlation technique. We illustrate the performance of our models by performing an experiment on several typical sequences with differences in movement speed of foreground and background where the experiment sequences are contaminated by the additive white Gaussian noise (AWGN) at different noise decibels (dB). This paper shows very high effectiveness of noise tolerance models that they are indicated by peak signal to noise ratio (PSNR).
Sun, Wei; Zhang, Xiaorui; Peeta, Srinivas; He, Xiaozheng; Li, Yongfu; Zhu, Senlai
2015-01-01
To improve the effectiveness and robustness of fatigue driving recognition, a self-adaptive dynamic recognition model is proposed that incorporates information from multiple sources and involves two sequential levels of fusion, constructed at the feature level and the decision level. Compared with existing models, the proposed model introduces a dynamic basic probability assignment (BPA) to the decision-level fusion such that the weight of each feature source can change dynamically with the real-time fatigue feature measurements. Further, the proposed model can combine the fatigue state at the previous time step in the decision-level fusion to improve the robustness of the fatigue driving recognition. An improved correction strategy of the BPA is also proposed to accommodate the decision conflict caused by external disturbances. Results from field experiments demonstrate that the effectiveness and robustness of the proposed model are better than those of models based on a single fatigue feature and/or single-source information fusion, especially when the most effective fatigue features are used in the proposed model. PMID:26393615
Functional modules of sigma factor regulons guarantee adaptability and evolvability
Binder, Sebastian C.; Eckweiler, Denitsa; Schulz, Sebastian; Bielecka, Agata; Nicolai, Tanja; Franke, Raimo; Häussler, Susanne; Meyer-Hermann, Michael
2016-01-01
The focus of modern molecular biology turns from assigning functions to individual genes towards understanding the expression and regulation of complex sets of molecules. Here, we provide evidence that alternative sigma factor regulons in the pathogen Pseudomonas aeruginosa largely represent insulated functional modules which provide a critical level of biological organization involved in general adaptation and survival processes. Analysis of the operational state of the sigma factor network revealed that transcription factors functionally couple the sigma factor regulons and significantly modulate the transcription levels in the face of challenging environments. The threshold quality of newly evolved transcription factors was reached faster and more robustly in in silico testing when the structural organization of sigma factor networks was taken into account. These results indicate that the modular structures of alternative sigma factor regulons provide P. aeruginosa with a robust framework to function adequately in its environment and at the same time facilitate evolutionary change. Our data support the view that widespread modularity guarantees robustness of biological networks and is a key driver of evolvability. PMID:26915971
Betthauser, Joseph L; Hunt, Christopher L; Osborn, Luke E; Masters, Matthew R; Levay, Gyorgy; Kaliki, Rahul R; Thakor, Nitish V
2018-04-01
Myoelectric signals can be used to predict the intended movements of an amputee for prosthesis control. However, untrained effects like limb position changes influence myoelectric signal characteristics, hindering the ability of pattern recognition algorithms to discriminate among motion classes. Despite frequent and long training sessions, these deleterious conditional influences may result in poor performance and device abandonment. We present a robust sparsity-based adaptive classification method that is significantly less sensitive to signal deviations resulting from untrained conditions. We compare this approach in the offline and online contexts of untrained upper-limb positions for amputee and able-bodied subjects to demonstrate its robustness compared against other myoelectric classification methods. We report significant performance improvements () in untrained limb positions across all subject groups. The robustness of our suggested approach helps to ensure better untrained condition performance from fewer training conditions. This method of prosthesis control has the potential to deliver real-world clinical benefits to amputees: better condition-tolerant performance, reduced training burden in terms of frequency and duration, and increased adoption of myoelectric prostheses.
Knowledge-based nonuniform sampling in multidimensional NMR.
Schuyler, Adam D; Maciejewski, Mark W; Arthanari, Haribabu; Hoch, Jeffrey C
2011-07-01
The full resolution afforded by high-field magnets is rarely realized in the indirect dimensions of multidimensional NMR experiments because of the time cost of uniformly sampling to long evolution times. Emerging methods utilizing nonuniform sampling (NUS) enable high resolution along indirect dimensions by sampling long evolution times without sampling at every multiple of the Nyquist sampling interval. While the earliest NUS approaches matched the decay of sampling density to the decay of the signal envelope, recent approaches based on coupled evolution times attempt to optimize sampling by choosing projection angles that increase the likelihood of resolving closely-spaced resonances. These approaches employ knowledge about chemical shifts to predict optimal projection angles, whereas prior applications of tailored sampling employed only knowledge of the decay rate. In this work we adapt the matched filter approach as a general strategy for knowledge-based nonuniform sampling that can exploit prior knowledge about chemical shifts and is not restricted to sampling projections. Based on several measures of performance, we find that exponentially weighted random sampling (envelope matched sampling) performs better than shift-based sampling (beat matched sampling). While shift-based sampling can yield small advantages in sensitivity, the gains are generally outweighed by diminished robustness. Our observation that more robust sampling schemes are only slightly less sensitive than schemes highly optimized using prior knowledge about chemical shifts has broad implications for any multidimensional NMR study employing NUS. The results derived from simulated data are demonstrated with a sample application to PfPMT, the phosphoethanolamine methyltransferase of the human malaria parasite Plasmodium falciparum.
Narayanaswamy, Arunachalam; Dwarakapuram, Saritha; Bjornsson, Christopher S; Cutler, Barbara M; Shain, William; Roysam, Badrinath
2010-03-01
This paper presents robust 3-D algorithms to segment vasculature that is imaged by labeling laminae, rather than the lumenal volume. The signal is weak, sparse, noisy, nonuniform, low-contrast, and exhibits gaps and spectral artifacts, so adaptive thresholding and Hessian filtering based methods are not effective. The structure deviates from a tubular geometry, so tracing algorithms are not effective. We propose a four step approach. The first step detects candidate voxels using a robust hypothesis test based on a model that assumes Poisson noise and locally planar geometry. The second step performs an adaptive region growth to extract weakly labeled and fine vessels while rejecting spectral artifacts. To enable interactive visualization and estimation of features such as statistical confidence, local curvature, local thickness, and local normal, we perform the third step. In the third step, we construct an accurate mesh representation using marching tetrahedra, volume-preserving smoothing, and adaptive decimation algorithms. To enable topological analysis and efficient validation, we describe a method to estimate vessel centerlines using a ray casting and vote accumulation algorithm which forms the final step of our algorithm. Our algorithm lends itself to parallel processing, and yielded an 8 x speedup on a graphics processor (GPU). On synthetic data, our meshes had average error per face (EPF) values of (0.1-1.6) voxels per mesh face for peak signal-to-noise ratios from (110-28 dB). Separately, the error from decimating the mesh to less than 1% of its original size, the EPF was less than 1 voxel/face. When validated on real datasets, the average recall and precision values were found to be 94.66% and 94.84%, respectively.
Robust, Practical Adaptive Control for Launch Vehicles
NASA Technical Reports Server (NTRS)
Orr, Jeb. S.; VanZwieten, Tannen S.
2012-01-01
A modern mechanization of a classical adaptive control concept is presented with an application to launch vehicle attitude control systems. Due to a rigorous flight certification environment, many adaptive control concepts are infeasible when applied to high-risk aerospace systems; methods of stability analysis are either intractable for high complexity models or cannot be reconciled in light of classical requirements. Furthermore, many adaptive techniques appearing in the literature are not suitable for application to conditionally stable systems with complex flexible-body dynamics, as is often the case with launch vehicles. The present technique is a multiplicative forward loop gain adaptive law similar to that used for the NASA X-15 flight research vehicle. In digital implementation with several novel features, it is well-suited to application on aerodynamically unstable launch vehicles with thrust vector control via augmentation of the baseline attitude/attitude-rate feedback control scheme. The approach is compatible with standard design features of autopilots for launch vehicles, including phase stabilization of lateral bending and slosh via linear filters. In addition, the method of assessing flight control stability via classical gain and phase margins is not affected under reasonable assumptions. The algorithm s ability to recover from certain unstable operating regimes can in fact be understood in terms of frequency-domain criteria. Finally, simulation results are presented that confirm the ability of the algorithm to improve performance and robustness in realistic failure scenarios.
Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update.
Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong
2016-04-15
Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the "good" models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm.
Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update
Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong
2016-01-01
Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the “good” models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm. PMID:27092505
Dong, Yuwen; Deshpande, Sunil; Rivera, Daniel E; Downs, Danielle S; Savage, Jennifer S
2014-06-01
Control engineering offers a systematic and efficient method to optimize the effectiveness of individually tailored treatment and prevention policies known as adaptive or "just-in-time" behavioral interventions. The nature of these interventions requires assigning dosages at categorical levels, which has been addressed in prior work using Mixed Logical Dynamical (MLD)-based hybrid model predictive control (HMPC) schemes. However, certain requirements of adaptive behavioral interventions that involve sequential decision making have not been comprehensively explored in the literature. This paper presents an extension of the traditional MLD framework for HMPC by representing the requirements of sequential decision policies as mixed-integer linear constraints. This is accomplished with user-specified dosage sequence tables, manipulation of one input at a time, and a switching time strategy for assigning dosages at time intervals less frequent than the measurement sampling interval. A model developed for a gestational weight gain (GWG) intervention is used to illustrate the generation of these sequential decision policies and their effectiveness for implementing adaptive behavioral interventions involving multiple components.
Measure of robustness for complex networks
NASA Astrophysics Data System (ADS)
Youssef, Mina Nabil
Critical infrastructures are repeatedly attacked by external triggers causing tremendous amount of damages. Any infrastructure can be studied using the powerful theory of complex networks. A complex network is composed of extremely large number of different elements that exchange commodities providing significant services. The main functions of complex networks can be damaged by different types of attacks and failures that degrade the network performance. These attacks and failures are considered as disturbing dynamics, such as the spread of viruses in computer networks, the spread of epidemics in social networks, and the cascading failures in power grids. Depending on the network structure and the attack strength, every network differently suffers damages and performance degradation. Hence, quantifying the robustness of complex networks becomes an essential task. In this dissertation, new metrics are introduced to measure the robustness of technological and social networks with respect to the spread of epidemics, and the robustness of power grids with respect to cascading failures. First, we introduce a new metric called the Viral Conductance (VCSIS ) to assess the robustness of networks with respect to the spread of epidemics that are modeled through the susceptible/infected/susceptible (SIS) epidemic approach. In contrast to assessing the robustness of networks based on a classical metric, the epidemic threshold, the new metric integrates the fraction of infected nodes at steady state for all possible effective infection strengths. Through examples, VCSIS provides more insights about the robustness of networks than the epidemic threshold. In addition, both the paradoxical robustness of Barabasi-Albert preferential attachment networks and the effect of the topology on the steady state infection are studied, to show the importance of quantifying the robustness of networks. Second, a new metric VCSIR is introduced to assess the robustness of networks with respect to the spread of susceptible/infected/recovered (SIR) epidemics. To compute VCSIR, we propose a novel individual-based approach to model the spread of SIR epidemics in networks, which captures the infection size for a given effective infection rate. Thus, VCSIR quantitatively integrates the infection strength with the corresponding infection size. To optimize the VCSIR metric, a new mitigation strategy is proposed, based on a temporary reduction of contacts in social networks. The social contact network is modeled as a weighted graph that describes the frequency of contacts among the individuals. Thus, we consider the spread of an epidemic as a dynamical system, and the total number of infection cases as the state of the system, while the weight reduction in the social network is the controller variable leading to slow/reduce the spread of epidemics. Using optimal control theory, the obtained solution represents an optimal adaptive weighted network defined over a finite time interval. Moreover, given the high complexity of the optimization problem, we propose two heuristics to find the near optimal solutions by reducing the contacts among the individuals in a decentralized way. Finally, the cascading failures that can take place in power grids and have recently caused several blackouts are studied. We propose a new metric to assess the robustness of the power grid with respect to the cascading failures. The power grid topology is modeled as a network, which consists of nodes and links representing power substations and transmission lines, respectively. We also propose an optimal islanding strategy to protect the power grid when a cascading failure event takes place in the grid. The robustness metrics are numerically evaluated using real and synthetic networks to quantify their robustness with respect to disturbing dynamics. We show that the proposed metrics outperform the classical metrics in quantifying the robustness of networks and the efficiency of the mitigation strategies. In summary, our work advances the network science field in assessing the robustness of complex networks with respect to various disturbing dynamics.
Image segmentation-based robust feature extraction for color image watermarking
NASA Astrophysics Data System (ADS)
Li, Mianjie; Deng, Zeyu; Yuan, Xiaochen
2018-04-01
This paper proposes a local digital image watermarking method based on Robust Feature Extraction. The segmentation is achieved by Simple Linear Iterative Clustering (SLIC) based on which an Image Segmentation-based Robust Feature Extraction (ISRFE) method is proposed for feature extraction. Our method can adaptively extract feature regions from the blocks segmented by SLIC. This novel method can extract the most robust feature region in every segmented image. Each feature region is decomposed into low-frequency domain and high-frequency domain by Discrete Cosine Transform (DCT). Watermark images are then embedded into the coefficients in the low-frequency domain. The Distortion-Compensated Dither Modulation (DC-DM) algorithm is chosen as the quantization method for embedding. The experimental results indicate that the method has good performance under various attacks. Furthermore, the proposed method can obtain a trade-off between high robustness and good image quality.
NASA Astrophysics Data System (ADS)
Peng, Chaoyi; Chen, Zhuyang; Tiwari, Manish K.
2018-03-01
Superhydrophobicity is a remarkable evolutionary adaption manifested by several natural surfaces. Artificial superhydrophobic coatings with good mechanical robustness, substrate adhesion and chemical robustness have been achieved separately. However, a simultaneous demonstration of these features along with resistance to liquid impalement via high-speed drop/jet impact is challenging. Here, we describe all-organic, flexible superhydrophobic nanocomposite coatings that demonstrate strong mechanical robustness under cyclic tape peels and Taber abrasion, sustain exposure to highly corrosive media, namely aqua regia and sodium hydroxide solutions, and can be applied to surfaces through scalable techniques such as spraying and brushing. In addition, the mechanical flexibility of our coatings enables impalement resistance to high-speed drops and turbulent jets at least up to 35 m s-1 and a Weber number of 43,000. With multifaceted robustness and scalability, these coatings should find potential usage in harsh chemical engineering as well as infrastructure, transport vehicles and communication equipment.
Nonlinear stability and control study of highly maneuverable high performance aircraft, phase 2
NASA Technical Reports Server (NTRS)
Mohler, R. R.
1992-01-01
Research leading to the development of new nonlinear methodologies for the adaptive control and stability analysis of high angle of attack aircraft such as the F-18 is discussed. The emphasis has been on nonlinear adaptive control, but associated model development, system identification, stability analysis, and simulation were studied in some detail as well. Studies indicated that nonlinear adaptive control can outperform linear adaptive control for rapid maneuvers with large changes in angle of attack. Included here are studies on nonlinear model algorithmic controller design and an analysis of nonlinear system stability using robust stability analysis for linear systems.
Global adaptive control for uncertain nonaffine nonlinear hysteretic systems.
Liu, Yong-Hua; Huang, Liangpei; Xiao, Dongming; Guo, Yong
2015-09-01
In this paper, the global output tracking is investigated for a class of uncertain nonlinear hysteretic systems with nonaffine structures. By combining the solution properties of the hysteresis model with the novel backstepping approach, a robust adaptive control algorithm is developed without constructing a hysteresis inverse. The proposed control scheme is further modified to tackle the bounded disturbances by adaptively estimating their bounds. It is rigorously proven that the designed adaptive controllers can guarantee global stability of the closed-loop system. Two numerical examples are provided to show the effectiveness of the proposed control schemes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Parallel Anisotropic Tetrahedral Adaptation
NASA Technical Reports Server (NTRS)
Park, Michael A.; Darmofal, David L.
2008-01-01
An adaptive method that robustly produces high aspect ratio tetrahedra to a general 3D metric specification without introducing hybrid semi-structured regions is presented. The elemental operators and higher-level logic is described with their respective domain-decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demonstrated for 1000-1 stretching for a simple cube geometry. This form of adaptation is applicable to more complex domain boundaries via a cut-cell approach as demonstrated by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assumptions and approximations required to form a metric to specify adaptation, an approach is introduced that directly evaluates interpolation error. The grid is adapted to reduce and equidistribute this interpolation error calculation without the use of an intervening anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D domains.
Adaptive finite element method for turbulent flow near a propeller
NASA Astrophysics Data System (ADS)
Pelletier, Dominique; Ilinca, Florin; Hetu, Jean-Francois
1994-11-01
This paper presents an adaptive finite element method based on remeshing to solve incompressible turbulent free shear flow near a propeller. Solutions are obtained in primitive variables using a highly accurate finite element approximation on unstructured grids. Turbulence is modeled by a mixing length formulation. Two general purpose error estimators, which take into account swirl and the variation of the eddy viscosity, are presented and applied to the turbulent wake of a propeller. Predictions compare well with experimental measurements. The proposed adaptive scheme is robust, reliable and cost effective.
Performance characteristics of an adaptive controller based on least-mean-square filters
NASA Technical Reports Server (NTRS)
Mehta, Rajiv S.; Merhav, Shmuel J.
1986-01-01
A closed loop, adaptive control scheme that uses a least mean square filter as the controller model is presented, along with simulation results that demonstrate the excellent robustness of this scheme. It is shown that the scheme adapts very well to unknown plants, even those that are marginally stable, responds appropriately to changes in plant parameters, and is not unduly affected by additive noise. A heuristic argument for the conditions necessary for convergence is presented. Potential applications and extensions of the scheme are also discussed.
Optimal Control Modification for Time-Scale Separated Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2012-01-01
Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.
Adaptive control in the presence of unmodeled dynamics. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Rohrs, C. E.
1982-01-01
Stability and robustness properties of a wide class of adaptive control algorithms in the presence of unmodeled dynamics and output disturbances were investigated. The class of adaptive algorithms considered are those commonly referred to as model reference adaptive control algorithms, self-tuning controllers, and dead beat adaptive controllers, developed for both continuous-time systems and discrete-time systems. A unified analytical approach was developed to examine the class of existing adaptive algorithms. It was discovered that all existing algorithms contain an infinite gain operator in the dynamic system that defines command reference errors and parameter errors; it is argued that such an infinite gain operator appears to be generic to all adaptive algorithms, whether they exhibit explicit or implicit parameter identification. It is concluded that none of the adaptive algorithms considered can be used with confidence in a practical control system design, because instability will set in with a high probability.
L(sub 1) Adaptive Flight Control System: Flight Evaluation and Technology Transition
NASA Technical Reports Server (NTRS)
Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Isaac; Gregory, Irene M.; Cao, Chengyu
2010-01-01
Certification of adaptive control technologies for both manned and unmanned aircraft represent a major challenge for current Verification and Validation techniques. A (missing) key step towards flight certification of adaptive flight control systems is the definition and development of analysis tools and methods to support Verification and Validation for nonlinear systems, similar to the procedures currently used for linear systems. In this paper, we describe and demonstrate the advantages of L(sub l) adaptive control architectures for closing some of the gaps in certification of adaptive flight control systems, which may facilitate the transition of adaptive control into military and commercial aerospace applications. As illustrative examples, we present the results of a piloted simulation evaluation on the NASA AirSTAR flight test vehicle, and results of an extensive flight test program conducted by the Naval Postgraduate School to demonstrate the advantages of L(sub l) adaptive control as a verifiable robust adaptive flight control system.
Adaptive Controller Effects on Pilot Behavior
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.
2014-01-01
Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.
Systems biology of the modified branched Entner-Doudoroff pathway in Sulfolobus solfataricus
Figueiredo, Ana Sofia; Esser, Dominik; Haferkamp, Patrick; Wieloch, Patricia; Schomburg, Dietmar; Siebers, Bettina; Schaber, Jörg
2017-01-01
Sulfolobus solfataricus is a thermoacidophilic Archaeon that thrives in terrestrial hot springs (solfatares) with optimal growth at 80°C and pH 2–4. It catabolizes specific carbon sources, such as D-glucose, to pyruvate via the modified Entner-Doudoroff (ED) pathway. This pathway has two parallel branches, the semi-phosphorylative and the non-phosphorylative. However, the strategy of S.solfataricus to endure in such an extreme environment in terms of robustness and adaptation is not yet completely understood. Here, we present the first dynamic mathematical model of the ED pathway parameterized with quantitative experimental data. These data consist of enzyme activities of the branched pathway at 70°C and 80°C and of metabolomics data at the same temperatures for the wild type and for a metabolic engineered knockout of the semi-phosphorylative branch. We use the validated model to address two questions: 1. Is this system more robust to perturbations at its optimal growth temperature? 2. Is the ED robust to deletion and perturbations? We employed a systems biology approach to answer these questions and to gain further knowledge on the emergent properties of this biological system. Specifically, we applied deterministic and stochastic approaches to study the sensitivity and robustness of the system, respectively. The mathematical model we present here, shows that: 1. Steady state metabolite concentrations of the ED pathway are consistently more robust to stochastic internal perturbations at 80°C than at 70°C; 2. These metabolite concentrations are highly robust when faced with the knockout of either branch. Connected with this observation, these two branches show different properties at the level of metabolite production and flux control. These new results reveal how enzyme kinetics and metabolomics synergizes with mathematical modelling to unveil new systemic properties of the ED pathway in S.solfataricus in terms of its adaptation and robustness. PMID:28692669
Study on Fuzzy Adaptive Fractional Order PIλDμ Control for Maglev Guiding System
NASA Astrophysics Data System (ADS)
Hu, Qing; Hu, Yuwei
The mathematical model of the linear elevator maglev guiding system is analyzed in this paper. For the linear elevator needs strong stability and robustness to run, the integer order PID was expanded to the fractional order, in order to improve the steady state precision, rapidity and robustness of the system, enhance the accuracy of the parameter in fractional order PIλDμ controller, the fuzzy control is combined with the fractional order PIλDμ control, using the fuzzy logic achieves the parameters online adjustment. The simulations reveal that the system has faster response speed, higher tracking precision, and has stronger robustness to the disturbance.
Real-time simulation of large-scale floods
NASA Astrophysics Data System (ADS)
Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.
2016-08-01
According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.
Topologically protected modes in non-equilibrium stochastic systems.
Murugan, Arvind; Vaikuntanathan, Suriyanarayanan
2017-01-10
Non-equilibrium driving of biophysical processes is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enzymatic specificity and maintenance of coherent oscillations. Elucidating the relation between energy consumption and organization remains an important and open question in non-equilibrium statistical mechanics. Here we report that steady states of systems with non-equilibrium fluxes can support topologically protected boundary modes that resemble similar modes in electronic and mechanical systems. Akin to their electronic and mechanical counterparts, topological-protected boundary steady states in non-equilibrium systems are robust and are largely insensitive to local perturbations. We argue that our work provides a framework for how biophysical systems can use non-equilibrium driving to achieve robust function.
Effect of smoothing on robust chaos.
Deshpande, Amogh; Chen, Qingfei; Wang, Yan; Lai, Ying-Cheng; Do, Younghae
2010-08-01
In piecewise-smooth dynamical systems, situations can arise where the asymptotic attractors of the system in an open parameter interval are all chaotic (e.g., no periodic windows). This is the phenomenon of robust chaos. Previous works have established that robust chaos can occur through the mechanism of border-collision bifurcation, where border is the phase-space region where discontinuities in the derivatives of the dynamical equations occur. We investigate the effect of smoothing on robust chaos and find that periodic windows can arise when a small amount of smoothness is present. We introduce a parameter of smoothing and find that the measure of the periodic windows in the parameter space scales linearly with the parameter, regardless of the details of the smoothing function. Numerical support and a heuristic theory are provided to establish the scaling relation. Experimental evidence of periodic windows in a supposedly piecewise linear dynamical system, which has been implemented as an electronic circuit, is also provided.
Marostica, Eleonora; Van Ammel, Karel; Teisman, Ard; Gallacher, David; Van Bocxlaer, Jan; De Ridder, Filip; Boussery, Koen; Vermeulen, An
2016-07-01
Inhibiting the human ether-a-go-go-related gene (hERG)-encoded potassium ion channel is positively correlated with QT-interval prolongation in vivo, which is considered a risk factor for the occurrence of Torsades de Pointes (TdP). A pharmacokinetic/pharmacodynamic model was developed for four compounds that reached the clinic, to relate drug-induced QT-interval change in awake dogs and humans and to derive a translational scaling factor a 1. Overall, dogs were more sensitive than humans to QT-interval change, an a 1 of 1.5 was found, and a 10% current inhibition in vitro produced a higher percent QT-interval change in dogs as compared to humans. The QT-interval changes in dogs were predictive for humans. In vitro and in vivo information could reliably describe the effects in humans. Robust translational knowledge is likely to reduce the need for expensive thorough QT studies; therefore, expanding this work to more compounds is recommended.
Synchronization ability of coupled cell-cycle oscillators in changing environments
2012-01-01
Background The biochemical oscillator that controls periodic events during the Xenopus embryonic cell cycle is centered on the activity of CDKs, and the cell cycle is driven by a protein circuit that is centered on the cyclin-dependent protein kinase CDK1 and the anaphase-promoting complex (APC). Many studies have been conducted to confirm that the interactions in the cell cycle can produce oscillations and predict behaviors such as synchronization, but much less is known about how the various elaborations and collective behavior of the basic oscillators can affect the robustness of the system. Therefore, in this study, we investigate and model a multi-cell system of the Xenopus embryonic cell cycle oscillators that are coupled through a common complex protein, and then analyze their synchronization ability under four different external stimuli, including a constant input signal, a square-wave periodic signal, a sinusoidal signal and a noise signal. Results Through bifurcation analysis and numerical simulations, we obtain synchronization intervals of the sensitive parameters in the individual oscillator and the coupling parameters in the coupled oscillators. Then, we analyze the effects of these parameters on the synchronization period and amplitude, and find interesting phenomena, e.g., there are two synchronization intervals with activation coefficient in the Hill function of the activated CDK1 that activates the Plk1, and different synchronization intervals have distinct influences on the synchronization period and amplitude. To quantify the speediness and robustness of the synchronization, we use two quantities, the synchronization time and the robustness index, to evaluate the synchronization ability. More interestingly, we find that the coupled system has an optimal signal strength that maximizes the synchronization index under different external stimuli. Simulation results also show that the ability and robustness of the synchronization for the square-wave periodic signal of cyclin synthesis is strongest in comparison to the other three different signals. Conclusions These results suggest that the reaction process in which the activated cyclin-CDK1 activates the Plk1 has a very important influence on the synchronization ability of the coupled system, and the square-wave periodic signal of cyclin synthesis is more conducive to the synchronization and robustness of the coupled cell-cycle oscillators. Our study provides insight into the internal mechanisms of the cell cycle system and helps to generate hypotheses for further research. PMID:23046815
Robustness via Run-Time Adaptation of Contingent Plans
NASA Technical Reports Server (NTRS)
Bresina, John L.; Washington, Richard; Norvig, Peter (Technical Monitor)
2000-01-01
In this paper, we discuss our approach to making the behavior of planetary rovers more robust for the purpose of increased productivity. Due to the inherent uncertainty in rover exploration, the traditional approach to rover control is conservative, limiting the autonomous operation of the rover and sacrificing performance for safety. Our objective is to increase the science productivity possible within a single uplink by allowing the rover's behavior to be specified with flexible, contingent plans and by employing dynamic plan adaptation during execution. We have deployed a system exhibiting flexible, contingent execution; this paper concentrates on our ongoing efforts on plan adaptation, Plans can be revised in two ways: plan steps may be deleted, with execution continuing with the plan suffix; and the current plan may be merged with an "alternate plan" from an on-board library. The plan revision action is chosen to maximize the expected utility of the plan. Plan merging and action deletion constitute a more conservative general-purpose planning system; in return, our approach is more efficient and more easily verified, two important criteria for deployed rovers.
NASA Astrophysics Data System (ADS)
Yan, Peng; Zhang, Yangming
2018-06-01
High performance scanning of nano-manipulators is widely deployed in various precision engineering applications such as SPM (scanning probe microscope), where trajectory tracking of sophisticated reference signals is an challenging control problem. The situation is further complicated when rate dependent hysteresis of the piezoelectric actuators and the stress-stiffening induced nonlinear stiffness of the flexure mechanism are considered. In this paper, a novel control framework is proposed to achieve high precision tracking of a piezoelectric nano-manipulator subjected to hysteresis and stiffness nonlinearities. An adaptive parameterized rate-dependent Prandtl-Ishlinskii model is constructed and the corresponding adaptive inverse model based online compensation is derived. Meanwhile a robust adaptive control architecture is further introduced to improve the tracking accuracy and robustness of the compensated system, where the parametric uncertainties of the nonlinear dynamics can be well eliminated by on-line estimations. Comparative experimental studies of the proposed control algorithm are conducted on a PZT actuated nano-manipulating stage, where hysteresis modeling accuracy and excellent tracking performance are demonstrated in real-time implementations, with significant improvement over existing results.
Yoo, Sung Jin; Park, Jin Bae; Choi, Yoon Ho
2008-10-01
In this paper, we propose a new robust output feedback control approach for flexible-joint electrically driven (FJED) robots via the observer dynamic surface design technique. The proposed method only requires position measurements of the FJED robots. To estimate the link and actuator velocity information of the FJED robots with model uncertainties, we develop an adaptive observer using self-recurrent wavelet neural networks (SRWNNs). The SRWNNs are used to approximate model uncertainties in both robot (link) dynamics and actuator dynamics, and all their weights are trained online. Based on the designed observer, the link position tracking controller using the estimated states is induced from the dynamic surface design procedure. Therefore, the proposed controller can be designed more simply than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop adaptive system are uniformly ultimately bounded. Finally, the simulation results on a three-link FJED robot are presented to validate the good position tracking performance and robustness of the proposed control system against payload uncertainties and external disturbances.
Tong, Shaocheng; Wang, Tong; Li, Yongming; Zhang, Huaguang
2014-06-01
This paper discusses the problem of adaptive neural network output feedback control for a class of stochastic nonlinear strict-feedback systems. The concerned systems have certain characteristics, such as unknown nonlinear uncertainties, unknown dead-zones, unmodeled dynamics and without the direct measurements of state variables. In this paper, the neural networks (NNs) are employed to approximate the unknown nonlinear uncertainties, and then by representing the dead-zone as a time-varying system with a bounded disturbance. An NN state observer is designed to estimate the unmeasured states. Based on both backstepping design technique and a stochastic small-gain theorem, a robust adaptive NN output feedback control scheme is developed. It is proved that all the variables involved in the closed-loop system are input-state-practically stable in probability, and also have robustness to the unmodeled dynamics. Meanwhile, the observer errors and the output of the system can be regulated to a small neighborhood of the origin by selecting appropriate design parameters. Simulation examples are also provided to illustrate the effectiveness of the proposed approach.
Su, Hai; Xing, Fuyong; Yang, Lin
2016-01-01
Successful diagnostic and prognostic stratification, treatment outcome prediction, and therapy planning depend on reproducible and accurate pathology analysis. Computer aided diagnosis (CAD) is a useful tool to help doctors make better decisions in cancer diagnosis and treatment. Accurate cell detection is often an essential prerequisite for subsequent cellular analysis. The major challenge of robust brain tumor nuclei/cell detection is to handle significant variations in cell appearance and to split touching cells. In this paper, we present an automatic cell detection framework using sparse reconstruction and adaptive dictionary learning. The main contributions of our method are: 1) A sparse reconstruction based approach to split touching cells; 2) An adaptive dictionary learning method used to handle cell appearance variations. The proposed method has been extensively tested on a data set with more than 2000 cells extracted from 32 whole slide scanned images. The automatic cell detection results are compared with the manually annotated ground truth and other state-of-the-art cell detection algorithms. The proposed method achieves the best cell detection accuracy with a F1 score = 0.96. PMID:26812706
Sun, Liang; Huo, Wei; Jiao, Zongxia
2017-03-01
This paper studies relative pose control for a rigid spacecraft with parametric uncertainties approaching to an unknown tumbling target in disturbed space environment. State feedback controllers for relative translation and relative rotation are designed in an adaptive nonlinear robust control framework. The element-wise and norm-wise adaptive laws are utilized to compensate the parametric uncertainties of chaser and target spacecraft, respectively. External disturbances acting on two spacecraft are treated as a lumped and bounded perturbation input for system. To achieve the prescribed disturbance attenuation performance index, feedback gains of controllers are designed by solving linear matrix inequality problems so that lumped disturbance attenuation with respect to the controlled output is ensured in the L 2 -gain sense. Moreover, in the absence of lumped disturbance input, asymptotical convergence of relative pose are proved by using the Lyapunov method. Numerical simulations are performed to show that position tracking and attitude synchronization are accomplished in spite of the presence of couplings and uncertainties. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Jianqiao; Ye, Dong; Sun, Zhaowei; Liu, Chuang
2018-02-01
This paper presents a robust adaptive controller integrated with an extended state observer (ESO) to solve coupled spacecraft tracking maneuver in the presence of model uncertainties, external disturbances, actuator uncertainties including magnitude deviation and misalignment, and even actuator saturation. More specifically, employing the exponential coordinates on the Lie group SE(3) to describe configuration tracking errors, the coupled six-degrees-of-freedom (6-DOF) dynamics are developed for spacecraft relative motion, in which a generic fully actuated thruster distribution is considered and the lumped disturbances are reconstructed by using anti-windup technique. Then, a novel ESO, developed via second order sliding mode (SOSM) technique and adding linear correction terms to improve the performance, is designed firstly to estimate the disturbances in finite time. Based on the estimated information, an adaptive fast terminal sliding mode (AFTSM) controller is developed to guarantee the almost global asymptotic stability of the resulting closed-loop system such that the trajectory can be tracked with all the aforementioned drawbacks addressed simultaneously. Finally, the effectiveness of the controller is illustrated through numerical examples.
An adaptive reconstruction for Lagrangian, direct-forcing, immersed-boundary methods
NASA Astrophysics Data System (ADS)
Posa, Antonio; Vanella, Marcos; Balaras, Elias
2017-12-01
Lagrangian, direct-forcing, immersed boundary (IB) methods have been receiving increased attention due to their robustness in complex fluid-structure interaction problems. They are very sensitive, however, on the selection of the Lagrangian grid, which is typically used to define a solid or flexible body immersed in a fluid flow. In the present work we propose a cost-efficient solution to this problem without compromising accuracy. Central to our approach is the use of isoparametric mapping to bridge the relative resolution requirements of Lagrangian IB, and Eulerian grids. With this approach, the density of surface Lagrangian markers, which is essential to properly enforce boundary conditions, is adapted dynamically based on the characteristics of the underlying Eulerian grid. The markers are not stored and the Lagrangian data-structure is not modified. The proposed scheme is implemented in the framework of a moving least squares reconstruction formulation, but it can be adapted to any Lagrangian, direct-forcing formulation. The accuracy and robustness of the approach is demonstrated in a variety of test cases of increasing complexity.
Robust Design of Sheet Metal Forming Process Based on Kriging Metamodel
NASA Astrophysics Data System (ADS)
Xie, Yanmin
2011-08-01
Nowadays, sheet metal forming processes design is not a trivial task due to the complex issues to be taken into account (conflicting design goals, complex shapes forming and so on). Optimization methods have also been widely applied in sheet metal forming. Therefore, proper design methods to reduce time and costs have to be developed mostly based on computer aided procedures. At the same time, the existence of variations during manufacturing processes significantly may influence final product quality, rendering non-robust optimal solutions. In this paper, a small size of design of experiments is conducted to investigate how a stochastic behavior of noise factors affects drawing quality. The finite element software (LS_DYNA) is used to simulate the complex sheet metal stamping processes. The Kriging metamodel is adopted to map the relation between input process parameters and part quality. Robust design models for sheet metal forming process integrate adaptive importance sampling with Kriging model, in order to minimize impact of the variations and achieve reliable process parameters. In the adaptive sample, an improved criterion is used to provide direction in which additional training samples can be added to better the Kriging model. Nonlinear functions as test functions and a square stamping example (NUMISHEET'93) are employed to verify the proposed method. Final results indicate application feasibility of the aforesaid method proposed for multi-response robust design.
On Motion Planning and Control of Multi-Link Lightweight Robotic Manipulators
NASA Technical Reports Server (NTRS)
Cetinkunt, Sabri
1987-01-01
A general gross and fine motion planning and control strategy is needed for lightweight robotic manipulator applications such as painting, welding, material handling, surface finishing, and spacecraft servicing. The control problem of lightweight manipulators is to perform fast, accurate, and robust motions despite the payload variations, structural flexibility, and other environmental disturbances. Performance of the rigid manipulator model based computed torque and decoupled joint control methods are determined and simulated for the counterpart flexible manipulators. A counterpart flexible manipulator is defined as a manipulator which has structural flexibility, in addition to having the same inertial, geometric, and actuation properties of a given rigid manipulator. An adaptive model following control (AMFC) algorithm is developed to improve the performance in speed, accuracy, and robustness. It is found that the AMFC improves the speed performance by a factor of two over the conventional non-adaptive control methods for given accuracy requirements while proving to be more robust with respect to payload variations. Yet there are clear limitations on the performance of AMFC alone as well, which are imposed by the arm flexibility. In the search to further improve speed performance while providing a desired accuracy and robustness, a combined control strategy is developed. Furthermore, the problem of switching from one control structure to another during the motion and implementation aspects of combined control are discussed.
Seidl, Rupert; Lexer, Manfred J
2013-01-15
The unabated continuation of anthropogenic greenhouse gas emissions and the lack of an international consensus on a stringent climate change mitigation policy underscore the importance of adaptation for coping with the all but inevitable changes in the climate system. Adaptation measures in forestry have particularly long lead times. A timely implementation is thus crucial for reducing the considerable climate vulnerability of forest ecosystems. However, since future environmental conditions as well as future societal demands on forests are inherently uncertain, a core requirement for adaptation is robustness to a wide variety of possible futures. Here we explicitly address the roles of climatic and social uncertainty in forest management, and tackle the question of robustness of adaptation measures in the context of multi-objective sustainable forest management (SFM). We used the Austrian Federal Forests (AFF) as a case study, and employed a comprehensive vulnerability assessment framework based on ecosystem modeling, multi-criteria decision analysis, and practitioner participation. We explicitly considered climate uncertainty by means of three climate change scenarios, and accounted for uncertainty in future social demands by means of three societal preference scenarios regarding SFM indicators. We found that the effects of climatic and social uncertainty on the projected performance of management were in the same order of magnitude, underlining the notion that climate change adaptation requires an integrated social-ecological perspective. Furthermore, our analysis of adaptation measures revealed considerable trade-offs between reducing adverse impacts of climate change and facilitating adaptive capacity. This finding implies that prioritization between these two general aims of adaptation is necessary in management planning, which we suggest can draw on uncertainty analysis: Where the variation induced by social-ecological uncertainty renders measures aiming to reduce climate change impacts statistically insignificant (i.e., for approximately one third of the investigated management units of the AFF case study), fostering adaptive capacity is suggested as the preferred pathway for adaptation. We conclude that climate change adaptation needs to balance between anticipating expected future conditions and building the capacity to address unknowns and surprises. Copyright © 2012 Elsevier Ltd. All rights reserved.
Robust Adaptive Flight Control Design of Air-breathing Hypersonic Vehicles
2016-12-07
dynamic inversion controller design for a non -minimum phase hypersonic vehicle is derived by Kuipers et al. [2008]. Moreover, integrated guidance and...stabilization time for inner loop variables is lesser than the intermediate loop variables because of the three-loop-control design methodology . The control...adaptive design . Control Engineering Practice, 2016. Michael A Bolender and David B Doman. A non -linear model for the longitudinal dynamics of a
IRAC Full-Scale Flight Testbed Capabilities
NASA Technical Reports Server (NTRS)
Lee, James A.; Pahle, Joseph; Cogan, Bruce R.; Hanson, Curtis E.; Bosworth, John T.
2009-01-01
Overview: Provide validation of adaptive control law concepts through full scale flight evaluation in a representative avionics architecture. Develop an understanding of aircraft dynamics of current vehicles in damaged and upset conditions Real-world conditions include: a) Turbulence, sensor noise, feedback biases; and b) Coupling between pilot and adaptive system. Simulated damage includes 1) "B" matrix (surface) failures; and 2) "A" matrix failures. Evaluate robustness of control systems to anticipated and unanticipated failures.
NASA Astrophysics Data System (ADS)
Chen, Syuan-Yi; Gong, Sheng-Sian
2017-09-01
This study aims to develop an adaptive high-precision control system for controlling the speed of a vane-type air motor (VAM) pneumatic servo system. In practice, the rotor speed of a VAM depends on the input mass air flow, which can be controlled by the effective orifice area (EOA) of an electronic throttle valve (ETV). As the control variable of a second-order pneumatic system is the integral of the EOA, an observation-based adaptive dynamic sliding-mode control (ADSMC) system is proposed to derive the differential of the control variable, namely, the EOA control signal. In the ADSMC system, a proportional-integral-derivative fuzzy neural network (PIDFNN) observer is used to achieve an ideal dynamic sliding-mode control (DSMC), and a supervisor compensator is designed to eliminate the approximation error. As a result, the ADSMC incorporates the robustness of a DSMC and the online learning ability of a PIDFNN. To ensure the convergence of the tracking error, a Lyapunov-based analytical method is employed to obtain the adaptive algorithms required to tune the control parameters of the online ADSMC system. Finally, our experimental results demonstrate the precision and robustness of the ADSMC system for highly nonlinear and time-varying VAM pneumatic servo systems.
Robust adaptive cruise control of high speed trains.
Faieghi, Mohammadreza; Jalali, Aliakbar; Mashhadi, Seyed Kamal-e-ddin Mousavi
2014-03-01
The cruise control problem of high speed trains in the presence of unknown parameters and external disturbances is considered. In particular a Lyapunov-based robust adaptive controller is presented to achieve asymptotic tracking and disturbance rejection. The system under consideration is nonlinear, MIMO and non-minimum phase. To deal with the limitations arising from the unstable zero-dynamics we do an output redefinition such that the zero-dynamics with respect to new outputs becomes stable. Rigorous stability analyses are presented which establish the boundedness of all the internal states and simultaneously asymptotic stability of the tracking error dynamics. The results are presented for two common configurations of high speed trains, i.e. the DD and PPD designs, based on the multi-body model and are verified by several numerical simulations. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Ghanbarian, Mohammad Mehdi; Nayeripour, Majid; Rajaei, Amirhossein; Mansouri, Mohammad Mahdi
2016-03-01
As the output power of a microgrid with renewable energy sources should be regulated based on the grid conditions, using robust controllers to share and balance the power in order to regulate the voltage and frequency of microgrid is critical. Therefore a proper control system is necessary for updating the reference signals and determining the proportion of each inverter in the microgrid control. This paper proposes a new adaptive method which is robust while the conditions are changing. This controller is based on a modified sliding mode controller which provides adapting conditions in linear and nonlinear loads. The performance of the proposed method is validated by representing the simulation results and experimental lab results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Two-dimensional phase unwrapping using robust derivative estimation and adaptive integration.
Strand, Jarle; Taxt, Torfinn
2002-01-01
The adaptive integration (ADI) method for two-dimensional (2-D) phase unwrapping is presented. The method uses an algorithm for noise robust estimation of partial derivatives, followed by a noise robust adaptive integration process. The ADI method can easily unwrap phase images with moderate noise levels, and the resulting images are congruent modulo 2pi with the observed, wrapped, input images. In a quantitative evaluation, both the ADI and the BLS methods (Strand et al.) were better than the least-squares methods of Ghiglia and Romero (GR), and of Marroquin and Rivera (MRM). In a qualitative evaluation, the ADI, the BLS, and a conjugate gradient version of the MRM method (MRMCG), were all compared using a synthetic image with shear, using 115 magnetic resonance images, and using 22 fiber-optic interferometry images. For the synthetic image and the interferometry images, the ADI method gave consistently visually better results than the other methods. For the MR images, the MRMCG method was best, and the ADI method second best. The ADI method was less sensitive to the mask definition and the block size than the BLS method, and successfully unwrapped images with shears that were not marked in the masks. The computational requirements of the ADI method for images of nonrectangular objects were comparable to only two iterations of many least-squares-based methods (e.g., GR). We believe the ADI method provides a powerful addition to the ensemble of tools available for 2-D phase unwrapping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morley, Steven
The PyForecastTools package provides Python routines for calculating metrics for model validation, forecast verification and model comparison. For continuous predictands the package provides functions for calculating bias (mean error, mean percentage error, median log accuracy, symmetric signed bias), and for calculating accuracy (mean squared error, mean absolute error, mean absolute scaled error, normalized RMSE, median symmetric accuracy). Convenience routines to calculate the component parts (e.g. forecast error, scaled error) of each metric are also provided. To compare models the package provides: generic skill score; percent better. Robust measures of scale including median absolute deviation, robust standard deviation, robust coefficient ofmore » variation and the Sn estimator are all provided by the package. Finally, the package implements Python classes for NxN contingency tables. In the case of a multi-class prediction, accuracy and skill metrics such as proportion correct and the Heidke and Peirce skill scores are provided as object methods. The special case of a 2x2 contingency table inherits from the NxN class and provides many additional metrics for binary classification: probability of detection, probability of false detection, false alarm ration, threat score, equitable threat score, bias. Confidence intervals for many of these quantities can be calculated using either the Wald method or Agresti-Coull intervals.« less
Viana, Duarte S; Santamaría, Luis; Figuerola, Jordi
2016-02-01
Propagule retention time is a key factor in determining propagule dispersal distance and the shape of "seed shadows". Propagules dispersed by animal vectors are either ingested and retained in the gut until defecation or attached externally to the body until detachment. Retention time is a continuous variable, but it is commonly measured at discrete time points, according to pre-established sampling time-intervals. Although parametric continuous distributions have been widely fitted to these interval-censored data, the performance of different fitting methods has not been evaluated. To investigate the performance of five different fitting methods, we fitted parametric probability distributions to typical discretized retention-time data with known distribution using as data-points either the lower, mid or upper bounds of sampling intervals, as well as the cumulative distribution of observed values (using either maximum likelihood or non-linear least squares for parameter estimation); then compared the estimated and original distributions to assess the accuracy of each method. We also assessed the robustness of these methods to variations in the sampling procedure (sample size and length of sampling time-intervals). Fittings to the cumulative distribution performed better for all types of parametric distributions (lognormal, gamma and Weibull distributions) and were more robust to variations in sample size and sampling time-intervals. These estimated distributions had negligible deviations of up to 0.045 in cumulative probability of retention times (according to the Kolmogorov-Smirnov statistic) in relation to original distributions from which propagule retention time was simulated, supporting the overall accuracy of this fitting method. In contrast, fitting the sampling-interval bounds resulted in greater deviations that ranged from 0.058 to 0.273 in cumulative probability of retention times, which may introduce considerable biases in parameter estimates. We recommend the use of cumulative probability to fit parametric probability distributions to propagule retention time, specifically using maximum likelihood for parameter estimation. Furthermore, the experimental design for an optimal characterization of unimodal propagule retention time should contemplate at least 500 recovered propagules and sampling time-intervals not larger than the time peak of propagule retrieval, except in the tail of the distribution where broader sampling time-intervals may also produce accurate fits.
Robust, Adaptive Functional Regression in Functional Mixed Model Framework.
Zhu, Hongxiao; Brown, Philip J; Morris, Jeffrey S
2011-09-01
Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large data sets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g. images), and using other invertible transformations as alternatives to wavelets.
Robust, Adaptive Functional Regression in Functional Mixed Model Framework
Zhu, Hongxiao; Brown, Philip J.; Morris, Jeffrey S.
2012-01-01
Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large data sets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g. images), and using other invertible transformations as alternatives to wavelets. PMID:22308015
Selection of Metastatic Breast Cancer Cells Based on Adaptability of Their Metabolic State
Singh, Balraj; Tai, Karen; Madan, Simran; Raythatha, Milan R.; Cady, Amanda M.; Braunlin, Megan; Irving, LaTashia R.; Bajaj, Ankur; Lucci, Anthony
2012-01-01
A small subpopulation of highly adaptable breast cancer cells within a vastly heterogeneous population drives cancer metastasis. Here we describe a function-based strategy for selecting rare cancer cells that are highly adaptable and drive malignancy. Although cancer cells are dependent on certain nutrients, e.g., glucose and glutamine, we hypothesized that the adaptable cancer cells that drive malignancy must possess an adaptable metabolic state and that such cells could be identified using a robust selection strategy. As expected, more than 99.99% of cells died upon glutamine withdrawal from the aggressive breast cancer cell line SUM149. The rare cells that survived and proliferated without glutamine were highly adaptable, as judged by additional robust adaptability assays involving prolonged cell culture without glucose or serum. We were successful in isolating rare metabolically plastic glutamine-independent (Gln-ind) variants from several aggressive breast cancer cell lines that we tested. The Gln-ind cells overexpressed cyclooxygenase-2, an indicator of tumor aggressiveness, and they were able to adjust their glutaminase level to suit glutamine availability. The Gln-ind cells were anchorage-independent, resistant to chemotherapeutic drugs doxorubicin and paclitaxel, and resistant to a high concentration of a COX-2 inhibitor celecoxib. The number of cells being able to adapt to non-availability of glutamine increased upon prior selection of cells for resistance to chemotherapy drugs or resistance to celecoxib, further supporting a linkage between cellular adaptability and therapeutic resistance. Gln-ind cells showed indications of oxidative stress, and they produced cadherin11 and vimentin, indicators of mesenchymal phenotype. Gln-ind cells were more tumorigenic and more metastatic in nude mice than the parental cell line as judged by incidence and time of occurrence. As we decreased the number of cancer cells in xenografts, lung metastasis and then primary tumor growth was impaired in mice injected with parental cell line, but not in mice injected with Gln-ind cells. PMID:22570721
A Very Simple Method to Calculate the (Positive) Largest Lyapunov Exponent Using Interval Extensions
NASA Astrophysics Data System (ADS)
Mendes, Eduardo M. A. M.; Nepomuceno, Erivelton G.
2016-12-01
In this letter, a very simple method to calculate the positive Largest Lyapunov Exponent (LLE) based on the concept of interval extensions and using the original equations of motion is presented. The exponent is estimated from the slope of the line derived from the lower bound error when considering two interval extensions of the original system. It is shown that the algorithm is robust, fast and easy to implement and can be considered as alternative to other algorithms available in the literature. The method has been successfully tested in five well-known systems: Logistic, Hénon, Lorenz and Rössler equations and the Mackey-Glass system.
The right time to learn: mechanisms and optimization of spaced learning
Smolen, Paul; Zhang, Yili; Byrne, John H.
2016-01-01
For many types of learning, spaced training, which involves repeated long inter-trial intervals, leads to more robust memory formation than does massed training, which involves short or no intervals. Several cognitive theories have been proposed to explain this superiority, but only recently have data begun to delineate the underlying cellular and molecular mechanisms of spaced training, and we review these theories and data here. Computational models of the implicated signalling cascades have predicted that spaced training with irregular inter-trial intervals can enhance learning. This strategy of using models to predict optimal spaced training protocols, combined with pharmacotherapy, suggests novel ways to rescue impaired synaptic plasticity and learning. PMID:26806627
NASA Astrophysics Data System (ADS)
López-Comino, J. A.; Cesca, S.; Heimann, S.; Grigoli, F.; Milkereit, C.; Dahm, T.; Zang, A.
2017-11-01
A crucial issue to characterize hydraulic fractures is the robust, accurate and automated detection and location of acoustic emissions (AE) associated with the fracture nucleation and growth process. Waveform stacking and coherence analysis techniques are here adapted using massive datasets with very high sampling (1 MHz) from a hydraulic fracturing experiment that took place 410 m below surface in the Äspö Hard Rock Laboratory (Sweden). We present the results obtained during the conventional, continuous water injection experiment Hydraulic Fracture 2. The resulting catalogue is composed of more than 4000 AEs. Frequency-magnitude distribution from AE magnitudes (MAE) reveals a high b value of 2.4. The magnitude of completeness is also estimated approximately MAE 1.1, and we observe an interval range of MAE between 0.77 and 2.79. The hydraulic fractures growth is then characterized by mapping the spatiotemporal evolution of AE hypocentres. The AE activity is spatially clustered in a prolate ellipsoid, resembling the main activated fracture volume ( 105 m3), where the lengths of the principal axes ( a = 10 m; b = 5 m; c = 4 m) define its size and its orientation can be estimated for a rupture plane (strike 123°, dip 60°). An asymmetric rupture process regarding to the fracturing borehole is clearly exhibited. AE events migrate upwards covering the depth interval between 404 and 414 m. After completing each injection and reinjection phase, the AE activity decreases and appears located in the same area of the initial fracture phase, suggesting a crack-closing effect.
Wu, Jing-zhu; Wang, Feng-zhu; Wang, Li-li; Zhang, Xiao-chao; Mao, Wen-hua
2015-01-01
In order to improve the accuracy and robustness of detecting tomato seedlings nitrogen content based on near-infrared spectroscopy (NIR), 4 kinds of characteristic spectrum selecting methods were studied in the present paper, i. e. competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variables elimination (MCUVE), backward interval partial least squares (BiPLS) and synergy interval partial least squares (SiPLS). There were totally 60 tomato seedlings cultivated at 10 different nitrogen-treatment levels (urea concentration from 0 to 120 mg . L-1), with 6 samples at each nitrogen-treatment level. They are in different degrees of over nitrogen, moderate nitrogen, lack of nitrogen and no nitrogen status. Each sample leaves were collected to scan near-infrared spectroscopy from 12 500 to 3 600 cm-1. The quantitative models based on the above 4 methods were established. According to the experimental result, the calibration model based on CARS and MCUVE selecting methods show better performance than those based on BiPLS and SiPLS selecting methods, but their prediction ability is much lower than that of the latter. Among them, the model built by BiPLS has the best prediction performance. The correlation coefficient (r), root mean square error of prediction (RMSEP) and ratio of performance to standard derivate (RPD) is 0. 952 7, 0. 118 3 and 3. 291, respectively. Therefore, NIR technology combined with characteristic spectrum selecting methods can improve the model performance. But the characteristic spectrum selecting methods are not universal. For the built model based or single wavelength variables selection is more sensitive, it is more suitable for the uniform object. While the anti-interference ability of the model built based on wavelength interval selection is much stronger, it is more suitable for the uneven and poor reproducibility object. Therefore, the characteristic spectrum selection will only play a better role in building model, combined with the consideration of sample state and the model indexes.
Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2012-01-01
This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.
Global Climate Change Adaptation Priorities for Biodiversity and Food Security
Hannah, Lee; Ikegami, Makihiko; Hole, David G.; Seo, Changwan; Butchart, Stuart H. M.; Peterson, A. Townsend; Roehrdanz, Patrick R.
2013-01-01
International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services. PMID:23991125
Global climate change adaptation priorities for biodiversity and food security.
Hannah, Lee; Ikegami, Makihiko; Hole, David G; Seo, Changwan; Butchart, Stuart H M; Peterson, A Townsend; Roehrdanz, Patrick R
2013-01-01
International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services.
Adeli, Khosrow; Higgins, Victoria; Nieuwesteeg, Michelle; Raizman, Joshua E; Chen, Yunqi; Wong, Suzy L; Blais, David
2015-08-01
Defining laboratory biomarker reference values in a healthy population and understanding the fluctuations in biomarker concentrations throughout life and between sexes are critical to clinical interpretation of laboratory test results in different disease states. The Canadian Health Measures Survey (CHMS) has collected blood samples and health information from the Canadian household population. In collaboration with the Canadian Laboratory Initiative on Pediatric Reference Intervals (CALIPER), the data have been analyzed to determine reference value distributions and reference intervals for several endocrine and special chemistry biomarkers in pediatric, adult, and geriatric age groups. CHMS collected data and blood samples from thousands of community participants aged 3 to 79 years. We used serum samples to measure 13 immunoassay-based special chemistry and endocrine markers. We assessed reference value distributions and, after excluding outliers, calculated age- and sex-specific reference intervals, along with corresponding 90% CIs, according to CLSI C28-A3 guidelines. We observed fluctuations in biomarker reference values across the pediatric, adult, and geriatric age range, with stratification required on the basis of age for all analytes. Additional sex partitions were required for apolipoprotein AI, homocysteine, ferritin, and high sensitivity C-reactive protein. The unique collaboration between CALIPER and CHMS has enabled, for the first time, a detailed examination of the changes in various immunochemical markers that occur in healthy individuals of different ages. The robust age- and sex-specific reference intervals established in this study provide insight into the complex biological changes that take place throughout development and aging and will contribute to improved clinical test interpretation. © 2015 American Association for Clinical Chemistry.
Adeli, Khosrow; Higgins, Victoria; Nieuwesteeg, Michelle; Raizman, Joshua E; Chen, Yunqi; Wong, Suzy L; Blais, David
2015-08-01
Biological covariates such as age and sex can markedly influence biochemical marker reference values, but no comprehensive study has examined such changes across pediatric, adult, and geriatric ages. The Canadian Health Measures Survey (CHMS) collected comprehensive nationwide health information and blood samples from children and adults in the household population and, in collaboration with the Canadian Laboratory Initiative on Pediatric Reference Intervals (CALIPER), examined biological changes in biochemical markers from pediatric to geriatric age, establishing a comprehensive reference interval database for routine disease biomarkers. The CHMS collected health information, physical measurements, and biosamples (blood and urine) from approximately 12 000 Canadians aged 3-79 years and measured 24 biochemical markers with the Ortho Vitros 5600 FS analyzer or a manual microplate. By use of CLSI C28-A3 guidelines, we determined age- and sex-specific reference intervals, including corresponding 90% CIs, on the basis of specific exclusion criteria. Biochemical marker reference values exhibited dynamic changes from pediatric to geriatric age. Most biochemical markers required some combination of age and/or sex partitioning. Two or more age partitions were required for all analytes except bicarbonate, which remained constant throughout life. Additional sex partitioning was required for most biomarkers, except bicarbonate, total cholesterol, total protein, urine iodine, and potassium. Understanding the fluctuations in biochemical markers over a wide age range provides important insight into biological processes and facilitates clinical application of biochemical markers to monitor manifestation of various disease states. The CHMS-CALIPER collaboration addresses this important evidence gap and allows the establishment of robust pediatric and adult reference intervals. © 2015 American Association for Clinical Chemistry.
Estimation of reference intervals from small samples: an example using canine plasma creatinine.
Geffré, A; Braun, J P; Trumel, C; Concordet, D
2009-12-01
According to international recommendations, reference intervals should be determined from at least 120 reference individuals, which often are impossible to achieve in veterinary clinical pathology, especially for wild animals. When only a small number of reference subjects is available, the possible bias cannot be known and the normality of the distribution cannot be evaluated. A comparison of reference intervals estimated by different methods could be helpful. The purpose of this study was to compare reference limits determined from a large set of canine plasma creatinine reference values, and large subsets of this data, with estimates obtained from small samples selected randomly. Twenty sets each of 120 and 27 samples were randomly selected from a set of 1439 plasma creatinine results obtained from healthy dogs in another study. Reference intervals for the whole sample and for the large samples were determined by a nonparametric method. The estimated reference limits for the small samples were minimum and maximum, mean +/- 2 SD of native and Box-Cox-transformed values, 2.5th and 97.5th percentiles by a robust method on native and Box-Cox-transformed values, and estimates from diagrams of cumulative distribution functions. The whole sample had a heavily skewed distribution, which approached Gaussian after Box-Cox transformation. The reference limits estimated from small samples were highly variable. The closest estimates to the 1439-result reference interval for 27-result subsamples were obtained by both parametric and robust methods after Box-Cox transformation but were grossly erroneous in some cases. For small samples, it is recommended that all values be reported graphically in a dot plot or histogram and that estimates of the reference limits be compared using different methods.
Slow adaptation of ventricular repolarization as a cause of arrhythmia?
Bueno-Orovio, A; Hanson, B M; Gill, J S; Taggart, P; Rodriguez, B
2014-01-01
This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Studying Cardiovascular and Respiratory Systems". Adaptation of the QT-interval to changes in heart rate reflects on the body-surface electrocardiogram the adaptation of action potential duration (APD) at the cellular level. The initial fast phase of APD adaptation has been shown to modulate the arrhythmia substrate. Whether the slow phase is potentially proarrhythmic remains unclear. To analyze in-vivo human data and use computer simulations to examine effects of the slow APD adaptation phase on dispersion of repolarization and reentry in the human ventricle. Electrograms were acquired from 10 left and 10 right ventricle (LV/RV) endocardial sites in 15 patients with normal ventricles during RV pacing. Activation-recovery intervals, as a surrogate for APD, were measured during a sustained increase in heart rate. Observed dynamics were studied using computer simulations of human tissue electrophysiology. Spatial heterogeneity of rate adaptation was observed in all patients. Inhomogeneity in slow APD adaptation time constants (Δτ(s)) was greater in LV than RV (Δτ(s)(LV) = 31.8 ± 13.2, Δτ(s)(RV) = 19.0 ± 12.8 s , P< 0.01). Simulations showed that altering local slow time constants of adaptation was sufficient to convert partial wavefront block to block with successful reentry. Using electrophysiological data acquired in-vivo in human and computer simulations, we identify heterogeneity in the slow phase of APD adaptation as an important component of arrhythmogenesis.
Gopalan, Reji P; Nair, Vivek V; Harshakumar, K; Ravichandran, R; Lylajam, S; Viswambaran, Prasanth
2018-01-01
Different pattern materials do not produce copings with satisfactory, marginal accuracy when used on stone dies at varying time intervals. The purpose of this study was to evaluate and compare the vertical marginal accuracy of patterns formed from three materials, namely, thermoplastic resin, light cured wax and inlay casting wax at three-time intervals of 1, 12, and 24 h. A master die (zirconia abutment mimicking a prepared permanent maxillary central incisor) and metal sleeve (direct metal laser sintering crown #11) were fabricated. A total of 30 stone dies were obtained from the master die. Ten patterns were made each from the three materials and stored off the die at room temperature. The vertical marginal gaps were measured using digital microscope at 1, 12, and 24 h after reseating with gentle finger pressure. The results revealed a significant statistical difference in the marginal adaptation of three materials at all the three-time intervals. Light cured wax was found to be most accurate at all time intervals, followed by thermoplastic resin and inlay casting wax. Furthermore, there was a significant difference between all pairs of materials. The change in vertical marginal gap from 1 to 24 h between thermoplastic resin and light cured wax was not statistically significant. The marginal adaptation of all the three materials used, was well within the acceptable range of 25-70 μm. The resin pattern materials studied revealed significantly less dimensional change than inlay casting wax on storage at 1, 12, and 24 h time intervals. They may be employed in situations where high precision and delayed investing is expected.
Adaptive attitude control and momentum management for large-angle spacecraft maneuvers
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Sunkel, John W.
1992-01-01
The fully coupled equations of motion are systematically linearized around an equilibrium point of a gravity gradient stabilized spacecraft, controlled by momentum exchange devices. These equations are then used for attitude control system design of an early Space Station Freedom flight configuration, demonstrating the errors caused by the improper approximation of the spacecraft dynamics. A full state feedback controller, incorporating gain-scheduled adaptation of the attitude gains, is developed for use during spacecraft on-orbit assembly or operations characterized by significant mass properties variations. The feasibility of the gain adaptation is demonstrated via a Space Station Freedom assembly sequence case study. The attitude controller stability robustness and transient performance during gain adaptation appear satisfactory.
Vakli, Pál; Németh, Kornél; Zimmer, Márta; Kovács, Gyula
2014-12-01
Previous studies demonstrated that the steady-state visual-evoked potential (SSVEP) is reduced to the repetition of the same identity face when compared with the presentation of different identities, suggesting high-level neural adaptation to face identity. Here we investigated whether the SSVEP is sensitive to the orientation, viewpoint, expression and configuration of faces (Experiment 1), and whether adaptation to identity at the level of the SSVEP is robust enough to generalize across these properties (Experiment 2). In Experiment 1, repeating the same identity face with continuously changing orientation, viewpoint or expression evoked a larger SSVEP than the repetition of an unchanged face, presumably reflecting a release of adaptation. A less robust effect was observed in the case of changes affecting face configuration. In Experiment 2, we found a similar release of adaptation for faces with changing orientation, viewpoint and configuration, as there was no difference between the SSVEP for the same and different identity faces. However, we found an adaptation effect for faces with changing expressions, suggesting that face identity coding, as reflected in the SSVEP, is largely independent of the emotion displayed by faces. Taken together, these results imply that the SSVEP taps high-level face representations which abstract away from the changeable aspects of the face and likely incorporate information about face configuration, but which are specific to the orientation and viewpoint of the face. Copyright © 2014 Elsevier B.V. All rights reserved.
Global gray-level thresholding based on object size.
Ranefall, Petter; Wählby, Carolina
2016-04-01
In this article, we propose a fast and robust global gray-level thresholding method based on object size, where the selection of threshold level is based on recall and maximum precision with regard to objects within a given size interval. The method relies on the component tree representation, which can be computed in quasi-linear time. Feature-based segmentation is especially suitable for biomedical microscopy applications where objects often vary in number, but have limited variation in size. We show that for real images of cell nuclei and synthetic data sets mimicking fluorescent spots the proposed method is more robust than all standard global thresholding methods available for microscopy applications in ImageJ and CellProfiler. The proposed method, provided as ImageJ and CellProfiler plugins, is simple to use and the only required input is an interval of the expected object sizes. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.
Kauppi, Jukka-Pekka; Martikainen, Kalle; Ruotsalainen, Ulla
2010-12-01
The central purpose of passive signal intercept receivers is to perform automatic categorization of unknown radar signals. Currently, there is an urgent need to develop intelligent classification algorithms for these devices due to emerging complexity of radar waveforms. Especially multifunction radars (MFRs) capable of performing several simultaneous tasks by utilizing complex, dynamically varying scheduled waveforms are a major challenge for automatic pattern classification systems. To assist recognition of complex radar emissions in modern intercept receivers, we have developed a novel method to recognize dynamically varying pulse repetition interval (PRI) modulation patterns emitted by MFRs. We use robust feature extraction and classifier design techniques to assist recognition in unpredictable real-world signal environments. We classify received pulse trains hierarchically which allows unambiguous detection of the subpatterns using a sliding window. Accuracy, robustness and reliability of the technique are demonstrated with extensive simulations using both static and dynamically varying PRI modulation patterns. Copyright © 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Kim, Sooyeon; Moses, Tim
2016-01-01
The purpose of this study is to evaluate the extent to which item response theory (IRT) proficiency estimation methods are robust to the presence of aberrant responses under the "GRE"® General Test multistage adaptive testing (MST) design. To that end, a wide range of atypical response behaviors affecting as much as 10% of the test items…
The Brain as an Efficient and Robust Adaptive Learner.
Denève, Sophie; Alemi, Alireza; Bourdoukan, Ralph
2017-06-07
Understanding how the brain learns to compute functions reliably, efficiently, and robustly with noisy spiking activity is a fundamental challenge in neuroscience. Most sensory and motor tasks can be described as dynamical systems and could presumably be learned by adjusting connection weights in a recurrent biological neural network. However, this is greatly complicated by the credit assignment problem for learning in recurrent networks, e.g., the contribution of each connection to the global output error cannot be determined based only on locally accessible quantities to the synapse. Combining tools from adaptive control theory and efficient coding theories, we propose that neural circuits can indeed learn complex dynamic tasks with local synaptic plasticity rules as long as they associate two experimentally established neural mechanisms. First, they should receive top-down feedbacks driving both their activity and their synaptic plasticity. Second, inhibitory interneurons should maintain a tight balance between excitation and inhibition in the circuit. The resulting networks could learn arbitrary dynamical systems and produce irregular spike trains as variable as those observed experimentally. Yet, this variability in single neurons may hide an extremely efficient and robust computation at the population level. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hayat, Khizar; Puech, William; Gesquière, Gilles
2010-04-01
We propose an adaptively synchronous scalable spread spectrum (A4S) data-hiding strategy to integrate disparate data, needed for a typical 3-D visualization, into a single JPEG2000 format file. JPEG2000 encoding provides a standard format on one hand and the needed multiresolution for scalability on the other. The method has the potential of being imperceptible and robust at the same time. While the spread spectrum (SS) methods are known for the high robustness they offer, our data-hiding strategy is removable at the same time, which ensures highest possible visualization quality. The SS embedding of the discrete wavelet transform (DWT)-domain depth map is carried out in transform domain YCrCb components from the JPEG2000 coding stream just after the DWT stage. To maintain synchronization, the embedding is carried out while taking into account the correspondence of subbands. Since security is not the immediate concern, we are at liberty with the strength of embedding. This permits us to increase the robustness and bring the reversibility of our method. To estimate the maximum tolerable error in the depth map according to a given viewpoint, a human visual system (HVS)-based psychovisual analysis is also presented.
Sainath, Kamalesh; Teixeira, Fernando L; Donderici, Burkay
2014-01-01
We develop a general-purpose formulation, based on two-dimensional spectral integrals, for computing electromagnetic fields produced by arbitrarily oriented dipoles in planar-stratified environments, where each layer may exhibit arbitrary and independent anisotropy in both its (complex) permittivity and permeability tensors. Among the salient features of our formulation are (i) computation of eigenmodes (characteristic plane waves) supported in arbitrarily anisotropic media in a numerically robust fashion, (ii) implementation of an hp-adaptive refinement for the numerical integration to evaluate the radiation and weakly evanescent spectra contributions, and (iii) development of an adaptive extension of an integral convergence acceleration technique to compute the strongly evanescent spectrum contribution. While other semianalytic techniques exist to solve this problem, none have full applicability to media exhibiting arbitrary double anisotropies in each layer, where one must account for the whole range of possible phenomena (e.g., mode coupling at interfaces and nonreciprocal mode propagation). Brute-force numerical methods can tackle this problem but only at a much higher computational cost. The present formulation provides an efficient and robust technique for field computation in arbitrary planar-stratified environments. We demonstrate the formulation for a number of problems related to geophysical exploration.
Coakley, K J; Imtiaz, A; Wallis, T M; Weber, J C; Berweger, S; Kabos, P
2015-03-01
Near-field scanning microwave microscopy offers great potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave |S11| images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical. Published by Elsevier B.V.
Genetic adaptation to historical pathogen burdens.
Fedderke, Johannes W; Klitgaard, Robert E; Napolioni, Valerio
2017-10-01
Historical pathogen burdens are examined as possible triggers for genetic adaptation. Evidence of adaptation emerges for the acid phosphatase locus 1 (ACP1), interleukin-6 (IL6), interleukin-10 (IL10 ), human leukocyte antigen (HLA) polymorphisms, along with a measure of heterozygosity over 783 alleles. Results are robust to controlling for the physical and historical environment humans faced, and to endogeneity of the historical pathogen burden measure. The present study represents a proof-of-concept which may pave the way to the analysis of future aggregate measures coming from whole-genome sequencing/genotyping data. Copyright © 2017 Elsevier B.V. All rights reserved.
The block adaptive multigrid method applied to the solution of the Euler equations
NASA Technical Reports Server (NTRS)
Pantelelis, Nikos
1993-01-01
In the present study, a scheme capable of solving very fast and robust complex nonlinear systems of equations is presented. The Block Adaptive Multigrid (BAM) solution method offers multigrid acceleration and adaptive grid refinement based on the prediction of the solution error. The proposed solution method was used with an implicit upwind Euler solver for the solution of complex transonic flows around airfoils. Very fast results were obtained (18-fold acceleration of the solution) using one fourth of the volumes of a global grid with the same solution accuracy for two test cases.
Blind adaptive equalization of polarization-switched QPSK modulation.
Millar, David S; Savory, Seb J
2011-04-25
Coherent detection in combination with digital signal processing has recently enabled significant progress in the capacity of optical communications systems. This improvement has enabled detection of optimum constellations for optical signals in four dimensions. In this paper, we propose and investigate an algorithm for the blind adaptive equalization of one such modulation format: polarization-switched quaternary phase shift keying (PS-QPSK). The proposed algorithm, which includes both blind initialization and adaptation of the equalizer, is found to be insensitive to the input polarization state and demonstrates highly robust convergence in the presence of PDL, DGD and polarization rotation.
Fuzzy Behavior-Based Navigation for Planetary
NASA Technical Reports Server (NTRS)
Tunstel, Edward; Danny, Harrison; Lippincott, Tanya; Jamshidi, Mo
1997-01-01
Adaptive behavioral capabilities are necessary for robust rover navigation in unstructured and partially-mapped environments. A control approach is described which exploits the approximate reasoning capability of fuzzy logic to produce adaptive motion behavior. In particular, a behavior-based architecture for hierarchical fuzzy control of microrovers is presented. Its structure is described, as well as mechanisms of control decision-making which give rise to adaptive behavior. Control decisions for local navigation result from a consensus of recommendations offered only by behaviors that are applicable to current situations. Simulation predicts the navigation performance on a microrover in simplified Mars-analog terrain.
Heideman, Simone G; van Ede, Freek; Nobre, Anna C
2018-05-24
In daily life, temporal expectations may derive from incidental learning of recurring patterns of intervals. We investigated the incidental acquisition and utilisation of combined temporal-ordinal (spatial/effector) structure in complex visual-motor sequences using a modified version of a serial reaction time (SRT) task. In this task, not only the series of targets/responses, but also the series of intervals between subsequent targets was repeated across multiple presentations of the same sequence. Each participant completed three sessions. In the first session, only the repeating sequence was presented. During the second and third session, occasional probe blocks were presented, where a new (unlearned) spatial-temporal sequence was introduced. We first confirm that participants not only got faster over time, but that they were slower and less accurate during probe blocks, indicating that they incidentally learned the sequence structure. Having established a robust behavioural benefit induced by the repeating spatial-temporal sequence, we next addressed our central hypothesis that implicit temporal orienting (evoked by the learned temporal structure) would have the largest influence on performance for targets following short (as opposed to longer) intervals between temporally structured sequence elements, paralleling classical observations in tasks using explicit temporal cues. We found that indeed, reaction time differences between new and repeated sequences were largest for the short interval, compared to the medium and long intervals, and that this was the case, even when comparing late blocks (where the repeated sequence had been incidentally learned), to early blocks (where this sequence was still unfamiliar). We conclude that incidentally acquired temporal expectations that follow a sequential structure can have a robust facilitatory influence on visually-guided behavioural responses and that, like more explicit forms of temporal orienting, this effect is most pronounced for sequence elements that are expected at short inter-element intervals. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Adaptation in the auditory midbrain of the barn owl (Tyto alba) induced by tonal double stimulation.
Singheiser, Martin; Ferger, Roland; von Campenhausen, Mark; Wagner, Hermann
2012-02-01
During hunting, the barn owl typically listens to several successive sounds as generated, for example, by rustling mice. As auditory cells exhibit adaptive coding, the earlier stimuli may influence the detection of the later stimuli. This situation was mimicked with two double-stimulus paradigms, and adaptation was investigated in neurons of the barn owl's central nucleus of the inferior colliculus. Each double-stimulus paradigm consisted of a first or reference stimulus and a second stimulus (probe). In one paradigm (second level tuning), the probe level was varied, whereas in the other paradigm (inter-stimulus interval tuning), the stimulus interval between the first and second stimulus was changed systematically. Neurons were stimulated with monaural pure tones at the best frequency, while the response was recorded extracellularly. The responses to the probe were significantly reduced when the reference stimulus and probe had the same level and the inter-stimulus interval was short. This indicated response adaptation, which could be compensated for by an increase of the probe level of 5-7 dB over the reference level, if the latter was in the lower half of the dynamic range of a neuron's rate-level function. Recovery from adaptation could be best fitted with a double exponential showing a fast (1.25 ms) and a slow (800 ms) component. These results suggest that neurons in the auditory system show dynamic coding properties to tonal double stimulation that might be relevant for faithful upstream signal propagation. Furthermore, the overall stimulus level of the masker also seems to affect the recovery capabilities of auditory neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Identifying Reading Problems with Computer-Adaptive Assessments
ERIC Educational Resources Information Center
Merrell, C.; Tymms, P.
2007-01-01
This paper describes the development of an adaptive assessment called Interactive Computerised Assessment System (InCAS) that is aimed at children of a wide age and ability range to identify specific reading problems. Rasch measurement has been used to create the equal interval scales that form each part of the assessment. The rationale for the…
Trends and Correlation Estimation in Climate Sciences: Effects of Timescale Errors
NASA Astrophysics Data System (ADS)
Mudelsee, M.; Bermejo, M. A.; Bickert, T.; Chirila, D.; Fohlmeister, J.; Köhler, P.; Lohmann, G.; Olafsdottir, K.; Scholz, D.
2012-12-01
Trend describes time-dependence in the first moment of a stochastic process, and correlation measures the linear relation between two random variables. Accurately estimating the trend and correlation, including uncertainties, from climate time series data in the uni- and bivariate domain, respectively, allows first-order insights into the geophysical process that generated the data. Timescale errors, ubiquitious in paleoclimatology, where archives are sampled for proxy measurements and dated, poses a problem to the estimation. Statistical science and the various applied research fields, including geophysics, have almost completely ignored this problem due to its theoretical almost-intractability. However, computational adaptations or replacements of traditional error formulas have become technically feasible. This contribution gives a short overview of such an adaptation package, bootstrap resampling combined with parametric timescale simulation. We study linear regression, parametric change-point models and nonparametric smoothing for trend estimation. We introduce pairwise-moving block bootstrap resampling for correlation estimation. Both methods share robustness against autocorrelation and non-Gaussian distributional shape. We shortly touch computing-intensive calibration of bootstrap confidence intervals and consider options to parallelize the related computer code. Following examples serve not only to illustrate the methods but tell own climate stories: (1) the search for climate drivers of the Agulhas Current on recent timescales, (2) the comparison of three stalagmite-based proxy series of regional, western German climate over the later part of the Holocene, and (3) trends and transitions in benthic oxygen isotope time series from the Cenozoic. Financial support by Deutsche Forschungsgemeinschaft (FOR 668, FOR 1070, MU 1595/4-1) and the European Commission (MC ITN 238512, MC ITN 289447) is acknowledged.
Major clinical research advances in gynecologic cancer in 2016: 10-year special edition
2017-01-01
In 2016, 13 topics were selected as major research advances in gynecologic oncology. For ovarian cancer, study results supporting previous ones regarding surgical preventive strategies were reported. There were several targeted agents that showed comparable responses in phase III trials, including niraparib, cediranib, and nintedanib. On the contrary to our expectations, dose-dense weekly chemotherapy regimen failed to prove superior survival outcomes compared with conventional triweekly regimen. Single-agent non-platinum treatment to prolong platinum-free-interval in patients with recurrent, partially platinum-sensitive ovarian cancer did not improve and even worsened overall survival (OS). For cervical cancer, we reviewed robust evidences of larger-scaled population-based study and cost-effectiveness of nonavalent vaccine for expanding human papillomavirus (HPV) vaccine coverage. Standard of care treatment of locally advanced cervical cancer (LACC) was briefly reviewed. For uterine corpus cancer, new findings about appropriate surgical wait time from diagnosis to surgery were reported. Advantages of minimally invasive surgery over conventional laparotomy were reconfirmed. There were 5 new gene regions that increase the risk of developing endometrial cancer. Regarding radiation therapy, Post-Operative Radiation Therapy in Endometrial Cancer (PORTEC)-3 quality of life (QOL) data were released and higher local control rate of image-guided adaptive brachytherapy was reported in LACC. In addition, 4 general oncology topics followed: chemotherapy at the end-of-life, immunotherapy with reengineering T-cells, actualization of precision medicine, and artificial intelligence (AI) to make personalized cancer therapy real. For breast cancer, adaptively randomized trials, extending aromatase inhibitor therapy, and ribociclib and palbociclib were introduced. PMID:28382802
Modeling the evolution of a ramp-flat-ramp thrust system: A geological application of DynEarthSol2D
NASA Astrophysics Data System (ADS)
Feng, L.; Choi, E.; Bartholomew, M. J.
2013-12-01
DynEarthSol2D (available at http://bitbucket.org/tan2/dynearthsol2) is a robust, adaptive, two-dimensional finite element code that solves the momentum balance and the heat equation in Lagrangian form using unstructured meshes. Verified in a number of benchmark problems, this solver uses contingent mesh adaptivity in places where shear strain is focused (localization) and a conservative mapping assisted by marker particles to preserve phase and facies boundaries during remeshing. We apply this cutting-edge geodynamic modeling tool to the evolution of a thrust fault with a ramp-flat-ramp geometry. The overall geometry of the fault is constrained by observations in the northern part of the southern Appalachian fold and thrust belt. Brittle crust is treated as a Mohr-Coulomb plastic material. The thrust fault is a zone of a finite thickness but has a lower cohesion and friction angle than its surrounding rocks. When an intervening flat separates two distinct sequential ramps crossing different stratigraphic intervals, the thrust system will experience more complex deformations than those from a single thrust fault ramp. The resultant deformations associated with sequential ramps would exhibit a spectrum of styles, of which two end members correspond to ';overprinting' and ';interference'. Reproducing these end-member styles as well as intermediate ones, our models show that the relative importance of overprinting versus interference is a sensitive function of initial fault geometry and hanging wall displacement. We further present stress and strain histories extracted from the models. If clearly distinguishable, they will guide the interpretation of field observations on thrust faults.
Wang, Yong-Jian; Bai, Yun-Fei; Zeng, Shi-Qi; Yao, Bin; Wang, Wen; Luo, Fang-Li
2016-07-21
Spatial patchiness and temporal variability in water availability are common in nature under global climate change, which can remarkably influence adaptive responses of clonal plants, i.e. clonal integration (translocating resources between connected ramets). However, little is known about the effects of spatial patchiness and temporal heterogeneity in water on growth and clonal integration between congeneric invasive and native Hydrocotyle species. In a greenhouse experiment, we subjected severed or no severed (intact) fragments of Hydrocotyle vulgaris, a highly invasive species in China, and its co-existing, native congener H. sibthorpioides to different spatial patchiness (homogeneous and patchy) and temporal interval (low and high interval) in water supply. Clonal integration had significant positive effects on growth of both species. In the homogeneous water conditions, clonal integration greatly improved the growth in fragments of both species under low interval in water. However, in the patchy water conditions, clonal integration significantly increased growth in both ramets and fragments of H. vulgaris under high interval in water. Therefore, spatial patchiness and temporal interval in water altered the effects of clonal integration of both species, especially for H. vulgaris. The adaptation of H. vulgaris might lead to invasive growth and potential spread under the global water variability.
Doubly robust nonparametric inference on the average treatment effect.
Benkeser, D; Carone, M; Laan, M J Van Der; Gilbert, P B
2017-12-01
Doubly robust estimators are widely used to draw inference about the average effect of a treatment. Such estimators are consistent for the effect of interest if either one of two nuisance parameters is consistently estimated. However, if flexible, data-adaptive estimators of these nuisance parameters are used, double robustness does not readily extend to inference. We present a general theoretical study of the behaviour of doubly robust estimators of an average treatment effect when one of the nuisance parameters is inconsistently estimated. We contrast different methods for constructing such estimators and investigate the extent to which they may be modified to also allow doubly robust inference. We find that while targeted minimum loss-based estimation can be used to solve this problem very naturally, common alternative frameworks appear to be inappropriate for this purpose. We provide a theoretical study and a numerical evaluation of the alternatives considered. Our simulations highlight the need for and usefulness of these approaches in practice, while our theoretical developments have broad implications for the construction of estimators that permit doubly robust inference in other problems.
Robust control algorithms for Mars aerobraking
NASA Technical Reports Server (NTRS)
Shipley, Buford W., Jr.; Ward, Donald T.
1992-01-01
Four atmospheric guidance concepts have been adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. The first two offer improvements to the Analytic Predictor Corrector (APC) to increase its robustness to density variations. The second two are variations of a new Liapunov tracking exit phase algorithm, developed to guide the vehicle along a reference trajectory. These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. MARSGRAM is used to develop realistic atmospheres for the study. When square wave density pulses perturb the atmosphere all four controllers are successful. The algorithms are tested against atmospheres where the inbound and outbound density functions are different. Square wave density pulses are again used, but only for the outbound leg of the trajectory. Additionally, sine waves are used to perturb the density function. The new algorithms are found to be more robust than any previously tested and a Liapunov controller is selected as the most robust control algorithm overall examined.
Vision Systems with the Human in the Loop
NASA Astrophysics Data System (ADS)
Bauckhage, Christian; Hanheide, Marc; Wrede, Sebastian; Käster, Thomas; Pfeiffer, Michael; Sagerer, Gerhard
2005-12-01
The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed.
Mokuwa, Alfred; Nuijten, Edwin; Okry, Florent; Teeken, Béla; Maat, Harro; Richards, Paul; Struik, Paul C
2013-01-01
This study offers evidence of the robustness of farmer rice varieties (Oryza glaberrima and O. sativa) in West Africa. Our experiments in five West African countries showed that farmer varieties were tolerant of sub-optimal conditions, but employed a range of strategies to cope with stress. Varieties belonging to the species Oryza glaberrima - solely the product of farmer agency - were the most successful in adapting to a range of adverse conditions. Some of the farmer selections from within the indica and japonica subspecies of O. sativa also performed well in a range of conditions, but other farmer selections from within these two subspecies were mainly limited to more specific niches. The results contradict the rather common belief that farmer varieties are only of local value. Farmer varieties should be considered by breeding programmes and used (alongside improved varieties) in dissemination projects for rural food security.
Autonomous Pointing Control of a Large Satellite Antenna Subject to Parametric Uncertainty
Wu, Shunan; Liu, Yufei; Radice, Gianmarco; Tan, Shujun
2017-01-01
With the development of satellite mobile communications, large antennas are now widely used. The precise pointing of the antenna’s optical axis is essential for many space missions. This paper addresses the challenging problem of high-precision autonomous pointing control of a large satellite antenna. The pointing dynamics are firstly proposed. The proportional–derivative feedback and structural filter to perform pointing maneuvers and suppress antenna vibrations are then presented. An adaptive controller to estimate actual system frequencies in the presence of modal parameters uncertainty is proposed. In order to reduce periodic errors, the modified controllers, which include the proposed adaptive controller and an active disturbance rejection filter, are then developed. The system stability and robustness are analyzed and discussed in the frequency domain. Numerical results are finally provided, and the results have demonstrated that the proposed controllers have good autonomy and robustness. PMID:28287450
Applications of wavelets in interferometry and artificial vision
NASA Astrophysics Data System (ADS)
Escalona Z., Rafael A.
2001-08-01
In this paper we present a different point of view of phase measurements performed in interferometry, image processing and intelligent vision using Wavelet Transform. In standard and white-light interferometry, the phase function is retrieved by using phase-shifting, Fourier-Transform, cosinus-inversion and other known algorithms. Our novel technique presented here is faster, robust and shows excellent accuracy in phase determinations. Finally, in our second application, fringes are no more generate by some light interaction but result from the observation of adapted strip set patterns directly printed on the target of interest. The moving target is simply observed by a conventional vision system and usual phase computation algorithms are adapted to an image processing by wavelet transform, in order to sense target position and displacements with a high accuracy. In general, we have determined that wavelet transform presents properties of robustness, relative speed of calculus and very high accuracy in phase computations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, P; Labby, Z; Bayliss, R A
Purpose: To develop a plan comparison tool that will ensure robustness and deliverability through analysis of baseline and online-adaptive radiotherapy plans using similarity metrics. Methods: The ViewRay MRIdian treatment planning system allows export of a plan file that contains plan and delivery information. A software tool was developed to read and compare two plans, providing information and metrics to assess their similarity. In addition to performing direct comparisons (e.g. demographics, ROI volumes, number of segments, total beam-on time), the tool computes and presents histograms of derived metrics (e.g. step-and-shoot segment field sizes, segment average leaf gaps). Such metrics were investigatedmore » for their ability to predict that an online-adapted plan reasonably similar to a baseline plan where deliverability has already been established. Results: In the realm of online-adaptive planning, comparing ROI volumes offers a sanity check to verify observations found during contouring. Beyond ROI analysis, it has been found that simply editing contours and re-optimizing to adapt treatment can produce a delivery that is substantially different than the baseline plan (e.g. number of segments increased by 31%), with no changes in optimization parameters and only minor changes in anatomy. Currently the tool can quickly identify large omissions or deviations from baseline expectations. As our online-adaptive patient population increases, we will continue to develop and refine quantitative acceptance criteria for adapted plans and relate them historical delivery QA measurements. Conclusion: The plan comparison tool is in clinical use and reports a wide range of comparison metrics, illustrating key differences between two plans. This independent check is accomplished in seconds and can be performed in parallel to other tasks in the online-adaptive workflow. Current use prevents large planning or delivery errors from occurring, and ongoing refinements will lead to increased assurance of plan quality.« less
NASA Astrophysics Data System (ADS)
Vanderlinden, J. P.; Baztan, J.
2014-12-01
The prupose of this paper is to present the "Adaptation Research a Transdisciplinary community and policy centered appoach" (ARTisticc) project. ARTisticc's goal is to apply innovative standardized transdisciplinary art and science integrative approaches to foster robust, socially, culturally and scientifically, community centred adaptation to climate change. The approach used in the project is based on the strong understanding that adaptation is: (a) still "a concept of uncertain form"; (b) a concept dealing with uncertainty; (c) a concept that calls for an analysis that goes beyond the traditional disciplinary organization of science, and; (d) an unconventional process in the realm of science and policy integration. The project is centered on case studies in France, Greenland, Russia, India, Canada, Alaska, and Senegal. In every site we jointly develop artwork while we analyzing how natural science, essentially geosciences can be used in order to better adapt in the future, how society adapt to current changes and how memories of past adaptations frames current and future processes. Artforms are mobilized in order to share scientific results with local communities and policy makers, this in a way that respects cultural specificities while empowering stakeholders, ARTISTICC translates these "real life experiments" into stories and artwork that are meaningful to those affected by climate change. The scientific results and the culturally mediated productions will thereafter be used in order to co-construct, with NGOs and policy makers, policy briefs, i.e. robust and scientifically legitimate policy recommendations regarding coastal adaptation. This co-construction process will be in itself analysed with the goal of increasing arts and science's performative functions in the universe of evidence-based policy making. The project involves scientists from natural sciences, the social sciences and the humanities, as well as artitis from the performing arts (playwriters, film directors) as well as the visual arts (photographs, designers, sculptor) working in France, Senegal, India, Russia, Greenland, Alaska, and Canada
Thompson, Christopher; Wylie, Lee J.; Blackwell, Jamie R.; Fulford, Jonathan; Black, Matthew I.; Kelly, James; McDonagh, Sinead T. J.; Carter, James; Bailey, Stephen J.; Vanhatalo, Anni
2017-01-01
We hypothesized that 4 wk of dietary nitrate supplementation would enhance exercise performance and muscle metabolic adaptations to sprint interval training (SIT). Thirty-six recreationally active subjects, matched on key variables at baseline, completed a series of exercise tests before and following a 4-wk period in which they were allocated to one of the following groups: 1) SIT and NO3−-depleted beetroot juice as a placebo (SIT+PL); 2) SIT and NO3−-rich beetroot juice (~13 mmol NO3−/day; SIT+BR); or 3) no training and NO3−-rich beetroot juice (NT+BR). During moderate-intensity exercise, pulmonary oxygen uptake was reduced by 4% following 4 wk of SIT+BR and NT+BR (P < 0.05) but not SIT+PL. The peak work rate attained during incremental exercise increased more in SIT+BR than in SIT+PL (P < 0.05) or NT+BR (P < 0.001). The reduction in muscle and blood [lactate] and the increase in muscle pH from preintervention to postintervention were greater at 3 min of severe-intensity exercise in SIT+BR compared with SIT+PL and NT+BR (P < 0.05). However, the change in severe-intensity exercise performance was not different between SIT+BR and SIT+PL (P > 0.05). The relative proportion of type IIx muscle fibers in the vastus lateralis muscle was reduced in SIT+BR only (P < 0.05). These findings suggest that BR supplementation may enhance some aspects of the physiological adaptations to SIT. NEW & NOTEWORTHY We investigated the influence of nitrate-rich and nitrate-depleted beetroot juice on the muscle metabolic and physiological adaptations to 4 wk of sprint interval training. Compared with placebo, dietary nitrate supplementation reduced the O2 cost of submaximal exercise, resulted in greater improvement in incremental (but not severe-intensity) exercise performance, and augmented some muscle metabolic adaptations to training. Nitrate supplementation may facilitate some of the physiological responses to sprint interval training. PMID:27909231
Meier, Stephen R; Lancaster, Jarrett L; Fetterhoff, Dustin; Kraft, Robert A; Hampson, Robert E; Starobin, Joseph M
2017-04-01
Spatiotemporal patterns of action potentials are considered to be closely related to information processing in the brain. Auto-generating neurons contributing to these processing tasks are known to cause multifractal behavior in the inter-spike intervals of the output action potentials. In this paper we define a novel relationship between this multifractality and the adaptive Nernst equilibrium in hippocampal neurons. Using this relationship we are able to differentiate between various drugs at varying dosages. Conventional methods limit their ability to account for cellular charge depletion by not including these adaptive Nernst equilibria. Our results provide a new theoretical approach for measuring the effects which drugs have on single-cell dynamics.
Motulsky, Harvey J; Brown, Ronald E
2006-01-01
Background Nonlinear regression, like linear regression, assumes that the scatter of data around the ideal curve follows a Gaussian or normal distribution. This assumption leads to the familiar goal of regression: to minimize the sum of the squares of the vertical or Y-value distances between the points and the curve. Outliers can dominate the sum-of-the-squares calculation, and lead to misleading results. However, we know of no practical method for routinely identifying outliers when fitting curves with nonlinear regression. Results We describe a new method for identifying outliers when fitting data with nonlinear regression. We first fit the data using a robust form of nonlinear regression, based on the assumption that scatter follows a Lorentzian distribution. We devised a new adaptive method that gradually becomes more robust as the method proceeds. To define outliers, we adapted the false discovery rate approach to handling multiple comparisons. We then remove the outliers, and analyze the data using ordinary least-squares regression. Because the method combines robust regression and outlier removal, we call it the ROUT method. When analyzing simulated data, where all scatter is Gaussian, our method detects (falsely) one or more outlier in only about 1–3% of experiments. When analyzing data contaminated with one or several outliers, the ROUT method performs well at outlier identification, with an average False Discovery Rate less than 1%. Conclusion Our method, which combines a new method of robust nonlinear regression with a new method of outlier identification, identifies outliers from nonlinear curve fits with reasonable power and few false positives. PMID:16526949
Levin, Gregory P; Emerson, Sarah C; Emerson, Scott S
2014-09-01
Many papers have introduced adaptive clinical trial methods that allow modifications to the sample size based on interim estimates of treatment effect. There has been extensive commentary on type I error control and efficiency considerations, but little research on estimation after an adaptive hypothesis test. We evaluate the reliability and precision of different inferential procedures in the presence of an adaptive design with pre-specified rules for modifying the sampling plan. We extend group sequential orderings of the outcome space based on the stage at stopping, likelihood ratio statistic, and sample mean to the adaptive setting in order to compute median-unbiased point estimates, exact confidence intervals, and P-values uniformly distributed under the null hypothesis. The likelihood ratio ordering is found to average shorter confidence intervals and produce higher probabilities of P-values below important thresholds than alternative approaches. The bias adjusted mean demonstrates the lowest mean squared error among candidate point estimates. A conditional error-based approach in the literature has the benefit of being the only method that accommodates unplanned adaptations. We compare the performance of this and other methods in order to quantify the cost of failing to plan ahead in settings where adaptations could realistically be pre-specified at the design stage. We find the cost to be meaningful for all designs and treatment effects considered, and to be substantial for designs frequently proposed in the literature. © 2014, The International Biometric Society.
Ribéreau-Gayon, Agathe; Rando, Carolyn; Morgan, Ruth M; Carter, David O
2018-05-01
In the context of increased scrutiny of the methods in forensic sciences, it is essential to ensure that the approaches used in forensic taphonomy to measure decomposition and estimate the postmortem interval are underpinned by robust evidence-based data. Digital photographs are an important source of documentation in forensic taphonomic investigations but the suitability of the current approaches for photographs, rather than real-time remains, is poorly studied which can undermine accurate forensic conclusions. The present study aimed to investigate the suitability of 2D colour digital photographs for evaluating decomposition of exposed human analogues (Sus scrofa domesticus) in a tropical savanna environment (Hawaii), using two published scoring methods; Megyesi et al., 2005 and Keough et al., 2017. It was found that there were significant differences between the real-time and photograph decomposition scores when the Megyesi et al. method was used. However, the Keough et al. method applied to photographs reflected real-time decomposition more closely and thus appears more suitable to evaluate pig decomposition from 2D photographs. The findings indicate that the type of scoring method used has a significant impact on the ability to accurately evaluate the decomposition of exposed pig carcasses from photographs. It was further identified that photographic taphonomic analysis can reach high inter-observer reproducibility. These novel findings are of significant importance for the forensic sciences as they highlight the potential for high quality photograph coverage to provide useful complementary information for the forensic taphonomic investigation. New recommendations to develop robust transparent approaches adapted to photographs in forensic taphonomy are suggested based on these findings. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Banerjee, Amartya S.; Suryanarayana, Phanish; Pask, John E.
2016-01-21
Pulay's Direct Inversion in the Iterative Subspace (DIIS) method is one of the most widely used mixing schemes for accelerating the self-consistent solution of electronic structure problems. In this work, we propose a simple generalization of DIIS in which Pulay extrapolation is performed at periodic intervals rather than on every self-consistent field iteration, and linear mixing is performed on all other iterations. Lastly, we demonstrate through numerical tests on a wide variety of materials systems in the framework of density functional theory that the proposed generalization of Pulay's method significantly improves its robustness and efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Liang, X; Kalbasi, A
2014-06-01
Purpose: Advanced radiotherapy (RT) techniques such as proton pencil beam scanning (PBS) and photon-based volumetric modulated arc therapy (VMAT) have dosimetric advantages in the treatment of head and neck malignancies. However, anatomic or alignment changes during treatment may limit robustness of PBS and VMAT plans. We assess the feasibility of automated deformable registration tools for robustness evaluation in adaptive PBS and VMAT RT of oropharyngeal cancer (OPC). Methods: We treated 10 patients with bilateral OPC with advanced RT techniques and obtained verification CT scans with physician-reviewed target and OAR contours. We generated 3 advanced RT plans for each patient: protonmore » PBS plan using 2 posterior oblique fields (2F), proton PBS plan using an additional third low-anterior field (3F), and a photon VMAT plan using 2 arcs (Arc). For each of the planning techniques, we forward calculated initial (Ini) plans on the verification scans to create verification (V) plans. We extracted DVH indicators based on physician-generated contours for 2 target and 14 OAR structures to investigate the feasibility of two automated tools (contour propagation (CP) and dose deformation (DD)) as surrogates for routine clinical plan robustness evaluation. For each verification scan, we compared DVH indicators of V, CP and DD plans in a head-to-head fashion using Student's t-test. Results: We performed 39 verification scans; each patient underwent 3 to 6 verification scan. We found no differences in doses to target or OAR structures between V and CP, V and DD, and CP and DD plans across all patients (p > 0.05). Conclusions: Automated robustness evaluation tools, CP and DD, accurately predicted dose distributions of verification (V) plans using physician-generated contours. These tools may be further developed as a potential robustness screening tool in the workflow for adaptive treatment of OPC using advanced RT techniques, reducing the need for physician-generated contours.« less
Hough, Denise; Swart, Pieter; Cloete, Schalk
2013-01-01
Simple Summary Breeding sheep that are robust and easily managed may be beneficial for both animal welfare and production. Sheep that are more readily able to adapt to stressful situations and a wide variety of environmental conditions are likely to have more resources available for a higher expression of their production potential. This review explores the utilization of one of the stress response pathways, namely the hypothalamic-pituitary-adrenal axis, to locate potential sites where genetic markers might be identified that contribute to sheep robustness. A South African Merino breeding programme is used to demonstrate the potential benefits of this approach. Abstract It is a difficult task to improve animal production by means of genetic selection, if the environment does not allow full expression of the animal’s genetic potential. This concept may well be the future for animal welfare, because it highlights the need to incorporate traits related to production and robustness, simultaneously, to reach sustainable breeding goals. This review explores the identification of potential genetic markers for robustness within the hypothalamic-pituitary-adrenal axis (HPAA), since this axis plays a vital role in the stress response. If genetic selection for superior HPAA responses to stress is possible, then it ought to be possible to breed robust and easily managed genotypes that might be able to adapt to a wide range of environmental conditions whilst expressing a high production potential. This approach is explored in this review by means of lessons learnt from research on Merino sheep, which were divergently selected for their multiple rearing ability. These two selection lines have shown marked differences in reproduction, production and welfare, which makes this breeding programme ideal to investigate potential genetic markers of robustness. The HPAA function is explored in detail to elucidate where such genetic markers are likely to be found. PMID:26487412
Masson, J D; Dagnan, D; Evans, J
2010-05-01
There is a need for validated, standardised tools for the assessment of executive functions in adults with intellectual disabilities (ID). This study examines the validity of a test of planning and problem solving (Tower of London) with adults with ID. Participants completed an adapted version of the Tower of London (ToL) while day-centre staff completed adaptive function (Adaptive Behaviour Scale - Residential and Community: Second Edition, modified version) and dysexecutive function (DEX-Independent Rater) questionnaires for each participant. Correlation analyses of test and questionnaire variables were undertaken. The adapted ToL has a robust structure and shows significant associations with independent living skills, challenging behaviour and behaviours related to dysexecutive function. The adapted ToL is a valid test for use with people with ID. However, there is also a need to develop other ecologically valid tools based on everyday planning tasks undertaken by people with ID.
The NASA F-15 Intelligent Flight Control Systems: Generation II
NASA Technical Reports Server (NTRS)
Buschbacher, Mark; Bosworth, John
2006-01-01
The Second Generation (Gen II) control system for the F-15 Intelligent Flight Control System (IFCS) program implements direct adaptive neural networks to demonstrate robust tolerance to faults and failures. The direct adaptive tracking controller integrates learning neural networks (NNs) with a dynamic inversion control law. The term direct adaptive is used because the error between the reference model and the aircraft response is being compensated or directly adapted to minimize error without regard to knowing the cause of the error. No parameter estimation is needed for this direct adaptive control system. In the Gen II design, the feedback errors are regulated with a proportional-plus-integral (PI) compensator. This basic compensator is augmented with an online NN that changes the system gains via an error-based adaptation law to improve aircraft performance at all times, including normal flight, system failures, mispredicted behavior, or changes in behavior resulting from damage.
Experimental study of adaptive pointing and tracking for large flexible space structures
NASA Technical Reports Server (NTRS)
Boussalis, D.; Bayard, D. S.; Ih, C.; Wang, S. J.; Ahmed, A.
1991-01-01
This paper describes an experimental study of adaptive pointing and tracking control for flexible spacecraft conducted on a complex ground experiment facility. The algorithm used in this study is based on a multivariable direct model reference adaptive control law. Several experimental validation studies were performed earlier using this algorithm for vibration damping and robust regulation, with excellent results. The current work extends previous studies by addressing the pointing and tracking problem. As is consistent with an adaptive control framework, the plant is assumed to be poorly known to the extent that only system level knowledge of its dynamics is available. Explicit bounds on the steady-state pointing error are derived as functions of the adaptive controller design parameters. It is shown that good tracking performance can be achieved in an experimental setting by adjusting adaptive controller design weightings according to the guidelines indicated by the analytical expressions for the error.
Time-variant random interval natural frequency analysis of structures
NASA Astrophysics Data System (ADS)
Wu, Binhua; Wu, Di; Gao, Wei; Song, Chongmin
2018-02-01
This paper presents a new robust method namely, unified interval Chebyshev-based random perturbation method, to tackle hybrid random interval structural natural frequency problem. In the proposed approach, random perturbation method is implemented to furnish the statistical features (i.e., mean and standard deviation) and Chebyshev surrogate model strategy is incorporated to formulate the statistical information of natural frequency with regards to the interval inputs. The comprehensive analysis framework combines the superiority of both methods in a way that computational cost is dramatically reduced. This presented method is thus capable of investigating the day-to-day based time-variant natural frequency of structures accurately and efficiently under concrete intrinsic creep effect with probabilistic and interval uncertain variables. The extreme bounds of the mean and standard deviation of natural frequency are captured through the embedded optimization strategy within the analysis procedure. Three particularly motivated numerical examples with progressive relationship in perspective of both structure type and uncertainty variables are demonstrated to justify the computational applicability, accuracy and efficiency of the proposed method.
Testing Dietary Hypotheses of East African Hominines Using Buccal Dental Microwear Data
Martínez, Laura Mónica; Estebaranz-Sánchez, Ferran; Galbany, Jordi
2016-01-01
There is much debate on the dietary adaptations of the robust hominin lineages during the Pliocene-Pleistocene transition. It has been argued that the shift from C3 to C4 ecosystems in Africa was the main factor responsible for the robust dental and facial anatomical adaptations of Paranthropus taxa, which might be indicative of the consumption of fibrous, abrasive plant foods in open environments. However, occlusal dental microwear data fail to provide evidence of such dietary adaptations and are not consistent with isotopic evidence that supports greater C4 food intake for the robust clades than for the gracile australopithecines. We provide evidence from buccal dental microwear data that supports softer dietary habits than expected for P. aethiopicus and P. boisei based both on masticatory apomorphies and isotopic analyses. On one hand, striation densities on the buccal enamel surfaces of paranthropines teeth are low, resembling those of H. habilis and clearly differing from those observed on H. ergaster, which display higher scratch densities indicative of the consumption of a wide assortment of highly abrasive foodstuffs. Buccal dental microwear patterns are consistent with those previously described for occlusal enamel surfaces, suggesting that Paranthropus consumed much softer diets than previously presumed and thus calling into question a strict interpretation of isotopic evidence. On the other hand, the significantly high buccal scratch densities observed in the H. ergaster specimens are not consistent with a highly specialized, mostly carnivorous diet; instead, they support the consumption of a wide range of highly abrasive food items. PMID:27851745
Oku, Yoshifumi; Arimura, Hidetaka; Nguyen, Tran Thi Thao; Hiraki, Yoshiyuki; Toyota, Masahiko; Saigo, Yasumasa; Yoshiura, Takashi; Hirata, Hideki
2016-01-01
This study investigates whether in-room computed tomography (CT)-based adaptive treatment planning (ATP) is robust against interfractional location variations, namely, interfractional organ motions and/or applicator displacements, in 3D intracavitary brachytherapy (ICBT) for uterine cervical cancer. In ATP, the radiation treatment plans, which have been designed based on planning CT images (and/or MR images) acquired just before the treatments, are adaptively applied for each fraction, taking into account the interfractional location variations. 2D and 3D plans with ATP for 14 patients were simulated for 56 fractions at a prescribed dose of 600 cGy per fraction. The standard deviations (SDs) of location displacements (interfractional location variations) of the target and organs at risk (OARs) with 3D ATP were significantly smaller than those with 2D ATP (P < 0.05). The homogeneity index (HI), conformity index (CI) and tumor control probability (TCP) in 3D ATP were significantly higher for high-risk clinical target volumes than those in 2D ATP. The SDs of the HI, CI, TCP, bladder and rectum D2cc, and the bladder and rectum normal tissue complication probability (NTCP) in 3D ATP were significantly smaller than those in 2D ATP. The results of this study suggest that the interfractional location variations give smaller impacts on the planning evaluation indices in 3D ATP than in 2D ATP. Therefore, the 3D plans with ATP are expected to be robust against interfractional location variations in each treatment fraction. PMID:27296250
Fine Surface Control of Flexible Space Mirrors Using Adaptive Optics and Robust Control
2009-03-01
an AO system not only increases complexity but also lends itself to coupling between actuators. Whereas historically, control laws treated AO...adaptive optic in large ground based AO systems is treated as a static system with no dynamics. In the case of a deformable mirror, it is assumed... astigmatism , and so on. As with any series expansion, the more terms used, the more accurate the approximation will be. For this research, 21 Zernike
On-line Adaptive Radiation Treatment of Prostate Cancer
2009-01-01
12]. For intensity modulated radiation therapy (IMRT) plans , the beamlet weight can be re-optimized on a daily basis to mini- mize the dose to the OAR...Thongphiew D, Wang Z, Mathayomchan B, Chankong V, Yoo S, et al. On-line re-optimization of prostate IMRT plans for adaptive radiation therapy . Phys Med Biol...time. The treatment planning method for VMAT however is not mature. We are developing a robust VMAT treatment planning method which incorporates
Adaptive cancellation of motion artifact in wearable biosensors.
Yousefi, Rasoul; Nourani, Mehrdad; Panahi, Issa
2012-01-01
The performance of wearable biosensors is highly influenced by motion artifact. In this paper, a model is proposed for analysis of motion artifact in wearable photoplethysmography (PPG) sensors. Using this model, we proposed a robust real-time technique to estimate fundamental frequency and generate a noise reference signal. A Least Mean Square (LMS) adaptive noise canceler is then designed and validated using our synthetic noise generator. The analysis and results on proposed technique for noise cancellation shows promising performance.
Relationship of cranial robusticity to cranial form, geography and climate in Homo sapiens.
Baab, Karen L; Freidline, Sarah E; Wang, Steven L; Hanson, Timothy
2010-01-01
Variation in cranial robusticity among modern human populations is widely acknowledged but not well-understood. While the use of "robust" cranial traits in hominin systematics and phylogeny suggests that these characters are strongly heritable, this hypothesis has not been tested. Alternatively, cranial robusticity may be a response to differences in diet/mastication or it may be an adaptation to cold, harsh environments. This study quantifies the distribution of cranial robusticity in 14 geographically widespread human populations, and correlates this variation with climatic variables, neutral genetic distances, cranial size, and cranial shape. With the exception of the occipital torus region, all traits were positively correlated with each other, suggesting that they should not be treated as individual characters. While males are more robust than females within each of the populations, among the independent variables (cranial shape, size, climate, and neutral genetic distances), only shape is significantly correlated with inter-population differences in robusticity. Two-block partial least-squares analysis was used to explore the relationship between cranial shape (captured by three-dimensional landmark data) and robusticity across individuals. Weak support was found for the hypothesis that robusticity was related to mastication as the shape associated with greater robusticity was similar to that described for groups that ate harder-to-process diets. Specifically, crania with more prognathic faces, expanded glabellar and occipital regions, and (slightly) longer skulls were more robust than those with rounder vaults and more orthognathic faces. However, groups with more mechanically demanding diets (hunter-gatherers) were not always more robust than groups practicing some form of agriculture.
Towards a framework for agent-based image analysis of remote-sensing data
Hofmann, Peter; Lettmayer, Paul; Blaschke, Thomas; Belgiu, Mariana; Wegenkittl, Stefan; Graf, Roland; Lampoltshammer, Thomas Josef; Andrejchenko, Vera
2015-01-01
Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects’ properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA). PMID:27721916
Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Orr, Jeb S.; Miller, Christopher J.; Hanson, Curtis E.
2014-01-01
The NASA Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an Adaptive Augmenting Control (AAC) algorithm for launch vehicles that improves robustness and performance by adapting an otherwise welltuned classical control algorithm to unexpected environments or variations in vehicle dynamics. This AAC algorithm is currently part of the baseline design for the SLS Flight Control System (FCS), but prior to this series of research flights it was the only component of the autopilot design that had not been flight tested. The Space Launch System (SLS) flight software prototype, including the adaptive component, was recently tested on a piloted aircraft at Dryden Flight Research Center (DFRC) which has the capability to achieve a high level of dynamic similarity to a launch vehicle. Scenarios for the flight test campaign were designed specifically to evaluate the AAC algorithm to ensure that it is able to achieve the expected performance improvements with no adverse impacts in nominal or nearnominal scenarios. Having completed the recent series of flight characterization experiments on DFRC's F/A-18, the AAC algorithm's capability, robustness, and reproducibility, have been successfully demonstrated. Thus, the entire SLS control architecture has been successfully flight tested in a relevant environment. This has increased NASA's confidence that the autopilot design is ready to fly on the SLS Block I vehicle and will exceed the performance of previous architectures.
Transitions from trees to cycles in adaptive flow networks
NASA Astrophysics Data System (ADS)
Martens, Erik A.; Klemm, Konstantin
2017-11-01
Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real-world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization principles, here, we take a dynamical systems approach and study a simple model of a flow network with dynamically adapting weights (conductances). We assume a spatially non-uniform distribution of rapidly fluctuating loads in the sinks and investigate what network configurations are dynamically stable. The network converges to a spatially non-uniform stable configuration composed of both cyclic and tree-like structures. Cyclic structures emerge locally in a transcritical bifurcation as the amplitude of the load fluctuations is increased. The resulting adaptive dynamics thus partitions the network into two distinct regions with cyclic and tree-like structures. The location of the boundary between these two regions is determined by the amplitude of the fluctuations. These findings may explain why natural transport networks display cyclic structures in the micro-vascular regions near terminal nodes, but tree-like features in the regions with larger veins.
Towards a framework for agent-based image analysis of remote-sensing data.
Hofmann, Peter; Lettmayer, Paul; Blaschke, Thomas; Belgiu, Mariana; Wegenkittl, Stefan; Graf, Roland; Lampoltshammer, Thomas Josef; Andrejchenko, Vera
2015-04-03
Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects' properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA).
NASA Astrophysics Data System (ADS)
Erdt, Marius; Sakas, Georgios
2010-03-01
This work presents a novel approach for model based segmentation of the kidney in images acquired by Computed Tomography (CT). The developed computer aided segmentation system is expected to support computer aided diagnosis and operation planning. We have developed a deformable model based approach based on local shape constraints that prevents the model from deforming into neighboring structures while allowing the global shape to adapt freely to the data. Those local constraints are derived from the anatomical structure of the kidney and the presence and appearance of neighboring organs. The adaptation process is guided by a rule-based deformation logic in order to improve the robustness of the segmentation in areas of diffuse organ boundaries. Our work flow consists of two steps: 1.) a user guided positioning and 2.) an automatic model adaptation using affine and free form deformation in order to robustly extract the kidney. In cases which show pronounced pathologies, the system also offers real time mesh editing tools for a quick refinement of the segmentation result. Evaluation results based on 30 clinical cases using CT data sets show an average dice correlation coefficient of 93% compared to the ground truth. The results are therefore in most cases comparable to manual delineation. Computation times of the automatic adaptation step are lower than 6 seconds which makes the proposed system suitable for an application in clinical practice.
Phocas, F; Belloc, C; Bidanel, J; Delaby, L; Dourmad, J Y; Dumont, B; Ezanno, P; Fortun-Lamothe, L; Foucras, G; Frappat, B; González-García, E; Hazard, D; Larzul, C; Lubac, S; Mignon-Grasteau, S; Moreno, C R; Tixier-Boichard, M; Brochard, M
2016-11-01
Agroecology uses natural processes and local resources rather than chemical inputs to ensure production while limiting the environmental footprint of livestock and crop production systems. Selecting to achieve a maximization of target production criteria has long proved detrimental to fitness traits. However, since the 1990s, developments in animal breeding have also focussed on animal robustness by balancing production and functional traits within overall breeding goals. We discuss here how an agroecological perspective should further shift breeding goals towards functional traits rather than production traits. Breeding for robustness aims to promote individual adaptive capacities by considering diverse selection criteria which include reproduction, animal health and welfare, and adaptation to rough feed resources, a warm climate or fluctuating environmental conditions. It requires the consideration of genotype×environment interactions in the prediction of breeding values. Animal performance must be evaluated in low-input systems in order to select those animals that are adapted to limiting conditions, including feed and water availability, climate variations and diseases. Finally, we argue that there is no single agroecological animal type, but animals with a variety of profiles that can meet the expectations of agroecology. The standardization of both animals and breeding conditions indeed appears contradictory to the agroecological paradigm that calls for an adaptation of animals to local opportunities and constraints in weakly artificialized systems tied to their physical environment.
Baroi, G N; Baumann, I; Westermann, P; Gavala, H N
2015-01-01
Butyric acid is a valuable building-block for the production of chemicals and materials and nowadays it is produced exclusively from petroleum. The aim of this study was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces butyric acid at a high yield and selectivity from lignocellulosic biomasses. Pretreated (by wet explosion) and enzymatically hydrolysed wheat straw (PHWS), rich in C6 and C5 sugars (71.6 and 55.4 g l−1 of glucose and xylose respectively), was used as substrate. After one year of serial selections, an adapted strain of C. tyrobutyricum was developed. The adapted strain was able to grow in 80% (v v−1) PHWS without addition of yeast extract compared with an initial tolerance to less than 10% PHWS and was able to ferment both glucose and xylose. It is noticeable that the adapted C. tyrobutyricum strain was characterized by a high yield and selectivity to butyric acid. Specifically, the butyric acid yield at 60–80% PHWS lie between 0.37 and 0.46 g g−1 of sugar, while the selectivity for butyric acid was as high as 0.9–1.0 g g−1 of acid. Moreover, the strain exhibited a robust response in regards to growth and product profile at pH 6 and 7. PMID:26230610
Robust estimation procedure in panel data model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shariff, Nurul Sima Mohamad; Hamzah, Nor Aishah
2014-06-19
The panel data modeling has received a great attention in econometric research recently. This is due to the availability of data sources and the interest to study cross sections of individuals observed over time. However, the problems may arise in modeling the panel in the presence of cross sectional dependence and outliers. Even though there are few methods that take into consideration the presence of cross sectional dependence in the panel, the methods may provide inconsistent parameter estimates and inferences when outliers occur in the panel. As such, an alternative method that is robust to outliers and cross sectional dependencemore » is introduced in this paper. The properties and construction of the confidence interval for the parameter estimates are also considered in this paper. The robustness of the procedure is investigated and comparisons are made to the existing method via simulation studies. Our results have shown that robust approach is able to produce an accurate and reliable parameter estimates under the condition considered.« less
NASA Astrophysics Data System (ADS)
Babaee, Hessam; Choi, Minseok; Sapsis, Themistoklis P.; Karniadakis, George Em
2017-09-01
We develop a new robust methodology for the stochastic Navier-Stokes equations based on the dynamically-orthogonal (DO) and bi-orthogonal (BO) methods [1-3]. Both approaches are variants of a generalized Karhunen-Loève (KL) expansion in which both the stochastic coefficients and the spatial basis evolve according to system dynamics, hence, capturing the low-dimensional structure of the solution. The DO and BO formulations are mathematically equivalent [3], but they exhibit computationally complimentary properties. Specifically, the BO formulation may fail due to crossing of the eigenvalues of the covariance matrix, while both BO and DO become unstable when there is a high condition number of the covariance matrix or zero eigenvalues. To this end, we combine the two methods into a robust hybrid framework and in addition we employ a pseudo-inverse technique to invert the covariance matrix. The robustness of the proposed method stems from addressing the following issues in the DO/BO formulation: (i) eigenvalue crossing: we resolve the issue of eigenvalue crossing in the BO formulation by switching to the DO near eigenvalue crossing using the equivalence theorem and switching back to BO when the distance between eigenvalues is larger than a threshold value; (ii) ill-conditioned covariance matrix: we utilize a pseudo-inverse strategy to invert the covariance matrix; (iii) adaptivity: we utilize an adaptive strategy to add/remove modes to resolve the covariance matrix up to a threshold value. In particular, we introduce a soft-threshold criterion to allow the system to adapt to the newly added/removed mode and therefore avoid repetitive and unnecessary mode addition/removal. When the total variance approaches zero, we show that the DO/BO formulation becomes equivalent to the evolution equation of the Optimally Time-Dependent modes [4]. We demonstrate the capability of the proposed methodology with several numerical examples, namely (i) stochastic Burgers equation: we analyze the performance of the method in the presence of eigenvalue crossing and zero eigenvalues; (ii) stochastic Kovasznay flow: we examine the method in the presence of a singular covariance matrix; and (iii) we examine the adaptivity of the method for an incompressible flow over a cylinder where for large stochastic forcing thirteen DO/BO modes are active.
Short-Term Forgetting without Interference
ERIC Educational Resources Information Center
McKeown, Denis; Mercer, Tom
2012-01-01
In the 1st reported experiment, we demonstrate that auditory memory is robust over extended retention intervals (RIs) when listeners compare the timbre of complex tones, even when active or verbal rehearsal is difficult or impossible. Thus, our tones have an abstract timbre that resists verbal labeling, they differ across trials so that no…
Quantum Transduction with Adaptive Control
NASA Astrophysics Data System (ADS)
Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang
2018-01-01
Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.
AFFINE-CORRECTED PARADISE: FREE-BREATHING PATIENT-ADAPTIVE CARDIAC MRI WITH SENSITIVITY ENCODING
Sharif, Behzad; Bresler, Yoram
2013-01-01
We propose a real-time cardiac imaging method with parallel MRI that allows for free breathing during imaging and does not require cardiac or respiratory gating. The method is based on the recently proposed PARADISE (Patient-Adaptive Reconstruction and Acquisition Dynamic Imaging with Sensitivity Encoding) scheme. The new acquisition method adapts the PARADISE k-t space sampling pattern according to an affine model of the respiratory motion. The reconstruction scheme involves multi-channel time-sequential imaging with time-varying channels. All model parameters are adapted to the imaged patient as part of the experiment and drive both data acquisition and cine reconstruction. Simulated cardiac MRI experiments using the realistic NCAT phantom show high quality cine reconstructions and robustness to modeling inaccuracies. PMID:24390159
Wang, Huanqing; Chen, Bing; Liu, Xiaoping; Liu, Kefu; Lin, Chong
2013-12-01
This paper is concerned with the problem of adaptive fuzzy tracking control for a class of pure-feedback stochastic nonlinear systems with input saturation. To overcome the design difficulty from nondifferential saturation nonlinearity, a smooth nonlinear function of the control input signal is first introduced to approximate the saturation function; then, an adaptive fuzzy tracking controller based on the mean-value theorem is constructed by using backstepping technique. The proposed adaptive fuzzy controller guarantees that all signals in the closed-loop system are bounded in probability and the system output eventually converges to a small neighborhood of the desired reference signal in the sense of mean quartic value. Simulation results further illustrate the effectiveness of the proposed control scheme.
Adaptive PID formation control of nonholonomic robots without leader's velocity information.
Shen, Dongbin; Sun, Weijie; Sun, Zhendong
2014-03-01
This paper proposes an adaptive proportional integral derivative (PID) algorithm to solve a formation control problem in the leader-follower framework where the leader robot's velocities are unknown for the follower robots. The main idea is first to design some proper ideal control law for the formation system to obtain a required performance, and then to propose the adaptive PID methodology to approach the ideal controller. As a result, the formation is achieved with much more enhanced robust formation performance. The stability of the closed-loop system is theoretically proved by Lyapunov method. Both numerical simulations and physical vehicle experiments are presented to verify the effectiveness of the proposed adaptive PID algorithm. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Quantum Transduction with Adaptive Control.
Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang
2018-01-12
Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.
NASA Astrophysics Data System (ADS)
Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong
2014-07-01
Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller which can compensate the friction force in the cylinder.
HIFI-C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections.
Cornilescu, Gabriel; Bahrami, Arash; Tonelli, Marco; Markley, John L; Eghbalnia, Hamid R
2007-08-01
We describe a novel method for the robust, rapid, and reliable determination of J couplings in multi-dimensional NMR coupling data, including small couplings from larger proteins. The method, "High-resolution Iterative Frequency Identification of Couplings" (HIFI-C) is an extension of the adaptive and intelligent data collection approach introduced earlier in HIFI-NMR. HIFI-C collects one or more optimally tilted two-dimensional (2D) planes of a 3D experiment, identifies peaks, and determines couplings with high resolution and precision. The HIFI-C approach, demonstrated here for the 3D quantitative J method, offers vital features that advance the goal of rapid and robust collection of NMR coupling data. (1) Tilted plane residual dipolar couplings (RDC) data are collected adaptively in order to offer an intelligent trade off between data collection time and accuracy. (2) Data from independent planes can provide a statistical measure of reliability for each measured coupling. (3) Fast data collection enables measurements in cases where sample stability is a limiting factor (for example in the presence of an orienting medium required for residual dipolar coupling measurements). (4) For samples that are stable, or in experiments involving relatively stronger couplings, robust data collection enables more reliable determinations of couplings in shorter time, particularly for larger biomolecules. As a proof of principle, we have applied the HIFI-C approach to the 3D quantitative J experiment to determine N-C' RDC values for three proteins ranging from 56 to 159 residues (including a homodimer with 111 residues in each subunit). A number of factors influence the robustness and speed of data collection. These factors include the size of the protein, the experimental set up, and the coupling being measured, among others. To exhibit a lower bound on robustness and the potential for time saving, the measurement of dipolar couplings for the N-C' vector represents a realistic "worst case analysis". These couplings are among the smallest currently measured, and their determination in both isotropic and anisotropic media demands the highest measurement precision. The new approach yielded excellent quantitative agreement with values determined independently by the conventional 3D quantitative J NMR method (in cases where sample stability in oriented media permitted these measurements) but with a factor of 2-5 in time savings. The statistical measure of reliability, measuring the quality of each RDC value, offers valuable adjunct information even in cases where modest time savings may be realized.
Changes in apparent duration follow shifts in perceptual timing
Bruno, Aurelio; Ayhan, Inci; Johnston, Alan
2015-01-01
It is well established that the apparent duration of moving visual objects is greater at higher as compared to slower speeds. Here we report the effects of acceleration and deceleration on the perceived duration of a drifting grating with average speed kept constant (10°/s).For acceleration, increasing the speed range progressively reduced perceived duration. The magnitude of apparent duration compression was determined by speed rather than temporal frequency and was proportional to speed range (independent of standard duration) rather than acceleration. The perceived duration reduction was also proportional to the standard length. The effects of increases and decreases in speed were highly asymmetric. Reducing speed through the interval induced a moderate increase in perceived duration. These results could not be explained by changes in apparent onset or offset or differences in perceived average speed between intervals containing increasing speed and intervals containing decreasing speed. Paradoxically, for intervals combining increasing speed and decreasing speed, compression only occurred when increasing speed occurred in the second half of the interval. We show that this pattern of results in the duration domain was concomitant with changes in the reported direction of apparent motion of Gaussian blobs, embedded in intervals of increasing or decreasing speed, that could be predicted from adaptive changes in the temporal impulse response function. We detected similar changes after flicker adaptation, suggesting that the two effects might be linked through changes in the temporal tuning of visual filters. PMID:26024450
A novel speckle pattern—Adaptive digital image correlation approach with robust strain calculation
NASA Astrophysics Data System (ADS)
Cofaru, Corneliu; Philips, Wilfried; Van Paepegem, Wim
2012-02-01
Digital image correlation (DIC) has seen widespread acceptance and usage as a non-contact method for the determination of full-field displacements and strains in experimental mechanics. The advances of imaging hardware in the last decades led to high resolution and speed cameras being more affordable than in the past making large amounts of data image available for typical DIC experimental scenarios. The work presented in this paper is aimed at maximizing both the accuracy and speed of DIC methods when employed with such images. A low-level framework for speckle image partitioning which replaces regularly shaped blocks with image-adaptive cells in the displacement calculation is introduced. The Newton-Raphson DIC method is modified to use the image pixels of the cells and to perform adaptive regularization to increase the spatial consistency of the displacements. Furthermore, a novel robust framework for strain calculation based also on the Newton-Raphson algorithm is introduced. The proposed methods are evaluated in five experimental scenarios, out of which four use numerically deformed images and one uses real experimental data. Results indicate that, as the desired strain density increases, significant computational gains can be obtained while maintaining or improving accuracy and rigid-body rotation sensitivity.
A New Feedback-Based Method for Parameter Adaptation in Image Processing Routines.
Khan, Arif Ul Maula; Mikut, Ralf; Reischl, Markus
2016-01-01
The parametrization of automatic image processing routines is time-consuming if a lot of image processing parameters are involved. An expert can tune parameters sequentially to get desired results. This may not be productive for applications with difficult image analysis tasks, e.g. when high noise and shading levels in an image are present or images vary in their characteristics due to different acquisition conditions. Parameters are required to be tuned simultaneously. We propose a framework to improve standard image segmentation methods by using feedback-based automatic parameter adaptation. Moreover, we compare algorithms by implementing them in a feedforward fashion and then adapting their parameters. This comparison is proposed to be evaluated by a benchmark data set that contains challenging image distortions in an increasing fashion. This promptly enables us to compare different standard image segmentation algorithms in a feedback vs. feedforward implementation by evaluating their segmentation quality and robustness. We also propose an efficient way of performing automatic image analysis when only abstract ground truth is present. Such a framework evaluates robustness of different image processing pipelines using a graded data set. This is useful for both end-users and experts.
Robust partial integrated guidance and control for missiles via extended state observer.
Wang, Qing; Ran, Maopeng; Dong, Chaoyang
2016-11-01
A novel extended state observer (ESO) based control is proposed for a class of nonlinear systems subject to multiple uncertainties, and then applied to partial integrated guidance and control (PIGC) design for a missile. The proposed control strategy incorporates both an ESO and an adaptive sliding mode control law. The multiple uncertainties are treated as an extended state of the plant, and then estimate them using the ESO and compensate for them in the control action, in real time. Based on the output of the ESO, the resulting adaptive sliding mode control law is inherently continuous and differentiable. Strict proof is given to show that the estimation error of the ESO can be arbitrarily small in a finite time. In addition, the adaptive sliding mode control law can achieve finite time convergence to a neighborhood of the origin, and the accurate expression of the convergent region is given. Finally, simulations are conducted on the planar missile-target engagement geometry. The effectiveness of the proposed control strategy in enhanced interception performance and improved robustness against multiple uncertainties are demonstrated. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.