Profile Optimization Method for Robust Airfoil Shape Optimization in Viscous Flow
NASA Technical Reports Server (NTRS)
Li, Wu
2003-01-01
Simulation results obtained by using FUN2D for robust airfoil shape optimization in transonic viscous flow are included to show the potential of the profile optimization method for generating fairly smooth optimal airfoils with no off-design performance degradation.
Robust Airfoil Optimization in High Resolution Design Space
NASA Technical Reports Server (NTRS)
Li, Wu; Padula, Sharon L.
2003-01-01
The robust airfoil shape optimization is a direct method for drag reduction over a given range of operating conditions and has three advantages: (1) it prevents severe degradation in the off-design performance by using a smart descent direction in each optimization iteration, (2) it uses a large number of B-spline control points as design variables yet the resulting airfoil shape is fairly smooth, and (3) it allows the user to make a trade-off between the level of optimization and the amount of computing time consumed. The robust optimization method is demonstrated by solving a lift-constrained drag minimization problem for a two-dimensional airfoil in viscous flow with a large number of geometric design variables. Our experience with robust optimization indicates that our strategy produces reasonable airfoil shapes that are similar to the original airfoils, but these new shapes provide drag reduction over the specified range of Mach numbers. We have tested this strategy on a number of advanced airfoil models produced by knowledgeable aerodynamic design team members and found that our strategy produces airfoils better or equal to any designs produced by traditional design methods.
Robust, Optimal Subsonic Airfoil Shapes
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2014-01-01
A method has been developed to create an airfoil robust enough to operate satisfactorily in different environments. This method determines a robust, optimal, subsonic airfoil shape, beginning with an arbitrary initial airfoil shape, and imposes the necessary constraints on the design. Also, this method is flexible and extendible to a larger class of requirements and changes in constraints imposed.
Options for Robust Airfoil Optimization under Uncertainty
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Li, Wu
2002-01-01
A robust optimization method is developed to overcome point-optimization at the sampled design points. This method combines the best features from several preliminary methods proposed by the authors and their colleagues. The robust airfoil shape optimization is a direct method for drag reduction over a given range of operating conditions and has three advantages: (1) it prevents severe degradation in the off-design performance by using a smart descent direction in each optimization iteration, (2) it uses a large number of spline control points as design variables yet the resulting airfoil shape does not need to be smoothed, and (3) it allows the user to make a tradeoff between the level of optimization and the amount of computing time consumed. For illustration purposes, the robust optimization method is used to solve a lift-constrained drag minimization problem for a two-dimensional (2-D) airfoil in Euler flow with 20 geometric design variables.
Robust Airfoil Optimization to Achieve Consistent Drag Reduction Over a Mach Range
NASA Technical Reports Server (NTRS)
Li, Wu; Huyse, Luc; Padula, Sharon; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
We prove mathematically that in order to avoid point-optimization at the sampled design points for multipoint airfoil optimization, the number of design points must be greater than the number of free-design variables. To overcome point-optimization at the sampled design points, a robust airfoil optimization method (called the profile optimization method) is developed and analyzed. This optimization method aims at a consistent drag reduction over a given Mach range and has three advantages: (a) it prevents severe degradation in the off-design performance by using a smart descent direction in each optimization iteration, (b) there is no random airfoil shape distortion for any iterate it generates, and (c) it allows a designer to make a trade-off between a truly optimized airfoil and the amount of computing time consumed. For illustration purposes, we use the profile optimization method to solve a lift-constrained drag minimization problem for 2-D airfoil in Euler flow with 20 free-design variables. A comparison with other airfoil optimization methods is also included.
Robust, optimal subsonic airfoil shapes
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor)
2008-01-01
Method system, and product from application of the method, for design of a subsonic airfoil shape, beginning with an arbitrary initial airfoil shape and incorporating one or more constraints on the airfoil geometric parameters and flow characteristics. The resulting design is robust against variations in airfoil dimensions and local airfoil shape introduced in the airfoil manufacturing process. A perturbation procedure provides a class of airfoil shapes, beginning with an initial airfoil shape.
Turbomachinery Airfoil Design Optimization Using Differential Evolution
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
An aerodynamic design optimization procedure that is based on a evolutionary algorithm known at Differential Evolution is described. Differential Evolution is a simple, fast, and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems, including highly nonlinear systems with discontinuities and multiple local optima. The method is combined with a Navier-Stokes solver that evaluates the various intermediate designs and provides inputs to the optimization procedure. An efficient constraint handling mechanism is also incorporated. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated. Substantial reductions in the overall computing time requirements are achieved by using the algorithm in conjunction with neural networks.
Towards Robust Designs Via Multiple-Objective Optimization Methods
NASA Technical Reports Server (NTRS)
Man Mohan, Rai
2006-01-01
Fabricating and operating complex systems involves dealing with uncertainty in the relevant variables. In the case of aircraft, flow conditions are subject to change during operation. Efficiency and engine noise may be different from the expected values because of manufacturing tolerances and normal wear and tear. Engine components may have a shorter life than expected because of manufacturing tolerances. In spite of the important effect of operating- and manufacturing-uncertainty on the performance and expected life of the component or system, traditional aerodynamic shape optimization has focused on obtaining the best design given a set of deterministic flow conditions. Clearly it is important to both maintain near-optimal performance levels at off-design operating conditions, and, ensure that performance does not degrade appreciably when the component shape differs from the optimal shape due to manufacturing tolerances and normal wear and tear. These requirements naturally lead to the idea of robust optimal design wherein the concept of robustness to various perturbations is built into the design optimization procedure. The basic ideas involved in robust optimal design will be included in this lecture. The imposition of the additional requirement of robustness results in a multiple-objective optimization problem requiring appropriate solution procedures. Typically the costs associated with multiple-objective optimization are substantial. Therefore efficient multiple-objective optimization procedures are crucial to the rapid deployment of the principles of robust design in industry. Hence the companion set of lecture notes (Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks ) deals with methodology for solving multiple-objective Optimization problems efficiently, reliably and with little user intervention. Applications of the methodologies presented in the companion lecture to robust design will be included here. The evolutionary method (DE) is first used to solve a relatively difficult problem in extended surface heat transfer wherein optimal fin geometries are obtained for different safe operating base temperatures. The objective of maximizing the safe operating base temperature range is in direct conflict with the objective of maximizing fin heat transfer. This problem is a good example of achieving robustness in the context of changing operating conditions. The evolutionary method is then used to design a turbine airfoil; the two objectives being reduced sensitivity of the pressure distribution to small changes in the airfoil shape and the maximization of the trailing edge wedge angle with the consequent increase in airfoil thickness and strength. This is a relevant example of achieving robustness to manufacturing tolerances and wear and tear in the presence of other objectives.
Performance Trades Study for Robust Airfoil Shape Optimization
NASA Technical Reports Server (NTRS)
Li, Wu; Padula, Sharon
2003-01-01
From time to time, existing aircraft need to be redesigned for new missions with modified operating conditions such as required lift or cruise speed. This research is motivated by the needs of conceptual and preliminary design teams for smooth airfoil shapes that are similar to the baseline design but have improved drag performance over a range of flight conditions. The proposed modified profile optimization method (MPOM) modifies a large number of design variables to search for nonintuitive performance improvements, while avoiding off-design performance degradation. Given a good initial design, the MPOM generates fairly smooth airfoils that are better than the baseline without making drastic shape changes. Moreover, the MPOM allows users to gain valuable information by exploring performance trades over various design conditions. Four simulation cases of airfoil optimization in transonic viscous ow are included to demonstrate the usefulness of the MPOM as a performance trades study tool. Simulation results are obtained by solving fully turbulent Navier-Stokes equations and the corresponding discrete adjoint equations using an unstructured grid computational fluid dynamics code FUN2D.
Using High Resolution Design Spaces for Aerodynamic Shape Optimization Under Uncertainty
NASA Technical Reports Server (NTRS)
Li, Wu; Padula, Sharon
2004-01-01
This paper explains why high resolution design spaces encourage traditional airfoil optimization algorithms to generate noisy shape modifications, which lead to inaccurate linear predictions of aerodynamic coefficients and potential failure of descent methods. By using auxiliary drag constraints for a simultaneous drag reduction at all design points and the least shape distortion to achieve the targeted drag reduction, an improved algorithm generates relatively smooth optimal airfoils with no severe off-design performance degradation over a range of flight conditions, in high resolution design spaces parameterized by cubic B-spline functions. Simulation results using FUN2D in Euler flows are included to show the capability of the robust aerodynamic shape optimization method over a range of flight conditions.
Horsetail matching: a flexible approach to optimization under uncertainty
NASA Astrophysics Data System (ADS)
Cook, L. W.; Jarrett, J. P.
2018-04-01
It is important to design engineering systems to be robust with respect to uncertainties in the design process. Often, this is done by considering statistical moments, but over-reliance on statistical moments when formulating a robust optimization can produce designs that are stochastically dominated by other feasible designs. This article instead proposes a formulation for optimization under uncertainty that minimizes the difference between a design's cumulative distribution function and a target. A standard target is proposed that produces stochastically non-dominated designs, but the formulation also offers enough flexibility to recover existing approaches for robust optimization. A numerical implementation is developed that employs kernels to give a differentiable objective function. The method is applied to algebraic test problems and a robust transonic airfoil design problem where it is compared to multi-objective, weighted-sum and density matching approaches to robust optimization; several advantages over these existing methods are demonstrated.
Aerodynamic Shape Optimization Using Hybridized Differential Evolution
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2003-01-01
An aerodynamic shape optimization method that uses an evolutionary algorithm known at Differential Evolution (DE) in conjunction with various hybridization strategies is described. DE is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Various hybridization strategies for DE are explored, including the use of neural networks as well as traditional local search methods. A Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the hybrid DE optimizer. The method is implemented on distributed parallel computers so that new designs can be obtained within reasonable turnaround times. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. (The final paper will include at least one other aerodynamic design application). The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.
Employing Sensitivity Derivatives for Robust Optimization under Uncertainty in CFD
NASA Technical Reports Server (NTRS)
Newman, Perry A.; Putko, Michele M.; Taylor, Arthur C., III
2004-01-01
A robust optimization is demonstrated on a two-dimensional inviscid airfoil problem in subsonic flow. Given uncertainties in statistically independent, random, normally distributed flow parameters (input variables), an approximate first-order statistical moment method is employed to represent the Computational Fluid Dynamics (CFD) code outputs as expected values with variances. These output quantities are used to form the objective function and constraints. The constraints are cast in probabilistic terms; that is, the probability that a constraint is satisfied is greater than or equal to some desired target probability. Gradient-based robust optimization of this stochastic problem is accomplished through use of both first and second-order sensitivity derivatives. For each robust optimization, the effect of increasing both input standard deviations and target probability of constraint satisfaction are demonstrated. This method provides a means for incorporating uncertainty when considering small deviations from input mean values.
The Effect of Aerodynamic Evaluators on the Multi-Objective Optimization of Flatback Airfoils
NASA Astrophysics Data System (ADS)
Miller, M.; Slew, K. Lee; Matida, E.
2016-09-01
With the long lengths of today's wind turbine rotor blades, there is a need to reduce the mass, thereby requiring stiffer airfoils, while maintaining the aerodynamic efficiency of the airfoils, particularly in the inboard region of the blade where structural demands are highest. Using a genetic algorithm, the multi-objective aero-structural optimization of 30% thick flatback airfoils was systematically performed for a variety of aerodynamic evaluators such as lift-to-drag ratio (Cl/Cd), torque (Ct), and torque-to-thrust ratio (Ct/Cn) to determine their influence on airfoil shape and performance. The airfoil optimized for Ct possessed a 4.8% thick trailing-edge, and a rather blunt leading-edge region which creates high levels of lift and correspondingly, drag. It's ability to maintain similar levels of lift and drag under forced transition conditions proved it's insensitivity to roughness. The airfoil optimized for Cl/Cd displayed relatively poor insensitivity to roughness due to the rather aft-located free transition points. The Ct/Cn optimized airfoil was found to have a very similar shape to that of the Cl/Cd airfoil, with a slightly more blunt leading-edge which aided in providing higher levels of lift and moderate insensitivity to roughness. The influence of the chosen aerodynamic evaluator under the specified conditions and constraints in the optimization of wind turbine airfoils is shown to have a direct impact on the airfoil shape and performance.
High-Fidelity Aerodynamic Shape Optimization for Natural Laminar Flow
NASA Astrophysics Data System (ADS)
Rashad, Ramy
To ensure the long-term sustainability of aviation, serious effort is underway to mitigate the escalating economic, environmental, and social concerns of the industry. Significant improvement to the energy efficiency of air transportation is required through the research and development of advanced and unconventional airframe and engine technologies. In the quest to reduce airframe drag, this thesis is concerned with the development and demonstration of an effective design tool for improving the aerodynamic efficiency of subsonic and transonic airfoils. The objective is to advance the state-of-the-art in high-fidelity aerodynamic shape optimization by incorporating and exploiting the phenomenon of laminar-turbulent transition in an efficient manner. A framework for the design and optimization of Natural Laminar Flow (NLF) airfoils is developed and demonstrated with transition prediction capable of accounting for the effects of Reynolds number, freestream turbulence intensity, Mach number, and pressure gradients. First, a two-dimensional Reynolds-averaged Navier-Stokes (RANS) flow solver has been extended to incorporate an iterative laminar-turbulent transition prediction methodology. The natural transition locations due to Tollmien-Schlichting instabilities are predicted using the simplified eN envelope method of Drela and Giles or, alternatively, the compressible form of the Arnal-Habiballah-Delcourt criterion. The boundary-layer properties are obtained directly from the Navier-Stokes flow solution, and the transition to turbulent flow is modeled using an intermittency function in conjunction with the Spalart-Allmaras turbulence model. The RANS solver is subsequently employed in a gradient-based sequential quadratic programming shape optimization framework. The laminar-turbulent transition criteria are tightly coupled into the objective and gradient evaluations. The gradients are obtained using a new augmented discrete-adjoint formulation for non-local transition criteria. Using the eN transition criterion, the proposed framework is applied to the single and multipoint optimization of subsonic and transonic airfoils, leading to robust NLF designs. The aerodynamic design requirements over a range of cruise flight conditions are cast into a multipoint optimization problem through a composite objective defined using a weighted integral of the operating points. To study and quantify off-design performance, a Pareto front is formed using a weighted objective combining free-transition and fully-turbulent operating conditions. Next we examine the sensitivity of NLF design to the freestream disturbance environment, highlighting the on- and off-design performance at different critical N-factors. Finally, we propose and demonstrate a technique to enable the design of airfoils with robust performance over a range of critical N-factors.
Transonic airfoil analysis and design in nonuniform flow
NASA Technical Reports Server (NTRS)
Chang, J. F.; Lan, C. E.
1986-01-01
A nonuniform transonic airfoil code is developed for applications in analysis, inverse design and direct optimization involving an airfoil immersed in propfan slipstream. Problems concerning the numerical stability, convergence, divergence and solution oscillations are discussed. The code is validated by comparing with some known results in incompressible flow. A parametric investigation indicates that the airfoil lift-drag ratio can be increased by decreasing the thickness ratio. A better performance can be achieved if the airfoil is located below the slipstream center. Airfoil characteristics designed by the inverse method and a direct optimization are compared. The airfoil designed with the method of direct optimization exhibits better characteristics and achieves a gain of 22 percent in lift-drag ratio with a reduction of 4 percent in thickness.
Aerodynamic shape optimization of Airfoils in 2-D incompressible flow
NASA Astrophysics Data System (ADS)
Rangasamy, Srinivethan; Upadhyay, Harshal; Somasekaran, Sandeep; Raghunath, Sreekanth
2010-11-01
An optimization framework was developed for maximizing the region of 2-D airfoil immersed in laminar flow with enhanced aerodynamic performance. It uses genetic algorithm over a population of 125, across 1000 generations, to optimize the airfoil. On a stand-alone computer, a run takes about an hour to obtain a converged solution. The airfoil geometry was generated using two Bezier curves; one to represent the thickness and the other the camber of the airfoil. The airfoil profile was generated by adding and subtracting the thickness curve from the camber curve. The coefficient of lift and drag was computed using potential velocity distribution obtained from panel code, and boundary layer transition prediction code was used to predict the location of onset of transition. The objective function of a particular design is evaluated as the weighted-average of aerodynamic characteristics at various angles of attacks. Optimization was carried out for several objective functions and the airfoil designs obtained were analyzed.
An Integrated Method for Airfoil Optimization
NASA Astrophysics Data System (ADS)
Okrent, Joshua B.
Design exploration and optimization is a large part of the initial engineering and design process. To evaluate the aerodynamic performance of a design, viscous Navier-Stokes solvers can be used. However this method can prove to be overwhelmingly time consuming when performing an initial design sweep. Therefore, another evaluation method is needed to provide accurate results at a faster pace. To accomplish this goal, a coupled viscous-inviscid method is used. This thesis proposes an integrated method for analyzing, evaluating, and optimizing an airfoil using a coupled viscous-inviscid solver along with a genetic algorithm to find the optimal candidate. The method proposed is different from prior optimization efforts in that it greatly broadens the design space, while allowing the optimization to search for the best candidate that will meet multiple objectives over a characteristic mission profile rather than over a single condition and single optimization parameter. The increased design space is due to the use of multiple parametric airfoil families, namely the NACA 4 series, CST family, and the PARSEC family. Almost all possible airfoil shapes can be created with these three families allowing for all possible configurations to be included. This inclusion of multiple airfoil families addresses a possible criticism of prior optimization attempts since by only focusing on one airfoil family, they were inherently limiting the number of possible airfoil configurations. By using multiple parametric airfoils, it can be assumed that all reasonable airfoil configurations are included in the analysis and optimization and that a global and not local maximum is found. Additionally, the method used is amenable to customization to suit any specific needs as well as including the effects of other physical phenomena or design criteria and/or constraints. This thesis found that an airfoil configuration that met multiple objectives could be found for a given set of nominal operational conditions from a broad design space with the use of minimal computational resources on both an absolute and relative scale to traditional analysis techniques. Aerodynamicists, program managers, aircraft configuration specialist, and anyone else in charge of aircraft configuration, design studies, and program level decisions might find the evaluation and optimization method proposed of interest.
Optimization of Wind Turbine Airfoils/Blades and Wind Farm Layouts
NASA Astrophysics Data System (ADS)
Chen, Xiaomin
Shape optimization is widely used in the design of wind turbine blades. In this dissertation, a numerical optimization method called Genetic Algorithm (GA) is applied to address the shape optimization of wind turbine airfoils and blades. In recent years, the airfoil sections with blunt trailing edge (called flatback airfoils) have been proposed for the inboard regions of large wind-turbine blades because they provide several structural and aerodynamic performance advantages. The FX, DU and NACA 64 series airfoils are thick airfoils widely used for wind turbine blade application. They have several advantages in meeting the intrinsic requirements for wind turbines in terms of design point, off-design capabilities and structural properties. This research employ both single- and multi-objective genetic algorithms (SOGA and MOGA) for shape optimization of Flatback, FX, DU and NACA 64 series airfoils to achieve maximum lift and/or maximum lift to drag ratio. The commercially available software FLUENT is employed for calculation of the flow field using the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a two-equation Shear Stress Transport (SST) turbulence model and a three equation k-kl-o turbulence model. The optimization methodology is validated by an optimization study of subsonic and transonic airfoils (NACA0012 and RAE 2822 airfoils). In this dissertation, we employ DU 91-W2-250, FX 66-S196-V1, NACA 64421, and Flat-back series of airfoils (FB-3500-0050, FB-3500-0875, and FB-3500-1750) and compare their performance with S809 airfoil used in NREL Phase II and III wind turbines; the lift and drag coefficient data for these airfoils sections are available. The output power of the turbine is calculated using these airfoil section blades for a given B and lambda and is compared with the original NREL Phase II and Phase III turbines using S809 airfoil section. It is shown that by a suitable choice of airfoil section of HAWT blade, the power generated by the turbine can be significantly increased. Parametric studies are also conducted by varying the turbine diameter. In addition, a simplified dynamic inflow model is integrated into the BEM theory. It is shown that the improved BEM theory has superior performance in capturing the instantaneous behavior of wind turbines due to the existence of wind turbine wake or temporal variations in wind velocity. The dissertation also considers the Wind Farm layout optimization problem using a genetic algorithm. Both the Horizontal --Axis Wind Turbines (HAWT) and Vertical-Axis Wind Turbines (VAWT) are considered. The goal of the optimization problem is to optimally position the turbines within the wind farm such that the wake effects are minimized and the power production is maximized. The reasonably accurate modeling of the turbine wake is critical in determination of the optimal layout of the turbines and the power generated. For HAWT, two wake models are considered; both are found to give similar answers. For VAWT, a very simple wake model is employed. Finally, some preliminary investigation of shape optimization of 3D wind turbine blades at low Reynolds numbers is conducted. The optimization employs a 3D straight untapered wind turbine blade with cross section of NACA 0012 airfoils as the geometry of baseline blade. The optimization objective is to achieve maximum Cl/Cd as well as maximum Cl. The multi-objective genetic algorithm is employed together with the commercially available software FLUENT for calculation of the flow field using the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a one-equation Sparlart-Allmaras turbulence model. The results show excellent performance of the optimized wind turbine blade and indicate the feasibility of optimization on real wind turbine blades with more complex shapes in the future. (Abstract shortened by UMI.)
Shape optimization for aerodynamic efficiency and low observability
NASA Technical Reports Server (NTRS)
Vinh, Hoang; Van Dam, C. P.; Dwyer, Harry A.
1993-01-01
Field methods based on the finite-difference approximations of the time-domain Maxwell's equations and the potential-flow equation have been developed to solve the multidisciplinary problem of airfoil shaping for aerodynamic efficiency and low radar cross section (RCS). A parametric study and an optimization study employing the two analysis methods are presented to illustrate their combined capabilities. The parametric study shows that for frontal radar illumination, the RCS of an airfoil is independent of the chordwise location of maximum thickness but depends strongly on the maximum thickness, leading-edge radius, and leadingedge shape. In addition, this study shows that the RCS of an airfoil can be reduced without significant effects on its transonic aerodynamic efficiency by reducing the leading-edge radius and/or modifying the shape of the leading edge. The optimization study involves the minimization of wave drag for a non-lifting, symmetrical airfoil with constraints on the airfoil maximum thickness and monostatic RCS. This optimization study shows that the two analysis methods can be used effectively to design aerodynamically efficient airfoils with certain desired RCS characteristics.
A self-adaptive-grid method with application to airfoil flow
NASA Technical Reports Server (NTRS)
Nakahashi, K.; Deiwert, G. S.
1985-01-01
A self-adaptive-grid method is described that is suitable for multidimensional steady and unsteady computations. Based on variational principles, a spring analogy is used to redistribute grid points in an optimal sense to reduce the overall solution error. User-specified parameters, denoting both maximum and minimum permissible grid spacings, are used to define the all-important constants, thereby minimizing the empiricism and making the method self-adaptive. Operator splitting and one-sided controls for orthogonality and smoothness are used to make the method practical, robust, and efficient. Examples are included for both steady and unsteady viscous flow computations about airfoils in two dimensions, as well as for a steady inviscid flow computation and a one-dimensional case. These examples illustrate the precise control the user has with the self-adaptive method and demonstrate a significant improvement in accuracy and quality of the solutions.
On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2004-01-01
Differential Evolution (DE) is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. These approaches are implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.
On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2004-01-01
Differential Evolution (DE) is a simple and robust evolutionary strategy that has been provEn effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. Several approaches that have proven effective for other evolutionary algorithms are modified and implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for standard test optimization problems and for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.
The aerodynamic design of an advanced rotor airfoil
NASA Technical Reports Server (NTRS)
Blackwell, J. A., Jr.; Hinson, B. L.
1978-01-01
An advanced rotor airfoil, designed utilizing supercritical airfoil technology and advanced design and analysis methodology is described. The airfoil was designed subject to stringent aerodynamic design criteria for improving the performance over the entire rotor operating regime. The design criteria are discussed. The design was accomplished using a physical plane, viscous, transonic inverse design procedure, and a constrained function minimization technique for optimizing the airfoil leading edge shape. The aerodynamic performance objectives of the airfoil are discussed.
Knowledge-based system for detailed blade design of turbines
NASA Astrophysics Data System (ADS)
Goel, Sanjay; Lamson, Scott
1994-03-01
A design optimization methodology that couples optimization techniques to CFD analysis for design of airfoils is presented. This technique optimizes 2D airfoil sections of a blade by minimizing the deviation of the actual Mach number distribution on the blade surface from a smooth fit of the distribution. The airfoil is not reverse engineered by specification of a precise distribution of the desired Mach number plot, only general desired characteristics of the distribution are specified for the design. Since the Mach number distribution is very complex, and cannot be conveniently represented by a single polynomial, it is partitioned into segments, each of which is characterized by a different order polynomial. The sum of the deviation of all the segments is minimized during optimization. To make intelligent changes to the airfoil geometry, it needs to be associated with features observed in the Mach number distribution. Associating the geometry parameters with independent features of the distribution is a fairly complex task. Also, for different optimization techniques to work efficiently the airfoil geometry needs to be parameterized into independent parameters, with enough degrees of freedom for adequate geometry manipulation. A high-pressure, low reaction steam turbine blade section was optimized using this methodology. The Mach number distribution was partitioned into pressure and suction surfaces and the suction surface distribution was further subdivided into leading edge, mid section and trailing edge sections. Two different airfoil representation schemes were used for defining the design variables of the optimization problem. The optimization was performed by using a combination of heuristic search and numerical optimization. The optimization results for the two schemes are discussed in the paper. The results are also compared to a manual design improvement study conducted independently by an experienced airfoil designer. The turbine blade optimization system (TBOS) is developed using the described methodology of coupling knowledge engineering with multiple search techniques for blade shape optimization. TBOS removes a major bottleneck in the design cycle by performing multiple design optimizations in parallel, and improves design quality at the same time. TBOS not only improves the design but also the designers' quality of work by taking the mundane repetitive task of design iterations away and leaving them more time for innovative design.
NASA Technical Reports Server (NTRS)
Nagamatsu, H. T.; Ficarra, R.; Orozco, R.
1983-01-01
The optimization of passive shock wave/boundary layer control for supercritical airfoil drag reduction was investigated in a 3 in. x 15.4 in. Transonic Blowdown Wind Tunnel. A 14% thick supercritical airfoil was tested with 0%, 1.42% and 2.8% porosities at Mach numbers of .70 to .83. The 1.42% case incorporated a linear increase in porosity with the flow direction while the 2.8% case was uniform porosity. The static pressure distributions over the airfoil, the wake impact pressure data for determining the profile drag, and the Schlieren photographs for porous surface airfoils are presented and compared with the results for solid-surface airfoils. While the results show that linear 1.42% porosity actually led to a slight increase in drag it was found that the uniform 2.8% porosity can lead to a drag reduction of 46% at M = .81.
Design and Experimental Results for the S407 Airfoil
2010-08-01
reduced to the inverse problem of transforming the pressure distributions into an airfoil shape. The Eppler Airfoil Design and Analysis Code (refs. 3 and...Circuit Wind Tunnel. M. S. Thesis, Pennsylvania State Univ., 1993. 3. Eppler , Richard: Airfoil Design and Data. Springer-Verlag (Berlin), 1990. 4. Eppler ...Richard: Airfoil Program System “PROFIL07.” User’s Guide. Richard Eppler , c.2007. 5. Drela, M.: Design and Optimization Method for Multi-Element
Aerodynamic shape optimization using control theory
NASA Technical Reports Server (NTRS)
Reuther, James
1996-01-01
Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.
A Two Element Laminar Flow Airfoil Optimized for Cruise. M.S. Thesis
NASA Technical Reports Server (NTRS)
Steen, Gregory Glen
1994-01-01
Numerical and experimental results are presented for a new two-element, fixed-geometry natural laminar flow airfoil optimized for cruise Reynolds numbers on the order of three million. The airfoil design consists of a primary element and an independent secondary element with a primary to secondary chord ratio of three to one. The airfoil was designed to improve the cruise lift-to-drag ratio while maintaining an appropriate landing capability when compared to conventional airfoils. The airfoil was numerically developed utilizing the NASA Langley Multi-Component Airfoil Analysis computer code running on a personal computer. Numerical results show a nearly 11.75 percent decrease in overall wing drag with no increase in stall speed at sailplane cruise conditions when compared to a wing based on an efficient single element airfoil. Section surface pressure, wake survey, transition location, and flow visualization results were obtained in the Texas A&M University Low Speed Wind Tunnel. Comparisons between the numerical and experimental data, the effects of the relative position and angle of the two elements, and Reynolds number variations from 8 x 10(exp 5) to 3 x 10(exp 6) for the optimum geometry case are presented.
Numerical Investigations of an Optimized Airfoil with a Rotary Cylinder
NASA Astrophysics Data System (ADS)
Gada, Komal; Rahai, Hamid
2015-11-01
Numerical Investigations of an optimized thin airfoil with a rotary cylinder as a control device for reducing separation and improving lift to drag ratio have been performed. Our previous investigations have used geometrical optimization for development of an optimized airfoil with increased torque for applications in a vertical axis wind turbine. The improved performance was due to contributions of lift to torque at low angles of attack. The current investigations have been focused on using the optimized airfoil for micro-uav applications with an active flow control device, a rotary cylinder, to further control flow separation, especially during wind gust conditions. The airfoil has a chord length of 19.66 cm and a width of 25 cm with 0.254 cm thickness. Previous investigations have shown flow separation at approximately 85% chord length at moderate angles of attack. Thus the rotary cylinder with a 0.254 cm diameter was placed slightly downstream of the location of flow separation. The free stream mean velocity was 10 m/sec. and investigations have been performed at different cylinder's rotations with corresponding tangential velocities higher than, equal to and less than the free stream velocity. Results have shown more than 10% improvement in lift to drag ratio when the tangential velocity is near the free stream mean velocity. Graduate Assistant, Center for Energy and Environmental Research and Services (CEERS), College of Engineering, California State University, Long Beach.
Computational methods for aerodynamic design using numerical optimization
NASA Technical Reports Server (NTRS)
Peeters, M. F.
1983-01-01
Five methods to increase the computational efficiency of aerodynamic design using numerical optimization, by reducing the computer time required to perform gradient calculations, are examined. The most promising method consists of drastically reducing the size of the computational domain on which aerodynamic calculations are made during gradient calculations. Since a gradient calculation requires the solution of the flow about an airfoil whose geometry was slightly perturbed from a base airfoil, the flow about the base airfoil is used to determine boundary conditions on the reduced computational domain. This method worked well in subcritical flow.
Multiple piece turbine engine airfoil with a structural spar
Vance, Steven J [Orlando, FL
2011-10-11
A multiple piece turbine airfoil having an outer shell with an airfoil tip that is attached to a root with an internal structural spar is disclosed. The root may be formed from first and second sections that include an internal cavity configured to receive and secure the one or more components forming the generally elongated airfoil. The internal structural spar may be attached to an airfoil tip and place the generally elongated airfoil in compression. The configuration enables each component to be formed from different materials to reduce the cost of the materials and to optimize the choice of material for each component.
Compressor airfoil tip clearance optimization system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, David A.; Pu, Zhengxiang
2015-08-18
A compressor airfoil tip clearance optimization system for reducing a gap between a tip of a compressor airfoil and a radially adjacent component of a turbine engine is disclosed. The turbine engine may include ID and OD flowpath boundaries configured to minimize compressor airfoil tip clearances during turbine engine operation in cooperation with one or more clearance reduction systems that are configured to move the rotor assembly axially to reduce tip clearance. The configurations of the ID and OD flowpath boundaries enhance the effectiveness of the axial movement of the rotor assembly, which includes movement of the ID flowpath boundary.more » During operation of the turbine engine, the rotor assembly may be moved axially to increase the efficiency of the turbine engine.« less
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Nemec, M.; Holst, T.; Zingg, D. W.; Kwak, Dochan (Technical Monitor)
2002-01-01
A comparison between an Evolutionary Algorithm (EA) and an Adjoint-Gradient (AG) Method applied to a two-dimensional Navier-Stokes code for airfoil design is presented. Both approaches use a common function evaluation code, the steady-state explicit part of the code,ARC2D. The parameterization of the design space is a common B-spline approach for an airfoil surface, which together with a common griding approach, restricts the AG and EA to the same design space. Results are presented for a class of viscous transonic airfoils in which the optimization tradeoff between drag minimization as one objective and lift maximization as another, produces the multi-objective design space. Comparisons are made for efficiency, accuracy and design consistency.
Numerical and experimental investigations on unsteady aerodynamics of flapping wings
NASA Astrophysics Data System (ADS)
Yu, Meilin
The development of a dynamic unstructured grid high-order accurate spectral difference (SD) method for the three dimensional compressible Navier-Stokes (N-S) equations and its applications in flapping-wing aerodynamics are carried out in this work. Grid deformation is achieved via an algebraic blending strategy to save computational cost. The Geometric Conservation Law (GCL) is imposed to ensure that grid deformation will not contaminate the flow physics. A low Mach number preconditioning procedure is conducted in the developed solver to handle the bio-inspired flow. The capability of the low Mach number preconditioned SD solver is demonstrated by a series of two dimensional (2D) and three dimensional (3D) simulations of the unsteady vortex dominated flow. Several topics in the flapping wing aerodynamics are numerically and experimentally investigated in this work. These topics cover some of the cutting-edge issues in flapping wing aerodynamics, including the wake structure analysis, airfoil thickness and kinematics effects on the aerodynamic performances, vortex structure analysis around 3D flapping wings and the kinematics optimization. Wake structures behind a sinusoidally pitching NACA0012 airfoil are studied with both experimental and numerical approaches. The experiments are carried out with Particle Image Velocimetry (PIV) and two types of wake transition processes, namely the transition from a drag-indicative wake to a thrust-indicative wake and that from the symmetric wake to the asymmetric wake are distinguished. The numerical results from the developed SD solver agree well with the experimental results. It is numerically found that the deflective direction of the asymmetric wake is determined by the initial conditions, e.g. initial phase angle. As most insects use thin wings (i. e., wing thickness is only a few percent of the chord length) in flapping flight, the effects of airfoil thickness on thrust generation are numerically investigated by simulating the flow fields around a series of plunging NACA symmetric airfoils with thickness ratio ranging from 4.0% to 20.0% of the airfoil chord length. The contribution of viscous force to flapping propulsion is accessed and it is found that viscous force becomes thrust producing, instead of drag producing, and plays a non-negligible role in thrust generation for thin airfoils. This is closely related to the variations of the dynamics of the unsteady vortex structures around the plunging airfoils. As nature flyers use complex wing kinematics in flapping flight, kinematics effects on the aerodynamic performance with different airfoil thicknesses are numerically studied by using a series of NACA symmetric airfoils. It is found that the combined plunging and pitching motion can outperform the pure plunging or pitching motion by sophisticatedly adjusting the airfoil gestures during the oscillation stroke. The thin airfoil better manipulates leading edge vortices (LEVs) than the thick airfoil (NACA0030) does in studied cases, and there exists an optimal thickness for large thrust generation with reasonable propulsive efficiency. With the present kinematics and dynamic parameters, relatively low reduced frequency is conducive for thrust production and propulsive efficiency for all tested airfoil thicknesses. In order to obtain the optimal kinematics parameters of flapping flight, a kinematics optimization is then performed. A gradient-based optimization algorithm is coupled with a second-order SD Navier-Stokes solver to search for the optimal kinematics of a certain airfoil undergoing a combined plunging and pitching motion. Then a high-order SD scheme is used to verify the optimization results and reveal the detailed vortex structures associated with the optimal kinematics of the flapping flight. It is found that for the case with maximum propulsive efficiency, there exists no leading edge separation during most of the oscillation cycle. In order to provide constructive suggestions to the design of micro-air-vehicles (MAVs), 3D simulations of the flapping wings are carried out in this work. Both the rectangular and bio-inspired wings with different kinematics are investigated. The formation process of two-jet-like wake patterns behind the finite-span flapping wing is found to be closely related to the interaction between trailing edge vortices and tip vortices. Then the effects of the wing planforms on the aerodynamics performance of the finite-span flapping wings are elucidated in terms of the evolution and dynamic interaction of unsteady vortex structures.
Towards Rocket Engine Components with Increased Strength and Robust Operating Characteristics
NASA Technical Reports Server (NTRS)
Marcu, Bogdan; Hadid, Ali; Lin, Pei; Balcazar, Daniel; Rai, Man Mohan; Dorney, Daniel J.
2005-01-01
High-energy rotating machines, powering liquid propellant rocket engines, are subject to various sources of high and low cycle fatigue generated by unsteady flow phenomena. Given the tremendous need for reliability in a sustainable space exploration program, a fundamental change in the design methodology for engine components is required for both launch and space based systems. A design optimization system based on neural-networks has been applied and demonstrated in the redesign of the Space Shuttle Main Engine (SSME) Low Pressure Oxidizer Turbo Pump (LPOTP) turbine nozzle. One objective of the redesign effort was to increase airfoil thickness and thus increase its strength while at the same time detuning the vane natural frequency modes from the vortex shedding frequency. The second objective was to reduce the vortex shedding amplitude. The third objective was to maintain this low shedding amplitude even in the presence of large manufacturing tolerances. All of these objectives were achieved without generating any detrimental effects on the downstream flow through the turbine, and without introducing any penalty in performance. The airfoil redesign and preliminary assessment was performed in the Exploration Technology Directorate at NASA ARC. Boeing/Rocketdyne and NASA MSFC independently performed final CFD assessments of the design. Four different CFD codes were used in this process. They include WIL DCA T/CORSAIR (NASA), FLUENT (commercial), TIDAL (Boeing Rocketdyne) and, a new family (AardvarWPhantom) of CFD analysis codes developed at NASA MSFC employing LOX fluid properties and a Generalized Equation Set formulation. Extensive aerodynamic performance analysis and stress analysis carried out at Boeing Rocketdyne and NASA MSFC indicate that the redesign objectives have been fully met. The paper presents the results of the assessment analysis and discusses the future potential of robust optimal design for rocket engine components.
Adjoint Airfoil Optimization of Darrieus-Type Vertical Axis Wind Turbine
NASA Astrophysics Data System (ADS)
Fuchs, Roman; Nordborg, Henrik
2012-11-01
We present the feasibility of using an adjoint solver to optimize the torque of a Darrieus-type vertical axis wind turbine (VAWT). We start with a 2D cross section of a symmetrical airfoil and restrict us to low solidity ratios to minimize blade vortex interactions. The adjoint solver of the ANSYS FLUENT software package computes the sensitivities of airfoil surface forces based on a steady flow field. Hence, we find the torque of a full revolution using a weighted average of the sensitivities at different wind speeds and angles of attack. The weights are computed analytically, and the range of angles of attack is given by the tip speed ratio. Then the airfoil geometry is evolved, and the proposed methodology is evaluated by transient simulations.
NASA Technical Reports Server (NTRS)
Hague, D. S.; Merz, A. W.
1975-01-01
Multivariable search techniques are applied to a particular class of airfoil optimization problems. These are the maximization of lift and the minimization of disturbance pressure magnitude in an inviscid nonlinear flow field. A variety of multivariable search techniques contained in an existing nonlinear optimization code, AESOP, are applied to this design problem. These techniques include elementary single parameter perturbation methods, organized search such as steepest-descent, quadratic, and Davidon methods, randomized procedures, and a generalized search acceleration technique. Airfoil design variables are seven in number and define perturbations to the profile of an existing NACA airfoil. The relative efficiency of the techniques are compared. It is shown that elementary one parameter at a time and random techniques compare favorably with organized searches in the class of problems considered. It is also shown that significant reductions in disturbance pressure magnitude can be made while retaining reasonable lift coefficient values at low free stream Mach numbers.
Design of transonic airfoil sections using a similarity theory
NASA Technical Reports Server (NTRS)
Nixon, D.
1978-01-01
A study of the available methods for transonic airfoil and wing design indicates that the most powerful technique is the numerical optimization procedure. However, the computer time for this method is relatively large because of the amount of computation required in the searches during optimization. The optimization method requires that base and calibration solutions be computed to determine a minimum drag direction. The design space is then computationally searched in this direction; it is these searches that dominate the computation time. A recent similarity theory allows certain transonic flows to be calculated rapidly from the base and calibration solutions. In this paper the application of the similarity theory to design problems is examined with the object of at least partially eliminating the costly searches of the design optimization method. An example of an airfoil design is presented.
TRANDESNF: A computer program for transonic airfoil design and analysis in nonuniform flow
NASA Technical Reports Server (NTRS)
Chang, J. F.; Lan, C. Edward
1987-01-01
The use of a transonic airfoil code for analysis, inverse design, and direct optimization of an airfoil immersed in propfan slipstream is described. A summary of the theoretical method, program capabilities, input format, output variables, and program execution are described. Input data of sample test cases and the corresponding output are given.
A comparison of design variables for control theory based airfoil optimization
NASA Technical Reports Server (NTRS)
Reuther, James; Jameson, Antony
1995-01-01
This paper describes the implementation of optimization techniques based on control theory for airfoil design. In our previous work in the area it was shown that control theory could be employed to devise effective optimization procedures for two-dimensional profiles by using either the potential flow or the Euler equations with either a conformal mapping or a general coordinate system. We have also explored three-dimensional extensions of these formulations recently. The goal of our present work is to demonstrate the versatility of the control theory approach by designing airfoils using both Hicks-Henne functions and B-spline control points as design variables. The research also demonstrates that the parameterization of the design space is an open question in aerodynamic design.
TRO-2D - A code for rational transonic aerodynamic optimization
NASA Technical Reports Server (NTRS)
Davis, W. H., Jr.
1985-01-01
Features and sample applications of the transonic rational optimization (TRO-2D) code are outlined. TRO-2D includes the airfoil analysis code FLO-36, the CONMIN optimization code and a rational approach to defining aero-function shapes for geometry modification. The program is part of an effort to develop an aerodynamically smart optimizer that will simplify and shorten the design process. The user has a selection of drag minimization and associated minimum lift, moment, and the pressure distribution, a choice among 14 resident aero-function shapes, and options on aerodynamic and geometric constraints. Design variables such as the angle of attack, leading edge radius and camber, shock strength and movement, supersonic pressure plateau control, etc., are discussed. The results of calculations of a reduced leading edge camber transonic airfoil and an airfoil with a natural laminar flow are provided, showing that only four design variables need be specified to obtain satisfactory results.
Experimental Optimization Methods for Multi-Element Airfoils
NASA Technical Reports Server (NTRS)
Landman, Drew; Britcher, Colin P.
1996-01-01
A modern three element airfoil model with a remotely activated flap was used to investigate optimum flap testing position using an automated optimization algorithm in wind tunnel tests. Detailed results for lift coefficient versus flap vertical and horizontal position are presented for two angles of attack: 8 and 14 degrees. An on-line first order optimizer is demonstrated which automatically seeks the optimum lift as a function of flap position. Future work with off-line optimization techniques is introduced and aerodynamic hysteresis effects due to flap movement with flow on are discussed.
Fast Euler solver for transonic airfoils. I - Theory. II - Applications
NASA Technical Reports Server (NTRS)
Dadone, Andrea; Moretti, Gino
1988-01-01
Equations written in terms of generalized Riemann variables are presently integrated by inverting six bidiagonal matrices and two tridiagonal matrices, using an implicit Euler solver that is based on the lambda-formulation. The solution is found on a C-grid whose boundaries are very close to the airfoil. The fast solver is then applied to the computation of several flowfields on a NACA 0012 airfoil at various Mach number and alpha values, yielding results that are primarily concerned with transonic flows. The effects of grid fineness and boundary distances are analyzed; the code is found to be robust and accurate, as well as fast.
NASA Technical Reports Server (NTRS)
Jones, Gregory S.; Yao, Chung-Sheng; Allan, Brian G.
2006-01-01
Recent efforts in extreme short takeoff and landing aircraft configurations have renewed the interest in circulation control wing design and optimization. The key to accurately designing and optimizing these configurations rests in the modeling of the complex physics of these flows. This paper will highlight the physics of the stagnation and separation regions on two typical circulation control airfoil sections.
Design of a shape adaptive airfoil actuated by a Shape Memory Alloy strip for airplane tail
NASA Astrophysics Data System (ADS)
Shirzadeh, R.; Raissi Charmacani, K.; Tabesh, M.
2011-04-01
Of the factors that mainly affect the efficiency of the wing during a special flow regime, the shape of its airfoil cross section is the most significant. Airfoils are generally designed for a specific flight condition and, therefore, are not fully optimized in all flight conditions. It is very desirable to have an airfoil with the ability to change its shape based on the current regime. Shape memory alloy (SMA) actuators activate in response to changes in the temperature and can recover their original configuration after being deformed. This study presents the development of a method to control the shape of an airfoil using SMA actuators. To predict the thermomechanical behaviors of an SMA thin strip, 3D incremental formulation of the SMA constitutive model is implemented in FEA software package ABAQUS. The interactions between the airfoil structure and SMA thin strip actuator are investigated. Also, the aerodynamic performance of a standard airfoil with a plain flap is compared with an adaptive airfoil.
Aerodynamics and Optimal Design of Biplane Wind Turbine Blades
NASA Astrophysics Data System (ADS)
Chiu, Phillip
In order to improve energy capture and reduce the cost of wind energy, in the past few decades wind turbines have grown significantly larger. As their blades get longer, the design of the inboard region (near the blade root) becomes a trade-off between competing structural and aerodynamic requirements. State-of-the-art blades require thick airfoils near the root to efficiently support large loads inboard, but those thick airfoils have inherently poor aerodynamic performance. New designs are required to circumvent this design compromise. One such design is the "biplane blade", in which the thick airfoils in the inboard region are replaced with thinner airfoils in a biplane configuration. This design was shown previously to have significantly increased structural performance over conventional blades. In addition, the biplane airfoils can provide increased lift and aerodynamic efficiency compared to thick monoplane inboard airfoils, indicating a potential for increased power extraction. This work investigates the fundamental aerodynamic aspects, aerodynamic design and performance, and optimal structural design of the biplane blade. First, the two-dimensional aerodynamics of biplanes with relatively thick airfoils are investigated, showing unique phenomena which arise as a result of airfoil thickness. Next, the aerodynamic design of the full biplane blade is considered. Two biplane blades are designed for optimal aerodynamic loading, and their aerodynamic performance quantified. Considering blades with practical chord distributions and including the drag of the mid-blade joint, it is shown that biplane blades have comparable power output to conventional monoplane designs. The results of this analysis also show that the biplane blades can be designed with significantly less chord than conventional designs, a characteristic which enables larger blade designs. The aerodynamic loads on the biplane blades are shown to be increased in gust conditions and decreased under extreme conditions. Finally, considering these aerodynamic loads, the blade mass reductions achievable by biplane blades are quantified. The internal structure of the biplane blades are designed using a multi-disciplinary optimization which seeks to minimize mass, subject to constraints which represent realistic design requirements. Using this approach, it is shown that biplane blades can be built more than 45% lighter than a similarly-optimized conventional blade; the reasons for these mass reductions are examined in detail. As blade length is increased, these mass reductions are shown to be even more significant. These large mass reductions are indicative of significant cost of electricity reductions from rotors fitted with biplane blades. Taken together, these results show that biplane blades are a concept which can enable the next generation of larger wind turbine rotors.
A Surrogate Approach to the Experimental Optimization of Multielement Airfoils
NASA Technical Reports Server (NTRS)
Otto, John C.; Landman, Drew; Patera, Anthony T.
1996-01-01
The incorporation of experimental test data into the optimization process is accomplished through the use of Bayesian-validated surrogates. In the surrogate approach, a surrogate for the experiment (e.g., a response surface) serves in the optimization process. The validation step of the framework provides a qualitative assessment of the surrogate quality, and bounds the surrogate-for-experiment error on designs "near" surrogate-predicted optimal designs. The utility of the framework is demonstrated through its application to the experimental selection of the trailing edge ap position to achieve a design lift coefficient for a three-element airfoil.
Simulation and Optimization of an Airfoil with Leading Edge Slat
NASA Astrophysics Data System (ADS)
Schramm, Matthias; Stoevesandt, Bernhard; Peinke, Joachim
2016-09-01
A gradient-based optimization is used in order to improve the shape of a leading edge slat upstream of a DU 91-W2-250 airfoil. The simulations are performed by solving the Reynolds-Averaged Navier-Stokes equations (RANS) using the open source CFD code OpenFOAM. Gradients are computed via the adjoint approach, which is suitable to deal with many design parameters, but keeping the computational costs low. The implementation is verified by comparing the gradients from the adjoint method with gradients obtained by finite differences for a NACA 0012 airfoil. The simulations of the leading edge slat are validated against measurements from the acoustic wind tunnel of Oldenburg University at a Reynolds number of Re = 6 • 105. The shape of the slat is optimized using the adjoint approach resulting in a drag reduction of 2%. Although the optimization is done for Re = 6 • 105, the improvements also hold for a higher Reynolds number of Re = 7.9 • 106, which is more realistic at modern wind turbines.
NASA Technical Reports Server (NTRS)
Huyse, Luc; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
Free-form shape optimization of airfoils poses unexpected difficulties. Practical experience has indicated that a deterministic optimization for discrete operating conditions can result in dramatically inferior performance when the actual operating conditions are different from the - somewhat arbitrary - design values used for the optimization. Extensions to multi-point optimization have proven unable to adequately remedy this problem of "localized optimization" near the sampled operating conditions. This paper presents an intrinsically statistical approach and demonstrates how the shortcomings of multi-point optimization with respect to "localized optimization" can be overcome. The practical examples also reveal how the relative likelihood of each of the operating conditions is automatically taken into consideration during the optimization process. This is a key advantage over the use of multipoint methods.
Control theory based airfoil design using the Euler equations
NASA Technical Reports Server (NTRS)
Jameson, Antony; Reuther, James
1994-01-01
This paper describes the implementation of optimization techniques based on control theory for airfoil design. In our previous work it was shown that control theory could be employed to devise effective optimization procedures for two-dimensional profiles by using the potential flow equation with either a conformal mapping or a general coordinate system. The goal of our present work is to extend the development to treat the Euler equations in two-dimensions by procedures that can readily be generalized to treat complex shapes in three-dimensions. Therefore, we have developed methods which can address airfoil design through either an analytic mapping or an arbitrary grid perturbation method applied to a finite volume discretization of the Euler equations. Here the control law serves to provide computationally inexpensive gradient information to a standard numerical optimization method. Results are presented for both the inverse problem and drag minimization problem.
Impact of Aerodynamics and Structures Technology on Heavy Lift Tiltrotors
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.
2006-01-01
Rotor performance and aeroelastic stability are presented for a 124,000-lb Large Civil Tilt Rotor (LCTR) design. It was designed to carry 120 passengers for 1200 nm, with performance of 350 knots at 30,000 ft altitude. Design features include a low-mounted wing and hingeless rotors, with a very low cruise tip speed of 350 ft/sec. The rotor and wing design processes are described, including rotor optimization methods and wing/rotor aeroelastic stability analyses. New rotor airfoils were designed specifically for the LCTR; the resulting performance improvements are compared to current technology airfoils. Twist, taper and precone optimization are presented, along with the effects of blade flexibility on performance. A new wing airfoil was designed and a composite structure was developed to meet the wing load requirements for certification. Predictions of aeroelastic stability are presented for the optimized rotor and wing, along with summaries of the effects of rotor design parameters on stability.
Optimization of multi-element airfoils for maximum lift
NASA Technical Reports Server (NTRS)
Olsen, L. E.
1979-01-01
Two theoretical methods are presented for optimizing multi-element airfoils to obtain maximum lift. The analyses assume that the shapes of the various high lift elements are fixed. The objective of the design procedures is then to determine the optimum location and/or deflection of the leading and trailing edge devices. The first analysis determines the optimum horizontal and vertical location and the deflection of a leading edge slat. The structure of the flow field is calculated by iteratively coupling potential flow and boundary layer analysis. This design procedure does not require that flow separation effects be modeled. The second analysis determines the slat and flap deflection required to maximize the lift of a three element airfoil. This approach requires that the effects of flow separation from one or more of the airfoil elements be taken into account. The theoretical results are in good agreement with results of a wind tunnel test used to corroborate the predicted optimum slat and flap positions.
2006-06-01
110’s. Figure 1. Two Completed Sig Rascal 110’s (Jodeh, 2006) The manufacturer provided airfoil was a combination of two Eppler planforms. The...top airfoil surface is an Eppler 193, while the bottom is an Eppler 205, joined at the chord lines. SIG also stated that the resultant section...97 Figure 61 . Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=250 .................... 97 Figure 62. Real Time Wind
Hybrid intelligent optimization methods for engineering problems
NASA Astrophysics Data System (ADS)
Pehlivanoglu, Yasin Volkan
The purpose of optimization is to obtain the best solution under certain conditions. There are numerous optimization methods because different problems need different solution methodologies; therefore, it is difficult to construct patterns. Also mathematical modeling of a natural phenomenon is almost based on differentials. Differential equations are constructed with relative increments among the factors related to yield. Therefore, the gradients of these increments are essential to search the yield space. However, the landscape of yield is not a simple one and mostly multi-modal. Another issue is differentiability. Engineering design problems are usually nonlinear and they sometimes exhibit discontinuous derivatives for the objective and constraint functions. Due to these difficulties, non-gradient-based algorithms have become more popular in recent decades. Genetic algorithms (GA) and particle swarm optimization (PSO) algorithms are popular, non-gradient based algorithms. Both are population-based search algorithms and have multiple points for initiation. A significant difference from a gradient-based method is the nature of the search methodologies. For example, randomness is essential for the search in GA or PSO. Hence, they are also called stochastic optimization methods. These algorithms are simple, robust, and have high fidelity. However, they suffer from similar defects, such as, premature convergence, less accuracy, or large computational time. The premature convergence is sometimes inevitable due to the lack of diversity. As the generations of particles or individuals in the population evolve, they may lose their diversity and become similar to each other. To overcome this issue, we studied the diversity concept in GA and PSO algorithms. Diversity is essential for a healthy search, and mutations are the basic operators to provide the necessary variety within a population. After having a close scrutiny of the diversity concept based on qualification and quantification studies, we improved new mutation strategies and operators to provide beneficial diversity within the population. We called this new approach as multi-frequency vibrational GA or PSO. They were applied to different aeronautical engineering problems in order to study the efficiency of these new approaches. These implementations were: applications to selected benchmark test functions, inverse design of two-dimensional (2D) airfoil in subsonic flow, optimization of 2D airfoil in transonic flow, path planning problems of autonomous unmanned aerial vehicle (UAV) over a 3D terrain environment, 3D radar cross section minimization problem for a 3D air vehicle, and active flow control over a 2D airfoil. As demonstrated by these test cases, we observed that new algorithms outperform the current popular algorithms. The principal role of this multi-frequency approach was to determine which individuals or particles should be mutated, when they should be mutated, and which ones should be merged into the population. The new mutation operators, when combined with a mutation strategy and an artificial intelligent method, such as, neural networks or fuzzy logic process, they provided local and global diversities during the reproduction phases of the generations. Additionally, the new approach also introduced random and controlled diversity. Due to still being population-based techniques, these methods were as robust as the plain GA or PSO algorithms. Based on the results obtained, it was concluded that the variants of the present multi-frequency vibrational GA and PSO were efficient algorithms, since they successfully avoided all local optima within relatively short optimization cycles.
LMI-Based Fuzzy Optimal Variance Control of Airfoil Model Subject to Input Constraints
NASA Technical Reports Server (NTRS)
Swei, Sean S.M.; Ayoubi, Mohammad A.
2017-01-01
This paper presents a study of fuzzy optimal variance control problem for dynamical systems subject to actuator amplitude and rate constraints. Using Takagi-Sugeno fuzzy modeling and dynamic Parallel Distributed Compensation technique, the stability and the constraints can be cast as a multi-objective optimization problem in the form of Linear Matrix Inequalities. By utilizing the formulations and solutions for the input and output variance constraint problems, we develop a fuzzy full-state feedback controller. The stability and performance of the proposed controller is demonstrated through its application to the airfoil flutter suppression.
Parameter assessment for virtual Stackelberg game in aerodynamic shape optimization
NASA Astrophysics Data System (ADS)
Wang, Jing; Xie, Fangfang; Zheng, Yao; Zhang, Jifa
2018-05-01
In this paper, parametric studies of virtual Stackelberg game (VSG) are conducted to assess the impact of critical parameters on aerodynamic shape optimization, including design cycle, split of design variables and role assignment. Typical numerical cases, including the inverse design and drag reduction design of airfoil, have been carried out. The numerical results confirm the effectiveness and efficiency of VSG. Furthermore, the most significant parameters are identified, e.g. the increase of design cycle can improve the optimization results but it will also add computational burden. These studies will maximize the productivity of the effort in aerodynamic optimization for more complicated engineering problems, such as the multi-element airfoil and wing-body configurations.
Transonic airfoil design for helicopter rotor applications
NASA Technical Reports Server (NTRS)
Hassan, Ahmed A.; Jackson, B.
1989-01-01
Despite the fact that the flow over a rotor blade is strongly influenced by locally three-dimensional and unsteady effects, practical experience has always demonstrated that substantial improvements in the aerodynamic performance can be gained by improving the steady two-dimensional charateristics of the airfoil(s) employed. The two phenomena known to have great impact on the overall rotor performance are: (1) retreating blade stall with the associated large pressure drag, and (2) compressibility effects on the advancing blade leading to shock formation and the associated wave drag and boundary-layer separation losses. It was concluded that: optimization routines are a powerful tool for finding solutions to multiple design point problems; the optimization process must be guided by the judicious choice of geometric and aerodynamic constraints; optimization routines should be appropriately coupled to viscous, not inviscid, transonic flow solvers; hybrid design procedures in conjunction with optimization routines represent the most efficient approach for rotor airfroil design; unsteady effects resulting in the delay of lift and moment stall should be modeled using simple empirical relations; and inflight optimization of aerodynamic loads (e.g., use of variable rate blowing, flaps, etc.) can satisfy any number of requirements at design and off-design conditions.
Thick airfoil designs for the root of the 10MW INNWIND.EU wind turbine
NASA Astrophysics Data System (ADS)
Mu≁oz, A.; Méndez, B.; Munduate, X.
2016-09-01
The main objective of the “INNWIND.EU” project is to investigate and demonstrate innovative designs for 10-20MW offshore wind turbines and their key components, such as lightweight rotors. In this context, the present paper describes the development of two new airfoils for the blade root region. From the structural point of view, the root is the region in charge of transmitting all the loads of the blade to the hub. Thus, it is very important to include airfoils with adequate structural properties in this region. The present article makes use of high-thickness and blunt trailing edge airfoils to improve the structural characteristics of the airfoils used to build this blade region. CENER's (National Renewable Energy Center of Spain) airfoil design tool uses the airfoil software XFOIL to compute the aerodynamic characteristics of the designed airfoils. That software is based on panel methods which show some problems with the calculation of airfoils with thickness bigger than 35% and with blunt trailing edge. This drawback has been overcome with the development of an empirical correction for XFOIL lift and drag prediction based on airfoil experiments. From the aerodynamic point of view, thick airfoils are known to be very sensitive to surface contamination or turbulent inflow conditions. Consequently, the design optimization takes into account the aerodynamic torque in both clean and contaminated conditions. Two airfoils have been designed aiming to improve the structural and the aerodynamic behaviour of the blade in clean and contaminated conditions. This improvement has been corroborated with Blade Element Momentum (BEM) computations.
Intelligent design optimization of a shape-memory-alloy-actuated reconfigurable wing
NASA Astrophysics Data System (ADS)
Lagoudas, Dimitris C.; Strelec, Justin K.; Yen, John; Khan, Mohammad A.
2000-06-01
The unique thermal and mechanical properties offered by shape memory alloys (SMAs) present exciting possibilities in the field of aerospace engineering. When properly trained, SMA wires act as linear actuators by contracting when heated and returning to their original shape when cooled. It has been shown experimentally that the overall shape of an airfoil can be altered by activating several attached SMA wire actuators. This shape-change can effectively increase the efficiency of a wing in flight at several different flow regimes. To determine the necessary placement of these wire actuators within the wing, an optimization method that incorporates a fully-coupled structural, thermal, and aerodynamic analysis has been utilized. Due to the complexity of the fully-coupled analysis, intelligent optimization methods such as genetic algorithms have been used to efficiently converge to an optimal solution. The genetic algorithm used in this case is a hybrid version with global search and optimization capabilities augmented by the simplex method as a local search technique. For the reconfigurable wing, each chromosome represents a realizable airfoil configuration and its genes are the SMA actuators, described by their location and maximum transformation strain. The genetic algorithm has been used to optimize this design problem to maximize the lift-to-drag ratio for a reconfigured airfoil shape.
NASA Technical Reports Server (NTRS)
Tumin, Anatoli; Ashpis, David E.
2003-01-01
An analysis of the non-modal growth of perturbations in a boundary layer in the presence of a streamwise pressure gradient is presented. The analysis is based on PSE equations for an incompressible fluid. Examples with Falkner-Skan profiles indicate that a favorable pressure gradient decreases the non-modal growth while an unfavorable pressure gradient leads to an increase of the amplification. It is suggested that the transient growth mechanism be utilized to choose optimal parameters of tripping elements on a low-pressure turbine (LPT) airfoil. As an example, a boundary layer flow with a streamwise pressure gradient corresponding to the pressure distribution over a LPT airfoil is considered. It is shown that there is an optimal spacing of the tripping elements and that the transient growth effect depends on the starting point. At very low Reynolds numbers, there is a possibility to enhance the transient energy growth by means of wall cooling.
An Implicit Upwind Algorithm for Computing Turbulent Flows on Unstructured Grids
NASA Technical Reports Server (NTRS)
Anerson, W. Kyle; Bonhaus, Daryl L.
1994-01-01
An implicit, Navier-Stokes solution algorithm is presented for the computation of turbulent flow on unstructured grids. The inviscid fluxes are computed using an upwind algorithm and the solution is advanced in time using a backward-Euler time-stepping scheme. At each time step, the linear system of equations is approximately solved with a point-implicit relaxation scheme. This methodology provides a viable and robust algorithm for computing turbulent flows on unstructured meshes. Results are shown for subsonic flow over a NACA 0012 airfoil and for transonic flow over a RAE 2822 airfoil exhibiting a strong upper-surface shock. In addition, results are shown for 3 element and 4 element airfoil configurations. For the calculations, two one equation turbulence models are utilized. For the NACA 0012 airfoil, a pressure distribution and force data are compared with other computational results as well as with experiment. Comparisons of computed pressure distributions and velocity profiles with experimental data are shown for the RAE airfoil and for the 3 element configuration. For the 4 element case, comparisons of surface pressure distributions with experiment are made. In general, the agreement between the computations and the experiment is good.
Computational Optimization of a Natural Laminar Flow Experimental Wing Glove
NASA Technical Reports Server (NTRS)
Hartshom, Fletcher
2012-01-01
Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.
NASA Technical Reports Server (NTRS)
Edwards, S.; Reuther, J.; Chattot, J. J.
1997-01-01
The objective of this paper is to present a control theory approach for the design of airfoils in the presence of viscous compressible flows. A coupled system of the integral boundary layer and the Euler equations is solved to provide rapid flow simulations. An adjunct approach consistent with the complete coupled state equations is employed to obtain the sensitivities needed to drive a numerical optimization algorithm. Design to target pressure distribution is demonstrated on an RAE 2822 airfoil at transonic speed.
NASA Astrophysics Data System (ADS)
Takemiya, Tetsushi
In modern aerospace engineering, the physics-based computational design method is becoming more important, as it is more efficient than experiments and because it is more suitable in designing new types of aircraft (e.g., unmanned aerial vehicles or supersonic business jets) than the conventional design method, which heavily relies on historical data. To enhance the reliability of the physics-based computational design method, researchers have made tremendous efforts to improve the fidelity of models. However, high-fidelity models require longer computational time, so the advantage of efficiency is partially lost. This problem has been overcome with the development of variable fidelity optimization (VFO). In VFO, different fidelity models are simultaneously employed in order to improve the speed and the accuracy of convergence in an optimization process. Among the various types of VFO methods, one of the most promising methods is the approximation management framework (AMF). In the AMF, objective and constraint functions of a low-fidelity model are scaled at a design point so that the scaled functions, which are referred to as "surrogate functions," match those of a high-fidelity model. Since scaling functions and the low-fidelity model constitutes surrogate functions, evaluating the surrogate functions is faster than evaluating the high-fidelity model. Therefore, in the optimization process, in which gradient-based optimization is implemented and thus many function calls are required, the surrogate functions are used instead of the high-fidelity model to obtain a new design point. The best feature of the AMF is that it may converge to a local optimum of the high-fidelity model in much less computational time than the high-fidelity model. However, through literature surveys and implementations of the AMF, the author xx found that (1) the AMF is very vulnerable when the computational analysis models have numerical noise, which is very common in high-fidelity models, and that (2) the AMF terminates optimization erroneously when the optimization problems have constraints. The first problem is due to inaccuracy in computing derivatives in the AMF, and the second problem is due to erroneous treatment of the trust region ratio, which sets the size of the domain for an optimization in the AMF. In order to solve the first problem of the AMF, automatic differentiation (AD) technique, which reads the codes of analysis models and automatically generates new derivative codes based on some mathematical rules, is applied. If derivatives are computed with the generated derivative code, they are analytical, and the required computational time is independent of the number of design variables, which is very advantageous for realistic aerospace engineering problems. However, if analysis models implement iterative computations such as computational fluid dynamics (CFD), which solves system partial differential equations iteratively, computing derivatives through the AD requires a massive memory size. The author solved this deficiency by modifying the AD approach and developing a more efficient implementation with CFD, and successfully applied the AD to general CFD software. In order to solve the second problem of the AMF, the governing equation of the trust region ratio, which is very strict against the violation of constraints, is modified so that it can accept the violation of constraints within some tolerance. By accepting violations of constraints during the optimization process, the AMF can continue optimization without terminating immaturely and eventually find the true optimum design point. With these modifications, the AMF is referred to as "Robust AMF," and it is applied to airfoil and wing aerodynamic design problems using Euler CFD software. The former problem has 21 design variables, and the latter 64. In both problems, derivatives computed with the proposed AD method are first compared with those computed with the finite differentiation (FD) method, and then, the Robust AMF is implemented along with the sequential quadratic programming (SQP) optimization method with only high-fidelity models. The proposed AD method computes derivatives more accurately and faster than the FD method, and the Robust AMF successfully optimizes shapes of the airfoil and the wing in a much shorter time than SQP with only high-fidelity models. These results clearly show the effectiveness of the Robust AMF. Finally, the feasibility of reducing computational time for calculating derivatives and the necessity of AMF with an optimum design point always in the feasible region are discussed as future work.
Nonlinear power flow feedback control for improved stability and performance of airfoil sections
Wilson, David G.; Robinett, III, Rush D.
2013-09-03
A computer-implemented method of determining the pitch stability of an airfoil system, comprising using a computer to numerically integrate a differential equation of motion that includes terms describing PID controller action. In one model, the differential equation characterizes the time-dependent response of the airfoil's pitch angle, .alpha.. The computer model calculates limit-cycles of the model, which represent the stability boundaries of the airfoil system. Once the stability boundary is known, feedback control can be implemented, by using, for example, a PID controller to control a feedback actuator. The method allows the PID controller gain constants, K.sub.I, K.sub.p, and K.sub.d, to be optimized. This permits operation closer to the stability boundaries, while preventing the physical apparatus from unintentionally crossing the stability boundaries. Operating closer to the stability boundaries permits greater power efficiencies to be extracted from the airfoil system.
Numerical investigation of multi-element airfoils
NASA Technical Reports Server (NTRS)
Cummings, Russell M.
1993-01-01
The flow over multi-element airfoils with flat-plate lift-enhancing tabs was numerically investigated. Tabs ranging in height from 0.25 percent to 1.25 percent of the reference airfoil chord were studied near the trailing edge of the main-element. This two-dimensional numerical simulation employed an incompressible Navier-Stokes solver on a structured, embedded grid topology. New grid refinements were used to improve the accuracy of the solution near the overlapping grid boundaries. The effects of various tabs were studied at a constant Reynolds number on a two-element airfoil with a slotted flap. Both computed and measured results indicated that a tab in the main-element cove improved the maximum lift and lift-to-drag ratio relative to the baseline airfoil without a tab. Computed streamlines revealed that the additional turning caused by the tab may reduce the amount of separated flow on the flap. A three-element airfoil was also studied over a range of Reynolds numbers. For the optimized flap rigging, the computed and measured Reynolds number effects were similar. When the flap was moved from the optimum position, numerical results indicated that a tab may help to reoptimize the airfoil to within 1 percent of the optimum flap case.
NASA Technical Reports Server (NTRS)
Kolesar, C. E.
1987-01-01
Research activity on an airfoil designed for a large airplane capable of very long endurance times at a low Mach number of 0.22 is examined. Airplane mission objectives and design optimization resulted in requirements for a very high design lift coefficient and a large amount of laminar flow at high Reynolds number to increase the lift/drag ratio and reduce the loiter lift coefficient. Natural laminar flow was selected instead of distributed mechanical suction for the measurement technique. A design lift coefficient of 1.5 was identified as the highest which could be achieved with a large extent of laminar flow. A single element airfoil was designed using an inverse boundary layer solution and inverse airfoil design computer codes to create an airfoil section that would achieve performance goals. The design process and results, including airfoil shape, pressure distributions, and aerodynamic characteristics are presented. A two dimensional wind tunnel model was constructed and tested in a NASA Low Turbulence Pressure Tunnel which enabled testing at full scale design Reynolds number. A comparison is made between theoretical and measured results to establish accuracy and quality of the airfoil design technique.
A Rapid Aerodynamic Design Procedure Based on Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2001-01-01
An aerodynamic design procedure that uses neural networks to model the functional behavior of the objective function in design space has been developed. This method incorporates several improvements to an earlier method that employed a strategy called parameter-based partitioning of the design space in order to reduce the computational costs associated with design optimization. As with the earlier method, the current method uses a sequence of response surfaces to traverse the design space in search of the optimal solution. The new method yields significant reductions in computational costs by using composite response surfaces with better generalization capabilities and by exploiting synergies between the optimization method and the simulation codes used to generate the training data. These reductions in design optimization costs are demonstrated for a turbine airfoil design study where a generic shape is evolved into an optimal airfoil.
Aerodynamic shape optimization using preconditioned conjugate gradient methods
NASA Technical Reports Server (NTRS)
Burgreen, Greg W.; Baysal, Oktay
1993-01-01
In an effort to further improve upon the latest advancements made in aerodynamic shape optimization procedures, a systematic study is performed to examine several current solution methodologies as applied to various aspects of the optimization procedure. It is demonstrated that preconditioned conjugate gradient-like methodologies dramatically decrease the computational efforts required for such procedures. The design problem investigated is the shape optimization of the upper and lower surfaces of an initially symmetric (NACA-012) airfoil in inviscid transonic flow and at zero degree angle-of-attack. The complete surface shape is represented using a Bezier-Bernstein polynomial. The present optimization method then automatically obtains supercritical airfoil shapes over a variety of freestream Mach numbers. Furthermore, the best optimization strategy examined resulted in a factor of 8 decrease in computational time as well as a factor of 4 decrease in memory over the most efficient strategies in current use.
NASA Technical Reports Server (NTRS)
Jernell, L. S.
1974-01-01
An investigation has been conducted to explore the potential for optimizing airfoil shape at high supersonic speeds by utilizing the two-dimensional shock-expansion method. Theoretical and experimental force and moment coefficients are compared for four delta-planform semispan wings having a leading-edge sweep angle of 65 deg and incorporating modified diamond airfoils with a thickness-chord ratio of 0.06. The wings differ only in airfoil maximum-thickness position and camber. The experimental data are obtained at Mach numbers of 3.95 and 4.63 and at a Reynolds number of 9.84 million per meter. A relatively simple method is developed for predicting, in terms of lift-drag ratio, the optimum modified diamond airfoil at high supersonic and hypersonic speeds.
NASA Technical Reports Server (NTRS)
Sharma, O. P.; Kopper, F. C.; Knudsen, L. K.; Yustinich, J. B.
1982-01-01
A subsonic cascade test program was conducted to provide technical data for optimizing the blade and vane airfoil designs for the Energy Efficient Engine Low-Pressure Turbine component. The program consisted of three parts. The first involved an evaluation of the low-chamber inlet guide vane. The second, was an evaluation of two candidate aerodynamic loading philosophies for the fourth blade root section. The third part consisted of an evaluation of three candidate airfoil geometries for the fourth blade mean section. The performance of each candidate airfoil was evaluated in a linear cascade configuration. The overall results of this study indicate that the aft-loaded airfoil designs resulted in lower losses which substantiated Pratt & Whitney Aircraft's design philosophy for the Energy Efficient Engine low-pressure turbine component.
Application of Artificial Neural Networks to the Design of Turbomachinery Airfoils
NASA Technical Reports Server (NTRS)
Rai, Man Mohan; Madavan, Nateri
1997-01-01
Artificial neural networks are widely used in engineering applications, such as control, pattern recognition, plant modeling and condition monitoring to name just a few. In this seminar we will explore the possibility of applying neural networks to aerodynamic design, in particular, the design of turbomachinery airfoils. The principle idea behind this effort is to represent the design space using a neural network (within some parameter limits), and then to employ an optimization procedure to search this space for a solution that exhibits optimal performance characteristics. Results obtained for design problems in two spatial dimensions will be presented.
Synthetic Vortex Generator Jets Used to Control Separation on Low-Pressure Turbine Airfoils
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Volino, Ralph J.
2005-01-01
Low-pressure turbine (LPT) airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and lower cost by reducing the number of airfoils in an engine. When the adverse pressure gradient on the suction side of these airfoils becomes strong enough, the boundary layer will separate. Separation bubbles, particularly those that fail to reattach, can result in a significant loss of lift and a subsequent degradation of engine efficiency. The problem is particularly relevant in aircraft engines. Airfoils optimized to produce maximum power under takeoff conditions may still experience boundary layer separation at cruise conditions because of the thinner air and lower Reynolds numbers at altitude. Component efficiency can drop significantly between takeoff and cruise conditions. The decrease is about 2 percent in large commercial transport engines, and it could be as large as 7 percent in smaller engines operating at higher altitudes. Therefore, it is very beneficial to eliminate, or at least reduce, the separation bubble.
Spline-Based Smoothing of Airfoil Curvatures
NASA Technical Reports Server (NTRS)
Li, W.; Krist, S.
2008-01-01
Constrained fitting for airfoil curvature smoothing (CFACS) is a splinebased method of interpolating airfoil surface coordinates (and, concomitantly, airfoil thicknesses) between specified discrete design points so as to obtain smoothing of surface-curvature profiles in addition to basic smoothing of surfaces. CFACS was developed in recognition of the fact that the performance of a transonic airfoil is directly related to both the curvature profile and the smoothness of the airfoil surface. Older methods of interpolation of airfoil surfaces involve various compromises between smoothing of surfaces and exact fitting of surfaces to specified discrete design points. While some of the older methods take curvature profiles into account, they nevertheless sometimes yield unfavorable results, including curvature oscillations near end points and substantial deviations from desired leading-edge shapes. In CFACS as in most of the older methods, one seeks a compromise between smoothing and exact fitting. Unlike in the older methods, the airfoil surface is modified as little as possible from its original specified form and, instead, is smoothed in such a way that the curvature profile becomes a smooth fit of the curvature profile of the original airfoil specification. CFACS involves a combination of rigorous mathematical modeling and knowledge-based heuristics. Rigorous mathematical formulation provides assurance of removal of undesirable curvature oscillations with minimum modification of the airfoil geometry. Knowledge-based heuristics bridge the gap between theory and designers best practices. In CFACS, one of the measures of the deviation of an airfoil surface from smoothness is the sum of squares of the jumps in the third derivatives of a cubicspline interpolation of the airfoil data. This measure is incorporated into a formulation for minimizing an overall deviation- from-smoothness measure of the airfoil data within a specified fitting error tolerance. CFACS has been extensively tested on a number of supercritical airfoil data sets generated by inverse design and optimization computer programs. All of the smoothing results show that CFACS is able to generate unbiased smooth fits of curvature profiles, trading small modifications of geometry for increasing curvature smoothness by eliminating curvature oscillations and bumps (see figure).
Monitoring pressure profiles across an airfoil with a fiber Bragg grating sensor array
NASA Astrophysics Data System (ADS)
Papageorgiou, Anthony W.; Parkinson, Luke A.; Karas, Andrew R.; Hansen, Kristy L.; Arkwright, John W.
2018-02-01
Fluid flow over an airfoil section creates a pressure difference across the upper and lower surfaces, thus generating lift. Successful wing design is a combination of engineering design and experience in the field, with subtleties in design and manufacture having significant impact on the amount of lift produced. Current methods of airfoil optimization and validation typically involve computational fluid dynamics (CFD) and extensive wind tunnel testing with pressure sensors embedded into the airfoil to measure the pressure over the wing. Monitoring pressure along an airfoil in a wind tunnel is typically achieved using surface pressure taps that consist of hollow tubes running from the surface of the airfoil to individual pressure sensors external to the tunnel. These pressure taps are complex to configure and not ideal for in-flight testing. Fiber Bragg grating (FBG) pressure sensing arrays provide a highly viable option for both wind tunnel and inflight pressure measurement. We present a fiber optic sensor array that can detect positive and negative pressure suitable for validating CFD models of airfoil profile sections. The sensing array presented here consists of 6 independent sensing elements, each capable of a pressure resolution of less than 10 Pa over the range of 70 kPa to 120 kPa. The device has been tested with the sensor array attached to a 90mm chord length airfoil section subjected to low velocity flow. Results show that the arrays are capable of accurately detecting variations of the pressure profile along the airfoil as the angle of attack is varied from zero to the point at which stall occurs.
Optimal disturbances in boundary layers subject to streamwise pressure gradient
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Tumin, Anatoli
2003-01-01
An analysis of the optimal non-modal growth of perturbations in a boundary layer in the presence of a streamwise pressure gradient is presented. The analysis is based on PSE equations for an incompressible fluid. Examples with Falkner-Scan profiles indicate that a favorable pressure gradient decreases the non-modal growth, while an unfavorable pressure gradient leads to an increase of the amplification. It is suggested that the transient growth mechanism be utilized to choose optimal parameters of tripping elements on a low-pressure turbine (LPT) airfoil. As an example, a boundary layer flow with a streamwise pressure gradient corresponding to the pressure distribution over a LPT airfoil is considered. It is shown that there is an optimal spacing of the tripping elements and that the transient growth effect depends on the starting point.
Airfoil family design for large offshore wind turbine blades
NASA Astrophysics Data System (ADS)
Méndez, B.; Munduate, X.; San Miguel, U.
2014-06-01
Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design, compatibility for the different airfoil family members, etc.) and with the ultimate objective that the airfoils will reduce the blade loads. In this paper the whole airfoil design process and the main characteristics of the airfoil family are described. Some force coefficients for the design Reynolds number are also presented. The new designed airfoils have been studied with computational calculations (panel method code and CFD) and also in a wind tunnel experimental campaign. Some of these results will be also presented in this paper.
Free Swimming in Ground Effect
NASA Astrophysics Data System (ADS)
Cochran-Carney, Jackson; Wagenhoffer, Nathan; Zeyghami, Samane; Moored, Keith
2017-11-01
A free-swimming potential flow analysis of unsteady ground effect is conducted for two-dimensional airfoils via a method of images. The foils undergo a pure pitching motion about their leading edge, and the positions of the body in the streamwise and cross-stream directions are determined by the equations of motion of the body. It is shown that the unconstrained swimmer is attracted to a time-averaged position that is mediated by the flow interaction with the ground. The robustness of this fluid-mediated equilibrium position is probed by varying the non-dimensional mass, initial conditions and kinematic parameters of motion. Comparisons to the foil's fixed-motion counterpart are also made to pinpoint the effect that free swimming near the ground has on wake structures and the fluid-mediated forces over time. Optimal swimming regimes for near-boundary swimming are determined by examining asymmetric motions.
Supercritical tests of a self-optimizing, variable-Camber wind tunnel model
NASA Technical Reports Server (NTRS)
Levinsky, E. S.; Palko, R. L.
1979-01-01
A testing procedure was used in a 16-foot Transonic Propulsion Wind Tunnel which leads to optimum wing airfoil sections without stopping the tunnel for model changes. Being experimental, the optimum shapes obtained incorporate various three-dimensional and nonlinear viscous and transonic effects not included in analytical optimization methods. The method is a closed-loop, computer-controlled, interactive procedure and employs a Self-Optimizing Flexible Technology wing semispan model that conformally adapts the airfoil section at two spanwise control stations to maximize or minimize various prescribed merit functions subject to both equality and inequality constraints. The model, which employed twelve independent hydraulic actuator systems and flexible skins, was also used for conventional testing. Although six of seven optimizations attempted were at least partially convergent, further improvements in model skin smoothness and hydraulic reliability are required to make the technique fully operational.
Investigation of aerodynamic design issues with regions of separated flow
NASA Technical Reports Server (NTRS)
Gally, Tom
1993-01-01
Existing aerodynamic design methods have generally concentrated on the optimization of airfoil or wing shapes to produce a minimum drag while satisfying some basic constraints such as lift, pitching moment, or thickness. Since the minimization of drag almost always precludes the existence of separated flow, the evaluation and validation of these design methods for their robustness and accuracy when separated flow is present has not been aggressively pursued. However, two new applications for these design tools may be expected to include separated flow and the issues of aerodynamic design with this feature must be addressed. The first application of the aerodynamic design tools is the design of airfoils or wings to provide an optimal performance over a wide range of flight conditions (multipoint design). While the definition of 'optimal performance' in the multipoint setting is currently being hashed out, it is recognized that given a wide range of flight conditions, it will not be possible to ensure a minimum drag constraint at all conditions, and in fact some amount of separated flow (presumably small) may have to be allowed at the more demanding flight conditions. Thus a multipoint design method must be tolerant of the existence of separated flow and may include some controls upon its extent. The second application is in the design of wings with extended high speed buffet boundaries of their flight envelopes. Buffet occurs on a wing when regions of flow separation have grown to the extent that their time varying pressures induce possible destructive effects upon the wing structure or adversely effect either the aircraft controllability or passenger comfort. A conservative approach to the expansion of the buffet flight boundary is to simply expand the flight envelope of nonseparated flow under the assumption that buffet will also thus be alleviated. However, having the ability to design a wing with separated flow and thus to control the location, extent and severity of the separated flow regions may allow aircraft manufacturers to gain an advantage in the early design stages of an aircraft, when configuration changes are relatively inexpensive to make. The goal of the summer research at NASA Langley Research Center (LaRC) was twofold: first, to investigate a particular airfoil design problem observed under conditions of strong shock induced flow separation on the upper surface of an airfoil at transonic conditions; and second, to suggest and investigate design methodologies for the prediction (or detection) and control of flow separation. The context of both investigations was to use an existing two dimensional Navier-Stokes flow solver and the constrained direct/iterative surface curvature (CDISC) design algorithm developed at LaRC. As a lead in to the primary task, it was necessary to gain a familiarity with both the design method and the computational analysis and to perform the FORTRAN coding needed to couple them together.
Simple Parametric Model for Airfoil Shape Description
NASA Astrophysics Data System (ADS)
Ziemkiewicz, David
2017-12-01
We show a simple, analytic equation describing a class of two-dimensional shapes well suited for representation of aircraft airfoil profiles. Our goal was to create a description characterized by a small number of parameters with easily understandable meaning, providing a tool to alter the shape with optimization procedures as well as manual tweaks by the designer. The generated shapes are well suited for numerical analysis with 2D flow solving software such as XFOIL.
Aerodynamics and Percolation: Unfolding Laminar Separation Bubble on Airfoils
NASA Astrophysics Data System (ADS)
Traphan, Dominik; Wester, Tom T. B.; Gülker, Gerd; Peinke, Joachim; Lind, Pedro G.
2018-04-01
As a fundamental phenomenon of fluid mechanics, recent studies suggested laminar-turbulent transition belonging to the universality class of directed percolation. Here, the onset of a laminar separation bubble on an airfoil is analyzed in terms of the directed percolation model using particle image velocimetry data. Our findings indicate a clear significance of percolation models in a general flow situation beyond fundamental ones. We show that our results are robust against fluctuations of the parameter, namely, the threshold of turbulence intensity, that maps velocimetry data into binary cells (turbulent or laminar). In particular, this percolation approach enables the precise determination of the transition point of the laminar separation bubble, an important problem in aerodynamics.
Geometric Model for a Parametric Study of the Blended-Wing-Body Airplane
NASA Technical Reports Server (NTRS)
Mastin, C. Wayne; Smith, Robert E.; Sadrehaghighi, Ideen; Wiese, Micharl R.
1996-01-01
A parametric model is presented for the blended-wing-body airplane, one concept being proposed for the next generation of large subsonic transports. The model is defined in terms of a small set of parameters which facilitates analysis and optimization during the conceptual design process. The model is generated from a preliminary CAD geometry. From this geometry, airfoil cross sections are cut at selected locations and fitted with analytic curves. The airfoils are then used as boundaries for surfaces defined as the solution of partial differential equations. Both the airfoil curves and the surfaces are generated with free parameters selected to give a good representation of the original geometry. The original surface is compared with the parametric model, and solutions of the Euler equations for compressible flow are computed for both geometries. The parametric model is a good approximation of the CAD model and the computed solutions are qualitatively similar. An optimal NURBS approximation is constructed and can be used by a CAD model for further refinement or modification of the original geometry.
Leading edge embedded fan airfoil concept -- A new powered high lift technology
NASA Astrophysics Data System (ADS)
Phan, Nhan Huu
A new powered-lift airfoil concept called Leading Edge Embedded Fan (LEEF) is proposed for Extremely Short Take-Off and Landing (ESTOL) and Vertical Take-Off and Landing (VTOL) applications. The LEEF airfoil concept is a powered-lift airfoil concept capable of generating thrust and very high lift-coefficient at extreme angles-of attack (AoA). It is designed to activate only at the take-off and landing phases, similar to conventional flaps or slats, allowing the aircraft to operate efficiently at cruise in its conventional configuration. The LEEF concept consists of placing a crossflow fan (CFF) along the leading-edge (LE) of the wing, and the housing is designed to alter the airfoil shape between take-off/landing and cruise configurations with ease. The unique rectangular cross section of the crossflow fan allows for its ease of integration into a conventional subsonic wing. This technology is developed for ESTOL aircraft applications and is most effectively applied to General Aviation (GA) aircraft. Another potential area of application for LEEF is tiltrotor aircraft. Unlike existing powered high-lift systems, the LEEF airfoil uses a local high-pressure air source from cross-flow fans, does not require ducting, and is able to be deployed using distributed electric power systems throughout the wing. In addition to distributed lift augmentation, the LEEF system can provide additional thrust during takeoff and landing operation to supplement the primary cruise propulsion system. Two-dimensional (2D) and three-dimensional (3D) Computational Fluid Dynamics (CFD) simulations of a conventional airfoil/wing using the NACA 63-3-418 section, commonly used in GA, and a LEEF airfoil/wing embedded into the same airfoil section were carried out to evaluate the advantages of and the costs associated with implementing the LEEF concept. Computational results show that significant lift and augmented thrust are available during LEEF operation while requiring only moderate fan power input. The CFD results show that airfoil circulation control is achieved by the varying the CFF intake flow rate and the momentum of the CFF exhaust jet (e.g. through airfoil AoA or fan rotational speed). The presence of the CFF has the effect of moving the stagnation point on the airfoil pressure surface from the CFF airfoil LE region near the CFF to as far back as the airfoil trailing edge. At high AoA operation, LE flow separation on the airfoil suction surface is delayed by flow entrainment of the high-energy jet leaving the CFF. Detailed analysis of the flow field through the crossflow fan and its housing were carried out to understand its fluid-dynamics behavior, and it is found that the airfoil geometry acts as inlet guide vanes to the crossflow fan as the angle-of-attack is varied, thus introducing pre-swirl or co-swirl into the first stage of the crossflow fan. An experimental study of the LEEF concept confirmed that the concept works and it is robust. Finally, as application examples, the LEEF technology is applied to a Remote Control model and to a generic tiltrotor aircraft similar in characteristics to DARPA's Aerial Reconfigurable Embedded System. These aircraft configurations were analyzed using 2D and 3D CFD.
NASA Astrophysics Data System (ADS)
Suresh Babu, Arun Vishnu; Ramesh, Kiran; Gopalarathnam, Ashok
2017-11-01
In previous research, Ramesh et al. (JFM,2014) developed a low-order discrete vortex method for modeling unsteady airfoil flows with intermittent leading edge vortex (LEV) shedding using a leading edge suction parameter (LESP). LEV shedding is initiated using discrete vortices (DVs) whenever the Leading Edge Suction Parameter (LESP) exceeds a critical value. In subsequent research, the method was successfully employed by Ramesh et al. (JFS, 2015) to predict aeroelastic limit-cycle oscillations in airfoil flows dominated by intermittent LEV shedding. When applied to flows that require large number of time steps, the computational cost increases due to the increasing vortex count. In this research, we apply an amalgamation strategy to actively control the DV count, and thereby reduce simulation time. A pair each of LEVs and TEVs are amalgamated at every time step. The ideal pairs for amalgamation are identified based on the requirement that the flowfield in the vicinity of the airfoil is least affected (Spalart, 1988). Instead of placing the amalgamated vortex at the centroid, we place it at an optimal location to ensure that the leading-edge suction and the airfoil bound circulation are conserved. Results of the initial study are promising.
Active Control of Separation from the Slat Shoulder of a Supercritical Airfoil
NASA Technical Reports Server (NTRS)
Pack, LaTunia G.; Schaeffler, Norman W.; Yao, Chung-Sheng; Seifert, Avi
2002-01-01
Active flow control in the form of zero-mass-flux excitation was applied at the slat shoulder of a simplified high-lift airfoil to delay flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge slat and a 25% chord simply hinged trailing edge flap. The cruise configuration data was successfully reproduced, repeating previous experiments. The effects of flap and slat deflection angles on the performance of the airfoil integral parameters were quantified. Detailed flow features were measured as well, in an attempt to identify optimal actuator placement. The measurements included: steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization and Particle Image Velocimetry (PIV). High frequency periodic excitation was applied to delay the occurrence of slat stall and improve the maximum lift by 10 to 15%. Low frequency amplitude modulation was used to reduce the oscillatory momentum coefficient by roughly 50% with similar aerodynamic performance.
NASA Astrophysics Data System (ADS)
Zhang, M. M.; Wang, G. F.; Xu, J. Z.
2014-04-01
An experimental study of flow separation control on a low- Re c airfoil was presently investigated using a newly developed leading-edge protuberance method, motivated by the improvement in the hydrodynamics of the giant humpback whale through its pectoral flippers. Deploying this method, the control effectiveness of the airfoil aerodynamics was fully evaluated using a three-component force balance, leading to an effectively impaired stall phenomenon and great improvement in the performances within the wide post-stall angle range (22°-80°). To understand the flow physics behind, the vorticity field, velocity field and boundary layer flow field over the airfoil suction side were examined using a particle image velocimetry and an oil-flow surface visualization system. It was found that the leading-edge protuberance method, more like low-profile vortex generator, effectively modified the flow pattern of the airfoil boundary layer through the chordwise and spanwise evolutions of the interacting streamwise vortices generated by protuberances, where the separation of the turbulent boundary layer dominated within the stall region and the rather strong attachment of the laminar boundary layer still existed within the post-stall region. The characteristics to manipulate the flow separation mode of the original airfoil indicated the possibility to further optimize the control performance by reasonably designing the layout of the protuberances.
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Hou, Gene W.; Korivi, Vamshi M.
1991-01-01
A gradient-based design optimization strategy for practical aerodynamic design applications is presented, which uses the 2D thin-layer Navier-Stokes equations. The strategy is based on the classic idea of constructing different modules for performing the major tasks such as function evaluation, function approximation and sensitivity analysis, mesh regeneration, and grid sensitivity analysis, all driven and controlled by a general-purpose design optimization program. The accuracy of aerodynamic shape sensitivity derivatives is validated on two viscous test problems: internal flow through a double-throat nozzle and external flow over a NACA 4-digit airfoil. A significant improvement in aerodynamic performance has been achieved in both cases. Particular attention is given to a consistent treatment of the boundary conditions in the calculation of the aerodynamic sensitivity derivatives for the classic problems of external flow over an isolated lifting airfoil on 'C' or 'O' meshes.
Control theory based airfoil design for potential flow and a finite volume discretization
NASA Technical Reports Server (NTRS)
Reuther, J.; Jameson, A.
1994-01-01
This paper describes the implementation of optimization techniques based on control theory for airfoil design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for two-dimensional profiles in which the shape is determined by a conformal transformation from a unit circle, and the control is the mapping function. The goal of our present work is to develop a method which does not depend on conformal mapping, so that it can be extended to treat three-dimensional problems. Therefore, we have developed a method which can address arbitrary geometric shapes through the use of a finite volume method to discretize the potential flow equation. Here the control law serves to provide computationally inexpensive gradient information to a standard numerical optimization method. Results are presented, where both target speed distributions and minimum drag are used as objective functions.
Parametric modeling and stagger angle optimization of an axial flow fan
NASA Astrophysics Data System (ADS)
Li, M. X.; Zhang, C. H.; Liu, Y.; Y Zheng, S.
2013-12-01
Axial flow fans are widely used in every field of social production. Improving their efficiency is a sustained and urgent demand of domestic industry. The optimization of stagger angle is an important method to improve fan performance. Parametric modeling and calculation process automation are realized in this paper to improve optimization efficiency. Geometric modeling and mesh division are parameterized based on GAMBIT. Parameter setting and flow field calculation are completed in the batch mode of FLUENT. A control program is developed in Visual C++ to dominate the data exchange of mentioned software. It also extracts calculation results for optimization algorithm module (provided by Matlab) to generate directive optimization control parameters, which as feedback are transferred upwards to modeling module. The center line of the blade airfoil, based on CLARK y profile, is constructed by non-constant circulation and triangle discharge method. Stagger angles of six airfoil sections are optimized, to reduce the influence of inlet shock loss as well as gas leak in blade tip clearance and hub resistance at blade root. Finally an optimal solution is obtained, which meets the total pressure requirement under given conditions and improves total pressure efficiency by about 6%.
High-Lift Optimization Design Using Neural Networks on a Multi-Element Airfoil
NASA Technical Reports Server (NTRS)
Greenman, Roxana M.; Roth, Karlin R.; Smith, Charles A. (Technical Monitor)
1998-01-01
The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag, and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural networks were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 83% compared with traditional gradient-based optimization procedures for multiple optimization runs.
NASA Astrophysics Data System (ADS)
Lee, Eun Seok
2000-10-01
An improved aerodynamics performance of a turbine cascade shape can be achieved by an understanding of the flow-field associated with the stator-rotor interaction. In this research, an axial gas turbine airfoil cascade shape is optimized for improved aerodynamic performance by using an unsteady Navier-Stokes solver and a parallel genetic algorithm. The objective of the research is twofold: (1) to develop a computational fluid dynamics code having faster convergence rate and unsteady flow simulation capabilities, and (2) to optimize a turbine airfoil cascade shape with unsteady passing wakes for improved aerodynamic performance. The computer code solves the Reynolds averaged Navier-Stokes equations. It is based on the explicit, finite difference, Runge-Kutta time marching scheme and the Diagonalized Alternating Direction Implicit (DADI) scheme, with the Baldwin-Lomax algebraic and k-epsilon turbulence modeling. Improvements in the code focused on the cascade shape design capability, convergence acceleration and unsteady formulation. First, the inverse shape design method was implemented in the code to provide the design capability, where a surface transpiration concept was employed as an inverse technique to modify the geometry satisfying the user specified pressure distribution on the airfoil surface. Second, an approximation storage multigrid method was implemented as an acceleration technique. Third, the preconditioning method was adopted to speed up the convergence rate in solving the low Mach number flows. Finally, the implicit dual time stepping method was incorporated in order to simulate the unsteady flow-fields. For the unsteady code validation, the Stokes's 2nd problem and the Poiseuille flow were chosen and compared with the computed results and analytic solutions. To test the code's ability to capture the natural unsteady flow phenomena, vortex shedding past a cylinder and the shock oscillation over a bicircular airfoil were simulated and compared with experiments and other research results. The rotor cascade shape optimization with unsteady passing wakes was performed to obtain an improved aerodynamic performance using the unsteady Navier-Stokes solver. Two objective functions were defined as minimization of total pressure loss and maximization of lift, while the mass flow rate was fixed. A parallel genetic algorithm was used as an optimizer and the penalty method was introduced. Each individual's objective function was computed simultaneously by using a 32 processor distributed memory computer. One optimization took about four days.
ON THE PROBLEM OF CORRECTING TWISTED TURBINE BLADES,
TURBINE BLADES , DESIGN), GAS TURBINES , STEAM TURBINES , BLADE AIRFOILS , ASPECT RATIO, FLUID DYNAMICS, SECONDARY FLOW, ANGLE OF ATTACK, INLET GUIDE VANES , CORRECTIONS, PERFORMANCE( ENGINEERING ), OPTIMIZATION, USSR
Airfoil optimization for unsteady flows with application to high-lift noise reduction
NASA Astrophysics Data System (ADS)
Rumpfkeil, Markus Peer
The use of steady-state aerodynamic optimization methods in the computational fluid dynamic (CFD) community is fairly well established. In particular, the use of adjoint methods has proven to be very beneficial because their cost is independent of the number of design variables. The application of numerical optimization to airframe-generated noise, however, has not received as much attention, but with the significant quieting of modern engines, airframe noise now competes with engine noise. Optimal control techniques for unsteady flows are needed in order to be able to reduce airframe-generated noise. In this thesis, a general framework is formulated to calculate the gradient of a cost function in a nonlinear unsteady flow environment via the discrete adjoint method. The unsteady optimization algorithm developed in this work utilizes a Newton-Krylov approach since the gradient-based optimizer uses the quasi-Newton method BFGS, Newton's method is applied to the nonlinear flow problem, GMRES is used to solve the resulting linear problem inexactly, and last but not least the linear adjoint problem is solved using Bi-CGSTAB. The flow is governed by the unsteady two-dimensional compressible Navier-Stokes equations in conjunction with a one-equation turbulence model, which are discretized using structured grids and a finite difference approach. The effectiveness of the unsteady optimization algorithm is demonstrated by applying it to several problems of interest including shocktubes, pulses in converging-diverging nozzles, rotating cylinders, transonic buffeting, and an unsteady trailing-edge flow. In order to address radiated far-field noise, an acoustic wave propagation program based on the Ffowcs Williams and Hawkings (FW-H) formulation is implemented and validated. The general framework is then used to derive the adjoint equations for a novel hybrid URANS/FW-H optimization algorithm in order to be able to optimize the shape of airfoils based on their calculated far-field pressure fluctuations. Validation and application results for this novel hybrid URANS/FW-H optimization algorithm show that it is possible to optimize the shape of an airfoil in an unsteady flow environment to minimize its radiated far-field noise while maintaining good aerodynamic performance.
LES tests on airfoil trailing edge serration
NASA Astrophysics Data System (ADS)
Zhu, Wei Jun; Shen, Wen Zhong
2016-09-01
In the present study, a large number of acoustic simulations are carried out for a low noise airfoil with different Trailing Edge Serrations (TES). The Ffowcs Williams-Hawkings (FWH) acoustic analogy is used for noise prediction at trailing edge. The acoustic solver is running on the platform of our in-house incompressible flow solver EllipSys3D. The flow solution is first obtained from the Large Eddy Simulation (LES), the acoustic part is then carried out based on the instantaneous hydrodynamic pressure and velocity field. To obtain the time history data of sound pressure, the flow quantities are integrated around the airfoil surface through the FWH approach. For all the simulations, the chord based Reynolds number is around 1.5x106. In the test matrix, the effects from angle of attack, the TE flap angle, the length/width of the TES are investigated. Even though the airfoil under investigation is already optimized for low noise emission, most numerical simulations and wind tunnel experiments show that the noise level is further decreased by adding the TES device.
Unsteady Adjoint Approach for Design Optimization of Flapping Airfoils
NASA Technical Reports Server (NTRS)
Lee, Byung Joon; Liou, Meng-Sing
2012-01-01
This paper describes the work for optimizing the propulsive efficiency of flapping airfoils, i.e., improving the thrust under constraining aerodynamic work during the flapping flights by changing their shape and trajectory of motion with the unsteady discrete adjoint approach. For unsteady problems, it is essential to properly resolving time scales of motion under consideration and it must be compatible with the objective sought after. We include both the instantaneous and time-averaged (periodic) formulations in this study. For the design optimization with shape parameters or motion parameters, the time-averaged objective function is found to be more useful, while the instantaneous one is more suitable for flow control. The instantaneous objective function is operationally straightforward. On the other hand, the time-averaged objective function requires additional steps in the adjoint approach; the unsteady discrete adjoint equations for a periodic flow must be reformulated and the corresponding system of equations solved iteratively. We compare the design results from shape and trajectory optimizations and investigate the physical relevance of design variables to the flapping motion at on- and off-design conditions.
On the application of hybrid meshes in hydraulic machinery CFD simulations
NASA Astrophysics Data System (ADS)
Schlipf, M.; Tismer, A.; Riedelbauch, S.
2016-11-01
The application of two different hybrid mesh types for the simulation of a Francis runner for automated optimization processes without user input is investigated. Those mesh types are applied to simplified test cases such as flow around NACA airfoils to identify the special mesh resolution effects with reduced complexity, like rotating cascade flows, as they occur in a turbomachine runner channel. The analysis includes the application of those different meshes on the geometries by keeping defined quality criteria and exploring the influences on the simulation results. All results are compared with reference values gained by simulations with blockstructured hexahedron meshes and the same numerical scheme. This avoids additional inaccuracies caused by further numerical and experimental measurement methods. The results show that a simulation with hybrid meshes built up by a blockstructured domain with hexahedrons around the blade in combination with a tetrahedral far field in the channel is sufficient to get results which are almost as accurate as the results gained by the reference simulation. Furthermore this method is robust enough for automated processes without user input and enables comparable meshes in size, distribution and quality for different similar geometries as occurring in optimization processes.
Optimal Disturbances in Boundary Layers Subject to Streamwise Pressure Gradient
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Tumin, Anatoli
2003-01-01
An analysis of the non-modal growth of perturbations in a boundary layer in the presence of a streamwise pressure gradient is presented. The analysis is based on PSE equations for an incompressible fluid. Examples with Falkner- Skan profiles indicate that a favorable pressure gradient decreases the non-modal growth while an unfavorable pressure gradient leads to an increase of the amplification. It is suggested that the transient growth mechanism be utilized to choose optimal parameters of tripping elements on a low-pressure turbine (LPT) airfoil. As an example, a boundary-layer flow with a streamwise pressure gradient corresponding to the pressure distribution over a LPT airfoil is considered. It is shown that there is an optimal spacing of the tripping elements and that the transient growth effect depends on the starting point. The amplification is found to be small at the LPT s very low Reynolds numbers, but there is a possibility to enhance the transient energy growth by means of wall cooling.
NASA Astrophysics Data System (ADS)
Fosas de Pando, Miguel; Schmid, Peter J.; Sipp, Denis
2016-11-01
Nonlinear model reduction for large-scale flows is an essential component in many fluid applications such as flow control, optimization, parameter space exploration and statistical analysis. In this article, we generalize the POD-DEIM method, introduced by Chaturantabut & Sorensen [1], to address nonlocal nonlinearities in the equations without loss of performance or efficiency. The nonlinear terms are represented by nested DEIM-approximations using multiple expansion bases based on the Proper Orthogonal Decomposition. These extensions are imperative, for example, for applications of the POD-DEIM method to large-scale compressible flows. The efficient implementation of the presented model-reduction technique follows our earlier work [2] on linearized and adjoint analyses and takes advantage of the modular structure of our compressible flow solver. The efficacy of the nonlinear model-reduction technique is demonstrated to the flow around an airfoil and its acoustic footprint. We could obtain an accurate and robust low-dimensional model that captures the main features of the full flow.
NASA Astrophysics Data System (ADS)
Luo, Pan; Zhang, Xingwei; Huang, Panpan; Xie, Lingwang
2017-10-01
The aim of this study is to investigate the aerodynamic characteristics of a flapping airfoil in the adjustment stage between two specific flight patterns during the forward flight. Four flapping movement models in adjustment stage are firstly established by using the multi-objective optimization algorithm. Then, a numerical experiment is carried out by using finite volume method to solve the two-dimensional time-dependent incompressible Navier-Stokes equations. The attack angles are selected from -5° to 7.5° with an increase of 2.5°. The results are systematically analyzed and special attention is paid to the corresponding changes of aerodynamic forces, vortex shedding mechanism in the wake structure and thrust efficiency. Present results show that output aerodynamic performance of flapping airfoil can be improved by the increasement of amplitude and frequency in the flapping adjustment stage, which further validates and complements previous studies. Moreover, it is also show that the manner using multi-objective optimization algorithm to generate a movement model in adjustment stage, to connect other two specific plunging motions, is a feasible and effective method. Current study is dedicated to providing some helpful references for the design and control of artificial flapping wing air vehicles.
Active Subspaces of Airfoil Shape Parameterizations
NASA Astrophysics Data System (ADS)
Grey, Zachary J.; Constantine, Paul G.
2018-05-01
Design and optimization benefit from understanding the dependence of a quantity of interest (e.g., a design objective or constraint function) on the design variables. A low-dimensional active subspace, when present, identifies important directions in the space of design variables; perturbing a design along the active subspace associated with a particular quantity of interest changes that quantity more, on average, than perturbing the design orthogonally to the active subspace. This low-dimensional structure provides insights that characterize the dependence of quantities of interest on design variables. Airfoil design in a transonic flow field with a parameterized geometry is a popular test problem for design methodologies. We examine two particular airfoil shape parameterizations, PARSEC and CST, and study the active subspaces present in two common design quantities of interest, transonic lift and drag coefficients, under each shape parameterization. We mathematically relate the two parameterizations with a common polynomial series. The active subspaces enable low-dimensional approximations of lift and drag that relate to physical airfoil properties. In particular, we obtain and interpret a two-dimensional approximation of both transonic lift and drag, and we show how these approximation inform a multi-objective design problem.
Vapor deposition on doublet airfoil substrates: Control of coating thickness and microstructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G., E-mail: haydn@virginia.edu
Gas jet assisted vapor deposition processes for depositing coatings are conducted at higher pressures than conventional physical vapor deposition methods, and have shown promise for coating complex shaped substrates including those with non-line-of-sight (NLS) regions on their surface. These regions typically receive vapor atoms at a lower rate and with a wider incident angular distribution than substrate regions in line-of-sight (LS) of the vapor source. To investigate the coating of such substrates, the thickness and microstructure variation along the inner (curved) surfaces of a model doublet airfoil containing both LS and NLS regions has been investigated. Results from atomistic simulationsmore » and experiments confirm that the coating's thickness is thinner in flux-shadowed regions than in other regions for all the coating processes investigated. They also indicated that the coatings columnar microstructure and pore volume fraction vary with surface location through the LS to NLS transition zone. A substrate rotation strategy for optimizing the thickness over the entire doublet airfoil surface was investigated, and led to the identification of a process that resulted in only small variation of coating thickness, columnar growth angle, and pore volume fraction on all doublet airfoil surfaces.« less
A General Multidisciplinary Turbomachinery Design Optimization system Applied to a Transonic Fan
NASA Astrophysics Data System (ADS)
Nemnem, Ahmed Mohamed Farid
The blade geometry design process is integral to the development and advancement of compressors and turbines in gas generators or aeroengines. A new airfoil section design capability has been added to an open source parametric 3D blade design tool. Curvature of the meanline is controlled using B-splines to create the airfoils. The curvature is analytically integrated to derive the angles and the meanline is obtained by integrating the angles. A smooth thickness distribution is then added to the airfoil to guarantee a smooth shape while maintaining a prescribed thickness distribution. A leading edge B-spline definition has also been implemented to achieve customized airfoil leading edges which guarantees smoothness with parametric eccentricity and droop. An automated turbomachinery design and optimization system has been created. An existing splittered transonic fan is used as a test and reference case. This design was more general than a conventional design to have access to the other design methodology. The whole mechanical and aerodynamic design loops are automated for the optimization process. The flow path and the geometrical properties of the rotor are initially created using the axi-symmetric design and analysis code (T-AXI). The main and splitter blades are parametrically designed with the created geometry builder (3DBGB) using the new added features (curvature technique). The solid model creation of the rotor sector with a periodic boundaries combining the main blade and splitter is done using MATLAB code directly connected to SolidWorks including the hub, fillets and tip clearance. A mechanical optimization is performed with DAKOTA (developed by DOE) to reduce the mass of the blades while keeping maximum stress as a constraint with a safety factor. A Genetic algorithm followed by Numerical Gradient optimization strategies are used in the mechanical optimization. The splittered transonic fan blades mass is reduced by 2.6% while constraining the maximum stress below 50% material yield strength using 2D sections thickness and chord multipliers. Once the initial design was mechanically optimized, a CFD optimization was performed to maximize efficiency and/or stall margin. The CFD grid generator (AUTOGRID) reads 3DBGB output and accounts for hub fillets and tip gaps. Single and Multi-objective Genetic Algorithm (SOGA, MOGA) optimization have been used with the CFD analysis system. In SOGA optimization, efficiency was increased by 3.525% from 78.364% to 81.889% while only changing 4 design parameters. For MOGA optimization with higher weighting efficiency than stall margin, the efficiency was increased by 2.651% from 78.364% to 81.015% while the static pressure recovery factor was increased from 0.37407 to 0.4812286 that consequently increases the stall margin. The design process starts with a hot shape design, and then a hot to cold transformation process is explained once the optimization process ends which smoothly subtracts the mechanical deflections from the hot shape. This transformation ensures an accurate tip clearance. The optimization modules can be customized by the user as one full optimization or multiple small ones. This allows the designer not to be eliminated from the design loop which helps in taking the right choice of parameters for the optimization and the final feasible design.
Calculated performance, stability and maneuverability of high-speed tilting-prop-rotor aircraft
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Lau, Benton H.; Bowles, Jeffrey V.
1986-01-01
The feasibility of operating tilting-prop-rotor aircraft at high speeds is examined by calculating the performance, stability, and maneuverability of representative configurations. The rotor performance is examined in high-speed cruise and in hover. The whirl-flutter stability of the coupled-wing and rotor motion is calculated in the cruise mode. Maneuverability is examined in terms of the rotor-thrust limit during turns in helicopter configuration. Rotor airfoils, rotor-hub configuration, wing airfoil, and airframe structural weights representing demonstrated advance technology are discussed. Key rotor and airframe parameters are optimized for high-speed performance and stability. The basic aircraft-design parameters are optimized for minimum gross weight. To provide a focus for the calculations, two high-speed tilt-rotor aircraft are considered: a 46-passenger, civil transport and an air-combat/escort fighter, both with design speeds of about 400 knots. It is concluded that such high-speed tilt-rotor aircraft are quite practical.
NASA Technical Reports Server (NTRS)
Collins, L.; Saunders, D.
1986-01-01
User information for program PROFILE, an aerodynamics design utility for refining, plotting, and tabulating airfoil profiles is provided. The theory and implementation details for two of the more complex options are also presented. These are the REFINE option, for smoothing curvature in selected regions while retaining or seeking some specified thickness ratio, and the OPTIMIZE option, which seeks a specified curvature distribution. REFINE uses linear techniques to manipulate ordinates via the central difference approximation to second derivatives, while OPTIMIZE works directly with curvature using nonlinear least squares techniques. Use of programs QPLOT and BPLOT is also described, since all of the plots provided by PROFILE (airfoil coordinates, curvature distributions) are achieved via the general purpose QPLOT utility. BPLOT illustrates (again, via QPLOT) the shape functions used by two of PROFILE's options. The programs were designed and implemented for the Applied Aerodynamics Branch at NASA Ames Research Center, Moffett Field, California, and written in FORTRAN and run on a VAX-11/780 under VMS.
Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2006-01-01
Genetic and evolutionary algorithms have been applied to solve numerous problems in engineering design where they have been used primarily as optimization procedures. These methods have an advantage over conventional gradient-based search procedures became they are capable of finding global optima of multi-modal functions and searching design spaces with disjoint feasible regions. They are also robust in the presence of noisy data. Another desirable feature of these methods is that they can efficiently use distributed and parallel computing resources since multiple function evaluations (flow simulations in aerodynamics design) can be performed simultaneously and independently on ultiple processors. For these reasons genetic and evolutionary algorithms are being used more frequently in design optimization. Examples include airfoil and wing design and compressor and turbine airfoil design. They are also finding increasing use in multiple-objective and multidisciplinary optimization. This lecture will focus on an evolutionary method that is a relatively new member to the general class of evolutionary methods called differential evolution (DE). This method is easy to use and program and it requires relatively few user-specified constants. These constants are easily determined for a wide class of problems. Fine-tuning the constants will off course yield the solution to the optimization problem at hand more rapidly. DE can be efficiently implemented on parallel computers and can be used for continuous, discrete and mixed discrete/continuous optimization problems. It does not require the objective function to be continuous and is noise tolerant. DE and applications to single and multiple-objective optimization will be included in the presentation and lecture notes. A method for aerodynamic design optimization that is based on neural networks will also be included as a part of this lecture. The method offers advantages over traditional optimization methods. It is more flexible than other methods in dealing with design in the context of both steady and unsteady flows, partial and complete data sets, combined experimental and numerical data, inclusion of various constraints and rules of thumb, and other issues that characterize the aerodynamic design process. Neural networks provide a natural framework within which a succession of numerical solutions of increasing fidelity, incorporating more realistic flow physics, can be represented and utilized for optimization. Neural networks also offer an excellent framework for multiple-objective and multi-disciplinary design optimization. Simulation tools from various disciplines can be integrated within this framework and rapid trade-off studies involving one or many disciplines can be performed. The prospect of combining neural network based optimization methods and evolutionary algorithms to obtain a hybrid method with the best properties of both methods will be included in this presentation. Achieving solution diversity and accurate convergence to the exact Pareto front in multiple objective optimization usually requires a significant computational effort with evolutionary algorithms. In this lecture we will also explore the possibility of using neural networks to obtain estimates of the Pareto optimal front using non-dominated solutions generated by DE as training data. Neural network estimators have the potential advantage of reducing the number of function evaluations required to obtain solution accuracy and diversity, thus reducing cost to design.
NASA Technical Reports Server (NTRS)
Alexandrov, N. M.; Nielsen, E. J.; Lewis, R. M.; Anderson, W. K.
2000-01-01
First-order approximation and model management is a methodology for a systematic use of variable-fidelity models or approximations in optimization. The intent of model management is to attain convergence to high-fidelity solutions with minimal expense in high-fidelity computations. The savings in terms of computationally intensive evaluations depends on the ability of the available lower-fidelity model or a suite of models to predict the improvement trends for the high-fidelity problem, Variable-fidelity models can be represented by data-fitting approximations, variable-resolution models. variable-convergence models. or variable physical fidelity models. The present work considers the use of variable-fidelity physics models. We demonstrate the performance of model management on an aerodynamic optimization of a multi-element airfoil designed to operate in the transonic regime. Reynolds-averaged Navier-Stokes equations represent the high-fidelity model, while the Euler equations represent the low-fidelity model. An unstructured mesh-based analysis code FUN2D evaluates functions and sensitivity derivatives for both models. Model management for the present demonstration problem yields fivefold savings in terms of high-fidelity evaluations compared to optimization done with high-fidelity computations alone.
Parametric Studies of Flow Separation using Air Injection
NASA Technical Reports Server (NTRS)
Zhang, Wei
2004-01-01
Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as a function of the key variables. Next, the variables such as the slot geometry can be optimized using the build-in optimizer within JMP. Finally, a wind tunnel testing will be conducted using the optimized slot geometry and other key variables to verify the empirical statistical model. The long term goal for this effort is to assess the impacts of active flow control using air injection at system level as one of the task plan included in the NASAs URETI program with Georgia Institute of Technology.
PROFILE: Airfoil Geometry Manipulation and Display. User's Guide
NASA Technical Reports Server (NTRS)
Collins, Leslie; Saunders, David
1997-01-01
This report provides user information for program PROFILE, an aerodynamics design utility for plotting, tabulating, and manipulating airfoil profiles. A dozen main functions are available. The theory and implementation details for two of the more complex options are also presented. These are the REFINE option, for smoothing curvature in selected regions while retaining or seeking some specified thickness ratio, and the OPTIMIZE option, which seeks a specified curvature distribution. Use of programs QPLOT and BPLOT is also described, since all of the plots provided by PROFILE (airfoil coordinates, curvature distributions, pressure distributions)) are achieved via the general-purpose QPLOT utility. BPLOT illustrates (again, via QPLOT) the shape functions used by two of PROFILE's options. These three utilities should be distributed as one package. They were designed and implemented for the Applied Aerodynamics Branch at NASA Ames Research Center, Moffett Field, California. They are all written in FORTRAN 77 and run on DEC and SGI systems under OpenVMS and IRIX.
Low Complexity Models to improve Incomplete Sensitivities for Shape Optimization
NASA Astrophysics Data System (ADS)
Stanciu, Mugurel; Mohammadi, Bijan; Moreau, Stéphane
2003-01-01
The present global platform for simulation and design of multi-model configurations treat shape optimization problems in aerodynamics. Flow solvers are coupled with optimization algorithms based on CAD-free and CAD-connected frameworks. Newton methods together with incomplete expressions of gradients are used. Such incomplete sensitivities are improved using reduced models based on physical assumptions. The validity and the application of this approach in real-life problems are presented. The numerical examples concern shape optimization for an airfoil, a business jet and a car engine cooling axial fan.
NASA Technical Reports Server (NTRS)
Locci, Ivan E.; MacKay, Rebecca A.; Garg, Anita; Ritzert, Frank J.
2004-01-01
An optimized carburization treatment has been developed to mitigate instabilities that form in the microstructures of advanced turbine airfoil materials. Current turbine airfoils consist of a single crystal superalloy base that provides the mechanical performance of the airfoil, a thermal barrier coating (TBC) that reduces the temperature of the base superalloy, and a bondcoat between the superalloy and the TBC, that improves the oxidation and corrosion resistance of the base superalloy and the spallation resistance of the TBC. Advanced nickel-base superalloys containing high levels of refractory metals have been observed to develop an instability called secondary reaction zone (SRZ), which can form beneath diffusion aluminide bondcoats. This instability between the superalloy and the bondcoat has the potential of reducing the mechanical properties of thin-wall turbine airfoils. Controlled gas carburization treatments combined with a prior stress relief heat treatment and adequate surface preparation have been utilized effectively to minimize the formation of SRZ. These additional processing steps are employed before the aluminide bondcoat is deposited and are believed to change the local chemistry and local stresses of the surface of the superalloy. This paper presents the detailed processing steps used to reduce SRZ between platinum aluminide bondcoats and advanced single crystal superalloys.
Numerical Studies on a Rotor with Distributed Suction for Noise Reduction
NASA Astrophysics Data System (ADS)
Lutz, Thorsten; Arnold, Benjamin; Wolf, Alexander; Krämer, Ewald
2014-06-01
Minimizing the flow-induced noise is an important issue in the design of modern onshore wind turbines. There is a number of proven passive means to reduce the aeroacoustic noise, such as the implementation of serrations, porous trailing edges or the aeroacoustic airfoil design. The noise emission can be further reduced by active flow control techniques. In the present study the impact of distributed boundary layer suction on the noise emission of an airfoil and a complete rotor is investigated. Aerodynamic and aeroacoustic wind tunnel tests were performed for the NACA 64-418 airfoil and supplemented by numerical calculations. The aeroacoustic analyses have been conducted by means of the institute's Rnoise prediction scheme. The 2D studies have shown that noise reductions of 5 dB can be achieved by suction at moderate mass flow rates. To study the impact of three-dimensional effects numerical investigations have been conducted on the example of the generic NREL 5MW rotor with suction applied in the outer part of the blade. The predictions for the complete rotor provided smaller benefits compared to those for the isolated airfoil, mainly because the examined suction configurations were not optimized with respect to the extent of the suction patch and suction distribution.
Optimal Control of Airfoil Flow Separation using Fluidic Excitation
NASA Astrophysics Data System (ADS)
Shahrabi, Arireza F.
This thesis deals with the control of flow separation around a symmetric airfoils with the aid of multiple synthetic jet actuators (SJAs). CFD simulation methods have been implemented to uncover the flow separation regimes and associated properties such as frequencies and momentum ratio. In the first part of the study, the SJA was studied thoroughly. Large Eddy Simulations (LES) were performed for one individual cavity; the time history of SJA of the outlet velocity profile and the net momentum imparted to the flow were analyzed. The studied SJA is asymmetrical and operates with the aid of a piezoelectric (PZT) ceramic circular plate actuator. A three-dimensional mesh for the computational domain of the SJA and the surrounding volume was developed and was used to evaluate the details of the airflow conditions inside the SJA as well as at the outlet. The vibration of the PZT ceramic actuator was used as a boundary condition in the computational model to drive the SJA. Particular attention was given to developing a predictive model of the SJA outlet velocity. Results showed that the SJA velocity output is correlated to the PZT ceramic plate vibration, especially for the first frequency mode. SJAs are a particular class of zero net mass flux (ZNMF) fluidic devices with net imparted momentum to the flow. The net momentum imparted to the flow in the separated region is such that positive enhancement during AFC operations is achieved. Flows around the NACA 0015 airfoil were simulated for a range of operating conditions. Attention was given to the active open and closed loop control solutions for an airfoil with SJA at different angles of attack and flap angles. A large number of simulations using RANS & LES models were performed to study the effects of the momentum ratio (Cμ) in the range of 0 to 11% and of the non-dimensional frequency, F+, in the range of 0 to 2 for the control of flow separation at a practical angle of attack and flap angle. The optimum value of Cμ as well as F+ were evaluated and discussed. The computational model predictions showed good agreement with the experimental data. It was observed that different angles of attack and flap angles have different requirements for the minimum value of the momentum coefficient, Cμ, in order for the SJA to be effective for control of separation. It was also found that the variation of F + noticeably affects the lift and drag forces acting on the airfoil. The optimum values of parameters during open loop control simulations have been applied in order to introduce the optimal open loop control outcome. An innovative approach has been implemented to formulate optimal frequencies and momentum ratios of vortex shedding which depends on angle of attack and static pressure of the separation zone in the upper chord. Optimal open loop results have been compared with the optimal closed loop results. Cumulative case studies in the matter of angle of attacks, flap angles, Re, Cμ and F+ provide a convincing collection of evidence to the following conclusion. An improvement of a direct closed loop control was demonstrated, and an analytical formula describing the properties of a separated flow and vortex shedding was proposed. Best AFC solutions are offered by providing optimal frequencies and momentum ratios at a variety of flow conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martín-Alcántara, A.; Fernandez-Feria, R.; Sanmiguel-Rojas, E.
The thrust efficiency of a two-dimensional heaving airfoil is studied computationally for a low Reynolds number using a vortex force decomposition. The auxiliary potentials that separate the total vortex force into lift and drag (or thrust) are obtained analytically by using an elliptic airfoil. With these auxiliary potentials, the added-mass components of the lift and drag (or thrust) coefficients are also obtained analytically for any heaving motion of the airfoil and for any value of the mean angle of attack α. The contributions of the leading- and trailing-edge vortices to the thrust during their down- and up-stroke evolutions are computedmore » quantitatively with this formulation for different dimensionless frequencies and heave amplitudes (St{sub c} and St{sub a}) and for several values of α. Very different types of flows, periodic, quasi-periodic, and chaotic described as St{sub c}, St{sub a}, and α, are varied. The optimum values of these parameters for maximum thrust efficiency are obtained and explained in terms of the interactions between the vortices and the forces exerted by them on the airfoil. As in previous numerical and experimental studies on flapping flight at low Reynolds numbers, the optimum thrust efficiency is reached for intermediate frequencies (St{sub c} slightly smaller than one) and a heave amplitude corresponding to an advance ratio close to unity. The optimal mean angle of attack found is zero. The corresponding flow is periodic, but it becomes chaotic and with smaller average thrust efficiency as |α| becomes slightly different from zero.« less
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Hou, Gene W.
1992-01-01
Fundamental equations of aerodynamic sensitivity analysis and approximate analysis for the two dimensional thin layer Navier-Stokes equations are reviewed, and special boundary condition considerations necessary to apply these equations to isolated lifting airfoils on 'C' and 'O' meshes are discussed in detail. An efficient strategy which is based on the finite element method and an elastic membrane representation of the computational domain is successfully tested, which circumvents the costly 'brute force' method of obtaining grid sensitivity derivatives, and is also useful in mesh regeneration. The issue of turbulence modeling is addressed in a preliminary study. Aerodynamic shape sensitivity derivatives are efficiently calculated, and their accuracy is validated on two viscous test problems, including: (1) internal flow through a double throat nozzle, and (2) external flow over a NACA 4-digit airfoil. An automated aerodynamic design optimization strategy is outlined which includes the use of a design optimization program, an aerodynamic flow analysis code, an aerodynamic sensitivity and approximate analysis code, and a mesh regeneration and grid sensitivity analysis code. Application of the optimization methodology to the two test problems in each case resulted in a new design having a significantly improved performance in the aerodynamic response of interest.
GTE blade injection moulding modeling and verification of models during process approbation
NASA Astrophysics Data System (ADS)
Stepanenko, I. S.; Khaimovich, A. I.
2017-02-01
The simulation model for filling the mould was developed using Moldex3D, and it was experimentally verified in order to perform further optimization calculations of the moulding process conditions. The method described in the article allows adjusting the finite-element model by minimizing the airfoil profile difference between the design and experimental melt motion front due to the differentiated change of power supplied to heating elements, which heat the injection mould in simulation. As a result of calibrating the injection mould for the gas-turbine engine blade, the mean difference between the design melt motion profile and the experimental airfoil profile of no more than 4% was achieved.
Pressure- and Temperature-Sensitive Paint at 0.3-m Transonic Cryogenic Tunnel
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Leighty, Bradley D.; Lipford, William E.; Goodman, Kyle Z.
2015-01-01
Recently both Pressure- and Temperature-Sensitive Paint experiments were conducted at cryogenic conditions in the 0.3-m Transonic Cryogenic Tunnel at NASA Langley Research Center. This represented a re-introduction of the techniques to the facility after more than a decade, and provided a means to upgrade the measurements using newer technology as well as demonstrate that the techniques were still viable in the facility. Temperature-Sensitive Paint was employed on a laminar airfoil for transition detection and Pressure-Sensitive Paint was employed on a supercritical airfoil. This report will detail the techniques and their unique challenges that need to be overcome in cryogenic environments. In addition, several optimization strategies will also be discussed.
Analysis and Design of Rotors at Ultra-Low Reynolds Numbers
NASA Technical Reports Server (NTRS)
Kunz, Peter J.; Strawn, Roger C.
2003-01-01
Design tools have been developed for ultra-low Reynolds number rotors, combining enhanced actuator-ring / blade-element theory with airfoil section data based on two-dimensional Navier-Stokes calculations. This performance prediction method is coupled with an optimizer for both design and analysis applications. Performance predictions from these tools have been compared with three-dimensional Navier Stokes analyses and experimental data for a 2.5 cm diameter rotor with chord Reynolds numbers below 10,000. Comparisons among the analyses and experimental data show reasonable agreement both in the global thrust and power required, but the spanwise distributions of these quantities exhibit significant deviations. The study also reveals that three-dimensional and rotational effects significantly change local airfoil section performance. The magnitude of this issue, unique to this operating regime, may limit the applicability of blade-element type methods for detailed rotor design at ultra-low Reynolds numbers, but these methods are still useful for evaluating concept feasibility and rapidly generating initial designs for further analysis and optimization using more advanced tools.
Optimization of Adaptive Intraply Hybrid Fiber Composites with Reliability Considerations
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Chamis, Christos C.
1994-01-01
The reliability with bounded distribution parameters (mean, standard deviation) was maximized and the reliability-based cost was minimized for adaptive intra-ply hybrid fiber composites by using a probabilistic method. The probabilistic method accounts for all naturally occurring uncertainties including those in constituent material properties, fabrication variables, structure geometry, and control-related parameters. Probabilistic sensitivity factors were computed and used in the optimization procedures. For actuated change in the angle of attack of an airfoil-like composite shell structure with an adaptive torque plate, the reliability was maximized to 0.9999 probability, with constraints on the mean and standard deviation of the actuation material volume ratio (percentage of actuation composite material in a ply) and the actuation strain coefficient. The reliability-based cost was minimized for an airfoil-like composite shell structure with an adaptive skin and a mean actuation material volume ratio as the design parameter. At a O.9-mean actuation material volume ratio, the minimum cost was obtained.
Aerodynamics Investigation of Faceted Airfoils at Low Reynolds Number
NASA Astrophysics Data System (ADS)
Napolillo, Zachary G.
The desire and demand to fly farther and faster has progressively integrated the concept of optimization with airfoil design, resulting in increasingly complex numerical tools pursuing efficiency often at diminishing returns; while the costs and difficulty associated with fabrication increases with design complexity. Such efficiencies may often be necessary due to the power density limitations of certain aircraft such as small unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs). This research, however, focuses on reducing the complexity of airfoils for applications where aerodynamic performance is less important than the efficiency of manufacturing; in this case a Hybrid Projectile. By employing faceted sections to approximate traditional contoured wing sections it may be possible to expedite manufacturing and reduce costs. We applied this method to the development of a low Reynolds number, disposable Hybrid Projectile requiring a 4.5:1 glide ratio, resulting in a series of airfoils which are geometric approximations to highly contoured cross-sections called ShopFoils. This series of airfoils both numerically and experimentally perform within a 10% margin of the SD6060 airfoil at low Re. Additionally, flow visualization has been conducted to qualitatively determine what mechanisms, if any, are responsible for the similarity in performance between the faceted ShopFoil sections and the SD6060. The data obtained by these experiments did not conclusively reveal how the faceted surfaces may influence low Re flow but did indicate that the ShopFoil s did not maintain flow attachment at higher angles of attack than the SD6060. Two reasons are provided for the unexpected performance of the ShopFoil: one is related to downwash effects, which are suspected of placing the outer portion of the span at an effective angle of attack where the ShopFoils outperform the SD6060; the other is the influence of the tip vortex on separation near the wing tips, which possibly provides a 'comparative advantage' to the ShopFoil because it has more to gain from a reduction in its pressure drag component.
NASA Astrophysics Data System (ADS)
Popov, Andrei Vladimir
The aerospace industry is motivated to reduce fuel consumption in large transport aircraft, mainly through drag reduction. The main objective of the global project is the development of an active control system of wing airfoil geometry during flight in order to allow drag reduction. Drag reduction on a wing can be achieved through modifications in the laminar-to-turbulent flow transition point position, which should be situated as close as possible to the trailing edge of the airfoil wing. As the transition point plays a crucial part in this project, this work focuses on the control of its position on the airfoil, as an effect of controlling the deflection of a morphing wing airfoil equipped with a flexible skin. The paper presents the modeling and the experimental testing of the aerodynamic performance of a morphing wing, starting from the design concept phase all the way to the bench and wind tunnel tests phases. Several wind tunnel test runs for various Mach numbers and angles of attack were performed in the 6 x 9 ft2 wind tunnel at the Institute for Aerospace Research at the National Research Council Canada. A rectangular finite aspect ratio wing, having a morphing airfoil cross-section due to a flexible skin installed on the upper surface of the wing, was instrumented with Kulite transducers. The Mach number varied from 0.2 to 0.3 and the angle of attack between -1° and 2°. Unsteady pressure signals were recorded and analyzed and a thorough comparison, in terms of mean pressure coefficients and their standard deviations, was performed against theoretical predictions, using the XFoil computational fluid dynamics code. The acquired pressure data was analyzed through custom-made software created with Matlab/Simulink in order to detect the noise magnitude in the surface airflow and to localize the transition point position on the wing upper surface. This signal processing was necessary in order to detect the Tollmien-Schlichting waves responsible for triggering the transition from laminar to turbulent flow. The flexible skin needed to morph its shape through two actuation points in order to obtain an optimized airfoil shape for several flow conditions in the wind tunnel. The two shape memory alloy actuators, having a non-linear behavior, drove the displacement of the two control points of the flexible skin towards the optimized airfoil shape. This thesis presents the methodology used and the results obtained from designing the controller of the two shape memory actuators as well as the methods used for morphing wing control in the wind tunnel tests designed to prove the concept and validity of the system in real time. Keywords: wing, morphing, laminar, turbulent, transition, control, wind tunnel
Aerospace Applications of Optimization under Uncertainty
NASA Technical Reports Server (NTRS)
Padula, Sharon; Gumbert, Clyde; Li, Wu
2003-01-01
The Multidisciplinary Optimization (MDO) Branch at NASA Langley Research Center develops new methods and investigates opportunities for applying optimization to aerospace vehicle design. This paper describes MDO Branch experiences with three applications of optimization under uncertainty: (1) improved impact dynamics for airframes, (2) transonic airfoil optimization for low drag, and (3) coupled aerodynamic/structures optimization of a 3-D wing. For each case, a brief overview of the problem and references to previous publications are provided. The three cases are aerospace examples of the challenges and opportunities presented by optimization under uncertainty. The present paper will illustrate a variety of needs for this technology, summarize promising methods, and uncover fruitful areas for new research.
Aerospace Applications of Optimization under Uncertainty
NASA Technical Reports Server (NTRS)
Padula, Sharon; Gumbert, Clyde; Li, Wu
2006-01-01
The Multidisciplinary Optimization (MDO) Branch at NASA Langley Research Center develops new methods and investigates opportunities for applying optimization to aerospace vehicle design. This paper describes MDO Branch experiences with three applications of optimization under uncertainty: (1) improved impact dynamics for airframes, (2) transonic airfoil optimization for low drag, and (3) coupled aerodynamic/structures optimization of a 3-D wing. For each case, a brief overview of the problem and references to previous publications are provided. The three cases are aerospace examples of the challenges and opportunities presented by optimization under uncertainty. The present paper will illustrate a variety of needs for this technology, summarize promising methods, and uncover fruitful areas for new research.
Evaluation of the Intel Xeon Phi 7120 and NVIDIA K80 as accelerators for two-dimensional panel codes
2017-01-01
To optimize the geometry of airfoils for a specific application is an important engineering problem. In this context genetic algorithms have enjoyed some success as they are able to explore the search space without getting stuck in local optima. However, these algorithms require the computation of aerodynamic properties for a significant number of airfoil geometries. Consequently, for low-speed aerodynamics, panel methods are most often used as the inner solver. In this paper we evaluate the performance of such an optimization algorithm on modern accelerators (more specifically, the Intel Xeon Phi 7120 and the NVIDIA K80). For that purpose, we have implemented an optimized version of the algorithm on the CPU and Xeon Phi (based on OpenMP, vectorization, and the Intel MKL library) and on the GPU (based on CUDA and the MAGMA library). We present timing results for all codes and discuss the similarities and differences between the three implementations. Overall, we observe a speedup of approximately 2.5 for adding an Intel Xeon Phi 7120 to a dual socket workstation and a speedup between 3.4 and 3.8 for adding a NVIDIA K80 to a dual socket workstation. PMID:28582389
Einkemmer, Lukas
2017-01-01
To optimize the geometry of airfoils for a specific application is an important engineering problem. In this context genetic algorithms have enjoyed some success as they are able to explore the search space without getting stuck in local optima. However, these algorithms require the computation of aerodynamic properties for a significant number of airfoil geometries. Consequently, for low-speed aerodynamics, panel methods are most often used as the inner solver. In this paper we evaluate the performance of such an optimization algorithm on modern accelerators (more specifically, the Intel Xeon Phi 7120 and the NVIDIA K80). For that purpose, we have implemented an optimized version of the algorithm on the CPU and Xeon Phi (based on OpenMP, vectorization, and the Intel MKL library) and on the GPU (based on CUDA and the MAGMA library). We present timing results for all codes and discuss the similarities and differences between the three implementations. Overall, we observe a speedup of approximately 2.5 for adding an Intel Xeon Phi 7120 to a dual socket workstation and a speedup between 3.4 and 3.8 for adding a NVIDIA K80 to a dual socket workstation.
A method to estimate wind turbine blade damage and to design damage-resilient blades
NASA Astrophysics Data System (ADS)
Fiore, Giovanni
Wind turbine blades are affected by continuous impacts with airborne particles that deteriorate the blade surface and yield to a drop in output power. Based on the climatic conditions and geographic locations of a given wind farm, multiple types of particles are observed in air. The present study focuses on simulating the impact of four types of particles, namely insects, sand grains, hailstones, and rain drops with the blade surface. A numerical inviscid flowfield code, coupled with a particle position predictor code was used. Upon impact, the damaging effect to the blade surface was evaluated. Each type of particle was associated with a damage mode, which depends on the mass, size, and hardness of the particle. It was found that insects strike and adhere to the blade in a region close to the leading edge. On the other hand, it was seen that sand grains promote erosion just downstream of the leading edge, where local velocity reaches a maximum and the impact angle is shallow. Moreover, particles such as rain drops are associated with fatigue and erosion at the very leading edge and on the upper side of the blade section. Finally, hailstones promote delamination and fatigue in the composite panels of the blade surface. Photographic evidence of damaged blade surfaces was used in the present research as a comparison with the simulations performed for various types of particle and different initial conditions. Based on such observations, a theorization of the damage pattern and evolution was proposed. Finally, given a set of well-established blade section geometries, such as the Delft University and NREL S airfoil families, a comparison of airfoil damage fitness was proposed and possible means of shape optimization were discussed. The investigation of blade geometry features to mitigate damage was performed. Based on previous results, it was argued that a viable blade section optimization may be performed for the lightest and smallest particles considered in the study, the sand grains. A pool of airfoils was analyzed regarding the sand erosion rate. It was shown that a bulbous leading edge coupled with airfoil aft camber is beneficial toward the erosion rate due to sand grains. An optimization algorithm was written to improve the damage resilience toward sand erosion of wind turbine airfoils. A direct and inverse approach were integrated in a genetic algorithm code, and it was confirmed that bulbous leading edges, coupled with aft cambers allowed for a reduction in blade erosion rates. Lastly, a time-stepping code was developed to predict the blade section geometry when sand erosion is present. It was found that three main phases occur during the erosive life of a blade. A parametric study allowed to find the most relevant drivers to the blade lifespan with respect to erosion. Beneficial effects come from an increase in turbine hub height, turbine rated power, increase in lift coefficient, and a reduction in average particle diameter. A parametric study was also performed by investigating different airfoil geometries. Again, it was found that bulbous leading edges coupled with aft cambered geometries allow for longer blade lifespan.
Advanced wind turbine with lift cancelling aileron for shutdown
Coleman, Clint; Juengst, Theresa M.; Zuteck, Michael D.
1996-06-18
An advanced aileron configuration for wind turbine rotors featuring an independent, lift generating aileron connected to the rotor blade. The aileron has an airfoil profile which is inverted relative to the airfoil profile of the main section of the rotor blade. The inverted airfoil profile of the aileron allows the aileron to be used for strong positive control of the rotation of the rotor while deflected to angles within a control range of angles. The aileron functions as a separate, lift generating body when deflected to angles within a shutdown range of angles, generating lift with a component acting in the direction opposite the direction of rotation of the rotor. Thus, the aileron can be used to shut down rotation of the rotor. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manela, A.
The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculationsmore » for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.« less
Development of Autonomous Unmanned Aerial Vehicle Platform: Modeling, Simulating, and Flight Testing
2006-03-01
Eppler 193 Airfoil .............................................................. 58 Figure 18. Rascal Airfoil vs. Eppler 205 Airfoil ...53 Table 14. E193 Airfoil Data at Re = 204,200 ................................................................... 61 ...two hours. According to the manufacturer, the Rascal uses an airfoil married from two Eppler airfoils . The top airfoil is an Eppler 193, while the
NASA Technical Reports Server (NTRS)
Cain, Michael D.
1999-01-01
The goal of this thesis is to develop an efficient and robust locally preconditioned semi-coarsening multigrid algorithm for the two-dimensional Navier-Stokes equations. This thesis examines the performance of the multigrid algorithm with local preconditioning for an upwind-discretization of the Navier-Stokes equations. A block Jacobi iterative scheme is used because of its high frequency error mode damping ability. At low Mach numbers, the performance of a flux preconditioner is investigated. The flux preconditioner utilizes a new limiting technique based on local information that was developed by Siu. Full-coarsening and-semi-coarsening are examined as well as the multigrid V-cycle and full multigrid. The numerical tests were performed on a NACA 0012 airfoil at a range of Mach numbers. The tests show that semi-coarsening with flux preconditioning is the most efficient and robust combination of coarsening strategy, and iterative scheme - especially at low Mach numbers.
Parametric weight evaluation of joined wings by structural optimization
NASA Technical Reports Server (NTRS)
Miura, Hirokazu; Shyu, Albert T.; Wolkovitch, Julian
1988-01-01
Joined-wing aircraft employ tandem wings having positive and negative sweep and dihedral, arranged to form diamond shapes in both plan and front views. An optimization method was applied to study the effects of joined-wing geometry parameters on structural weight. The lightest wings were obtained by increasing dihedral and taper ratio, decreasing sweep and span, increasing fraction of airfoil chord occupied by structural box, and locating the joint inboard of the front wing tip.
Propeller performance analysis and multidisciplinary optimization using a genetic algorithm
NASA Astrophysics Data System (ADS)
Burger, Christoph
A propeller performance analysis program has been developed and integrated into a Genetic Algorithm for design optimization. The design tool will produce optimal propeller geometries for a given goal, which includes performance and/or acoustic signature. A vortex lattice model is used for the propeller performance analysis and a subsonic compact source model is used for the acoustic signature determination. Compressibility effects are taken into account with the implementation of Prandtl-Glauert domain stretching. Viscous effects are considered with a simple Reynolds number based model to account for the effects of viscosity in the spanwise direction. An empirical flow separation model developed from experimental lift and drag coefficient data of a NACA 0012 airfoil is included. The propeller geometry is generated using a recently introduced Class/Shape function methodology to allow for efficient use of a wide design space. Optimizing the angle of attack, the chord, the sweep and the local airfoil sections, produced blades with favorable tradeoffs between single and multiple point optimizations of propeller performance and acoustic noise signatures. Optimizations using a binary encoded IMPROVE(c) Genetic Algorithm (GA) and a real encoded GA were obtained after optimization runs with some premature convergence. The newly developed real encoded GA was used to obtain the majority of the results which produced generally better convergence characteristics when compared to the binary encoded GA. The optimization trade-offs show that single point optimized propellers have favorable performance, but circulation distributions were less smooth when compared to dual point or multiobjective optimizations. Some of the single point optimizations generated propellers with proplets which show a loading shift to the blade tip region. When noise is included into the objective functions some propellers indicate a circulation shift to the inboard sections of the propeller as well as a reduction in propeller diameter. In addition the propeller number was increased in some optimizations to reduce the acoustic blade signature.
Closed loop steam cooled airfoil
Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.
2006-04-18
An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Crespo, Andres Jose
A composite blade assembly for mounting on a turbine wheel includes a ceramic airfoil and an airfoil platform. The ceramic airfoil is formed with an airfoil portion, a blade shank portion and a blade dovetail tang. The metal platform includes a platform shank and a radially inner platform dovetail. The ceramic airfoil is captured within the metal platform, such that in use, the ceramic airfoil is held within the turbine wheel independent of the metal platform.
Airfoil System for Cruising Flight
NASA Technical Reports Server (NTRS)
Shams, Qamar A. (Inventor); Liu, Tianshu (Inventor)
2014-01-01
An airfoil system includes an airfoil body and at least one flexible strip. The airfoil body has a top surface and a bottom surface, a chord length, a span, and a maximum thickness. Each flexible strip is attached along at least one edge thereof to either the top or bottom surface of the airfoil body. The flexible strip has a spanwise length that is a function of the airfoil body's span, a chordwise width that is a function of the airfoil body's chord length, and a thickness that is a function of the airfoil body's maximum thickness.
Nozzle airfoil having movable nozzle ribs
Yu, Yufeng Phillip; Itzel, Gary Michael
2002-01-01
A nozzle vane or airfoil structure is provided in which the nozzle ribs are connected to the side walls of the vane or airfoil in such a way that the ribs provide the requisite mechanical support between the concave side and convex side of the airfoil but are not locked in the radial direction of the assembly, longitudinally of the airfoil. The ribs may be bi-cast onto a preformed airfoil side wall structure or fastened to the airfoil by an interlocking slide connection and/or welding. By attaching the nozzle ribs to the nozzle airfoil metal in such a way that allows play longitudinally of the airfoil, the temperature difference induced radial thermal stresses at the nozzle airfoil/rib joint area are reduced while maintaining proper mechanical support of the nozzle side walls.
Passive control of discrete-frequency tones generated by coupled detuned cascades
NASA Astrophysics Data System (ADS)
Sawyer, S.; Fleeter, S.
2003-07-01
Discrete-frequency tones generated by rotor-stator interactions are of particular concern in the design of fans and compressors. Classical theory considers an isolated flat-plate cascade of identical uniformly spaced airfoils. The current analysis extends this tuned isolated cascade theory to consider coupled aerodynamically detuned cascades where aerodynamic detuning is accomplished by changing the chord of alternate rotor blades and stator vanes. In a coupled cascade analysis, the configuration of the rotor influences the downstream acoustic response of the stator, and the stator configuration influences the upstream acoustic response of the rotor. This coupled detuned cascade unsteady aerodynamic model is first applied to a baseline tuned stage. This baseline stage is then aerodynamically detuned by replacing alternate rotor blades and stator vanes with decreased chord airfoils. The nominal aerodynamically detuned stage configuration is then optimized, with the stage acoustic response decreased 13 dB upstream and 1 dB downstream at the design operating condition. A reduction in the acoustic response of the optimized aerodynamically detuned stage is then demonstrated over a range of operating conditions.
Tangler, James L.; Somers, Dan M.
1996-01-01
Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.
The S407, S409, and S410 Airfoils
2010-08-01
problem of transforming the pressure distributions into airfoil shapes. The Eppler Airfoil Design and Analysis Code (refs. 8 and 9) was used because of...Summary of Airfoil Data. NACA Rep. 824, 1945. (Supersedes NACA WR L-560.) 4. Eppler , Richard; and Somers, Dan M.: Airfoil Design for Reynolds...8. Eppler , Richard: Airfoil Design and Data. Springer-Verlag (Berlin), 1990. 9. Eppler , Richard: Airfoil Program System “PROFIL07.” User’s Guide
Analysis of jet-airfoil interaction noise sources by using a microphone array technique
NASA Astrophysics Data System (ADS)
Fleury, Vincent; Davy, Renaud
2016-03-01
The paper is concerned with the characterization of jet noise sources and jet-airfoil interaction sources by using microphone array data. The measurements were carried-out in the anechoic open test section wind tunnel of Onera, Cepra19. The microphone array technique relies on the convected, Lighthill's and Ffowcs-Williams and Hawkings' acoustic analogy equation. The cross-spectrum of the source term of the analogy equation is sought. It is defined as the optimal solution to a minimal error equation using the measured microphone cross-spectra as reference. This inverse problem is ill-posed yet. A penalty term based on a localization operator is therefore added to improve the recovery of jet noise sources. The analysis of isolated jet noise data in subsonic regime shows the contribution of the conventional mixing noise source in the low frequency range, as expected, and of uniformly distributed, uncorrelated noise sources in the jet flow at higher frequencies. In underexpanded supersonic regime, a shock-associated noise source is clearly identified, too. An additional source is detected in the vicinity of the nozzle exit both in supersonic and subsonic regimes. In the presence of the airfoil, the distribution of the noise sources is deeply modified. In particular, a strong noise source is localized on the flap. For high Strouhal numbers, higher than about 2 (based on the jet mixing velocity and diameter), a significant contribution from the shear-layer near the flap is observed, too. Indications of acoustic reflections on the airfoil are also discerned.
Selective robust optimization: A new intensity-modulated proton therapy optimization strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yupeng; Niemela, Perttu; Siljamaki, Sami
2015-08-15
Purpose: To develop a new robust optimization strategy for intensity-modulated proton therapy as an important step in translating robust proton treatment planning from research to clinical applications. Methods: In selective robust optimization, a worst-case-based robust optimization algorithm is extended, and terms of the objective function are selectively computed from either the worst-case dose or the nominal dose. Two lung cancer cases and one head and neck cancer case were used to demonstrate the practical significance of the proposed robust planning strategy. The lung cancer cases had minimal tumor motion less than 5 mm, and, for the demonstration of the methodology,more » are assumed to be static. Results: Selective robust optimization achieved robust clinical target volume (CTV) coverage and at the same time increased nominal planning target volume coverage to 95.8%, compared to the 84.6% coverage achieved with CTV-based robust optimization in one of the lung cases. In the other lung case, the maximum dose in selective robust optimization was lowered from a dose of 131.3% in the CTV-based robust optimization to 113.6%. Selective robust optimization provided robust CTV coverage in the head and neck case, and at the same time improved controls over isodose distribution so that clinical requirements may be readily met. Conclusions: Selective robust optimization may provide the flexibility and capability necessary for meeting various clinical requirements in addition to achieving the required plan robustness in practical proton treatment planning settings.« less
Thermal/Structural Tailoring of Engine Blades (T/STAEBL) User's manual
NASA Technical Reports Server (NTRS)
Brown, K. W.
1994-01-01
The Thermal/Structural Tailoring of Engine Blades (T/STAEBL) system is a computer code that is able to perform numerical optimizations of cooled jet engine turbine blades and vanes. These optimizations seek an airfoil design of minimum operating cost that satisfies realistic design constraints. This report documents the organization of the T/STAEBL computer program, its design and analysis procedure, its optimization procedure, and provides an overview of the input required to run the program, as well as the computer resources required for its effective use. Additionally, usage of the program is demonstrated through a validation test case.
Thermal/Structural Tailoring of Engine Blades (T/STAEBL): User's manual
NASA Astrophysics Data System (ADS)
Brown, K. W.
1994-03-01
The Thermal/Structural Tailoring of Engine Blades (T/STAEBL) system is a computer code that is able to perform numerical optimizations of cooled jet engine turbine blades and vanes. These optimizations seek an airfoil design of minimum operating cost that satisfies realistic design constraints. This report documents the organization of the T/STAEBL computer program, its design and analysis procedure, its optimization procedure, and provides an overview of the input required to run the program, as well as the computer resources required for its effective use. Additionally, usage of the program is demonstrated through a validation test case.
The SNL100-03 Blade: Design Studies with Flatback Airfoils for the Sandia 100-meter Blade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, Daniel; Richards, Phillip William
A series of design studies were performed to inv estigate the effects of flatback airfoils on blade performance and weight for large blades using the Sandi a 100-meter blade designs as a starting point. As part of the study, the effects of varying the blade slenderness on blade structural performance was investigated. The advantages and disadvantages of blad e slenderness with respect to tip deflection, flap- wise & edge-wise fatigue resistance, panel buckling capacity, flutter speed, manufacturing labor content, blade total weight, and aerodynamic design load magn itude are quantified. Following these design studies, a final blade design (SNL100-03) wasmore » prod uced, which was based on a highly slender design using flatback airfoils. The SNL100-03 design with flatback airfoils has weight of 49 tons, which is about 16% decrease from its SNL100-02 predecessor that used conventional sharp trailing edge airfoils. Although not systematically optimized, the SNL100 -03 design study provides an assessment of and insight into the benefits of flatback airfoils for la rge blades as well as insights into the limits or negative consequences of high blade slenderness resulting from a highly slender SNL100-03 planform as was chosen in the final design definition. This docum ent also provides a description of the final SNL100-03 design definition and is intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-03, which are made publicly available. A summary of the major findings of the Sandia 100-meter blade development program, from the initial SNL100-00 baseline blade through the fourth SNL100-03 blade study, is provided. This summary includes the major findings and outcomes of blade d esign studies, pathways to mitigate the identified large blade design drivers, and tool development that were produced over the course of this five-year research program. A summary of large blade tec hnology needs and research opportunities is also presented.« less
Tangler, J.L.; Somers, D.M.
1996-10-08
Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.
Experimental apparatus for optimization of flap position for a three-element airfoil model
NASA Technical Reports Server (NTRS)
Landman, Drew
1993-01-01
It is proposed to design and build a wind tunnel model comprising a Douglas Aircraft Company three-element high-lift airfoil with internal actuators to move the flap vertically and horizontally under computer control. The model will be used to find the optimum flap location for a fixed angle of attack, slat position and flap deflection angle. The model will span the full tunnel width and lift will be measured by integration of pressure readings taken from midspan taps. It is proposed to conduct experiments in the NASA Langley EFPB 2' x 3' low speed wind tunnel. This report serves as a project overview and a review of work completed to date through funding by the 1993 NASA/ASEE Summer Faculty Fellowship Program.
Taherian, Gholamhossein; Nili-Ahmadabadi, Mahdi; Karimi, Mohammad Hassan; Tavakoli, Mohammad Reza
2017-01-01
In this study, the effect of cutting the end of a thick airfoil and adding a cavity on its flow pattern is studied experimentally using PIV technique. First, by cutting 30% chord length of the Riso airfoil, a thick blunt trialing-edge airfoil is generated. The velocity field around the original airfoil and the new airfoil is measured by PIV technique and compared with each other. Then, adding two parallel plates to the end of the new airfoil forms the desired cavity. Continuous measurement of unsteady flow velocity over the Riso airfoil with thick blunt trailing edge and base cavity is the most important innovation of this research. The results show that cutting off the end of the airfoil decreases the wake region behind the airfoil, when separation occurs. Moreover, adding a cavity to the end of the thickened airfoil causes an increase in momentum and a further decrease in the wake behind the trailing edge that leads to a drag reduction in comparison with the thickened airfoil without cavity. Furthermore, using cavity decreases the Strouhal number and vortex shedding frequency.
Simplified dragonfly airfoil aerodynamics at Reynolds numbers below 8000
NASA Astrophysics Data System (ADS)
Levy, David-Elie; Seifert, Avraham
2009-07-01
Effective aerodynamics at Reynolds numbers lower than 10 000 is of great technological interest and a fundamental scientific challenge. The current study covers a Reynolds number range of 2000-8000. At these Reynolds numbers, natural insect flight could provide inspiration for technology development. Insect wings are commonly characterized by corrugated airfoils. In particular, the airfoil of the dragonfly, which is able to glide, can be used for two-dimensional aerodynamic study of fixed rigid wings. In this study, a simplified dragonfly airfoil is numerically analyzed in a steady free-stream flow. The aerodynamic performance (such as mean and fluctuating lift and drag), are first compared to a "traditional" low Reynolds number airfoil: the Eppler-E61. The numerical results demonstrate superior performances of the corrugated airfoil. A series of low-speed wind and water tunnel experiments were performed on the corrugated airfoil, to validate the numerical results. The findings indicate quantitative agreement with the mean wake velocity profiles and shedding frequencies while validating the two dimensionality of the flow. A flow physics numerical study was performed in order to understand the underlying mechanism of corrugated airfoils at these Reynolds numbers. Airfoil shapes based on the flow field characteristics of the corrugated airfoil were built and analyzed. Their performances were compared to those of the corrugated airfoil, stressing the advantages of the latter. It was found that the flow which separates from the corrugations and forms spanwise vortices intermittently reattaches to the aft-upper arc region of the airfoil. This mechanism is responsible for the relatively low intensity of the vortices in the airfoil wake, reducing the drag and increasing the flight performances of this kind of corrugated airfoil as compared to traditional low Reynolds number airfoils such as the Eppler E-61.
Li, Zukui; Floudas, Christodoulos A.
2012-01-01
Probabilistic guarantees on constraint satisfaction for robust counterpart optimization are studied in this paper. The robust counterpart optimization formulations studied are derived from box, ellipsoidal, polyhedral, “interval+ellipsoidal” and “interval+polyhedral” uncertainty sets (Li, Z., Ding, R., and Floudas, C.A., A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear and Robust Mixed Integer Linear Optimization, Ind. Eng. Chem. Res, 2011, 50, 10567). For those robust counterpart optimization formulations, their corresponding probability bounds on constraint satisfaction are derived for different types of uncertainty characteristic (i.e., bounded or unbounded uncertainty, with or without detailed probability distribution information). The findings of this work extend the results in the literature and provide greater flexibility for robust optimization practitioners in choosing tighter probability bounds so as to find less conservative robust solutions. Extensive numerical studies are performed to compare the tightness of the different probability bounds and the conservatism of different robust counterpart optimization formulations. Guiding rules for the selection of robust counterpart optimization models and for the determination of the size of the uncertainty set are discussed. Applications in production planning and process scheduling problems are presented. PMID:23329868
Exact solution for an optimal impermeable parachute problem
NASA Astrophysics Data System (ADS)
Lupu, Mircea; Scheiber, Ernest
2002-10-01
In the paper there are solved direct and inverse boundary problems and analytical solutions are obtained for optimization problems in the case of some nonlinear integral operators. It is modeled the plane potential flow of an inviscid, incompressible and nonlimited fluid jet, witch encounters a symmetrical, curvilinear obstacle--the deflector of maximal drag. There are derived integral singular equations, for direct and inverse problems and the movement in the auxiliary canonical half-plane is obtained. Next, the optimization problem is solved in an analytical manner. The design of the optimal airfoil is performed and finally, numerical computations concerning the drag coefficient and other geometrical and aerodynamical parameters are carried out. This model corresponds to the Helmholtz impermeable parachute problem.
Analytical formulation of 2-D aeroelastic model in weak ground effect
NASA Astrophysics Data System (ADS)
Dessi, Daniele; Mastroddi, Franco; Mancini, Simone
2013-10-01
This paper deals with the aeroelastic modeling and analysis of a 2-D oscillating airfoil in ground effect, elastically constrained by linear and torsional springs and immersed in an incompressible potential flow (typical section) at a finite distance from the ground. This work aims to extend Theodorsen theory, valid in an unbounded flow domain, to the case of weak ground effect, i.e., for clearances above half the airfoil chord. The key point is the determination of the aerodynamic loads, first in the frequency domain and then in the time domain, accounting for their dependence on the ground distance. The method of images is exploited in order to comply with the impermeability condition on the ground. The new integral equation in the unknown vortex distribution along the chord and the wake is solved using asymptotic expansions in the perturbation parameter defined as the inverse of the non-dimensional ground clearance of the airfoil. The mathematical model describing the aeroelastic system is transformed from the frequency domain into the time domain and then in a pure differential form using a finite-state aerodynamic approximation (augmented states). The typical section, which the developed theory is applied to, is obtained as a reduced model of a wing box finite element representation, thus allowing comparison with the corresponding aeroelastic analysis carried out by a commercial solver based on a 3-D lifting surface aerodynamic model. Stability (flutter margins) and response of the airfoil both in frequency and time domains are then investigated. In particular, within the developed theory, the solution of the Wagner problem can be directly achieved confirming an asymptotic trend of the aerodynamic coefficients toward the steady-state conditions different from that relative to the unbounded domain case. The dependence of flutter speed and the frequency response functions on ground clearance is highlighted, showing the usefulness of this approach in efficiently and robustly accounting for the presence of the ground when unsteady analysis of elastic lifting surfaces in weak ground effect is required.
Application of two procedures for dual-point design of transonic airfoils
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Campbell, Richard L.; Allison, Dennis O.
1994-01-01
Two dual-point design procedures were developed to reduce the objective function of a baseline airfoil at two design points. The first procedure to develop a redesigned airfoil used a weighted average of the shapes of two intermediate airfoils redesigned at each of the two design points. The second procedure used a weighted average of two pressure distributions obtained from an intermediate airfoil redesigned at each of the two design points. Each procedure was used to design a new airfoil with reduced wave drag at the cruise condition without increasing the wave drag or pitching moment at the climb condition. Two cycles of the airfoil shape-averaging procedure successfully designed a new airfoil that reduced the objective function and satisfied the constraints. One cycle of the target (desired) pressure-averaging procedure was used to design two new airfoils that reduced the objective function and came close to satisfying the constraints.
NASA Technical Reports Server (NTRS)
Craig, Anthony P.; Hansman, R. John
1987-01-01
Wind tunnel experiments were conducted on Wortmann FX67-K170, NACA 0012, and NACA 64-210 airfoils at rain rates of 1000 mm/hr and Reynolds numbers of 310,000 to compare the aerodynamic performance degradation of the airfoils and to attempt to identify the various mechanisms which affect performance in heavy rain conditions. Lift and drag were measured in dry and wet conditions, a variety of flow visualization techniques were employed, and a computational code which predicted airfoil boundary layer behavior was used. At low angles of attack, the lift degradation in wet conditions varied significantly between the airfoils. The Wortmann section had the greatest overall lift degradation and the NACA 64-210 airfoil had the smallest. At high angles of attack, the NACA 64-210 and 0012 airfoils had improved aerodynamic performance in rain conditions due to an apparent reduction of the boundry layer separation. Performance degradation in heavy rain for all three airfoils at low angles of attack could be emulated by forced boundary layer transition near the leading edge. The secondary effect occurs at time scales consistent with top surface water runback times. The runback layer is thought to effectively alter the airfoil geometry. The severity of the performance degradation for the airfoils varied. The relative differences appeared to be related to the susceptibility of each airfoil to premature boundary layer transition.
Hybrid NN/SVM Computational System for Optimizing Designs
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2009-01-01
A computational method and system based on a hybrid of an artificial neural network (NN) and a support vector machine (SVM) (see figure) has been conceived as a means of maximizing or minimizing an objective function, optionally subject to one or more constraints. Such maximization or minimization could be performed, for example, to optimize solve a data-regression or data-classification problem or to optimize a design associated with a response function. A response function can be considered as a subset of a response surface, which is a surface in a vector space of design and performance parameters. A typical example of a design problem that the method and system can be used to solve is that of an airfoil, for which a response function could be the spatial distribution of pressure over the airfoil. In this example, the response surface would describe the pressure distribution as a function of the operating conditions and the geometric parameters of the airfoil. The use of NNs to analyze physical objects in order to optimize their responses under specified physical conditions is well known. NN analysis is suitable for multidimensional interpolation of data that lack structure and enables the representation and optimization of a succession of numerical solutions of increasing complexity or increasing fidelity to the real world. NN analysis is especially useful in helping to satisfy multiple design objectives. Feedforward NNs can be used to make estimates based on nonlinear mathematical models. One difficulty associated with use of a feedforward NN arises from the need for nonlinear optimization to determine connection weights among input, intermediate, and output variables. It can be very expensive to train an NN in cases in which it is necessary to model large amounts of information. Less widely known (in comparison with NNs) are support vector machines (SVMs), which were originally applied in statistical learning theory. In terms that are necessarily oversimplified to fit the scope of this article, an SVM can be characterized as an algorithm that (1) effects a nonlinear mapping of input vectors into a higher-dimensional feature space and (2) involves a dual formulation of governing equations and constraints. One advantageous feature of the SVM approach is that an objective function (which one seeks to minimize to obtain coefficients that define an SVM mathematical model) is convex, so that unlike in the cases of many NN models, any local minimum of an SVM model is also a global minimum.
Efficient Robust Optimization of Metal Forming Processes using a Sequential Metamodel Based Strategy
NASA Astrophysics Data System (ADS)
Wiebenga, J. H.; Klaseboer, G.; van den Boogaard, A. H.
2011-08-01
The coupling of Finite Element (FE) simulations to mathematical optimization techniques has contributed significantly to product improvements and cost reductions in the metal forming industries. The next challenge is to bridge the gap between deterministic optimization techniques and the industrial need for robustness. This paper introduces a new and generally applicable structured methodology for modeling and solving robust optimization problems. Stochastic design variables or noise variables are taken into account explicitly in the optimization procedure. The metamodel-based strategy is combined with a sequential improvement algorithm to efficiently increase the accuracy of the objective function prediction. This is only done at regions of interest containing the optimal robust design. Application of the methodology to an industrial V-bending process resulted in valuable process insights and an improved robust process design. Moreover, a significant improvement of the robustness (>2σ) was obtained by minimizing the deteriorating effects of several noise variables. The robust optimization results demonstrate the general applicability of the robust optimization strategy and underline the importance of including uncertainty and robustness explicitly in the numerical optimization procedure.
A New Domain Decomposition Approach for the Gust Response Problem
NASA Technical Reports Server (NTRS)
Scott, James R.; Atassi, Hafiz M.; Susan-Resiga, Romeo F.
2002-01-01
A domain decomposition method is developed for solving the aerodynamic/aeroacoustic problem of an airfoil in a vortical gust. The computational domain is divided into inner and outer regions wherein the governing equations are cast in different forms suitable for accurate computations in each region. Boundary conditions which ensure continuity of pressure and velocity are imposed along the interface separating the two regions. A numerical study is presented for reduced frequencies ranging from 0.1 to 3.0. It is seen that the domain decomposition approach in providing robust and grid independent solutions.
NASA supercritical airfoils: A matrix of family-related airfoils
NASA Technical Reports Server (NTRS)
Harris, Charles D.
1990-01-01
The NASA supercritical airfoil development program is summarized in a chronological fashion. Some of the airfoil design guidelines are discussed, and coordinates of a matrix of family related supercritical airfoils ranging from thicknesses of 2 to 18 percent and over a design lift coefficient range from 0 to 1.0 are presented.
NASA Technical Reports Server (NTRS)
Brun, Rinaldo J.; Gallagher, Helen M.; Vogt, Dorothea E.
1953-01-01
The trajectories of droplets in the air flowing past an NACA 65A004 a irfoil at an angle of attack of 4 deg were determined. The amount of water in droplet form impinging on the airfoil, the area of droplet impingement, and the rate of droplet impingement per unit area on the airfoil surface were calculated from the trajectories and presented to cover a large range of flight and atmospheric conditions. The effect of a change in airfoil thickness from 12 to 4 percent at 4 deg angle of attack is presented by comparing the impingement calculations for the NACA 65A004 airfoil with those for the NACA 65(sub 1)-208 and 65(sub 1)-212 airfoils. The rearward limit of impingement on the upper surface decreases as the airfoil thickness decreases. The rearward limit of impingement on the lower surface increases with a decrease in airfoil t hickness. The total water intercepted decreases as the airfoil thickness is decreased.
Wind-tunnel test results of airfoil modifications for the EA-6B
NASA Technical Reports Server (NTRS)
Sewall, W. G.; Mcghee, R. J.; Ferris, J. C.
1987-01-01
Wind-tunnel tests have been conducted (to determine the effects on airfoil performance for several airfoil modifications) for the EA-6B Wing Improvement Program. The modifications consist of contour changes to the leading-edge slat and trailing-edge flap to provide a higher low-speed maximum lift with no high-speed cruise-drag penalty. Airfoil sections from the 28- and 76-percent span stations were selected as baseline shapes with the major testing devoted to the inboard airfoil section (28-percent span station). The airfoil modifications increased the low-speed maximum lift coefficient between 20 and 35 percent over test conditions of 3 to 14 million chord Reynolds number and 0.14 to 0.34 Mach number. At the high-speed test conditions of 0.4 to 0.80 Mach number and 10 million chord Reynolds number, the modified airfoils had either matched or had lower drag coefficients for all normal-force coefficients above 0.2 as compared to the baseline airfoil. At normal-force coefficients less than 0.2, the baseline (original) airfoil had lower drag coefficients than any of the modified airfoils.
Comparison of Implicit Schemes for the Incompressible Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.
1995-01-01
For a computational flow simulation tool to be useful in a design environment, it must be very robust and efficient. To develop such a tool for incompressible flow applications, a number of different implicit schemes are compared for several two-dimensional flow problems in the current study. The schemes include Point-Jacobi relaxation, Gauss-Seidel line relaxation, incomplete lower-upper decomposition, and the generalized minimum residual method preconditioned with each of the three other schemes. The efficiency of the schemes is measured in terms of the computing time required to obtain a steady-state solution for the laminar flow over a backward-facing step, the flow over a NACA 4412 airfoil, and the flow over a three-element airfoil using overset grids. The flow solver used in the study is the INS2D code that solves the incompressible Navier-Stokes equations using the method of artificial compressibility and upwind differencing of the convective terms. The results show that the generalized minimum residual method preconditioned with the incomplete lower-upper factorization outperforms all other methods by at least a factor of 2.
NASA Technical Reports Server (NTRS)
Mutterperl, William
1944-01-01
A method of conformal transformation is developed that maps an airfoil into a straight line, the line being chosen as the extended chord line of the airfoil. The mapping is accomplished by operating directly with the airfoil ordinates. The absence of any preliminary transformation is found to shorten the work substantially over that of previous methods. Use is made of the superposition of solutions to obtain a rigorous counterpart of the approximate methods of thin-airfoils theory. The method is applied to the solution of the direct and inverse problems for arbitrary airfoils and pressure distributions. Numerical examples are given. Applications to more general types of regions, in particular to biplanes and to cascades of airfoils, are indicated. (author)
Darrieus wind-turbine airfoil configurations
NASA Astrophysics Data System (ADS)
Migliore, P. G.; Fritschen, J. R.
1982-06-01
The purpose was to determine what aerodynamic performance improvement, if any, could be achieved by judiciously choosing the airfoil sections for Darrieus wind turbine blades. Ten different airfoils, having thickness to chord ratios of twelve, fifteen and eighteen percent, were investigated. Performance calculations indicated that the NACA 6-series airfoils yield peak power coefficients at least as great as the NACA. Furthermore, the power coefficient-tip speed ratio curves were broader and flatter for the 6-series airfoils. Sample calculations for an NACA 63 sub 2-015 airfoil showed an annual energy output increase of 17 to 27% depending upon rotor solidity, compared to an NACA 0015 airfoil. An attempt was made to account for the flow curvature effects associated with Darrieus turbines by transforming the NACA 63 sub 2-015 airfoil to an appropriate shape.
Leading-edge singularities in thin-airfoil theory
NASA Technical Reports Server (NTRS)
Jones, R. T.
1976-01-01
If the thin airfoil theory is applied to an airfoil having a rounded leading edge, a certain error will arise in the determination of the pressure distribution around the nose. It is shown that the evaluation of the drag of such a blunt nosed airfoil by the thin airfoil theory requires the addition of a leading edge force, analogous to the leading edge thrust of the lifting airfoil. The method of calculation is illustrated by application to: (1) The Joukowski airfoil in subsonic flow; and (2) the thin elliptic cone in supersonic flow. A general formula for the edge force is provided which is applicable to a variety of wing forms.
Vertical axis wind turbine airfoil
Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich
2012-12-18
A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.
Frey, Gary A.; Twardochleb, Christopher Z.
1998-01-01
Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally "C" configuration of the airfoil. The generally "C" configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion.
Frey, G.A.; Twardochleb, C.Z.
1998-01-13
Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally ``C`` configuration of the airfoil. The generally ``C`` configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion. 6 figs.
NASA Astrophysics Data System (ADS)
Sogukpinar, Haci
2018-02-01
In this study, aerodynamic performances of NACA 0012 airfoils with distinct modification are numerically investigated to obtain high lift coefficient and post-stall airfoils. NACA 0012 airfoil is divided into two part thought chord line then suction sides kept fixed and by changing the thickness of the pressure side new types of airfoil are created. Numerical experiments are then conducted by varying thickness of NACA 0012 from lower surface and different relative thicknesses asymmetrical airfoils are modified and NACA 0012-10, 0012-08, 0012-07, 0012-06, 0012-04, 0012-03, 0012-02, 0012-01 are created and simulated by using COMSOL software.
A kriging metamodel-assisted robust optimization method based on a reverse model
NASA Astrophysics Data System (ADS)
Zhou, Hui; Zhou, Qi; Liu, Congwei; Zhou, Taotao
2018-02-01
The goal of robust optimization methods is to obtain a solution that is both optimum and relatively insensitive to uncertainty factors. Most existing robust optimization approaches use outer-inner nested optimization structures where a large amount of computational effort is required because the robustness of each candidate solution delivered from the outer level should be evaluated in the inner level. In this article, a kriging metamodel-assisted robust optimization method based on a reverse model (K-RMRO) is first proposed, in which the nested optimization structure is reduced into a single-loop optimization structure to ease the computational burden. Ignoring the interpolation uncertainties from kriging, K-RMRO may yield non-robust optima. Hence, an improved kriging-assisted robust optimization method based on a reverse model (IK-RMRO) is presented to take the interpolation uncertainty of kriging metamodel into consideration. In IK-RMRO, an objective switching criterion is introduced to determine whether the inner level robust optimization or the kriging metamodel replacement should be used to evaluate the robustness of design alternatives. The proposed criterion is developed according to whether or not the robust status of the individual can be changed because of the interpolation uncertainties from the kriging metamodel. Numerical and engineering cases are used to demonstrate the applicability and efficiency of the proposed approach.
Li, Zukui; Ding, Ran; Floudas, Christodoulos A.
2011-01-01
Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263
Aerodynamic shape optimization of wing and wing-body configurations using control theory
NASA Technical Reports Server (NTRS)
Reuther, James; Jameson, Antony
1995-01-01
This paper describes the implementation of optimization techniques based on control theory for wing and wing-body design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for airfoils and wings in which the shape and the surrounding body-fitted mesh are both generated analytically, and the control is the mapping function. Recently, the method has been implemented for both potential flows and flows governed by the Euler equations using an alternative formulation which employs numerically generated grids, so that it can more easily be extended to treat general configurations. Here results are presented both for the optimization of a swept wing using an analytic mapping, and for the optimization of wing and wing-body configurations using a general mesh.
The effect of small variations in profile of airfoils
NASA Technical Reports Server (NTRS)
Ward, Kenneth E
1931-01-01
This report deals with the effect of small variations in ordinates specified by different laboratories for the airfoil section. This study was made in connection with a more general investigation of the effect of small irregularities of the airfoil surface on the aerodynamic characteristics of an airfoil. These tests show that small changes in airfoil contours, resulting from variations in the specified ordinates, have a sufficiently large effect upon the airfoil characteristics to justify the taking of great care in the specification of ordinates for the construction of models.
Airfoil shape for a turbine nozzle
Burdgick, Steven Sebastian; Patik, Joseph Francis; Itzel, Gary Michael
2002-01-01
A first-stage nozzle vane includes an airfoil having a profile according to Table I. The annulus profile of the hot gas path is defined in conjunction with the airfoil profile and the profile of the inner and outer walls by the Cartesian coordinate values given in Tables I and II, respectively. The airfoil is a three-dimensional bowed design, both in the airfoil body and in the trailing edge. The airfoil is steam and air-cooled by flowing cooling mediums through cavities extending in the vane between inner and outer walls.
Advanced technology airfoil research, volume 1, part 2
NASA Technical Reports Server (NTRS)
1978-01-01
This compilation contains papers presented at the NASA Conference on Advanced Technology Airfoil Research held at Langley Research Center on March 7-9, 1978, which have unlimited distribution. This conference provided a comprehensive review of all NASA airfoil research, conducted in-house and under grant and contract. A broad spectrum of airfoil research outside of NASA was also reviewed. The major thrust of the technical sessions were in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.
Numerical study on the aerodynamic characteristics of both static and flapping wing with attachments
NASA Astrophysics Data System (ADS)
Xie, Lingwang; Zhang, Xingwei; Luo, Pan; Huang, Panpan
2017-10-01
The purpose of this paper is to investigate the aerodynamic mechanism of airfoils under different icing situations which are different icing type, different icing time, and different icing position. Numerical simulation is carried out by using the finite volume method for both static and flapping airfoils, when Reynolds number is kept at 135000. The difference of aerodynamic performance between the airfoil with attachments and without attachments are be investigated by comparing the force coefficients, lift-to-drag ratios and flow field contour. The present simulations reveal that some influences of attachment are similar in the static airfoil and the flapping airfoil. Specifically, the airfoil with the attachment derived from glaze ice type causes the worse aerodynamic performance than that derived from rime ice type. The longer the icing time, the greater influence of aerodynamic performance the attachment causes. The attachments on the leading-edge have the greater influence of aerodynamic performance than other positions. Moreover, there are little differences between the static airfoil and the flapping airfoil. Compared with the static airfoil, the flapping airfoil which attachment located on the trailing edge causes a worse aerodynamic performance. Both attachments derived from rime ice type and glaze ice type all will deteriorate the aerodynamic performance of the asymmetrical airfoils. Present work provides the systematic and comprehensive study about icing blade which is conducive to the development of the wind power generation technology.
An Approach to the Constrained Design of Natural Laminar Flow Airfoils
NASA Technical Reports Server (NTRS)
Green, Bradford E.
1997-01-01
A design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. After obtaining the initial airfoil's pressure distribution at the design lift coefficient using an Euler solver coupled with an integral turbulent boundary layer method, the calculations from a laminar boundary layer solver are used by a stability analysis code to obtain estimates of the transition location (using N-Factors) for the starting airfoil. A new design method then calculates a target pressure distribution that will increase the laminar flow toward the desired amount. An airfoil design method is then iteratively used to design an airfoil that possesses that target pressure distribution. The new airfoil's boundary layer stability characteristics are determined, and this iterative process continues until an airfoil is designed that meets the laminar flow requirement and as many of the other constraints as possible.
An approach to the constrained design of natural laminar flow airfoils
NASA Technical Reports Server (NTRS)
Green, Bradford Earl
1995-01-01
A design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. After obtaining the initial airfoil's pressure distribution at the design lift coefficient using an Euler solver coupled with an integml turbulent boundary layer method, the calculations from a laminar boundary layer solver are used by a stability analysis code to obtain estimates of the transition location (using N-Factors) for the starting airfoil. A new design method then calculates a target pressure distribution that will increase the larninar flow toward the desired amounl An airfoil design method is then iteratively used to design an airfoil that possesses that target pressure distribution. The new airfoil's boundary layer stability characteristics are determined, and this iterative process continues until an airfoil is designed that meets the laminar flow requirement and as many of the other constraints as possible.
Trailing edge flow conditions as a factor in airfoil design
NASA Technical Reports Server (NTRS)
Ormsbee, A. I.; Maughmer, M. D.
1984-01-01
Some new developments relevant to the design of single-element airfoils using potential flow methods are presented. In particular, the role played by the non-dimensional trailing edge velocity in design is considered and the relationship between the specified value and the resulting airfoil geometry is explored. In addition, the ramifications of the unbounded trailing edge pressure gradients generally present in the potential flow solution of the flow over an airfoil are examined, and the conditions necessary to obtain a class of airfoils having finite trailing edge pressure gradients developed. The incorporation of these conditions into the inverse method of Eppler is presented and the modified scheme employed to generate a number of airfoils for consideration. The detailed viscous analysis of airfoils having finite trailing edge pressure gradients demonstrates a reduction in the strong inviscid-viscid interactions generally present near the trailing edge of an airfoil.
NASA Technical Reports Server (NTRS)
Turner, Travis L. (Inventor); Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); McKenney, Martin J. (Inventor); Atherley, Raymond D. (Inventor); Kidd, Reggie T. (Inventor)
2014-01-01
A multi-element airfoil system includes an airfoil element having a leading edge region and a skin element coupled to the airfoil element. A slat deployment system is coupled to the slat and the skin element, and is capable of deploying and retracting the slat and the skin element. The skin element substantially fills the lateral gap formed between the slat and the airfoil element when the slat is deployed. The system further includes an uncoupling device and a sensor to remove the skin element from the gap based on a critical angle-of-attack of the airfoil element. The system can alternatively comprise a trailing edge flap, where a skin element substantially fills the lateral gap between the flap and the trailing edge region of the airfoil element. In each case, the skin element fills a gap between the airfoil element and the deployed flap or slat to reduce airframe noise.
Airfoil Shape Optimization based on Surrogate Model
NASA Astrophysics Data System (ADS)
Mukesh, R.; Lingadurai, K.; Selvakumar, U.
2018-02-01
Engineering design problems always require enormous amount of real-time experiments and computational simulations in order to assess and ensure the design objectives of the problems subject to various constraints. In most of the cases, the computational resources and time required per simulation are large. In certain cases like sensitivity analysis, design optimisation etc where thousands and millions of simulations have to be carried out, it leads to have a life time of difficulty for designers. Nowadays approximation models, otherwise called as surrogate models (SM), are more widely employed in order to reduce the requirement of computational resources and time in analysing various engineering systems. Various approaches such as Kriging, neural networks, polynomials, Gaussian processes etc are used to construct the approximation models. The primary intention of this work is to employ the k-fold cross validation approach to study and evaluate the influence of various theoretical variogram models on the accuracy of the surrogate model construction. Ordinary Kriging and design of experiments (DOE) approaches are used to construct the SMs by approximating panel and viscous solution algorithms which are primarily used to solve the flow around airfoils and aircraft wings. The method of coupling the SMs with a suitable optimisation scheme to carryout an aerodynamic design optimisation process for airfoil shapes is also discussed.
NASA Technical Reports Server (NTRS)
Stivers, Louis S.; Abbott, Ira H.; von Doenhoff, Albert E.
1945-01-01
Recent airfoil data for both flight and wind-tunnel tests have been collected and correlated insofar as possible. The flight data consist largely of drag measurements made by the wake-survey method. Most of the data on airfoil section characteristics were obtained in the Langley two-dimensional low-turbulence pressure tunnel. Detail data necessary for the application of NACA 6-serles airfoils to wing design are presented in supplementary figures, together with recent data for the NACA 24-, 44-, and 230-series airfoils. The general methods used to derive the basic thickness forms for NACA 6- and 7-series airfoils and their corresponding pressure distributions are presented. Data and methods are given for rapidly obtaining the approximate pressure distributions for NACA four-digit, five-digit, 6-, and 7-series airfoils. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed. The data indicate that the effects of surface condition on the lift and drag characteristics are at least as large as the effects of the airfoil shape and must be considered in airfoil selection and the prediction of wing characteristics. Airfoils permitting extensive laminar flow, such as the NACA 6-series airfoils, have much lower drag coefficients at high speed and cruising lift coefficients than earlier types-of airfoils if, and only if, the wing surfaces are sufficiently smooth and fair. The NACA 6-series airfoils also have favorable critical-speed characteristics and do not appear to present unusual problems associated with the application of high-lift and lateral-control devices. Much of the data given in the NACA Advance Confidential Report entitled "Preliminary Low-Drag-Airfoil and Flap Data from Tests at Large Reynolds Number and Low Turbulence," by Eastman N. Jacobs, Ira R. Abbott, and Milton Davidson, March 1942 has been corrected and included in the present paper, which supersedes the previously published paper.
Pressure distribution over an NACA 23012 airfoil with an NACA 23012 external-airfoil flap
NASA Technical Reports Server (NTRS)
Wenzinger, Carl J
1938-01-01
Report presents the results of pressure-distribution tests of an NACA 23012 airfoil with an NACA 23012 external airfoil flap made in the 7 by 10-foot wind tunnel. The pressures were measured on the upper and lower surfaces at one chord section on both the main airfoil and on the flap for several different flap deflections and at several angles of attack. A test installation was used in which the airfoil was mounted horizontally in the wind tunnel between vertical end planes so that two-dimensional flow was approximated. The data are presented in the form of pressure-distribution diagrams and as graphs of calculated coefficients for the airfoil-and-flap combination and for the flap alone.
NASA Technical Reports Server (NTRS)
Rohde, J. E.
1982-01-01
Objectives and approaches to research in turbine heat transfer are discussed. Generally, improvements in the method of determining the hot gas flow through the turbine passage is one area of concern, as is the cooling air flow inside the airfoil, and the methods of predicting the heat transfer rates on the hot gas side and on the coolant side of the airfoil. More specific areas of research are: (1) local hot gas recovery temperatures along the airfoil surfaces; (2) local airfoil wall temperature; (3) local hot gas side heat transfer coefficients on the airfoil surfaces; (4) local coolant side heat transfer coefficients inside the airfoils; (5) local hot gas flow velocities and secondary flows at real engine conditions; and (6) local delta strain range of the airfoil walls.
OUT Success Stories: Advanced Airfoils for Wind Turbines
DOE R&D Accomplishments Database
Jones, J.; Green, B.
2000-08-01
New airfoils have substantially increased the aerodynamic efficiency of wind turbines. It is clear that these new airfoils substantially increased energy output from wind turbines. Virtually all new blades built in this country today use these advanced airfoil designs.
NASA Technical Reports Server (NTRS)
Noonan, Kevin W.
1990-01-01
A wind tunnel investigation was conducted to determine the 2-D aerodynamic characteristics of two new rotorcraft airfoils designed especially for application to the inboard region of a helicopter main rotor blade. The two new airfoils, the RC(4)-10 and RC(5)-10, and a baseline airfoil, the VR-7, were all studied in the Langley Transonic Tunnel at Mach nos. from about 0.34 to 0.84 and at Reynolds nos. from about 4.7 to 9.3 x 10 (exp 6). The VR-7 airfoil had a trailing edge tab which is deflected upwards 4.6 degs. In addition, the RC(4)-10 airfoil was studied in the Langley Low Turbulence Pressure Tunnel at Mach nos. from 0.10 to 0.44 and at Reynolds nos. from 1.4 to 5.4 x 10 (exp 6) respectively. Some comparisons were made of the experimental data for the new airfoils and the predictions of two different theories. The results of this study indicates that both of the new airfoils offer advantages over the baseline airfoil. These advantages are discussed.
A comparative analysis between NACA 4412 airfoil and it's modified form with tubercles
NASA Astrophysics Data System (ADS)
Hasan, Md. Jonayed; Islam, Md. Tazul; Hassan, Md. Mehedi
2017-06-01
The effect of tubercles on the leading edge of an airfoil become more vivid at high angle of attacks. The effect of tubercles with large wavelength and small amplitude on the leading edge of a NACA 4412 airfoil section was investigated numerically and experimentally. The phenomena of improving the airfoil performance by modifying the contours drove our interest to do this analysis. The models were developed & numerical simulations were carried out with both NACA 4412 airfoil and modified airfoil model at Re=1.03×106 and angles of attack ranging from 0° to 20°. Flow separation was analyzed with vector profiles. CL, CD at different angle of attacks was developed and it gave down noticeable pre-stall & post-stall behavior. The airfoils were studied experimentally in a low speed wind tunnel. Pressure distribution over the two airfoils was obtained. It was evident from the pressure distributions that the modified airfoil exhibits significant aerodynamic performance at high angles of attack. We can infer that these effects will be advantageous for maneuverability and post-stall behavior.
Aerodynamics Characteristics of Multi-Element Airfoils at -90 Degrees Incidence
NASA Technical Reports Server (NTRS)
Stremel, Paul M.; Schmitz, Fredric H. (Technical Monitor)
1994-01-01
A developed method has been applied to calculate accurately the viscous flow about airfoils normal to the free-stream flow. This method has special application to the analysis of tilt rotor aircraft in the evaluation of download. In particular, the flow about an XV-15 airfoil with and without deflected leading and trailing edge flaps at -90 degrees incidence is evaluated. The multi-element aspect of the method provides for the evaluation of slotted flap configurations which may lead to decreased drag. The method solves for turbulent flow at flight Reynolds numbers. The flow about the XV-15 airfoil with and without flap deflections has been calculated and compared with experimental data at a Reynolds number of one million. The comparison between the calculated and measured pressure distributions are very good, thereby, verifying the method. The aerodynamic evaluation of multielement airfoils will be conducted to determine airfoil/flap configurations for reduced airfoil drag. Comparisons between the calculated lift, drag and pitching moment on the airfoil and the airfoil surface pressure will also be presented.
NASA Technical Reports Server (NTRS)
Goradia, S. H.; Lilley, D. E.
1975-01-01
Theoretical and experimental studies are described which were conducted for the purpose of developing a new generalized method for the prediction of profile drag of single component airfoil sections with sharp trailing edges. This method aims at solution for the flow in the wake from the airfoil trailing edge to the large distance in the downstream direction; the profile drag of the given airfoil section can then easily be obtained from the momentum balance once the shape of velocity profile at a large distance from the airfoil trailing edge has been computed. Computer program subroutines have been developed for the computation of the profile drag and flow in the airfoil wake on CDC6600 computer. The required inputs to the computer program consist of free stream conditions and the characteristics of the boundary layers at the airfoil trailing edge or at the point of incipient separation in the neighborhood of airfoil trailing edge. The method described is quite generalized and hence can be extended to the solution of the profile drag for multi-component airfoil sections.
Lift Optimization Study of a Multi-Element Three-Segment Variable Camber Airfoil
NASA Technical Reports Server (NTRS)
Kaul, Upender K.; Nguyen, Nhan T.
2016-01-01
This paper reports a detailed computational high-lift study of the Variable Camber Continuous Trailing Edge Flap (VCCTEF) system carried out to explore the best VCCTEF designs, in conjunction with a leading edge flap called the Variable Camber Krueger (VCK), for take-off and landing. For this purpose, a three-segment variable camber airfoil employed as a performance adaptive aeroelastic wing shaping control effector for a NASA Generic Transport Model (GTM) in landing and take-off configurations is considered. The objective of the study is to define optimal high-lift VCCTEF settings and VCK settings/configurations. A total of 224 combinations of VCK settings/configurations and VCCTEF settings are considered for the inboard GTM wing, where the VCCTEFs are configured as a Fowler flap that forms a slot between the VCCTEF and the main wing. For the VCK settings of deflection angles of 55deg, 60deg and 65deg, 18, 19 and 19 vck configurations, respectively, were considered for each of the 4 different VCCTEF deflection settings. Different vck configurations were defined by varying the horizontal and vertical distance of the vck from the main wing. A computational investigation using a Reynolds-Averaged Navier-Stokes (RANS) solver was carried out to complement a wind-tunnel experimental study covering three of these configurations with the goal of identifying the most optimal high-lift configurations. Four most optimal high-lift configurations, corresponding to each of the VCK deflection settings, have been identified out of all the different configurations considered in this study yielding the highest lift performance.
Operational load estimation of a smart wind turbine rotor blade
NASA Astrophysics Data System (ADS)
White, Jonathan R.; Adams, Douglas E.; Rumsey, Mark A.
2009-03-01
Rising energy prices and carbon emission standards are driving a fundamental shift from fossil fuels to alternative sources of energy such as biofuel, solar, wind, clean coal and nuclear. In 2008, the U.S. installed 8,358 MW of new wind capacity increasing the total installed wind power by 50% to 25,170 MW. A key technology to improve the efficiency of wind turbines is smart rotor blades that can monitor the physical loads being applied by the wind and then adapt the airfoil for increased energy capture. For extreme wind and gust events, the airfoil could be changed to reduce the loads to prevent excessive fatigue or catastrophic failure. Knowledge of the actual loading to the turbine is also useful for maintenance planning and design improvements. In this work, an array of uniaxial and triaxial accelerometers was integrally manufactured into a 9m smart rotor blade. DC type accelerometers were utilized in order to estimate the loading and deflection from both quasi-steady-state and dynamic events. A method is presented that designs an estimator of the rotor blade static deflection and loading and then optimizes the placement of the sensor(s). Example results show that the method can identify the optimal location for the sensor for both simple example cases and realistic complex loading. The optimal location of a single sensor shifts towards the tip as the curvature of the blade deflection increases with increasingly complex wind loading. The framework developed is practical for the expansion of sensor optimization in more complex blade models and for higher numbers of sensors.
Initial Circulation and Peak Vorticity Behavior of Vortices Shed from Airfoil Vortex Generators
NASA Technical Reports Server (NTRS)
Wendt, Bruce J.; Biesiadny, Tom (Technical Monitor)
2001-01-01
An extensive parametric study of vortices shed from airfoil vortex generators has been conducted to determine the dependence of initial vortex circulation and peak vorticity on elements of the airfoil geometry and impinging flow conditions. These elements include the airfoil angle of attack, chord length, span, aspect ratio, local boundary layer thickness, and free stream Mach number. In addition, the influence of airfoil-to-airfoil spacing on the circulation and peak vorticity has been examined for pairs of co-rotating and counter-rotating vortices. The vortex generators were symmetric airfoils having a NACA-0012 cross-sectional profile. These airfoils were mounted either in isolation, or in pairs, on the surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio was about 17 percent. The circulation and peak vorticity data were derived from cross-plane velocity measurements acquired with a seven-hole probe at one chord-length downstream of the airfoil trailing edge location. The circulation is observed to be proportional to the free-stream Mach number, the angle-of-attack, and the span-to-boundary layer thickness ratio. With these parameters held constant, the circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio. The peak vorticity is also observed to be proportional to the free-stream Mach number, the airfoil angle-of-attack, and the span-to-boundary layer thickness ratio. Unlike circulation, however, the peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at an aspect ratio of about 2.0 before falling off again at higher values of aspect ratio. Co-rotating vortices shed from closely spaced pairs of airfoils have values of circulation and peak vorticity under those values found for vortices shed from isolated airfoils of the same geometry. Conversely, counter-rotating vortices show enhanced values of circulation and peak vorticity when compared to values obtained in isolation. The circulation may be accurately modeled with an expression based on Prandtl's relationship between finite airfoil circulation and airfoil geometry. A correlation for the peak vorticity has been derived from a conservation relationship equating the moment at the airfoil tip to the rate of angular momentum production of the shed vortex, modeled as a Lamb (ideal viscous) vortex. This technique provides excellent qualitative agreement to the observed behavior of peak vorticity for low aspect ratio airfoils typically used as vortex generators.
Advanced technology airfoil research, volume 2. [conferences
NASA Technical Reports Server (NTRS)
1979-01-01
A comprehensive review of airfoil research is presented. The major thrust of the research is in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.
Computational Investigations of a NACA 0012 Airfoil in Low Reynolds Number Flows
1992-09-01
11 D . RESULTS .................................... 13 1. Eppler E585 Airfoil ............................. 13 2. NACA 0012 Airfoil ...function in FORTRAN should also be used to calculate/3. D. RESULTS 1. Eppler E585 Airfoil The first investigation was conducted for an Eppler E585...The velocities match the given distribution well except for slight deviations at the trailing edge. This Figure 2.3 Eppler E585 Airfoil difference can
Aerodynamic Investigation of Smart Flying Wing MAV
2010-11-03
Eppler airfoils have been chosen for investigation. They include Eppler 61 (E61), Eppler 330 (E330), Eppler 334 (E334) and Eppler 340 (E340...Nov., 2008. [8] Savaliya, S.B., Praveen Kumar, S. and Mittal, S., Laminar separation bubble on an Eppler 61 airfoil , International Journal for...used to perform flow simulations on a large number of reflexed airfoils , mainly Eppler series airfoils , which are candidate airfoils for flying
2011-12-05
Report: Grant N00014-08-0331 Technical Objectives As critical components of advanced aircraft engines , turbine airfoils require coatings for...advanced aircrafi engines , turbine airfoils require coatings for enhancement of oxidation, corrosion and thermal capabilities . Airfoil coatings ofien...Oxidation and Corrosion Protection Coatings for Enhanced Thermo-Mechanical Durability of Turbine Airfoils 5b. GRANT NUMBER N00014-08-l-0331 5c
NASA Technical Reports Server (NTRS)
1979-01-01
A comprehensive review of all NASA airfoil research, conducted both in-house and under grant and contract, as well as a broad spectrum of airfoil research outside of NASA is presented. Emphasis is placed on the development of computational aerodynamic codes for airfoil analysis and design, the development of experimental facilities and test techniques, and all types of airfoil applications.
Hook nozzle arrangement for supporting airfoil vanes
Shaffer, James E.; Norton, Paul F.
1996-01-01
A gas turbine engine's nozzle structure includes a nozzle support ring, a plurality of shroud segments, and a plurality of airfoil vanes. The plurality of shroud segments are distributed around the nozzle support ring. Each airfoil vane is connected to a corresponding shroud segment so that the airfoil vanes are also distributed around the nozzle support ring. Each shroud segment has a hook engaging the nozzle support ring so that the shroud segments and corresponding airfoil vanes are supported by the nozzle support ring. The nozzle support ring, the shroud segments, and the airfoil vanes may be ceramic.
Hook nozzle arrangement for supporting airfoil vanes
Shaffer, J.E.; Norton, P.F.
1996-02-20
A gas turbine engine`s nozzle structure includes a nozzle support ring, a plurality of shroud segments, and a plurality of airfoil vanes. The plurality of shroud segments are distributed around the nozzle support ring. Each airfoil vane is connected to a corresponding shroud segment so that the airfoil vanes are also distributed around the nozzle support ring. Each shroud segment has a hook engaging the nozzle support ring so that the shroud segments and corresponding airfoil vanes are supported by the nozzle support ring. The nozzle support ring, the shroud segments, and the airfoil vanes may be ceramic. 8 figs.
NASA Technical Reports Server (NTRS)
Graham, Donald J
1949-01-01
Several groups of new airfoil sections, designated as the NACA 8-series, are derived analytically to have lift characteristics at supercritical Mach numbers which are favorable in the sense that the abrupt loss of lift, characteristic of the usual airfoil section at Mach numbers above the critical, is avoided. Aerodynamic characteristics determined from two-dimensional wind-tunnel tests at Mach numbers up to approximately 0.9 are presented for each of the derived airfoils. Comparisons are made between the characteristics of these airfoils and the corresponding characteristics of representative NACA 6-series airfoils.
Parallel Vortex Body Interaction Enabled by Active Flow Control
NASA Astrophysics Data System (ADS)
Weingaertner, Andre; Tewes, Philipp; Little, Jesse
2017-11-01
An experimental study was conducted to explore the flow physics of parallel vortex body interaction between two NACA 0012 airfoils. Experiments were carried out at chord Reynolds numbers of 740,000. Initially, the leading airfoil was characterized without the target one being installed. Results are in good agreement with thin airfoil theory and data provided in the literature. Afterward, the leading airfoil was fixed at 18° incidence and the target airfoil was installed 6 chord lengths downstream. Plasma actuation (ns-DBD), originating close to the leading edge, was used to control vortex shedding from the leading airfoil at various frequencies (0.04
Full-scale semispan tests of a business-jet wing with a natural laminar flow airfoil
NASA Technical Reports Server (NTRS)
Hahne, David E.; Jordan, Frank L., Jr.
1991-01-01
A full-scale semispan model was investigated to evaluate and document the low-speed, high-lift characteristics of a business-jet class wing that utilized the HSNLF(1)-0213 airfoil section and a single-slotted flap system. Also, boundary-layer transition effects were examined, a segmented leading-edge droop for improved stall/spin resistance was studied, and two roll-controlled devices were evaluated. The wind-tunnel investigation showed that deployment of single-slotted, trailing-edge flap was effective in providing substantial increments in lift required for takeoff and landing performance. Fixed-transition studies to investigate premature tripping of the boundary layer indicated no adverse effects in lift and pitching-moment characteristics for either the cruise or landing configuration. The full-scale results also suggested the need to further optimize the leading-edge droop design that was developed in the subscale tests.
The Development of Erosion and Impact Resistant Turbine Airfoil Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2007-01-01
Thermal barrier coatings are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments and extend component lifetimes. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Advanced erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the doped thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion and impact damage mechanisms of the thermal barrier coatings will also be discussed.
Investigation of low-speed turbulent separated flow around airfoils
NASA Technical Reports Server (NTRS)
Wadcock, Alan J.
1987-01-01
Described is a low-speed wind tunnel experiment to measure the flowfield around a two-dimensional airfoil operating close to maximum lift. Boundary layer separation occurs on the upper surface at x/c=0.85. A three-component laser velocimeter, coupled with a computer-controlled data acquisition system, was used to obtain three orthogonal mean velocity components and three components of the Reynolds stress tensor in both the boundary layer and wake of the airfoil. Pressure distributions on the airfoil, skin friction distribution on the upper surface of the airfoil, and integral properties of the airfoil boudary layer are also documented. In addition to these near-field flow properties, static pressure distributions, both upstream and downstream from the airfoil and on the walls of the wind tunnel, are also presented.
NASA Technical Reports Server (NTRS)
Spaid, F. W.; Dahlin, J. A.; Roos, F. W.; Stivers, L. S., Jr.
1983-01-01
Surface static-pressure and drag data obtained from tests of two slightly modified versions of the original NASA Whitcomb airfoil and a model of the NACA 0012 airfoil section are presented. Data for the supercritical airfoil were obtained for a free-stream Mach number range of 0.5 to 0.9, and a chord Reynolds number range of 2 x 10 to the 6th power to 4 x 10 to the 6th power. The NACA 0012 airfoil was tested at a constant chord Reynolds number of 2 x 10 to the 6th power and a free-stream Mach number range of 0.6 to 0.8.
NASA Technical Reports Server (NTRS)
Maresh, J. L.; Bragg, M. B.
1984-01-01
A method has been developed to predict the contamination of an airfoil by insects and the resultant performance penalty. Insect aerodynamics have been modeled and the impingement of insects on an airfoil are solved by calculating their trajectories. Upon impact, insect rupture and the resulting height of the debris is determined based on experimental data. A boundary layer analysis is performed to determine which insects cause boundary layer transition and the resultant drag penalty. A contaminated airfoil figure of merit is presented to be used to compare airfoil susceptibility. Results show that the insect contamination effects depend on accretion conditions, airfoil angle of attack and Reynolds number. The importance of the stagnation region to designing airfoils for minimum drag penalties is discussed.
Comparison of NACA 6-series and 4-digit airfoils for Darrieus wind turbines
NASA Astrophysics Data System (ADS)
Migliore, P. G.
1983-08-01
The aerodynamic efficiency of Darrieus wind turbines as effected by blade airfoil geometry was investigated. Analysis was limited to curved-bladed machines having rotor solidities of 7-21 percent and operating at a Reynolds number of 3 x 10 to the 6th. Ten different airfoils, having thickness-to-chord ratios of 12, 15, and 18 percent, were studied. Performance estimates were made using a blade element/momentum theory approach. Results indicated that NACA 6-series airfoils yield peak power coefficients as great as NACA 4-digit airfoils and have broader and flatter power coefficient-tip speed ratio curves. Sample calculations for an NACA 63(2)-015 airfoil showed an annual energy output increase of 17-27 percent, depending on rotor solidity, compared to an NACA 0015 airfoil.
Low-speed wind-tunnel results for symmetrical NASA LS(1)-0013 airfoil
NASA Technical Reports Server (NTRS)
Ferris, James C.; Mcghee, Robert J.; Barnwell, Richard W.
1987-01-01
A wind-tunnel test has been conducted in the Langley Low-Turbulence Pressure Tunnel to evaluate the performance of a symmetrical NASA LS(1)-0013 airfoil which is a 13-percent-thick, low-speed airfoil. The airfoil contour was obtained from the thickness distribution of a 13-percent-thick, high-performance airfoil developed for general aviation airplanes. The tests were conducted at Mach numbers from 0.10 tp 0.37 over a Reynolds number range from about 0.6 to 12.0 X 10 to the 6th power. The angle of attack varied from about -8 to 20 degrees. The results indicate that the aerodynamic characteristics of the present airfoil are similar to, but slightly better than, those of the NACA 0012 airfoil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiebenga, J. H.; Atzema, E. H.; Boogaard, A. H. van den
Robust design of forming processes using numerical simulations is gaining attention throughout the industry. In this work, it is demonstrated how robust optimization can assist in further stretching the limits of metal forming processes. A deterministic and a robust optimization study are performed, considering a stretch-drawing process of a hemispherical cup product. For the robust optimization study, both the effect of material and process scatter are taken into account. For quantifying the material scatter, samples of 41 coils of a drawing quality forming steel have been collected. The stochastic material behavior is obtained by a hybrid approach, combining mechanical testingmore » and texture analysis, and efficiently implemented in a metamodel based optimization strategy. The deterministic and robust optimization results are subsequently presented and compared, demonstrating an increased process robustness and decreased number of product rejects by application of the robust optimization approach.« less
Self-sustained Flow-acoustic Interactions in Airfoil Transitional Boundary Layers
2015-07-09
AFRL-AFOSR-VA-TR-2015-0235 Self-sustained flow-acoustic interactions in airfoil transitional boundary layers Vladimir Golubev EMBRY-RIDDLE...From - To) 01-04-2012 to 31-03-2015 4. TITLE AND SUBTITLE Self-sustained flow-acoustic interactions in airfoil transitional boundary layers 5a...complementary experimental and numerical studies of flow-acoustic resonant interactions in transitional airfoils and their impact on airfoil surface
Design and Experimental Results for the S414 Airfoil
2010-08-01
EXECUTION The Eppler Airfoil Design and Analysis Code (refs. 15 and 16), a subcritical, single- element code, was used to design the initial fore- and...1965. 14. Maughmer, Mark D.: Trailing Edge Conditions as a Factor in Airfoil Design. Ph.D. Dis- sertation, Univ. of Illinois, 1983.14 15. Eppler ...Richard: Airfoil Design and Data. Springer-Verlag (Berlin), 1990. 16. Eppler , Richard: Airfoil Program System “PROFIL07.” User’s Guide. Richard
Optimum aerodynamic design via boundary control
NASA Technical Reports Server (NTRS)
Jameson, Antony
1994-01-01
These lectures describe the implementation of optimization techniques based on control theory for airfoil and wing design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for two-dimensional profiles in which the shape is determined by a conformal transformation from a unit circle, and the control is the mapping function. Recently the method has been implemented in an alternative formulation which does not depend on conformal mapping, so that it can more easily be extended to treat general configurations. The method has also been extended to treat the Euler equations, and results are presented for both two and three dimensional cases, including the optimization of a swept wing.
TARCMO: Theory and Algorithms for Robust, Combinatorial, Multicriteria Optimization
2016-11-28
objective 9 4.6 On The Recoverable Robust Traveling Salesman Problem . . . . . 11 4.7 A Bicriteria Approach to Robust Optimization...be found. 4.6 On The Recoverable Robust Traveling Salesman Problem The traveling salesman problem (TSP) is a well-known combinatorial optimiza- tion...procedure for the robust traveling salesman problem . While this iterative algorithms results in an optimal solution to the robust TSP, computation
Validation of the CQU-DTU-LN1 series of airfoils
NASA Astrophysics Data System (ADS)
Shen, W. Z.; Zhu, W. J.; Fischer, A.; Garcia, N. R.; Cheng, J. T.; Chen, J.; Madsen, J.
2014-12-01
The CQU-DTU-LN1 series of airfoils were designed with an objective of high lift and low noise emission. In the design process, the aerodynamic performance is obtained using XFOIL while noise emission is obtained with the BPM model. In this paper we present some validations of the designed CQU-DTU-LN118 airfoil by using wind tunnel measurements in the acoustic wind tunnel located at Virginia Tech and numerical computations with the inhouse Q3uic and EllipSys 2D/3D codes. To show the superiority of the new airfoils, comparisons with a NACA64618 airfoil are made. For the aerodynamic features, the designed Cl and Cl/Cd agrees well with the experiment and are in general higher than those of the NACA airfoil. For the acoustic features, the noise emission of the LN118 airfoil is compared with the acoustic measurements and that of the NACA airfoil. Comparisons show that the BPM model can predict correctly the noise changes.
Airfoil-Shaped Fluid Flow Tool for Use in Making Differential Measurements
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)
2014-01-01
A fluid flow tool includes an airfoil structure and a support arm. The airfoil structure's high-pressure side and low-pressure side are positioned in a conduit by the support arm coupled to the conduit. The high-pressure and low-pressure sides substantially face opposing walls of the conduit. At least one measurement port is formed in the airfoil structure at each of its high-pressure side and low-pressure side. A first manifold, formed in the airfoil structure and in fluid communication with each measurement port so-formed at the high-pressure side, extends through the airfoil structure and support arm to terminate and be accessible at the exterior wall of the conduit. A second manifold, formed in the airfoil structure and in fluid communication with each measurement port so-formed at the low-pressure side, extends through the airfoil structure and support arm to terminate and be accessible at the exterior wall of the conduit.
NASA Astrophysics Data System (ADS)
Sogukpinar, Haci
2018-02-01
In this paper, some of the NACA 64A series airfoils data are estimated and aerodynamic properties are calculated to facilitate great understandings effect of relative thickness on the aerodynamic performance of the airfoil by using COMSOL software. 64A201-64A204 airfoils data are not available in literature therefore 64A210 data are used as reference data to estimate 64A201, 64A202, 64A203, 64A204 airfoil configurations. Numerical calculations are then conducted with the angle of attack from -12° to +16° by using k-w turbulence model based on the finite-volume approach. The lift and drag coefficient are one of the most important parameters in studying the airplane performance. Therefore lift, drag and pressure coefficient around selected airfoil are calculated and compared at the Reynolds numbers of 6 × 106 and also stalling characteristics of airfoil section are investigated and presented numerically.
NASA Technical Reports Server (NTRS)
Viken, Jeffrey K.; Watson-Viken, Sally A.; Pfenninger, Werner; Morgan, Harry L., Jr.; Campbell, Richard L.
1987-01-01
The design and testing of Natural Laminar Flow (NLF) airfoils is examined. The NLF airfoil was designed for low speed, having a low profile drag at high chord Reynolds numbers. The success of the low speed NLF airfoil sparked interest in a high speed NLF airfoil applied to a single engine business jet with an unswept wing. Work was also conducted on the two dimensional flap design. The airfoil was decambered by removing the aft loading, however, high design Mach numbers are possible by increasing the aft loading and reducing the camber overall on the airfoil. This approach would also allow for flatter acceleration regions which are more stabilizing for cross flow disturbances. Sweep could then be used to increase the design Mach number to a higher value also. There would be some degradation of high lift by decambering the airfoil overall, and this aspect would have to be considered in a final design.
Experimental investigation of trailing edge noise from stationary and rotating airfoils
Zajamsek, Branko; Doolan, Con J.; Moreau, Danielle J.; Fischer, Jeoffrey; Prime, Zebb
2017-01-01
Trailing edge noise from stationary and rotating NACA 0012 airfoils is characterised and compared with a noise prediction based on the semi-empirical Brooks, Pope, and Marcolini (BPM) model. The NACA 0012 is symmetrical airfoil with no camber and 12% thickness to chord length ratio. Acoustic measurements were conducted in an anechoic wind tunnel using a stationary NACA 0012 airfoil at 0° pitch angle. Airfoil self-noise emissions from rotating NACA 0012 airfoils mounted at 0° and 10° pitch angles on a rotor-rig are studied in an anechoic room. The measurements were carried out using microphone arrays for noise localisation and magnitude estimation using beamforming post-processing. Results show good agreement between peak radiating trailing edge noise emissions of stationary and rotating NACA 0012 airfoils in terms of the Strouhal number. Furthermore, it is shown that noise predictions based on the BPM model considering only two dimensional flow effects, are in good agreement with measurements for rotating airfoils, at these particular conditions. PMID:28599535
Experimental investigation of trailing edge noise from stationary and rotating airfoils.
Zajamsek, Branko; Doolan, Con J; Moreau, Danielle J; Fischer, Jeoffrey; Prime, Zebb
2017-05-01
Trailing edge noise from stationary and rotating NACA 0012 airfoils is characterised and compared with a noise prediction based on the semi-empirical Brooks, Pope, and Marcolini (BPM) model. The NACA 0012 is symmetrical airfoil with no camber and 12% thickness to chord length ratio. Acoustic measurements were conducted in an anechoic wind tunnel using a stationary NACA 0012 airfoil at 0° pitch angle. Airfoil self-noise emissions from rotating NACA 0012 airfoils mounted at 0° and 10° pitch angles on a rotor-rig are studied in an anechoic room. The measurements were carried out using microphone arrays for noise localisation and magnitude estimation using beamforming post-processing. Results show good agreement between peak radiating trailing edge noise emissions of stationary and rotating NACA 0012 airfoils in terms of the Strouhal number. Furthermore, it is shown that noise predictions based on the BPM model considering only two dimensional flow effects, are in good agreement with measurements for rotating airfoils, at these particular conditions.
Airfoil shape for a turbine bucket
Hyde, Susan Marie; By, Robert Romany; Tressler, Judd Dodge; Schaeffer, Jon Conrad; Sims, Calvin Levy
2005-06-28
Third stage turbine buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth Table I wherein X and Y values are in inches and the Z values are non-dimensional values from 0 to 0.938 convertible to Z distances in inches by multiplying the Z values by the height of the airfoil in inches. The X and Y values are distances which, when connected by smooth continuing arcs, define airfoil profile sections at each distance Z. The profile sections at each distance Z are joined smoothly to one another to form a complete airfoil shape. The X and Y distances may be scalable as a function of the same constant or number to provide a scaled up or scaled down airfoil section for the bucket. The nominal airfoil given by the X, Y and Z distances lies within an envelop of .+-.0.150 inches in directions normal to the surface of the airfoil.
Airfoil Dynamic Stall and Rotorcraft Maneuverability
NASA Technical Reports Server (NTRS)
Bousman, William G.
2000-01-01
The loading of an airfoil during dynamic stall is examined in terms of the augmented lift and the associated penalties in pitching moment and drag. It is shown that once stall occurs and a leading-edge vortex is shed from the airfoil there is a unique relationship between the augmented lift, the negative pitching moment, and the increase in drag. This relationship, referred to here as the dynamic stall function, shows limited sensitivity to effects such as the airfoil section profile and Mach number, and appears to be independent of such parameters as Reynolds number, reduced frequency, and blade sweep. For single-element airfoils there is little that can be done to improve rotorcraft maneuverability except to provide good static C(l(max)) characteristics and the chord or blade number that is required to provide the necessary rotor thrust. However, multi-element airfoils or airfoils with variable geometry features can provide augmented lift in some cases that exceeds that available from a single-element airfoil. The dynamic stall function is shown to be a useful tool for the evaluation of both measured and calculated dynamic stall characteristics of single element, multi-element, and variable geometry airfoils.
An Experimental Investigation of an Airfoil Traversing Across a Shear Flow
NASA Astrophysics Data System (ADS)
Hamedani, Borhan A.; Naguib, Ahmed; Koochesfahani, Manoochehr
2017-11-01
While the aerodynamics of an airfoil in a uniform approach flow is well understood, less attention has been paid to airfoils in non-uniform flows. An aircraft encounters such flow, for example, during landing through the air wake of an aircraft carrier. The present work is focused on investigating the fundamental aerodynamics of airfoils in such an environment using canonical flow experiments. To generate a shear approach flow, a shaped honeycomb block is employed in a wind tunnel setup. Direct force measurements are performed on a NACA 0012 airfoil, with an aspect ratio of 1.8, as the airfoil traverses steadily across the shear region. Measurements are conducted at a chord Reynolds number Rec 75k, based on the mean approach stream velocity at the center of the shear zone, for a range of airfoil traverse velocities and angles of attack (0 - 12 degree). The results are compared to those obtained for the same airfoil when placed statically at different points along the traverse path inside the shear zone. The comparison enables examination of the applicability of quasi-steady analysis in computing the forces on the moving airfoil. This work is supported by ONR Grant Number N00014-16-1-2760.
Time-Varying Loads of Co-Axial Rotor Blade Crossings
NASA Technical Reports Server (NTRS)
Schatzman, Natasha L.; Komerath, Narayanan; Romander, Ethan A.
2017-01-01
The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upperlower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips. The shed vorticity from prior crossing events will affect each pair of upperlower airfoils. The aerodynamic loads on the airfoil and flow field characteristics are computed before, at, and after each airfoil crossing. Results from the multiple-airfoil simulation show noticeable changes in the airfoil aerodynamics by introducing additional fluctuation in the aerodynamic time history.
NASA Astrophysics Data System (ADS)
Zhang, Qiang
The effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape on the aerodynamic performance of turbine airfoils are investigated in compressible, high speed flows. The University of Utah Transonic Wind Tunnel is employed for the experimental part of the study. Two different test sections are designed to produce Mach numbers, Reynolds numbers, passage mass flow rates, and physical dimensions, which match values along turbine blades in operating engines: (i) a nonturning test section with a symmetric airfoil, and (ii) a cascade test section with a cambered turbine vane. The nonuniform, irregular, three-dimensional surface roughness is characterized using the equivalent sand grain roughness size. Changing the airfoil surface roughness condition has a substantial effect on wake profiles of total pressure loss coefficients, normalized Mach number, normalized kinetic energy, and on the normalized and dimensional magnitudes of Integrated Aerodynamic Losses produced by the airfoils. Comparisons with results for a symmetric airfoil and a cambered vane show that roughness has more substantial effects on losses produced by the symmetric airfoil than the cambered vane. Data are also provided that illustrate the larger loss magnitudes are generally present with flow turning and cambered airfoils, than with symmetric airfoils. Wake turbulence structure of symmetric airfoils and cambered vanes are also studied experimentally. The effects of surface roughness and freestream turbulence levels on wake distributions of mean velocity, turbulence intensity, and power spectral density profiles and vortex shedding frequencies are quantified one axial chord length downstream of the test airfoils. As the level of surface roughness increases, all wake profile quantities broaden significantly and nondimensional vortex shedding frequencies decrease. Wake profiles produced by the symmetric airfoil are more sensitive to variations of surface roughness and freestream turbulence, compared with data from the cambered vane airfoil. Stanton numbers, skin friction coefficients, aerodynamic losses, and Reynolds analogy behavior are numerically predicted for a turbine vane using the FLUENT with a k-epsilon RNG model to show the effects of Mach number, mainstream turbulence level, and surface roughness. Comparisons with wake aerodynamic loss experimental data are made. Numerically predicted skin friction coefficients and Stanton numbers are also used to deduce Reynolds analogy behavior on the vane suction and pressure sides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W; Schild, S; Bues, M
Purpose: We compared conventionally optimized intensity-modulated proton therapy (IMPT) treatment plans against the worst-case robustly optimized treatment plans for lung cancer. The comparison of the two IMPT optimization strategies focused on the resulting plans' ability to retain dose objectives under the influence of patient set-up, inherent proton range uncertainty, and dose perturbation caused by respiratory motion. Methods: For each of the 9 lung cancer cases two treatment plans were created accounting for treatment uncertainties in two different ways: the first used the conventional Method: delivery of prescribed dose to the planning target volume (PTV) that is geometrically expanded from themore » internal target volume (ITV). The second employed the worst-case robust optimization scheme that addressed set-up and range uncertainties through beamlet optimization. The plan optimality and plan robustness were calculated and compared. Furthermore, the effects on dose distributions of the changes in patient anatomy due to respiratory motion was investigated for both strategies by comparing the corresponding plan evaluation metrics at the end-inspiration and end-expiration phase and absolute differences between these phases. The mean plan evaluation metrics of the two groups were compared using two-sided paired t-tests. Results: Without respiratory motion considered, we affirmed that worst-case robust optimization is superior to PTV-based conventional optimization in terms of plan robustness and optimality. With respiratory motion considered, robust optimization still leads to more robust dose distributions to respiratory motion for targets and comparable or even better plan optimality [D95% ITV: 96.6% versus 96.1% (p=0.26), D5% - D95% ITV: 10.0% versus 12.3% (p=0.082), D1% spinal cord: 31.8% versus 36.5% (p =0.035)]. Conclusion: Worst-case robust optimization led to superior solutions for lung IMPT. Despite of the fact that robust optimization did not explicitly account for respiratory motion it produced motion-resistant treatment plans. However, further research is needed to incorporate respiratory motion into IMPT robust optimization.« less
NASA Technical Reports Server (NTRS)
Whitcomb, R. T. (Inventor)
1976-01-01
An airfoil is examined that has an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency. Diagrams illustrating supersonic flow and shock waves over the airfoil are shown.
The S411, S412, and S413 Airfoils
2010-08-01
Distribution on Wings in the Lower Critical Speed Range. Transonic Aerodynamics. AGARD CP No. 35, Sept. 1968, pp. 17-1–17-10.13 TABLE I.- AIRFOIL DESIGN...experimentally several airfoils for rotorcraft applications. SYMBOLS Cp pressure coefficient c airfoil chord, mm cd section profile-drag coefficient cl...Proceedings of the Conference on Low Reynolds Number Airfoil Aerodynamics, UNDAS- CP -77B123, Univ. of Notre Dame, June 1985, pp. 1–14. 5. Wortmann, F. X
1992-12-01
112 61 . Airfoil T503 - t/c = 3.79% .... ........... .. 113 62. Airfoil T503 Leading-Edge - t/c = 3.79% ..... ... 114 63. Pressure...points on C unit circle, 6 slope of airfoil surface near trailing edge 61 boundary-layer displacement thickness 62 boundary-layer momentum thickness 63...equivalent thickness NACA 4-digit airfoils . 4 II. Theory Potential-Flow Design Method This section will overview the basic theory used in PROFILE. Eppler
Comparisons of Theoretical Methods for Predicting Airfoil Aerodynamic Characteristics
2010-08-01
Airfoil ,” Airfoils , U.S. Army Aviation Research, Development and Engineering Command, RDECOM TR 10-D-107, August 2010. [2] Somers, D.M. and...Maughmer, M.D., “Design and Experimental Results for the S407 Airfoil ,” U.S. Army Aviation Research, Development and Engineering Command, RDECOM TR 10-D...S414 Airfoil ,” U.S. Army Aviation Research, Development and Engineering Command, RDECOM TR 10-D-112, August 2010. [5] Somers, D.M. and Maughmer
The block adaptive multigrid method applied to the solution of the Euler equations
NASA Technical Reports Server (NTRS)
Pantelelis, Nikos
1993-01-01
In the present study, a scheme capable of solving very fast and robust complex nonlinear systems of equations is presented. The Block Adaptive Multigrid (BAM) solution method offers multigrid acceleration and adaptive grid refinement based on the prediction of the solution error. The proposed solution method was used with an implicit upwind Euler solver for the solution of complex transonic flows around airfoils. Very fast results were obtained (18-fold acceleration of the solution) using one fourth of the volumes of a global grid with the same solution accuracy for two test cases.
Successful Solutions to SSME/AT Development Turbine Blade Distress
NASA Technical Reports Server (NTRS)
Montgomery, Stuart K.
1999-01-01
As part of the High-Pressure Fuel Turbopump/Alternate Turbopump (HPFTP/AT) turbine blade development program, unique turbine blade design features were implemented to address 2nd stage turbine blade high cycle fatigue distress and improve turbine robustness. Features included the addition of platform featherseal dampers, asymmetric blade tip seal segments, gold plating of the blade attachments, and airfoil tip trailing edge modifications. Development testing shows these features have eliminated turbine blade high cycle fatigue distress and consequently these features are currently planned for incorporation to the flight configuration. Certification testing will begin in 1999. This presentation summarizes these features.
Quiet airfoils for small and large wind turbines
Tangler, James L [Boulder, CO; Somers, Dan L [Port Matilda, PA
2012-06-12
Thick airfoil families with desirable aerodynamic performance with minimal airfoil induced noise. The airfoil families are suitable for a variety of wind turbine designs and are particularly well-suited for use with horizontal axis wind turbines (HAWTs) with constant or variable speed using pitch and/or stall control. In exemplary embodiments, a first family of three thick airfoils is provided for use with small wind turbines and second family of three thick airfoils is provided for use with very large machines, e.g., an airfoil defined for each of three blade radial stations or blade portions defined along the length of a blade. Each of the families is designed to provide a high maximum lift coefficient or high lift, to exhibit docile stalls, to be relatively insensitive to roughness, and to achieve a low profile drag.
Thin oblique airfoils at supersonic speed
NASA Technical Reports Server (NTRS)
Jone, Robert T
1946-01-01
The well-known methods of thin-airfoil theory have been extended to oblique or sweptback airfoils of finite aspect ratio moving at supersonic speeds. The cases considered thus far are symmetrical airfoils at zero lift having plan forms bounded by straight lines. Because of the conical form of the elementary flow fields, the results are comparable in simplicity to the results of the two-dimensional thin-airfoil theory for subsonic speeds. In the case of untapered airfoils swept back behind the Mach cone the pressure distribution at the center section is similar to that given by the Ackeret theory for a straight airfoil. With increasing distance from the center section the distribution approaches the form given by the subsonic-flow theory. The pressure drag is concentrated chiefly at the center section and for long wings a slight negative drag may appear on outboard sections. (author)
Method for forming a liquid cooled airfoil for a gas turbine
Grondahl, Clayton M.; Willmott, Leo C.; Muth, Myron C.
1981-01-01
A method for forming a liquid cooled airfoil for a gas turbine is disclosed. A plurality of holes are formed at spaced locations in an oversized airfoil blank. A pre-formed composite liquid coolant tube is bonded into each of the holes. The composite tube includes an inner member formed of an anti-corrosive material and an outer member formed of a material exhibiting a high degree of thermal conductivity. After the coolant tubes have been bonded to the airfoil blank, the airfoil blank is machined to a desired shape, such that a portion of the outer member of each of the composite tubes is contiguous with the outer surface of the machined airfoil blank. Finally, an external skin is bonded to the exposed outer surface of both the machined airfoil blank and the composite tubes.
A Robust Design Methodology for Optimal Microscale Secondary Flow Control in Compact Inlet Diffusers
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Keller, Dennis J.
2001-01-01
It is the purpose of this study to develop an economical Robust design methodology for microscale secondary flow control in compact inlet diffusers. To illustrate the potential of economical Robust Design methodology, two different mission strategies were considered for the subject inlet, namely Maximum Performance and Maximum HCF Life Expectancy. The Maximum Performance mission maximized total pressure recovery while the Maximum HCF Life Expectancy mission minimized the mean of the first five Fourier harmonic amplitudes, i.e., 'collectively' reduced all the harmonic 1/2 amplitudes of engine face distortion. Each of the mission strategies was subject to a low engine face distortion constraint, i.e., DC60<0.10, which is a level acceptable for commercial engines. For each of these missions strategies, an 'Optimal Robust' (open loop control) and an 'Optimal Adaptive' (closed loop control) installation was designed over a twenty degree angle-of-incidence range. The Optimal Robust installation used economical Robust Design methodology to arrive at a single design which operated over the entire angle-of-incident range (open loop control). The Optimal Adaptive installation optimized all the design parameters at each angle-of-incidence. Thus, the Optimal Adaptive installation would require a closed loop control system to sense a proper signal for each effector and modify that effector device, whether mechanical or fluidic, for optimal inlet performance. In general, the performance differences between the Optimal Adaptive and Optimal Robust installation designs were found to be marginal. This suggests, however, that Optimal Robust open loop installation designs can be very competitive with Optimal Adaptive close loop designs. Secondary flow control in inlets is inherently robust, provided it is optimally designed. Therefore, the new methodology presented in this paper, combined array 'Lower Order' approach to Robust DOE, offers the aerodynamicist a very viable and economical way of exploring the concept of Robust inlet design, where the mission variables are brought directly into the inlet design process and insensitivity or robustness to the mission variables becomes a design objective.
On the attenuating effect of permeability on the low frequency sound of an airfoil
NASA Astrophysics Data System (ADS)
Weidenfeld, M.; Manela, A.
2016-08-01
The effect of structure permeability on the far-field radiation of a thin airfoil is studied. Assuming low-Mach and high-Reynolds number flow, the near- and far-field descriptions are investigated at flapping-flight and unsteady flow conditions. Analysis is carried out using thin-airfoil theory and compact-body-based calculations for the hydrodynamic and acoustic fields, respectively. Airfoil porosity is modeled via Darcy's law, governed by prescribed distribution of surface intrinsic permeability. Discrete vortex model is applied to describe airfoil wake evolution. To assess the impact of penetrability, results are compared to counterpart predictions for the sound of an impermeable airfoil. Considering the finite-chord airfoil as "acoustically transparent", the leading-order contribution of surface porosity is obtained in terms of an acoustic dipole. It is shown that, at all flow conditions considered, porosity causes attenuation in outcome sound level. This is accompanied by a time-delay in the pressure signal, reflecting the mediating effect of permeability on the interaction of fluid flow with airfoil edge points. To the extent that thin-airfoil theory holds (requiring small normal-to-airfoil flow velocities), the results indicate on a decrease of ~ 10 percent and more in the total energy radiated by a permeable versus an impermeable airfoil. This amounts to a reduction in system sound pressure level of 3 dB and above at pitching flight conditions, where the sound-reducing effect of the seepage dipole pressure becomes dominant. The applicability of Darcy's law to model the effect of material porosity is discussed in light of existing literature.
NASA Technical Reports Server (NTRS)
Graham, Donald J
1948-01-01
Several groups of new airfoil sections, designated as the NACA 8-series, are derived analytically to have lift characteristics at supercritical Mach numbers which are favorable in the sense that the abrupt loss of lift, characteristic of the usual airfoil section at Mach numbers above the critical, is avoided. Aerodynamic characteristics determined, from two-dimensional windtunnel tests at Mach numbers up to approximately 0.9 are presented for each of the derived airfoils. Comparisons are made between the characteristics of these airfoils and the corresponding characteristics of representative NPiCA 6-series airfoils. The experimental results confirm the design expectations in demonstrating for the NACA S-series airfoils either no variation, or an Increase from the low-speed design value, In the lift coefficient at a constant angle of attack with increasing Mach number above the critical. It was not found possible to improve the variation with Mach number of the slope of the lift curve for these airfoils above that for the NACA 6-series airfoils. The drag characteristics of the new airfoils are somewhat inferior to those of the NACA 6- series with respect to divergence with Mach number, but the pitching-moment characteristics are more favorable for the thinner new sections In demonstrating somewhat smaller variations of moment coefficient with both angle of attack and Mach number. The effect on the aero&ynamic characteristics at high Mach numbers of removing the cusp from the trailing-edge regions of two 10-percent-chord-thick NACA 6-series airfoils is determined to be negligible.
Structural tailoring of engine blades (STAEBL) user's manual
NASA Technical Reports Server (NTRS)
Brown, K. W.
1985-01-01
This User's Manual contains instructions and demonstration case to prepare input data, run, and modify the Structural Tailoring of Engine Blades (STAEBL) computer code. STAEBL was developed to perform engine fan and compressor blade numerical optimizations. This blade optimization seeks a minimum weight or cost design that satisfies realistic blade design constraints, by tuning one to twenty design variables. The STAEBL constraint analyses include blade stresses, vibratory response, flutter, and foreign object damage. Blade design variables include airfoil thickness at several locations, blade chord, and construction variables: hole size for hollow blades, and composite material layup for composite blades.
A comparison of two closely-related approaches to aerodynamic design optimization
NASA Technical Reports Server (NTRS)
Shubin, G. R.; Frank, P. D.
1991-01-01
Two related methods for aerodynamic design optimization are compared. The methods, called the implicit gradient approach and the variational (or optimal control) approach, both attempt to obtain gradients necessary for numerical optimization at a cost significantly less than that of the usual black-box approach that employs finite difference gradients. While the two methods are seemingly quite different, they are shown to differ (essentially) in that the order of discretizing the continuous problem, and of applying calculus, is interchanged. Under certain circumstances, the two methods turn out to be identical. We explore the relationship between these methods by applying them to a model problem for duct flow that has many features in common with transonic flow over an airfoil. We find that the gradients computed by the variational method can sometimes be sufficiently inaccurate to cause the optimization to fail.
Zaghian, Maryam; Cao, Wenhua; Liu, Wei; Kardar, Laleh; Randeniya, Sharmalee; Mohan, Radhe; Lim, Gino
2017-03-01
Robust optimization of intensity-modulated proton therapy (IMPT) takes uncertainties into account during spot weight optimization and leads to dose distributions that are resilient to uncertainties. Previous studies demonstrated benefits of linear programming (LP) for IMPT in terms of delivery efficiency by considerably reducing the number of spots required for the same quality of plans. However, a reduction in the number of spots may lead to loss of robustness. The purpose of this study was to evaluate and compare the performance in terms of plan quality and robustness of two robust optimization approaches using LP and nonlinear programming (NLP) models. The so-called "worst case dose" and "minmax" robust optimization approaches and conventional planning target volume (PTV)-based optimization approach were applied to designing IMPT plans for five patients: two with prostate cancer, one with skull-based cancer, and two with head and neck cancer. For each approach, both LP and NLP models were used. Thus, for each case, six sets of IMPT plans were generated and assessed: LP-PTV-based, NLP-PTV-based, LP-worst case dose, NLP-worst case dose, LP-minmax, and NLP-minmax. The four robust optimization methods behaved differently from patient to patient, and no method emerged as superior to the others in terms of nominal plan quality and robustness against uncertainties. The plans generated using LP-based robust optimization were more robust regarding patient setup and range uncertainties than were those generated using NLP-based robust optimization for the prostate cancer patients. However, the robustness of plans generated using NLP-based methods was superior for the skull-based and head and neck cancer patients. Overall, LP-based methods were suitable for the less challenging cancer cases in which all uncertainty scenarios were able to satisfy tight dose constraints, while NLP performed better in more difficult cases in which most uncertainty scenarios were hard to meet tight dose limits. For robust optimization, the worst case dose approach was less sensitive to uncertainties than was the minmax approach for the prostate and skull-based cancer patients, whereas the minmax approach was superior for the head and neck cancer patients. The robustness of the IMPT plans was remarkably better after robust optimization than after PTV-based optimization, and the NLP-PTV-based optimization outperformed the LP-PTV-based optimization regarding robustness of clinical target volume coverage. In addition, plans generated using LP-based methods had notably fewer scanning spots than did those generated using NLP-based methods. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
NASA Technical Reports Server (NTRS)
Ladson, C. L.; Brooks, Cuyler W., Jr.
1975-01-01
A computer program developed to calculate the ordinates and surface slopes of any thickness, symmetrical or cambered NACA airfoil of the 4-digit, 4-digit modified, 5-digit, and 16-series airfoil families is presented. The program produces plots of the airfoil nondimensional ordinates and a punch card output of ordinates in the input format of a readily available program for determining the pressure distributions of arbitrary airfoils in subsonic potential viscous flow.
Investigation of the Boundary Layer Behavior on Turbine Airfoils.
1979-08-01
turbine airfoil cascade . The airfoil profile was based on a turbine blade design used by Lander ’’4 and employed in previous wake studies by Cox and...simulate the wake from upstream turning vanes or blades , a circular cylinder was placed upstream of the centra l or test airfoil . The displacement of this...of turbine airfoil cascade model s by Cox and Han 15 are very much evident in the graph . It might be noted that the blade stag- nation points are at
A computer program for the design and analysis of low-speed airfoils
NASA Technical Reports Server (NTRS)
Eppler, R.; Somers, D. M.
1980-01-01
A conformal mapping method for the design of airfoils with prescribed velocity distribution characteristics, a panel method for the analysis of the potential flow about given airfoils, and a boundary layer method have been combined. With this combined method, airfoils with prescribed boundary layer characteristics can be designed and airfoils with prescribed shapes can be analyzed. All three methods are described briefly. The program and its input options are described. A complete listing is given as an appendix.
Multifidelity Analysis and Optimization for Supersonic Design
NASA Technical Reports Server (NTRS)
Kroo, Ilan; Willcox, Karen; March, Andrew; Haas, Alex; Rajnarayan, Dev; Kays, Cory
2010-01-01
Supersonic aircraft design is a computationally expensive optimization problem and multifidelity approaches over a significant opportunity to reduce design time and computational cost. This report presents tools developed to improve supersonic aircraft design capabilities including: aerodynamic tools for supersonic aircraft configurations; a systematic way to manage model uncertainty; and multifidelity model management concepts that incorporate uncertainty. The aerodynamic analysis tools developed are appropriate for use in a multifidelity optimization framework, and include four analysis routines to estimate the lift and drag of a supersonic airfoil, a multifidelity supersonic drag code that estimates the drag of aircraft configurations with three different methods: an area rule method, a panel method, and an Euler solver. In addition, five multifidelity optimization methods are developed, which include local and global methods as well as gradient-based and gradient-free techniques.
Robust optimization of front members in a full frontal car impact
NASA Astrophysics Data System (ADS)
Aspenberg (né Lönn), David; Jergeus, Johan; Nilsson, Larsgunnar
2013-03-01
In the search for lightweight automobile designs, it is necessary to assure that robust crashworthiness performance is achieved. Structures that are optimized to handle a finite number of load cases may perform poorly when subjected to various dispersions. Thus, uncertainties must be accounted for in the optimization process. This article presents an approach to optimization where all design evaluations include an evaluation of the robustness. Metamodel approximations are applied both to the design space and the robustness evaluations, using artifical neural networks and polynomials, respectively. The features of the robust optimization approach are displayed in an analytical example, and further demonstrated in a large-scale design example of front side members of a car. Different optimization formulations are applied and it is shown that the proposed approach works well. It is also concluded that a robust optimization puts higher demands on the finite element model performance than normally.
Vane array with one or more non-integral platforms
Lohaus, Andrew S.; Campbell, Christian Xavier; Miller, Jr, Samuel R.; Marra, John J.
2016-07-12
A vane array adapted to be coupled to a vane carrier within a gas turbine engine is provided comprising: a plurality of elongated airfoils comprising at least a first airfoil and a second airfoil located adjacent to one another; a U-ring; first connector structure for coupling a radially inner end section of each of the first and second airfoils to the U-ring; second connector structure for coupling a radially outer end section of each of the first and second airfoils to the vane carrier; a platform extending between the first and second airfoils; and platform connector structure for coupling the platform to one of the U-ring and the vane carrier.
NASA Technical Reports Server (NTRS)
Jacobs, Eastman N
1932-01-01
Report presents the results of wind tunnel tests on a group of eight very thick airfoils having sections of the same thickness as those used near the roots of tapered airfoils. The tests were made to study certain discontinuities in the characteristic curves that have been obtained from previous tests of these airfoils, and to compare the characteristics of the different sections at values of the Reynolds number comparable with those attained in flight. The discontinuities were found to disappear as the Reynolds number was increased. The results obtained from the large-scale airfoil, a symmetrical airfoil having a thickness ratio of 21 per cent, has the best general characteristics.
SU-E-T-07: 4DCT Robust Optimization for Esophageal Cancer Using Intensity Modulated Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, L; Department of Industrial Engineering, University of Houston, Houston, TX; Yu, J
2015-06-15
Purpose: To develop a 4DCT robust optimization method to reduce the dosimetric impact from respiratory motion in intensity modulated proton therapy (IMPT) for esophageal cancer. Methods: Four esophageal cancer patients were selected for this study. The different phases of CT from a set of 4DCT were incorporated into the worst-case dose distribution robust optimization algorithm. 4DCT robust treatment plans were designed and compared with the conventional non-robust plans. Result doses were calculated on the average and maximum inhale/exhale phases of 4DCT. Dose volume histogram (DVH) band graphic and ΔD95%, ΔD98%, ΔD5%, ΔD2% of CTV between different phases were used tomore » evaluate the robustness of the plans. Results: Compare to the IMPT plans optimized using conventional methods, the 4DCT robust IMPT plans can achieve the same quality in nominal cases, while yield a better robustness to breathing motion. The mean ΔD95%, ΔD98%, ΔD5% and ΔD2% of CTV are 6%, 3.2%, 0.9% and 1% for the robustly optimized plans vs. 16.2%, 11.8%, 1.6% and 3.3% from the conventional non-robust plans. Conclusion: A 4DCT robust optimization method was proposed for esophageal cancer using IMPT. We demonstrate that the 4DCT robust optimization can mitigate the dose deviation caused by the diaphragm motion.« less
Synthesized airfoil data method for prediction of dynamic stall and unsteady airloads
NASA Technical Reports Server (NTRS)
Gangwani, S. T.
1983-01-01
A detailed analysis of dynamic stall experiments has led to a set of relatively compact analytical expressions, called synthesized unsteady airfoil data, which accurately describe in the time-domain the unsteady aerodynamic characteristics of stalled airfoils. An analytical research program was conducted to expand and improve this synthesized unsteady airfoil data method using additional available sets of unsteady airfoil data. The primary objectives were to reduce these data to synthesized form for use in rotor airload prediction analyses and to generalize the results. Unsteady drag data were synthesized which provided the basis for successful expansion of the formulation to include computation of the unsteady pressure drag of airfoils and rotor blades. Also, an improved prediction model for airfoil flow reattachment was incorporated in the method. Application of this improved unsteady aerodynamics model has resulted in an improved correlation between analytic predictions and measured full scale helicopter blade loads and stress data.
A study of sound generation in subsonic rotors, volume 1
NASA Technical Reports Server (NTRS)
Chalupnik, J. D.; Clark, L. T.
1975-01-01
A model for the prediction of wake related sound generation by a single airfoil is presented. It is assumed that the net force fluctuation on an airfoil may be expressed in terms of the net momentum fluctuation in the near wake of the airfoil. The forcing function for sound generation depends on the spectra of the two point velocity correlations in the turbulent region near the airfoil trailing edge. The spectra of the two point velocity correlations were measured for the longitudinal and transverse components of turbulence in the wake of a 91.4 cm chord airfoil. A scaling procedure was developed using the turbulent boundary layer thickness. The model was then used to predict the radiated sound from a 5.1 cm chord airfoil. Agreement between the predicted and measured sound radiation spectra was good. The single airfoil results were extended to a rotor geometry, and various aerodynamic parameters were studied.
Turbine airfoil with laterally extending snubber having internal cooling system
Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.
2016-09-06
A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.
The Effects of the Critical Ice Accretion on Airfoil and Wing Performance
NASA Technical Reports Server (NTRS)
Selig, Michael S.; Bragg, Michael B.; Saeed, Farooq
1998-01-01
In support of the NASA Lewis Modern Airfoils Ice Accretion Test Program, the University of Illinois at Urbana-Champaign provided expertise in airfoil design and aerodynamic analysis to determine the aerodynamic effect of ice accretion on modern airfoil sections. The effort has concentrated on establishing a design/testing methodology for "hybrid airfoils" or "sub-scale airfoils," that is, airfoils having a full-scale leading edge together with a specially designed and foreshortened aft section. The basic approach of using a full-scale leading edge with a foreshortened aft section was considered to a limited extent over 40 years ago. However, it was believed that the range of application of the method had not been fully exploited. Thus a systematic study was being undertaken to investigate and explore the range of application of the method so as to determine its overall potential.
NASA Technical Reports Server (NTRS)
Flemming, Robert J.
1984-01-01
Five full scale rotorcraft airfoils were tested in the NASA Ames Eleven-Foot Transonic Wind Tunnel for full scale Reynolds numbers at Mach numbers from 0.3 to 1.07. The models, which spanned the tunnel from floor to ceiling, included two modern baseline airfoils, the SC1095 and SC1094 R8, which have been previously tested in other facilities. Three advanced transonic airfoils, designated the SSC-A09, SSC-A07, and SSC-B08, were tested to confirm predicted performance and provide confirmation of advanced airfoil design methods. The test showed that the eleven-foot tunnel is suited to two-dimensional airfoil testing. Maximum lift coefficients, drag coefficients, pitching moments, and pressure coefficient distributions are presented. The airfoil analysis codes agreed well with the data, with the Grumman GRUMFOIL code giving the best overall performance correlation.
Turbine airfoil having near-wall cooling insert
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Jr., Nicholas F.; Wiebe, David J.
A turbine airfoil is provided with at least one insert positioned in a cavity in an airfoil interior. The insert extends along a span-wise extent of the turbine airfoil and includes first and second opposite faces. A first near-wall cooling channel is defined between the first face and a pressure sidewall of an airfoil outer wall. A second near-wall cooling channel is defined between the second face and a suction sidewall of the airfoil outer wall. The insert is configured to occupy an inactive volume in the airfoil interior so as to displace a coolant flow in the cavity towardmore » the first and second near-wall cooling channels. A locating feature engages the insert with the outer wall for supporting the insert in position. The locating feature is configured to control flow of the coolant through the first or second near-wall cooling channel.« less
NASA Technical Reports Server (NTRS)
Von Glahn, Uwe H; Gray, Vernon H
1954-01-01
Studies were made to determine the effect of ice formations on the section drag of a 6.9-foot-chord 36 degree swept NACA 63A-009 airfoil with partial-span leading-edge slat. In general, the icing of a thin swept airfoil will result in greater aerodynamic penalties than for a thick unswept airfoil. Glaze-ice formations at the leading edge of the airfoil caused large increases in section drag even at liquid-water content of 0.39 gram per cubic meter. The use of an ice-free parting strip in the stagnation region caused a negligible change in drag compared with a completely unheated airfoil. Cyclic de-icing when properly applied caused the drag to decrease almost to the bare-airfoil drag value.
Aerodynamic features of a two-airfoil arrangement
NASA Astrophysics Data System (ADS)
Faure, Thierry M.; Hétru, Laurent; Montagnier, Olivier
2017-10-01
The interaction between two foils occurs in many aerodynamic or hydrodynamic applications. Although the characteristics of many airfoils are well documented, there is a limited amount of data for multiple airfoils in interaction and for large values of the angle of attack. This paper presents measurements of the turbulent flow around a two-airfoil T-tail type arrangement and the aerodynamic coefficients, for an incompressible flow at moderate Reynolds number. The study focuses mainly on large angles of attack, corresponding to detached flows on the airfoils, large wakes and involving vortex shedding. Phase averages of velocity fields are made building the flow time development relative to the vortex shedding. The understanding of the change in the tail lift coefficient versus angle of attack, between a two-airfoil arrangement and a single airfoil, is discussed in relation with the position and width of the wing wake and the pathlines of the shedding vortices.
NASA Technical Reports Server (NTRS)
Abbott, Ira H; Von Doenhoff, Albert E; Stivers, Louis, Jr
1945-01-01
The historical development of NACA airfoils is briefly reviewed. New data are presented that permit the rapid calculation of the approximate pressure distributions for the older NACA four-digit and five-digit airfoils by the same methods used for the NACA 6-series airfoils. The general methods used to derive the basic thickness forms for NACA 6 and 7-series airfoils together with their corresponding pressure distributions are presented. Detail data necessary for the application of the airfoils to wing design are presented in supplementary figures placed at the end of the paper. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed, together with aerodynamic problems of application. (author)
An Experimental Comparison Between Flexible and Rigid Airfoils at Low Reynolds Numbers
NASA Astrophysics Data System (ADS)
Uzodinma, Jaylon; Macphee, David
2017-11-01
This study uses experimental and computational research methods to compare the aerodynamic performance of rigid and flexible airfoils at a low Reynolds number throughout varying angles of attack. This research can be used to improve the design of small wind turbines, micro-aerial vehicles, and any other devices that operate at low Reynolds numbers. Experimental testing was conducted in the University of Alabama's low-speed wind tunnel, and computational testing was conducted using the open-source CFD code OpenFOAM. For experimental testing, polyurethane-based (rigid) airfoils and silicone-based (flexible) airfoils were constructed using acrylic molds for NACA 0012 and NACA 2412 airfoil profiles. Computer models of the previously-specified airfoils were also created for a computational analysis. Both experimental and computational data were analyzed to examine the critical angles of attack, the lift and drag coefficients, and the occurrence of laminar boundary separation for each airfoil. Moreover, the computational simulations were used to examine the resulting flow fields, in order to provide possible explanations for the aerodynamic performances of each airfoil type. EEC 1659710.
Experimental Investigation of Dynamic Stall on an Airfoil with Leading Edge Tubercles
NASA Astrophysics Data System (ADS)
Hrynuk, John; Bohl, Douglas
2013-11-01
Humpback whales are unique in that their flippers have leading edge ``bumps'' or tubercles. Past work on airfoils modeled after whale flippers has centered on the static aerodynamic characteristics of these airfoils. In the current work, NACA 0012 airfoils modified with leading edge tubercles are investigated to determine the effect of the tubercles on the dynamic characteristics, specifically on dynamic stall vortex formation, of the airfoils. Molecular Tagging Velocimetry (MTV) is used to measure the flow field around the modified airfoils at nondimensional pitch rates of Ω = 0.1, 0.2, and 0.4. The results show that the characteristics of the dynamics stall vortex are dependent on the location relative to the peak or valley of the leading edge bumps. These characteristics are also found to be different than those observed in dynamic stall on a smooth leading edge airfoil. In specific, the location of the dynamic stall vortex appears to form further aft on the airfoil for the tubercle case versus the smooth case. This work supported by NSF Grant # 0845882.
NASA Technical Reports Server (NTRS)
Hassan, Ahmed
1999-01-01
Using the two-dimensional ARC2D Navier-Stokes flow solver analyses were conducted to predict the sectional aerodynamic characteristics of the flapped NACA-0015 airfoil section. To facilitate the analyses and the generation of the computational grids, the airfoil with the deflected trailing edge flap was treated as a single element airfoil with no allowance for a gap between the flap's leading edge and the base of the forward portion of the airfoil. Generation of the O-type computational grids was accomplished using the HYGRID hyperbolic grid generation program. Results were obtained for a wide range of Mach numbers, angles of attack and flap deflections. The predicted sectional lift, drag and pitching moment values for the airfoil were then cast in tabular format (C81) to be used in lifting-line helicopter rotor aerodynamic performance calculations. Similar were also generated for the flap. Mathematical expressions providing the variation of the sectional lift and pitching moment coefficients for the airfoil and for the flap as a function of flap chord length and flap deflection angle were derived within the context of thin airfoil theory. The airfoil's sectional drag coefficient were derived using the ARC2D drag predictions for equivalent two dimensional flow conditions.
Airfoil gust response and the sound produced by airifoil-vortex interaction
NASA Technical Reports Server (NTRS)
Amiet, R. K.
1986-01-01
This paper contributes to the understanding of the noise generation process of an airfoil encountering an unsteady upwash. By using a fast Fourier transform together with accurate airfoil response functions, the lift-time waveform for an airfoil encountering a delta function gust (the indicial function) is calculated for a flat plate airfoil in a compressible flow. This shows the interesting property that the lift is constant until the generated acoustic wave reaches the trailing edge. Expressions are given for the magnitude of this constant and for the pressure distribution on the airfoil during this time interval. The case of an airfoil cutting through a line vortex is also analyzed. The pressure-time waveform in the far field is closely related to the left-time waveform for the above problem of an airfoil entering a delta function gust. The effects of varying the relevant parameters in the problem are studied, including the observed position, the core diameter of the vortex, the vortex orientation and the airfoil span. The far field sound varies significantly with observer position, illustrating the importance of non-compactness effects. Increasing the viscous core diameter tends to smooth the pressure-time waveform. For small viscous core radius and infinite span, changing the vortex orientation changes only the amplitude of the pressure-time waveform, and not the shape.
Rime ice accretion and its effect on airfoil performance. Ph.D. Thesis. Final Report
NASA Technical Reports Server (NTRS)
Bragg, M. B.
1982-01-01
A methodology was developed to predict the growth of rime ice, and the resulting aerodynamic penalty on unprotected, subcritical, airfoil surfaces. The system of equations governing the trajectory of a water droplet in the airfoil flowfield is developed and a numerical solution is obtained to predict the mass flux of super cooled water droplets freezing on impact. A rime ice shape is predicted. The effect of time on the ice growth is modeled by a time-stepping procedure where the flowfield and droplet mass flux are updated periodically through the ice accretion process. Two similarity parameters, the trajectory similarity parameter and accumulation parameter, are found to govern the accretion of rime ice. In addition, an analytical solution is presented for Langmuir's classical modified inertia parameter. The aerodynamic evaluation of the effect of the ice accretion on airfoil performance is determined using an existing airfoil analysis code with empirical corrections. The change in maximum lift coefficient is found from an analysis of the new iced airfoil shape. The drag correction needed due to the severe surface roughness is formulated from existing iced airfoil and rough airfoil data. A small scale wind tunnel test was conducted to determine the change in airfoil performance due to a simulated rime ice shape.
Development and testing of airfoils for high-altitude aircraft
NASA Technical Reports Server (NTRS)
Drela, Mark (Principal Investigator)
1996-01-01
Specific tasks included airfoil design; study of airfoil constraints on pullout maneuver; selection of tail airfoils; examination of wing twist; test section instrumentation and layout; and integrated airfoil/heat-exchanger tests. In the course of designing the airfoil, specifically for the APEX test vehicle, extensive studies were made over the Mach and Reynolds number ranges of interest. It is intended to be representative of airfoils required for lightweight aircraft operating at extreme altitudes, which is the primary research objective of the APEX program. Also considered were thickness, pitching moment, and off-design behavior. The maximum ceiling parameter M(exp 2)C(sub L) value achievable by the Apex-16 airfoil was found to be a strong constraint on the pullout maneuver. The NACA 1410 and 2410 airfoils (inverted) were identified as good candidates for the tail, with predictable behavior at low Reynolds numbers and good tolerance to flap deflections. With regards to wing twist, it was decided that a simple flat wing was a reasonable compromise. The test section instrumentation consisted of surface pressure taps, wake rakes, surface-mounted microphones, and skin-friction gauges. Also, a modest wind tunnel test was performed for an integrated airfoil/heat-exchanger configuration, which is currently on Aurora's 'Theseus' aircraft. Although not directly related to the APEX tests, the aerodynamics or heat exchangers has been identified as a crucial aspect of designing high-altitude aircraft and hence is relevant to the ERAST program.
Fly-by-feel aeroservoelasticity
NASA Astrophysics Data System (ADS)
Suryakumar, Vishvas Samuel
Recent experiments have suggested a strong correlation between local flow features on the airfoil surface such as the leading edge stagnation point (LESP), transition or the flow separation point with global integrated quantities such as aerodynamic lift. "Fly-By-Feel" refers to a physics-based sensing and control framework where local flow features are tracked in real-time to determine aerodynamic loads. This formulation offers possibilities for the development of robust, low-order flight control architectures. An essential contribution towards this objective is the theoretical development showing the direct relationship of the LESP with circulation for small-amplitude, unsteady, airfoil maneuvers. The theory is validated through numerical simulations and wind tunnel tests. With the availability of an aerodynamic observable, a low-order, energy-based control formulation is derived for aeroelastic stabilization and gust load alleviation. The sensing and control framework is implemented on the Nonlinear Aeroelastic Test Apparatus at Texas A&M University. The LESP is located using hot-film sensors distributed around the wing leading edge. Stabilization of limit cycle oscillations exhibited by a nonlinear wing section is demonstrated in the presence of gusts. Aeroelastic stabilization is also demonstrated on a flying wing configuration exhibiting body freedom flutter through numerical simulations.
NASA Technical Reports Server (NTRS)
Edwards, John W.
1996-01-01
A viscous-inviscid interactive coupling method is used for the computation of unsteady transonic flows involving separation and reattachment. A lag-entrainment integral boundary layer method is used with the transonic small disturbance potential equation in the CAP-TSDV (Computational Aeroelasticity Program - Transonic Small Disturbance) code. Efficient and robust computations of steady and unsteady separated flows, including steady separation bubbles and self-excited shock-induced oscillations are presented. The buffet onset boundary for the NACA 0012 airfoil is accurately predicted and shown computationally to be a Hopf bifurcation. Shock-induced oscillations are also presented for the 18 percent circular arc airfoil. The oscillation onset boundaries and frequencies are accurately predicted, as is the experimentally observed hysteresis of the oscillations with Mach number. This latter stability boundary is identified as a jump phenomenon. Transonic wing flutter boundaries are also shown for a thin swept wing and for a typical business jet wing, illustrating viscous effects on flutter and the effect of separation onset on the wing response at flutter. Calculations for both wings show limit cycle oscillations at transonic speeds in the vicinity of minimum flutter speed indices.
Holden, Daniel; Socha, John J; Cardwell, Nicholas D; Vlachos, Pavlos P
2014-02-01
A prominent feature of gliding flight in snakes of the genus Chrysopelea is the unique cross-sectional shape of the body, which acts as the lifting surface in the absence of wings. When gliding, the flying snake Chrysopelea paradisi morphs its circular cross-section into a triangular shape by splaying its ribs and flattening its body in the dorsoventral axis, forming a geometry with fore-aft symmetry and a thick profile. Here, we aimed to understand the aerodynamic properties of the snake's cross-sectional shape to determine its contribution to gliding at low Reynolds numbers. We used a straight physical model in a water tunnel to isolate the effects of 2D shape, analogously to studying the profile of an airfoil of a more typical flyer. Force measurements and time-resolved (TR) digital particle image velocimetry (DPIV) were used to determine lift and drag coefficients, wake dynamics and vortex-shedding characteristics of the shape across a behaviorally relevant range of Reynolds numbers and angles of attack. The snake's cross-sectional shape produced a maximum lift coefficient of 1.9 and maximum lift-to-drag ratio of 2.7, maintained increases in lift up to 35 deg, and exhibited two distinctly different vortex-shedding modes. Within the measured Reynolds number regime (Re=3000-15,000), this geometry generated significantly larger maximum lift coefficients than many other shapes including bluff bodies, thick airfoils, symmetric airfoils and circular arc airfoils. In addition, the snake's shape exhibited a gentle stall region that maintained relatively high lift production even up to the highest angle of attack tested (60 deg). Overall, the cross-sectional geometry of the flying snake demonstrated robust aerodynamic behavior by maintaining significant lift production and near-maximum lift-to-drag ratios over a wide range of parameters. These aerodynamic characteristics help to explain how the snake can glide at steep angles and over a wide range of angles of attack, but more complex models that account for 3D effects and the dynamic movements of aerial undulation are required to fully understand the gliding performance of flying snakes.
A Design of Experiments Investigation of Offset Streams for Supersonic Jet Noise Reduction
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Papamoschou, Dimitri
2014-01-01
An experimental investigation into the noise characteristics of a dual-stream jet with four airfoils inserted in the fan nozzle was conducted. The intent of the airfoils was to deflect the fan stream relative to the core stream and, therefore, impact the development of the secondary potential core and noise radiated in the peak jet-noise direction. The experiments used a full-factorial Design of Experiments (DoE) approach to identify parameters and parameter interactions impacting noise radiation at two azimuthal microphone array locations, one of which represented a sideline viewing angle. The parameters studied included airfoil angle-of-attack, airfoil azimuthal location within the fan nozzle, and airfoil axial location relative to the fan-nozzle trailing edge. Jet conditions included subsonic and supersonic fan-stream Mach numbers. Heated jets conditions were simulated with a mixture of helium and air to replicate the exhaust velocity and density of the hot jets. The introduction of the airfoils was shown to impact noise radiated at polar angles in peak-jet noise direction and to have no impact on noise radiated at small and broadside polar angles and to have no impact on broadband-shock-associated noise. The DoE analysis showed the main effects impacting noise radiation at sideline-azimuthal-viewing angles included airfoil azimuthal angle for the airfoils on the lower side of the jet near the sideline array and airfoil trailing edge distance (with airfoils located at the nozzle trailing edge produced the lowest sound pressure levels). For an array located directly beneath the jet (and on the side of the jet from which the fan stream was deflected), the main effects impacting noise radiation included airfoil angle-of-attack and airfoil azimuthal angle for the airfoils located on the observation side of the jet as well and trailing edge distance. Interaction terms between multiple configuration parameters were shown to have significant impact on the radiated noise. The models were shown to adequately describe the sound-pressure levels obtained for a configuration in the center of the design space indicating the models can be used to navigate the design space.
Advancements in adaptive aerodynamic technologies for airfoils and wings
NASA Astrophysics Data System (ADS)
Jepson, Jeffrey Keith
Although aircraft operate over a wide range of flight conditions, current fixed-geometry aircraft are optimized for only a few of these conditions. By altering the shape of the aircraft, adaptive aerodynamics can be used to increase the safety and performance of an aircraft by tailoring the aircraft for multiple flight conditions. Of the various shape adaptation concepts currently being studied, the use of multiple trailing-edge flaps along the span of a wing offers a relatively high possibility of being incorporated on aircraft in the near future. Multiple trailing-edge flaps allow for effective spanwise camber adaptation with resulting drag benefits over a large speed range and load alleviation at high-g conditions. The research presented in this dissertation focuses on the development of this concept of using trailing-edge flaps to tailor an aircraft for multiple flight conditions. One of the major tasks involved in implementing trailing-edge flaps is in designing the airfoil to incorporate the flap. The first part of this dissertation presents a design formulation that incorporates aircraft performance considerations in the inverse design of low-speed laminar-flow adaptive airfoils with trailing-edge cruise flaps. The benefit of using adaptive airfoils is that the size of the low-drag region of the drag polar can be effectively increased without increasing the maximum thickness of the airfoil. Two aircraft performance parameters are considered: level-flight maximum speed and maximum range. It is shown that the lift coefficients for the lower and upper corners of the airfoil low-drag range can be appropriately adjusted to tailor the airfoil for these two aircraft performance parameters. The design problem is posed as a part of a multidimensional Newton iteration in an existing conformal-mapping based inverse design code, PROFOIL. This formulation automatically adjusts the lift coefficients for the corners of the low-drag range for a given flap deflection as required for the airfoil-aircraft matching. Examples are presented to illustrate the flapped-airfoil design approach for a general aviation aircraft and the results are validated by comparison with results from post-design aircraft performance computations. Once the airfoil is designed to incorporate a TE flap, it is important to determine the most suitable flap angles along the wing for different flight conditions. The second part of this dissertation presents a method for determining the optimum flap angles to minimize drag based on pressures measured at select locations on the wing. Computational flow simulations using a panel method are used "in the loop" for demonstrating closed-loop control of the flaps. Examples in the paper show that the control algorithm is successful in correctly adapting the wing to achieve the target lift distributions for minimizing induced drag while adjusting the wing angle of attack for operation of the wing in the drag bucket. It is shown that the "sense-and-adapt" approach developed is capable of handling varying and unpredictable inflow conditions. Such a capability could be useful in adapting long-span flexible wings that may experience significant and unknown atmospheric inflow variations along the span. To further develop the "sense-and-adapt" approach, the method was tested experimentally in the third part of the research. The goal of the testing was to see if the same results found computationally can be obtained experimentally. The North Carolina State University subsonic wind tunnel was used for the wind tunnel tests. Results from the testing showed that the "sense-and-adapt" approach has the same performance experimentally as it did computationally. The research presented in this dissertation is a stepping stone towards further development of the concept, which includes modeling the system in the Simulink environment and flight experiments using uninhabited aerial vehicles.
Membrane wing aerodynamics for micro air vehicles
NASA Astrophysics Data System (ADS)
Lian, Yongsheng; Shyy, Wei; Viieru, Dragos; Zhang, Baoning
2003-10-01
The aerodynamic performance of a wing deteriorates considerably as the Reynolds number decreases from 10 6 to 10 4. In particular, flow separation can result in substantial change in effective airfoil shape and cause reduced aerodynamic performance. Lately, there has been growing interest in developing suitable techniques for sustained and robust flight of micro air vehicles (MAVs) with a wingspan of 15 cm or smaller, flight speed around 10 m/ s, and a corresponding Reynolds number of 10 4-10 5. This paper reviews the aerodynamics of membrane and corresponding rigid wings under the MAV flight conditions. The membrane wing is observed to yield desirable characteristics in delaying stall as well as adapting to the unsteady flight environment, which is intrinsic to the designated flight speed. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble and tip vortex are reviewed. Structural dynamics in response to the surrounding flow field is presented to highlight the multiple time-scale phenomena. Based on the computational capabilities for treating moving boundary problems, wing shape optimization can be conducted in automated manners. To enhance the lift, the effect of endplates is evaluated. The proper orthogonal decomposition method is also discussed as an economic tool to describe the flow structure around a wing and to facilitate flow and vehicle control.
Root region airfoil for wind turbine
Tangler, James L.; Somers, Dan M.
1995-01-01
A thick airfoil for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%-26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4-1.6 that has minimum sensitivity to roughness effects.
Design of high lift airfoils with a Stratford distribution by the Eppler method
NASA Technical Reports Server (NTRS)
Thomson, W. G.
1975-01-01
Airfoils having a Stratford pressure distribution, which has zero skin friction in the pressure recovery area, were investigated in an effort to develop high lift airfoils. The Eppler program, an inverse conformal mapping technique where the x and y coordinates of the airfoil are developed from a given velocity distribution, was used.
An analytical study for the design of advanced rotor airfoils
NASA Technical Reports Server (NTRS)
Kemp, L. D.
1973-01-01
A theoretical study has been conducted to design and evaluate two airfoils for helicopter rotors. The best basic shape, designed with a transonic hodograph design method, was modified to meet subsonic criteria. One airfoil had an additional constraint for low pitching-moment at the transonic design point. Airfoil characteristics were predicted. Results of a comparative analysis of helicopter performance indicate that the new airfoils will produce reduced rotor power requirements compared to the NACA 0012. The hodograph design method, written in CDC Algol, is listed and described.
Damping element for reducing the vibration of an airfoil
Campbell, Christian X; Marra, John J
2013-11-12
An airfoil (10) is provided with a tip (12) having an opening (14) to a center channel (24). A damping element (16) is inserted within the opening of the center channel, to reduce an induced vibration of the airfoil. The mass of the damping element, a spring constant of the damping element within the center channel, and/or a mounting location (58) of the damping element within the center channel may be adjustably varied, to shift a resonance frequency of the airfoil outside a natural operating frequency of the airfoil.
Experimental studies of the Eppler 61 airfoil at low Reynolds numbers
NASA Technical Reports Server (NTRS)
Burns, T. F.; Mueller, T. J.
1982-01-01
The results of an experimental study to document the effects of separation and transition on the performance of an airfoil designed for low Reynolds number operation are presented. Lift, drag and flow visualization data were obtained for the Eppler 61 airfoil section for chord Reynolds numbers from about 30,000 to over 200,000. Smoke flow visualization was employed to document the boundary layer behavior and was correlated with the Eppler airfoil design and analysis computer program. Laminar separation, transition and turbulent reattachment had significant effects on the performance of this airfoil.
Compilation of Information on the Transonic Attachment of Flows at the Leading Edges of Airfoils
NASA Technical Reports Server (NTRS)
Lindsey, Walter F; Landrum, Emma Jean
1958-01-01
Schlieren photographs have been compiled of the two-dimensional flow at transonic speeds past 37 airfoils. These airfoils have variously shaped profiles, and some are related in thickness and camber. The data for these airfoils were analyzed to provide basic information on the flow changes involved and to determine factors affecting transonic-flow attachment, which is a transition from separated to unseparated flow at the leading edges of two-dimensional airfoils at fixed angles as the subsonic Mach number is increased.
An empirically-based model for the lift coefficients of twisted airfoils with leading-edge tubercles
NASA Astrophysics Data System (ADS)
Ni, Zao; Su, Tsung-chow; Dhanak, Manhar
2018-04-01
Experimental data for untwisted airfoils are utilized to propose a model for predicting the lift coefficients of twisted airfoils with leading-edge tubercles. The effectiveness of the empirical model is verified through comparison with results of a corresponding computational fluid-dynamic (CFD) study. The CFD study is carried out for both twisted and untwisted airfoils with tubercles, the latter shown to compare well with available experimental data. Lift coefficients of twisted airfoils predicted from the proposed empirically-based model match well with the corresponding coefficients determined using the verified CFD study. Flow details obtained from the latter provide better insight into the underlying mechanism and behavior at stall of twisted airfoils with leading edge tubercles.
Robustness Analysis and Optimally Robust Control Design via Sum-of-Squares
NASA Technical Reports Server (NTRS)
Dorobantu, Andrei; Crespo, Luis G.; Seiler, Peter J.
2012-01-01
A control analysis and design framework is proposed for systems subject to parametric uncertainty. The underlying strategies are based on sum-of-squares (SOS) polynomial analysis and nonlinear optimization to design an optimally robust controller. The approach determines a maximum uncertainty range for which the closed-loop system satisfies a set of stability and performance requirements. These requirements, de ned as inequality constraints on several metrics, are restricted to polynomial functions of the uncertainty. To quantify robustness, SOS analysis is used to prove that the closed-loop system complies with the requirements for a given uncertainty range. The maximum uncertainty range, calculated by assessing a sequence of increasingly larger ranges, serves as a robustness metric for the closed-loop system. To optimize the control design, nonlinear optimization is used to enlarge the maximum uncertainty range by tuning the controller gains. Hence, the resulting controller is optimally robust to parametric uncertainty. This approach balances the robustness margins corresponding to each requirement in order to maximize the aggregate system robustness. The proposed framework is applied to a simple linear short-period aircraft model with uncertain aerodynamic coefficients.
NASA Astrophysics Data System (ADS)
Hou, Liqiang; Cai, Yuanli; Liu, Jin; Hou, Chongyuan
2016-04-01
A variable fidelity robust optimization method for pulsed laser orbital debris removal (LODR) under uncertainty is proposed. Dempster-shafer theory of evidence (DST), which merges interval-based and probabilistic uncertainty modeling, is used in the robust optimization. The robust optimization method optimizes the performance while at the same time maximizing its belief value. A population based multi-objective optimization (MOO) algorithm based on a steepest descent like strategy with proper orthogonal decomposition (POD) is used to search robust Pareto solutions. Analytical and numerical lifetime predictors are used to evaluate the debris lifetime after the laser pulses. Trust region based fidelity management is designed to reduce the computational cost caused by the expensive model. When the solutions fall into the trust region, the analytical model is used to reduce the computational cost. The proposed robust optimization method is first tested on a set of standard problems and then applied to the removal of Iridium 33 with pulsed lasers. It will be shown that the proposed approach can identify the most robust solutions with minimum lifetime under uncertainty.
An experimental study of an airfoil with a bio-inspired leading edge device at high angles of attack
NASA Astrophysics Data System (ADS)
Mandadzhiev, Boris A.; Lynch, Michael K.; Chamorro, Leonardo P.; Wissa, Aimy A.
2017-09-01
Robust and predictable aerodynamic performance of unmanned aerial vehicles at the limits of their design envelope is critical for safety and mission adaptability. Deployable aerodynamic surfaces from the wing leading or trailing edges are often used to extend the aerodynamic envelope (e.g. slats and flaps). Birds have also evolved feathers at the leading edge (LE) of their wings, known as the alula, which enables them to perform high angles of attack maneuvers. In this study, a series of wind tunnel experiments are performed to quantify the effect of various deployment parameters of an alula-like LE device on the aerodynamic performance of a cambered airfoil (S1223) at stall and post stall conditions. The alula relative angle of attack, measured from the mean chord of the airfoil, is varied to modulate tip-vortex strength, while the alula deflection angle is varied to modulate the distance between the tip vortex and the wing surface. Integrated lift force measurements were collected at various alula-inspired device configurations. The effect of the alula-inspired device on the boundary layer velocity profile and turbulence intensity were investigated through hot-wire anemometer measurements. Results show that as alula deflection angle increases, the lift coefficient also increase especially at lower alula relative angles of attack. Moreover, at post stall wing angles of attack, the wake velocity deficit is reduced in the presence of alula device, confirming the mitigation of the wing adverse pressure gradient. The results are in strong agreement with measurements taken on bird wings showing delayed flow reversal and extended range of operational angles of attack. An engineered alula-inspired device has the potential to improve mission adaptability in small unmanned air vehicles during low Reynolds number flight.
Buffeting of NACA 0012 airfoil at high angle of attack
NASA Astrophysics Data System (ADS)
Zhou, Tong; Dowell, Earl
2014-11-01
Buffeting is a fluid instability caused by flow separation or shock wave oscillations in the flow around a bluff body. Typically there is a dominant frequency of these flow oscillations called Strouhal or buffeting frequency. In prior work several researchers at Duke University have noted the analogy between the classic Von Karman Vortex Street behind a bluff body and the flow oscillations that occur for flow around a NACA 0012 airfoil at sufficiently large angle of attack. Lock-in is found for certain combinations of airfoil oscillation (pitching motion) frequencies and amplitudes when the frequency of the airfoil motion is sufficiently close to the buffeting frequency. The goal of this paper is to explore the flow around a static and an oscillating airfoil at high angle of attack by developing a method for computing buffet response. Simulation results are compared with experimental data. Conditions for the onset of buffeting and lock-in of a NACA 0012 airfoil at high angle of attack are determined. Effects of several parameters on lift coefficient and flow response frequency are studied including Reynolds number, angle of attack and blockage ratio of the airfoil size to the wind tunnel dimensions. Also more detailed flow field characteristics are determined. For a static airfoil, a universal Strouhal number scaling has been found for angles of attack from 30° to 90°, where the flow around airfoil is fully separated. For an oscillating airfoil, conditions for lock-in are discussed. Differences between the lock-in case and the unlocked case are also studied. The second affiliation: Duke University.
Root region airfoil for wind turbine
Tangler, J.L.; Somers, D.M.
1995-05-23
A thick airfoil is described for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%--26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4--1.6 that has minimum sensitivity to roughness effects. 3 Figs.
NASA Astrophysics Data System (ADS)
Aul'chenko, S. M.; Zamuraev, V. P.
2012-11-01
Mathematical modeling of the influence of forced oscillations of surface elements of a wing airfoil on the shock-wave structure of transonic flow past it has been carried out. The qualitative and quantitative influence of the oscillation parameters on the wave drag of the airfoil has been investigated.
NASA Technical Reports Server (NTRS)
Johnson, W. G., Jr.; Hill, A. S.; Ray, E. J.; Rozendaal, R. A.; Butler, T. W.
1982-01-01
A wind tunnel investigation of an advanced-technology airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT). This investigation represents the first in a series of NASA/U.X. industry two dimensional airfoil studies to be completed in the Advanced Technology Airfoil Test program. Test temperature was varied from ambient to about 100 K at pressures ranging from about 1.2 to 6.0 atm. Mach number was varied from about 0.40 to 0.80. These variables provided a Reynolds number (based on airfoil chord) range from about .0000044 to .00005. This investigation was specifically designed to: (1) test a Boeing advanced airfoil from low to flight-equivalent Reynolds numbers; (2) provide the industry participant (Boeing) with experience in cryogenic wind-tunnel model design and testing techniques; and (3) demonstrate the suitability of the 0.3-m TCT as an airfoil test facility. All the objectives of the cooperative test were met. Data are included which demonstrate the effects of fixed transition, Mach number, and Reynolds number on the aerodynamic characteristics of the airfoil. Also included are remarks on the model design, the model structural integrity, and the overall test experience.
On the influence of airfoil deviations on the aerodynamic performance of wind turbine rotors
NASA Astrophysics Data System (ADS)
Winstroth, J.; Seume, J. R.
2016-09-01
The manufacture of large wind turbine rotor blades is a difficult task that still involves a certain degree of manual labor. Due to the complexity, airfoil deviations between the design airfoils and the manufactured blade are certain to arise. Presently, the understanding of the impact of manufacturing uncertainties on the aerodynamic performance is still incomplete. The present work analyzes the influence of a series of airfoil deviations likely to occur during manufacturing by means of Computational Fluid Dynamics and the aeroelastic code FAST. The average power production of the NREL 5MW wind turbine is used to evaluate the different airfoil deviations. Analyzed deviations include: Mold tilt towards the leading and trailing edge, thick bond lines, thick bond lines with cantilever correction, backward facing steps and airfoil waviness. The most severe influences are observed for mold tilt towards the leading and thick bond lines. By applying the cantilever correction, the influence of thick bond lines is almost compensated. Airfoil waviness is very dependent on amplitude height and the location along the surface of the airfoil. Increased influence is observed for backward facing steps, once they are high enough to trigger boundary layer transition close to the leading edge.
NASA Technical Reports Server (NTRS)
Addy, Harold E., Jr.; Potapczuk, Mark G.; Sheldon, David W.
1997-01-01
This report presents results from the first icing tests performed in the Modem Airfoils program. Two airfoils have been subjected to icing tests in the NASA Lewis Icing Research Tunnel (IRT). Both airfoils were two dimensional airfoils; one was representative of a commercial transport airfoil while the other was representative of a business jet airfoil. The icing test conditions were selected from the FAR Appendix C envelopes. Effects on aerodynamic performance are presented including the effects of varying amounts of glaze ice as well as the effects of approximately the same amounts of glaze, mixed, and rime ice. Actual ice shapes obtained in these tests are also presented for these cases. In addition, comparisons are shown between ice shapes from the tests and ice shapes predicted by the computer code, LEWICE for similar conditions. Significant results from the tests are that relatively small amounts of ice can have nearly as much effect on airfoil lift coefficient as much greater amounts of ice and that glaze ice usually has a more detrimental effect than either rime or mixed ice. LEWICE predictions of ice shapes, in general, compared reasonably well with ice shapes obtained in the IRT, although differences in details of the ice shapes were observed.
NASA Astrophysics Data System (ADS)
WANG, Qingrong; ZHU, Changfeng; LI, Ying; ZHANG, Zhengkun
2017-06-01
Considering the time dependence of emergency logistic network and complexity of the environment that the network exists in, in this paper the time dependent network optimization theory and robust discrete optimization theory are combined, and the emergency logistics dynamic network optimization model with characteristics of robustness is built to maximize the timeliness of emergency logistics. On this basis, considering the complexity of dynamic network and the time dependence of edge weight, an improved ant colony algorithm is proposed to realize the coupling of the optimization algorithm and the network time dependence and robustness. Finally, a case study has been carried out in order to testify validity of this robustness optimization model and its algorithm, and the value of different regulation factors was analyzed considering the importance of the value of the control factor in solving the optimal path. Analysis results show that this model and its algorithm above-mentioned have good timeliness and strong robustness.
Parametric Investigation of a High-Lift Airfoil at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Lin, John C.; Dominik, Chet J.
1997-01-01
A new two-dimensional, three-element, advanced high-lift research airfoil has been tested in the NASA Langley Research Center s Low-Turbulence Pressure Tunnel at a chord Reynolds number up to 1.6 x 107. The components of this high-lift airfoil have been designed using a incompressible computational code (INS2D). The design was to provide high maximum-lift values while maintaining attached flow on the single-segment flap at landing conditions. The performance of the new NASA research airfoil is compared to a similar reference high-lift airfoil. On the new high-lift airfoil the effects of Reynolds number on slat and flap rigging have been studied experimentally, as well as the Mach number effects. The performance trend of the high-lift design is comparable to that predicted by INS2D over much of the angle-of-attack range. However, the code did not accurately predict the airfoil performance or the configuration-based trends near maximum lift where the compressibility effect could play a major role.
A two dimensional study of rotor/airfoil interaction in hover
NASA Technical Reports Server (NTRS)
Lee, Chyang S.
1988-01-01
A two dimensional model for the chordwise flow near the wing tip of the tilt rotor in hover is presented. The airfoil is represented by vortex panels and the rotor is modeled by doublet panels. The rotor slipstream and the airfoil wake are simulated by free point vortices. Calculations on a 20 percent thick elliptical airfoil under a uniform rotor inflow are performed. Variations on rotor size, spacing between the rotor and the airfoil, ground effect, and the influence upper surface blowing in download reduction are analyzed. Rotor size has only a minor influence on download when it is small. Increase of the rotor/airfoil spacing causes a gradual decrease on download. Proximity to the ground effectively reduces the download and makes the wake unsteady. The surface blowing changes the whole flow structure and significantly reduces the download within the assumption of a potential solution. Improvement on the present model is recommended to estimate the wall jets induced suction on the airfoil lower surface.
Computer programs for smoothing and scaling airfoil coordinates
NASA Technical Reports Server (NTRS)
Morgan, H. L., Jr.
1983-01-01
Detailed descriptions are given of the theoretical methods and associated computer codes of a program to smooth and a program to scale arbitrary airfoil coordinates. The smoothing program utilizes both least-squares polynomial and least-squares cubic spline techniques to smooth interatively the second derivatives of the y-axis airfoil coordinates with respect to a transformed x-axis system which unwraps the airfoil and stretches the nose and trailing-edge regions. The corresponding smooth airfoil coordinates are then determined by solving a tridiagonal matrix of simultaneous cubic-spline equations relating the y-axis coordinates and their corresponding second derivatives. A technique for computing the camber and thickness distribution of the smoothed airfoil is also discussed. The scaling program can then be used to scale the thickness distribution generated by the smoothing program to a specific maximum thickness which is then combined with the camber distribution to obtain the final scaled airfoil contour. Computer listings of the smoothing and scaling programs are included.
Airfoil Design and Optimization by the One-Shot Method
NASA Technical Reports Server (NTRS)
Kuruvila, G.; Taasan, Shlomo; Salas, M. D.
1995-01-01
An efficient numerical approach for the design of optimal aerodynamic shapes is presented in this paper. The objective of any optimization problem is to find the optimum of a cost function subject to a certain state equation (governing equation of the flow field) and certain side constraints. As in classical optimal control methods, the present approach introduces a costate variable (Lagrange multiplier) to evaluate the gradient of the cost function. High efficiency in reaching the optimum solution is achieved by using a multigrid technique and updating the shape in a hierarchical manner such that smooth (low-frequency) changes are done separately from high-frequency changes. Thus, the design variables are changed on a grid where their changes produce nonsmooth (high-frequency) perturbations that can be damped efficiently by the multigrid. The cost of solving the optimization problem is approximately two to three times the cost of the equivalent analysis problem.
Airfoil optimization by the one-shot method
NASA Technical Reports Server (NTRS)
Kuruvila, G.; Taasan, Shlomo; Salas, M. D.
1994-01-01
An efficient numerical approach for the design of optimal aerodynamic shapes is presented in this paper. The objective of any optimization problem is to find the optimum of a cost function subject to a certain state equation (Governing equation of the flow field) and certain side constraints. As in classical optimal control methods, the present approach introduces a costate variable (Language multiplier) to evaluate the gradient of the cost function. High efficiency in reaching the optimum solution is achieved by using a multigrid technique and updating the shape in a hierarchical manner such that smooth (low-frequency) changes are done separately from high-frequency changes. Thus, the design variables are changed on a grid where their changes produce nonsmooth (high-frequency) perturbations that can be damped efficiently by the multigrid. The cost of solving the optimization problem is approximately two to three times the cost of the equivalent analysis problem.
Dynamic stall study of a multi-element airfoil
NASA Technical Reports Server (NTRS)
Tung, Chee; Mcalister, Kenneth W.; Wang, Clin M.
1992-01-01
Unsteady flow behavior and load characteristics of a VR-7 airfoil with and without a slat were studied in the water tunnel of the Aeroflightdynamics Directorate, NASA Ames Research Center. Both airfoils were oscillated sinusoidally between 5 and 25 degrees at a Reynolds number of 200,000 to obtain the unsteady lift, drag and pitching moment data. A fluorescing dye was released from an orifice located at the leading edge of the airfoil for the purpose of visualizing the boundary layer and wake flow. The flow field and load predictions of an incompressible Navier-Stokes code based on a velocity-vorticity formulation were compared with the test data. The test and predictions both confirm that the slatted VR-7 airfoil delays both static and dynamic stall as compared to the VR-7 airfoil alone.
Separation control of NACA0015 airfoil using plasma actuators
NASA Astrophysics Data System (ADS)
Harada, Daisuke; Sakakibara, Jun
2017-11-01
Separation control of NACA0015 airfoil by means of plasma actuators was investigated. Plasma actuators in spanwise intermittent layout on the suction surface of the airfoil were activated with spanwise phase difference φ = 0 or φ = π in the case of dimensionless burst frequencyF+ = 6 and F+ = 0.5 at Re = 6.3 ×104 . The lift and drag of the airfoil were measured using a two component force balance. The flow around the airfoil was measured by PIV analysis. In the condition of F+ = 6 and φ = π at around stall angle, which is 10 degrees, the lift-to-drag ratio was higher than that ofF+ = 6 and φ = 0 . Therefore, it was confirmed that aerodynamic characteristics of the airfoil improved by disturbances with temporal and spatial phase difference.
Scaling laws for testing of high lift airfoils under heavy rainfall
NASA Technical Reports Server (NTRS)
Bilanin, A. J.
1985-01-01
The results of studies regarding the effect of rainfall about aircraft are briefly reviewed. It is found that performance penalties on airfoils have been identified in subscale tests. For this reason, it is of great importance that scaling laws be dveloped to aid in the extrapolation of these data to fullscale. The present investigation represents an attempt to develop scaling laws for testing subscale airfoils under heavy rain conditions. Attention is given to rain statistics, airfoil operation in heavy rain, scaling laws, thermodynamics of condensation and/or evaporation, rainfall and airfoil scaling, aspects of splash back, film thickness, rivulets, and flap slot blockage. It is concluded that the extrapolation of airfoil performance data taken at subscale under simulated heavy rain conditions to fullscale must be undertaken with caution.
Experimental and simulated control of lift using trailing edge devices
NASA Astrophysics Data System (ADS)
Cooperman, A.; Blaylock, M.; van Dam, C. P.
2014-12-01
Two active aerodynamic load control (AALC) devices coupled with a control algorithm are shown to decrease the change in lift force experienced by an airfoil during a change in freestream velocity. Microtabs are small (1% chord) surfaces deployed perpendicular to an airfoil, while microjets are pneumatic jets with flow perpendicular to the surface of the airfoil near the trailing edge. Both devices are capable of producing a rapid change in an airfoil's lift coefficient. A control algorithm for microtabs has been tested in a wind tunnel using a modified S819 airfoil, and a microjet control algorithm has been simulated for a NACA 0012 airfoil using OVERFLOW. In both cases, the AALC devices have shown the ability to mitigate the changes in lift during a gust.
Suction and Blowing Flow Control on Airfoil for Drag Reduction in Subsonic Flow
NASA Astrophysics Data System (ADS)
Baljit, S. S.; Saad, M. R.; Nasib, A. Z.; Sani, A.; Rahman, M. R. A.; Idris, A. C.
2017-10-01
Lift force is produced from a pressure difference between the pressures acting in upper and lower surfaces. Therefore, flow becomes detached from the surface of the airfoil at separation point and form vortices. These vortices affect the aerodynamic performance of the airfoil in term of lift and drag coefficient. Therefore, this study is investigating the effect of suction and jet blowing in boundary layer separation control on NACA 0012 airfoil in a subsonic wind tunnel. The experiment examined both methods at the position of 25% of the chord-length of the airfoil at Reynolds number 1.2 × 105. The findings show that suction and jet blowing affect the aerodynamic performance of NACA 0012 airfoil and can be an effective means for boundary layer separation control in subsonic flow.
Prediction of circulation control performance characteristics for Super STOL and STOL applications
NASA Astrophysics Data System (ADS)
Naqvi, Messam Abbas
The rapid air travel growth during the last three decades, has resulted in runway congestion at major airports. The current airports infrastructure will not be able to support the rapid growth trends expected in the next decade. Changes or upgrades in infrastructure alone would not be able to satisfy the growth requirements, and new airplane concepts such as the NASA proposed Super Short Takeoff and Landing and Extremely Short Takeoff & Landing (ESTOL) are being vigorously pursued. Aircraft noise pollution during Takeoff & Landing is another serious concern and efforts are aimed to reduce the airframe noise produced by Conventional High Lift Devices during Takeoff & Landing. Circulation control technology has the prospect of being a good alternative to resolve both the aforesaid issues. Circulation control airfoils are not only capable of producing very high values of lift (Cl values in excess of 8.0) at zero degree angle of attack, but also eliminate the noise generated by the conventional high lift devices and their associated weight penalty as well as their complex operation and storage. This will ensure not only satisfying the small takeoff and landing distances, but minimal acoustic signature in accordance with FAA requirements. The Circulation Control relies on the tendency of an emanating wall jet to independently control the circulation and lift on an airfoil. Unlike, conventional airfoil where rear stagnation point is located at the sharp trailing edge, circulation control airfoils possess a round trailing edge, therefore the rear stagnation point is free to move. The location of rear stagnation point is controlled by the blown jet momentum. This provides a secondary control in the form of jet momentum with which the lift generated can be controlled rather the only available control of incidence (angle of attack) in case of conventional airfoils. The use of Circulation control despite its promising potential has been limited only to research applications due to the lack of a simple prediction capability. This research effort was focused on the creation of a rapid prediction capability of Circulation Control Aerodynamic Characteristics which could help designers with rapid performance estimates for design space exploration. A morphological matrix was created with the available set of options which could be chosen to create this prediction capability starting with purely analytical physics based modeling to high fidelity CFD codes. Based on the available constraints, and desired accuracy meta-models have been created around the two dimensional circulation control performance results computed using Navier Stokes Equations (Computational Fluid Dynamics). DSS2, a two dimensional RANS code written by Professor Lakshmi Sankar was utilized for circulation control airfoil characteristics. The CFD code was first applied to the NCCR 1510-7607N airfoil to validate the model with available experimental results. It was then applied to compute the results of a fractional factorial design of experiments array. Metamodels were formulated using the neural networks to the results obtained from the Design of Experiments. Additional validation runs were performed to validate the model predictions. Metamodels are not only capable of rapid performance prediction, but also help generate the relation trends of response matrices with control variables and capture the complex interactions between control variables. Quantitative as well as qualitative assessments of results were performed by computation of aerodynamic forces & moments and flow field visualizations. Wing characteristics in three dimensions were obtained by integration over the whole wing using Prandtl's Wing Theory. The baseline Super STOL configuration [3] was then analyzed with the application of circulation control technology. The desired values of lift and drag to achieve the target values of Takeoff & Landing performance were compared with the optimal configurations obtained by the model. The same optimal configurations were then subjected to Super STOL cruise conditions to perform a trade off analysis between Takeoff and Cruise Performance. Supercritical airfoils modified for circulation control were also thoroughly analyzed for Takeoff and Cruise performance and may constitute a viable option for Super STOL & STOL Designs. The prediction capability produced by this research effort can be integrated with the current conceptual aircraft modeling & simulation framework. The prediction tool is applicable within the selected ranges of each variable, but methodology and formulation scheme adopted can be applied to any other design space exploration.
NASA Astrophysics Data System (ADS)
Bukhari, Hassan J.
2017-12-01
In this paper a framework for robust optimization of mechanical design problems and process systems that have parametric uncertainty is presented using three different approaches. Robust optimization problems are formulated so that the optimal solution is robust which means it is minimally sensitive to any perturbations in parameters. The first method uses the price of robustness approach which assumes the uncertain parameters to be symmetric and bounded. The robustness for the design can be controlled by limiting the parameters that can perturb.The second method uses the robust least squares method to determine the optimal parameters when data itself is subjected to perturbations instead of the parameters. The last method manages uncertainty by restricting the perturbation on parameters to improve sensitivity similar to Tikhonov regularization. The methods are implemented on two sets of problems; one linear and the other non-linear. This methodology will be compared with a prior method using multiple Monte Carlo simulation runs which shows that the approach being presented in this paper results in better performance.
Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets
NASA Technical Reports Server (NTRS)
Volino, Ralph J.; Ibrahim, Mounir B.; Kartuzova, Olga
2010-01-01
Motivation - Higher loading on Low-Pressure Turbine (LPT) airfoils: Reduce airfoil count, weight, cost. Increase efficiency, and Limited by suction side separation. Growing understanding of transition, separation, wake effects: Improved models. Take advantage of wakes. Higher lift airfoils in use. Further loading increases may require flow control: Passive: trips, dimples, etc. Active: plasma actuators, vortex generator jets (VGJs). Can increased loading offset higher losses on high lift airfoils. Objectives: Advance knowledge of boundary layer separation and transition under LPT conditions. Demonstrate, improve understanding of separation control with pulsed VGJs. Produce detailed experimental data base. Test and develop computational models.
Impingement of Water Droplets on NACA 65A004 Airfoil at 8 deg Angle of Attack
NASA Technical Reports Server (NTRS)
Brun, R. J.; Gallagher, H. M.; Vogt, D. E.
1954-01-01
The trajectories of droplets in the air flowing past an NACA 65AO04 airfoil at an angle of attack of 8 deg were determined.. The amount of water in droplet form impinging on the airfoil, the area of droplet impingement, and the rate of droplet impingement per unit area on the airfoil surface were calculated from the trajectories and presented to cover a large range of flight and atmospheric conditions. These impingement characteristics are compared briefly with those previously reported for the same airfoil at an angle of attack of 4 deg.
An Exploratory Investigation of a Slotted, Natural-Laminar-Flow Airfoil
NASA Technical Reports Server (NTRS)
Somers, Dan M.
2012-01-01
A 15-percent-thick, slotted, natural-laminar-flow (SNLF) airfoil, the S103, for general aviation applications has been designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The two primary objectives of high maximum lift and low profile drag have been achieved. The constraints on the pitching moment and the airfoil thickness have been satisfied. The airfoil exhibits a rapid stall, which does not meet the design goal. Comparisons of the theoretical and experimental results show good agreement. Comparison with the baseline, NASA NLF(1)-0215F airfoil confirms the achievement of the objectives.
Experimental validation of structural optimization methods
NASA Technical Reports Server (NTRS)
Adelman, Howard M.
1992-01-01
The topic of validating structural optimization methods by use of experimental results is addressed. The need for validating the methods as a way of effecting a greater and an accelerated acceptance of formal optimization methods by practicing engineering designers is described. The range of validation strategies is defined which includes comparison of optimization results with more traditional design approaches, establishing the accuracy of analyses used, and finally experimental validation of the optimization results. Examples of the use of experimental results to validate optimization techniques are described. The examples include experimental validation of the following: optimum design of a trussed beam; combined control-structure design of a cable-supported beam simulating an actively controlled space structure; minimum weight design of a beam with frequency constraints; minimization of the vibration response of helicopter rotor blade; minimum weight design of a turbine blade disk; aeroelastic optimization of an aircraft vertical fin; airfoil shape optimization for drag minimization; optimization of the shape of a hole in a plate for stress minimization; optimization to minimize beam dynamic response; and structural optimization of a low vibration helicopter rotor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newpower, M; Ge, S; Mohan, R
Purpose: To report an approach to quantify the normal tissue sparing for 4D robustly-optimized versus PTV-optimized IMPT plans. Methods: We generated two sets of 90 DVHs from a patient’s 10-phase 4D CT set; one by conventional PTV-based optimization done in the Eclipse treatment planning system, and the other by an in-house robust optimization algorithm. The 90 DVHs were created for the following scenarios in each of the ten phases of the 4DCT: ± 5mm shift along x, y, z; ± 3.5% range uncertainty and a nominal scenario. A Matlab function written by Gay and Niemierko was modified to calculate EUDmore » for each DVH for the following structures: esophagus, heart, ipsilateral lung and spinal cord. An F-test determined whether or not the variances of each structure’s DVHs were statistically different. Then a t-test determined if the average EUDs for each optimization algorithm were statistically significantly different. Results: T-test results showed each structure had a statistically significant difference in average EUD when comparing robust optimization versus PTV-based optimization. Under robust optimization all structures except the spinal cord received lower EUDs than PTV-based optimization. Using robust optimization the average EUDs decreased 1.45% for the esophagus, 1.54% for the heart and 5.45% for the ipsilateral lung. The average EUD to the spinal cord increased 24.86% but was still well below tolerance. Conclusion: This work has helped quantify a qualitative relationship noted earlier in our work: that robust optimization leads to plans with greater normal tissue sparing compared to PTV-based optimization. Except in the case of the spinal cord all structures received a lower EUD under robust optimization and these results are statistically significant. While the average EUD to the spinal cord increased to 25.06 Gy under robust optimization it is still well under the TD50 value of 66.5 Gy from Emami et al. Supported in part by the NCI U19 CA021239.« less
Airfoil seal system for gas turbine engine
None, None
2013-06-25
A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.
NASA Technical Reports Server (NTRS)
Noonan, K. W.
1981-01-01
An investigation was conducted in the Langley 6- by 28-Inch Transonic Tunnel to determine the two dimensional aerodynamic characteristics of a 10-percent-thick helicopter rotor airfoil at Mach numbers from 0.33 to 0.87 and respective Reynolds numbers from 4.9 x 10 to the 6th to 9.8 x 10 to the 6th. This airfoil, designated the RC-10(N)-1, was also investigated at Reynolds numbers from 3.0 x 10 to the 6th to 7.3 x 10 to the 6th at respective Mach numbers of 0.33 to 0.83 for comparison wit the SC 1095 (with tab) airfoil. The RC-10(N)-1 airfoil was designed by the use of a viscous transonic analysis code. The results of the investigation indicate that the RC-10(N)-1 airfoil met all the design goals. At a Reynolds number of about 9.4 x 10 to the 6th the drag divergence Mach number at zero normal-force coefficient was 0.815 with a corresponding pitching-moment coefficient of zero. The drag divergence Mach number at a normal-force coefficient of 0.9 and a Reynolds number of about 8.0 x 10 to the 6th was 0.61. The drag divergence Mach number of this new airfoil was higher than that of the SC 1095 airfoil at normal-force coefficients above 0.3. Measurements in the same wind tunnel at comparable Reynolds numbers indicated that the maximum normal-force coefficient of the RC-10(N)-1 airfoil was higher than that of the NACA 0012 airfoil for Mach numbers above about 0.35 and was about the same as that of the SC 1095 airfoil for Mach numbers up to 0.5.
A robust optimization methodology for preliminary aircraft design
NASA Astrophysics Data System (ADS)
Prigent, S.; Maréchal, P.; Rondepierre, A.; Druot, T.; Belleville, M.
2016-05-01
This article focuses on a robust optimization of an aircraft preliminary design under operational constraints. According to engineers' know-how, the aircraft preliminary design problem can be modelled as an uncertain optimization problem whose objective (the cost or the fuel consumption) is almost affine, and whose constraints are convex. It is shown that this uncertain optimization problem can be approximated in a conservative manner by an uncertain linear optimization program, which enables the use of the techniques of robust linear programming of Ben-Tal, El Ghaoui, and Nemirovski [Robust Optimization, Princeton University Press, 2009]. This methodology is then applied to two real cases of aircraft design and numerical results are presented.
Aeronautical Engineering: A Continuing Bibliography with Indexes (Supplement 218)
1987-10-01
reviews the current situation and the history of development of cast turbine blades of Chinese aircraft engines for nearly three decades since 1956... aviation oils - Causes gas turbine engine p 592 N87-23577 MIDAIR COLLISIONS and consequences p 604 A87-40925 Aircraft Dynamic Response to Damaged and...numerical solution of the Navier-Stokes equations Numerical optimization design of transonic airfoils compressors of aircraft gas turbine engines p 553 A87
Wang, Chenglei; Tang, Hui
2018-05-25
In this study, we explore the use of synthetic jet (SJ) in manipulating the vortices around a rigid heaving airfoil, so as to enhance its aerodynamic performance. The airfoil heaves at two fixed pitching angles, with the Strouhal number, reduced frequency and Reynolds number chosen as St = 0.3, k = 0.25 and Re = 100, respectively, all falling in the ranges for natural flyers. As such, the vortex force plays a dominant role in determining the airfoil's aerodynamic performance. A pair of in-phase SJs is implemented on the airfoil's upper and lower surfaces, operating with the same strength but in opposite directions. Such a fluid-structure interaction problem is numerically solved using a lattice Boltzmann method based numerical framework. It is found that, as the airfoil heaves with zero pitching angle, its lift and drag can be improved concurrently when the SJ phase angle [Formula: see text] relative to the heave motion varies between [Formula: see text] and [Formula: see text]. But this concurrent improvement does not occur as the airfoil heaves with [Formula: see text] pitching angle. Detailed inspection of the vortex evolution and fluid stress over the airfoil surface reveals that, if at good timing, the suction and blowing strokes of the SJ pair can effectively delay or promote the shedding of leading edge vortices, and mitigate or even eliminate the generation of trailing edge vortices, so as to enhance the airfoil's aerodynamic performance. Based on these understandings, an intermittent operation of the SJ pair is then proposed to realize concurrent lift and drag improvement for the heaving airfoil with [Formula: see text] pitching angle.
NASA Astrophysics Data System (ADS)
Colera, Manuel; Pérez-Saborid, Miguel
2017-09-01
A finite differences scheme is proposed in this work to compute in the time domain the compressible, subsonic, unsteady flow past an aerodynamic airfoil using the linearized potential theory. It improves and extends the original method proposed in this journal by Hariharan, Ping and Scott [1] by considering: (i) a non-uniform mesh, (ii) an implicit time integration algorithm, (iii) a vectorized implementation and (iv) the coupled airfoil dynamics and fluid dynamic loads. First, we have formulated the method for cases in which the airfoil motion is given. The scheme has been tested on well known problems in unsteady aerodynamics -such as the response to a sudden change of the angle of attack and to a harmonic motion of the airfoil- and has been proved to be more accurate and efficient than other finite differences and vortex-lattice methods found in the literature. Secondly, we have coupled our method to the equations governing the airfoil dynamics in order to numerically solve problems where the airfoil motion is unknown a priori as happens, for example, in the cases of the flutter and the divergence of a typical section of a wing or of a flexible panel. Apparently, this is the first self-consistent and easy-to-implement numerical analysis in the time domain of the compressible, linearized coupled dynamics of the (generally flexible) airfoil-fluid system carried out in the literature. The results for the particular case of a rigid airfoil show excellent agreement with those reported by other authors, whereas those obtained for the case of a cantilevered flexible airfoil in compressible flow seem to be original or, at least, not well-known.
Unsteady aerodynamic behavior of an airfoil with and without a slat
NASA Technical Reports Server (NTRS)
Tung, Chee; Mcalister, Kenneth W.; Wang, Clin M.
1993-01-01
Unsteady flow behavior and load characteristics of a 2D VR-7 airfoil with and without a leading-edge slat were studied in the water tunnel of the Aeroflightdynamics Directorate, NASA Ames Research Center. Both airfoils were oscillated sinusoidally between 5 and 25 deg at Re = 200,000 to obtain the unsteady lift, drag, and pitching moment data. A fluorescent dye was released from an orifice located at the leading edge of the airfoil for the purpose of visualizing the boundary layer and wake flow. The flowfield and load predictions of an incompressible Navier-Stokes code based on a velocity-vorticity formulation were compared with the test data. The test and predictions both confirm that the slatted VR-7 airfoil delays both static and dynamic stall as compared to the VR-7 airfoil alone.
Turbine blade squealer tip rail with fence members
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, David A
2012-11-20
A turbine blade includes an airfoil, a blade tip section, a squealer tip rail, and a plurality of chordally spaced fence members. The blade tip section includes a blade tip floor located at an end of the airfoil distal from the root. The blade tip floor includes a pressure side and a suction side joined together at chordally spaced apart leading and trailing edges of the airfoil. The squealer tip rail extends radially outwardly from the blade tip floor adjacent to the suction side and extends from a first location adjacent to the airfoil trailing edge to a second locationmore » adjacent to the airfoil leading edge. The fence members are located between the airfoil leading and trailing edges and extend radially outwardly from the blade tip floor and axially from the squealer tip rail toward the pressure side.« less
Transonic aerodynamic characteristics of the 10-percent-thick NASA supercritical airfoil 31
NASA Technical Reports Server (NTRS)
Harris, C. D.
1975-01-01
Refinements in a 10 percent thick supercritical airfoil (airfoil 31) have produced significant improvements in the drag characteristics compared with those for an earlier supercritical airfoil (airfoil 12) designed for the same normal force coefficient of 0.7. Drag creep was practically eliminated at normal force coefficients between about 0.4 and 0.7 and was greatly reduced at other normal force coefficients. Substantial reductions in the drag levels preceding drag divergence were also achieved at all normal force coefficients. The Mach numbers at which drag diverges were delayed for airfoil 31 at normal force coefficients up to about 0.6 (by approximately 0.01 and 0.02 at normal force coefficients of 0.4 and 0.6, respectively) but drag divergence occurred at slightly lower Mach numbers at higher normal force coefficients.
NASA Technical Reports Server (NTRS)
Riley, Donald R.
2015-01-01
This paper contains a collection of some results of four individual studies presenting calculated numerical values for airfoil aerodynamic stability derivatives in unseparated inviscid incompressible flow due separately to angle-of-attack, pitch rate, flap deflection, and airfoil camber using a discrete vortex method. Both steady conditions and oscillatory motion were considered. Variables include the number of vortices representing the airfoil, the pitch axis / moment center chordwise location, flap chord to airfoil chord ratio, and circular or parabolic arc camber. Comparisons with some experimental and other theoretical information are included. The calculated aerodynamic numerical results obtained using a limited number of vortices provided in each study compared favorably with thin airfoil theory predictions. Of particular interest are those aerodynamic results calculated herein (such as induced drag) that are not readily available elsewhere.
Turbine airfoil to shround attachment
Campbell, Christian X; Morrison, Jay A; James, Allister W; Snider, Raymond G; Eshak, Daniel M; Marra, John J; Wessell, Brian J
2014-05-06
A turbine airfoil (31) with an end portion (42) that tapers (44) toward the end (43) of the airfoil. A ridge (46) extends around the end portion. It has proximal (66) and distal (67) sides. A shroud platform (50) is bi-cast onto the end portion around the ridge without bonding. Cooling shrinks the platform into compression (62) on the end portion (42) of the airfoil. Gaps between the airfoil and platform are formed using a fugitive material (56) in the bi-casting stage. These gaps are designed in combination with the taper angle (44) to accommodate differential thermal expansion while maintaining a gas seal along the contact surfaces. The taper angle (44) may vary from lesser on the pressure side (36) to greater on the suction side (38) of the airfoil. A collar portion (52) of the platform provides sufficient contact area for connection stability.
An analytic study of nonsteady two-phase laminar boundary layer around an airfoil
NASA Technical Reports Server (NTRS)
Hsu, Yu-Kao
1989-01-01
Recently, NASA, FAA, and other organizations have focused their attention upon the possible effects of rain on airfoil performance. Rhode carried out early experiments and concluded that the rain impacting the aircraft increased the drag. Bergrum made numerical calculation for the rain effects on airfoils. Luers and Haines did an analytic investigation and found that heavy rain induces severe aerodynamic penalties including both a momentum penalty due to the impact of the rain and a drag and lift penalty due to rain roughening of the airfoil and fuselage. More recently, Hansman and Barsotti performed experiments and declared that performance degradation of an airfoil in heavy rain is due to the effective roughening of the surface by the water layer. Hansman and Craig did further experimental research at low Reynolds number. E. Dunham made a critical review for the potential influence of rain on airfoil performance. Dunham et al. carried out experiments for the transport type airfoil and concluded that there is a reduction of maximum lift capability with increase in drag. There is a scarcity of published literature in analytic research of two-phase boundary layer around an airfoil. Analytic research is being improved. The following assumptions are made: the fluid flow is non-steady, viscous, and incompressible; the airfoil is represented by a two-dimensional flat plate; and there is only a laminar boundary layer throughout the flow region. The boundary layer approximation is solved and discussed.
NASA Astrophysics Data System (ADS)
Radmard, Rama
1993-03-01
The performance of turbine airfoils is usually predicted by empirical correlations, which however are inadequate for the case of airfoils with maximum thickness to chord ratio (MTCR) higher than 25 percent. Studies were conducted to create a data base from which the performance of turbine airfoils with a MTCR higher than 25 percent could be predicted. A planar cascade consisting of four airfoils was constructed to allow the investigation of the effect of the MTCR on the airfoil performance. Three airfoil sets with MTCR of 15.2 percent (baseline), 26.6 percent, and 48.2 percent were used. Measurements included surface Mach number distributions for the baseline airfoil, total pressure loss coefficients, and deviation angles for isentropic exit Mach numbers of 0.7 (design), 0.9, and 1.1. The effect of varying the inlet boundary layer thickness and free-stream turbulence level was also examined. The results showed that the 26.6 percent airfoil produced lower losses as predicted by the Kacker and Okapuu (1982) correlation. The introduction of turbulence produced a significant redistribution of losses in the exit plane. The secondary loss decreased as the leading edge diameter was increased. Except for the baseline blade where high under-turning in exit flow angle was observed, the airfoils showed a decrease in over-turning with increasing exit Mach number, as predicted by Ainley and Mathieson (1951).
Validation of a High-Order Prefactored Compact Scheme on Nonlinear Flows with Complex Geometries
NASA Technical Reports Server (NTRS)
Hixon, Ray; Mankbadi, Reda R.; Povinelli, L. A. (Technical Monitor)
2000-01-01
Three benchmark problems are solved using a sixth-order prefactored compact scheme employing an explicit 10th-order filter with optimized fourth-order Runge-Kutta time stepping. The problems solved are the following: (1) propagation of sound waves through a transonic nozzle; (2) shock-sound interaction; and (3) single airfoil gust response. In the first two problems, the spatial accuracy of the scheme is tested on a stretched grid, and the effectiveness of boundary conditions is shown. The solution stability and accuracy near a shock discontinuity is shown as well. Also, 1-D nonlinear characteristic boundary conditions will be evaluated. In the third problem, a nonlinear Euler solver will be used that solves the equations in generalized curvilinear coordinates using the chain rule transformation. This work, continuing earlier work on flat-plate cascades and Joukowski airfoils, will focus mainly on the effect of the grid and boundary conditions on the accuracy of the solution. The grids were generated using a commercially available grid generator, GridPro/az3000.
A review of parametric approaches specific to aerodynamic design process
NASA Astrophysics Data System (ADS)
Zhang, Tian-tian; Wang, Zhen-guo; Huang, Wei; Yan, Li
2018-04-01
Parametric modeling of aircrafts plays a crucial role in the aerodynamic design process. Effective parametric approaches have large design space with a few variables. Parametric methods that commonly used nowadays are summarized in this paper, and their principles have been introduced briefly. Two-dimensional parametric methods include B-Spline method, Class/Shape function transformation method, Parametric Section method, Hicks-Henne method and Singular Value Decomposition method, and all of them have wide application in the design of the airfoil. This survey made a comparison among them to find out their abilities in the design of the airfoil, and the results show that the Singular Value Decomposition method has the best parametric accuracy. The development of three-dimensional parametric methods is limited, and the most popular one is the Free-form deformation method. Those methods extended from two-dimensional parametric methods have promising prospect in aircraft modeling. Since different parametric methods differ in their characteristics, real design process needs flexible choice among them to adapt to subsequent optimization procedure.
Active Control of Separation From the Flap of a Supercritical Airfoil
NASA Technical Reports Server (NTRS)
Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi
2006-01-01
Zero-mass-flux periodic excitation was applied at several regions on a simplified high-lift system to delay the occurrence of flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge flap and a 25% chord simply hinged trailing edge flap. Detailed flow features were measured in an attempt to identify optimal actuator placement. The measurements included steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization, and particle image velocimetry (PIV). The current paper describes the application of active separation control at several locations on the deflected trailing edge flap. High frequency (F(+) approximately equal to 10) and low frequency amplitude modulation (F(+) sub AM approximately equal to 1) of the high frequency excitation were used for control. It was noted that the same performance gains were obtained with amplitude modulation and required only 30% of the momentum input required by pure sine excitation.
Active Control of Separation From the Flap of a Supercritical Airfoil
NASA Technical Reports Server (NTRS)
Melton, La Tunia Pack; Yao, Chung-Sheng; Seifert, Avi
2003-01-01
Active flow control in the form of periodic zero-mass-flux excitation was applied at several regions on the leading edge and trailing edge flaps of a simplified high-lift system t o delay flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge flap and a 25% chord simply hinged trailing edge flap. Detailed flow features were measured in an attempt to identify optimal actuator placement. The measurements included steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization, and particle image velocimetry (PIV). The current paper describes the application of active separation control at several locations on the deflected trailing edge flap. High frequency (F(+) approx.= 10) and low frequency amplitude modulation (F(+)AM approx.= 1) of the high frequency excitation were used for control. Preliminary efforts to combine leading and trailing edge flap excitations are also reported.
Distribution path robust optimization of electric vehicle with multiple distribution centers
Hao, Wei; He, Ruichun; Jia, Xiaoyan; Pan, Fuquan; Fan, Jing; Xiong, Ruiqi
2018-01-01
To identify electrical vehicle (EV) distribution paths with high robustness, insensitivity to uncertainty factors, and detailed road-by-road schemes, optimization of the distribution path problem of EV with multiple distribution centers and considering the charging facilities is necessary. With the minimum transport time as the goal, a robust optimization model of EV distribution path with adjustable robustness is established based on Bertsimas’ theory of robust discrete optimization. An enhanced three-segment genetic algorithm is also developed to solve the model, such that the optimal distribution scheme initially contains all road-by-road path data using the three-segment mixed coding and decoding method. During genetic manipulation, different interlacing and mutation operations are carried out on different chromosomes, while, during population evolution, the infeasible solution is naturally avoided. A part of the road network of Xifeng District in Qingyang City is taken as an example to test the model and the algorithm in this study, and the concrete transportation paths are utilized in the final distribution scheme. Therefore, more robust EV distribution paths with multiple distribution centers can be obtained using the robust optimization model. PMID:29518169
Study on Trailing Edge Ramp of Supercritical Airfoil
2016-03-30
7 th Asia-Pacific International Symposium on Aerospace Technology, 25 – 27 November 2015, Cairns Study on Trailing Edge Ramp of Supercritical...China Abstract Trailing edge flow control method could improve the performance of supercritical airfoil with a small modification on the original...airfoil. In this paper, a ramp of 2%~7% chord length is sliced near the trailing edge to improve airfoil performance. The trailing edge ramp is
Performance of NACA Eight-Stage Axial-Flow Compressor Designed on the Basis of Airfoil Theory
1944-08-01
TEE BASIS OF AIRFOIL THEORY By John T. Slnnette, Jr., Oscar W. Schey, and J. Austin King Aircraft Engine Research Laboratory Cleveland, Ohio FILE...efficiency can he designed by the proper application of airfoil theory. Aircraft Engine Research laboratory, Hational Advisory Committee for Aeronautlos...Basis of Airfoil Theory AUTHORS): Sinnette, John T.; Schey, Oscar W.; and others ORIGINATING AGENCY: Aircraft Engine Research Laboratory, Cleveland
Turbine blade with tuned damping structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Christian X.; Messmann, Stephen J.
2015-09-01
A turbine blade is provided comprising: a root; an airfoil comprising an external wall extending radially from the root and having a radially outermost portion; and a damping structure. The external wall may comprise first and second side walls joined together to define an inner cavity of the airfoil. The damping structure may be positioned within the airfoil inner cavity and coupled to the airfoil so as to define a tuned mass damper.
S825 and S826 Airfoils: 1994--1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somers, D. M.
2005-01-01
A family of airfoils, the S825 and S826, for 20- to 40-meter, variable-speed and variable-pitch (toward feather), horizontal-axis wind turbines has been designed and analyzed theoretically. The two primary objectives of high maximum lift, insensitive to roughness, and low profile drag have been achieved. The constraints on the pitching moments and the airfoil thicknesses have been satisfied. The airfoils should exhibit docile stalls.
Unsteady Newton-Busemann flow theory. I - Airfoils
NASA Technical Reports Server (NTRS)
Hui, W. H.; Tobak, M.
1981-01-01
Newtonian flow theory for unsteady flow at very high Mach numbers is completed by the addition of a centrifugal force correction to the impact pressures. The correction term is the unsteady counterpart of Busemann's centrifugal force correction to impact pressures in steady flow. For airfoils of arbitary shape, exact formulas for the unsteady pressure and stiffness and damping-in-pitch derivatives are obtained in closed form, which require only numerical quadratures of terms involving the airfoil shape. They are applicable to airfoils of arbitrary thickness having sharp or blunt leading edges. For wedges and thin airfoils these formulas are greatly simplified, and it is proved that the pitching motions of thin airfoils of convex shape and of wedges of arbitrary thickness are always dynamically stable according to Newton-Busemann theory. Leading-edge bluntness is shown to have a favorable effect on the dynamic stability; on the other hand, airfoils of concave shape tend toward dynamic instability over a range of axis positions if the surface curvature exceeds a certain limit. As a byproduct, it is also shown that a pressure formula recently given by Barron and Mandl for unsteady Newtonian flow over a pitching power-law shaped airfoil is erroneous and that their conclusion regarding the effect of pivot position on the dynamic stability is misleading.
Effect of an extendable slat on the stall behavior of a VR-12 airfoil
NASA Technical Reports Server (NTRS)
Dehugues, P. Plantin; Mcalister, K. W.; Tung, C.
1993-01-01
Experimental and computational tests were performed on a VR-12 airfoil to determine if the dynamic-stall behavior that normally accompanies high-angle pitch oscillations could be modified by segmenting the forward portion of the airfoil and extending it ahead of the main element. In the extended position the configuration would appear as an airfoil with a leading-edge slat, and in the retracted position it would appear as a conventional VR-12 airfoil. The calculations were obtained from a numerical code that models the vorticity transport equation for an incompressible fluid. These results were compared with test data from the water tunnel facility of the Aeroflightdynamics Directorate at Ames Research Center. Steady and unsteady flows around both airfoils were examined at angles of attack between 0 and 30 deg. The Reynolds number was fixed at 200,000 and the unsteady pitch oscillations followed a sinusoidal motion described by alpha = alpha(sub m) + 10 deg sin(omega t). The mean angle (alpha(sub m)) was varied from 10 to 20 deg and the reduced frequency from 0.05 to 0.20. The results from the experiment and the calculations show that the extended-slat VR-12 airfoil experiences a delay in both static and dynamic stall not experienced by the basic VR-12 airfoil.
NASA Technical Reports Server (NTRS)
Vargas, Mario; Feo, Alex
2011-01-01
This work presents the results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model placed at the end of the rotating arm was moved at speeds of 50 to 90 m/sec. A monosize droplet generator was employed to produce droplets that were allowed to fall from above, perpendicular to the path of the airfoil at a given location. High speed imaging was employed to observe the interaction between the droplets and the airfoil. The high speed imaging allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. A tracking software program was used to measure from the high speed movies the horizontal and vertical displacement of the droplet against time. The velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of a given droplet from beginning of deformation to breakup and/or hitting the airfoil. Results are presented for droplets with a diameter of 490 micrometers at airfoil speeds of 50, 60, 70, 80 and 90 m/sec
Liu, Wei; Li, Yupeng; Li, Xiaoqiang; Cao, Wenhua; Zhang, Xiaodong
2012-01-01
Purpose: The distal edge tracking (DET) technique in intensity-modulated proton therapy (IMPT) allows for high energy efficiency, fast and simple delivery, and simple inverse treatment planning; however, it is highly sensitive to uncertainties. In this study, the authors explored the application of DET in IMPT (IMPT-DET) and conducted robust optimization of IMPT-DET to see if the planning technique’s sensitivity to uncertainties was reduced. They also compared conventional and robust optimization of IMPT-DET with three-dimensional IMPT (IMPT-3D) to gain understanding about how plan robustness is achieved. Methods: They compared the robustness of IMPT-DET and IMPT-3D plans to uncertainties by analyzing plans created for a typical prostate cancer case and a base of skull (BOS) cancer case (using data for patients who had undergone proton therapy at our institution). Spots with the highest and second highest energy layers were chosen so that the Bragg peak would be at the distal edge of the targets in IMPT-DET using 36 equally spaced angle beams; in IMPT-3D, 3 beams with angles chosen by a beam angle optimization algorithm were planned. Dose contributions for a number of range and setup uncertainties were calculated, and a worst-case robust optimization was performed. A robust quantification technique was used to evaluate the plans’ sensitivity to uncertainties. Results: With no uncertainties considered, the DET is less robust to uncertainties than is the 3D method but offers better normal tissue protection. With robust optimization to account for range and setup uncertainties, robust optimization can improve the robustness of IMPT plans to uncertainties; however, our findings show the extent of improvement varies. Conclusions: IMPT’s sensitivity to uncertainties can be improved by using robust optimization. They found two possible mechanisms that made improvements possible: (1) a localized single-field uniform dose distribution (LSFUD) mechanism, in which the optimization algorithm attempts to produce a single-field uniform dose distribution while minimizing the patching field as much as possible; and (2) perturbed dose distribution, which follows the change in anatomical geometry. Multiple-instance optimization has more knowledge of the influence matrices; this greater knowledge improves IMPT plans’ ability to retain robustness despite the presence of uncertainties. PMID:22755694
Steady inviscid transonic flows over planar airfoils: A search for a simplified procedure
NASA Technical Reports Server (NTRS)
Magnus, R.; Yoshihara, H.
1973-01-01
A finite difference procedure based upon a system of unsteady equations in proper conservation form with either exact or small disturbance steady terms is used to calculate the steady flows over several classes of airfoils. The airfoil condition is fulfilled on a slab whose upstream extremity is a semi-circle overlaying the airfoil leading edge circle. The limitations of the small disturbance equations are demonstrated in an extreme example of a blunt-nosed, aft-cambered airfoil. The necessity of using the equations in proper conservation form to capture the shock properly is stressed. Ability of the steady relaxation procedures to capture the shock is briefly examined.
Wavy flow cooling concept for turbine airfoils
Liang, George
2010-08-31
An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.
Design and Experimental Results for a Natural-Laminar-Flow Airfoil for General Aviation Applications
NASA Technical Reports Server (NTRS)
Somers, D. M.
1981-01-01
A natural-laminar-flow airfoil for general aviation applications, the NLF(1)-0416, was designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low-speed airfoils with the low cruise drag of the NACA 6-series airfoils was achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge was also met. Comparisons of the theoretical and experimental results show excellent agreement. Comparisons with other airfoils, both laminar flow and turbulent flow, confirm the achievement of the basic objective.
Airfoil lance apparatus for homogeneous humidification and sorbent dispersion in a gas stream
Myers, R.B.; Yagiela, A.S.
1990-12-25
An apparatus for spraying an atomized mixture into a gas stream comprises a stream line airfoil member having a large radius leading edge and a small radius trailing edge. A nozzle assembly pierces the trailing edge of the airfoil member and is concentrically surrounded by a nacelle which directs shielding gas from the interior of the airfoil member around the nozzle assembly. Flowable medium to be atomized and atomizing gas for atomizing the medium are supplied in concentric conduits to the nozzle. A plurality of nozzles each surrounded by a nacelle are spaced along the trailing edge of the airfoil member. 3 figs.
NASA Technical Reports Server (NTRS)
Mcghee, Robert J.; Walker, Betty S.; Millard, Betty F.
1988-01-01
Experimental results were obtained for an Eppler 387 airfoil in the Langley Low Turbulence Pressure Tunnel. The tests were conducted over a Mach number range from 0.03 to 0.13 and a chord Reynolds number range for 60,000 to 460,000. Lift and pitching moment data were obtained from airfoil surface pressure measurements and drag data for wake surveys. Oil flow visualization was used to determine laminar separation and turbulent reattachment locations. Comparisons of these results with data on the Eppler 387 airfoil from two other facilities as well as the Eppler airfoil code are included.
NASA Astrophysics Data System (ADS)
Acosta, Gregorio I.
An experimental investigation was taken on a 63-021 NACA airfoil, to characterize lift and drag and how the effects of sinusoidal leading edges affect the aerodynamic properties. A theoretical model is also purposed by implementing a perturbation on thin-airfoil theory. Two sets of airfoils were machined and tested inside a low-speed open circuit wind tunnel. Data from a pressure scanner and particle image velocity will give an insight of how the modified leading edges affect the aerodynamic properties. A Fourier series expansion was used to solve for the lifting-line model, by use of thin-airfoil theory and complex number theory.
Airfoil lance apparatus for homogeneous humidification and sorbent dispersion in a gas stream
Myers, Robert B.; Yagiela, Anthony S.
1990-12-25
An apparatus for spraying an atomized mixture into a gas stream comprises a stream line airfoil member having a large radius leading edge and a small radius trailing edge. A nozzle assembly pierces the trailing edge of the airfoil member and is concentrically surrounded by a nacelle which directs shielding gas from the interior of the airfoil member around the nozzle assembly. Flowable medium to be atomized and atomizing gas for atomizing the medium are supplied in concentric conduits to the nozzle. A plurality of nozzles each surrounded by a nacelle are spaced along the trailing edge of the airfoil member.
A new flow model for highly separated airfoil flows at low speeds
NASA Technical Reports Server (NTRS)
Zumwalt, G. W.; Naik, S. N.
1979-01-01
An analytical model for separated airfoil flows is presented which is based on experimentally observed physical phenomena. These include a free stagnation point aft of the airfoil and a standing vortex in the separated region. A computer program is described which iteratively matches the outer potential flow, the airfoil turbulent boundary layer, the separated jet entrainment, mass conservation in the separated bubble, and the rear stagnation pressure. Separation location and pressure are not specified a priori. Results are presented for surface pressure coefficient and compared with experiment for three angles of attack for a GA(W)-1, 17% thick airfoil.
NASA Technical Reports Server (NTRS)
Harris, C. D.
1974-01-01
Refinements in a 10 percent thick supercritical airfoil produced improvements in the overall drag characteristics at normal force coefficients from about 0.30 to 0.65 compared with earlier supercritical airfoils which were developed for a normal force coefficient of 0.7. The drag divergence Mach number of the improved supercritical airfoil (airfoil 26a) varied from approximately 0.82 at a normal force coefficient to of 0.30, to 0.78 at a normal force coefficient of 0.80 with no drag creep evident. Integrated section force and moment data, surface pressure distributions, and typical wake survey profiles are presented.
NASA Technical Reports Server (NTRS)
Abbott, Ira H; Sherman, Albert
1938-01-01
A preliminary investigation of the stalling processes of four typical airfoil sections was made over the critical range of the Reynolds Number. Motion pictures were taken of the movements of small silk tufts on the airfoil surface as the angle of attack increased through a range of angles including the stall. The boundary-layer flow also at certain angles of attack was indicated by the patterns formed by a suspension of lampblack in oil brushed onto the airfoil surface. These observations were analyzed together with corresponding force-test measurements to derive a picture of the stalling processes of airfoils.
Trade-offs between robustness and small-world effect in complex networks
Peng, Guan-Sheng; Tan, Suo-Yi; Wu, Jun; Holme, Petter
2016-01-01
Robustness and small-world effect are two crucial structural features of complex networks and have attracted increasing attention. However, little is known about the relation between them. Here we demonstrate that, there is a conflicting relation between robustness and small-world effect for a given degree sequence. We suggest that the robustness-oriented optimization will weaken the small-world effect and vice versa. Then, we propose a multi-objective trade-off optimization model and develop a heuristic algorithm to obtain the optimal trade-off topology for robustness and small-world effect. We show that the optimal network topology exhibits a pronounced core-periphery structure and investigate the structural properties of the optimized networks in detail. PMID:27853301
A streamline curvature method for design of supercritical and subcritical airfoils
NASA Technical Reports Server (NTRS)
Barger, R. L.; Brooks, C. W., Jr.
1974-01-01
An airfoil design procedure, applicable to both subcritical and supercritical airfoils, is described. The method is based on the streamline curvature velocity equation. Several examples illustrating this method are presented and discussed.
Optimization of Turbine Blade Design for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Shyy, Wei
1998-01-01
To facilitate design optimization of turbine blade shape for reusable launching vehicles, appropriate techniques need to be developed to process and estimate the characteristics of the design variables and the response of the output with respect to the variations of the design variables. The purpose of this report is to offer insight into developing appropriate techniques for supporting such design and optimization needs. Neural network and polynomial-based techniques are applied to process aerodynamic data obtained from computational simulations for flows around a two-dimensional airfoil and a generic three- dimensional wing/blade. For the two-dimensional airfoil, a two-layered radial-basis network is designed and trained. The performances of two different design functions for radial-basis networks, one based on the accuracy requirement, whereas the other one based on the limit on the network size. While the number of neurons needed to satisfactorily reproduce the information depends on the size of the data, the neural network technique is shown to be more accurate for large data set (up to 765 simulations have been used) than the polynomial-based response surface method. For the three-dimensional wing/blade case, smaller aerodynamic data sets (between 9 to 25 simulations) are considered, and both the neural network and the polynomial-based response surface techniques improve their performance as the data size increases. It is found while the relative performance of two different network types, a radial-basis network and a back-propagation network, depends on the number of input data, the number of iterations required for radial-basis network is less than that for the back-propagation network.
Design of a 3 kW wind turbine generator with thin airfoil blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameku, Kazumasa; Nagai, Baku M.; Roy, Jitendro Nath
2008-09-15
Three blades of a 3 kW prototype wind turbine generator were designed with thin airfoil and a tip speed ratio of 3. The wind turbine has been controlled via two control methods: the variable pitch angle and by regulation of the field current of the generator and examined under real wind conditions. The characteristics of the thin airfoil, called ''Seven arcs thin airfoil'' named so because the airfoil is composed of seven circular arcs, are analyzed with the airfoil design and analysis program XFOIL. The thin airfoil blade is designed and calculated by blade element and momentum theory. The performancemore » characteristics of the machine such as rotational speed, generator output as well as stability for wind speed changes are described. In the case of average wind speeds of 10 m/s and a maximum of 19 m/s, the automatically controlled wind turbine ran safely through rough wind conditions and showed an average generator output of 1105 W and a power coefficient 0.14. (author)« less
The aerodynamic characteristics of airfoils at negative angles of attack
NASA Technical Reports Server (NTRS)
Anderson, Raymond F
1932-01-01
A number of airfoils, including 14 commonly used airfoils and 10 NACA airfoils, were tested through the negative angle-of-attack range in the NACA variable-density wind tunnel at a Reynolds Number of approximately 3,000,000. The tests were made to supply data to serve as a basis for the structural design of airplanes in the inverted flight condition. In order to make the results immediately available for this purpose they are presented herein in preliminary form, together with results of previous tests of the airfoils at positive angles of attack. An analysis of the results made to find the variation of the ratio of the maximum negative lift coefficient to the maximum positive lift coefficient led to the following conclusions: 1) For airfoils of a given thickness, the ratio -C(sub L max) / +C(sub L max) tends to decrease as the mean camber is increased. 2) For airfoils of a given mean camber, the ratio -C(sub L max) / +C(sub L max) tends to increase as the thickness increases.
Analysis of crossover between local and massive separation on airfoils
NASA Technical Reports Server (NTRS)
Barnett, Mark
1987-01-01
The occurrence of massive separation on airfoils operating at high Reynolds number poses an important problem to the aerodynamicist. In the present study, the phenomenon of crossover, induced by airfoil thickness, between local separation and massive separation is investigated for low speed (incompressible), symmetric flow past realistic airfoil geometries. This problem is studied both for the infinite Reynolds number asymptotic limit using triple-deck theory and for finite Reynolds number using interacting boundary-layer theory. Numerical results are presented which illustrate how the flow evolves from local to massive separation as the airfoil thickness is increased. The results of the triple-deck and the interacting boundary-layer analyses are found to be in qualitative agreement for the NACA four digit series and an uncambered supercritical airfoil. The effect of turbulence on the evolution of the flow is also considered. Solutions are presented for turbulent flows past a NACA 0014 airfoil and a circular cylinder. For the latter case, the calculated surface pressure distribution is found to agree well with experimental data if the proper eddy pressure level is specified.
Liu, Wei; Schild, Steven E.; Chang, Joe Y.; Liao, Zhongxing; Chang, Yu-Hui; Wen, Zhifei; Shen, Jiajian; Stoker, Joshua B.; Ding, Xiaoning; Hu, Yanle; Sahoo, Narayan; Herman, Michael G.; Vargas, Carlos; Keole, Sameer; Wong, William; Bues, Martin
2015-01-01
Background To compare the impact of uncertainties and interplay effect on 3D and 4D robustly optimized intensity-modulated proton therapy (IMPT) plans for lung cancer in an exploratory methodology study. Methods IMPT plans were created for 11 non-randomly selected non-small-cell lung cancer (NSCLC) cases: 3D robustly optimized plans on average CTs with internal gross tumor volume density overridden to irradiate internal target volume, and 4D robustly optimized plans on 4D CTs to irradiate clinical target volume (CTV). Regular fractionation (66 Gy[RBE] in 33 fractions) were considered. In 4D optimization, the CTV of individual phases received non-uniform doses to achieve a uniform cumulative dose. The root-mean-square-dose volume histograms (RVH) measured the sensitivity of the dose to uncertainties, and the areas under the RVH curve (AUCs) were used to evaluate plan robustness. Dose evaluation software modeled time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Dose-volume histogram indices comparing CTV coverage, homogeneity, and normal tissue sparing were evaluated using Wilcoxon signed-rank test. Results 4D robust optimization plans led to smaller AUC for CTV (14.26 vs. 18.61 (p=0.001), better CTV coverage (Gy[RBE]) [D95% CTV: 60.6 vs 55.2 (p=0.001)], and better CTV homogeneity [D5%–D95% CTV: 10.3 vs 17.7 (p=0.002)] in the face of uncertainties. With interplay effect considered, 4D robust optimization produced plans with better target coverage [D95% CTV: 64.5 vs 63.8 (p=0.0068)], comparable target homogeneity, and comparable normal tissue protection. The benefits from 4D robust optimization were most obvious for the 2 typical stage III lung cancer patients. Conclusions Our exploratory methodology study showed that, compared to 3D robust optimization, 4D robust optimization produced significantly more robust and interplay-effect-resistant plans for targets with comparable dose distributions for normal tissues. A further study with a larger and more realistic patient population is warranted to generalize the conclusions. PMID:26725727
Robust optimization in lung treatment plans accounting for geometric uncertainty.
Zhang, Xin; Rong, Yi; Morrill, Steven; Fang, Jian; Narayanasamy, Ganesh; Galhardo, Edvaldo; Maraboyina, Sanjay; Croft, Christopher; Xia, Fen; Penagaricano, Jose
2018-05-01
Robust optimization generates scenario-based plans by a minimax optimization method to find optimal scenario for the trade-off between target coverage robustness and organ-at-risk (OAR) sparing. In this study, 20 lung cancer patients with tumors located at various anatomical regions within the lungs were selected and robust optimization photon treatment plans including intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were generated. The plan robustness was analyzed using perturbed doses with setup error boundary of ±3 mm in anterior/posterior (AP), ±3 mm in left/right (LR), and ±5 mm in inferior/superior (IS) directions from isocenter. Perturbed doses for D 99 , D 98 , and D 95 were computed from six shifted isocenter plans to evaluate plan robustness. Dosimetric study was performed to compare the internal target volume-based robust optimization plans (ITV-IMRT and ITV-VMAT) and conventional PTV margin-based plans (PTV-IMRT and PTV-VMAT). The dosimetric comparison parameters were: ITV target mean dose (D mean ), R 95 (D 95 /D prescription ), Paddick's conformity index (CI), homogeneity index (HI), monitor unit (MU), and OAR doses including lung (D mean , V 20 Gy and V 15 Gy ), chest wall, heart, esophagus, and maximum cord doses. A comparison of optimization results showed the robust optimization plan had better ITV dose coverage, better CI, worse HI, and lower OAR doses than conventional PTV margin-based plans. Plan robustness evaluation showed that the perturbed doses of D 99 , D 98 , and D 95 were all satisfied at least 99% of the ITV to received 95% of prescription doses. It was also observed that PTV margin-based plans had higher MU than robust optimization plans. The results also showed robust optimization can generate plans that offer increased OAR sparing, especially for normal lungs and OARs near or abutting the target. Weak correlation was found between normal lung dose and target size, and no other correlation was observed in this study. © 2018 University of Arkansas for Medical Sciences. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Liu, W; Mohan, R
2012-06-01
Proton dose distributions, IMPT in particular, are highly sensitive to setup and range uncertainties. We report a novel method, based on per-voxel standard deviation (SD) of dose distributions, to evaluate the robustness of proton plans and to robustly optimize IMPT plans to render them less sensitive to uncertainties. For each optimization iteration, nine dose distributions are computed - the nominal one, and one each for ± setup uncertainties along x, y and z axes and for ± range uncertainty. SD of dose in each voxel is used to create SD-volume histogram (SVH) for each structure. SVH may be considered a quantitative representation of the robustness of the dose distribution. For optimization, the desired robustness may be specified in terms of an SD-volume (SV) constraint on the CTV and incorporated as a term in the objective function. Results of optimization with and without this constraint were compared in terms of plan optimality and robustness using the so called'worst case' dose distributions; which are obtained by assigning the lowest among the nine doses to each voxel in the clinical target volume (CTV) and the highest to normal tissue voxels outside the CTV. The SVH curve and the area under it for each structure were used as quantitative measures of robustness. Penalty parameter of SV constraint may be varied to control the tradeoff between robustness and plan optimality. We applied these methods to one case each of H&N and lung. In both cases, we found that imposing SV constraint improved plan robustness but at the cost of normal tissue sparing. SVH-based optimization and evaluation is an effective tool for robustness evaluation and robust optimization of IMPT plans. Studies need to be conducted to test the methods for larger cohorts of patients and for other sites. This research is supported by National Cancer Institute (NCI) grant P01CA021239, the University Cancer Foundation via the Institutional Research Grant program at the University of Texas MD Anderson Cancer Center, and MD Anderson’s cancer center support grant CA016672. © 2012 American Association of Physicists in Medicine.
Optimal robust control strategy of a solid oxide fuel cell system
NASA Astrophysics Data System (ADS)
Wu, Xiaojuan; Gao, Danhui
2018-01-01
Optimal control can ensure system safe operation with a high efficiency. However, only a few papers discuss optimal control strategies for solid oxide fuel cell (SOFC) systems. Moreover, the existed methods ignore the impact of parameter uncertainty on system instantaneous performance. In real SOFC systems, several parameters may vary with the variation of operation conditions and can not be identified exactly, such as load current. Therefore, a robust optimal control strategy is proposed, which involves three parts: a SOFC model with parameter uncertainty, a robust optimizer and robust controllers. During the model building process, boundaries of the uncertain parameter are extracted based on Monte Carlo algorithm. To achieve the maximum efficiency, a two-space particle swarm optimization approach is employed to obtain optimal operating points, which are used as the set points of the controllers. To ensure the SOFC safe operation, two feed-forward controllers and a higher-order robust sliding mode controller are presented to control fuel utilization ratio, air excess ratio and stack temperature afterwards. The results show the proposed optimal robust control method can maintain the SOFC system safe operation with a maximum efficiency under load and uncertainty variations.
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.; Ashpis, David E.
2003-01-01
Modem low-pressure turbines, in general, utilize highly loaded airfoils in an effort to improve efficiency and to lower the number of airfoils needed. Typically, the airfoil boundary layers are turbulent and fully attached at takeoff conditions, whereas a substantial fraction of the boundary layers on the airfoils may be transitional at cruise conditions due to the change of density with altitude. The strong adverse pressure gradients on the suction side of these airfoils can lead to boundary-layer separation at the latter low Reynolds number conditions. Large separation bubbles, particularly those which fail to reattach, cause a significant degradation of engine efficiency. A component efficiency drop of the order 2% may occur between takeoff and cruise conditions for large commercial transport engines and could be as large as 7% for smaller engines at higher altitude. An efficient means of of separation elimination/reduction is, therefore, crucial to improved turbine design. Because the large change in the Reynolds number from takeoff to cruise leads to a distinct change in the airfoil flow physics, a separation control strategy intended for cruise conditions will need to be carefully constructed so as to incur minimum impact/penalty at takeoff. A complicating factor, but also a potential advantage in the quest for an efficient strategy, is the intricate interplay between separation and transition for the situation at hand. Volino gives a comprehensive discussion of several recent studies on transition and separation under low-pressure-turbine conditions, among them one in the present facility. Transition may begin before or after separation, depending on the Reynolds number and other flow conditions. If the transition occurs early in the boundary layer then separation may be reduced or completely eliminated. Transition in the shear layer of a separation bubble can lead to rapid reattachment. This suggests using control mechanisms to trigger and enhance early transition. Gad-el-Hak provides a review of various techniques for flow control in general and Volino discusses recent studies on separation control under low-pressure-turbine conditions utilizing passive as well as active devices. As pointed out by Volino, passive devices optimized for separation control at low Reynolds numbers tend to increase losses at high Reynolds numbers, Active devices have the attractive feature that they can be utilized only in operational regimes where they are needed and when turned off would not affect the flow. The focus in the present paper is an experimental Separation is induced on a flat plate installed in a closed-circuit wind tunnel by a shaped insert on the opposite wall. The flow conditions represent flow over the suction surface of a modem low-pressure-turbine airfoil ('Pak-B'). The Reynolds number, based on wetted plate length and nominal exit velocity, is varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low (0.2%) and high (2.5%) Gee-stream turbulence intensities are set using passive grids. A spanwise-oriented phased-plasma-array actuator, fabricated on a printed circuit board, is surface- flush-mounted upstream of the separation point and can provide forcing in a wide frequency range. Static surface pressure measurements and hot-wire anemometry of the base and controlled flows are performed and indicate that the glow-discharge plasma actuator is an effective device for separation control. of active separation control using glow discharge plasma actuators.
Program manual for the Eppler airfoil inversion program
NASA Technical Reports Server (NTRS)
Thomson, W. G.
1975-01-01
A computer program is described for calculating the profile of an airfoil as well as the boundary layer momentum thickness and energy form parameter. The theory underlying the airfoil inversion technique developed by Eppler is discussed.
Design and Analysis of a Subcritical Airfoil for High Altitude, Long Endurance Missions.
1982-12-01
Airfoil Design and Analysis Method ......... .... 61 Appendix D: Boundary Layer Analysis Method ............. ... 81 Appendix E: Detailed Results ofr...attack. Computer codes designed by Richard Eppler were used for this study. The airfoil was anlayzed by using a viscous effects analysis program...inverse program designed by Eppler (Ref 5) was used in this study to accomplish this part. The second step involved the analysis of the airfoil under
NASA Technical Reports Server (NTRS)
McLean, James D. (Inventor); Witkowski, David P. (Inventor); Campbell, Richard L. (Inventor)
2006-01-01
A swept aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one full-span slot is defined by the wing during at least one transonic condition of the wing. The full-span slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.
NASA Technical Reports Server (NTRS)
Brun, R. J.; Vogt, Dorothea E.
1957-01-01
The trajectories of droplets i n the air flowing past a 36.5-percent-thick Joukowski airfoil at zero angle of attack were determined. The amount of water i n droplet form impinging on the airfoil, the area of droplet impingement, and the rate of droplet impingement per unit area on the airfoil surface were calculated from the trajectories and cover a large range of flight and atmospheric conditions. With the detailed impingement information available, the 36.5-percent-thick Joukowski airfoil can serve the dual purpose of use as the principal element in instruments for making measurements in clouds and of a basic shape for estimating impingement on a thick streamlined body. Methods and examples are presented for illustrating some limitations when the airfoil is used as the principal element in the dye-tracer technique.
Some experience with Barnwell-Sewall type correction to two-dimensional airfoil data
NASA Technical Reports Server (NTRS)
Jenkins, R. V.
1984-01-01
A series of airfoils were tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT) at Reynolds numbers from 2 to 50 million. The 0.3-m TCT is equipped with Barnwell slots designed to minimize blockage due to the tunnel flow and ceiling. This design suggests that sidewall corrections for blockage is needed, and that a lifting airfoil produces a change in angle of attack. Sidewall correction methods were developed for subsonic and subsonic-transonic flow. Comparisons of theory with experimental data obtained in the 0.3-m TCT for two airfoils, the British NPL 9510 and the German R-4 are presented. The NPL 9510 was tested as part of the NASA/United Kingdom Joint Aeronautical Program and R-4 was tested as part f the DFVLR/NASA Advanced Airfoil Research Program. For the NPL 9510 airfoil, only those test points that one would anticipate being difficult to predict theoretically are presented.
NASA Technical Reports Server (NTRS)
Lawing, P. L.
1985-01-01
A method of constructing airfoils by inscribing pressure channels on the face of opposing plates, bonding them together to form one plate with integral channels, and contour machining this plate to form an airfoil model is described. The research and development program to develop the bonding technology is described as well as the construction and testing of an airfoil model. Sample aerodynamic data sets are presented and discussed. Also, work currently under way to produce thin airfoils with camber is presented. Samples of the aft section of a 6 percent airfoil with complete pressure instrumentation including the trailing edge are pictured and described. This technique is particularly useful in fabricating models for transonic cryogenic testing, but it should find application in a wide ange of model construction projects, as well as the fabrication of fuel injectors, space hardware, and other applications requiring advanced bonding technology and intricate fluid passages.
NASA Technical Reports Server (NTRS)
Harris, Charles D.; Harvey, William D.; Brooks, Cuyler W., Jr.
1988-01-01
A large-chord, swept, supercritical, laminar-flow-control (LFC) airfoil was designed and constructed and is currently undergoing tests in the Langley 8 ft Transonic Pressure Tunnel. The experiment was directed toward evaluating the compatibility of LFC and supercritical airfoils, validating prediction techniques, and generating a data base for future transport airfoil design as part of NASA's ongoing research program to significantly reduce drag and increase aircraft efficiency. Unique features of the airfoil included a high design Mach number with shock free flow and boundary layer control by suction. Special requirements for the experiment included modifications to the wind tunnel to achieve the necessary flow quality and contouring of the test section walls to simulate free air flow about a swept model at transonic speeds. Design of the airfoil with a slotted suction surface, the suction system, and modifications to the tunnel to meet test requirements are discussed.
Separated Flow over Wind Turbines
NASA Astrophysics Data System (ADS)
Brown, David; Lewalle, Jacques
2015-11-01
The motion of the separation point on an airfoil under unsteady flow can affect its performance and longevity. Of interest is to understand and control the performance decrease in wind turbines subject to turbulent flow. We examine flow separation on an airfoil at a 19 degree angle of attack under unsteady flow conditions. We are using a DU-96-W180 airfoil of chord length 242 mm. The unsteadiness is generated by a cylinder with diameter 203 mm located 7 diameters upstream of the airfoil's leading edge. The data comes from twenty surface pressure sensors located on the top and bottom of the airfoil as well as on the upstream cylinder. Methods of analysis include Mexican hat transforms, Morlet wavelet transforms, power spectra, and various cross correlations. With this study I will explore how the differences of signals on the pressure and suction sides of an airfoil are related to the motion of the separation point.
NASA Technical Reports Server (NTRS)
Rashid, J. M.; Freling, M.; Friedrich, L. A.
1987-01-01
The ability of coatings to provide at least a 2X improvement in particulate erosion resistance for steel, nickel and titanium compressor airfoils was identified and demonstrated. Coating materials evaluated included plasma sprayed cobalt tungsten carbide, nickel carbide and diffusion applied chromium plus boron. Several processing parameters for plasma spray processing and diffusion coating were evaluated to identify coating systems having the most potential for providing airfoil erosion resistance. Based on laboratory results and analytical evaluations, selected coating systems were applied to gas turbine blades and evaluated for surface finish, burner rig erosion resistance and effect on high cycle fatigue strength. Based on these tests, the following coatings were recommended for engine testing: Gator-Gard plasma spray 88WC-12Co on titanium alloy airfoils, plasma spray 83WC-17Co on steel and nickel alloy airfoils, and Cr+B on nickel alloy airfoils.
Unsteady flow past an airfoil pitched at constant rate
NASA Technical Reports Server (NTRS)
Lourenco, L.; Vandommelen, L.; Shib, C.; Krothapalli, A.
1992-01-01
The unsteady flow past a NACA 0012 airfoil that is undertaking a constant-rate pitching up motion is investigated experimentally by the PIDV technique in a water towing tank. The Reynolds number is 5000, based upon the airfoil's chord and the free-stream velocity. The airfoil is pitching impulsively from 0 to 30 deg. with a dimensionless pitch rate alpha of 0.131. Instantaneous velocity and associated vorticity data have been acquired over the entire flow field. The primary vortex dominates the flow behavior after it separates from the leading edge of the airfoil. Complete stall emerges after this vortex detaches from the airfoil and triggers the shedding of a counter-rotating vortex near the trailing edge. A parallel computational study using the discrete vortex, random walk approximation has also been conducted. In general, the computational results agree very well with the experiment.
Characterization of Ice Roughness Variations in Scaled Glaze Icing Conditions
NASA Technical Reports Server (NTRS)
McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching
2016-01-01
Because of the significant influence of surface tension in governing the stability and breakdown of the liquid film in flooded stagnation regions of airfoils exposed to glaze icing conditions, the Weber number is expected to be a significant parameter governing the formation and evolution of ice roughness. To investigate the influence of the Weber number on roughness formation, 53.3-cm (21-in.) and 182.9-cm (72-in.) NACA 0012 airfoils were exposed to flow conditions with essentially the same Weber number and varying stagnation collection efficiency to illuminate similarities of the ice roughness created on the different airfoils. The airfoils were exposed to icing conditions in the Icing Research Tunnel (IRT) at the NASA Glenn Research Center. Following exposure to the icing event, the airfoils were then scanned using a ROMER Absolute Arm scanning system. The resulting point clouds were then analyzed using the self-organizing map approach of McClain and Kreeger (2013) to determine the spatial roughness variations along the surfaces of the iced airfoils. The roughness characteristics on each airfoil were then compared using the relative geometries of the airfoil. The results indicate that features of the ice shape and roughness such as glaze-ice plateau limits and maximum airfoil roughness were captured well by Weber number and collection efficiency scaling of glaze icing conditions. However, secondary ice roughness features relating the instability and waviness of the liquid film on the glaze-ice plateau surface are scaled based on physics that were not captured by the local collection efficiency variations.
Lockheed L-1011 TriStar first flight to support Adaptive Performance Optimization study
NASA Technical Reports Server (NTRS)
1997-01-01
Bearing the logos of the National Aeronautics and Space Administration and Orbital Sciences Corporation, Orbital's L-1011 Tristar lifts off the Meadows Field Runway at Bakersfield, California, on its first flight May 21, 1997, in NASA's Adaptive Performance Optimization project. Developed by engineers at NASA's Dryden Flight Research Center, Edwards, California, the experiment seeks to reduce fuel consumption of large jetliners by improving the aerodynamic efficency of their wings at cruise conditions. A research computer employing a sophisticated software program adapts to changing flight conditions by commanding small movements of the L-1011's outboard ailerons to give the wings the most efficient - or optimal - airfoil. Up to a dozen research flights will be flown in the current and follow-on phases of the project over the next couple years.
Second Stage Turbine Bucket Airfoil.
Xu, Liming; Ahmadi, Majid; Humanchuk, David John; Moretto, Nicholas; Delehanty, Richard Edward
2003-05-06
The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.
Third-stage turbine bucket airfoil
Pirolla, Peter Paul; Siden, Gunnar Leif; Humanchuk, David John; Brassfield, Steven Robert; Wilson, Paul Stuart
2002-01-01
The third-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.
First-stage high pressure turbine bucket airfoil
Brown, Theresa A.; Ahmadi, Majid; Clemens, Eugene; Perry, II, Jacob C.; Holiday, Allyn K.; Delehanty, Richard A.; Jacala, Ariel Caesar
2004-05-25
The first-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.
Users manual for coordinate generation code CRDSRA
NASA Technical Reports Server (NTRS)
Shamroth, S. J.
1985-01-01
Generation of a viable coordinate system represents an important component of an isolated airfoil Navier-Stokes calculation. The manual describes a computer code for generation of such a coordinate system. The coordinate system is a general nonorthogonal one in which high resolution normal to the airfoil is obtained in the vicinity of the airfoil surface, and high resolution along the airfoil surface is obtained in the vicinity of the airfoil leading edge. The method of generation is a constructive technique which leads to a C type coordinate grid. The method of construction as well as input and output definitions are contained herein. The computer code itself as well as a sample output is being submitted to COSMIC.
Guo, Yu; Dong, Daoyi; Shu, Chuan-Cun
2018-04-04
Achieving fast and efficient quantum state transfer is a fundamental task in physics, chemistry and quantum information science. However, the successful implementation of the perfect quantum state transfer also requires robustness under practically inevitable perturbative defects. Here, we demonstrate how an optimal and robust quantum state transfer can be achieved by shaping the spectral phase of an ultrafast laser pulse in the framework of frequency domain quantum optimal control theory. Our numerical simulations of the single dibenzoterrylene molecule as well as in atomic rubidium show that optimal and robust quantum state transfer via spectral phase modulated laser pulses can be achieved by incorporating a filtering function of the frequency into the optimization algorithm, which in turn has potential applications for ultrafast robust control of photochemical reactions.
NASA Astrophysics Data System (ADS)
Leuca, Maxim
CFD (Computational Fluid Dynamics) is a computational tool for studying flow in science and technology. The Aerospace Industry uses increasingly the CFD modeling and design phase of the aircraft, so the precision with which phenomena are simulated boundary layer is very important. The research efforts are focused on optimizing the aerodynamic performance of airfoils to predict the drag and delay the laminar-turbulent transition. CFD codes must be fast and efficient to model complex geometries for aerodynamic flows. The resolution of the boundary layer equations requires a large amount of computing resources for viscous flows. CFD codes are commonly used to simulate aerodynamic flows, require normal meshes to the wall, extremely fine, and, by consequence, the calculations are very expensive. . This thesis proposes a new approach to solve the equations of boundary layer for laminar and turbulent flows using an approach based on the finite difference method. Integrated into a code of panels, this concept allows to solve airfoils avoiding the use of iterative algorithms, usually computing time and often involving convergence problems. The main advantages of panels methods are their simplicity and ability to obtain, with minimal computational effort, solutions in complex flow conditions for relatively complicated configurations. To verify and validate the developed program, experimental data are used as references when available. Xfoil code is used to obtain data as a pseudo references. Pseudo-reference, as in the absence of experimental data, we cannot really compare two software together. Xfoil is a program that has proven to be accurate and inexpensive computing resources. Developed by Drela (1985), this program uses the method with two integral to design and analyze profiles of wings at low speed (Drela et Youngren, 2014), (Drela, 2003). NACA 0012, NACA 4412, and ATR-42 airfoils have been used for this study. For the airfoils NACA 0012 and NACA 4412 the calculations are made using the Mach number M =0.17 and Reynolds number Re = 6x10 6 conditions for which we have experimental results. For the airfoil ATR-42 the calculations are made using the Mach number M =0.1 and Reynolds number Re=536450 as it was analysed in LARCASE's Price-Paidoussis wind tunnel. Keywords: boundary layer, direct method, displacement thickness, finite differences, Xfoil code.
Aeroelasticity of morphing wings using neural networks
NASA Astrophysics Data System (ADS)
Natarajan, Anand
In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to represent the aerodynamic loading over the bump. A second neural network is trained for calculating the actuator loads, bump displacement and lift, drag forces over the airfoil using the finite element solver, ANSYS and the previously trained neural network. This non-linear aeroelastic model of the deforming bump on an airfoil surface using neural networks can serve as a fore-runner for other non-linear aeroelastic problems.
Separated transonic airfoil flow calculations with a nonequilibrium turbulence model
NASA Technical Reports Server (NTRS)
King, L. S.; Johnson, D. A.
1985-01-01
Navier-Stokes transonic airfoil calculations based on a recently developed nonequilibrium, turbulence closure model are presented for a supercritical airfoil section at transonic cruise conditions and for a conventional airfoil section at shock-induced stall conditions. Comparisons with experimental data are presented which show that this nonequilibrium closure model performs significantly better than the popular Baldwin-Lomax and Cebeci-Smith equilibrium algebraic models when there is boundary-layer separation that results from the inviscid-viscous interactions.
NASA Technical Reports Server (NTRS)
Barger, R. L.
1974-01-01
A method has been developed for designing families of airfoils in which the members of a family have the same basic type of pressure distribution but vary in thickness ratio or lift, or both. Thickness ratio and lift may be prescribed independently. The method which is based on the Theodorsen thick-airfoil theory permits moderate variations from the basic shape on which the family is based.
The Influence of Heat Transfer on the Drag of Airfoils.
1981-04-01
OF STANDARDS-1963-A LL b AFWAL-TR-81- 3030 THE INFLUENCE OF HEAT TRANSFER ON THE DRAG OF AIRFOILS DR. JOHN D. LEE The Aeronautical and Astronautical...if necReary mid identify by block number) Airfoils , Subsonic, Transonic, Supercritical, Laminar Flow, Transition, Drag Reduction, Heat Transfer...determine the effects of surface temperature on the drag of airfoils . Models of an aft- loaded profile and of a NACA 65A413 were tested with separate models
2005-01-01
Eppler , or Selig airfoil [147, 148] to be used. Other high lift wings could be used such as the low Reynolds number NASA LRN-I-1010 airfoil used in...Fraser, Airfoils at Low Speeds. Virginia Beach, VA: H.A. Stokely, 1989. [148] R. Eppler , Airfoil Design and Data. Berlin, Germany: Springer-Verlag... 61 Figure 3-4: RMS Error for CMAC Approximation (L=3) .......................................... 61 Figure 3-5: CMAC
Boundary-layer stability and airfoil design
NASA Technical Reports Server (NTRS)
Viken, Jeffrey K.
1986-01-01
Several different natural laminar flow (NLF) airfoils have been analyzed for stability of the laminar boundary layer using linear stability codes. The NLF airfoils analyzed come from three different design conditions: incompressible; compressible with no sweep; and compressible with sweep. Some of the design problems are discussed, concentrating on those problems associated with keeping the boundary layer laminar. Also, there is a discussion on how a linear stability analysis was effectively used to improve the design for some of the airfoils.
Optimization of the poro-serrated trailing edges for airfoil broadband noise reduction.
Chong, Tze Pei; Dubois, Elisa
2016-08-01
This paper reports an aeroacoustic investigation of a NACA0012 airfoil with a number of poro-serrated trailing edge devices that contain porous materials of various air flow resistances at the gaps between adjacent members of the serrated-sawtooth trailing edge. The main objective of this work is to determine whether multiple-mechanisms on the broadband noise reduction can co-exist on a poro-serrated trailing edge. When the sawtooth gaps are filled with porous material of low-flow resistivity, the vortex shedding tone at low-frequency could not be completely suppressed at high-velocity, but a reasonably good broadband noise reduction can be achieved at high-frequency. When the sawtooth gaps are filled with porous material of very high-flow resistivity, no vortex shedding tone is present, but the serration effect on the broadband noise reduction becomes less effective. An optimal choice of the flow resistivity for a poro-serrated configuration has been identified, where it can surpass the conventional serrated trailing edge of the same geometry by achieving a further 1.5 dB reduction in the broadband noise while completely suppressing the vortex shedding tone. A weakened turbulent boundary layer noise scattering at the poro-serrated trailing edge is reflected by the lower-turbulence intensity at the near wake centreline across the whole spanwise wavelength of the sawtooth.
Parametric Deformation of Discrete Geometry for Aerodynamic Shape Design
NASA Technical Reports Server (NTRS)
Anderson, George R.; Aftosmis, Michael J.; Nemec, Marian
2012-01-01
We present a versatile discrete geometry manipulation platform for aerospace vehicle shape optimization. The platform is based on the geometry kernel of an open-source modeling tool called Blender and offers access to four parametric deformation techniques: lattice, cage-based, skeletal, and direct manipulation. Custom deformation methods are implemented as plugins, and the kernel is controlled through a scripting interface. Surface sensitivities are provided to support gradient-based optimization. The platform architecture allows the use of geometry pipelines, where multiple modelers are used in sequence, enabling manipulation difficult or impossible to achieve with a constructive modeler or deformer alone. We implement an intuitive custom deformation method in which a set of surface points serve as the design variables and user-specified constraints are intrinsically satisfied. We test our geometry platform on several design examples using an aerodynamic design framework based on Cartesian grids. We examine inverse airfoil design and shape matching and perform lift-constrained drag minimization on an airfoil with thickness constraints. A transport wing-fuselage integration problem demonstrates the approach in 3D. In a final example, our platform is pipelined with a constructive modeler to parabolically sweep a wingtip while applying a 1-G loading deformation across the wingspan. This work is an important first step towards the larger goal of leveraging the investment of the graphics industry to improve the state-of-the-art in aerospace geometry tools.
Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade.
Ge, Mingwei; Fang, Le; Tian, De
2015-01-01
At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (CPopt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger CPopt or AEP (CPopt//AEP) for the same ultimate load, or a smaller load for the same CPopt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum Cpopt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and Cpopt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project.
Analysis and design of planar and non-planar wings for induced drag minimization
NASA Technical Reports Server (NTRS)
Straussfogel, Dennis M.; Maughmer, Mark D.
1991-01-01
Improvements in the aerodynamic efficiency of commercial transport aircraft will reduce fuel usage with subsequent reduced cost, both monetary and environmental. To this end, the current research is aimed at reducing the overall drag of these aircraft with specific emphasis on reducing the drag generated by the lifting surfaces. The ultimate goal of this program is to create a wing design methodology which optimizes the geometry of the wing for lowest total drag within the constraints of a particular design specification. The components of drag which must be considered include profile drag, and wave drag. Profile drag is dependent upon, among other things, the airfoil section and the total wetted area. Induced drag, which is manifested as energy left in the wake by the trailing vortex system is mostly a function of wing span, but also depends on other geometric wing parameters. Wave drag of the wing, important in the transonic flight regime, is largely affected by the airfoil section, wing sweep, and so forth. The optimization problem is that of assessing the various parameters which contribute to the different components of wing drag, and determining the wing geometry which generates the best overall performance for a given aircraft mission. The primary thrust of the research effort to date was in the study of induced drag. Results from the study are presented.
Robust optimization modelling with applications to industry and environmental problems
NASA Astrophysics Data System (ADS)
Chaerani, Diah; Dewanto, Stanley P.; Lesmana, Eman
2017-10-01
Robust Optimization (RO) modeling is one of the existing methodology for handling data uncertainty in optimization problem. The main challenge in this RO methodology is how and when we can reformulate the robust counterpart of uncertain problems as a computationally tractable optimization problem or at least approximate the robust counterpart by a tractable problem. Due to its definition the robust counterpart highly depends on how we choose the uncertainty set. As a consequence we can meet this challenge only if this set is chosen in a suitable way. The development on RO grows fast, since 2004, a new approach of RO called Adjustable Robust Optimization (ARO) is introduced to handle uncertain problems when the decision variables must be decided as a ”wait and see” decision variables. Different than the classic Robust Optimization (RO) that models decision variables as ”here and now”. In ARO, the uncertain problems can be considered as a multistage decision problem, thus decision variables involved are now become the wait and see decision variables. In this paper we present the applications of both RO and ARO. We present briefly all results to strengthen the importance of RO and ARO in many real life problems.
Unsteady flow sensing and optimal sensor placement using machine learning
NASA Astrophysics Data System (ADS)
Semaan, Richard
2016-11-01
Machine learning is used to estimate the flow state and to determine the optimal sensor placement over a two-dimensional (2D) airfoil equipped with a Coanda actuator. The analysis is based on flow field data obtained from 2D unsteady Reynolds averaged Navier-Stokes (uRANS) simulations with different jet blowing intensities and actuation frequencies, characterizing different flow separation states. This study shows how the "random forests" algorithm is utilized beyond its typical usage in fluid mechanics estimating the flow state to determine the optimal sensor placement. The results are compared against the current de-facto standard of maximum modal amplitude location and against a brute force approach that scans all possible sensor combinations. The results show that it is possible to simultaneously infer the state of flow and to determine the optimal sensor location without the need to perform proper orthogonal decomposition. Collaborative Research Center (CRC) 880, DFG.
Aerodynamic data banks for Clark-Y, NACA 4-digit and NACA 16-series airfoil families
NASA Technical Reports Server (NTRS)
Korkan, K. D.; Camba, J., III; Morris, P. M.
1986-01-01
With the renewed interest in propellers as means of obtaining thrust and fuel efficiency in addition to the increased utilization of the computer, a significant amount of progress was made in the development of theoretical models to predict the performance of propeller systems. Inherent in the majority of the theoretical performance models to date is the need for airfoil data banks which provide lift, drag, and moment coefficient values as a function of Mach number, angle-of-attack, maximum thickness to chord ratio, and Reynolds number. Realizing the need for such data, a study was initiated to provide airfoil data banks for three commonly used airfoil families in propeller design and analysis. The families chosen consisted of the Clark-Y, NACA 16 series, and NACA 4 digit series airfoils. The various component of each computer code, the source of the data used to create the airfoil data bank, the limitations of each data bank, program listing, and a sample case with its associated input-output are described. Each airfoil data bank computer code was written to be used on the Amdahl Computer system, which is IBM compatible and uses Fortran.
Symmetric airfoil geometry effects on leading edge noise.
Gill, James; Zhang, X; Joseph, P
2013-10-01
Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number.
Multidisciplinary Shape Optimization of a Composite Blended Wing Body Aircraft
NASA Astrophysics Data System (ADS)
Boozer, Charles Maxwell
A multidisciplinary shape optimization tool coupling aerodynamics, structure, and performance was developed for battery powered aircraft. Utilizing high-fidelity computational fluid dynamics analysis tools and a structural wing weight tool, coupled based on the multidisciplinary feasible optimization architecture; aircraft geometry is modified in the optimization of the aircraft's range or endurance. The developed tool is applied to three geometries: a hybrid blended wing body, delta wing UAS, the ONERA M6 wing, and a modified ONERA M6 wing. First, the optimization problem is presented with the objective function, constraints, and design vector. Next, the tool's architecture and the analysis tools that are utilized are described. Finally, various optimizations are described and their results analyzed for all test subjects. Results show that less computationally expensive inviscid optimizations yield positive performance improvements using planform, airfoil, and three-dimensional degrees of freedom. From the results obtained through a series of optimizations, it is concluded that the newly developed tool is both effective at improving performance and serves as a platform ready to receive additional performance modules, further improving its computational design support potential.
Multiple piece turbine airfoil
Kimmel, Keith D; Wilson, Jr., Jack W.
2010-11-02
A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.
Low-speed aerodynamic characteristics of a 13.1-percent-thick, high-lift airfoil
NASA Technical Reports Server (NTRS)
Sivier, K. R.; Ormsbee, A. I.; Awker, R. W.
1974-01-01
Experimental study of the low-speed, sectional characteristics of a high-lift airfoil, and comparison of these characteristics with the predictions of the theoretical methods used in the airfoil's design. The 13.1% thick UI-1720 airfoil was found to achieve the predicted maximum lift coefficient of nearly 2.0. No upper-surface flow separation was found below the stall angle of attack of 16 deg; it appeared that stall was due to an abrupt leading-edge flow separation.
An Evaluation of Four Methods of Numerical Analysis for Two-Dimensional Airfoil Flows. Revision.
1985-07-06
distribution as determined by the Eppler and Chang potential codes for the four airfoil geometries is shown in Figures 3-6. Here, 2 n-- Cp (P-Po)/.5pUo where...SPD- 1037-01. 2) Eppler , R., and D.M. Somers. A Computer Program for the Design and Analysis of Low Speed Airfoils . NASA Technical Memorandum 80210. 3...OF NUMERICAL n ANALYSIS FORI TWO-DIMENSIONAL AIRFOIL FLOWS Roger Burke APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED DAVID TAYLOR NAVAL SHIP R
Preliminary Airworthiness Evaluation of the Rutan Aircraft Factory (RAF) , Inc. LONG-EZ Airplane
1983-06-01
pounds. Unique features include composite construction, a nose mounted canard for pitch control, and a aid-wing high aspect ratio Eppler swept airfoil with...Rear 35 in. Height Front 36 in. Rear 35 in. 51 Table 2. Airfoil Geometry Ave rage Airfoil Measured Tolerance WING ( Eppler 1230) L 0.51: Incidence R 0.48...tests of the wings and control systems and determination of frequencies and modal damping of all airfoil surfaces. These tests were conducted by AVRADCOM
Aircraft Configuration Study for Experimental 2-Place Aircraft and RPVs
1990-03-01
area (sq. ft.) 84.24 82.86 Wing airfoil section Eppler Wing aspect ratio 8.09 Wing loading (GW) (lb./sq. ft.: 7.30 7.24 Canard span (ft.) 11.70 11.60...ESTIMATION FOR THE CANARD DRAG POLAR BUILDUP Aircraft Canard FG Input italicized data Wing for Eppler airfoil Cdmin = .0080 S = 82.9 Canard from Eppler ...DRAG POLAR BUILDUP Aircraft Canard FG Input italicized data Wing for Eppler airfoil Cdmin = .0080 S = 82.9 Canard from Eppler for GA(A)-1 airfoil Cdmin
Aerodynamic Measurements at Low Raynolds Numbers for Fixed Wing Micro-Air Vehicles
2000-04-01
effect on the drag and lift characteristics of a 3D three-dimensional (wing) cambered Eppler 61 airfoil /wing. A/D analog-to-digital TE trailing edge...interest in the studies before 1996. Bums also studied the flowfield over the Eppler 61 Also, most of the studies were for relatively thick airfoils ...relatively thin airfoils studied were the tographs. Figure 7 shows the effect of changing the angle Eppler 61 and Pfenninger 048 airfoils . The Eppler 61 , of
NASA Astrophysics Data System (ADS)
Aul'chenko, S. M.; Zamuraev, V. P.; Kalinina, A. P.
2014-05-01
The present work is devoted to a criterial analysis and mathematical modeling of the influence of forced oscillations of surface elements of a wing airfoil on the shock-wave structure of transonic flow past it. Parameters that govern the regimes of interaction of the oscillatory motion of airfoil sections with the breakdown compression shock have been established. The qualitative and quantitative influence of these parameters on the wave resistance of the airfoil has been investigated.
Robust input design for nonlinear dynamic modeling of AUV.
Nouri, Nowrouz Mohammad; Valadi, Mehrdad
2017-09-01
Input design has a dominant role in developing the dynamic model of autonomous underwater vehicles (AUVs) through system identification. Optimal input design is the process of generating informative inputs that can be used to generate the good quality dynamic model of AUVs. In a problem with optimal input design, the desired input signal depends on the unknown system which is intended to be identified. In this paper, the input design approach which is robust to uncertainties in model parameters is used. The Bayesian robust design strategy is applied to design input signals for dynamic modeling of AUVs. The employed approach can design multiple inputs and apply constraints on an AUV system's inputs and outputs. Particle swarm optimization (PSO) is employed to solve the constraint robust optimization problem. The presented algorithm is used for designing the input signals for an AUV, and the estimate obtained by robust input design is compared with that of the optimal input design. According to the results, proposed input design can satisfy both robustness of constraints and optimality. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Modeling and Grid Generation of Iced Airfoils
NASA Technical Reports Server (NTRS)
Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Hackenberg, Anthony W.; Pennline, James A.; Schilling, Herbert W.
2007-01-01
SmaggIce Version 2.0 is a software toolkit for geometric modeling and grid generation for two-dimensional, singleand multi-element, clean and iced airfoils. A previous version of SmaggIce was described in Preparing and Analyzing Iced Airfoils, NASA Tech Briefs, Vol. 28, No. 8 (August 2004), page 32. To recapitulate: Ice shapes make it difficult to generate quality grids around airfoils, yet these grids are essential for predicting ice-induced complex flow. This software efficiently creates high-quality structured grids with tools that are uniquely tailored for various ice shapes. SmaggIce Version 2.0 significantly enhances the previous version primarily by adding the capability to generate grids for multi-element airfoils. This version of the software is an important step in streamlining the aeronautical analysis of ice airfoils using computational fluid dynamics (CFD) tools. The user may prepare the ice shape, define the flow domain, decompose it into blocks, generate grids, modify/divide/merge blocks, and control grid density and smoothness. All these steps may be performed efficiently even for the difficult glaze and rime ice shapes. Providing the means to generate highly controlled grids near rough ice, the software includes the creation of a wrap-around block (called the "viscous sublayer block"), which is a thin, C-type block around the wake line and iced airfoil. For multi-element airfoils, the software makes use of grids that wrap around and fill in the areas between the viscous sub-layer blocks for all elements that make up the airfoil. A scripting feature records the history of interactive steps, which can be edited and replayed later to produce other grids. Using this version of SmaggIce, ice shape handling and grid generation can become a practical engineering process, rather than a laborious research effort.
Experimental and Computational Investigation of Lift-Enhancing Tabs on a Multi-Element Airfoil
NASA Technical Reports Server (NTRS)
Ashby, Dale L.
1996-01-01
An experimental and computational investigation of the effect of lift-enhancing tabs on a two-element airfoil has been conducted. The objective of the study was to develop an understanding of the flow physics associated with lift-enhancing tabs on a multi-element airfoil. An NACA 63(2)-215 ModB airfoil with a 30% chord fowler flap was tested in the NASA Ames 7- by 10-Foot Wind Tunnel. Lift-enhancing tabs of various heights were tested on both the main element and the flap for a variety of flap riggings. A combination of tabs located at the main element and flap trailing edges increased the airfoil lift coefficient by 11% relative to the highest lift coefficient achieved by any baseline configuration at an angle of attack of 0 deg, and C(sub 1max) was increased by 3%. Computations of the flow over the two-element airfoil were performed using the two-dimensional incompressible Navier-Stokes code INS2D-UP. The computed results predicted all of the trends observed in the experimental data quite well. In addition, a simple analytic model based on potential flow was developed to provide a more detailed understanding of how lift-enhancing tabs work. The tabs were modeled by a point vortex at the air-foil or flap trailing edge. Sensitivity relationships were derived which provide a mathematical basis for explaining the effects of lift-enhancing tabs on a multi-element airfoil. Results of the modeling effort indicate that the dominant effects of the tabs on the pressure distribution of each element of the airfoil can be captured with a potential flow model for cases with no flow separation.
Grid generation by elliptic partial differential equations for a tri-element Augmentor-Wing airfoil
NASA Technical Reports Server (NTRS)
Sorenson, R. L.
1982-01-01
Two efforts to numerically simulate the flow about the Augmentor-Wing airfoil in the cruise configuration using the GRAPE elliptic partial differential equation grid generator algorithm are discussed. The Augmentor-Wing consists of a main airfoil with a slotted trailing edge for blowing and two smaller airfoils shrouding the blowing jet. The airfoil and the algorithm are described, and the application of GRAPE to an unsteady viscous flow simulation and a transonic full-potential approach is considered. The procedure involves dividing a complicated flow region into an arbitrary number of zones and ensuring continuity of grid lines, their slopes, and their point distributions across the zonal boundaries. The method for distributing the body-surface grid points is discussed.
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Lawing, Pierce L.
1987-01-01
A wind-tunnel investigation of the NASA SC(2)-0012 airfoil has been conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel. This investigation supplements the two-dimensional airfoil studies of the Advanced Technology Airfoil Test Program. The Mach number was varied from 0.60 to 0.84. The stagnation temperature and pressure were varied to provide a Reynolds number range from 6 to 40 x 10 to the 6th power based on a 6.0-in. (15.24-cm) airfoil chord. No corrections for wind-tunnel wall interference have been made to the data. The aerodynamic results are presented as integrated force and moment coefficients and pressure distributions without any analysis.
Prediction of unsteady airfoil flows at large angles of incidence
NASA Technical Reports Server (NTRS)
Cebeci, Tuncer; Jang, H. M.; Chen, H. H.
1992-01-01
The effect of the unsteady motion of an airfoil on its stall behavior is of considerable interest to many practical applications including the blades of helicopter rotors and of axial compressors and turbines. Experiments with oscillating airfoils, for example, have shown that the flow can remain attached for angles of attack greater than those which would cause stall to occur in a stationary system. This result appears to stem from the formation of a vortex close to the surface of the airfoil which continues to provide lift. It is also evident that the onset of dynamic stall depends strongly on the airfoil section, and as a result, great care is required in the development of a calculation method which will accurately predict this behavior.
Second-stage turbine bucket airfoil
Wang, John Zhiqiang; By, Robert Romany; Sims, Calvin L.; Hyde, Susan Marie
2002-01-01
The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X and Y values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket. The second-stage wheel has sixty buckets.
Study of the TRAC Airfoil Table Computational System
NASA Technical Reports Server (NTRS)
Hu, Hong
1999-01-01
The report documents the study of the application of the TRAC airfoil table computational package (TRACFOIL) to the prediction of 2D airfoil force and moment data over a wide range of angle of attack and Mach number. The TRACFOIL generates the standard C-81 airfoil table for input into rotorcraft comprehensive codes such as CAM- RAD. The existing TRACFOIL computer package is successfully modified to run on Digital alpha workstations and on Cray-C90 supercomputers. A step-by-step instruction for using the package on both computer platforms is provided. Application of the newer version of TRACFOIL is made for two airfoil sections. The C-81 data obtained using the TRACFOIL method are compared with those of wind-tunnel data and results are presented.
NASA Technical Reports Server (NTRS)
Harris, C. D.
1975-01-01
A 10-percent-thick supercritical airfoil based on an off-design sonic-pressure plateau criterion was developed and experimental aerodynamic characteristics measured. The airfoil had a design normal-force coefficient of 0.7 and was identified as supercritical airfoil 33. Results show the airfoil to have good drag rise characteristics over a wide range of normal-force coefficients with no measurable shock losses up to the Mach numbers at which drag divergence occurred for normal-force coefficients up to 0.7. Comparisons of experimental and theoretical characteristics were made and composite drag rise characteristics were derived for normal-force coefficients of 0.5 and 0.7 and a Reynolds number of 40 million.
NASA Technical Reports Server (NTRS)
Scott, James R.; Atassi, Hafiz M.
1990-01-01
A linearized unsteady aerodynamic analysis is presented for unsteady, subsonic vortical flows around lifting airfoils. The analysis fully accounts for the distortion effects of the nonuniform mean flow on the imposed vortical disturbances. A frequency domain numerical scheme which implements this linearized approach is described, and numerical results are presented for a large variety of flow configurations. The results demonstrate the effects of airfoil thickness, angle of attack, camber, and Mach number on the unsteady lift and moment of airfoils subjected to periodic vortical gusts. The results show that mean flow distortion can have a very strong effect on the airfoil unsteady response, and that the effect depends strongly upon the reduced frequency, Mach number, and gust wave numbers.
Cooling circuit for a gas turbine bucket and tip shroud
Willett, Fred Thomas
2004-07-13
An open cooling circuit for a gas turbine airfoil and associated tip shroud includes a first group of cooling holes internal to the airfoil and extending in a radially outward direction generally along a leading edge of the airfoil; a second group of cooling holes internal to the airfoil and extending in a radially outward direction generally along a trailing edge of the airfoil. A common plenum is formed in the tip shroud in direct communication with the first and second group of cooling holes, but a second plenum may be provided for the second group of radial holes. A plurality of exhaust holes extends from the plenum(s), through the tip shroud and opening along a peripheral edge of the tip shroud.
NASA Technical Reports Server (NTRS)
Cole, Gregory M.; Mueller, Thomas J.
1990-01-01
An experimental investigation was conducted to measure the flow velocity in the boundary layer of an Eppler 387 airfoil. In particular, the laminar separation bubble that this airfoil exhibits at low Reynolds numbers was the focus. Single component laser Doppler velocimetry data were obtained at a Reynolds number of 100,000 at an angle of attack of 2.0 degree. Static Pressure and flow visualization data for the Eppler 387 airfoil were also obtained. The difficulty in obtaining accurate experimental measurements at low Reynolds numbers is addressed. Laser Doppler velocimetry boundary layer data for the NACA 663-018 airfoil at a Reynolds number of 160,000 and angle of attack of 12 degree is also presented.
A compressible solution of the Navier-Stokes equations for turbulent flow about an airfoil
NASA Technical Reports Server (NTRS)
Shamroth, S. J.; Gibeling, H. J.
1979-01-01
A compressible time dependent solution of the Navier-Stokes equations including a transition turbulence model is obtained for the isolated airfoil flow field problem. The equations are solved by a consistently split linearized block implicit scheme. A nonorthogonal body-fitted coordinate system is used which has maximum resolution near the airfoil surface and in the region of the airfoil leading edge. The transition turbulence model is based upon the turbulence kinetic energy equation and predicts regions of laminar, transitional, and turbulent flow. Mean flow field and turbulence field results are presented for an NACA 0012 airfoil at zero and nonzero incidence angles of Reynolds number up to one million and low subsonic Mach numbers.
NASA Technical Reports Server (NTRS)
Keil, J.
1985-01-01
Wind tunnel tests were conducted on airfoil models in order to study the flow separation phenomena occurring for high angles of attack. Pressure distribution on wings of different geometries were measured. Results show that for three-dimensional airfoils layout and span lift play a role. Separation effects on airfoils with moderate extension are three-dimensional. The flow domains separated from the air foil must be treated three-dimensionally. The rolling-up of separated vortex layers increases with angle in intensity and induction effect and shows strong nonlinearities. Boundary layer material moves perpendicularly to the flow direction due to the pressure gradients at the airfoil; this has a stabilizing effect. The separation starts earlier with increasing pointed profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei, E-mail: Liu.Wei@mayo.edu; Schild, Steven E.; Chang, Joe Y.
Purpose: The purpose of this study was to compare the impact of uncertainties and interplay on 3-dimensional (3D) and 4D robustly optimized intensity modulated proton therapy (IMPT) plans for lung cancer in an exploratory methodology study. Methods and Materials: IMPT plans were created for 11 nonrandomly selected non-small cell lung cancer (NSCLC) cases: 3D robustly optimized plans on average CTs with internal gross tumor volume density overridden to irradiate internal target volume, and 4D robustly optimized plans on 4D computed tomography (CT) to irradiate clinical target volume (CTV). Regular fractionation (66 Gy [relative biological effectiveness; RBE] in 33 fractions) was considered.more » In 4D optimization, the CTV of individual phases received nonuniform doses to achieve a uniform cumulative dose. The root-mean-square dose-volume histograms (RVH) measured the sensitivity of the dose to uncertainties, and the areas under the RVH curve (AUCs) were used to evaluate plan robustness. Dose evaluation software modeled time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Dose-volume histogram (DVH) indices comparing CTV coverage, homogeneity, and normal tissue sparing were evaluated using Wilcoxon signed rank test. Results: 4D robust optimization plans led to smaller AUC for CTV (14.26 vs 18.61, respectively; P=.001), better CTV coverage (Gy [RBE]) (D{sub 95%} CTV: 60.6 vs 55.2, respectively; P=.001), and better CTV homogeneity (D{sub 5%}-D{sub 95%} CTV: 10.3 vs 17.7, resspectively; P=.002) in the face of uncertainties. With interplay effect considered, 4D robust optimization produced plans with better target coverage (D{sub 95%} CTV: 64.5 vs 63.8, respectively; P=.0068), comparable target homogeneity, and comparable normal tissue protection. The benefits from 4D robust optimization were most obvious for the 2 typical stage III lung cancer patients. Conclusions: Our exploratory methodology study showed that, compared to 3D robust optimization, 4D robust optimization produced significantly more robust and interplay-effect-resistant plans for targets with comparable dose distributions for normal tissues. A further study with a larger and more realistic patient population is warranted to generalize the conclusions.« less
Sealing apparatus for airfoils of gas turbine engines
Jones, Russell B.
1998-01-01
An improved airfoil tip sealing apparatus is disclosed wherein brush seals are attached to airfoil tips with the distal ends of the brush seal fibers sealingly contacting opposing wall surfaces. Embodiments for variable vanes, stators and both cooled and uncooled turbine blade applications are disclosed.
NASA Astrophysics Data System (ADS)
Sogukpinar, Haci; Bozkurt, Ismail
2018-02-01
Aerodynamic performance of the airfoil plays the most important role to obtain economically maximum efficiency from a wind turbine. Therefore airfoil should have an ideal aerodynamic shape. In this study, aerodynamic simulation of S809 airfoil is conducted and obtained result compared with previously made NASA experimental result and NREL theoretical data. At first, Lift coefficient, lift to drag ratio and pressure coefficient around S809 airfoil are calculated with SST turbulence model, and are compared with experimental and other theoretical data to correlate simulation correctness of the computational approaches. And result indicates good correlation with both experimental and theoretical data. This calculation point out that as the increasing relative velocity, lift to drag ratio increases. Lift to drag ratio attain maximum at the angle around 6 degree and after that starts to decrease again. Comparison shows that CFD code used in this calculation can predict aerodynamic properties of airfoil.
NASA Technical Reports Server (NTRS)
Hylton, L. D.; Mihelc, M. S.; Turner, E. R.; Nealy, D. A.; York, R. E.
1983-01-01
Three airfoil data sets were selected for use in evaluating currently available analytical models for predicting airfoil surface heat transfer distributions in a 2-D flow field. Two additional airfoils, representative of highly loaded, low solidity airfoils currently being designed, were selected for cascade testing at simulated engine conditions. Some 2-D analytical methods were examined and a version of the STAN5 boundary layer code was chosen for modification. The final form of the method utilized a time dependent, transonic inviscid cascade code coupled to a modified version of the STAN5 boundary layer code featuring zero order turbulence modeling. The boundary layer code is structured to accommodate a full spectrum of empirical correlations addressing the coupled influences of pressure gradient, airfoil curvature, and free-stream turbulence on airfoil surface heat transfer distribution and boundary layer transitional behavior. Comparison of pedictions made with the model to the data base indicates a significant improvement in predictive capability.
Numerical solution of periodic vortical flows about a thin airfoil
NASA Technical Reports Server (NTRS)
Scott, James R.; Atassi, Hafiz M.
1989-01-01
A numerical method is developed for computing periodic, three-dimensional, vortical flows around isolated airfoils. The unsteady velocity is split into a vortical component which is a known function of the upstream flow conditions and the Lagrangian coordinates of the mean flow, and an irrotational field whose potential satisfies a nonconstant-coefficient, inhomogeneous, convective wave equation. Solutions for thin airfoils at zero degrees incidence to the mean flow are presented in this paper. Using an elliptic coordinate transformation, the computational domain is transformed into a rectangle. The Sommerfeld radiation condition is applied to the unsteady pressure on the grid line corresponding to the far field boundary. The results are compared with a Possio solver, and it is shown that for maximum accuracy the grid should depend on both the Mach number and reduced frequency. Finally, in order to assess the range of validity of the classical thin airfoil approximation, results for airfoils with zero thickness are compared with results for airfoils with small thickness.
An improved viscid/inviscid interaction procedure for transonic flow over airfoils
NASA Technical Reports Server (NTRS)
Melnik, R. E.; Chow, R. R.; Mead, H. R.; Jameson, A.
1985-01-01
A new interacting boundary layer approach for computing the viscous transonic flow over airfoils is described. The theory includes a complete treatment of viscous interaction effects induced by the wake and accounts for normal pressure gradient effects across the boundary layer near trailing edges. The method is based on systematic expansions of the full Reynolds equation of turbulent flow in the limit of Reynolds numbers, Reynolds infinity. Procedures are developed for incorporating the local trailing edge solution into the numerical solution of the coupled full potential and integral boundary layer equations. Although the theory is strictly applicable to airfoils with cusped or nearly cusped trailing edges and to turbulent boundary layers that remain fully attached to the airfoil surface, the method was successfully applied to more general airfoils and to flows with small separation zones. Comparisons of theoretical solutions with wind tunnel data indicate the present method can accurately predict the section characteristics of airfoils including the absolute levels of drag.
NASA Astrophysics Data System (ADS)
Hylton, L. D.; Mihelc, M. S.; Turner, E. R.; Nealy, D. A.; York, R. E.
1983-05-01
Three airfoil data sets were selected for use in evaluating currently available analytical models for predicting airfoil surface heat transfer distributions in a 2-D flow field. Two additional airfoils, representative of highly loaded, low solidity airfoils currently being designed, were selected for cascade testing at simulated engine conditions. Some 2-D analytical methods were examined and a version of the STAN5 boundary layer code was chosen for modification. The final form of the method utilized a time dependent, transonic inviscid cascade code coupled to a modified version of the STAN5 boundary layer code featuring zero order turbulence modeling. The boundary layer code is structured to accommodate a full spectrum of empirical correlations addressing the coupled influences of pressure gradient, airfoil curvature, and free-stream turbulence on airfoil surface heat transfer distribution and boundary layer transitional behavior. Comparison of pedictions made with the model to the data base indicates a significant improvement in predictive capability.
NASA Technical Reports Server (NTRS)
Loftin, Laurence K, Jr; Bursnall, William J
1950-01-01
Results are presented of an investigation made to determine the two-dimensional lift and drag characteristics of nine NACA 6-series airfoil section at Reynolds numbers of 15.0 x 10sub6, 20.0 x 10sub6, and 25.0 x 10sub6. Also presented are data from NACA Technical Report 824 for the same airfoils at Reynolds numbers of 3.0 x 10sub6, 6.0 x 10sub6, and 9.0 x 10sub6. The airfoils selected represent sections having variations in the airfoil thickness, thickness form, and camber. The characteristics of an airfoil with a split flap were determined in one instance, as was the effect of surface roughness. Qualitative explanations in terms of flow behavior are advanced for the observed types of scale effect.
NASA Technical Reports Server (NTRS)
Dress, D. A.; Mcguire, P. D.; Stanewsky, E.; Ray, E. J.
1983-01-01
A wind tunnel investigation of an advanced technology airfoil, the CAST 10-2/DOA 2, was conducted in the Langley 0.3 meter Transonic Cryogenic Tunnel (0.3 m TCT). This was the first of a series of tests conducted in a cooperative National Aeronautics and Space Administration (NASA) and the Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e. V. (DFVLR) airfoil research program. Test temperature was varied from 280 K to 100 K to pressures from slightly above 1 to 5.8 atmospheres. Mach number was varied from 0.60 to 0.80, and the Reynolds number (based on airfoil chord) was varied from 4 x 10 to the 8th power to 45 x 10 to the 6th power. This report presents the experimental aerodynamic data obtained for the airfoil and includes descriptions of the airfoil model, the 0.3 m TCT, the test instrumentation, and the testing procedures.
Four-wall turbine airfoil with thermal strain control for reduced cycle fatigue
Cambell, Christian X
2013-09-17
A turbine airfoil (20B) with a thermal expansion control mechanism that increases the airfoil camber (60, 61) under operational heating. The airfoil has four-wall geometry, including pressure side outer and inner walls (26, 28B), and suction side outer and inner walls (32, 34B). It has near-wall cooling channels (31F, 31A, 33F, 33A) between the outer and inner walls. A cooling fluid flow pattern (50C, 50W, 50H) in the airfoil causes the pressure side inner wall (28B) to increase in curvature under operational heating. The pressure side inner wall (28B) is thicker than walls (26, 34B) that oppose it in camber deformation, so it dominates them in collaboration with the suction side outer wall (32), and the airfoil camber increases. This reduces and relocates a maximum stress area (47) from the suction side outer wall (32) to the suction side inner wall (34B, 72) and the pressure side outer wall (26).
Investigation of oscillating cascade aerodynamics by an experimental influence coefficient technique
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.; Fleeter, Sanford
1988-01-01
Fundamental experiments are performed in the NASA Lewis Transonic Oscillating Cascade Facility to investigate the torsion mode unsteady aerodynamics of a biconvex airfoil cascade at realistic values of the reduced frequency for all interblade phase angles at a specified mean flow condition. In particular, an unsteady aerodynamic influence coefficient technique is developed and utilized in which only one airfoil in the cascade is oscillated at a time and the resulting airfoil surface unsteady pressure distribution measured on one dynamically instrumented airfoil. The unsteady aerodynamics of an equivalent cascade with all airfoils oscillating at a specified interblade phase angle are then determined through a vector summation of these data. These influence coefficient determined oscillation cascade data are correlated with data obtained in this cascade with all airfoils oscillating at several interblade phase angle values. The influence coefficients are then utilized to determine the unsteady aerodynamics of the cascade for all interblade phase angles, with these unique data subsequently correlated with predictions from a linearized unsteady cascade model.
HYBRID NEURAL NETWORK AND SUPPORT VECTOR MACHINE METHOD FOR OPTIMIZATION
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor)
2005-01-01
System and method for optimization of a design associated with a response function, using a hybrid neural net and support vector machine (NN/SVM) analysis to minimize or maximize an objective function, optionally subject to one or more constraints. As a first example, the NN/SVM analysis is applied iteratively to design of an aerodynamic component, such as an airfoil shape, where the objective function measures deviation from a target pressure distribution on the perimeter of the aerodynamic component. As a second example, the NN/SVM analysis is applied to data classification of a sequence of data points in a multidimensional space. The NN/SVM analysis is also applied to data regression.
Hybrid Neural Network and Support Vector Machine Method for Optimization
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor)
2007-01-01
System and method for optimization of a design associated with a response function, using a hybrid neural net and support vector machine (NN/SVM) analysis to minimize or maximize an objective function, optionally subject to one or more constraints. As a first example, the NN/SVM analysis is applied iteratively to design of an aerodynamic component, such as an airfoil shape, where the objective function measures deviation from a target pressure distribution on the perimeter of the aerodynamic component. As a second example, the NN/SVM analysis is applied to data classification of a sequence of data points in a multidimensional space. The NN/SVM analysis is also applied to data regression.
Aerodynamic Limits on Large Civil Tiltrotor Sizing and Efficiency
NASA Technical Reports Server (NTRS)
Acree, C W., Jr.
2014-01-01
The NASA Large Civil Tiltrotor (2nd generation, or LCTR2) has been the reference design for avariety of NASA studies of design optimization, engine and gearbox technology, handling qualities, andother areas, with contributions from NASA Ames, Glenn and Langley Centers, plus academic and industrystudies. Ongoing work includes airfoil design, 3D blade optimization, engine technology studies, andwingrotor aerodynamic interference. The proposed paper will bring the design up to date with the latestresults of such studies, then explore the limits of what aerodynamic improvements might hope toaccomplish. The purpose is two-fold: 1) determine where future technology studies might have the greatestpayoff, and 2) establish a stronger basis of comparison for studies of other vehicle configurations andmissions.
SiC/SiC Leading Edge Turbine Airfoil Tested Under Simulated Gas Turbine Conditions
NASA Technical Reports Server (NTRS)
Robinson, R. Craig; Hatton, Kenneth S.
1999-01-01
Silicon-based ceramics have been proposed as component materials for use in gas turbine engine hot-sections. A high pressure burner rig was used to expose both a baseline metal airfoil and ceramic matrix composite leading edge airfoil to typical gas turbine conditions to comparatively evaluate the material response at high temperatures. To eliminate many of the concerns related to an entirely ceramic, rotating airfoil, this study has focused on equipping a stationary metal airfoil with a ceramic leading edge insert to demonstrate the feasibility and benefits of such a configuration. Here, the idea was to allow the SiC/SiC composite to be integrated as the airfoil's leading edge, operating in a "free-floating" or unrestrained manner. and provide temperature relief to the metal blade underneath. The test included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were air-cooled, uniquely instrumented, and exposed to the same internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). Results show the leading edge insert remained structurally intact after 200 simulated flight cycles with only a slightly oxidized surface. The instrumentation clearly suggested a significant reduction (approximately 600 F) in internal metal temperatures as a result of the ceramic leading edge. The object of this testing was to validate the design and analysis done by Materials Research and Design of Rosemont, PA and to determine the feasibility of this design for the intended application.
Sealing apparatus for airfoils of gas turbine engines
Jones, R.B.
1998-05-19
An improved airfoil tip sealing apparatus is disclosed wherein brush seals are attached to airfoil tips with the distal ends of the brush seal fibers sealingly contacting opposing wall surfaces. Embodiments for variable vanes, stators and both cooled and uncooled turbine blade applications are disclosed. 17 figs.
Fully integrated aerodynamic/dynamic optimization of helicopter rotor blades
NASA Technical Reports Server (NTRS)
Walsh, Joanne L.; Lamarsh, William J., II; Adelman, Howard M.
1992-01-01
This paper describes a fully integrated aerodynamic/dynamic optimization procedure for helicopter rotor blades. The procedure combines performance and dynamics analyses with a general purpose optimizer. The procedure minimizes a linear combination of power required (in hover, forward flight, and maneuver) and vibratory hub shear. The design variables include pretwist, taper initiation, taper ratio, root chord, blade stiffnesses, tuning masses, and tuning mass locations. Aerodynamic constraints consist of limits on power required in hover, forward flight and maneuver; airfoil section stall; drag divergence Mach number; minimum tip chord; and trim. Dynamic constraints are on frequencies, minimum autorotational inertia, and maximum blade weight. The procedure is demonstrated for two cases. In the first case the objective function involves power required (in hover, forward flight, and maneuver) and dynamics. The second case involves only hover power and dynamics. The designs from the integrated procedure are compared with designs from a sequential optimization approach in which the blade is first optimized for performance and then for dynamics. In both cases, the integrated approach is superior.
Fully integrated aerodynamic/dynamic optimization of helicopter rotor blades
NASA Technical Reports Server (NTRS)
Walsh, Joanne L.; Lamarsh, William J., II; Adelman, Howard M.
1992-01-01
A fully integrated aerodynamic/dynamic optimization procedure is described for helicopter rotor blades. The procedure combines performance and dynamic analyses with a general purpose optimizer. The procedure minimizes a linear combination of power required (in hover, forward flight, and maneuver) and vibratory hub shear. The design variables include pretwist, taper initiation, taper ratio, root chord, blade stiffnesses, tuning masses, and tuning mass locations. Aerodynamic constraints consist of limits on power required in hover, forward flight and maneuvers; airfoil section stall; drag divergence Mach number; minimum tip chord; and trim. Dynamic constraints are on frequencies, minimum autorotational inertia, and maximum blade weight. The procedure is demonstrated for two cases. In the first case, the objective function involves power required (in hover, forward flight and maneuver) and dynamics. The second case involves only hover power and dynamics. The designs from the integrated procedure are compared with designs from a sequential optimization approach in which the blade is first optimized for performance and then for dynamics. In both cases, the integrated approach is superior.
Slope seeking for autonomous lift improvement by plasma surface discharge
NASA Astrophysics Data System (ADS)
Benard, Nicolas; Moreau, Eric; Griffin, John; Cattafesta, Louis N., III
2010-05-01
The present paper describes an experimental investigation of closed-loop separation control using plasma actuators. The post-stall-separated flow over a NACA 0015 airfoil is controlled using a single dielectric barrier discharge actuator located at the leading edge. Open-loop measurements are first performed to highlight the effects of the voltage amplitude on the control authority for freestream velocities of 10-30 m/s (chord Re = 1.3 × 105 to 4 × 105). The results indicate that partial or full reattachment can be achieved and motivate the choice of the slope seeking approach as the control algorithm. A single-input/single-output algorithm is used to autonomously seek the optimal voltage required to achieve the control objective (full flow reattachment associated with maximum lift). The paper briefly introduces the concept of slope seeking, and a detailed parameterization of the controller is considered. Static (fixed speed) closed-loop experiments are then discussed, which demonstrate the capability of the algorithm. In each case, the flow can be reattached in an autonomous fashion. The last part of the paper demonstrates the robustness of the gradient-based, model-free scheme for dynamic freestream conditions. This paper highlights the capability of slope seeking to autonomously achieve high lift when used to drive the voltage of a plasma actuator. It also describes the advantages and drawbacks of such a closed-loop approach.
NASA Tech Briefs, January 2014
NASA Technical Reports Server (NTRS)
2014-01-01
Topics include: Multi-Source Autonomous Response for Targeting and Monitoring of Volcanic Activity; Software Suite to Support In-Flight Characterization of Remote Sensing Systems; Visual Image Sensor Organ Replacement; Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna; Centering a DDR Strobe in the Middle of a Data Packet; Using a Commercial Ethernet PHY Device in a Radiation Environment; Submerged AUV Charging Station; Habitat Demonstration Unit (HDU) Vertical Cylinder Habitat; Origami-Inspired Folding of Thick, Rigid Panels; A Novel Protocol for Decoating and Permeabilizing Bacterial Spores for Epifluorescent Microscopy; Method and Apparatus for Automated Isolation of Nucleic Acids from Small Cell Samples; Enabling Microliquid Chromatography by Microbead Packing of Microchannels; On-Command Force and Torque Impeding Devices (OC-FTID) Using ERF; Deployable Fresnel Rings; Transition-Edge Hot-Electron Microbolometers for Millimeter and Submillimeter Astrophysics; Spacecraft Trajectory Analysis and Mission Planning Simulation (STAMPS) Software; Cross Support Transfer Service (CSTS) Framework Library; Arbitrary Shape Deformation in CFD Design; Range Safety Flight Elevation Limit Calculation Software; Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors; Calculation of Operations Efficiency Factors for Mars Surface Missions; GPU Lossless Hyperspectral Data Compression System; Robust, Optimal Subsonic Airfoil Shapes; Protograph-Based Raptor-Like Codes; Fuzzy Neuron: Method and Hardware Realization; Kalman Filter Input Processor for Boresight Calibration; Organizing Compression of Hyperspectral Imagery to Allow Efficient Parallel Decompression; and Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption.
1991-09-01
jet engine (even rocket engine ) rotating components. Examples have been presented for compressor and turbine profile designs. Both methods are...used for experimental studies on plasmatrons and gasdynamic stands in which the gas jets are created by special aviation and rocket engines . Similar... Aviation Institute, Bd. Pacli 220, 77538 Bucharest, ROMANIA 45 --’, Inverse Airfoil Design Procedure .Uging a Mliitigrid Navier-Stokes ,Method) J.B
NASA Astrophysics Data System (ADS)
Zhiying, Chen; Ping, Zhou
2017-11-01
Considering the robust optimization computational precision and efficiency for complex mechanical assembly relationship like turbine blade-tip radial running clearance, a hierarchically response surface robust optimization algorithm is proposed. The distribute collaborative response surface method is used to generate assembly system level approximation model of overall parameters and blade-tip clearance, and then a set samples of design parameters and objective response mean and/or standard deviation is generated by using system approximation model and design of experiment method. Finally, a new response surface approximation model is constructed by using those samples, and this approximation model is used for robust optimization process. The analyses results demonstrate the proposed method can dramatic reduce the computational cost and ensure the computational precision. The presented research offers an effective way for the robust optimization design of turbine blade-tip radial running clearance.
Propulsion of a flapping and oscillating airfoil
NASA Technical Reports Server (NTRS)
Garrick, I E
1937-01-01
Formulas are given for the propelling or drag force experience in a uniform air stream by an airfoil or an airfoil-aileron combination, oscillating in any of three degrees of freedom; vertical flapping, torsional oscillations about a fixed axis parallel to the span, and angular oscillations of the aileron about a hinge.
Airfoil shape for flight at subsonic speeds
Whitcomb, Richard T.
1976-01-01
An airfoil having an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency.
Development of drive mechanism for an oscillating airfoil
NASA Technical Reports Server (NTRS)
Sticht, Clifford D.
1988-01-01
The design and development of an in-draft wind tunnel test section which will be used to study the dynamic stall of airfoils oscillating in pitch is described. The hardware developed comprises a spanned airfoil between schleiren windows, a four bar linkage, flywheels, a drive system and a test section structure.
The effect of acoustic forcing on an airfoil tonal noise mechanism.
Schumacher, Karn L; Doolan, Con J; Kelso, Richard M
2014-08-01
The response of the boundary layer over an airfoil with cavity to external acoustic forcing, across a sweep of frequencies, was measured. The boundary layer downstream of the cavity trailing edge was found to respond strongly and selectively at the natural airfoil tonal frequencies. This is considered to be due to enhanced feedback. However, the shear layer upstream of the cavity trailing edge did not respond at these frequencies. These findings confirm that an aeroacoustic feedback loop exists between the airfoil trailing edge and a location near the cavity trailing edge.
NASA Technical Reports Server (NTRS)
Mcalister, K. W.; Pucci, S. L.; Mccroskey, W. J.; Carr, L. W.
1982-01-01
Experimentally derived force and moment data are presented for eight airfoil sections that were tested at fixed and varying incidence in a subsonic two dimensional stream. Airfoil incidence was varied through sinusoidal oscillations in pitch over a wide range of amplitude and frequency. The surface pressure distribution, as well as the lift, drag, and pitching moment derived therefrom, are displayed in a uniform fashion to delineate the static and dynamic characteristics of each airfoil both in and out of stall.
Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU
2011-03-08
A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.
Ductile alloys for sealing modular component interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, John J.; Wessell, Brian J.; James, Allister W.
2017-08-08
A vane assembly (10) having: an airfoil (12) and a shroud (14) held together without metallurgical bonding there between; a channel (22) disposed circumferentially about the airfoil (12), between the airfoil (12) and the shroud (14); and a seal (20) disposed in the channel (22), wherein during operation of a turbine engine having the vane assembly (10) the seal (20) has a sufficient ductility such that a force generated on the seal (20) resulting from relative movement of the airfoil (12) and the shroud (14) is sufficient to plastically deform the seal (20).
System for damping vibrations in a turbine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, III, Herbert Chidsey; Johnson, Curtis Alan; Taxacher, Glenn Curtis
2015-11-24
A system for damping vibrations in a turbine includes a first rotating blade having a first ceramic airfoil, a first ceramic platform connected to the first ceramic airfoil, and a first root connected to the first ceramic platform. A second rotating blade adjacent to the first rotating blade includes a second ceramic airfoil, a second ceramic platform connected to the second ceramic airfoil, and a second root connected to the second ceramic platform. A non-metallic platform damper has a first position in simultaneous contact with the first and second ceramic platforms.
Wake curvature and trailing edge interaction effects in viscous flow over airfoils
NASA Technical Reports Server (NTRS)
Melnik, R. E.
1979-01-01
A theory developed for analyzing viscous flows over airfoils at high Reynolds numbers is described. The theory includes a complete treatment of viscous interaction effects induced by the curved wake behind the airfoil and accounts for normal pressure gradients across the boundary layer in the trailing edge region. A brief description of a computer code that was developed to solve the extended viscous interaction equations is given. Comparisons of the theoretical results with wind tunnel data for two rear loaded airfoils at supercritical conditions are presented.
NASA Technical Reports Server (NTRS)
Vassberg, John C. (Inventor); Gea, Lie-Mine (Inventor); McLean, James D. (Inventor); Witowski, David P. (Inventor); Krist, Steven E. (Inventor); Campbell, Richard L. (Inventor)
2006-01-01
An aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one slot is defined by the wing during at least one transonic condition of the wing. The slot may either extend spanwise along only a portion of the wingspan, or it may extend spanwise along the entire wingspan. In either case, the slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.
Gas turbine bucket cooling circuit and related process
Lewis, Doyle C.; Barb, Kevin Joseph
2002-01-01
A turbine bucket includes an airfoil portion having leading and trailing edges; at least one radially extending cooling passage within the airfoil portion, the airfoil portion joined to a platform at a radially inner end of the airfoil portion; a dovetail mounting portion enclosing a cooling medium supply passage; and, a crossover passage in fluid communication with the cooling medium supply passage and with at least one radially extending cooling passage, the crossover passage having a portion extending along and substantially parallel to an underside surface of the platform.
Experimental Study of Tip Vortex Flow from a Periodically Pitched Airfoil Section
NASA Technical Reports Server (NTRS)
Zaman, Khairul; Fagan, Amy; Mankbadi, Mina
2016-01-01
An experimental investigation of tip vortex flow from a NACA0012 airfoil, pitched periodically at various frequencies, is conducted in a low-speed wind tunnel. Initially, data for stationary airfoil held fixed at various angles-of-attack are gathered. Flow visualization pictures as well as detailed cross-sectional properties areobtained at various streamwise locations using hot-wire anemometry. Data include mean velocity, streamwise vorticity as well as various turbulent stresses. Preliminary data are also acquired for periodically pitched airfoil. These results are briefly presented in this extended abstract.
NASA Technical Reports Server (NTRS)
Nicks, Oran W.; Korkan, Kenneth D.
1991-01-01
Two reports on student activities to determine the properties of a new laminar airfoil which were delivered at a conference on soaring technology are presented. The papers discuss a wind tunnel investigation and analysis of the SM701 airfoil and verification of the SM701 airfoil aerodynamic charcteristics utilizing theoretical techniques. The papers are based on a combination of analytical design, hands-on model fabrication, wind tunnel calibration and testing, data acquisition and analysis, and comparison of test results and theory.
Unsteady lift forces on highly cambered airfoils moving through a gust
NASA Technical Reports Server (NTRS)
Atassi, H.; Goldstein, M.
1974-01-01
An unsteady airfoil theory in which the flow is linearized about the steady potential flow of the airfoil is presented. The theory is applied to an airfoil entering a gust. After transformation to the W-plane, the problem is formulated in terms of a Poisson's equation. The solutions are expanded in a Fourier-Bessel series. The theory is applied to a circular arc with arbitrary camber. Closed form expressions for the velocity and pressure on the surface of the airfoil are obtained. The unsteady aerodynamic forces are then calculated and shown to contain two terms. One in an explicit closed analytical form represents the contribution of the oncoming vortical disturbance, the other depends on a single quadrature and accounts for the effect of the wake.
Turbine airfoil to shroud attachment method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Christian X; Kulkarni, Anand A; James, Allister W
2014-12-23
Bi-casting a platform (50) onto an end portion (42) of a turbine airfoil (31) after forming a coating of a fugitive material (56) on the end portion. After bi-casting the platform, the coating is dissolved and removed to relieve differential thermal shrinkage stress between the airfoil and platform. The thickness of the coating is varied around the end portion in proportion to varying amounts of local differential process shrinkage. The coating may be sprayed (76A, 76B) onto the end portion in opposite directions parallel to a chord line (41) of the airfoil or parallel to a mid-platform length (80) ofmore » the platform to form respective layers tapering in thickness from the leading (32) and trailing (34) edges along the suction side (36) of the airfoil.« less
SmaggIce 2.0: Additional Capabilities for Interactive Grid Generation of Iced Airfoils
NASA Technical Reports Server (NTRS)
Kreeger, Richard E.; Baez, Marivell; Braun, Donald C.; Schilling, Herbert W.; Vickerman, Mary B.
2008-01-01
The Surface Modeling and Grid Generation for Iced Airfoils (SmaggIce) software toolkit has been extended to allow interactive grid generation for multi-element iced airfoils. The essential phases of an icing effects study include geometry preparation, block creation and grid generation. SmaggIce Version 2.0 now includes these main capabilities for both single and multi-element airfoils, plus an improved flow solver interface and a variety of additional tools to enhance the efficiency and accuracy of icing effects studies. An overview of these features is given, especially the new multi-element blocking strategy using the multiple wakes method. Examples are given which illustrate the capabilities of SmaggIce for conducting an icing effects study for both single and multi-element airfoils.
Analysis of high-incidence separated flow past airfoils
NASA Technical Reports Server (NTRS)
Chia, K. N.; Osswald, G. A.; Chia, U.
1989-01-01
An unsteady Navier-Stokes (NS) analysis is developed and used to carefully examine high-incidence aerodynamic separated flows past airfoils. Clustered conformal C-grids are employed for the 12 percent thick symmetric Joukowski airfoil as well as for the NACA 0012 airfoil with a sharp trailing edge. The clustering is controlled by appropriate one-dimensional stretching transformations. An attempt is made to resolve many of the dominant scales of an unsteady flow with massive separation, while maintaining the transformation metrics to be smooth and continuous in the entire flow field. A fully implicit time-marching alternating-direction implicit-block Gaussian elimination (ADI-BGE) method is employed, in which no use is made of any explicit artificial dissipation. Detailed results are obtained for massively separated, unsteady flow past symmetric Joukowski and NACA 0012 airfoils.
NASA Technical Reports Server (NTRS)
Johnson, W. G., Jr.; Hill, A. S.; Eichmann, O.
1985-01-01
A wind tunnel investigation of a NASA 12-percent-thick, advanced-technology supercritical airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT). This investigation represents another in the series of NASA/U.S. industry two-dimensional airfoil studies to be completed in the Advanced Technology Airfoil Tests program. Test temperature was varied from 220 K to 96 K at pressures ranging from 1.2 to 4.3 atm. Mach number was varied from 0.60 to 0.80. These variables provided a Reynolds number range from 4,400,000 to 40,000,000 based on a 15.24-cm (6.0-in.) airfoil chord. This investigation was designed to test a NASA advanced-technology airfoil from low to flight-equivalent Reynolds numbers, provide experience in cryogenic wind tunnel model design and testing techniques, and demonstrate the suitability of the 0.3-m TCT as an airfoil test facility. The aerodynamic results are presented as integrated force and moment coefficients and pressure distributions. Data are included which demonstrate the effects of fixed transition, Mach number, and Reynolds number on the aerodynamic characteristics. Also included are remarks on the model design, the model structural integrity, and the overall test experience.
Wind Tunnel Evaluation of a Model Helicopter Main-Rotor Blade With Slotted Airfoils at the Tip
NASA Technical Reports Server (NTRS)
Noonan, Kevin W.; Yeager, William T., Jr.; Singleton, Jeffrey D.; Wilbur, Matthew L.; Mirick, Paul H.
2001-01-01
Data for rotors using unconventional airfoils are of interest to permit an evaluation of this technology's capability to meet the U.S. Army's need for increased helicopter mission effectiveness and improved safety and survivability. Thus, an experimental investigation was conducted in the Langley Transonic Dynamics Tunnel (TDT) to evaluate the effect of using slotted airfoils in the rotor blade tip region (85 to 100 percent radius) on rotor aerodynamic performance and loads. Four rotor configurations were tested in forward flight at advance ratios from 0.15 to 0.45 and in hover in-ground effect. The hover tip Mach number was 0.627, which is representative of a design point of 4000-ft geometric altitude and a temperature of 95 F. The baseline rotor configuration had a conventional single-element airfoil in the tip region. A second rotor configuration had a forward-slotted airfoil with a -6 deg slat, a third configuration had a forward-slotted airfoil with a -10 slat, and a fourth configuration had an aft-slotted airfoil with a 3 deg flap (trailing edge down). The results of this investigation indicate that the -6 deg slat configuration offers some performance and loads benefits over the other three configurations.
NASA Technical Reports Server (NTRS)
von Doenhoff, Albert E.; Horton, Elmer A.
1942-01-01
An investigation was carried out in the NACA low-turbulence tunnel to develop low-drag airfoil sections suitable for admitting air at the leading edge. A thickness distribution having the desired type of pressure distribution was found from tests of a flexible model. Other airfoil shapes were derived from this original shape by varying the thickness, the camper, the leading-edge radius, and the size of the leading-edge opening. Data are presented giving the characteristics of the airfoil shapes in the range of lift coefficients for high-speed and cruising flight. Shapes have been developed which show no substantial increases in drag over that of the same position along the chord. Many of these shapes appear to have higher critical compressibility speeds than plain airfoils of the same thickness. Low-drag airfoil sections have been developed with openings in the leading edge as large as 41.5 percent of the maximum thickness. The range of lift coefficients for low drag in several cases is nearly as large as that of the corresponding plain airfoil sections. Preliminary measurements of maximum lift characteristics indicate that nose-opening sections of the type herein considered may not produce any marked effects on the maximum lift coefficient.
Drag Coefficient of Water Droplets Approaching the Leading Edge of an Airfoil
NASA Technical Reports Server (NTRS)
Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida Garcia
2013-01-01
This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Results are presented and discussed for drag coefficients of droplets with diameters in the range of 300 to 1800 micrometers, and airfoil velocities of 50, 70 and 90 meters/second. The effect of droplet oscillation on the drag coefficient is discussed.
NASA Technical Reports Server (NTRS)
Johnson, W. G., Jr.; Hill, A. S.; Eichmann, O.
1985-01-01
A wind tunnel investigation of a NASA 12-percent-thick, advanced-technology supercritical airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT). This investigation represents another in the series of NASA/U.S. industry two-dimensional airfoil studies to be completed in the Advanced Technology Airfoil Tests program. Test temperature was varied from 220 K to 96 K at pressures ranging from 1.2 to 4.3 atm. Mach number was varied from 0.50 to 0.80. This investigation was designed to: (1) test a NASA advanced-technology airfoil from low to flight equivalent Reynolds numbers, (2) provide experience in cryogenic wind-tunnel model design and testing techniques, and (3) demonstrate the suitability of the 0.3-m TCT as an airfoil test facility. All the test objectives were met. The pressure data are presented without analysis in tabulated format and as plots of pressure coefficient versus position on the airfoil. This report was prepared for use in conjunction with the aerodynamic coefficient data published in NASA-TM-86371. Data are included which demonstrate the effects of fixed transition. Also included are remarks on the model design and fabrication.
NASA Technical Reports Server (NTRS)
Carter, Arthur W.
1961-01-01
An investigation has been made to determine the effect of ground proximity on the aerodynamic characteristics of aspect-ratio-1 airfoils. The investigation was made with the model moving over the water in a towing tank in order to eliminate the effects of wind-tunnel walls and of boundary layer on ground boards at small ground clearances. The results indicated that, as the ground was approached, the airfoils experienced an increase in lift-curve slope and a reduction in induced drag; thus, lift-drag ratio was increased. As the ground was approached, the profile drag remained essentially constant for each airfoil. Near the ground, the addition of end plates to the airfoil resulted in a large increase in lift-drag ratio. The lift characteristics of the airfoils indicated stability of height at positive angles of attack and instability of height at negative angles; therefore, the operating range of angles of attack would be limited to positive values. At positive angles of attack, the static longitudinal stability was increased as the height above the ground was reduced. Comparison of the experimental data with Wieselsberger's ground-effect theory (NACA Technical Memorandum 77) indicated generally good agreement between experiment and theory for the airfoils without end plates.
NASA Astrophysics Data System (ADS)
Chaerani, D.; Lesmana, E.; Tressiana, N.
2018-03-01
In this paper, an application of Robust Optimization in agricultural water resource management problem under gross margin and water demand uncertainty is presented. Water resource management is a series of activities that includes planning, developing, distributing and managing the use of water resource optimally. Water resource management for agriculture can be one of the efforts to optimize the benefits of agricultural output. The objective function of agricultural water resource management problem is to maximizing total benefits by water allocation to agricultural areas covered by the irrigation network in planning horizon. Due to gross margin and water demand uncertainty, we assume that the uncertain data lies within ellipsoidal uncertainty set. We employ robust counterpart methodology to get the robust optimal solution.
Vehicle System Integration, Optimization, and Robustness
Operations Technology Exchange Initiating Partnerships University Partners Government Partners Industry Contacts Researchers Thrust Area 5: Vehicle System Integration, Optimization, and Robustness Thrust Area only optimal design of the vehicle components, but also an optimization of the interactions between
Robust fuel- and time-optimal control of uncertain flexible space structures
NASA Technical Reports Server (NTRS)
Wie, Bong; Sinha, Ravi; Sunkel, John; Cox, Ken
1993-01-01
The problem of computing open-loop, fuel- and time-optimal control inputs for flexible space structures in the face of modeling uncertainty is investigated. Robustified, fuel- and time-optimal pulse sequences are obtained by solving a constrained optimization problem subject to robustness constraints. It is shown that 'bang-off-bang' pulse sequences with a finite number of switchings provide a practical tradeoff among the maneuvering time, fuel consumption, and performance robustness of uncertain flexible space structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Ji, Haoran; Wang, Chengshan
Distributed generators (DGs) including photovoltaic panels (PVs) have been integrated dramatically in active distribution networks (ADNs). Due to the strong volatility and uncertainty, the high penetration of PV generation immensely exacerbates the conditions of voltage violation in ADNs. However, the emerging flexible interconnection technology based on soft open points (SOPs) provides increased controllability and flexibility to the system operation. For fully exploiting the regulation ability of SOPs to address the problems caused by PV, this paper proposes a robust optimization method to achieve the robust optimal operation of SOPs in ADNs. A two-stage adjustable robust optimization model is built tomore » tackle the uncertainties of PV outputs, in which robust operation strategies of SOPs are generated to eliminate the voltage violations and reduce the power losses of ADNs. A column-and-constraint generation (C&CG) algorithm is developed to solve the proposed robust optimization model, which are formulated as second-order cone program (SOCP) to facilitate the accuracy and computation efficiency. Case studies on the modified IEEE 33-node system and comparisons with the deterministic optimization approach are conducted to verify the effectiveness and robustness of the proposed method.« less
Robust Control Design for Systems With Probabilistic Uncertainty
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.
2005-01-01
This paper presents a reliability- and robustness-based formulation for robust control synthesis for systems with probabilistic uncertainty. In a reliability-based formulation, the probability of violating design requirements prescribed by inequality constraints is minimized. In a robustness-based formulation, a metric which measures the tendency of a random variable/process to cluster close to a target scalar/function is minimized. A multi-objective optimization procedure, which combines stability and performance requirements in time and frequency domains, is used to search for robustly optimal compensators. Some of the fundamental differences between the proposed strategy and conventional robust control methods are: (i) unnecessary conservatism is eliminated since there is not need for convex supports, (ii) the most likely plants are favored during synthesis allowing for probabilistic robust optimality, (iii) the tradeoff between robust stability and robust performance can be explored numerically, (iv) the uncertainty set is closely related to parameters with clear physical meaning, and (v) compensators with improved robust characteristics for a given control structure can be synthesized.
Characteristics of merging shear layers and turbulent wakes of a multi-element airfoil
NASA Technical Reports Server (NTRS)
Adair, Desmond; Horne, W. Clifton
1988-01-01
Flow characteristics in the vicinity of the trailing edge of a single-slotted airfoil flap are presented and analyzed. The experimental arrangement consisted of a NACA 4412 airfoil equipped with a NACA 4415 flap whose angle of deflection was 21.8 deg. The flow remained attached over the model surfaces except in the vicinity of the flap trailing edge where a small region of boundary-layer separation extended over the aft 7 percent of flap chord. The flow was complicated by the presence of a strong, initially inviscid jet emanating from the slot between airfoil and flap, and a gradual merging of the main airfoil wake and flap suction-side boundary layer. Downstream of the flap, the airfoil and flap wakes fully merged to form an asymmetrical curved wake. The airfoil configuration was tested at an angle of attack of 8.2 deg, at a Mach number of 0.09, and a chord based Reynolds number of 1.8 x 10 to the 6th power in the Ames Research Center 7- by 10-Foot Wind Tunnel. Surface pressure measurements were made on the airfoil and flap and on the wind tunnel roof and floor. It was estimated that the wall interference increased the C sub L by 7 percent and decreased the C sub M by 4.5 percent. Velocity characteristics were quantified using hot-wire anemometry in regions of flow with preferred direction and low turbulence intensity. A 3-D laser velocimeter was used in regions of flow recirculation and relatively high turbulence intensity.
Info-gap robust-satisficing model of foraging behavior: do foragers optimize or satisfice?
Carmel, Yohay; Ben-Haim, Yakov
2005-11-01
In this note we compare two mathematical models of foraging that reflect two competing theories of animal behavior: optimizing and robust satisficing. The optimal-foraging model is based on the marginal value theorem (MVT). The robust-satisficing model developed here is an application of info-gap decision theory. The info-gap robust-satisficing model relates to the same circumstances described by the MVT. We show how these two alternatives translate into specific predictions that at some points are quite disparate. We test these alternative predictions against available data collected in numerous field studies with a large number of species from diverse taxonomic groups. We show that a large majority of studies appear to support the robust-satisficing model and reject the optimal-foraging model.
Including robustness in multi-criteria optimization for intensity-modulated proton therapy
NASA Astrophysics Data System (ADS)
Chen, Wei; Unkelbach, Jan; Trofimov, Alexei; Madden, Thomas; Kooy, Hanne; Bortfeld, Thomas; Craft, David
2012-02-01
We present a method to include robustness in a multi-criteria optimization (MCO) framework for intensity-modulated proton therapy (IMPT). The approach allows one to simultaneously explore the trade-off between different objectives as well as the trade-off between robustness and nominal plan quality. In MCO, a database of plans each emphasizing different treatment planning objectives, is pre-computed to approximate the Pareto surface. An IMPT treatment plan that strikes the best balance between the different objectives can be selected by navigating on the Pareto surface. In our approach, robustness is integrated into MCO by adding robustified objectives and constraints to the MCO problem. Uncertainties (or errors) of the robust problem are modeled by pre-calculated dose-influence matrices for a nominal scenario and a number of pre-defined error scenarios (shifted patient positions, proton beam undershoot and overshoot). Objectives and constraints can be defined for the nominal scenario, thus characterizing nominal plan quality. A robustified objective represents the worst objective function value that can be realized for any of the error scenarios and thus provides a measure of plan robustness. The optimization method is based on a linear projection solver and is capable of handling large problem sizes resulting from a fine dose grid resolution, many scenarios, and a large number of proton pencil beams. A base-of-skull case is used to demonstrate the robust optimization method. It is demonstrated that the robust optimization method reduces the sensitivity of the treatment plan to setup and range errors to a degree that is not achieved by a safety margin approach. A chordoma case is analyzed in more detail to demonstrate the involved trade-offs between target underdose and brainstem sparing as well as robustness and nominal plan quality. The latter illustrates the advantage of MCO in the context of robust planning. For all cases examined, the robust optimization for each Pareto optimal plan takes less than 5 min on a standard computer, making a computationally friendly interface possible to the planner. In conclusion, the uncertainty pertinent to the IMPT procedure can be reduced during treatment planning by optimizing plans that emphasize different treatment objectives, including robustness, and then interactively seeking for a most-preferred one from the solution Pareto surface.
Approximate and exact numerical integration of the gas dynamic equations
NASA Technical Reports Server (NTRS)
Lewis, T. S.; Sirovich, L.
1979-01-01
A highly accurate approximation and a rapidly convergent numerical procedure are developed for two dimensional steady supersonic flow over an airfoil. Examples are given for a symmetric airfoil over a range of Mach numbers. Several interesting features are found in the calculation of the tail shock and the flow behind the airfoil.
Tests of N.A.C.A. airfoils in the variable-density wind tunnel Series 24
NASA Technical Reports Server (NTRS)
Jacobs, Eastman N; WARD KENNETH E
1932-01-01
This note is the fifth of a series covering an investigation of a number of related airfoils. It presents the results obtained from tests of a group of six low-cambered airfoils in the variable-density wind tunnel. The mean camber lines are identical for the six airfoils and are of such a form that the maximum mean camber is 2 per cent of the chord and is at a position 0.4 of the chord behind the loading edge. The airfoils differ in thickness only, the maximum-thickness/chord ratios being 0.06, 0.09, 0.12, 0.15, 0.18, and 0.21. The results have been presented in the form of both infinite and finite aspect-ratio characteristics. The values of C(sub L) max/C(sub d) degrees min for this group of airfoils are among the highest thus far obtained, the minimum profile drags being approximately equal to those for the symmetrical series of corresponding thickness, while the maximum lift coefficients are considerably higher.
NASA Technical Reports Server (NTRS)
Vincenti, Walter G; Graham, Donald J
1946-01-01
The results of a theoretical and experimental investigation of wall interference for an airfoil spanning a closed-throat circular wind tunnel are presented. Analytical equations are derived which relate the characteristics of an airfoil in the tunnel at subsonic speeds with the characteristics in free air. The analysis takes into consideration the effect of fluid compressibility and is based upon the assumption that the chord of the airfoil is small as compared with the diameter of the tunnel. The development is restricted to an untwisted, constant-chord airfoil spanning the middle of the tunnel. Brief theoretical consideration is also given to the problem of choking at high speeds. Results are then presented of tests to determine the low-speed characteristics of an NACA 4412 airfoil for two chord-diameter ratios. While, on the basis of these experiments, no appraisal is possible of the accuracy of the corrections at high speeds, the data indicate that at low Mach numbers the analytical results are valid, even for relatively large values of the chord-diameter ratio.
Numerical Issues for Circulation Control Calculations
NASA Technical Reports Server (NTRS)
Swanson, Roy C., Jr.; Rumsey, Christopher L.
2006-01-01
Steady-state and time-accurate two-dimensional solutions of the compressible Reynolds-averaged Navier- Stokes equations are obtained for flow over the Lockheed circulation control (CC) airfoil and the General Aviation CC (GACC) airfoil. Numerical issues in computing circulation control flows such as the effects of grid resolution, boundary and initial conditions, and unsteadiness are addressed. For the Lockheed CC airfoil computed solutions are compared with detailed experimental data, which include velocity and Reynolds stress profiles. Three turbulence models, having either one or two transport equations, are considered. Solutions are obtained on a sequence of meshes, with mesh refinement primarily concentrated on the airfoil circular trailing edge. Several effects related to mesh refinement are identified. For example, sometimes sufficient mesh resolution can exclude nonphysical solutions, which can occur in CC airfoil calculations. Also, sensitivities of the turbulence models with mesh refinement are discussed. In the case of the GACC airfoil the focus is on the difference between steady-state and time-accurate solutions. A specific objective is to determine if there is self-excited vortex shedding from the jet slot lip.
Tangler, James L.; Somers, Dan M.
2000-01-01
Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.
NASA Technical Reports Server (NTRS)
Hague, D. S.; Merz, A. W.
1975-01-01
An investigation was conducted on a CDC 7600 digital computer to determine the effects of additional thickness distributions to the upper surface of an NACA 64 sub 1 - 212 airfoil. Additional thickness distributions employed were in the form of two second-order polynomial arcs which have a specified thickness at a given chordwise location. The forward arc disappears at the airfoil leading edge, the aft arc disappears at the airfoil trailing edge. At the juncture of the two arcs, x = x, continuity of slope is maintained. The effect of varying the maximum additional thickness and its chordwise location on airfoil lift coefficient, pitching moment, and pressure distribution was investigated. Results were obtained at a Mach number of 0.2 with an angle-of-attack of 6 degrees on the basic NACA 64 sub 1 - 212 airfoil, and all calculations employ the full potential flow equations for two dimensional flow. The relaxation method of Jameson was employed for solution of the potential flow equations.
Numerical computation of viscous flow about unconventional airfoil shapes
NASA Technical Reports Server (NTRS)
Ahmed, S.; Tannehill, J. C.
1990-01-01
A new two-dimensional computer code was developed to analyze the viscous flow around unconventional airfoils at various Mach numbers and angles of attack. The Navier-Stokes equations are solved using an implicit, upwind, finite-volume scheme. Both laminar and turbulent flows can be computed. A new nonequilibrium turbulence closure model was developed for computing turbulent flows. This two-layer eddy viscosity model was motivated by the success of the Johnson-King model in separated flow regions. The influence of history effects are described by an ordinary differential equation developed from the turbulent kinetic energy equation. The performance of the present code was evaluated by solving the flow around three airfoils using the Reynolds time-averaged Navier-Stokes equations. Excellent results were obtained for both attached and separated flows about the NACA 0012 airfoil, the RAE 2822 airfoil, and the Integrated Technology A 153W airfoil. Based on the comparison of the numerical solutions with the available experimental data, it is concluded that the present code in conjunction with the new nonequilibrium turbulence model gives excellent results.
Aerodynamic Characteristics of Airfoils at High Speeds
NASA Technical Reports Server (NTRS)
Briggs, L J; Hull, G F; Dryden, H L
1925-01-01
This report deals with an experimental investigation of the aerodynamical characteristics of airfoils at high speeds. Lift, drag, and center of pressure measurements were made on six airfoils of the type used by the air service in propeller design, at speeds ranging from 550 to 1,000 feet per second. The results show a definite limit to the speed at which airfoils may efficiently be used to produce lift, the lift coefficient decreasing and the drag coefficient increasing as the speed approaches the speed of sound. The change in lift coefficient is large for thick airfoil sections (camber ratio 0.14 to 0.20) and for high angles of attack. The change is not marked for thin sections (camber ratio 0.10) at low angles of attack, for the speed range employed. At high speeds the center of pressure moves back toward the trailing edge of the airfoil as the speed increases. The results indicate that the use of tip speeds approaching the speed of sound for propellers of customary design involves a serious loss in efficiency.
NASA Technical Reports Server (NTRS)
Merz, A. W.; Hague, D. S.
1975-01-01
An investigation was conducted on a CDC 7600 digital computer to determine the effects of additional thickness distributions to the upper surface of an NACA 64-206 airfoil. Additional thickness distributions employed were in the form of two second-order polynomial arcs which have a specified thickness at a given chordwise location. The forward arc disappears at the airfoil leading edge, the aft arc disappears at the airfoil trailing edge. At the juncture of the two arcs, x = x, continuity of slope is maintained. The effect of varying the maximum additional thickness and its chordwise location on airfoil lift coefficient, pitching moment, and pressure distribution was investigated. Results were obtained at a Mach number of 0.2 with an angle-of-attack of 6 degrees on the basic NACA 64-206 airfoil, and all calculations employ the full potential flow equations for two dimensional flow. The relaxation method of Jameson was employed for solution of the potential flow equations.
Recent progress in the analysis of iced airfoils and wings
NASA Technical Reports Server (NTRS)
Cebeci, Tuncer; Chen, Hsun H.; Kaups, Kalle; Schimke, Sue
1992-01-01
Recent work on the analysis of iced airfoils and wings is described. Ice shapes for multielement airfoils and wings are computed using an extension of the LEWICE code that was developed for single airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The newly developed LEWICE multielement code is amplified to a high-lift configuration to calculate the ice shapes on the slat and on the main airfoil and on a four-element airfoil. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered iced wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.
Supercritical flow past a symmetrical bicircular arc airfoil
NASA Technical Reports Server (NTRS)
Holt, Maurice; Yew, Khoy Chuah
1989-01-01
A numerical scheme is developed for computing steady supercritical flow about symmetrical airfoils, applying it to an ellipse for zero angle of attack. An algorithmic description of this new scheme is presented. Application to a symmetrical bicircular arc airfoil is also proposed. The flow field before the shock is region 1. For transonic flow, singularity can be avoided by integrating the resulting ordinary differential equations away from the body. Region 2 contains the shock which will be located by shock fitting techniques. The shock divides region 2 into supersonic and subsonic regions and there is no singularity problem in this case. The Method of Lines is used in this region and it is advantageous to integrate the resulting ordinary differential equation along the body for shock fitting. Coaxial coordinates have to be used for the bicircular arc airfoil so that boundary values on the airfoil body can be taken with one direction of the coaxial coordinates fixed. To avoid taking boundary values at + or - infinity in the coaxial co-ordinary system, approximate analytical representation of the flow field near the tips of the airfoil is proposed.
Formation and Development of the Dynamic Stall Vortex on a Wing with Leading Edge Tubercles
NASA Astrophysics Data System (ADS)
Hrynuk, John; Bohl, Douglas
2015-11-01
Humpback whales are unique in that their flippers have leading edge ``bumps'' or tubercles. Past work on airfoils inspired by whale flippers has centered on the static aerodynamic characteristics of these airfoils. The current study uses Molecular Tagging Velocimetry (MTV) to investigate the effects of tubercles on dynamically pitching NACA 0012 airfoils. A baseline (i.e. straight leading edge) wing and one modified with leading edge tubercles are investigated. Tracking of the Dynamic Stall Vortex (DSV) is performed to quantitatively compare the DSV formation location, path, and convective velocity for tubercled and baseline wings. The results show that there is a spanwise variation in the initial formation location and motion of the DSV on the modified wing. Once formed, the DSV aligns into a more uniform spanwise structure. As the pitching motion progresses, the DSV on the modified wing convects away from the airfoil surface later and slower than is observed for the baseline airfoil. The results indicate that the tubercles may delay stall when compared to the baseline airfoil. This work was supported by NSF Grant # 0845882.
NASA Technical Reports Server (NTRS)
Johnson, Charles B.; Dress, David A.; Hill, Acquilla S.; Wilcox, Peter A.; Bui, Minh H.
1986-01-01
A wind-tunnel investigation of a Douglas advanced-technology airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT). The temperature was varied from 227 K (409 R) to 100 K (180 R) at pressures ranging from about 159 kPa (1.57 atm) to about 514 kPa (5.07 atm). Mach number was varied from 0.50 to 0.78. These variables provided a Reynolds number range (based on airfoil chord) from 6.0 to 30.0 x 10 to the 6th power. This investigation was specifically designed to: (1) test a Douglas airfoil from moderately low to flight-equivalent Reynolds numbers, and (2) evaluate sidewall-boundary-layer effects on transonic airfoil performance characteristics by a systematic variation of Mach number, Reynolds number, and sidewall-boundary-layer removal. Data are included which demonstrate the effects of fixing transition, Mach number, Reynolds number, and sidewall-boundary-layer removal on the aerodynamic characteristics of the airfoil. Also included are remarks on model design and model structural integrity.
NASA Astrophysics Data System (ADS)
Komuro, Atsushi; Takashima, Keisuke; Konno, Kaiki; Tanaka, Naoki; Nonomura, Taku; Kaneko, Toshiro; Ando, Akira; Asai, Keisuke
2017-06-01
Gas-density perturbations near an airfoil surface generated by a nanosecond dielectric-barrier-discharge plasma actuator (ns-DBDPA) are visualized using a high-speed Schlieren imaging method. Wind-tunnel experiments are conducted for a wind speed of 20 m s-1 with an NACA0015 airfoil whose chord length is 100 mm. The results show that the ns-DBDPA first generates a pressure wave and then stochastic perturbations of the gas density near the leading edge of the airfoil. Two structures with different characteristics are observed in the stochastic perturbations. One structure propagates along the boundary between the shear layer and the main flow at a speed close to that of the main flow. The other propagates more slowly on the surface of the airfoil and causes mixing between the main and shear flows. It is observed that these two heated structures interact with each other, resulting in a recovery in the negative pressure coefficient at the leading edge of the airfoil.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
1998-01-01
Flow and turbulence models applied to the problem of shock buffet onset are studied. The accuracy of the interactive boundary layer and the thin-layer Navier-Stokes equations solved with recent upwind techniques using similar transport field equation turbulence models is assessed for standard steady test cases, including conditions having significant shock separation. The two methods are found to compare well in the shock buffet onset region of a supercritical airfoil that involves strong trailing-edge separation. A computational analysis using the interactive-boundary layer has revealed a Reynolds scaling effect in the shock buffet onset of the supercritical airfoil, which compares well with experiment. The methods are next applied to a conventional airfoil. Steady shock-separated computations of the conventional airfoil with the two methods compare well with experiment. Although the interactive boundary layer computations in the shock buffet region compare well with experiment for the conventional airfoil, the thin-layer Navier-Stokes computations do not. These findings are discussed in connection with possible mechanisms important in the onset of shock buffet and the constraints imposed by current numerical modeling techniques.
NASA Astrophysics Data System (ADS)
Rahman, M. Mostaqur; Hasan, A. B. M. Toufique; Rabbi, M. S.
2017-06-01
In transonic flow conditions, self-sustained shock wave oscillation on biconvex airfoils is initiated by the complex shock wave boundary layer interaction which is frequently observed in several modern internal aeronautical applications such as inturbine cascades, compressor blades, butterfly valves, fans, nozzles, diffusers and so on. Shock wave boundary layer interaction often generates serious problems such as unsteady boundary layer separation, self-excited shock waveoscillation with large pressure fluctuations, buffeting excitations, aeroacoustic noise, nonsynchronous vibration, high cycle fatigue failure and intense drag rise. Recently, the control of the self-excited shock oscillation around an airfoil using passive control techniques is getting intense interest. Among the passive means, control using open cavity has found promising. In this study, the effect of cavity size on the control of self-sustained shock oscillation was investigated numerically. The present computations are validated with available experimental results. The results showed that the average root mean square (RMS) of pressure oscillation around the airfoil with open cavity has reduced significantly when compared to airfoil without cavity (clean airfoil).
NASA Technical Reports Server (NTRS)
Wolf, S. W. D.
1977-01-01
Work has continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes on airfoil data and wall contours. Mechanical design analyses for the transonic self streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility is outlined.
NASA Technical Reports Server (NTRS)
Letko, W; Denaci, H. G.; Freed, C
1943-01-01
Hinge-moment, lift, and pressure-distribution measurements were made in the two-dimensional test section of the NACA stability tunnel on a blunt-nose balance-type aileron on an NACA 66,2-216 airfoil at speeds up to 360 miles per hour corresponding to a Mach number of 0.475. The tests were made primarily to determine the effect of speed on the action of this type of aileron. The balance-nose radii of the aileron were varied from 0 to 0.02 of the airfoil chord and the gap width was varied from 0.0005 to 0.0107 of the airfoil chord. Tests were also made with the gap sealed.
Design modification of airfoil by integrating sinusoidal leading edge and dimpled surface
NASA Astrophysics Data System (ADS)
Masud, M. H.; Naim-Ul-Hasan, Arefin, Amit Md. Estiaque; Joardder, Mohammad U. H.
2017-06-01
Airfoil is widely used for aircraft wings and blades of helicopters, turbines, propellers, fans and compressors. Many researches have been conducted on focusing the leading edge, surface and trailing edge of airfoil in order to maximize airfoil lift and to reduce drag. Literature shows that using protuberances along the leading edge of NACA 2412, it is possible to attain better performance from the baseline. Besides, the inward dimpled surface of NACA 0018 produces lesser drag at a positive angle of attacks. However, there is no literature that integrates sinusoidal leading edge and dimpled to attain the benefits of the both. In this study, simulation has been done for design improvement of airfoil by integrating sinusoidal leading edge and dimpled surface. Simulations have been run using finite element method environment. Significant improvement has been observed from the simulation results.
NASA Technical Reports Server (NTRS)
Dring, R. P.; Blair, M. F.; Joslyn, H. D.; Power, G. D.; Verdon, J. M.
1987-01-01
A combined experimental and analytical program was conducted to examine the effects of inlet turbulence on airfoil heat transfer. Heat transfer measurements were obtained using low conductivity airfoils with miniature thermocouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient (incidence), first-stator/rotor axial spacing, Reynolds number, and relative circumferential position of the first and second stators. Aerodynamic measurements include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Analytical results include airfoil heat transfer predictions and a examination of solutions of the unstead boundary layer equipment.
Low speed airfoil design and analysis
NASA Technical Reports Server (NTRS)
Eppler, R.; Somers, D. M.
1979-01-01
A low speed airfoil design and analysis program was developed which contains several unique features. In the design mode, the velocity distribution is not specified for one but many different angles of attack. Several iteration options are included which allow the trailing edge angle to be specified while other parameters are iterated. For airfoil analysis, a panel method is available which uses third-order panels having parabolic vorticity distributions. The flow condition is satisfied at the end points of the panels. Both sharp and blunt trailing edges can be analyzed. The integral boundary layer method with its laminar separation bubble analog, empirical transition criterion, and precise turbulent boundary layer equations compares very favorably with other methods, both integral and finite difference. Comparisons with experiment for several airfoils over a very wide Reynolds number range are discussed. Applications to high lift airfoil design are also demonstrated.
NASA Technical Reports Server (NTRS)
Bergrun, Norman R
1952-01-01
An empirically derived basis for predicting the area, rate, and distribution of water-drop impingement on airfoils of arbitrary section is presented. The concepts involved represent an initial step toward the development of a calculation technique which is generally applicable to the design of thermal ice-prevention equipment for airplane wing and tail surfaces. It is shown that sufficiently accurate estimates, for the purpose of heated-wing design, can be obtained by a few numerical computations once the velocity distribution over the airfoil has been determined. The calculation technique presented is based on results of extensive water-drop trajectory computations for five airfoil cases which consisted of 15-percent-thick airfoils encompassing a moderate lift-coefficient range. The differential equations pertaining to the paths of the drops were solved by a differential analyzer.
Multi-component assembly casting
James, Allister W.
2015-10-13
Multi-component vane segment and method for forming the same. Assembly includes: positioning a pre-formed airfoil component (12) and a preformed shroud heat resistant material (18) in a mold, wherein the airfoil component (12) and the shroud heat resistant material (18) each comprises an interlocking feature (24); preheating the mold; introducing molten structural material (46) into the mold; and solidifying the molten structural material such that it interlocks the pre-formed airfoil component (12) with respect to the preformed shroud heat resistant material (18) and is effective to provide structural support for the shroud heat resistant material (18). Surfaces between the airfoil component (12) and the structural material (46), between the airfoil component (12) and the shroud heat resistant material (18), and between the shroud heat resistant material (18) and the structural material (46) are free of metallurgical bonds.
Pressure Distribution Over Airfoils with Fowler Flaps
NASA Technical Reports Server (NTRS)
Wenzinger, Carl J; Anderson, Walter B
1938-01-01
Report presents the results of tests made of a Clark y airfoil with a Clark y Fowler flap and of an NACA 23012 airfoil with NACA Fowler flaps. Some of the tests were made in the 7 by 10-foot wind tunnel and others in the 5-foot vertical wind tunnel. The pressures were measured on the upper and lower surfaces at one chord section both on the main airfoils and on the flaps for several angles of attack with the flaps located at the maximum-lift settings. A test installation was used in which the model was mounted in the wind tunnel between large end planes so that two-dimensional flow was approximated. The data are given in the form of pressure-distribution diagrams and as plots of calculated coefficients for the airfoil-and-flap combinations and for the flaps alone.
A unified viscous theory of lift and drag of 2-D thin airfoils and 3-D thin wings
NASA Technical Reports Server (NTRS)
Yates, John E.
1991-01-01
A unified viscous theory of 2-D thin airfoils and 3-D thin wings is developed with numerical examples. The viscous theory of the load distribution is unique and tends to the classical inviscid result with Kutta condition in the high Reynolds number limit. A new theory of 2-D section induced drag is introduced with specific applications to three cases of interest: (1) constant angle of attack; (2) parabolic camber; and (3) a flapped airfoil. The first case is also extended to a profiled leading edge foil. The well-known drag due to absence of leading edge suction is derived from the viscous theory. It is independent of Reynolds number for zero thickness and varies inversely with the square root of the Reynolds number based on the leading edge radius for profiled sections. The role of turbulence in the section induced drag problem is discussed. A theory of minimum section induced drag is derived and applied. For low Reynolds number the minimum drag load tends to the constant angle of attack solution and for high Reynolds number to an approximation of the parabolic camber solution. The parabolic camber section induced drag is about 4 percent greater than the ideal minimum at high Reynolds number. Two new concepts, the viscous induced drag angle and the viscous induced separation potential are introduced. The separation potential is calculated for three 2-D cases and for a 3-D rectangular wing. The potential is calculated with input from a standard doublet lattice wing code without recourse to any boundary layer calculations. Separation is indicated in regions where it is observed experimentally. The classical induced drag is recovered in the 3-D high Reynolds number limit with an additional contribution that is Reynold number dependent. The 3-D viscous theory of minimum induced drag yields an equation for the optimal spanwise and chordwise load distribution. The design of optimal wing tip planforms and camber distributions is possible with the viscous 3-D wing theory.
Prediction of unsteady separated flows on oscillating airfoils
NASA Technical Reports Server (NTRS)
Mccroskey, W. J.
1978-01-01
Techniques for calculating high Reynolds number flow around an airfoil undergoing dynamic stall are reviewed. Emphasis is placed on predicting the values of lift, drag, and pitching moments. Methods discussed include: the discrete potential vortex method; thin boundary layer method; strong interaction between inviscid and viscous flows; and solutions to the Navier-Stokes equations. Empirical methods for estimating unsteady airloads on oscillating airfoils are also described. These methods correlate force and moment data from wind tunnel tests to indicate the effects of various parameters, such as airfoil shape, Mach number, amplitude and frequency of sinosoidal oscillations, mean angle, and type of motion.
Characteristics of an Airfoil as Affected by Fabric Sag
NASA Technical Reports Server (NTRS)
Ward, Kenneth E
1932-01-01
This report presents the results of tests made at a high value of the Reynolds Number in the N.A.C.A. variable-density wind tunnel to determine the aerodynamic characteristics of an airfoil as affected by fabric sag. Tests were made of two Gottingen 387 airfoils, one having the usual smooth surface and the other having a surface modified to simulate two types of fabric sag. The results of these tests indicate that the usual sagging of the wind covering between ribs has a very small effect on the aerodynamic characteristics of an airfoil.
Influence of airfoil thickness on convected gust interaction noise
NASA Technical Reports Server (NTRS)
Kerschen, E. J.; Tsai, C. T.
1989-01-01
The case of a symmetric airfoil at zero angle of attack is considered in order to determine the influence of airfoil thickness on sound generated by interaction with convected gusts. The analysis is based on a linearization of the Euler equations about the subsonic mean flow past the airfoil. Primary sound generation is found to occur in a local region surrounding the leading edge, with the size of the local region scaling on the gust wavelength. For a parabolic leading edge, moderate leading edge thickness is shown to decrease the noise level in the low Mach number limit.
Compressor bleed cooling fluid feed system
Donahoo, Eric E; Ross, Christopher W
2014-11-25
A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.
An abbreviated Reynolds stress turbulence model for airfoil flows
NASA Technical Reports Server (NTRS)
Gaffney, R. L., Jr.; Hassan, H. A.; Salas, M. D.
1990-01-01
An abbreviated Reynolds stress turbulence model is presented for solving turbulent flow over airfoils. The model consists of two partial differential equations, one for the Reynolds shear stress and the other for the turbulent kinetic energy. The normal stresses and the dissipation rate of turbulent kinetic energy are computed from algebraic relationships having the correct asymptotic near wall behavior. This allows the model to be integrated all the way to the wall without the use of wall functions. Results for a flat plate at zero angle of attack, a NACA 0012 airfoil and a RAE 2822 airfoil are presented.
Airfoil nozzle and shroud assembly
Shaffer, James E.; Norton, Paul F.
1997-01-01
An airfoil and nozzle assembly including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached.
NASA Technical Reports Server (NTRS)
Somers, D. M.
1981-01-01
A flapped natural laminar flow airfoil for general aviation applications, the NLF(1)-0215F, has been designed and analyzed theoretically and verified experimentally in the Langley Low Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low speed airfoils with the low cruise drag of the NACA 6 series airfoils has been achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge has also been met. Comparisons of the theoretical and experimental results show generally good agreement.
The Calculation of the Heat Required for Wing Thermal Ice Prevention in Specified Icing Conditions
NASA Technical Reports Server (NTRS)
Bergrun, Norman R.; Jukoff, David; Schlaff, Bernard A.; Neel, Carr B., Jr.
1947-01-01
Flight tests were made in natural icing conditions with two 8-ft-chord heated airfoils of different sections. Measurements of meteorological variables conducive to ice formation were made simultaneously with the procurement of airfoil thermal data. The extent of knowledge on the meteorology of icing, the impingement of water drops on airfoil surfaces, and the processes of heat transfer and evaporation from a wetted airfoil surface have been increased to a point where the design of heated wings on a fundamental, wet-air basis now can be undertaken with reasonable certainty.
Broadband Noise Predictions for an Airfoil in a Turbulent Stream
NASA Technical Reports Server (NTRS)
Casper, J.; Farassat, F.; Mish, P. F.; Devenport, W. J.
2003-01-01
Loading noise is predicted from unsteady surface pressure measurements on a NACA 0015 airfoil immersed in grid-generated turbulence. The time-dependent pressure is obtained from an array of synchronized transducers on the airfoil surface. Far field noise is predicted by using the time-dependent surface pressure as input to Formulation 1A of Farassat, a solution of the Ffowcs Williams - Hawkings equation. Acoustic predictions are performed with and without the effects of airfoil surface curvature. Scaling rules are developed to compare the present far field predictions with acoustic measurements that are available in the literature.
Wind tunnel testing of low-drag airfoils
NASA Technical Reports Server (NTRS)
Harvey, W. Donald; Mcghee, R. J.; Harris, C. D.
1986-01-01
Results are presented for the measured performance recently obtained on several airfoil concepts designed to achieve low drag by maintaining extensive regions of laminar flow without compromising high-lift performance. The wind tunnel results extend from subsonic to transonic speeds and include boundary-layer control through shaping and suction. The research was conducted in the NASA Langley 8-Ft Transonic Pressure Tunnel (TPT) and Low Turbulence Pressure Tunnel (LTPT) which have been developed for testing such low-drag airfoils. Emphasis is placed on identifying some of the major factors influencing the anticipated performance of low-drag airfoils.
NASA supercritical laminar flow control airfoil experiment
NASA Technical Reports Server (NTRS)
Harvey, W. D.
1982-01-01
The design and goals of experimental investigations of supercritical LFC airfoils conducted in the NASA Langley 8-ft Transonic Pressure Tunnel beginning in March 1982 are reviewed. Topics addressed include laminarization aspects; flow-quality requirements; simulation of flight parameters; the setup of screens, honeycomb, and sonic throat; the design cycle; theoretical pressure distributions and shock-free limits; drag divergence and stability analysis; and the LFC suction system. Consideration is given to the LFC airfoil model, the air-flow control system, airfoil-surface instrumentation, liner design and hardware, and test options. Extensive diagrams, drawings, graphs, photographs, and tables of numerical data are provided.
Leung, Chung Ming; Wang, Ya; Chen, Wusi
2016-11-01
In this letter, the airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and trajectory matching multi-pole magnets was investigated. The magnets were aligned in an alternatively magnetized formation of 6 magnets to explore enhanced power density. In particular, the magnet array was positioned in parallel to the trajectory of the tip coil within its tip deflection span. The finite element simulations of the magnetic flux density and induced voltages at an open circuit condition were studied to find the maximum number of alternatively magnetized magnets that was required for the proposed energy harvester. Experimental results showed that the energy harvester with a pair of 6 alternatively magnetized linear magnet arrays was able to generate an induced voltage (V o ) of 20 V, with an open circuit condition, and 475 mW, under a 30 Ω optimal resistance load operating with the wind speed (U) at 7 m/s and a natural bending frequency of 3.54 Hz. Compared to the traditional electromagnetic energy harvester with a single magnet moving through a coil, the proposed energy harvester, containing multi-pole magnets and parallel array motion, enables the moving coil to accumulate a stronger magnetic flux in each period of the swinging motion. In addition to the comparison made with the airfoil-based piezoelectric energy harvester of the same size, our proposed electromagnetic energy harvester generates 11 times more power output, which is more suitable for high-power-density energy harvesting applications at regions with low environmental frequency.
Tabu Search enhances network robustness under targeted attacks
NASA Astrophysics Data System (ADS)
Sun, Shi-wen; Ma, Yi-lin; Li, Rui-qi; Wang, Li; Xia, Cheng-yi
2016-03-01
We focus on the optimization of network robustness with respect to intentional attacks on high-degree nodes. Given an existing network, this problem can be considered as a typical single-objective combinatorial optimization problem. Based on the heuristic Tabu Search optimization algorithm, a link-rewiring method is applied to reconstruct the network while keeping the degree of every node unchanged. Through numerical simulations, BA scale-free network and two real-world networks are investigated to verify the effectiveness of the proposed optimization method. Meanwhile, we analyze how the optimization affects other topological properties of the networks, including natural connectivity, clustering coefficient and degree-degree correlation. The current results can help to improve the robustness of existing complex real-world systems, as well as to provide some insights into the design of robust networks.
Static stall alleviation using a rail plasma actuator
NASA Astrophysics Data System (ADS)
Choi, Young-Joon; Gray, Miles; Sirohi, Jayant; Raja, Laxminarayan L.
2018-07-01
An experimental study was conducted to investigate the ability of a rail plasma actuator (RailPAc) to alleviate static stall on an airfoil. The RailPAc device consists of parallel rails flush mounted on the upper surface of a VR-12 airfoil, with a high-current (∼1.3 kA) arc bridging the gap between the rails. A Lorentz force (∼0.3 N lasting ∼1 ms) generated on the arc propels it along the airfoil chord and transfers momentum to the surrounding flow. Experiments were conducted in a low speed wind tunnel at two different Reynolds numbers ( and ) and various static angles of attack (up to ∼30°). Particle image velocimetry (PIV) was used to measure the flow over the passive and actuated airfoil, while the airfoil lift was measured using a force balance. The experiments showed that the RailPAc promotes flow reattachment and can suppress static stall over a wide range of angles of attack. Operation of a single RailPAc resulted in ∼40 improvement in post-stall lift and ∼4° increase in stall angle compared to a passive airfoil with an unpowered RailPAc. The results provide insight into the actuation mechanism and demonstrate, for the first time, the ability of the RailPAc to alleviate static stall on an airfoil.
Ice Roughness and Thickness Evolution on a Swept NACA 0012 Airfoil
NASA Technical Reports Server (NTRS)
McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching
2017-01-01
Several recent studies have been performed in the Icing Research Tunnel (IRT) at NASA Glenn Research Center focusing on the evolution, spatial variations, and proper scaling of ice roughness on airfoils without sweep exposed to icing conditions employed in classical roughness studies. For this study, experiments were performed in the IRT to investigate the ice roughness and thickness evolution on a 91.44-cm (36-in.) chord NACA 0012 airfoil, swept at 30-deg with 0deg angle of attack, and exposed to both Appendix C and Appendix O (SLD) icing conditions. The ice accretion event times used in the study were less than the time required to form substantially three-dimensional structures, such as scallops, on the airfoil surface. Following each ice accretion event, the iced airfoils were scanned using a ROMER Absolute Arm laser-scanning system. The resulting point clouds were then analyzed using the self-organizing map approach of McClain and Kreeger to determine the spatial roughness variations along the surfaces of the iced airfoils. The resulting measurements demonstrate linearly increasing roughness and thickness parameters with ice accretion time. Further, when compared to dimensionless or scaled results from unswept airfoil investigations, the results of this investigation indicate that the mechanisms for early stage roughness and thickness formation on swept wings are similar to those for unswept wings.
Numerical Simulations of Subscale Wind Turbine Rotor Inboard Airfoils at Low Reynolds Number
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaylock, Myra L.; Maniaci, David Charles; Resor, Brian R.
2015-04-01
New blade designs are planned to support future research campaigns at the SWiFT facility in Lubbock, Texas. The sub-scale blades will reproduce specific aerodynamic characteristics of utility-scale rotors. Reynolds numbers for megawatt-, utility-scale rotors are generally above 2-8 million. The thickness of inboard airfoils for these large rotors are typically as high as 35-40%. The thickness and the proximity to three-dimensional flow of these airfoils present design and analysis challenges, even at the full scale. However, more than a decade of experience with the airfoils in numerical simulation, in the wind tunnel, and in the field has generated confidence inmore » their performance. Reynolds number regimes for the sub-scale rotor are significantly lower for the inboard blade, ranging from 0.7 to 1 million. Performance of the thick airfoils in this regime is uncertain because of the lack of wind tunnel data and the inherent challenge associated with numerical simulations. This report documents efforts to determine the most capable analysis tools to support these simulations in an effort to improve understanding of the aerodynamic properties of thick airfoils in this Reynolds number regime. Numerical results from various codes of four airfoils are verified against previously published wind tunnel results where data at those Reynolds numbers are available. Results are then computed for other Reynolds numbers of interest.« less
NASA Astrophysics Data System (ADS)
Mazarbhuiya, Hussain Mahamed Sahed Mostafa; Biswas, Agnimitra; Sharma, Kaushal Kumar
2018-04-01
Wind energy is an essential and carbon free form of renewable energy resources. Energy can be easily extracted from wind with the use of Horizontal axis and Vertical axis wind turbine(VAWT). The performance of turbine depends on airfoil shape. The present work emphasizes the aerodynamics of different asymmetrical airfoils used in VAWT rotors. This investigation is conducted for the selection of efficient asymmetrical bladed H-Darrieus VAWT rotor. Five numbers of thick and cambered asymmetrical airfoil is considered for this investigation. A free stream velocity of 6.0 m/s is considered to simulate 2D CFD analysis using k-ɛ turbulence model. The power coefficient (Cp) of all H-Darrieus VAWT rotor increase with increase in TSR value to a certain limit and after it starts decrease with further increase of TSR. In the present investigation the Cp and TSR of NACA 63415 (RT-30%) are found to be higher among all considered asymmetrical airfoils. Moreover, Ct values of NACA 63415 (RT-30%) are also high corresponding to all TSR values. This is due to the long duration of attachment of flow with blade surroundings. Hence, NACA 63415 (RT- 30%) airfoil may be considered as an efficient airfoil among S818, GOE 561, GU25-5(11)8, and KENNEDY AND MARSDEN (kenmar) asymmetrical airfoils.
NASA Technical Reports Server (NTRS)
VonGlahn, Uwe H.; Gray, Vernon H.
1954-01-01
The effects of primary and runback ice formations on the section drag of a 36 deg swept NACA 63A-009 airfoil section with a partial-span leading-edge slat were studied over a range of angles of attack from 2 to 8 deg and airspeeds up to 260 miles per hour for icing conditions with liquid-water contents ranging from 0.39 to 1.23 grams per cubic meter and datum air temperatures from 10 to 25 F. The results with slat retracted showed that glaze-ice formations caused large and rapid increases in section drag coefficient and that the rate of change in section drag coefficient for the swept 63A-009 airfoil was about 2-1 times that for an unswept 651-212 airfoil. Removal of the primary ice formations by cyclic de-icing caused the drag to return almost to the bare-airfoil drag value. A comprehensive study of the slat icing and de-icing characteristics was prevented by limitations of the heating system and wake interference caused by the slat tracks and hot-gas supply duct to the slat. In general, the studies showed that icing on a thin swept airfoil will result in more detrimental aerodynamic characteristics than on a thick unswept airfoil.
Airfoil-shaped micro-mixers for reducing fouling on membrane surfaces
Ho, Clifford K; Altman, Susan J; Clem, Paul G; Hibbs, Michael; Cook, Adam W
2012-10-23
An array of airfoil-shaped micro-mixers that enhances fluid mixing within permeable membrane channels, such as used in reverse-osmosis filtration units, while minimizing additional pressure drop. The enhanced mixing reduces fouling of the membrane surfaces. The airfoil-shaped micro-mixer can also be coated with or comprised of biofouling-resistant (biocidal/germicidal) ingredients.