NASA Astrophysics Data System (ADS)
Chiron, L.; Oger, G.; de Leffe, M.; Le Touzé, D.
2018-02-01
While smoothed-particle hydrodynamics (SPH) simulations are usually performed using uniform particle distributions, local particle refinement techniques have been developed to concentrate fine spatial resolutions in identified areas of interest. Although the formalism of this method is relatively easy to implement, its robustness at coarse/fine interfaces can be problematic. Analysis performed in [16] shows that the radius of refined particles should be greater than half the radius of unrefined particles to ensure robustness. In this article, the basics of an Adaptive Particle Refinement (APR) technique, inspired by AMR in mesh-based methods, are presented. This approach ensures robustness with alleviated constraints. Simulations applying the new formalism proposed achieve accuracy comparable to fully refined spatial resolutions, together with robustness, low CPU times and maintained parallel efficiency.
Evaluation of Ares-I Control System Robustness to Uncertain Aerodynamics and Flex Dynamics
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; VanTassel, Chris; Bedrossian, Nazareth; Hall, Charles; Spanos, Pol
2008-01-01
This paper discusses the application of robust control theory to evaluate robustness of the Ares-I control systems. Three techniques for estimating upper and lower bounds of uncertain parameters which yield stable closed-loop response are used here: (1) Monte Carlo analysis, (2) mu analysis, and (3) characteristic frequency response analysis. All three methods are used to evaluate stability envelopes of the Ares-I control systems with uncertain aerodynamics and flex dynamics. The results show that characteristic frequency response analysis is the most effective of these methods for assessing robustness.
2012-09-01
Robust global image registration based on a hybrid algorithm combining Fourier and spatial domain techniques Peter N. Crabtree, Collin Seanor...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Robust global image registration based on a hybrid algorithm combining Fourier and spatial domain...demonstrate performance of a hybrid algorithm . These results are from analysis of a set of images of an ISO 12233 [12] resolution chart captured in the
Efficient and robust analysis of complex scattering data under noise in microwave resonators.
Probst, S; Song, F B; Bushev, P A; Ustinov, A V; Weides, M
2015-02-01
Superconducting microwave resonators are reliable circuits widely used for detection and as test devices for material research. A reliable determination of their external and internal quality factors is crucial for many modern applications, which either require fast measurements or operate in the single photon regime with small signal to noise ratios. Here, we use the circle fit technique with diameter correction and provide a step by step guide for implementing an algorithm for robust fitting and calibration of complex resonator scattering data in the presence of noise. The speedup and robustness of the analysis are achieved by employing an algebraic rather than an iterative fit technique for the resonance circle.
Robust-mode analysis of hydrodynamic flows
NASA Astrophysics Data System (ADS)
Roy, Sukesh; Gord, James R.; Hua, Jia-Chen; Gunaratne, Gemunu H.
2017-04-01
The emergence of techniques to extract high-frequency high-resolution data introduces a new avenue for modal decomposition to assess the underlying dynamics, especially of complex flows. However, this task requires the differentiation of robust, repeatable flow constituents from noise and other irregular features of a flow. Traditional approaches involving low-pass filtering and principle components analysis have shortcomings. The approach outlined here, referred to as robust-mode analysis, is based on Koopman decomposition. Three applications to (a) a counter-rotating cellular flame state, (b) variations in financial markets, and (c) turbulent injector flows are provided.
Model reference tracking control of an aircraft: a robust adaptive approach
NASA Astrophysics Data System (ADS)
Tanyer, Ilker; Tatlicioglu, Enver; Zergeroglu, Erkan
2017-05-01
This work presents the design and the corresponding analysis of a nonlinear robust adaptive controller for model reference tracking of an aircraft that has parametric uncertainties in its system matrices and additive state- and/or time-dependent nonlinear disturbance-like terms in its dynamics. Specifically, robust integral of the sign of the error feedback term and an adaptive term is fused with a proportional integral controller. Lyapunov-based stability analysis techniques are utilised to prove global asymptotic convergence of the output tracking error. Extensive numerical simulations are presented to illustrate the performance of the proposed robust adaptive controller.
Robust Stability Analysis of the Space Launch System Control Design: A Singular Value Approach
NASA Technical Reports Server (NTRS)
Pei, Jing; Newsome, Jerry R.
2015-01-01
Classical stability analysis consists of breaking the feedback loops one at a time and determining separately how much gain or phase variations would destabilize the stable nominal feedback system. For typical launch vehicle control design, classical control techniques are generally employed. In addition to stability margins, frequency domain Monte Carlo methods are used to evaluate the robustness of the design. However, such techniques were developed for Single-Input-Single-Output (SISO) systems and do not take into consideration the off-diagonal terms in the transfer function matrix of Multi-Input-Multi-Output (MIMO) systems. Robust stability analysis techniques such as H(sub infinity) and mu are applicable to MIMO systems but have not been adopted as standard practices within the launch vehicle controls community. This paper took advantage of a simple singular-value-based MIMO stability margin evaluation method based on work done by Mukhopadhyay and Newsom and applied it to the SLS high-fidelity dynamics model. The method computes a simultaneous multi-loop gain and phase margin that could be related back to classical margins. The results presented in this paper suggest that for the SLS system, traditional SISO stability margins are similar to the MIMO margins. This additional level of verification provides confidence in the robustness of the control design.
Using dynamic mode decomposition for real-time background/foreground separation in video
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutz, Jose Nathan; Grosek, Jacob; Brunton, Steven
The technique of dynamic mode decomposition (DMD) is disclosed herein for the purpose of robustly separating video frames into background (low-rank) and foreground (sparse) components in real-time. Foreground/background separation is achieved at the computational cost of just one singular value decomposition (SVD) and one linear equation solve, thus producing results orders of magnitude faster than robust principal component analysis (RPCA). Additional techniques, including techniques for analyzing the video for multi-resolution time-scale components, and techniques for reusing computations to allow processing of streaming video in real time, are also described herein.
Design and analysis issues in quantitative proteomics studies.
Karp, Natasha A; Lilley, Kathryn S
2007-09-01
Quantitative proteomics is the comparison of distinct proteomes which enables the identification of protein species which exhibit changes in expression or post-translational state in response to a given stimulus. Many different quantitative techniques are being utilized and generate large datasets. Independent of the technique used, these large datasets need robust data analysis to ensure valid conclusions are drawn from such studies. Approaches to address the problems that arise with large datasets are discussed to give insight into the types of statistical analyses of data appropriate for the various experimental strategies that can be employed by quantitative proteomic studies. This review also highlights the importance of employing a robust experimental design and highlights various issues surrounding the design of experiments. The concepts and examples discussed within will show how robust design and analysis will lead to confident results that will ensure quantitative proteomics delivers.
ERIC Educational Resources Information Center
Fouladi, Rachel T.
2000-01-01
Provides an overview of standard and modified normal theory and asymptotically distribution-free covariance and correlation structure analysis techniques and details Monte Carlo simulation results on Type I and Type II error control. Demonstrates through the simulation that robustness and nonrobustness of structure analysis techniques vary as a…
Robust passivity analysis for discrete-time recurrent neural networks with mixed delays
NASA Astrophysics Data System (ADS)
Huang, Chuan-Kuei; Shu, Yu-Jeng; Chang, Koan-Yuh; Shou, Ho-Nien; Lu, Chien-Yu
2015-02-01
This article considers the robust passivity analysis for a class of discrete-time recurrent neural networks (DRNNs) with mixed time-delays and uncertain parameters. The mixed time-delays that consist of both the discrete time-varying and distributed time-delays in a given range are presented, and the uncertain parameters are norm-bounded. The activation functions are assumed to be globally Lipschitz continuous. Based on new bounding technique and appropriate type of Lyapunov functional, a sufficient condition is investigated to guarantee the existence of the desired robust passivity condition for the DRNNs, which can be derived in terms of a family of linear matrix inequality (LMI). Some free-weighting matrices are introduced to reduce the conservatism of the criterion by using the bounding technique. A numerical example is given to illustrate the effectiveness and applicability.
Neural robust stabilization via event-triggering mechanism and adaptive learning technique.
Wang, Ding; Liu, Derong
2018-06-01
The robust control synthesis of continuous-time nonlinear systems with uncertain term is investigated via event-triggering mechanism and adaptive critic learning technique. We mainly focus on combining the event-triggering mechanism with adaptive critic designs, so as to solve the nonlinear robust control problem. This can not only make better use of computation and communication resources, but also conduct controller design from the view of intelligent optimization. Through theoretical analysis, the nonlinear robust stabilization can be achieved by obtaining an event-triggered optimal control law of the nominal system with a newly defined cost function and a certain triggering condition. The adaptive critic technique is employed to facilitate the event-triggered control design, where a neural network is introduced as an approximator of the learning phase. The performance of the event-triggered robust control scheme is validated via simulation studies and comparisons. The present method extends the application domain of both event-triggered control and adaptive critic control to nonlinear systems possessing dynamical uncertainties. Copyright © 2018 Elsevier Ltd. All rights reserved.
Systems design analysis applied to launch vehicle configuration
NASA Technical Reports Server (NTRS)
Ryan, R.; Verderaime, V.
1993-01-01
As emphasis shifts from optimum-performance aerospace systems to least lift-cycle costs, systems designs must seek, adapt, and innovate cost improvement techniques in design through operations. The systems design process of concept, definition, and design was assessed for the types and flow of total quality management techniques that may be applicable in a launch vehicle systems design analysis. Techniques discussed are task ordering, quality leverage, concurrent engineering, Pareto's principle, robustness, quality function deployment, criteria, and others. These cost oriented techniques are as applicable to aerospace systems design analysis as to any large commercial system.
Application of the Overclaiming Technique to Scholastic Assessment
ERIC Educational Resources Information Center
Paulhus, Delroy L.; Dubois, Patrick J.
2014-01-01
The overclaiming technique is a novel assessment procedure that uses signal detection analysis to generate indices of knowledge accuracy (OC-accuracy) and self-enhancement (OC-bias). The technique has previously shown robustness over varied knowledge domains as well as low reactivity across administration contexts. Here we compared the OC-accuracy…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, R., E-mail: ruth.harding2@wales.nhs.uk; Trnková, P.; Lomax, A. J.
Purpose: Base of skull meningioma can be treated with both intensity modulated radiation therapy (IMRT) and spot scanned proton therapy (PT). One of the main benefits of PT is better sparing of organs at risk, but due to the physical and dosimetric characteristics of protons, spot scanned PT can be more sensitive to the uncertainties encountered in the treatment process compared with photon treatment. Therefore, robustness analysis should be part of a comprehensive comparison between these two treatment methods in order to quantify and understand the sensitivity of the treatment techniques to uncertainties. The aim of this work was tomore » benchmark a spot scanning treatment planning system for planning of base of skull meningioma and to compare the created plans and analyze their robustness to setup errors against the IMRT technique. Methods: Plans were produced for three base of skull meningioma cases: IMRT planned with a commercial TPS [Monaco (Elekta AB, Sweden)]; single field uniform dose (SFUD) spot scanning PT produced with an in-house TPS (PSI-plan); and SFUD spot scanning PT plan created with a commercial TPS [XiO (Elekta AB, Sweden)]. A tool for evaluating robustness to random setup errors was created and, for each plan, both a dosimetric evaluation and a robustness analysis to setup errors were performed. Results: It was possible to create clinically acceptable treatment plans for spot scanning proton therapy of meningioma with a commercially available TPS. However, since each treatment planning system uses different methods, this comparison showed different dosimetric results as well as different sensitivities to setup uncertainties. The results confirmed the necessity of an analysis tool for assessing plan robustness to provide a fair comparison of photon and proton plans. Conclusions: Robustness analysis is a critical part of plan evaluation when comparing IMRT plans with spot scanned proton therapy plans.« less
STATISTICAL SAMPLING AND DATA ANALYSIS
Research is being conducted to develop approaches to improve soil and sediment sampling techniques, measurement design and geostatistics, and data analysis via chemometric, environmetric, and robust statistical methods. Improvements in sampling contaminated soil and other hetero...
Card, Alan J; Simsekler, Mecit Can Emre; Clark, Michael; Ward, James R; Clarkson, P John
2014-01-01
Risk assessment is widely used to improve patient safety, but healthcare workers are not trained to design robust solutions to the risks they uncover. This leads to an overreliance on the weakest category of risk control recommendations: administrative controls. Increasing the proportion of non-administrative risk control options (NARCOs) generated would enable (though not ensure) the adoption of more robust solutions. Experimentally assess a method for generating stronger risk controls: The Generating Options for Active Risk Control (GO-ARC) Technique. Participants generated risk control options in response to two patient safety scenarios. Scenario 1 (baseline): All participants used current practice (unstructured brainstorming). Scenario 2: Control group used current practice; intervention group used the GO-ARC Technique. To control for individual differences between participants, analysis focused on the change in the proportion of NARCOs for each group. Proportion of NARCOs decreased from 0.18 at baseline to 0.12. Intervention group: Proportion increased from 0.10 at baseline to 0.29 using the GO-ARC Technique. Results were statistically significant. There was no decrease in the number of administrative controls generated by the intervention group. The Generating Options for Active Risk Control (GO-ARC) Technique appears to lead to more robust risk control options.
A diagnostic analysis of the VVP single-doppler retrieval technique
NASA Technical Reports Server (NTRS)
Boccippio, Dennis J.
1995-01-01
A diagnostic analysis of the VVP (volume velocity processing) retrieval method is presented, with emphasis on understanding the technique as a linear, multivariate regression. Similarities and differences to the velocity-azimuth display and extended velocity-azimuth display retrieval techniques are discussed, using this framework. Conventional regression diagnostics are then employed to quantitatively determine situations in which the VVP technique is likely to fail. An algorithm for preparation and analysis of a robust VVP retrieval is developed and applied to synthetic and actual datasets with high temporal and spatial resolution. A fundamental (but quantifiable) limitation to some forms of VVP analysis is inadequate sampling dispersion in the n space of the multivariate regression, manifest as a collinearity between the basis functions of some fitted parameters. Such collinearity may be present either in the definition of these basis functions or in their realization in a given sampling configuration. This nonorthogonality may cause numerical instability, variance inflation (decrease in robustness), and increased sensitivity to bias from neglected wind components. It is shown that these effects prevent the application of VVP to small azimuthal sectors of data. The behavior of the VVP regression is further diagnosed over a wide range of sampling constraints, and reasonable sector limits are established.
Abdelkarim, Noha; Mohamed, Amr E; El-Garhy, Ahmed M; Dorrah, Hassen T
2016-01-01
The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller.
Mohamed, Amr E.; Dorrah, Hassen T.
2016-01-01
The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller. PMID:27807444
Dynamics of aerospace vehicles
NASA Technical Reports Server (NTRS)
Schmidt, David K.
1991-01-01
The focus of this research was to address the modeling, including model reduction, of flexible aerospace vehicles, with special emphasis on models used in dynamic analysis and/or guidance and control system design. In the modeling, it is critical that the key aspects of the system being modeled be captured in the model. In this work, therefore, aspects of the vehicle dynamics critical to control design were important. In this regard, fundamental contributions were made in the areas of stability robustness analysis techniques, model reduction techniques, and literal approximations for key dynamic characteristics of flexible vehicles. All these areas are related. In the development of a model, approximations are always involved, so control systems designed using these models must be robust against uncertainties in these models.
Analysis and Synthesis of Robust Data Structures
1990-08-01
1.3.2 Multiversion Software. .. .. .. .. .. .... .. ... .. ...... 5 1.3.3 Robust Data Structure .. .. .. .. .. .. .. .. .. ... .. ..... 6 1.4...context are 0 multiversion software, which is an adaptation oi N-modulo redundancy (NMR) tech- nique. * recovery blocks, which is an adaptation of...implementations using these features for such a hybrid approach. 1.3.2 Multiversion Software Avizienis [AC77] was the first to adapt NMR technique into
Robust L1-norm two-dimensional linear discriminant analysis.
Li, Chun-Na; Shao, Yuan-Hai; Deng, Nai-Yang
2015-05-01
In this paper, we propose an L1-norm two-dimensional linear discriminant analysis (L1-2DLDA) with robust performance. Different from the conventional two-dimensional linear discriminant analysis with L2-norm (L2-2DLDA), where the optimization problem is transferred to a generalized eigenvalue problem, the optimization problem in our L1-2DLDA is solved by a simple justifiable iterative technique, and its convergence is guaranteed. Compared with L2-2DLDA, our L1-2DLDA is more robust to outliers and noises since the L1-norm is used. This is supported by our preliminary experiments on toy example and face datasets, which show the improvement of our L1-2DLDA over L2-2DLDA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Robust biological parametric mapping: an improved technique for multimodal brain image analysis
NASA Astrophysics Data System (ADS)
Yang, Xue; Beason-Held, Lori; Resnick, Susan M.; Landman, Bennett A.
2011-03-01
Mapping the quantitative relationship between structure and function in the human brain is an important and challenging problem. Numerous volumetric, surface, region of interest and voxelwise image processing techniques have been developed to statistically assess potential correlations between imaging and non-imaging metrics. Recently, biological parametric mapping has extended the widely popular statistical parametric approach to enable application of the general linear model to multiple image modalities (both for regressors and regressands) along with scalar valued observations. This approach offers great promise for direct, voxelwise assessment of structural and functional relationships with multiple imaging modalities. However, as presented, the biological parametric mapping approach is not robust to outliers and may lead to invalid inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy between subjects. To enable widespread application of this approach, we introduce robust regression and robust inference in the neuroimaging context of application of the general linear model. Through simulation and empirical studies, we demonstrate that our robust approach reduces sensitivity to outliers without substantial degradation in power. The robust approach and associated software package provides a reliable way to quantitatively assess voxelwise correlations between structural and functional neuroimaging modalities.
Hicks, Michael B; Regalado, Erik L; Tan, Feng; Gong, Xiaoyi; Welch, Christopher J
2016-01-05
Supercritical fluid chromatography (SFC) has long been a preferred method for enantiopurity analysis in support of pharmaceutical discovery and development, but implementation of the technique in regulated GMP laboratories has been somewhat slow, owing to limitations in instrument sensitivity, reproducibility, accuracy and robustness. In recent years, commercialization of next generation analytical SFC instrumentation has addressed previous shortcomings, making the technique better suited for GMP analysis. In this study we investigate the use of modern SFC for enantiopurity analysis of several pharmaceutical intermediates and compare the results with the conventional HPLC approaches historically used for analysis in a GMP setting. The findings clearly illustrate that modern SFC now exhibits improved precision, reproducibility, accuracy and robustness; also providing superior resolution and peak capacity compared to HPLC. Based on these findings, the use of modern chiral SFC is recommended for GMP studies of stereochemistry in pharmaceutical development and manufacturing. Copyright © 2015 Elsevier B.V. All rights reserved.
Robust detection, isolation and accommodation for sensor failures
NASA Technical Reports Server (NTRS)
Emami-Naeini, A.; Akhter, M. M.; Rock, S. M.
1986-01-01
The objective is to extend the recent advances in robust control system design of multivariable systems to sensor failure detection, isolation, and accommodation (DIA), and estimator design. This effort provides analysis tools to quantify the trade-off between performance robustness and DIA sensitivity, which are to be used to achieve higher levels of performance robustness for given levels of DIA sensitivity. An innovations-based DIA scheme is used. Estimators, which depend upon a model of the process and process inputs and outputs, are used to generate these innovations. Thresholds used to determine failure detection are computed based on bounds on modeling errors, noise properties, and the class of failures. The applicability of the newly developed tools are demonstrated on a multivariable aircraft turbojet engine example. A new concept call the threshold selector was developed. It represents a significant and innovative tool for the analysis and synthesis of DiA algorithms. The estimators were made robust by introduction of an internal model and by frequency shaping. The internal mode provides asymptotically unbiased filter estimates.The incorporation of frequency shaping of the Linear Quadratic Gaussian cost functional modifies the estimator design to make it suitable for sensor failure DIA. The results are compared with previous studies which used thresholds that were selcted empirically. Comparison of these two techniques on a nonlinear dynamic engine simulation shows improved performance of the new method compared to previous techniques
Srinivasa, Narayan; Zhang, Deying; Grigorian, Beayna
2014-03-01
This paper describes a novel architecture for enabling robust and efficient neuromorphic communication. The architecture combines two concepts: 1) synaptic time multiplexing (STM) that trades space for speed of processing to create an intragroup communication approach that is firing rate independent and offers more flexibility in connectivity than cross-bar architectures and 2) a wired multiple input multiple output (MIMO) communication with orthogonal frequency division multiplexing (OFDM) techniques to enable a robust and efficient intergroup communication for neuromorphic systems. The MIMO-OFDM concept for the proposed architecture was analyzed by simulating large-scale spiking neural network architecture. Analysis shows that the neuromorphic system with MIMO-OFDM exhibits robust and efficient communication while operating in real time with a high bit rate. Through combining STM with MIMO-OFDM techniques, the resulting system offers a flexible and scalable connectivity as well as a power and area efficient solution for the implementation of very large-scale spiking neural architectures in hardware.
Hamy, Valentin; Dikaios, Nikolaos; Punwani, Shonit; Melbourne, Andrew; Latifoltojar, Arash; Makanyanga, Jesica; Chouhan, Manil; Helbren, Emma; Menys, Alex; Taylor, Stuart; Atkinson, David
2014-02-01
Motion correction in Dynamic Contrast Enhanced (DCE-) MRI is challenging because rapid intensity changes can compromise common (intensity based) registration algorithms. In this study we introduce a novel registration technique based on robust principal component analysis (RPCA) to decompose a given time-series into a low rank and a sparse component. This allows robust separation of motion components that can be registered, from intensity variations that are left unchanged. This Robust Data Decomposition Registration (RDDR) is demonstrated on both simulated and a wide range of clinical data. Robustness to different types of motion and breathing choices during acquisition is demonstrated for a variety of imaged organs including liver, small bowel and prostate. The analysis of clinically relevant regions of interest showed both a decrease of error (15-62% reduction following registration) in tissue time-intensity curves and improved areas under the curve (AUC60) at early enhancement. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Recent Advances in the Measurement of Arsenic, Cadmium, and Mercury in Rice and Other Foods
Punshon, Tracy
2015-01-01
Trace element analysis of foods is of increasing importance because of raised consumer awareness and the need to evaluate and establish regulatory guidelines for toxic trace metals and metalloids. This paper reviews recent advances in the analysis of trace elements in food, including challenges, state-of-the art methods, and use of spatially resolved techniques for localizing the distribution of As and Hg within rice grains. Total elemental analysis of foods is relatively well-established but the push for ever lower detection limits requires that methods be robust from potential matrix interferences which can be particularly severe for food. Inductively coupled plasma mass spectrometry (ICP-MS) is the method of choice, allowing for multi-element and highly sensitive analyses. For arsenic, speciation analysis is necessary because the inorganic forms are more likely to be subject to regulatory limits. Chromatographic techniques coupled to ICP-MS are most often used for arsenic speciation and a range of methods now exist for a variety of different arsenic species in different food matrices. Speciation and spatial analysis of foods, especially rice, can also be achieved with synchrotron techniques. Sensitive analytical techniques and methodological advances provide robust methods for the assessment of several metals in animal and plant-based foods, in particular for arsenic, cadmium and mercury in rice and arsenic speciation in foodstuffs. PMID:25938012
Identification and robust control of an experimental servo motor.
Adam, E J; Guestrin, E D
2002-04-01
In this work, the design of a robust controller for an experimental laboratory-scale position control system based on a dc motor drive as well as the corresponding identification and robust stability analysis are presented. In order to carry out the robust design procedure, first, a classic closed-loop identification technique is applied and then, the parametrization by internal model control is used. The model uncertainty is evaluated under both parametric and global representation. For the latter case, an interesting discussion about the conservativeness of this description is presented by means of a comparison between the uncertainty disk and the critical perturbation radius approaches. Finally, conclusions about the performance of the experimental system with the robust controller are discussed using comparative graphics of the controlled variable and the Nyquist stability margin as a robustness measurement.
A Flexible Hierarchical Bayesian Modeling Technique for Risk Analysis of Major Accidents.
Yu, Hongyang; Khan, Faisal; Veitch, Brian
2017-09-01
Safety analysis of rare events with potentially catastrophic consequences is challenged by data scarcity and uncertainty. Traditional causation-based approaches, such as fault tree and event tree (used to model rare event), suffer from a number of weaknesses. These include the static structure of the event causation, lack of event occurrence data, and need for reliable prior information. In this study, a new hierarchical Bayesian modeling based technique is proposed to overcome these drawbacks. The proposed technique can be used as a flexible technique for risk analysis of major accidents. It enables both forward and backward analysis in quantitative reasoning and the treatment of interdependence among the model parameters. Source-to-source variability in data sources is also taken into account through a robust probabilistic safety analysis. The applicability of the proposed technique has been demonstrated through a case study in marine and offshore industry. © 2017 Society for Risk Analysis.
Developing robust recurrence plot analysis techniques for investigating infant respiratory patterns.
Terrill, Philip I; Wilson, Stephen; Suresh, Sadasivam; Cooper, David M
2007-01-01
Recurrence plot analysis is a useful non-linear analysis tool. There are still no well formalised procedures for carrying out this analysis on measured physiological data, and systemising analysis is often difficult. In this paper, the recurrence based embedding is compared to radius based embedding by studying a logistic attractor and measured breathing data collected from sleeping human infants. Recurrence based embedding appears to be a more robust method of carrying out a recurrence analysis when attractor size is likely to be different between datasets. In the infant breathing data, the radius measure calculated at a fixed recurrence, scaled by average respiratory period, allows the accurate discrimination of active sleep from quiet sleep states (AUC=0.975, Sn=098, Sp=0.94).
The holistic analysis of gamma-ray spectra in instrumental neutron activation analysis
NASA Astrophysics Data System (ADS)
Blaauw, Menno
1994-12-01
A method for the interpretation of γ-ray spectra as obtained in INAA using linear least squares techniques is described. Results obtained using this technique and the traditional method previously in use at IRI are compared. It is concluded that the method presented performs better with respect to the number of detected elements, the resolution of interferences and the estimation of the accuracies of the reported element concentrations. It is also concluded that the technique is robust enough to obviate the deconvolution of multiplets.
Developments in Cylindrical Shell Stability Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Starnes, James H., Jr.
1998-01-01
Today high-performance computing systems and new analytical and numerical techniques enable engineers to explore the use of advanced materials for shell design. This paper reviews some of the historical developments of shell buckling analysis and design. The paper concludes by identifying key research directions for reliable and robust methods development in shell stability analysis and design.
Performance analysis of robust road sign identification
NASA Astrophysics Data System (ADS)
Ali, Nursabillilah M.; Mustafah, Y. M.; Rashid, N. K. A. M.
2013-12-01
This study describes performance analysis of a robust system for road sign identification that incorporated two stages of different algorithms. The proposed algorithms consist of HSV color filtering and PCA techniques respectively in detection and recognition stages. The proposed algorithms are able to detect the three standard types of colored images namely Red, Yellow and Blue. The hypothesis of the study is that road sign images can be used to detect and identify signs that are involved with the existence of occlusions and rotational changes. PCA is known as feature extraction technique that reduces dimensional size. The sign image can be easily recognized and identified by the PCA method as is has been used in many application areas. Based on the experimental result, it shows that the HSV is robust in road sign detection with minimum of 88% and 77% successful rate for non-partial and partial occlusions images. For successful recognition rates using PCA can be achieved in the range of 94-98%. The occurrences of all classes are recognized successfully is between 5% and 10% level of occlusions.
Song, Qiankun; Yu, Qinqin; Zhao, Zhenjiang; Liu, Yurong; Alsaadi, Fuad E
2018-07-01
In this paper, the boundedness and robust stability for a class of delayed complex-valued neural networks with interval parameter uncertainties are investigated. By using Homomorphic mapping theorem, Lyapunov method and inequality techniques, sufficient condition to guarantee the boundedness of networks and the existence, uniqueness and global robust stability of equilibrium point is derived for the considered uncertain neural networks. The obtained robust stability criterion is expressed in complex-valued LMI, which can be calculated numerically using YALMIP with solver of SDPT3 in MATLAB. An example with simulations is supplied to show the applicability and advantages of the acquired result. Copyright © 2018 Elsevier Ltd. All rights reserved.
GWAR: robust analysis and meta-analysis of genome-wide association studies.
Dimou, Niki L; Tsirigos, Konstantinos D; Elofsson, Arne; Bagos, Pantelis G
2017-05-15
In the context of genome-wide association studies (GWAS), there is a variety of statistical techniques in order to conduct the analysis, but, in most cases, the underlying genetic model is usually unknown. Under these circumstances, the classical Cochran-Armitage trend test (CATT) is suboptimal. Robust procedures that maximize the power and preserve the nominal type I error rate are preferable. Moreover, performing a meta-analysis using robust procedures is of great interest and has never been addressed in the past. The primary goal of this work is to implement several robust methods for analysis and meta-analysis in the statistical package Stata and subsequently to make the software available to the scientific community. The CATT under a recessive, additive and dominant model of inheritance as well as robust methods based on the Maximum Efficiency Robust Test statistic, the MAX statistic and the MIN2 were implemented in Stata. Concerning MAX and MIN2, we calculated their asymptotic null distributions relying on numerical integration resulting in a great gain in computational time without losing accuracy. All the aforementioned approaches were employed in a fixed or a random effects meta-analysis setting using summary data with weights equal to the reciprocal of the combined cases and controls. Overall, this is the first complete effort to implement procedures for analysis and meta-analysis in GWAS using Stata. A Stata program and a web-server are freely available for academic users at http://www.compgen.org/tools/GWAR. pbagos@compgen.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Robust extrema features for time-series data analysis.
Vemulapalli, Pramod K; Monga, Vishal; Brennan, Sean N
2013-06-01
The extraction of robust features for comparing and analyzing time series is a fundamentally important problem. Research efforts in this area encompass dimensionality reduction using popular signal analysis tools such as the discrete Fourier and wavelet transforms, various distance metrics, and the extraction of interest points from time series. Recently, extrema features for analysis of time-series data have assumed increasing significance because of their natural robustness under a variety of practical distortions, their economy of representation, and their computational benefits. Invariably, the process of encoding extrema features is preceded by filtering of the time series with an intuitively motivated filter (e.g., for smoothing), and subsequent thresholding to identify robust extrema. We define the properties of robustness, uniqueness, and cardinality as a means to identify the design choices available in each step of the feature generation process. Unlike existing methods, which utilize filters "inspired" from either domain knowledge or intuition, we explicitly optimize the filter based on training time series to optimize robustness of the extracted extrema features. We demonstrate further that the underlying filter optimization problem reduces to an eigenvalue problem and has a tractable solution. An encoding technique that enhances control over cardinality and uniqueness is also presented. Experimental results obtained for the problem of time series subsequence matching establish the merits of the proposed algorithm.
This manuscript describes a novel statistical analysis technique developed by the authors for use in combining survey data carried out under different field protocols. We apply the technique to 83 years of survey data on avian songbird populations in northern lower Michigan to de...
A simple white noise analysis of neuronal light responses.
Chichilnisky, E J
2001-05-01
A white noise technique is presented for estimating the response properties of spiking visual system neurons. The technique is simple, robust, efficient and well suited to simultaneous recordings from multiple neurons. It provides a complete and easily interpretable model of light responses even for neurons that display a common form of response nonlinearity that precludes classical linear systems analysis. A theoretical justification of the technique is presented that relies only on elementary linear algebra and statistics. Implementation is described with examples. The technique and the underlying model of neural responses are validated using recordings from retinal ganglion cells, and in principle are applicable to other neurons. Advantages and disadvantages of the technique relative to classical approaches are discussed.
Adaptive cancellation of motion artifact in wearable biosensors.
Yousefi, Rasoul; Nourani, Mehrdad; Panahi, Issa
2012-01-01
The performance of wearable biosensors is highly influenced by motion artifact. In this paper, a model is proposed for analysis of motion artifact in wearable photoplethysmography (PPG) sensors. Using this model, we proposed a robust real-time technique to estimate fundamental frequency and generate a noise reference signal. A Least Mean Square (LMS) adaptive noise canceler is then designed and validated using our synthetic noise generator. The analysis and results on proposed technique for noise cancellation shows promising performance.
Sparse alignment for robust tensor learning.
Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Zhao, Cairong; Sun, Mingming
2014-10-01
Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods.
Bhanot, Gyan; Alexe, Gabriela; Levine, Arnold J; Stolovitzky, Gustavo
2005-01-01
A major challenge in cancer diagnosis from microarray data is the need for robust, accurate, classification models which are independent of the analysis techniques used and can combine data from different laboratories. We propose such a classification scheme originally developed for phenotype identification from mass spectrometry data. The method uses a robust multivariate gene selection procedure and combines the results of several machine learning tools trained on raw and pattern data to produce an accurate meta-classifier. We illustrate and validate our method by applying it to gene expression datasets: the oligonucleotide HuGeneFL microarray dataset of Shipp et al. (www.genome.wi.mit.du/MPR/lymphoma) and the Hu95Av2 Affymetrix dataset (DallaFavera's laboratory, Columbia University). Our pattern-based meta-classification technique achieves higher predictive accuracies than each of the individual classifiers , is robust against data perturbations and provides subsets of related predictive genes. Our techniques predict that combinations of some genes in the p53 pathway are highly predictive of phenotype. In particular, we find that in 80% of DLBCL cases the mRNA level of at least one of the three genes p53, PLK1 and CDK2 is elevated, while in 80% of FL cases, the mRNA level of at most one of them is elevated.
Sehgal, Vasudha; Seviour, Elena G; Moss, Tyler J; Mills, Gordon B; Azencott, Robert; Ram, Prahlad T
2015-01-01
MicroRNAs (miRNAs) play a crucial role in the maintenance of cellular homeostasis by regulating the expression of their target genes. As such, the dysregulation of miRNA expression has been frequently linked to cancer. With rapidly accumulating molecular data linked to patient outcome, the need for identification of robust multi-omic molecular markers is critical in order to provide clinical impact. While previous bioinformatic tools have been developed to identify potential biomarkers in cancer, these methods do not allow for rapid classification of oncogenes versus tumor suppressors taking into account robust differential expression, cutoffs, p-values and non-normality of the data. Here, we propose a methodology, Robust Selection Algorithm (RSA) that addresses these important problems in big data omics analysis. The robustness of the survival analysis is ensured by identification of optimal cutoff values of omics expression, strengthened by p-value computed through intensive random resampling taking into account any non-normality in the data and integration into multi-omic functional networks. Here we have analyzed pan-cancer miRNA patient data to identify functional pathways involved in cancer progression that are associated with selected miRNA identified by RSA. Our approach demonstrates the way in which existing survival analysis techniques can be integrated with a functional network analysis framework to efficiently identify promising biomarkers and novel therapeutic candidates across diseases.
Fourier-Mellin moment-based intertwining map for image encryption
NASA Astrophysics Data System (ADS)
Kaur, Manjit; Kumar, Vijay
2018-03-01
In this paper, a robust image encryption technique that utilizes Fourier-Mellin moments and intertwining logistic map is proposed. Fourier-Mellin moment-based intertwining logistic map has been designed to overcome the issue of low sensitivity of an input image. Multi-objective Non-Dominated Sorting Genetic Algorithm (NSGA-II) based on Reinforcement Learning (MNSGA-RL) has been used to optimize the required parameters of intertwining logistic map. Fourier-Mellin moments are used to make the secret keys more secure. Thereafter, permutation and diffusion operations are carried out on input image using secret keys. The performance of proposed image encryption technique has been evaluated on five well-known benchmark images and also compared with seven well-known existing encryption techniques. The experimental results reveal that the proposed technique outperforms others in terms of entropy, correlation analysis, a unified average changing intensity and the number of changing pixel rate. The simulation results reveal that the proposed technique provides high level of security and robustness against various types of attacks.
Robust detrending, rereferencing, outlier detection, and inpainting for multichannel data.
de Cheveigné, Alain; Arzounian, Dorothée
2018-05-15
Electroencephalography (EEG), magnetoencephalography (MEG) and related techniques are prone to glitches, slow drift, steps, etc., that contaminate the data and interfere with the analysis and interpretation. These artifacts are usually addressed in a preprocessing phase that attempts to remove them or minimize their impact. This paper offers a set of useful techniques for this purpose: robust detrending, robust rereferencing, outlier detection, data interpolation (inpainting), step removal, and filter ringing artifact removal. These techniques provide a less wasteful alternative to discarding corrupted trials or channels, and they are relatively immune to artifacts that disrupt alternative approaches such as filtering. Robust detrending allows slow drifts and common mode signals to be factored out while avoiding the deleterious effects of glitches. Robust rereferencing reduces the impact of artifacts on the reference. Inpainting allows corrupt data to be interpolated from intact parts based on the correlation structure estimated over the intact parts. Outlier detection allows the corrupt parts to be identified. Step removal fixes the high-amplitude flux jump artifacts that are common with some MEG systems. Ringing removal allows the ringing response of the antialiasing filter to glitches (steps, pulses) to be suppressed. The performance of the methods is illustrated and evaluated using synthetic data and data from real EEG and MEG systems. These methods, which are mainly automatic and require little tuning, can greatly improve the quality of the data. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Modeling of a Robust Confidence Band for the Power Curve of a Wind Turbine.
Hernandez, Wilmar; Méndez, Alfredo; Maldonado-Correa, Jorge L; Balleteros, Francisco
2016-12-07
Having an accurate model of the power curve of a wind turbine allows us to better monitor its operation and planning of storage capacity. Since wind speed and direction is of a highly stochastic nature, the forecasting of the power generated by the wind turbine is of the same nature as well. In this paper, a method for obtaining a robust confidence band containing the power curve of a wind turbine under test conditions is presented. Here, the confidence band is bound by two curves which are estimated using parametric statistical inference techniques. However, the observations that are used for carrying out the statistical analysis are obtained by using the binning method, and in each bin, the outliers are eliminated by using a censorship process based on robust statistical techniques. Then, the observations that are not outliers are divided into observation sets. Finally, both the power curve of the wind turbine and the two curves that define the robust confidence band are estimated using each of the previously mentioned observation sets.
Modeling of a Robust Confidence Band for the Power Curve of a Wind Turbine
Hernandez, Wilmar; Méndez, Alfredo; Maldonado-Correa, Jorge L.; Balleteros, Francisco
2016-01-01
Having an accurate model of the power curve of a wind turbine allows us to better monitor its operation and planning of storage capacity. Since wind speed and direction is of a highly stochastic nature, the forecasting of the power generated by the wind turbine is of the same nature as well. In this paper, a method for obtaining a robust confidence band containing the power curve of a wind turbine under test conditions is presented. Here, the confidence band is bound by two curves which are estimated using parametric statistical inference techniques. However, the observations that are used for carrying out the statistical analysis are obtained by using the binning method, and in each bin, the outliers are eliminated by using a censorship process based on robust statistical techniques. Then, the observations that are not outliers are divided into observation sets. Finally, both the power curve of the wind turbine and the two curves that define the robust confidence band are estimated using each of the previously mentioned observation sets. PMID:27941604
NASA Astrophysics Data System (ADS)
Friedel, M. J.; Daughney, C.
2016-12-01
The development of a successful surface-groundwater management strategy depends on the quality of data provided for analysis. This study evaluates the statistical robustness when using a modified self-organizing map (MSOM) technique to estimate missing values for three hypersurface models: synoptic groundwater-surface water hydrochemistry, time-series of groundwater-surface water hydrochemistry, and mixed-survey (combination of groundwater-surface water hydrochemistry and lithologies) hydrostratigraphic unit data. These models of increasing complexity are developed and validated based on observations from the Southland region of New Zealand. In each case, the estimation method is sufficiently robust to cope with groundwater-surface water hydrochemistry vagaries due to sample size and extreme data insufficiency, even when >80% of the data are missing. The estimation of surface water hydrochemistry time series values enabled the evaluation of seasonal variation, and the imputation of lithologies facilitated the evaluation of hydrostratigraphic controls on groundwater-surface water interaction. The robust statistical results for groundwater-surface water models of increasing data complexity provide justification to apply the MSOM technique in other regions of New Zealand and abroad.
Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems
NASA Astrophysics Data System (ADS)
Koch, Patrick Nathan
Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.
NASA Astrophysics Data System (ADS)
Pu, Zhiqiang; Tan, Xiangmin; Fan, Guoliang; Yi, Jianqiang
2014-08-01
Flexible air-breathing hypersonic vehicles feature significant uncertainties which pose huge challenges to robust controller designs. In this paper, four major categories of uncertainties are analyzed, that is, uncertainties associated with flexible effects, aerodynamic parameter variations, external environmental disturbances, and control-oriented modeling errors. A uniform nonlinear uncertainty model is explored for the first three uncertainties which lumps all uncertainties together and consequently is beneficial for controller synthesis. The fourth uncertainty is additionally considered in stability analysis. Based on these analyses, the starting point of the control design is to decompose the vehicle dynamics into five functional subsystems. Then a robust trajectory linearization control (TLC) scheme consisting of five robust subsystem controllers is proposed. In each subsystem controller, TLC is combined with the extended state observer (ESO) technique for uncertainty compensation. The stability of the overall closed-loop system with the four aforementioned uncertainties and additional singular perturbations is analyzed. Particularly, the stability of nonlinear ESO is also discussed from a Liénard system perspective. At last, simulations demonstrate the great control performance and the uncertainty rejection ability of the robust scheme.
Noise Suppression Methods for Robust Speech Processing
1981-04-01
1]. Techniques available for voice processor modification to account for noise contamination are being developed [4]. Preprocessor noise reduction...analysis window function. Principles governing discrete implementation of the transform pair are discussed, and relationships are formalized which specify
NASA Technical Reports Server (NTRS)
Balas, Gary J.
1996-01-01
This final report summarizes the research results under NASA Contract NAG-1-1254 from May, 1991 - April, 1995. The main contribution of this research are in the areas of control of flexible structures, model validation, optimal control analysis and synthesis techniques, and use of shape memory alloys for structural damping.
Jaswal, Brij Bir S; Kumar, Vinay; Sharma, Jitendra; Rai, Pradeep K; Gondal, Mohammed A; Gondal, Bilal; Singh, Vivek K
2016-04-01
Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique with numerous advantages such as rapidity, multi-elemental analysis, no specific sample preparation requirements, non-destructiveness, and versatility. It has been proven to be a robust elemental analysis tool attracting interest because of being applied to a wide range of materials including biomaterials. In this paper, we have performed spectroscopic studies on gallstones which are heterogeneous in nature using LIBS and wavelength dispersive X-ray fluorescence (WD-XRF) techniques. It has been observed that the presence and relative concentrations of trace elements in different kind of gallstones (cholesterol and pigment gallstones) can easily be determined using LIBS technique. From the experiments carried out on gallstones for trace elemental mapping and detection, it was found that LIBS is a robust tool for such biomedical applications. The stone samples studied in the present paper were classified using the Fourier transform infrared (FTIR) spectroscopy. WD-XRF spectroscopy has been applied for the qualitative and quantitative analysis of major and trace elements present in the gallstone which was compared with the LIBS data. The results obtained in the present paper show interesting prospects for LIBS and WD-XRF to study cholelithiasis better.
ChariDingari, Narahara; Barman, Ishan; Myakalwar, Ashwin Kumar; Tewari, Surya P.; Kumar, G. Manoj
2012-01-01
Despite the intrinsic elemental analysis capability and lack of sample preparation requirements, laser-induced breakdown spectroscopy (LIBS) has not been extensively used for real world applications, e.g. quality assurance and process monitoring. Specifically, variability in sample, system and experimental parameters in LIBS studies present a substantive hurdle for robust classification, even when standard multivariate chemometric techniques are used for analysis. Considering pharmaceutical sample investigation as an example, we propose the use of support vector machines (SVM) as a non-linear classification method over conventional linear techniques such as soft independent modeling of class analogy (SIMCA) and partial least-squares discriminant analysis (PLS-DA) for discrimination based on LIBS measurements. Using over-the-counter pharmaceutical samples, we demonstrate that application of SVM enables statistically significant improvements in prospective classification accuracy (sensitivity), due to its ability to address variability in LIBS sample ablation and plasma self-absorption behavior. Furthermore, our results reveal that SVM provides nearly 10% improvement in correct allocation rate and a concomitant reduction in misclassification rates of 75% (cf. PLS-DA) and 80% (cf. SIMCA)-when measurements from samples not included in the training set are incorporated in the test data – highlighting its robustness. While further studies on a wider matrix of sample types performed using different LIBS systems is needed to fully characterize the capability of SVM to provide superior predictions, we anticipate that the improved sensitivity and robustness observed here will facilitate application of the proposed LIBS-SVM toolbox for screening drugs and detecting counterfeit samples as well as in related areas of forensic and biological sample analysis. PMID:22292496
Dingari, Narahara Chari; Barman, Ishan; Myakalwar, Ashwin Kumar; Tewari, Surya P; Kumar Gundawar, Manoj
2012-03-20
Despite the intrinsic elemental analysis capability and lack of sample preparation requirements, laser-induced breakdown spectroscopy (LIBS) has not been extensively used for real-world applications, e.g., quality assurance and process monitoring. Specifically, variability in sample, system, and experimental parameters in LIBS studies present a substantive hurdle for robust classification, even when standard multivariate chemometric techniques are used for analysis. Considering pharmaceutical sample investigation as an example, we propose the use of support vector machines (SVM) as a nonlinear classification method over conventional linear techniques such as soft independent modeling of class analogy (SIMCA) and partial least-squares discriminant analysis (PLS-DA) for discrimination based on LIBS measurements. Using over-the-counter pharmaceutical samples, we demonstrate that the application of SVM enables statistically significant improvements in prospective classification accuracy (sensitivity), because of its ability to address variability in LIBS sample ablation and plasma self-absorption behavior. Furthermore, our results reveal that SVM provides nearly 10% improvement in correct allocation rate and a concomitant reduction in misclassification rates of 75% (cf. PLS-DA) and 80% (cf. SIMCA)-when measurements from samples not included in the training set are incorporated in the test data-highlighting its robustness. While further studies on a wider matrix of sample types performed using different LIBS systems is needed to fully characterize the capability of SVM to provide superior predictions, we anticipate that the improved sensitivity and robustness observed here will facilitate application of the proposed LIBS-SVM toolbox for screening drugs and detecting counterfeit samples, as well as in related areas of forensic and biological sample analysis.
Evolutionary computing for the design search and optimization of space vehicle power subsystems
NASA Technical Reports Server (NTRS)
Kordon, M.; Klimeck, G.; Hanks, D.
2004-01-01
Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment.
Robust Crossfeed Design for Hovering Rotorcraft
NASA Technical Reports Server (NTRS)
Catapang, David R.
1993-01-01
Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust'. A new low-order matching method is presented here to design robust crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.
Cutajar, Marica; Thomas, David L; Hales, Patrick W; Banks, T; Clark, Christopher A; Gordon, Isky
2014-06-01
To investigate the reproducibility of arterial spin labelling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and quantitatively compare these techniques for the measurement of renal blood flow (RBF). Sixteen healthy volunteers were examined on two different occasions. ASL was performed using a multi-TI FAIR labelling scheme with a segmented 3D-GRASE imaging module. DCE MRI was performed using a 3D-FLASH pulse sequence. A Bland-Altman analysis was used to assess repeatability of each technique, and determine the degree of correspondence between the two methods. The overall mean cortical renal blood flow (RBF) of the ASL group was 263 ± 41 ml min(-1) [100 ml tissue](-1), and using DCE MRI was 287 ± 70 ml min(-1) [100 ml tissue](-1). The group coefficient of variation (CVg) was 18 % for ASL and 28 % for DCE-MRI. Repeatability studies showed that ASL was more reproducible than DCE with CVgs of 16 % and 25 % for ASL and DCE respectively. Bland-Altman analysis comparing the two techniques showed a good agreement. The repeated measures analysis shows that the ASL technique has better reproducibility than DCE-MRI. Difference analysis shows no significant difference between the RBF values of the two techniques. Reliable non-invasive monitoring of renal blood flow is currently clinically unavailable. Renal arterial spin labelling MRI is robust and repeatable. Renal dynamic contrast-enhanced MRI is robust and repeatable. ASL blood flow values are similar to those obtained using DCE-MRI.
Jabeen, Safia; Mehmood, Zahid; Mahmood, Toqeer; Saba, Tanzila; Rehman, Amjad; Mahmood, Muhammad Tariq
2018-01-01
For the last three decades, content-based image retrieval (CBIR) has been an active research area, representing a viable solution for retrieving similar images from an image repository. In this article, we propose a novel CBIR technique based on the visual words fusion of speeded-up robust features (SURF) and fast retina keypoint (FREAK) feature descriptors. SURF is a sparse descriptor whereas FREAK is a dense descriptor. Moreover, SURF is a scale and rotation-invariant descriptor that performs better in the case of repeatability, distinctiveness, and robustness. It is robust to noise, detection errors, geometric, and photometric deformations. It also performs better at low illumination within an image as compared to the FREAK descriptor. In contrast, FREAK is a retina-inspired speedy descriptor that performs better for classification-based problems as compared to the SURF descriptor. Experimental results show that the proposed technique based on the visual words fusion of SURF-FREAK descriptors combines the features of both descriptors and resolves the aforementioned issues. The qualitative and quantitative analysis performed on three image collections, namely Corel-1000, Corel-1500, and Caltech-256, shows that proposed technique based on visual words fusion significantly improved the performance of the CBIR as compared to the feature fusion of both descriptors and state-of-the-art image retrieval techniques. PMID:29694429
Jabeen, Safia; Mehmood, Zahid; Mahmood, Toqeer; Saba, Tanzila; Rehman, Amjad; Mahmood, Muhammad Tariq
2018-01-01
For the last three decades, content-based image retrieval (CBIR) has been an active research area, representing a viable solution for retrieving similar images from an image repository. In this article, we propose a novel CBIR technique based on the visual words fusion of speeded-up robust features (SURF) and fast retina keypoint (FREAK) feature descriptors. SURF is a sparse descriptor whereas FREAK is a dense descriptor. Moreover, SURF is a scale and rotation-invariant descriptor that performs better in the case of repeatability, distinctiveness, and robustness. It is robust to noise, detection errors, geometric, and photometric deformations. It also performs better at low illumination within an image as compared to the FREAK descriptor. In contrast, FREAK is a retina-inspired speedy descriptor that performs better for classification-based problems as compared to the SURF descriptor. Experimental results show that the proposed technique based on the visual words fusion of SURF-FREAK descriptors combines the features of both descriptors and resolves the aforementioned issues. The qualitative and quantitative analysis performed on three image collections, namely Corel-1000, Corel-1500, and Caltech-256, shows that proposed technique based on visual words fusion significantly improved the performance of the CBIR as compared to the feature fusion of both descriptors and state-of-the-art image retrieval techniques.
Constraint treatment techniques and parallel algorithms for multibody dynamic analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chiou, Jin-Chern
1990-01-01
Computational procedures for kinematic and dynamic analysis of three-dimensional multibody dynamic (MBD) systems are developed from the differential-algebraic equations (DAE's) viewpoint. Constraint violations during the time integration process are minimized and penalty constraint stabilization techniques and partitioning schemes are developed. The governing equations of motion, a two-stage staggered explicit-implicit numerical algorithm, are treated which takes advantage of a partitioned solution procedure. A robust and parallelizable integration algorithm is developed. This algorithm uses a two-stage staggered central difference algorithm to integrate the translational coordinates and the angular velocities. The angular orientations of bodies in MBD systems are then obtained by using an implicit algorithm via the kinematic relationship between Euler parameters and angular velocities. It is shown that the combination of the present solution procedures yields a computationally more accurate solution. To speed up the computational procedures, parallel implementation of the present constraint treatment techniques, the two-stage staggered explicit-implicit numerical algorithm was efficiently carried out. The DAE's and the constraint treatment techniques were transformed into arrowhead matrices to which Schur complement form was derived. By fully exploiting the sparse matrix structural analysis techniques, a parallel preconditioned conjugate gradient numerical algorithm is used to solve the systems equations written in Schur complement form. A software testbed was designed and implemented in both sequential and parallel computers. This testbed was used to demonstrate the robustness and efficiency of the constraint treatment techniques, the accuracy of the two-stage staggered explicit-implicit numerical algorithm, and the speed up of the Schur-complement-based parallel preconditioned conjugate gradient algorithm on a parallel computer.
Wang, Ding; Liu, Derong; Zhang, Yun; Li, Hongyi
2018-01-01
In this paper, we aim to tackle the neural robust tracking control problem for a class of nonlinear systems using the adaptive critic technique. The main contribution is that a neural-network-based robust tracking control scheme is established for nonlinear systems involving matched uncertainties. The augmented system considering the tracking error and the reference trajectory is formulated and then addressed under adaptive critic optimal control formulation, where the initial stabilizing controller is not needed. The approximate control law is derived via solving the Hamilton-Jacobi-Bellman equation related to the nominal augmented system, followed by closed-loop stability analysis. The robust tracking control performance is guaranteed theoretically via Lyapunov approach and also verified through simulation illustration. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wan, Qianwen; Panetta, Karen; Agaian, Sos
2017-05-01
Autonomous facial recognition system is widely used in real-life applications, such as homeland border security, law enforcement identification and authentication, and video-based surveillance analysis. Issues like low image quality, non-uniform illumination as well as variations in poses and facial expressions can impair the performance of recognition systems. To address the non-uniform illumination challenge, we present a novel robust autonomous facial recognition system inspired by the human visual system based, so called, logarithmical image visualization technique. In this paper, the proposed method, for the first time, utilizes the logarithmical image visualization technique coupled with the local binary pattern to perform discriminative feature extraction for facial recognition system. The Yale database, the Yale-B database and the ATT database are used for computer simulation accuracy and efficiency testing. The extensive computer simulation demonstrates the method's efficiency, accuracy, and robustness of illumination invariance for facial recognition.
Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark
2011-01-01
A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.
Passing the Test: Ecological Regression Analysis in the Los Angeles County Case and Beyond.
ERIC Educational Resources Information Center
Lichtman, Allan J.
1991-01-01
Statistical analysis of racially polarized voting prepared for the Garza v County of Los Angeles (California) (1990) voting rights case is reviewed to demonstrate that ecological regression is a flexible, robust technique that illuminates the reality of ethnic voting, and superior to the neighborhood model supported by the defendants. (SLD)
Robust Nonlinear Feedback Control of Aircraft Propulsion Systems
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.; Litt, Jonathan (Technical Monitor)
2001-01-01
This is the final report on the research performed under NASA Glen grant NASA/NAG-3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool, mixed flow, after burning turbofan engine. The research focussed on the design of linear and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using H-infinity and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine simulation was provided by PW within the NASA Rocket Engine Transient Simulator (ROCETS) simulation software environment. ROCETS was used to generate linearized models of the turbofan engine for control design and analysis as well as the simulation environment to evaluate the performance and robustness of the controllers. Comparison between the H-infinity, and LPV controllers are made with the baseline multivariable controller and developed by Pratt & Whitney engineers included in the ROCETS simulation. Simulation results indicate that H-infinity and LPV techniques effectively achieve desired response characteristics with minimal cross coupling between commanded values and are very robust to unmodeled dynamics and sensor noise.
Novel near-infrared sampling apparatus for single kernel analysis of oil content in maize.
Janni, James; Weinstock, B André; Hagen, Lisa; Wright, Steve
2008-04-01
A method of rapid, nondestructive chemical and physical analysis of individual maize (Zea mays L.) kernels is needed for the development of high value food, feed, and fuel traits. Near-infrared (NIR) spectroscopy offers a robust nondestructive method of trait determination. However, traditional NIR bulk sampling techniques cannot be applied successfully to individual kernels. Obtaining optimized single kernel NIR spectra for applied chemometric predictive analysis requires a novel sampling technique that can account for the heterogeneous forms, morphologies, and opacities exhibited in individual maize kernels. In this study such a novel technique is described and compared to less effective means of single kernel NIR analysis. Results of the application of a partial least squares (PLS) derived model for predictive determination of percent oil content per individual kernel are shown.
LOCAL ORTHOGONAL CUTTING METHOD FOR COMPUTING MEDIAL CURVES AND ITS BIOMEDICAL APPLICATIONS
Einstein, Daniel R.; Dyedov, Vladimir
2010-01-01
Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method called local orthogonal cutting (LOC) for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stability and consistency tests. These concepts lend themselves to robust numerical techniques and result in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods. PMID:20628546
Robust gene selection methods using weighting schemes for microarray data analysis.
Kang, Suyeon; Song, Jongwoo
2017-09-02
A common task in microarray data analysis is to identify informative genes that are differentially expressed between two different states. Owing to the high-dimensional nature of microarray data, identification of significant genes has been essential in analyzing the data. However, the performances of many gene selection techniques are highly dependent on the experimental conditions, such as the presence of measurement error or a limited number of sample replicates. We have proposed new filter-based gene selection techniques, by applying a simple modification to significance analysis of microarrays (SAM). To prove the effectiveness of the proposed method, we considered a series of synthetic datasets with different noise levels and sample sizes along with two real datasets. The following findings were made. First, our proposed methods outperform conventional methods for all simulation set-ups. In particular, our methods are much better when the given data are noisy and sample size is small. They showed relatively robust performance regardless of noise level and sample size, whereas the performance of SAM became significantly worse as the noise level became high or sample size decreased. When sufficient sample replicates were available, SAM and our methods showed similar performance. Finally, our proposed methods are competitive with traditional methods in classification tasks for microarrays. The results of simulation study and real data analysis have demonstrated that our proposed methods are effective for detecting significant genes and classification tasks, especially when the given data are noisy or have few sample replicates. By employing weighting schemes, we can obtain robust and reliable results for microarray data analysis.
The Problem of Size in Robust Design
NASA Technical Reports Server (NTRS)
Koch, Patrick N.; Allen, Janet K.; Mistree, Farrokh; Mavris, Dimitri
1997-01-01
To facilitate the effective solution of multidisciplinary, multiobjective complex design problems, a departure from the traditional parametric design analysis and single objective optimization approaches is necessary in the preliminary stages of design. A necessary tradeoff becomes one of efficiency vs. accuracy as approximate models are sought to allow fast analysis and effective exploration of a preliminary design space. In this paper we apply a general robust design approach for efficient and comprehensive preliminary design to a large complex system: a high speed civil transport (HSCT) aircraft. Specifically, we investigate the HSCT wing configuration design, incorporating life cycle economic uncertainties to identify economically robust solutions. The approach is built on the foundation of statistical experimentation and modeling techniques and robust design principles, and is specialized through incorporation of the compromise Decision Support Problem for multiobjective design. For large problems however, as in the HSCT example, this robust design approach developed for efficient and comprehensive design breaks down with the problem of size - combinatorial explosion in experimentation and model building with number of variables -and both efficiency and accuracy are sacrificed. Our focus in this paper is on identifying and discussing the implications and open issues associated with the problem of size for the preliminary design of large complex systems.
Decentralized adaptive control of robot manipulators with robust stabilization design
NASA Technical Reports Server (NTRS)
Yuan, Bau-San; Book, Wayne J.
1988-01-01
Due to geometric nonlinearities and complex dynamics, a decentralized technique for adaptive control for multilink robot arms is attractive. Lyapunov-function theory for stability analysis provides an approach to robust stabilization. Each joint of the arm is treated as a component subsystem. The adaptive controller is made locally stable with servo signals including proportional and integral gains. This results in the bound on the dynamical interactions with other subsystems. A nonlinear controller which stabilizes the system with uniform boundedness is used to improve the robustness properties of the overall system. As a result, the robot tracks the reference trajectories with convergence. This strategy makes computation simple and therefore facilitates real-time implementation.
Khan, Arif Ul Maula; Torelli, Angelo; Wolf, Ivo; Gretz, Norbert
2018-05-08
In biological assays, automated cell/colony segmentation and counting is imperative owing to huge image sets. Problems occurring due to drifting image acquisition conditions, background noise and high variation in colony features in experiments demand a user-friendly, adaptive and robust image processing/analysis method. We present AutoCellSeg (based on MATLAB) that implements a supervised automatic and robust image segmentation method. AutoCellSeg utilizes multi-thresholding aided by a feedback-based watershed algorithm taking segmentation plausibility criteria into account. It is usable in different operation modes and intuitively enables the user to select object features interactively for supervised image segmentation method. It allows the user to correct results with a graphical interface. This publicly available tool outperforms tools like OpenCFU and CellProfiler in terms of accuracy and provides many additional useful features for end-users.
Overview of computational control research at UT Austin
NASA Technical Reports Server (NTRS)
Bong, Wie
1989-01-01
An overview of current research activities at UT Austin is presented to discuss certain technical issues in the following areas: (1) Computer-Aided Nonlinear Control Design: In this project, the describing function method is employed for the nonlinear control analysis and design of a flexible spacecraft equipped with pulse modulated reaction jets. INCA program has been enhanced to allow the numerical calculation of describing functions as well as the nonlinear limit cycle analysis capability in the frequency domain; (2) Robust Linear Quadratic Gaussian (LQG) Compensator Synthesis: Robust control design techniques and software tools are developed for flexible space structures with parameter uncertainty. In particular, an interactive, robust multivariable control design capability is being developed for INCA program; and (3) LQR-Based Autonomous Control System for the Space Station: In this project, real time implementation of LQR-based autonomous control system is investigated for the space station with time-varying inertias and with significant multibody dynamic interactions.
Practical issues of hyperspectral imaging analysis of solid dosage forms.
Amigo, José Manuel
2010-09-01
Hyperspectral imaging techniques have widely demonstrated their usefulness in different areas of interest in pharmaceutical research during the last decade. In particular, middle infrared, near infrared, and Raman methods have gained special relevance. This rapid increase has been promoted by the capability of hyperspectral techniques to provide robust and reliable chemical and spatial information on the distribution of components in pharmaceutical solid dosage forms. Furthermore, the valuable combination of hyperspectral imaging devices with adequate data processing techniques offers the perfect landscape for developing new methods for scanning and analyzing surfaces. Nevertheless, the instrumentation and subsequent data analysis are not exempt from issues that must be thoughtfully considered. This paper describes and discusses the main advantages and drawbacks of the measurements and data analysis of hyperspectral imaging techniques in the development of solid dosage forms.
Local Orthogonal Cutting Method for Computing Medial Curves and Its Biomedical Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Xiangmin; Einstein, Daniel R.; Dyedov, Volodymyr
2010-03-24
Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stabilitymore » and consistency tests. These concepts lend themselves to robust numerical techniques including eigenvalue analysis, weighted least squares approximations, and numerical minimization, resulting in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods.« less
Nweke, Mauryn C; McCartney, R Graham; Bracewell, Daniel G
2017-12-29
Mechanical characterisation of agarose-based resins is an important factor in ensuring robust chromatographic performance in the manufacture of biopharmaceuticals. Pressure-flow profiles are most commonly used to characterise these properties. There are a number of drawbacks with this method, including the potential need for several re-packs to achieve the desired packing quality, the impact of wall effects on experimental set up and the quantities of chromatography media and buffers required. To address these issues, we have developed a dynamic mechanical analysis (DMA) technique that characterises the mechanical properties of resins based on the viscoelasticity of a 1ml sample of slurry. This technique was conducted on seven resins with varying degrees of mechanical robustness and the results were compared to pressure-flow test results on the same resins. Results show a strong correlation between the two techniques. The most mechanically robust resin (Capto Q) had a critical velocity 3.3 times higher than the weakest (Sepharose CL-4B), whilst the DMA technique showed Capto Q to have a slurry deformation rate 8.3 times lower than Sepharose CL-4B. To ascertain whether polymer structure is indicative of mechanical strength, scanning electron microscopy images were also used to study the structural properties of each resin. Results indicate that DMA can be used as a small volume, complementary technique for the mechanical characterisation of chromatography media. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Graphical Evaluation of the Ridge-Type Robust Regression Estimators in Mixture Experiments
Erkoc, Ali; Emiroglu, Esra
2014-01-01
In mixture experiments, estimation of the parameters is generally based on ordinary least squares (OLS). However, in the presence of multicollinearity and outliers, OLS can result in very poor estimates. In this case, effects due to the combined outlier-multicollinearity problem can be reduced to certain extent by using alternative approaches. One of these approaches is to use biased-robust regression techniques for the estimation of parameters. In this paper, we evaluate various ridge-type robust estimators in the cases where there are multicollinearity and outliers during the analysis of mixture experiments. Also, for selection of biasing parameter, we use fraction of design space plots for evaluating the effect of the ridge-type robust estimators with respect to the scaled mean squared error of prediction. The suggested graphical approach is illustrated on Hald cement data set. PMID:25202738
Graphical evaluation of the ridge-type robust regression estimators in mixture experiments.
Erkoc, Ali; Emiroglu, Esra; Akay, Kadri Ulas
2014-01-01
In mixture experiments, estimation of the parameters is generally based on ordinary least squares (OLS). However, in the presence of multicollinearity and outliers, OLS can result in very poor estimates. In this case, effects due to the combined outlier-multicollinearity problem can be reduced to certain extent by using alternative approaches. One of these approaches is to use biased-robust regression techniques for the estimation of parameters. In this paper, we evaluate various ridge-type robust estimators in the cases where there are multicollinearity and outliers during the analysis of mixture experiments. Also, for selection of biasing parameter, we use fraction of design space plots for evaluating the effect of the ridge-type robust estimators with respect to the scaled mean squared error of prediction. The suggested graphical approach is illustrated on Hald cement data set.
ERIC Educational Resources Information Center
Lix, Lisa M.; And Others
1996-01-01
Meta-analytic techniques were used to summarize the statistical robustness literature on Type I error properties of alternatives to the one-way analysis of variance "F" test. The James (1951) and Welch (1951) tests performed best under violations of the variance homogeneity assumption, although their use is not always appropriate. (SLD)
Segmentation of the Speaker's Face Region with Audiovisual Correlation
NASA Astrophysics Data System (ADS)
Liu, Yuyu; Sato, Yoichi
The ability to find the speaker's face region in a video is useful for various applications. In this work, we develop a novel technique to find this region within different time windows, which is robust against the changes of view, scale, and background. The main thrust of our technique is to integrate audiovisual correlation analysis into a video segmentation framework. We analyze the audiovisual correlation locally by computing quadratic mutual information between our audiovisual features. The computation of quadratic mutual information is based on the probability density functions estimated by kernel density estimation with adaptive kernel bandwidth. The results of this audiovisual correlation analysis are incorporated into graph cut-based video segmentation to resolve a globally optimum extraction of the speaker's face region. The setting of any heuristic threshold in this segmentation is avoided by learning the correlation distributions of speaker and background by expectation maximization. Experimental results demonstrate that our method can detect the speaker's face region accurately and robustly for different views, scales, and backgrounds.
Rowley, Mark I.; Coolen, Anthonius C. C.; Vojnovic, Borivoj; Barber, Paul R.
2016-01-01
We present novel Bayesian methods for the analysis of exponential decay data that exploit the evidence carried by every detected decay event and enables robust extension to advanced processing. Our algorithms are presented in the context of fluorescence lifetime imaging microscopy (FLIM) and particular attention has been paid to model the time-domain system (based on time-correlated single photon counting) with unprecedented accuracy. We present estimates of decay parameters for mono- and bi-exponential systems, offering up to a factor of two improvement in accuracy compared to previous popular techniques. Results of the analysis of synthetic and experimental data are presented, and areas where the superior precision of our techniques can be exploited in Förster Resonance Energy Transfer (FRET) experiments are described. Furthermore, we demonstrate two advanced processing methods: decay model selection to choose between differing models such as mono- and bi-exponential, and the simultaneous estimation of instrument and decay parameters. PMID:27355322
Robust linear discriminant analysis with distance based estimators
NASA Astrophysics Data System (ADS)
Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Ali, Hazlina
2017-11-01
Linear discriminant analysis (LDA) is one of the supervised classification techniques concerning relationship between a categorical variable and a set of continuous variables. The main objective of LDA is to create a function to distinguish between populations and allocating future observations to previously defined populations. Under the assumptions of normality and homoscedasticity, the LDA yields optimal linear discriminant rule (LDR) between two or more groups. However, the optimality of LDA highly relies on the sample mean and pooled sample covariance matrix which are known to be sensitive to outliers. To alleviate these conflicts, a new robust LDA using distance based estimators known as minimum variance vector (MVV) has been proposed in this study. The MVV estimators were used to substitute the classical sample mean and classical sample covariance to form a robust linear discriminant rule (RLDR). Simulation and real data study were conducted to examine on the performance of the proposed RLDR measured in terms of misclassification error rates. The computational result showed that the proposed RLDR is better than the classical LDR and was comparable with the existing robust LDR.
Logistic regression applied to natural hazards: rare event logistic regression with replications
NASA Astrophysics Data System (ADS)
Guns, M.; Vanacker, V.
2012-06-01
Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logistic regression with replications, combines the strength of probabilistic and statistical methods, and allows overcoming some of the limitations of previous developments through robust variable selection. This technique was here developed for the analyses of landslide controlling factors, but the concept is widely applicable for statistical analyses of natural hazards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shumway, R.H.; McQuarrie, A.D.
Robust statistical approaches to the problem of discriminating between regional earthquakes and explosions are developed. We compare linear discriminant analysis using descriptive features like amplitude and spectral ratios with signal discrimination techniques using the original signal waveforms and spectral approximations to the log likelihood function. Robust information theoretic techniques are proposed and all methods are applied to 8 earthquakes and 8 mining explosions in Scandinavia and to an event from Novaya Zemlya of unknown origin. It is noted that signal discrimination approaches based on discrimination information and Renyi entropy perform better in the test sample than conventional methods based onmore » spectral ratios involving the P and S phases. Two techniques for identifying the ripple-firing pattern for typical mining explosions are proposed and shown to work well on simulated data and on several Scandinavian earthquakes and explosions. We use both cepstral analysis in the frequency domain and a time domain method based on the autocorrelation and partial autocorrelation functions. The proposed approach strips off underlying smooth spectral and seasonal spectral components corresponding to the echo pattern induced by two simple ripple-fired models. For two mining explosions, a pattern is identified whereas for two earthquakes, no pattern is evident.« less
Chang, Yeong-Chan
2005-12-01
This paper addresses the problem of designing adaptive fuzzy-based (or neural network-based) robust controls for a large class of uncertain nonlinear time-varying systems. This class of systems can be perturbed by plant uncertainties, unmodeled perturbations, and external disturbances. Nonlinear H(infinity) control technique incorporated with adaptive control technique and VSC technique is employed to construct the intelligent robust stabilization controller such that an H(infinity) control is achieved. The problem of the robust tracking control design for uncertain robotic systems is employed to demonstrate the effectiveness of the developed robust stabilization control scheme. Therefore, an intelligent robust tracking controller for uncertain robotic systems in the presence of high-degree uncertainties can easily be implemented. Its solution requires only to solve a linear algebraic matrix inequality and a satisfactorily transient and asymptotical tracking performance is guaranteed. A simulation example is made to confirm the performance of the developed control algorithms.
Validating an Air Traffic Management Concept of Operation Using Statistical Modeling
NASA Technical Reports Server (NTRS)
He, Yuning; Davies, Misty Dawn
2013-01-01
Validating a concept of operation for a complex, safety-critical system (like the National Airspace System) is challenging because of the high dimensionality of the controllable parameters and the infinite number of states of the system. In this paper, we use statistical modeling techniques to explore the behavior of a conflict detection and resolution algorithm designed for the terminal airspace. These techniques predict the robustness of the system simulation to both nominal and off-nominal behaviors within the overall airspace. They also can be used to evaluate the output of the simulation against recorded airspace data. Additionally, the techniques carry with them a mathematical value of the worth of each prediction-a statistical uncertainty for any robustness estimate. Uncertainty Quantification (UQ) is the process of quantitative characterization and ultimately a reduction of uncertainties in complex systems. UQ is important for understanding the influence of uncertainties on the behavior of a system and therefore is valuable for design, analysis, and verification and validation. In this paper, we apply advanced statistical modeling methodologies and techniques on an advanced air traffic management system, namely the Terminal Tactical Separation Assured Flight Environment (T-TSAFE). We show initial results for a parameter analysis and safety boundary (envelope) detection in the high-dimensional parameter space. For our boundary analysis, we developed a new sequential approach based upon the design of computer experiments, allowing us to incorporate knowledge from domain experts into our modeling and to determine the most likely boundary shapes and its parameters. We carried out the analysis on system parameters and describe an initial approach that will allow us to include time-series inputs, such as the radar track data, into the analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Samantha, E-mail: samantha.warren@oncology.ox.ac.uk; Partridge, Mike; Bolsi, Alessandra
Purpose: Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods andmore » Materials: For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV){sub 50Gy} or PTV{sub 62.5Gy} (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results: SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D{sub 98} was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D{sub 98} was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D{sub 98} was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D{sub 98} was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions: The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for certain patients. Robust optimization to ensure adequate target coverage of SIB proton plans might be beneficial.« less
Warren, Samantha; Partridge, Mike; Bolsi, Alessandra; Lomax, Anthony J.; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A.
2016-01-01
Purpose Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods and Materials For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV)50Gy or PTV62.5Gy (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D98 was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D98 was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D98 was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D98 was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for certain patients. Robust optimization to ensure adequate target coverage of SIB proton plans might be beneficial. PMID:27084641
Warren, Samantha; Partridge, Mike; Bolsi, Alessandra; Lomax, Anthony J; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A
2016-05-01
Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV)50Gy or PTV62.5Gy (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose-volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D98 was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D98 was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D98 was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D98 was lower by 0.3% to 2.2% of the prescribed GTV dose. The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for certain patients. Robust optimization to ensure adequate target coverage of SIB proton plans might be beneficial. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Islas, Gabriela; Hernandez, Prisciliano
2017-01-01
To achieve analytical success, it is necessary to develop thorough clean-up procedures to extract analytes from the matrix. Dispersive solid phase extraction (DSPE) has been used as a pretreatment technique for the analysis of several compounds. This technique is based on the dispersion of a solid sorbent in liquid samples in the extraction isolation and clean-up of different analytes from complex matrices. DSPE has found a wide range of applications in several fields, and it is considered to be a selective, robust, and versatile technique. The applications of dispersive techniques in the analysis of veterinary drugs in different matrices involve magnetic sorbents, molecularly imprinted polymers, carbon-based nanomaterials, and the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method. Techniques based on DSPE permit minimization of additional steps such as precipitation, centrifugation, and filtration, which decreases the manipulation of the sample. In this review, we describe the main procedures used for synthesis, characterization, and application of this pretreatment technique and how it has been applied to food analysis. PMID:29181027
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Mukhopadhyay, V.
1983-01-01
A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two-input/two-output drone flight control system.
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Mukhopadhyay, V.
1983-01-01
A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two output drone flight control system.
Robust linear discriminant models to solve financial crisis in banking sectors
NASA Astrophysics Data System (ADS)
Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Idris, Faoziah; Ali, Hazlina; Omar, Zurni
2014-12-01
Linear discriminant analysis (LDA) is a widely-used technique in patterns classification via an equation which will minimize the probability of misclassifying cases into their respective categories. However, the performance of classical estimators in LDA highly depends on the assumptions of normality and homoscedasticity. Several robust estimators in LDA such as Minimum Covariance Determinant (MCD), S-estimators and Minimum Volume Ellipsoid (MVE) are addressed by many authors to alleviate the problem of non-robustness of the classical estimates. In this paper, we investigate on the financial crisis of the Malaysian banking institutions using robust LDA and classical LDA methods. Our objective is to distinguish the "distress" and "non-distress" banks in Malaysia by using the LDA models. Hit ratio is used to validate the accuracy predictive of LDA models. The performance of LDA is evaluated by estimating the misclassification rate via apparent error rate. The results and comparisons show that the robust estimators provide a better performance than the classical estimators for LDA.
Jo, Javier A.; Fang, Qiyin; Marcu, Laura
2007-01-01
We report a new deconvolution method for fluorescence lifetime imaging microscopy (FLIM) based on the Laguerre expansion technique. The performance of this method was tested on synthetic and real FLIM images. The following interesting properties of this technique were demonstrated. 1) The fluorescence intensity decay can be estimated simultaneously for all pixels, without a priori assumption of the decay functional form. 2) The computation speed is extremely fast, performing at least two orders of magnitude faster than current algorithms. 3) The estimated maps of Laguerre expansion coefficients provide a new domain for representing FLIM information. 4) The number of images required for the analysis is relatively small, allowing reduction of the acquisition time. These findings indicate that the developed Laguerre expansion technique for FLIM analysis represents a robust and extremely fast deconvolution method that enables practical applications of FLIM in medicine, biology, biochemistry, and chemistry. PMID:19444338
Robust control synthesis for uncertain dynamical systems
NASA Technical Reports Server (NTRS)
Byun, Kuk-Whan; Wie, Bong; Sunkel, John
1989-01-01
This paper presents robust control synthesis techniques for uncertain dynamical systems subject to structured parameter perturbation. Both QFT (quantitative feedback theory) and H-infinity control synthesis techniques are investigated. Although most H-infinity-related control techniques are not concerned with the structured parameter perturbation, a new way of incorporating the parameter uncertainty in the robust H-infinity control design is presented. A generic model of uncertain dynamical systems is used to illustrate the design methodologies investigated in this paper. It is shown that, for a certain noncolocated structural control problem, use of both techniques results in nonminimum phase compensation.
Closed-loop, pilot/vehicle analysis of the approach and landing task
NASA Technical Reports Server (NTRS)
Schmidt, D. K.; Anderson, M. R.
1985-01-01
Optimal-control-theoretic modeling and frequency-domain analysis is the methodology proposed to evaluate analytically the handling qualities of higher-order manually controlled dynamic systems. Fundamental to the methodology is evaluating the interplay between pilot workload and closed-loop pilot/vehicle performance and stability robustness. The model-based metric for pilot workload is the required pilot phase compensation. Pilot/vehicle performance and loop stability is then evaluated using frequency-domain techniques. When these techniques were applied to the flight-test data for thirty-two highly-augmented fighter configurations, strong correlation was obtained between the analytical and experimental results.
NASA Astrophysics Data System (ADS)
Luo, Jianjun; Wei, Caisheng; Dai, Honghua; Yuan, Jianping
2018-03-01
This paper focuses on robust adaptive control for a class of uncertain nonlinear systems subject to input saturation and external disturbance with guaranteed predefined tracking performance. To reduce the limitations of classical predefined performance control method in the presence of unknown initial tracking errors, a novel predefined performance function with time-varying design parameters is first proposed. Then, aiming at reducing the complexity of nonlinear approximations, only two least-square-support-vector-machine-based (LS-SVM-based) approximators with two design parameters are required through norm form transformation of the original system. Further, a novel LS-SVM-based adaptive constrained control scheme is developed under the time-vary predefined performance using backstepping technique. Wherein, to avoid the tedious analysis and repeated differentiations of virtual control laws in the backstepping technique, a simple and robust finite-time-convergent differentiator is devised to only extract its first-order derivative at each step in the presence of external disturbance. In this sense, the inherent demerit of backstepping technique-;explosion of terms; brought by the recursive virtual controller design is conquered. Moreover, an auxiliary system is designed to compensate the control saturation. Finally, three groups of numerical simulations are employed to validate the effectiveness of the newly developed differentiator and the proposed adaptive constrained control scheme.
Robust fast controller design via nonlinear fractional differential equations.
Zhou, Xi; Wei, Yiheng; Liang, Shu; Wang, Yong
2017-07-01
A new method for linear system controller design is proposed whereby the closed-loop system achieves both robustness and fast response. The robustness performance considered here means the damping ratio of closed-loop system can keep its desired value under system parameter perturbation, while the fast response, represented by rise time of system output, can be improved by tuning the controller parameter. We exploit techniques from both the nonlinear systems control and the fractional order systems control to derive a novel nonlinear fractional order controller. For theoretical analysis of the closed-loop system performance, two comparison theorems are developed for a class of fractional differential equations. Moreover, the rise time of the closed-loop system can be estimated, which facilitates our controller design to satisfy the fast response performance and maintain the robustness. Finally, numerical examples are given to illustrate the effectiveness of our methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Bai, Mingsian R; Tung, Chih-Wei; Lee, Chih-Chung
2005-05-01
An optimal design technique of loudspeaker arrays for cross-talk cancellation with application in three-dimensional audio is presented. An array focusing scheme is presented on the basis of the inverse propagation that relates the transducers to a set of chosen control points. Tikhonov regularization is employed in designing the inverse cancellation filters. An extensive analysis is conducted to explore the cancellation performance and robustness issues. To best compromise the performance and robustness of the cross-talk cancellation system, optimal configurations are obtained with the aid of the Taguchi method and the genetic algorithm (GA). The proposed systems are further justified by physical as well as subjective experiments. The results reveal that large number of loudspeakers, closely spaced configuration, and optimal control point design all contribute to the robustness of cross-talk cancellation systems (CCS) against head misalignment.
SU-F-T-185: Study of the Robustness of a Proton Arc Technique Based On PBS Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Z; Zheng, Y
Purpose: One potential technique to realize proton arc is through using PBS beams from many directions to form overlaid Bragg peak (OBP) spots and placing these OBP spots throughout the target volume to achieve desired dose distribution. In this study, we analyzed the robustness of this proton arc technique. Methods: We used a cylindrical water phantom of 20 cm in radius in our robustness analysis. To study the range uncertainty effect, we changed the density of the phantom by ±3%. To study the setup uncertainty effect, we shifted the phantom by 3 & 5 mm. We also combined the rangemore » and setup uncertainties (3mm/±3%). For each test plan, we performed dose calculation for the nominal and 6 disturbed scenarios. Two test plans were used, one with single OBP spot and the other consisting of 121 OBP spots covering a 10×10cm{sup 2} area. We compared the dose profiles between the nominal and disturbed scenarios to estimate the impact of the uncertainties. Dose calculation was performed with Gate/GEANT based Monte Carlo software in cloud computing environment. Results: For each of the 7 scenarios, we simulated 100k & 10M events for plans consisting of single OBP spot and 121 OBP spots respectively. For single OBP spot, the setup uncertainty had minimum impact on the spot’s dose profile while range uncertainty had significant impact on the dose profile. For plan consisting of 121 OBP spots, similar effect was observed but the extent of disturbance was much less compared to single OBP spot. Conclusion: For PBS arc technique, range uncertainty has significantly more impact than setup uncertainty. Although single OBP spot can be severely disturbed by the range uncertainty, the overall effect is much less when a large number of OBP spots are used. Robustness optimization for PBS arc technique should consider range uncertainty with priority.« less
Hierarchical Modeling and Robust Synthesis for the Preliminary Design of Large Scale Complex Systems
NASA Technical Reports Server (NTRS)
Koch, Patrick N.
1997-01-01
Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis; Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration; and Noise modeling techniques for implementing robust preliminary design when approximate models are employed. Hierarchical partitioning and modeling techniques including intermediate responses, linking variables, and compatibility constraints are incorporated within a hierarchical compromise decision support problem formulation for synthesizing subproblem solutions for a partitioned system. Experimentation and approximation techniques are employed for concurrent investigations and modeling of partitioned subproblems. A modified composite experiment is introduced for fitting better predictive models across the ranges of the factors, and an approach for constructing partitioned response surfaces is developed to reduce the computational expense of experimentation for fitting models in a large number of factors. Noise modeling techniques are compared and recommendations are offered for the implementation of robust design when approximate models are sought. These techniques, approaches, and recommendations are incorporated within the method developed for hierarchical robust preliminary design exploration. This method as well as the associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system. The case study is developed in collaboration with Allison Engine Company, Rolls Royce Aerospace, and is based on the Allison AE3007 existing engine designed for midsize commercial, regional business jets. For this case study, the turbofan system-level problem is partitioned into engine cycle design and configuration design and a compressor modules integrated for more detailed subsystem-level design exploration, improving system evaluation. The fan and low pressure turbine subsystems are also modeled, but in less detail. Given the defined partitioning, these subproblems are investigated independently and concurrently, and response surface models are constructed to approximate the responses of each. These response models are then incorporated within a commercial turbofan hierarchical compromise decision support problem formulation. Five design scenarios are investigated, and robust solutions are identified. The method and solutions identified are verified by comparison with the AE3007 engine. The solutions obtained are similar to the AE3007 cycle and configuration, but are better with respect to many of the requirements.
Zailer, Elina; Holzgrabe, Ulrike; Diehl, Bernd W K
2017-11-01
A proton (1H) NMR spectroscopic method was established for the quality assessment of vegetable oils. To date, several research studies have been published demonstrating the high potential of the NMR technique in lipid analysis. An interlaboratory comparison was organized with the following main objectives: (1) to evaluate an alternative analysis of edible oils by using 1H NMR spectroscopy; and (2) to determine the robustness and reproducibility of the method. Five different edible oil samples were analyzed by evaluating 15 signals (free fatty acids, peroxides, aldehydes, double bonds, and linoleic and linolenic acids) in each spectrum. A total of 21 NMR data sets were obtained from 17 international participant laboratories. The performance of each laboratory was assessed by their z-scores. The test was successfully passed by 90.5% of the participants. Results showed that NMR spectroscopy is a robust alternative method for edible oil analysis.
Real-Time Stability Margin Measurements for X-38 Robustness Analysis
NASA Technical Reports Server (NTRS)
Bosworth, John T.; Stachowiak, Susan J.
2005-01-01
A method has been developed for real-time stability margin measurement calculations. The method relies on a tailored-forced excitation targeted to a specific frequency range. Computation of the frequency response is matched to the specific frequencies contained in the excitation. A recursive Fourier transformation is used to make the method compatible with real-time calculation. The method was incorporated into the X-38 nonlinear simulation and applied to an X-38 robustness test. X-38 stability margins were calculated for different variations in aerodynamic and mass properties over the vehicle flight trajectory. The new method showed results comparable to more traditional stability analysis techniques, and at the same time, this new method provided coverage that is more complete and increased efficiency.
ERIC Educational Resources Information Center
Lacazette, Eric
2017-01-01
Chromatin immunoprecipitation followed by qPCR analysis (ChIP-qPCR) is a widely used technique to study gene expression. A large number of students in molecular biology and more generally in life sciences will be confronted with the use of this technique, which is quite difficult to set up and can lead to misinterpretation if not carefully…
Minimal spanning trees at the percolation threshold: A numerical calculation
NASA Astrophysics Data System (ADS)
Sweeney, Sean M.; Middleton, A. Alan
2013-09-01
The fractal dimension of minimal spanning trees on percolation clusters is estimated for dimensions d up to d=5. A robust analysis technique is developed for correlated data, as seen in such trees. This should be a robust method suitable for analyzing a wide array of randomly generated fractal structures. The trees analyzed using these techniques are built using a combination of Prim's and Kruskal's algorithms for finding minimal spanning trees. This combination reduces memory usage and allows for simulation of larger systems than would otherwise be possible. The path length fractal dimension ds of MSTs on critical percolation clusters is found to be compatible with the predictions of the perturbation expansion developed by T. S. Jackson and N. Read [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.81.021131 81, 021131 (2010)].
NASA Astrophysics Data System (ADS)
Wang, Hao; Wang, Qunwei; He, Ming
2018-05-01
In order to investigate and improve the level of detection technology of water content in liquid chemical reagents of domestic laboratories, proficiency testing provider PT0031 (CNAS) has organized proficiency testing program of water content in toluene, 48 laboratories from 18 provinces/cities/municipals took part in the PT. This paper introduces the implementation process of proficiency testing for determination of water content in toluene, including sample preparation, homogeneity and stability test, the results of statistics of iteration robust statistic technique and analysis, summarized and analyzed those of the different test standards which are widely used in the laboratories, put forward the technological suggestions for the improvement of the test quality of water content. Satisfactory results were obtained by 43 laboratories, amounting to 89.6% of the total participating laboratories.
Breath analysis using external cavity diode lasers: a review
NASA Astrophysics Data System (ADS)
Bayrakli, Ismail
2017-04-01
Most techniques that are used for diagnosis and therapy of diseases are invasive. Reliable noninvasive methods are always needed for the comfort of patients. Owing to its noninvasiveness, ease of use, and easy repeatability, exhaled breath analysis is a very good candidate for this purpose. Breath analysis can be performed using different techniques, such as gas chromatography mass spectrometry (MS), proton transfer reaction-MS, and selected ion flow tube-MS. However, these devices are bulky and require complicated procedures for sample collection and preconcentration. Therefore, these are not practical for routine applications in hospitals. Laser-based techniques with small size, robustness, low cost, low response time, accuracy, precision, high sensitivity, selectivity, low detection limit, real-time, and point-of-care detection have a great potential for routine use in hospitals. In this review paper, the recent advances in the fields of external cavity lasers and breath analysis for detection of diseases are presented.
NASA Astrophysics Data System (ADS)
Abd-el-Malek, Mina; Abdelsalam, Ahmed K.; Hassan, Ola E.
2017-09-01
Robustness, low running cost and reduced maintenance lead Induction Motors (IMs) to pioneerly penetrate the industrial drive system fields. Broken rotor bars (BRBs) can be considered as an important fault that needs to be early assessed to minimize the maintenance cost and labor time. The majority of recent BRBs' fault diagnostic techniques focus on differentiating between healthy and faulty rotor cage. In this paper, a new technique is proposed for detecting the location of the broken bar in the rotor. The proposed technique relies on monitoring certain statistical parameters estimated from the analysis of the start-up stator current envelope. The envelope of the signal is obtained using Hilbert Transformation (HT). The proposed technique offers non-invasive, fast computational and accurate location diagnostic process. Various simulation scenarios are presented that validate the effectiveness of the proposed technique.
NASA Astrophysics Data System (ADS)
Chou, Shuo-Ju
2011-12-01
In recent years the United States has shifted from a threat-based acquisition policy that developed systems for countering specific threats to a capabilities-based strategy that emphasizes the acquisition of systems that provide critical national defense capabilities. This shift in policy, in theory, allows for the creation of an "optimal force" that is robust against current and future threats regardless of the tactics and scenario involved. In broad terms, robustness can be defined as the insensitivity of an outcome to "noise" or non-controlled variables. Within this context, the outcome is the successful achievement of defense strategies and the noise variables are tactics and scenarios that will be associated with current and future enemies. Unfortunately, a lack of system capability, budget, and schedule robustness against technology performance and development uncertainties has led to major setbacks in recent acquisition programs. This lack of robustness stems from the fact that immature technologies have uncertainties in their expected performance, development cost, and schedule that cause to variations in system effectiveness and program development budget and schedule requirements. Unfortunately, the Technology Readiness Assessment process currently used by acquisition program managers and decision-makers to measure technology uncertainty during critical program decision junctions does not adequately capture the impact of technology performance and development uncertainty on program capability and development metrics. The Technology Readiness Level metric employed by the TRA to describe program technology elements uncertainties can only provide a qualitative and non-descript estimation of the technology uncertainties. In order to assess program robustness, specifically requirements robustness, against technology performance and development uncertainties, a new process is needed. This process should provide acquisition program managers and decision-makers with the ability to assess or measure the robustness of program requirements against such uncertainties. A literature review of techniques for forecasting technology performance and development uncertainties and subsequent impacts on capability, budget, and schedule requirements resulted in the conclusion that an analysis process that coupled a probabilistic analysis technique such as Monte Carlo Simulations with quantitative and parametric models of technology performance impact and technology development time and cost requirements would allow the probabilities of meeting specific constraints of these requirements to be established. These probabilities of requirements success metrics can then be used as a quantitative and probabilistic measure of program requirements robustness against technology uncertainties. Combined with a Multi-Objective Genetic Algorithm optimization process and computer-based Decision Support System, critical information regarding requirements robustness against technology uncertainties can be captured and quantified for acquisition decision-makers. This results in a more informed and justifiable selection of program technologies during initial program definition as well as formulation of program development and risk management strategies. To meet the stated research objective, the ENhanced TEchnology Robustness Prediction and RISk Evaluation (ENTERPRISE) methodology was formulated to provide a structured and transparent process for integrating these enabling techniques to provide a probabilistic and quantitative assessment of acquisition program requirements robustness against technology performance and development uncertainties. In order to demonstrate the capabilities of the ENTERPRISE method and test the research Hypotheses, an demonstration application of this method was performed on a notional program for acquiring the Carrier-based Suppression of Enemy Air Defenses (SEAD) using Unmanned Combat Aircraft Systems (UCAS) and their enabling technologies. The results of this implementation provided valuable insights regarding the benefits and inner workings of this methodology as well as its limitations that should be addressed in the future to narrow the gap between current state and the desired state.
Parametric Robust Control and System Identification: Unified Approach
NASA Technical Reports Server (NTRS)
Keel, L. H.
1996-01-01
During the period of this support, a new control system design and analysis method has been studied. This approach deals with control systems containing uncertainties that are represented in terms of its transfer function parameters. Such a representation of the control system is common and many physical parameter variations fall into this type of uncertainty. Techniques developed here are capable of providing nonconservative analysis of such control systems with parameter variations. We have also developed techniques to deal with control systems when their state space representations are given rather than transfer functions. In this case, the plant parameters will appear as entries of state space matrices. Finally, a system modeling technique to construct such systems from the raw input - output frequency domain data has been developed.
Variation in reaction norms: Statistical considerations and biological interpretation.
Morrissey, Michael B; Liefting, Maartje
2016-09-01
Analysis of reaction norms, the functions by which the phenotype produced by a given genotype depends on the environment, is critical to studying many aspects of phenotypic evolution. Different techniques are available for quantifying different aspects of reaction norm variation. We examine what biological inferences can be drawn from some of the more readily applicable analyses for studying reaction norms. We adopt a strongly biologically motivated view, but draw on statistical theory to highlight strengths and drawbacks of different techniques. In particular, consideration of some formal statistical theory leads to revision of some recently, and forcefully, advocated opinions on reaction norm analysis. We clarify what simple analysis of the slope between mean phenotype in two environments can tell us about reaction norms, explore the conditions under which polynomial regression can provide robust inferences about reaction norm shape, and explore how different existing approaches may be used to draw inferences about variation in reaction norm shape. We show how mixed model-based approaches can provide more robust inferences than more commonly used multistep statistical approaches, and derive new metrics of the relative importance of variation in reaction norm intercepts, slopes, and curvatures. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Robust crossfeed design for hovering rotorcraft. M.S. Thesis
NASA Technical Reports Server (NTRS)
Catapang, David R.
1993-01-01
Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust.' A new low-order matching method is presented here to design robost crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw, and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily-used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.
Chung, Eun-Sung; Kim, Yeonjoo
2014-12-15
This study proposed a robust prioritization framework to identify the priorities of treated wastewater (TWW) use locations with consideration of various uncertainties inherent in the climate change scenarios and the decision-making process. First, a fuzzy concept was applied because future forecast precipitation and their hydrological impact analysis results displayed significant variances when considering various climate change scenarios and long periods (e.g., 2010-2099). Second, various multi-criteria decision making (MCDM) techniques including weighted sum method (WSM), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and fuzzy TOPSIS were introduced to robust prioritization because different MCDM methods use different decision philosophies. Third, decision making method under complete uncertainty (DMCU) including maximin, maximax, minimax regret, Hurwicz, and equal likelihood were used to find robust final rankings. This framework is then applied to a Korean urban watershed. As a result, different rankings were obviously appeared between fuzzy TOPSIS and non-fuzzy MCDMs (e.g., WSM and TOPSIS) because the inter-annual variability in effectiveness was considered only with fuzzy TOPSIS. Then, robust prioritizations were derived based on 18 rankings from nine decadal periods of RCP4.5 and RCP8.5. For more robust rankings, five DMCU approaches using the rankings from fuzzy TOPSIS were derived. This framework combining fuzzy TOPSIS with DMCU approaches can be rendered less controversial among stakeholders under complete uncertainty of changing environments. Copyright © 2014 Elsevier Ltd. All rights reserved.
An H(∞) control approach to robust learning of feedforward neural networks.
Jing, Xingjian
2011-09-01
A novel H(∞) robust control approach is proposed in this study to deal with the learning problems of feedforward neural networks (FNNs). The analysis and design of a desired weight update law for the FNN is transformed into a robust controller design problem for a discrete dynamic system in terms of the estimation error. The drawbacks of some existing learning algorithms can therefore be revealed, especially for the case that the output data is fast changing with respect to the input or the output data is corrupted by noise. Based on this approach, the optimal learning parameters can be found by utilizing the linear matrix inequality (LMI) optimization techniques to achieve a predefined H(∞) "noise" attenuation level. Several existing BP-type algorithms are shown to be special cases of the new H(∞)-learning algorithm. Theoretical analysis and several examples are provided to show the advantages of the new method. Copyright © 2011 Elsevier Ltd. All rights reserved.
TU-AB-BRB-01: Coverage Evaluation and Probabilistic Treatment Planning as a Margin Alternative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siebers, J.
The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, H.
The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less
TU-AB-BRB-02: Stochastic Programming Methods for Handling Uncertainty and Motion in IMRT Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unkelbach, J.
The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less
TU-AB-BRB-00: New Methods to Ensure Target Coverage
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-06-15
The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less
Yang, Jun-Ho; Yoh, Jack J
2018-01-01
A novel technique is reported for separating overlapping latent fingerprints using chemometric approaches that combine laser-induced breakdown spectroscopy (LIBS) and multivariate analysis. The LIBS technique provides the capability of real time analysis and high frequency scanning as well as the data regarding the chemical composition of overlapping latent fingerprints. These spectra offer valuable information for the classification and reconstruction of overlapping latent fingerprints by implementing appropriate statistical multivariate analysis. The current study employs principal component analysis and partial least square methods for the classification of latent fingerprints from the LIBS spectra. This technique was successfully demonstrated through a classification study of four distinct latent fingerprints using classification methods such as soft independent modeling of class analogy (SIMCA) and partial least squares discriminant analysis (PLS-DA). The novel method yielded an accuracy of more than 85% and was proven to be sufficiently robust. Furthermore, through laser scanning analysis at a spatial interval of 125 µm, the overlapping fingerprints were reconstructed as separate two-dimensional forms.
On the Optimization of Aerospace Plane Ascent Trajectory
NASA Astrophysics Data System (ADS)
Al-Garni, Ahmed; Kassem, Ayman Hamdy
A hybrid heuristic optimization technique based on genetic algorithms and particle swarm optimization has been developed and tested for trajectory optimization problems with multi-constraints and a multi-objective cost function. The technique is used to calculate control settings for two types for ascending trajectories (constant dynamic pressure and minimum-fuel-minimum-heat) for a two-dimensional model of an aerospace plane. A thorough statistical analysis is done on the hybrid technique to make comparisons with both basic genetic algorithms and particle swarm optimization techniques with respect to convergence and execution time. Genetic algorithm optimization showed better execution time performance while particle swarm optimization showed better convergence performance. The hybrid optimization technique, benefiting from both techniques, showed superior robust performance compromising convergence trends and execution time.
Aeroservoelastic Uncertainty Model Identification from Flight Data
NASA Technical Reports Server (NTRS)
Brenner, Martin J.
2001-01-01
Uncertainty modeling is a critical element in the estimation of robust stability margins for stability boundary prediction and robust flight control system development. There has been a serious deficiency to date in aeroservoelastic data analysis with attention to uncertainty modeling. Uncertainty can be estimated from flight data using both parametric and nonparametric identification techniques. The model validation problem addressed in this paper is to identify aeroservoelastic models with associated uncertainty structures from a limited amount of controlled excitation inputs over an extensive flight envelope. The challenge to this problem is to update analytical models from flight data estimates while also deriving non-conservative uncertainty descriptions consistent with the flight data. Multisine control surface command inputs and control system feedbacks are used as signals in a wavelet-based modal parameter estimation procedure for model updates. Transfer function estimates are incorporated in a robust minimax estimation scheme to get input-output parameters and error bounds consistent with the data and model structure. Uncertainty estimates derived from the data in this manner provide an appropriate and relevant representation for model development and robust stability analysis. This model-plus-uncertainty identification procedure is applied to aeroservoelastic flight data from the NASA Dryden Flight Research Center F-18 Systems Research Aircraft.
A Robust Zero-Watermarking Algorithm for Audio
NASA Astrophysics Data System (ADS)
Chen, Ning; Zhu, Jie
2007-12-01
In traditional watermarking algorithms, the insertion of watermark into the host signal inevitably introduces some perceptible quality degradation. Another problem is the inherent conflict between imperceptibility and robustness. Zero-watermarking technique can solve these problems successfully. Instead of embedding watermark, the zero-watermarking technique extracts some essential characteristics from the host signal and uses them for watermark detection. However, most of the available zero-watermarking schemes are designed for still image and their robustness is not satisfactory. In this paper, an efficient and robust zero-watermarking technique for audio signal is presented. The multiresolution characteristic of discrete wavelet transform (DWT), the energy compression characteristic of discrete cosine transform (DCT), and the Gaussian noise suppression property of higher-order cumulant are combined to extract essential features from the host audio signal and they are then used for watermark recovery. Simulation results demonstrate the effectiveness of our scheme in terms of inaudibility, detection reliability, and robustness.
TH-EF-207A-04: A Dynamic Contrast Enhanced Cone Beam CT Technique for Evaluation of Renal Functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Z; Shi, J; Yang, Y
Purpose: To develop a simple but robust method for the early detection and evaluation of renal functions using dynamic contrast enhanced cone beam CT technique. Methods: Experiments were performed on an integrated imaging and radiation research platform developed by our lab. Animals (n=3) were anesthetized with 20uL Ketamine/Xylazine cocktail, and then received 200uL injection of iodinated contrast agent Iopamidol via tail vein. Cone beam CT was acquired following contrast injection once per minute and up to 25 minutes. The cone beam CT was reconstructed with a dimension of 300×300×800 voxels of 130×130×130um voxel resolution. The middle kidney slices in themore » transvers and coronal planes were selected for image analysis. A double exponential function was used to fit the contrast enhanced signal intensity versus the time after contrast injection. Both pixel-based and region of interest (ROI)-based curve fitting were performed. Four parameters obtained from the curve fitting, namely the amplitude and flow constant for both contrast wash in and wash out phases, were investigated for further analysis. Results: Robust curve fitting was demonstrated for both pixel based (with R{sup 2}>0.8 for >85% pixels within the kidney contour) and ROI based (R{sup 2}>0.9 for all regions) analysis. Three different functional regions: renal pelvis, medulla and cortex, were clearly differentiated in the functional parameter map in the pixel based analysis. ROI based analysis showed the half-life T1/2 for contrast wash in and wash out phases were 0.98±0.15 and 17.04±7.16, 0.63±0.07 and 17.88±4.51, and 1.48±0.40 and 10.79±3.88 minutes for the renal pelvis, medulla and cortex, respectively. Conclusion: A robust method based on dynamic contrast enhanced cone beam CT and double exponential curve fitting has been developed to analyze the renal functions for different functional regions. Future study will be performed to investigate the sensitivity of this technique in the detection of radiation induced kidney dysfunction.« less
INS integrated motion analysis for autonomous vehicle navigation
NASA Technical Reports Server (NTRS)
Roberts, Barry; Bazakos, Mike
1991-01-01
The use of inertial navigation system (INS) measurements to enhance the quality and robustness of motion analysis techniques used for obstacle detection is discussed with particular reference to autonomous vehicle navigation. The approach to obstacle detection used here employs motion analysis of imagery generated by a passive sensor. Motion analysis of imagery obtained during vehicle travel is used to generate range measurements to points within the field of view of the sensor, which can then be used to provide obstacle detection. Results obtained with an INS integrated motion analysis approach are reviewed.
Missing Value Monitoring Enhances the Robustness in Proteomics Quantitation.
Matafora, Vittoria; Corno, Andrea; Ciliberto, Andrea; Bachi, Angela
2017-04-07
In global proteomic analysis, it is estimated that proteins span from millions to less than 100 copies per cell. The challenge of protein quantitation by classic shotgun proteomic techniques relies on the presence of missing values in peptides belonging to low-abundance proteins that lowers intraruns reproducibility affecting postdata statistical analysis. Here, we present a new analytical workflow MvM (missing value monitoring) able to recover quantitation of missing values generated by shotgun analysis. In particular, we used confident data-dependent acquisition (DDA) quantitation only for proteins measured in all the runs, while we filled the missing values with data-independent acquisition analysis using the library previously generated in DDA. We analyzed cell cycle regulated proteins, as they are low abundance proteins with highly dynamic expression levels. Indeed, we found that cell cycle related proteins are the major components of the missing values-rich proteome. Using the MvM workflow, we doubled the number of robustly quantified cell cycle related proteins, and we reduced the number of missing values achieving robust quantitation for proteins over ∼50 molecules per cell. MvM allows lower quantification variance among replicates for low abundance proteins with respect to DDA analysis, which demonstrates the potential of this novel workflow to measure low abundance, dynamically regulated proteins.
Keshtkaran, Mohammad Reza; Yang, Zhi
2017-06-01
Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.
NASA Astrophysics Data System (ADS)
Keshtkaran, Mohammad Reza; Yang, Zhi
2017-06-01
Objective. Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. Approach. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Main results. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. Significance. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.
A systematic mapping study of process mining
NASA Astrophysics Data System (ADS)
Maita, Ana Rocío Cárdenas; Martins, Lucas Corrêa; López Paz, Carlos Ramón; Rafferty, Laura; Hung, Patrick C. K.; Peres, Sarajane Marques; Fantinato, Marcelo
2018-05-01
This study systematically assesses the process mining scenario from 2005 to 2014. The analysis of 705 papers evidenced 'discovery' (71%) as the main type of process mining addressed and 'categorical prediction' (25%) as the main mining task solved. The most applied traditional technique is the 'graph structure-based' ones (38%). Specifically concerning computational intelligence and machine learning techniques, we concluded that little relevance has been given to them. The most applied are 'evolutionary computation' (9%) and 'decision tree' (6%), respectively. Process mining challenges, such as balancing among robustness, simplicity, accuracy and generalization, could benefit from a larger use of such techniques.
GMR-based PhC biosensor: FOM analysis and experimental studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syamprasad, Jagadeesh; Narayanan, Roshni; Joseph, Joby
2014-02-20
Guided Mode Resonance based Photonic crystal biosensor has a lot of potential applications. In our work, we are trying to improve their figure of merit values in order to achieve an optimum level through design and fabrication techniques. A robust and low-cost alternative for current biosensors is also explored through this research.
Managing Student Loan Default Risk: Evidence from a Privately Guaranteed Portfolio.
ERIC Educational Resources Information Center
Monteverde, Kirk
2000-01-01
Application of the statistical techniques of survival analysis and credit scoring to private education loans extended to law students found a pronounced seasoning effect for such loans and the robust predictive power of credit bureau scoring of borrowers. Other predictors of default included school-of-attendance, school's geographic location, and…
Estrada, José M; Kraakman, N J R Bart; Lebrero, Raquel; Muñoz, Raúl
2012-01-01
The sensitivity of the economics of the five most commonly applied odour abatement technologies (biofiltration, biotrickling filtration, activated carbon adsorption, chemical scrubbing and a hybrid technology consisting of a biotrickling filter coupled with carbon adsorption) towards design parameters and commodity prices was evaluated. Besides, the influence of the geographical location on the Net Present Value calculated for a 20 years lifespan (NPV20) of each technology and its robustness towards typical process fluctuations and operational upsets were also assessed. This comparative analysis showed that biological techniques present lower operating costs (up to 6 times) and lower sensitivity than their physical/chemical counterparts, with the packing material being the key parameter affecting their operating costs (40-50% of the total operating costs). The use of recycled or partially treated water (e.g. secondary effluent in wastewater treatment plants) offers an opportunity to significantly reduce costs in biological techniques. Physical/chemical technologies present a high sensitivity towards H2S concentration, which is an important drawback due to the fluctuating nature of malodorous emissions. The geographical analysis evidenced high NPV20 variations around the world for all the technologies evaluated, but despite the differences in wage and price levels, biofiltration and biotrickling filtration are always the most cost-efficient alternatives (NPV20). When, in an economical evaluation, the robustness is as relevant as the overall costs (NPV20), the hybrid technology would move up next to BTF as the most preferred technologies. Copyright © 2012 Elsevier Inc. All rights reserved.
Novel selective TOCSY method enables NMR spectral elucidation of metabolomic mixtures
NASA Astrophysics Data System (ADS)
MacKinnon, Neil; While, Peter T.; Korvink, Jan G.
2016-11-01
Complex mixture analysis is routinely encountered in NMR-based investigations. With the aim of component identification, spectral complexity may be addressed chromatographically or spectroscopically, the latter being favored to reduce sample handling requirements. An attractive experiment is selective total correlation spectroscopy (sel-TOCSY), which is capable of providing tremendous spectral simplification and thereby enhancing assignment capability. Unfortunately, isolating a well resolved resonance is increasingly difficult as the complexity of the mixture increases and the assumption of single spin system excitation is no longer robust. We present TOCSY optimized mixture elucidation (TOOMIXED), a technique capable of performing spectral assignment particularly in the case where the assumption of single spin system excitation is relaxed. Key to the technique is the collection of a series of 1D sel-TOCSY experiments as a function of the isotropic mixing time (τm), resulting in a series of resonance intensities indicative of the underlying molecular structure. By comparing these τm -dependent intensity patterns with a library of pre-determined component spectra, one is able to regain assignment capability. After consideration of the technique's robustness, we tested TOOMIXED firstly on a model mixture. As a benchmark we were able to assign a molecule with high confidence in the case of selectively exciting an isolated resonance. Assignment confidence was not compromised when performing TOOMIXED on a resonance known to contain multiple overlapping signals, and in the worst case the method suggested a follow-up sel-TOCSY experiment to confirm an ambiguous assignment. TOOMIXED was then demonstrated on two realistic samples (whisky and urine), where under our conditions an approximate limit of detection of 0.6 mM was determined. Taking into account literature reports for the sel-TOCSY limit of detection, the technique should reach on the order of 10 μ M sensitivity. We anticipate this technique will be highly attractive to various analytical fields facing mixture analysis, including metabolomics, foodstuff analysis, pharmaceutical analysis, and forensics.
NASA Astrophysics Data System (ADS)
Chang, Insu
The objective of the thesis is to introduce a relatively general nonlinear controller/estimator synthesis framework using a special type of the state-dependent Riccati equation technique. The continuous time state-dependent Riccati equation (SDRE) technique is extended to discrete-time under input and state constraints, yielding constrained (C) discrete-time (D) SDRE, referred to as CD-SDRE. For the latter, stability analysis and calculation of a region of attraction are carried out. The derivation of the D-SDRE under state-dependent weights is provided. Stability of the D-SDRE feedback system is established using Lyapunov stability approach. Receding horizon strategy is used to take into account the constraints on D-SDRE controller. Stability condition of the CD-SDRE controller is analyzed by using a switched system. The use of CD-SDRE scheme in the presence of constraints is then systematically demonstrated by applying this scheme to problems of spacecraft formation orbit reconfiguration under limited performance on thrusters. Simulation results demonstrate the efficacy and reliability of the proposed CD-SDRE. The CD-SDRE technique is further investigated in a case where there are uncertainties in nonlinear systems to be controlled. First, the system stability under each of the controllers in the robust CD-SDRE technique is separately established. The stability of the closed-loop system under the robust CD-SDRE controller is then proven based on the stability of each control system comprising switching configuration. A high fidelity dynamical model of spacecraft attitude motion in 3-dimensional space is derived with a partially filled fuel tank, assumed to have the first fuel slosh mode. The proposed robust CD-SDRE controller is then applied to the spacecraft attitude control system to stabilize its motion in the presence of uncertainties characterized by the first fuel slosh mode. The performance of the robust CD-SDRE technique is discussed. Subsequently, filtering techniques are investigated by using the D-SDRE technique. Detailed derivation of the D-SDRE-based filter (D-SDREF) is provided under the assumption of Gaussian noises and the stability condition of the error signal between the measured signal and the estimated signals is proven to be input-to-state stable. For the non-Gaussian distributed noises, we propose a filter by combining the D-SDREF and the particle filter (PF), named the combined D-SDRE/PF. Two algorithms for the filtering techniques are provided. Several filtering techniques are compared with challenging numerical examples to show the reliability and efficacy of the proposed D-SDREF and the combined D-SDRE/PF.
Yoo, Sung Jin; Park, Jin Bae; Choi, Yoon Ho
2006-12-01
A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides the ability to overcome the "explosion of complexity" problem in backstepping controllers. The SRWNNs are used to observe the arbitrary model uncertainties of FJ robots, and all their weights are trained online. From the Lyapunov stability analysis, their adaptation laws are induced, and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a three-link FJ robot are utilized to validate the good position tracking performance and robustness against payload uncertainties and external disturbances of the proposed control system.
Robust dynamic inversion controller design and analysis (using the X-38 vehicle as a case study)
NASA Astrophysics Data System (ADS)
Ito, Daigoro
A new way to approach robust Dynamic Inversion controller synthesis is addressed in this paper. A Linear Quadratic Gaussian outer-loop controller improves the robustness of a Dynamic Inversion inner-loop controller in the presence of uncertainties. Desired dynamics are given by the dynamic compensator, which shapes the loop. The selected dynamics are based on both performance and stability robustness requirements. These requirements are straightforwardly formulated as frequency-dependent singular value bounds during synthesis of the controller. Performance and robustness of the designed controller is tested using a worst case time domain quadratic index, which is a simple but effective way to measure robustness due to parameter variation. Using this approach, a lateral-directional controller for the X-38 vehicle is designed and its robustness to parameter variations and disturbances is analyzed. It is found that if full state measurements are available, the performance of the designed lateral-directional control system, measured by the chosen cost function, improves by approximately a factor of four. Also, it is found that the designed system is stable up to a parametric variation of 1.65 standard deviation with the set of uncertainty considered. The system robustness is determined to be highly sensitive to the dihedral derivative and the roll damping coefficients. The controller analysis is extended to the nonlinear system where both control input displacements and rates are bounded. In this case, the considered nonlinear system is stable up to 48.1° in bank angle and 1.59° in sideslip angle variations, indicating it is more sensitive to variations in sideslip angle than in bank angle. This nonlinear approach is further extended for the actuator failure mode analysis. The results suggest that the designed system maintains a high level of stability in the event of aileron failure. However, only 35% or less of the original stability range is maintained for the rudder failure case. Overall, this combination of controller synthesis and robustness criteria compares well with the mu-synthesis technique. It also is readily accessible to the practicing engineer, in terms of understanding and use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, X; Wu, H; Rosen, L
2015-06-15
Purpose: To develop a clinical feasible and robust proton therapy technique to spare bowel, bladder and rectum for high-risk prostate cancer patients Methods: The study includes 3 high-risk prostate cancer cases treated with bilateral opposed SFUD with lateral penumbra gradient matching technique prescribed to 5400cGyE in 30 fx in our institution. To treat whole pelvic lymph node chain, the complicated ‘H’ shape, using SFUD technique, we divided the target into two sub-targets (LLAT beam treating ‘90 degree T-shape’ and RLAT beam treating ‘: shape’) in Plan A and use lateral penumbra gradient matching at patient’s left side. Vice verse inmore » Plan B. Each plan deliver half of the prescription dose. Beam-specific PTVs were created to take range uncertainty and setup error into account. For daily treatment, patient received four fields from both plan A and B per day. Robustness evaluation were performed in the worst case scenario with 3.5% range uncertainty and 1, 2, 3mm overlap or gap between LLAT and RLAT field matching in Raystation 4.0. All of cases also have a Tomotherapy backup plan approved by physician as a dosimetric comparison. Results: The total treatment time take 15–20mins including IGRT and four fields delivery on ProteusONE, a compact size PBS proton system, compared to 25–30min in traditional Tomotherapy. Robustness analysis shows that this plan technique is insensitive to the range uncertainties. With the lateral gradient matching, 1, 2, 3mm overlap renders only 2.5%, 5.5% and 8% hot or cool spot in the junction areas. Dosimetric comparisons with Tomotherapy show a significant dose reduction in bladder D50%(14.7±9.3Gy), D35%(7.3±5.8Gy); small bowel and rectum average dose(19.6±7.5Gy and 14.5±6.3Gy respectively). Conclusion: The bilateral opposed(SFUD) plan with lateral penumbra gradient matching has been approved to be a safe, robust and efficient treatment option for whole pelvis high-risk prostate cancer patient which significantly spares the OARs.« less
Linear discriminant analysis based on L1-norm maximization.
Zhong, Fujin; Zhang, Jiashu
2013-08-01
Linear discriminant analysis (LDA) is a well-known dimensionality reduction technique, which is widely used for many purposes. However, conventional LDA is sensitive to outliers because its objective function is based on the distance criterion using L2-norm. This paper proposes a simple but effective robust LDA version based on L1-norm maximization, which learns a set of local optimal projection vectors by maximizing the ratio of the L1-norm-based between-class dispersion and the L1-norm-based within-class dispersion. The proposed method is theoretically proved to be feasible and robust to outliers while overcoming the singular problem of the within-class scatter matrix for conventional LDA. Experiments on artificial datasets, standard classification datasets and three popular image databases demonstrate the efficacy of the proposed method.
Barish, Syndi; Ochs, Michael F.; Sontag, Eduardo D.; Gevertz, Jana L.
2017-01-01
Cancer is a highly heterogeneous disease, exhibiting spatial and temporal variations that pose challenges for designing robust therapies. Here, we propose the VEPART (Virtual Expansion of Populations for Analyzing Robustness of Therapies) technique as a platform that integrates experimental data, mathematical modeling, and statistical analyses for identifying robust optimal treatment protocols. VEPART begins with time course experimental data for a sample population, and a mathematical model fit to aggregate data from that sample population. Using nonparametric statistics, the sample population is amplified and used to create a large number of virtual populations. At the final step of VEPART, robustness is assessed by identifying and analyzing the optimal therapy (perhaps restricted to a set of clinically realizable protocols) across each virtual population. As proof of concept, we have applied the VEPART method to study the robustness of treatment response in a mouse model of melanoma subject to treatment with immunostimulatory oncolytic viruses and dendritic cell vaccines. Our analysis (i) showed that every scheduling variant of the experimentally used treatment protocol is fragile (nonrobust) and (ii) discovered an alternative region of dosing space (lower oncolytic virus dose, higher dendritic cell dose) for which a robust optimal protocol exists. PMID:28716945
Campbell, Kieran R.
2016-01-01
Single cell gene expression profiling can be used to quantify transcriptional dynamics in temporal processes, such as cell differentiation, using computational methods to label each cell with a ‘pseudotime’ where true time series experimentation is too difficult to perform. However, owing to the high variability in gene expression between individual cells, there is an inherent uncertainty in the precise temporal ordering of the cells. Pre-existing methods for pseudotime estimation have predominantly given point estimates precluding a rigorous analysis of the implications of uncertainty. We use probabilistic modelling techniques to quantify pseudotime uncertainty and propagate this into downstream differential expression analysis. We demonstrate that reliance on a point estimate of pseudotime can lead to inflated false discovery rates and that probabilistic approaches provide greater robustness and measures of the temporal resolution that can be obtained from pseudotime inference. PMID:27870852
Inoue, Kentaro; Maeda, Kazuhiro; Miyabe, Takaaki; Matsuoka, Yu; Kurata, Hiroyuki
2014-09-01
Mathematical modeling has become a standard technique to understand the dynamics of complex biochemical systems. To promote the modeling, we had developed the CADLIVE dynamic simulator that automatically converted a biochemical map into its associated mathematical model, simulated its dynamic behaviors and analyzed its robustness. To enhance the feasibility by CADLIVE and extend its functions, we propose the CADLIVE toolbox available for MATLAB, which implements not only the existing functions of the CADLIVE dynamic simulator, but also the latest tools including global parameter search methods with robustness analysis. The seamless, bottom-up processes consisting of biochemical network construction, automatic construction of its dynamic model, simulation, optimization, and S-system analysis greatly facilitate dynamic modeling, contributing to the research of systems biology and synthetic biology. This application can be freely downloaded from http://www.cadlive.jp/CADLIVE_MATLAB/ together with an instruction.
NASA Astrophysics Data System (ADS)
Haq, Quazi M. I.; Mabood, Fazal; Naureen, Zakira; Al-Harrasi, Ahmed; Gilani, Sayed A.; Hussain, Javid; Jabeen, Farah; Khan, Ajmal; Al-Sabari, Ruqaya S. M.; Al-khanbashi, Fatema H. S.; Al-Fahdi, Amira A. M.; Al-Zaabi, Ahoud K. A.; Al-Shuraiqi, Fatma A. M.; Al-Bahaisi, Iman M.
2018-06-01
Nucleic acid & serology based methods have revolutionized plant disease detection, however, they are not very reliable at asymptomatic stage, especially in case of pathogen with systemic infection, in addition, they need at least 1-2 days for sample harvesting, processing, and analysis. In this study, two reflectance spectroscopies i.e. Near Infrared reflectance spectroscopy (NIR) and Fourier-Transform-Infrared spectroscopy with Attenuated Total Reflection (FT-IR, ATR) coupled with multivariate exploratory methods like Principle Component Analysis (PCA) and Partial least square discriminant analysis (PLS-DA) have been deployed to detect begomovirus infection in papaya leaves. The application of those techniques demonstrates that they are very useful for robust in vivo detection of plant begomovirus infection. These methods are simple, sensitive, reproducible, precise, and do not require any lengthy samples preparation procedures.
Patterson, Joseph P.; Sanchez, Ana M.; Petzetakis, Nikos; Smart, Thomas P.; Epps, Thomas H.; Portman, Ian
2013-01-01
Block copolymers are well-known to self-assemble into a range of 3-dimensional morphologies. However, due to their nanoscale dimensions, resolving their exact structure can be a challenge. Transmission electron microscopy (TEM) is a powerful technique for achieving this, but for polymeric assemblies chemical fixing/staining techniques are usually required to increase image contrast and protect specimens from electron beam damage. Graphene oxide (GO) is a robust, water-dispersable, and nearly electron transparent membrane: an ideal support for TEM. We show that when using GO supports no stains are required to acquire high contrast TEM images and that the specimens remain stable under the electron beam for long periods, allowing sample analysis by a range of electron microscopy techniques. GO supports are also used for further characterization of assemblies by atomic force microscopy. The simplicity of sample preparation and analysis, as well as the potential for significantly increased contrast background, make GO supports an attractive alternative for the analysis of block copolymer assemblies. PMID:24049544
Nonlinear truncation error analysis of finite difference schemes for the Euler equations
NASA Technical Reports Server (NTRS)
Klopfer, G. H.; Mcrae, D. S.
1983-01-01
It is pointed out that, in general, dissipative finite difference integration schemes have been found to be quite robust when applied to the Euler equations of gas dynamics. The present investigation considers a modified equation analysis of both implicit and explicit finite difference techniques as applied to the Euler equations. The analysis is used to identify those error terms which contribute most to the observed solution errors. A technique for analytically removing the dominant error terms is demonstrated, resulting in a greatly improved solution for the explicit Lax-Wendroff schemes. It is shown that the nonlinear truncation errors are quite large and distributed quite differently for each of the three conservation equations as applied to a one-dimensional shock tube problem.
Statistical analysis of RHIC beam position monitors performance
NASA Astrophysics Data System (ADS)
Calaga, R.; Tomás, R.
2004-04-01
A detailed statistical analysis of beam position monitors (BPM) performance at RHIC is a critical factor in improving regular operations and future runs. Robust identification of malfunctioning BPMs plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition and Fourier transform methods, which have evolved as powerful numerical techniques in signal processing, will aid in such identification from BPM data. This is the first attempt at RHIC to use a large set of data to statistically enhance the capability of these two techniques and determine BPM performance. A comparison from run 2003 data shows striking agreement between the two methods and hence can be used to improve BPM functioning at RHIC and possibly other accelerators.
NASA Technical Reports Server (NTRS)
White, Jeffery A.; Baurle, Robert A.; Passe, Bradley J.; Spiegel, Seth C.; Nishikawa, Hiroaki
2017-01-01
The ability to solve the equations governing the hypersonic turbulent flow of a real gas on unstructured grids using a spatially-elliptic, 2nd-order accurate, cell-centered, finite-volume method has been recently implemented in the VULCAN-CFD code. This paper describes the key numerical methods and techniques that were found to be required to robustly obtain accurate solutions to hypersonic flows on non-hex-dominant unstructured grids. The methods and techniques described include: an augmented stencil, weighted linear least squares, cell-average gradient method, a robust multidimensional cell-average gradient-limiter process that is consistent with the augmented stencil of the cell-average gradient method and a cell-face gradient method that contains a cell skewness sensitive damping term derived using hyperbolic diffusion based concepts. A data-parallel matrix-based symmetric Gauss-Seidel point-implicit scheme, used to solve the governing equations, is described and shown to be more robust and efficient than a matrix-free alternative. In addition, a y+ adaptive turbulent wall boundary condition methodology is presented. This boundary condition methodology is deigned to automatically switch between a solve-to-the-wall and a wall-matching-function boundary condition based on the local y+ of the 1st cell center off the wall. The aforementioned methods and techniques are then applied to a series of hypersonic and supersonic turbulent flat plate unit tests to examine the efficiency, robustness and convergence behavior of the implicit scheme and to determine the ability of the solve-to-the-wall and y+ adaptive turbulent wall boundary conditions to reproduce the turbulent law-of-the-wall. Finally, the thermally perfect, chemically frozen, Mach 7.8 turbulent flow of air through a scramjet flow-path is computed and compared with experimental data to demonstrate the robustness, accuracy and convergence behavior of the unstructured-grid solver for a realistic 3-D geometry on a non-hex-dominant grid.
Exploiting structure: Introduction and motivation
NASA Technical Reports Server (NTRS)
Xu, Zhong Ling
1993-01-01
Research activities performed during the period of 29 June 1993 through 31 Aug. 1993 are summarized. The Robust Stability of Systems where transfer function or characteristic polynomial are multilinear affine functions of parameters of interest in two directions, Algorithmic and Theoretical, was developed. In the algorithmic direction, a new approach that reduces the computational burden of checking the robust stability of the system with multilinear uncertainty is found. This technique is called 'Stability by linear process.' In fact, the 'Stability by linear process' described gives an algorithm. In analysis, we obtained a robustness criterion for the family of polynomials with coefficients of multilinear affine function in the coefficient space and obtained the result for the robust stability of diamond families of polynomials with complex coefficients also. We obtained the limited results for SPR design and we provide a framework for solving ACS. Finally, copies of the outline of our results are provided in the appendix. Also, there is an administration issue in the appendix.
NASA Technical Reports Server (NTRS)
Joshi, S. M.; Armstrong, E. S.; Sundararajan, N.
1986-01-01
The problem of synthesizing a robust controller is considered for a large, flexible space-based antenna by using the linear-quadratic-Gaussian (LQG)/loop transfer recovery (LTR) method. The study is based on a finite-element model of the 122-m hoop/column antenna, which consists of three rigid-body rotational modes and the first 10 elastic modes. A robust compensator design for achieving the required performance bandwidth in the presence of modeling uncertainties is obtained using the LQG/LTR method for loop-shaping in the frequency domain. Different sensor actuator locations are analyzed in terms of the pole/zero locations of the multivariable systems and possible best locations are indicated. The computations are performed by using the LQG design package ORACLS augmented with frequency domain singular value analysis software.
Robust Feature Selection Technique using Rank Aggregation.
Sarkar, Chandrima; Cooley, Sarah; Srivastava, Jaideep
2014-01-01
Although feature selection is a well-developed research area, there is an ongoing need to develop methods to make classifiers more efficient. One important challenge is the lack of a universal feature selection technique which produces similar outcomes with all types of classifiers. This is because all feature selection techniques have individual statistical biases while classifiers exploit different statistical properties of data for evaluation. In numerous situations this can put researchers into dilemma as to which feature selection method and a classifiers to choose from a vast range of choices. In this paper, we propose a technique that aggregates the consensus properties of various feature selection methods to develop a more optimal solution. The ensemble nature of our technique makes it more robust across various classifiers. In other words, it is stable towards achieving similar and ideally higher classification accuracy across a wide variety of classifiers. We quantify this concept of robustness with a measure known as the Robustness Index (RI). We perform an extensive empirical evaluation of our technique on eight data sets with different dimensions including Arrythmia, Lung Cancer, Madelon, mfeat-fourier, internet-ads, Leukemia-3c and Embryonal Tumor and a real world data set namely Acute Myeloid Leukemia (AML). We demonstrate not only that our algorithm is more robust, but also that compared to other techniques our algorithm improves the classification accuracy by approximately 3-4% (in data set with less than 500 features) and by more than 5% (in data set with more than 500 features), across a wide range of classifiers.
Pooler, B Dustin; Hernando, Diego; Ruby, Jeannine A; Ishii, Hiroshi; Shimakawa, Ann; Reeder, Scott B
2018-04-17
Current chemical-shift-encoded (CSE) MRI techniques for measuring hepatic proton density fat fraction (PDFF) are sensitive to motion artifacts. Initial validation of a motion-robust 2D-sequential CSE-MRI technique for quantification of hepatic PDFF. Phantom study and prospective in vivo cohort. Fifty adult patients (27 women, 23 men, mean age 57.2 years). 3D, 2D-interleaved, and 2D-sequential CSE-MRI acquisitions at 1.5T. Three CSE-MRI techniques (3D, 2D-interleaved, 2D-sequential) were performed in a PDFF phantom and in vivo. Reference standards were 3D CSE-MRI PDFF measurements for the phantom study and single-voxel MR spectroscopy hepatic PDFF measurements (MRS-PDFF) in vivo. In vivo hepatic MRI-PDFF measurements were performed during a single breath-hold (BH) and free breathing (FB), and were repeated by a second reader for the FB 2D-sequential sequence to assess interreader variability. Correlation plots to validate the 2D-sequential CSE-MRI against the phantom and in vivo reference standards. Bland-Altman analysis of FB versus BH CSE-MRI acquisitions to evaluate robustness to motion. Bland-Altman analysis to assess interreader variability. Phantom 2D-sequential CSE-MRI PDFF measurements demonstrated excellent agreement and correlation (R 2 > 0.99) with 3D CSE-MRI. In vivo, the mean (±SD) hepatic PDFF was 8.8 ± 8.7% (range 0.6-28.5%). Compared with BH acquisitions, FB hepatic PDFF measurements demonstrated bias of +0.15% for 2D-sequential compared with + 0.53% for 3D and +0.94% for 2D-interleaved. 95% limits of agreement (LOA) were narrower for 2D-sequential (±0.99%), compared with 3D (±3.72%) and 2D-interleaved (±3.10%). All CSE-MRI techniques had excellent correlation with MRS (R 2 > 0.97). The FB 2D-sequential acquisition demonstrated little interreader variability, with mean bias of +0.07% and 95% LOA of ± 1.53%. This motion-robust 2D-sequential CSE-MRI can accurately measure hepatic PDFF during free breathing in a patient population with a range of PDFF values of 0.6-28.5%, permitting accurate quantification of liver fat content without the need for suspended respiration. 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Efficient Robust Optimization of Metal Forming Processes using a Sequential Metamodel Based Strategy
NASA Astrophysics Data System (ADS)
Wiebenga, J. H.; Klaseboer, G.; van den Boogaard, A. H.
2011-08-01
The coupling of Finite Element (FE) simulations to mathematical optimization techniques has contributed significantly to product improvements and cost reductions in the metal forming industries. The next challenge is to bridge the gap between deterministic optimization techniques and the industrial need for robustness. This paper introduces a new and generally applicable structured methodology for modeling and solving robust optimization problems. Stochastic design variables or noise variables are taken into account explicitly in the optimization procedure. The metamodel-based strategy is combined with a sequential improvement algorithm to efficiently increase the accuracy of the objective function prediction. This is only done at regions of interest containing the optimal robust design. Application of the methodology to an industrial V-bending process resulted in valuable process insights and an improved robust process design. Moreover, a significant improvement of the robustness (>2σ) was obtained by minimizing the deteriorating effects of several noise variables. The robust optimization results demonstrate the general applicability of the robust optimization strategy and underline the importance of including uncertainty and robustness explicitly in the numerical optimization procedure.
Image Alignment for Multiple Camera High Dynamic Range Microscopy.
Eastwood, Brian S; Childs, Elisabeth C
2012-01-09
This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera.
Image Alignment for Multiple Camera High Dynamic Range Microscopy
Eastwood, Brian S.; Childs, Elisabeth C.
2012-01-01
This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera. PMID:22545028
Planning for robust reserve networks using uncertainty analysis
Moilanen, A.; Runge, M.C.; Elith, Jane; Tyre, A.; Carmel, Y.; Fegraus, E.; Wintle, B.A.; Burgman, M.; Ben-Haim, Y.
2006-01-01
Planning land-use for biodiversity conservation frequently involves computer-assisted reserve selection algorithms. Typically such algorithms operate on matrices of species presence?absence in sites, or on species-specific distributions of model predicted probabilities of occurrence in grid cells. There are practically always errors in input data?erroneous species presence?absence data, structural and parametric uncertainty in predictive habitat models, and lack of correspondence between temporal presence and long-run persistence. Despite these uncertainties, typical reserve selection methods proceed as if there is no uncertainty in the data or models. Having two conservation options of apparently equal biological value, one would prefer the option whose value is relatively insensitive to errors in planning inputs. In this work we show how uncertainty analysis for reserve planning can be implemented within a framework of information-gap decision theory, generating reserve designs that are robust to uncertainty. Consideration of uncertainty involves modifications to the typical objective functions used in reserve selection. Search for robust-optimal reserve structures can still be implemented via typical reserve selection optimization techniques, including stepwise heuristics, integer-programming and stochastic global search.
de Abreu E Lima, Francisco; Westhues, Matthias; Cuadros-Inostroza, Álvaro; Willmitzer, Lothar; Melchinger, Albrecht E; Nikoloski, Zoran
2017-04-01
Heterosis has been extensively exploited for yield gain in maize (Zea mays L.). Here we conducted a comparative metabolomics-based analysis of young roots from in vitro germinating seedlings and from leaves of field-grown plants in a panel of inbred lines from the Dent and Flint heterotic patterns as well as selected F 1 hybrids. We found that metabolite levels in hybrids were more robust than in inbred lines. Using state-of-the-art modeling techniques, the most robust metabolites from roots and leaves explained up to 37 and 44% of the variance in the biomass from plants grown in two distinct field trials. In addition, a correlation-based analysis highlighted the trade-off between defense-related metabolites and hybrid performance. Therefore, our findings demonstrated the potential of metabolic profiles from young maize roots grown under tightly controlled conditions to predict hybrid performance in multiple field trials, thus bridging the greenhouse-field gap. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Image distortion analysis using polynomial series expansion.
Baggenstoss, Paul M
2004-11-01
In this paper, we derive a technique for analysis of local distortions which affect data in real-world applications. In the paper, we focus on image data, specifically handwritten characters. Given a reference image and a distorted copy of it, the method is able to efficiently determine the rotations, translations, scaling, and any other distortions that have been applied. Because the method is robust, it is also able to estimate distortions for two unrelated images, thus determining the distortions that would be required to cause the two images to resemble each other. The approach is based on a polynomial series expansion using matrix powers of linear transformation matrices. The technique has applications in pattern recognition in the presence of distortions.
Identification of piecewise affine systems based on fuzzy PCA-guided robust clustering technique
NASA Astrophysics Data System (ADS)
Khanmirza, Esmaeel; Nazarahari, Milad; Mousavi, Alireza
2016-12-01
Hybrid systems are a class of dynamical systems whose behaviors are based on the interaction between discrete and continuous dynamical behaviors. Since a general method for the analysis of hybrid systems is not available, some researchers have focused on specific types of hybrid systems. Piecewise affine (PWA) systems are one of the subsets of hybrid systems. The identification of PWA systems includes the estimation of the parameters of affine subsystems and the coefficients of the hyperplanes defining the partition of the state-input domain. In this paper, we have proposed a PWA identification approach based on a modified clustering technique. By using a fuzzy PCA-guided robust k-means clustering algorithm along with neighborhood outlier detection, the two main drawbacks of the well-known clustering algorithms, i.e., the poor initialization and the presence of outliers, are eliminated. Furthermore, this modified clustering technique enables us to determine the number of subsystems without any prior knowledge about system. In addition, applying the structure of the state-input domain, that is, considering the time sequence of input-output pairs, provides a more efficient clustering algorithm, which is the other novelty of this work. Finally, the proposed algorithm has been evaluated by parameter identification of an IGV servo actuator. Simulation together with experiment analysis has proved the effectiveness of the proposed method.
Kilinc, Deniz; Demir, Alper
2017-08-01
The brain is extremely energy efficient and remarkably robust in what it does despite the considerable variability and noise caused by the stochastic mechanisms in neurons and synapses. Computational modeling is a powerful tool that can help us gain insight into this important aspect of brain mechanism. A deep understanding and computational design tools can help develop robust neuromorphic electronic circuits and hybrid neuroelectronic systems. In this paper, we present a general modeling framework for biological neuronal circuits that systematically captures the nonstationary stochastic behavior of ion channels and synaptic processes. In this framework, fine-grained, discrete-state, continuous-time Markov chain models of both ion channels and synaptic processes are treated in a unified manner. Our modeling framework features a mechanism for the automatic generation of the corresponding coarse-grained, continuous-state, continuous-time stochastic differential equation models for neuronal variability and noise. Furthermore, we repurpose non-Monte Carlo noise analysis techniques, which were previously developed for analog electronic circuits, for the stochastic characterization of neuronal circuits both in time and frequency domain. We verify that the fast non-Monte Carlo analysis methods produce results with the same accuracy as computationally expensive Monte Carlo simulations. We have implemented the proposed techniques in a prototype simulator, where both biological neuronal and analog electronic circuits can be simulated together in a coupled manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, Dmitriy; Weber, Gunther H.
2014-03-31
Topological techniques provide robust tools for data analysis. They are used, for example, for feature extraction, for data de-noising, and for comparison of data sets. This chapter concerns contour trees, a topological descriptor that records the connectivity of the isosurfaces of scalar functions. These trees are fundamental to analysis and visualization of physical phenomena modeled by real-valued measurements. We study the parallel analysis of contour trees. After describing a particular representation of a contour tree, called local{global representation, we illustrate how di erent problems that rely on contour trees can be solved in parallel with minimal communication.
A scalable correlator for multichannel diffuse correlation spectroscopy.
Stapels, Christopher J; Kolodziejski, Noah J; McAdams, Daniel; Podolsky, Matthew J; Fernandez, Daniel E; Farkas, Dana; Christian, James F
2016-02-01
Diffuse correlation spectroscopy (DCS) is a technique which enables powerful and robust non-invasive optical studies of tissue micro-circulation and vascular blood flow. The technique amounts to autocorrelation analysis of coherent photons after their migration through moving scatterers and subsequent collection by single-mode optical fibers. A primary cost driver of DCS instruments are the commercial hardware-based correlators, limiting the proliferation of multi-channel instruments for validation of perfusion analysis as a clinical diagnostic metric. We present the development of a low-cost scalable correlator enabled by microchip-based time-tagging, and a software-based multi-tau data analysis method. We will discuss the capabilities of the instrument as well as the implementation and validation of 2- and 8-channel systems built for live animal and pre-clinical settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ping; Lv, Youbin; Wang, Hong
Optimal operation of a practical blast furnace (BF) ironmaking process depends largely on a good measurement of molten iron quality (MIQ) indices. However, measuring the MIQ online is not feasible using the available techniques. In this paper, a novel data-driven robust modeling is proposed for online estimation of MIQ using improved random vector functional-link networks (RVFLNs). Since the output weights of traditional RVFLNs are obtained by the least squares approach, a robustness problem may occur when the training dataset is contaminated with outliers. This affects the modeling accuracy of RVFLNs. To solve this problem, a Cauchy distribution weighted M-estimation basedmore » robust RFVLNs is proposed. Since the weights of different outlier data are properly determined by the Cauchy distribution, their corresponding contribution on modeling can be properly distinguished. Thus robust and better modeling results can be achieved. Moreover, given that the BF is a complex nonlinear system with numerous coupling variables, the data-driven canonical correlation analysis is employed to identify the most influential components from multitudinous factors that affect the MIQ indices to reduce the model dimension. Finally, experiments using industrial data and comparative studies have demonstrated that the obtained model produces a better modeling and estimating accuracy and stronger robustness than other modeling methods.« less
Robust approach to ocular fundus image analysis
NASA Astrophysics Data System (ADS)
Tascini, Guido; Passerini, Giorgio; Puliti, Paolo; Zingaretti, Primo
1993-07-01
The analysis of morphological and structural modifications of retinal blood vessels plays an important role both to establish the presence of some systemic diseases as hypertension and diabetes and to study their course. The paper describes a robust set of techniques developed to quantitatively evaluate morphometric aspects of the ocular fundus vascular and micro vascular network. They are defined: (1) the concept of 'Local Direction of a vessel' (LD); (2) a special form of edge detection, named Signed Edge Detection (SED), which uses LD to choose the convolution kernel in the edge detection process and is able to distinguish between the left or the right vessel edge; (3) an iterative tracking (IT) method. The developed techniques use intensively both LD and SED in: (a) the automatic detection of number, position and size of blood vessels departing from the optical papilla; (b) the tracking of body and edges of the vessels; (c) the recognition of vessel branches and crossings; (d) the extraction of a set of features as blood vessel length and average diameter, arteries and arterioles tortuosity, crossing position and angle between two vessels. The algorithms, implemented in C language, have an execution time depending on the complexity of the currently processed vascular network.
Comparing Four Instructional Techniques for Promoting Robust Knowledge
ERIC Educational Resources Information Center
Richey, J. Elizabeth; Nokes-Malach, Timothy J.
2015-01-01
Robust knowledge serves as a common instructional target in academic settings. Past research identifying characteristics of experts' knowledge across many domains can help clarify the features of robust knowledge as well as ways of assessing it. We review the expertise literature and identify three key features of robust knowledge (deep,…
An application of robust ridge regression model in the presence of outliers to real data problem
NASA Astrophysics Data System (ADS)
Shariff, N. S. Md.; Ferdaos, N. A.
2017-09-01
Multicollinearity and outliers are often leads to inconsistent and unreliable parameter estimates in regression analysis. The well-known procedure that is robust to multicollinearity problem is the ridge regression method. This method however is believed are affected by the presence of outlier. The combination of GM-estimation and ridge parameter that is robust towards both problems is on interest in this study. As such, both techniques are employed to investigate the relationship between stock market price and macroeconomic variables in Malaysia due to curiosity of involving the multicollinearity and outlier problem in the data set. There are four macroeconomic factors selected for this study which are Consumer Price Index (CPI), Gross Domestic Product (GDP), Base Lending Rate (BLR) and Money Supply (M1). The results demonstrate that the proposed procedure is able to produce reliable results towards the presence of multicollinearity and outliers in the real data.
An adaptive discontinuous Galerkin solver for aerodynamic flows
NASA Astrophysics Data System (ADS)
Burgess, Nicholas K.
This work considers the accuracy, efficiency, and robustness of an unstructured high-order accurate discontinuous Galerkin (DG) solver for computational fluid dynamics (CFD). Recently, there has been a drive to reduce the discretization error of CFD simulations using high-order methods on unstructured grids. However, high-order methods are often criticized for lacking robustness and having high computational cost. The goal of this work is to investigate methods that enhance the robustness of high-order discontinuous Galerkin (DG) methods on unstructured meshes, while maintaining low computational cost and high accuracy of the numerical solutions. This work investigates robustness enhancement of high-order methods by examining effective non-linear solvers, shock capturing methods, turbulence model discretizations and adaptive refinement techniques. The goal is to develop an all encompassing solver that can simulate a large range of physical phenomena, where all aspects of the solver work together to achieve a robust, efficient and accurate solution strategy. The components and framework for a robust high-order accurate solver that is capable of solving viscous, Reynolds Averaged Navier-Stokes (RANS) and shocked flows is presented. In particular, this work discusses robust discretizations of the turbulence model equation used to close the RANS equations, as well as stable shock capturing strategies that are applicable across a wide range of discretization orders and applicable to very strong shock waves. Furthermore, refinement techniques are considered as both efficiency and robustness enhancement strategies. Additionally, efficient non-linear solvers based on multigrid and Krylov subspace methods are presented. The accuracy, efficiency, and robustness of the solver is demonstrated using a variety of challenging aerodynamic test problems, which include turbulent high-lift and viscous hypersonic flows. Adaptive mesh refinement was found to play a critical role in obtaining a robust and efficient high-order accurate flow solver. A goal-oriented error estimation technique has been developed to estimate the discretization error of simulation outputs. For high-order discretizations, it is shown that functional output error super-convergence can be obtained, provided the discretization satisfies a property known as dual consistency. The dual consistency of the DG methods developed in this work is shown via mathematical analysis and numerical experimentation. Goal-oriented error estimation is also used to drive an hp-adaptive mesh refinement strategy, where a combination of mesh or h-refinement, and order or p-enrichment, is employed based on the smoothness of the solution. The results demonstrate that the combination of goal-oriented error estimation and hp-adaptation yield superior accuracy, as well as enhanced robustness and efficiency for a variety of aerodynamic flows including flows with strong shock waves. This work demonstrates that DG discretizations can be the basis of an accurate, efficient, and robust CFD solver. Furthermore, enhancing the robustness of DG methods does not adversely impact the accuracy or efficiency of the solver for challenging and complex flow problems. In particular, when considering the computation of shocked flows, this work demonstrates that the available shock capturing techniques are sufficiently accurate and robust, particularly when used in conjunction with adaptive mesh refinement . This work also demonstrates that robust solutions of the Reynolds Averaged Navier-Stokes (RANS) and turbulence model equations can be obtained for complex and challenging aerodynamic flows. In this context, the most robust strategy was determined to be a low-order turbulence model discretization coupled to a high-order discretization of the RANS equations. Although RANS solutions using high-order accurate discretizations of the turbulence model were obtained, the behavior of current-day RANS turbulence models discretized to high-order was found to be problematic, leading to solver robustness issues. This suggests that future work is warranted in the area of turbulence model formulation for use with high-order discretizations. Alternately, the use of Large-Eddy Simulation (LES) subgrid scale models with high-order DG methods offers the potential to leverage the high accuracy of these methods for very high fidelity turbulent simulations. This thesis has developed the algorithmic improvements that will lay the foundation for the development of a three-dimensional high-order flow solution strategy that can be used as the basis for future LES simulations.
Launch vehicle systems design analysis
NASA Technical Reports Server (NTRS)
Ryan, Robert; Verderaime, V.
1993-01-01
Current launch vehicle design emphasis is on low life-cycle cost. This paper applies total quality management (TQM) principles to a conventional systems design analysis process to provide low-cost, high-reliability designs. Suggested TQM techniques include Steward's systems information flow matrix method, quality leverage principle, quality through robustness and function deployment, Pareto's principle, Pugh's selection and enhancement criteria, and other design process procedures. TQM quality performance at least-cost can be realized through competent concurrent engineering teams and brilliance of their technical leadership.
NASA Astrophysics Data System (ADS)
Ghosh, Dipak; Dutta, Srimonti; Chakraborty, Sayantan
2015-09-01
This paper reports a study on the cross-correlation between the electric bid price and SENSEX using Multifractal Detrended Cross-correlation Analysis (MF-DXA). MF-DXA is a very rigorous and robust technique for assessment of cross-correction between two non-linear time series. The study reveals power law cross-correlation between Market Clearing Price (MCP) and SENSEX which suggests that a change in the value of one can create a subjective change in the value of the other.
Robust volcano plot: identification of differential metabolites in the presence of outliers.
Kumar, Nishith; Hoque, Md Aminul; Sugimoto, Masahiro
2018-04-11
The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metabolite identification techniques are sensitive to outliers. We propose a kernel weight based outlier-robust volcano plot for identifying differential metabolites from noisy metabolomics datasets. Two numerical experiments are used to evaluate the performance of the proposed technique against nine existing techniques, including the t-test and the Kruskal-Wallis test. Artificially generated data with outliers reveal that the proposed method results in a lower misclassification error rate and a greater area under the receiver operating characteristic curve compared with existing methods. An experimentally measured breast cancer dataset to which outliers were artificially added reveals that our proposed method produces only two non-overlapping differential metabolites whereas the other nine methods produced between seven and 57 non-overlapping differential metabolites. Our data analyses show that the performance of the proposed differential metabolite identification technique is better than that of existing methods. Thus, the proposed method can contribute to analysis of metabolomics data with outliers. The R package and user manual of the proposed method are available at https://github.com/nishithkumarpaul/Rvolcano .
Robust leader-follower formation tracking control of multiple underactuated surface vessels
NASA Astrophysics Data System (ADS)
Peng, Zhou-hua; Wang, Dan; Lan, Wei-yao; Sun, Gang
2012-09-01
This paper is concerned with the formation control problem of multiple underactuated surface vessels moving in a leader-follower formation. The formation is achieved by the follower to track a virtual target defined relative to the leader. A robust adaptive target tracking law is proposed by using neural network and backstepping techniques. The advantage of the proposed control scheme is that the uncertain nonlinear dynamics caused by Coriolis/centripetal forces, nonlinear damping, unmodeled hydrodynamics and disturbances from the environment can be compensated by on line learning. Based on Lyapunov analysis, the proposed controller guarantees the tracking errors converge to a small neighborhood of the origin. Simulation results demonstrate the effectiveness of the control strategy.
Shift-invariant discrete wavelet transform analysis for retinal image classification.
Khademi, April; Krishnan, Sridhar
2007-12-01
This work involves retinal image classification and a novel analysis system was developed. From the compressed domain, the proposed scheme extracts textural features from wavelet coefficients, which describe the relative homogeneity of localized areas of the retinal images. Since the discrete wavelet transform (DWT) is shift-variant, a shift-invariant DWT was explored to ensure that a robust feature set was extracted. To combat the small database size, linear discriminant analysis classification was used with the leave one out method. 38 normal and 48 abnormal (exudates, large drusens, fine drusens, choroidal neovascularization, central vein and artery occlusion, histoplasmosis, arteriosclerotic retinopathy, hemi-central retinal vein occlusion and more) were used and a specificity of 79% and sensitivity of 85.4% were achieved (the average classification rate is 82.2%). The success of the system can be accounted to the highly robust feature set which included translation, scale and semi-rotational, features. Additionally, this technique is database independent since the features were specifically tuned to the pathologies of the human eye.
Input-output Transfer Function Analysis of a Photometer Circuit Based on an Operational Amplifier.
Hernandez, Wilmar
2008-01-09
In this paper an input-output transfer function analysis based on the frequencyresponse of a photometer circuit based on operational amplifier (op amp) is carried out. Opamps are universally used in monitoring photodetectors and there are a variety of amplifierconnections for this purpose. However, the electronic circuits that are usually used to carryout the signal treatment in photometer circuits introduce some limitations in theperformance of the photometers that influence the selection of the op amps and otherelectronic devices. For example, the bandwidth, slew-rate, noise, input impedance and gain,among other characteristics of the op amp, are often the performance limiting factors ofphotometer circuits. For this reason, in this paper a comparative analysis between twophotodiode amplifier circuits is carried out. One circuit is based on a conventional currentto-voltage converter connection and the other circuit is based on a robust current-to-voltageconverter connection. The results are satisfactory and show that the photodiode amplifierperformance can be improved by using robust control techniques.
Regional-scale analysis of extreme precipitation from short and fragmented records
NASA Astrophysics Data System (ADS)
Libertino, Andrea; Allamano, Paola; Laio, Francesco; Claps, Pierluigi
2018-02-01
Rain gauge is the oldest and most accurate instrument for rainfall measurement, able to provide long series of reliable data. However, rain gauge records are often plagued by gaps, spatio-temporal discontinuities and inhomogeneities that could affect their suitability for a statistical assessment of the characteristics of extreme rainfall. Furthermore, the need to discard the shorter series for obtaining robust estimates leads to ignore a significant amount of information which can be essential, especially when large return periods estimates are sought. This work describes a robust statistical framework for dealing with uneven and fragmented rainfall records on a regional spatial domain. The proposed technique, named "patched kriging" allows one to exploit all the information available from the recorded series, independently of their length, to provide extreme rainfall estimates in ungauged areas. The methodology involves the sequential application of the ordinary kriging equations, producing a homogeneous dataset of synthetic series with uniform lengths. In this way, the errors inherent to any regional statistical estimation can be easily represented in the spatial domain and, possibly, corrected. Furthermore, the homogeneity of the obtained series, provides robustness toward local artefacts during the parameter-estimation phase. The application to a case study in the north-western Italy demonstrates the potential of the methodology and provides a significant base for discussing its advantages over previous techniques.
Unsupervised Detection of Planetary Craters by a Marked Point Process
NASA Technical Reports Server (NTRS)
Troglio, G.; Benediktsson, J. A.; Le Moigne, J.; Moser, G.; Serpico, S. B.
2011-01-01
With the launch of several planetary missions in the last decade, a large amount of planetary images is being acquired. Preferably, automatic and robust processing techniques need to be used for data analysis because of the huge amount of the acquired data. Here, the aim is to achieve a robust and general methodology for crater detection. A novel technique based on a marked point process is proposed. First, the contours in the image are extracted. The object boundaries are modeled as a configuration of an unknown number of random ellipses, i.e., the contour image is considered as a realization of a marked point process. Then, an energy function is defined, containing both an a priori energy and a likelihood term. The global minimum of this function is estimated by using reversible jump Monte-Carlo Markov chain dynamics and a simulated annealing scheme. The main idea behind marked point processes is to model objects within a stochastic framework: Marked point processes represent a very promising current approach in the stochastic image modeling and provide a powerful and methodologically rigorous framework to efficiently map and detect objects and structures in an image with an excellent robustness to noise. The proposed method for crater detection has several feasible applications. One such application area is image registration by matching the extracted features.
NASA Technical Reports Server (NTRS)
Shekhar, R.; Cothren, R. M.; Vince, D. G.; Chandra, S.; Thomas, J. D.; Cornhill, J. F.
1999-01-01
Intravascular ultrasound (IVUS) provides exact anatomy of arteries, allowing accurate quantitative analysis. Automated segmentation of IVUS images is a prerequisite for routine quantitative analyses. We present a new three-dimensional (3D) segmentation technique, called active surface segmentation, which detects luminal and adventitial borders in IVUS pullback examinations of coronary arteries. The technique was validated against expert tracings by computing correlation coefficients (range 0.83-0.97) and William's index values (range 0.37-0.66). The technique was statistically accurate, robust to image artifacts, and capable of segmenting a large number of images rapidly. Active surface segmentation enabled geometrically accurate 3D reconstruction and visualization of coronary arteries and volumetric measurements.
Molecular diagnosis of bloodstream infections: planning to (physically) reach the bedside.
Leggieri, N; Rida, A; François, P; Schrenzel, Jacques
2010-08-01
Faster identification of infecting microorganisms and treatment options is a first-ranking priority in the infectious disease area, in order to prevent inappropriate treatment and overuse of broad-spectrum antibiotics. Standard bacterial identification is intrinsically time-consuming, and very recently there has been a burst in the number of commercially available nonphenotype-based techniques and in the documentation of a possible clinical impact of these techniques. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is now a standard diagnostic procedure on cultures and hold promises on spiked blood. Meanwhile, commercial PCR-based techniques have improved with the use of bacterial DNA enrichment methods, the diversity of amplicon analysis techniques (melting curve analysis, microarrays, gel electrophoresis, sequencing and analysis by mass spectrometry) leading to the ability to challenge bacterial culture as the gold standard for providing earlier diagnosis with a better 'clinical' sensitivity and additional prognostic information. Laboratory practice has already changed with MALDI-TOF MS, but a change in clinical practice, driven by emergent nucleic acid-based techniques, will need the demonstration of real-life applicability as well as robust clinical-impact-oriented studies.
NASA Technical Reports Server (NTRS)
Turso, James; Lawrence, Charles; Litt, Jonathan
2004-01-01
The development of a wavelet-based feature extraction technique specifically targeting FOD-event induced vibration signal changes in gas turbine engines is described. The technique performs wavelet analysis of accelerometer signals from specified locations on the engine and is shown to be robust in the presence of significant process and sensor noise. It is envisioned that the technique will be combined with Kalman filter thermal/health parameter estimation for FOD-event detection via information fusion from these (and perhaps other) sources. Due to the lack of high-frequency FOD-event test data in the open literature, a reduced-order turbofan structural model (ROM) was synthesized from a finite element model modal analysis to support the investigation. In addition to providing test data for algorithm development, the ROM is used to determine the optimal sensor location for FOD-event detection. In the presence of significant noise, precise location of the FOD event in time was obtained using the developed wavelet-based feature.
NASA Technical Reports Server (NTRS)
Turso, James A.; Lawrence, Charles; Litt, Jonathan S.
2007-01-01
The development of a wavelet-based feature extraction technique specifically targeting FOD-event induced vibration signal changes in gas turbine engines is described. The technique performs wavelet analysis of accelerometer signals from specified locations on the engine and is shown to be robust in the presence of significant process and sensor noise. It is envisioned that the technique will be combined with Kalman filter thermal/ health parameter estimation for FOD-event detection via information fusion from these (and perhaps other) sources. Due to the lack of high-frequency FOD-event test data in the open literature, a reduced-order turbofan structural model (ROM) was synthesized from a finite-element model modal analysis to support the investigation. In addition to providing test data for algorithm development, the ROM is used to determine the optimal sensor location for FOD-event detection. In the presence of significant noise, precise location of the FOD event in time was obtained using the developed wavelet-based feature.
New Frontiers and Challenges for Single-Cell Electrochemical Analysis.
Zhang, Jingjing; Zhou, Junyu; Pan, Rongrong; Jiang, Dechen; Burgess, James D; Chen, Hong-Yuan
2018-02-23
Previous measurements of cell populations might obscure many important cellular differences, and new strategies for single-cell analyses are urgently needed to re-examine these fundamental biological principles for better diagnosis and treatment of diseases. Electrochemistry is a robust technique for the analysis of single living cells that has the advantages of minor interruption of cellular activity and provides the capability of high spatiotemporal resolution. The achievements of the past 30 years have revealed significant information about the exocytotic events of single cells to elucidate the mechanisms of cellular activity. Currently, the rapid developments of micro/nanofabrication and optoelectronic technologies drive the development of multifunctional electrodes and novel electrochemical approaches with higher resolution for single cells. In this Perspective, three new frontiers in this field, namely, electrochemical microscopy, intracellular analysis, and single-cell analysis in a biological system (i.e., neocortex and retina), are reviewed. The unique features and remaining challenges of these techniques are discussed.
Kappenman, Emily S; Keil, Andreas
2017-01-01
In recent years, the psychological and behavioral sciences have increased efforts to strengthen methodological practices and publication standards, with the ultimate goal of enhancing the value and reproducibility of published reports. These issues are especially important in the multidisciplinary field of psychophysiology, which yields rich and complex data sets with a large number of observations. In addition, the technological tools and analysis methods available in the field of psychophysiology are continually evolving, widening the array of techniques and approaches available to researchers. This special issue presents articles detailing rigorous and systematic evaluations of tasks, measures, materials, analysis approaches, and statistical practices in a variety of subdisciplines of psychophysiology. These articles highlight challenges in conducting and interpreting psychophysiological research and provide data-driven, evidence-based recommendations for overcoming those challenges to produce robust, reproducible results in the field of psychophysiology. © 2016 Society for Psychophysiological Research.
Meteor tracking via local pattern clustering in spatio-temporal domain
NASA Astrophysics Data System (ADS)
Kukal, Jaromír.; Klimt, Martin; Švihlík, Jan; Fliegel, Karel
2016-09-01
Reliable meteor detection is one of the crucial disciplines in astronomy. A variety of imaging systems is used for meteor path reconstruction. The traditional approach is based on analysis of 2D image sequences obtained from a double station video observation system. Precise localization of meteor path is difficult due to atmospheric turbulence and other factors causing spatio-temporal fluctuations of the image background. The proposed technique performs non-linear preprocessing of image intensity using Box-Cox transform as recommended in our previous work. Both symmetric and asymmetric spatio-temporal differences are designed to be robust in the statistical sense. Resulting local patterns are processed by data whitening technique and obtained vectors are classified via cluster analysis and Self-Organized Map (SOM).
GenInfoGuard--a robust and distortion-free watermarking technique for genetic data.
Iftikhar, Saman; Khan, Sharifullah; Anwar, Zahid; Kamran, Muhammad
2015-01-01
Genetic data, in digital format, is used in different biological phenomena such as DNA translation, mRNA transcription and protein synthesis. The accuracy of these biological phenomena depend on genetic codes and all subsequent processes. To computerize the biological procedures, different domain experts are provided with the authorized access of the genetic codes; as a consequence, the ownership protection of such data is inevitable. For this purpose, watermarks serve as the proof of ownership of data. While protecting data, embedded hidden messages (watermarks) influence the genetic data; therefore, the accurate execution of the relevant processes and the overall result becomes questionable. Most of the DNA based watermarking techniques modify the genetic data and are therefore vulnerable to information loss. Distortion-free techniques make sure that no modifications occur during watermarking; however, they are fragile to malicious attacks and therefore cannot be used for ownership protection (particularly, in presence of a threat model). Therefore, there is a need for a technique that must be robust and should also prevent unwanted modifications. In this spirit, a watermarking technique with aforementioned characteristics has been proposed in this paper. The proposed technique makes sure that: (i) the ownership rights are protected by means of a robust watermark; and (ii) the integrity of genetic data is preserved. The proposed technique-GenInfoGuard-ensures its robustness through the "watermark encoding" in permuted values, and exhibits high decoding accuracy against various malicious attacks.
ERIC Educational Resources Information Center
Wilcox, Rand R.; Serang, Sarfaraz
2017-01-01
The article provides perspectives on p values, null hypothesis testing, and alternative techniques in light of modern robust statistical methods. Null hypothesis testing and "p" values can provide useful information provided they are interpreted in a sound manner, which includes taking into account insights and advances that have…
Lean and Efficient Software: Whole-Program Optimization of Executables
2015-09-30
libraries. Many levels of library interfaces—where some libraries are dynamically linked and some are provided in binary form only—significantly limit...software at build time. The opportunity: Our objective in this project is to substantially improve the performance, size, and robustness of binary ...executables by using static and dynamic binary program analysis techniques to perform whole-program optimization directly on compiled programs
Revisiting the southern pine growth decline: Where are we 10 years later?
Gary L. Gadbury; Michael S. Williams; Hans T. Schreuder
2004-01-01
This paper evaluates changes in growth of pine stands in the state of Georgia, U.S.A., using USDA Forest Service Forest Inventory and Analysis (FIA) data. In particular, data representing an additional 10-year growth cy-cle has been added to previously published results from two earlier growth cycles. A robust regression procedure is combined with a bootstrap technique...
Modifying high-order aeroelastic math model of a jet transport using maximum likelihood estimation
NASA Technical Reports Server (NTRS)
Anissipour, Amir A.; Benson, Russell A.
1989-01-01
The design of control laws to damp flexible structural modes requires accurate math models. Unlike the design of control laws for rigid body motion (e.g., where robust control is used to compensate for modeling inaccuracies), structural mode damping usually employs narrow band notch filters. In order to obtain the required accuracy in the math model, maximum likelihood estimation technique is employed to improve the accuracy of the math model using flight data. Presented here are all phases of this methodology: (1) pre-flight analysis (i.e., optimal input signal design for flight test, sensor location determination, model reduction technique, etc.), (2) data collection and preprocessing, and (3) post-flight analysis (i.e., estimation technique and model verification). In addition, a discussion is presented of the software tools used and the need for future study in this field.
Biomedical applications of laser-induced breakdown spectroscopy (LIBS)
NASA Astrophysics Data System (ADS)
Unnikrishnan, V. K.; Nayak, Rajesh; Bhat, Sujatha; Mathew, Stanley; Kartha, V. B.; Santhosh, C.
2015-03-01
LIBS has been proven to be a robust elemental analysis tool attracting interest because of the wide applications. LIBS can be used for analysis of any type of samples i.e. environmental/physiological, regardless of its state of matter. Conventional spectroscopy techniques are good in analytical performance, but their sample preparation method is mostly destructive and time consuming. Also, almost all these methods are incapable of analysing multi elements simaltaneously. On the other hand, LIBS has many potential advantages such as simplicity in the experimental setup, less sample preparation, less destructive analysis of sample etc. In this paper, we report some of the biomedical applications of LIBS. From the experiments carried out on clinical samples (calcified tissues or teeth and gall stones) for trace elemental mapping and detection, it was found that LIBS is a robust tool for such applications. It is seen that the presence and relative concentrations of major elements (calcium, phosphorus and magnesium) in human calcified tissue (tooth) can be easily determined using LIBS technique. The importance of this study comes in anthropology where tooth and bone are main samples from which reliable data can be easily retrieved. Similarly, elemental composition of bile juice and gall stone collected from the same subject using LIBS was found to be similar. The results show interesting prospects for LIBS to study cholelithiasis (the presence of stones in the gall bladder, is a common disease of the gastrointestinal tract) better.
Contextual analysis of immunological response through whole-organ fluorescent imaging.
Woodruff, Matthew C; Herndon, Caroline N; Heesters, B A; Carroll, Michael C
2013-09-01
As fluorescent microscopy has developed, significant insights have been gained into the establishment of immune response within secondary lymphoid organs, particularly in draining lymph nodes. While established techniques such as confocal imaging and intravital multi-photon microscopy have proven invaluable, they provide limited insight into the architectural and structural context in which these responses occur. To interrogate the role of the lymph node environment in immune response effectively, a new set of imaging tools taking into account broader architectural context must be implemented into emerging immunological questions. Using two different methods of whole-organ imaging, optical clearing and three-dimensional reconstruction of serially sectioned lymph nodes, fluorescent representations of whole lymph nodes can be acquired at cellular resolution. Using freely available post-processing tools, images of unlimited size and depth can be assembled into cohesive, contextual snapshots of immunological response. Through the implementation of robust iterative analysis techniques, these highly complex three-dimensional images can be objectified into sortable object data sets. These data can then be used to interrogate complex questions at the cellular level within the broader context of lymph node biology. By combining existing imaging technology with complex methods of sample preparation and capture, we have developed efficient systems for contextualizing immunological phenomena within lymphatic architecture. In combination with robust approaches to image analysis, these advances provide a path to integrating scientific understanding of basic lymphatic biology into the complex nature of immunological response.
Neural network uncertainty assessment using Bayesian statistics: a remote sensing application
NASA Technical Reports Server (NTRS)
Aires, F.; Prigent, C.; Rossow, W. B.
2004-01-01
Neural network (NN) techniques have proved successful for many regression problems, in particular for remote sensing; however, uncertainty estimates are rarely provided. In this article, a Bayesian technique to evaluate uncertainties of the NN parameters (i.e., synaptic weights) is first presented. In contrast to more traditional approaches based on point estimation of the NN weights, we assess uncertainties on such estimates to monitor the robustness of the NN model. These theoretical developments are illustrated by applying them to the problem of retrieving surface skin temperature, microwave surface emissivities, and integrated water vapor content from a combined analysis of satellite microwave and infrared observations over land. The weight uncertainty estimates are then used to compute analytically the uncertainties in the network outputs (i.e., error bars and correlation structure of these errors). Such quantities are very important for evaluating any application of an NN model. The uncertainties on the NN Jacobians are then considered in the third part of this article. Used for regression fitting, NN models can be used effectively to represent highly nonlinear, multivariate functions. In this situation, most emphasis is put on estimating the output errors, but almost no attention has been given to errors associated with the internal structure of the regression model. The complex structure of dependency inside the NN is the essence of the model, and assessing its quality, coherency, and physical character makes all the difference between a blackbox model with small output errors and a reliable, robust, and physically coherent model. Such dependency structures are described to the first order by the NN Jacobians: they indicate the sensitivity of one output with respect to the inputs of the model for given input data. We use a Monte Carlo integration procedure to estimate the robustness of the NN Jacobians. A regularization strategy based on principal component analysis is proposed to suppress the multicollinearities in order to make these Jacobians robust and physically meaningful.
NASA Technical Reports Server (NTRS)
Arevalo, Ricardo, Jr.; Coyle, Barry; Paulios, Demetrios; Stysley, Paul; Feng, Steve; Getty, Stephanie; Binkerhoff, William
2015-01-01
Compared to wet chemistry and pyrolysis techniques, in situ laser-based methods of chemical analysis provide an ideal way to characterize precious planetary materials without requiring extensive sample processing. In particular, laser desorption and ablation techniques allow for rapid, reproducible and robust data acquisition over a wide mass range, plus: Quantitative, spatially-resolved measurements of elemental and molecular (organic and inorganic) abundances; Low analytical blanks and limits-of-detection ( ng g-1); and, the destruction of minimal quantities of sample ( g) compared to traditional solution and/or pyrolysis analyses (mg).
NASA Technical Reports Server (NTRS)
Allen, Thomas R. (Editor); Emerson, Charles W. (Editor); Quattrochi, Dale A. (Editor); Arnold, James E. (Technical Monitor)
2001-01-01
This special issue continues the precedence of the Association of American Geographers (AAG), Remote Sensing Specialty Group (RSSG) for publishing selected articles in Geocarto International as a by-product from the AAG annual meeting. As editors, we issued earlier this year, a solicitation for papers to be published in a special issue of Geocarto International that were presented in RSSG-sponsored sessions at the 2001 AAG annual meeting held in New York City on February 27-March 3. Although not an absolute requisite for publication, the vast majority of the papers in this special issue were presented at this year's AAG meeting in New York. Other articles in this issue that were not part of a paper or poster session at the 2001 AAG meeting are authored by RSSG members. Under the auspices of the RSSG, this special Geocarto International issue provides even more compelling evidence of the inextricable linkage between remote sensing and geography. The papers in this special issue fall into four general themes: 1) Urban Analysis and Techniques for Urban Analysis; 2) Land Use/Land Cover Analysis; 3) Fire Modeling Assessment; and 4) Techniques. The first four papers herein are concerned with the use of remote sensing for analysis of urban areas, and with use or development of techniques to better characterize urban areas using remote sensing data. As the lead paper in this grouping, Rashed et al., examine the usage of spectral mixture analysis (SMA) for analyzing satellite imagery of urban areas as opposed to more 'standard' methods of classification. Here SMA has been applied to IRS-1C satellite multispectral imagery to extract measures that better describe the 'anatomy' of the greater Cairo, Egypt region. Following this paper, Weng and Lo describe how Landsat TM data have been used to monitor land cover types and to estimate biomass parameters within an urban environment. The research reported in this paper applies an integrated GIS (Geographic Information System) approach for detecting urban growth and assessing its impact on biomass in the Zhujiang Delta, China. The remaining two papers in this first grouping deal with improved techniques for characterizing and analyzing urban areas using remote sensing data. Myint examines the use of texture analysis to better classify urban features. Here wavelet analysis has been employed to assist in deriving a more robust classification of the urban environment from high spatial resolution, multispectral aircraft data. Mesev provides insight on how through the modification of the standard maximum likelihood image analysis technique, population census data can be used enhance the overall robustness of urban image classification through the modification of the standard maximum likelihood image analysis technique.
LIBS: a potential tool for industrial/agricultural waste water analysis
NASA Astrophysics Data System (ADS)
Karpate, Tanvi; K. M., Muhammed Shameem; Nayak, Rajesh; V. K., Unnikrishnan; Santhosh, C.
2016-04-01
Laser Induced Breakdown Spectroscopy (LIBS) is a multi-elemental analysis technique with various advantages and has the ability to detect any element in real time. This technique holds a potential for environmental monitoring and various such analysis has been done in soil, glass, paint, water, plastic etc confirms the robustness of this technique for such applications. Compared to the currently available water quality monitoring methods and techniques, LIBS has several advantages, viz. no need for sample preparation, fast and easy operation, and chemical free during the process. In LIBS, powerful pulsed laser generates plasma which is then analyzed to get quantitative and qualitative details of the elements present in the sample. Another main advantage of LIBS technique is that it can perform in standoff mode for real time analysis. Water samples from industries and agricultural strata tend to have a lot of pollutants making it harmful for consumption. The emphasis of this project is to determine such harmful pollutants present in trace amounts in industrial and agricultural wastewater. When high intensity laser is made incident on the sample, a plasma is generated which gives a multielemental emission spectra. LIBS analysis has shown outstanding success for solids samples. For liquid samples, the analysis is challenging as the liquid sample has the chances of splashing due to the high energy of laser and thus making it difficult to generate plasma. This project also deals with determining the most efficient method for testing of water sample for qualitative as well as quantitative analysis using LIBS.
Robust model predictive control for multi-step short range spacecraft rendezvous
NASA Astrophysics Data System (ADS)
Zhu, Shuyi; Sun, Ran; Wang, Jiaolong; Wang, Jihe; Shao, Xiaowei
2018-07-01
This work presents a robust model predictive control (MPC) approach for the multi-step short range spacecraft rendezvous problem. During the specific short range phase concerned, the chaser is supposed to be initially outside the line-of-sight (LOS) cone. Therefore, the rendezvous process naturally includes two steps: the first step is to transfer the chaser into the LOS cone and the second step is to transfer the chaser into the aimed region with its motion confined within the LOS cone. A novel MPC framework named after Mixed MPC (M-MPC) is proposed, which is the combination of the Variable-Horizon MPC (VH-MPC) framework and the Fixed-Instant MPC (FI-MPC) framework. The M-MPC framework enables the optimization for the two steps to be implemented jointly rather than to be separated factitiously, and its computation workload is acceptable for the usually low-power processors onboard spacecraft. Then considering that disturbances including modeling error, sensor noise and thrust uncertainty may induce undesired constraint violations, a robust technique is developed and it is attached to the above M-MPC framework to form a robust M-MPC approach. The robust technique is based on the chance-constrained idea, which ensures that constraints can be satisfied with a prescribed probability. It improves the robust technique proposed by Gavilan et al., because it eliminates the unnecessary conservativeness by explicitly incorporating known statistical properties of the navigation uncertainty. The efficacy of the robust M-MPC approach is shown in a simulation study.
Rare cell isolation and analysis in microfluidics
Chen, Yuchao; Li, Peng; Huang, Po-Hsun; Xie, Yuliang; Mai, John D.; Wang, Lin; Nguyen, Nam-Trung; Huang, Tony Jun
2014-01-01
Rare cells are low-abundance cells in a much larger population of background cells. Conventional benchtop techniques have limited capabilities to isolate and analyze rare cells because of their generally low selectivity and significant sample loss. Recent rapid advances in microfluidics have been providing robust solutions to the challenges in the isolation and analysis of rare cells. In addition to the apparent performance enhancements resulting in higher efficiencies and sensitivity levels, microfluidics provides other advanced features such as simpler handling of small sample volumes and multiplexing capabilities for high-throughput processing. All of these advantages make microfluidics an excellent platform to deal with the transport, isolation, and analysis of rare cells. Various cellular biomarkers, including physical properties, dielectric properties, as well as immunoaffinities, have been explored for isolating rare cells. In this Focus article, we discuss the design considerations of representative microfluidic devices for rare cell isolation and analysis. Examples from recently published works are discussed to highlight the advantages and limitations of the different techniques. Various applications of these techniques are then introduced. Finally, a perspective on the development trends and promising research directions in this field are proposed. PMID:24406985
Decreasing-Rate Pruning Optimizes the Construction of Efficient and Robust Distributed Networks.
Navlakha, Saket; Barth, Alison L; Bar-Joseph, Ziv
2015-07-01
Robust, efficient, and low-cost networks are advantageous in both biological and engineered systems. During neural network development in the brain, synapses are massively over-produced and then pruned-back over time. This strategy is not commonly used when designing engineered networks, since adding connections that will soon be removed is considered wasteful. Here, we show that for large distributed routing networks, network function is markedly enhanced by hyper-connectivity followed by aggressive pruning and that the global rate of pruning, a developmental parameter not previously studied by experimentalists, plays a critical role in optimizing network structure. We first used high-throughput image analysis techniques to quantify the rate of pruning in the mammalian neocortex across a broad developmental time window and found that the rate is decreasing over time. Based on these results, we analyzed a model of computational routing networks and show using both theoretical analysis and simulations that decreasing rates lead to more robust and efficient networks compared to other rates. We also present an application of this strategy to improve the distributed design of airline networks. Thus, inspiration from neural network formation suggests effective ways to design distributed networks across several domains.
Decreasing-Rate Pruning Optimizes the Construction of Efficient and Robust Distributed Networks
Navlakha, Saket; Barth, Alison L.; Bar-Joseph, Ziv
2015-01-01
Robust, efficient, and low-cost networks are advantageous in both biological and engineered systems. During neural network development in the brain, synapses are massively over-produced and then pruned-back over time. This strategy is not commonly used when designing engineered networks, since adding connections that will soon be removed is considered wasteful. Here, we show that for large distributed routing networks, network function is markedly enhanced by hyper-connectivity followed by aggressive pruning and that the global rate of pruning, a developmental parameter not previously studied by experimentalists, plays a critical role in optimizing network structure. We first used high-throughput image analysis techniques to quantify the rate of pruning in the mammalian neocortex across a broad developmental time window and found that the rate is decreasing over time. Based on these results, we analyzed a model of computational routing networks and show using both theoretical analysis and simulations that decreasing rates lead to more robust and efficient networks compared to other rates. We also present an application of this strategy to improve the distributed design of airline networks. Thus, inspiration from neural network formation suggests effective ways to design distributed networks across several domains. PMID:26217933
NASA Technical Reports Server (NTRS)
Prakash, OM, II
1991-01-01
Three linear controllers are desiged to regulate the end effector of the Space Shuttle Remote Manipulator System (SRMS) operating in Position Hold Mode. In this mode of operation, jet firings of the Orbiter can be treated as disturbances while the controller tries to keep the end effector stationary in an orbiter-fixed reference frame. The three design techniques used include: the Linear Quadratic Regulator (LQR), H2 optimization, and H-infinity optimization. The nonlinear SRMS is linearized by modelling the effects of the significant nonlinearities as uncertain parameters. Each regulator design is evaluated for robust stability in light of the parametric uncertanties using both the small gain theorem with an H-infinity norm and the less conservative micro-analysis test. All three regulator designs offer significant improvement over the current system on the nominal plant. Unfortunately, even after dropping performance requirements and designing exclusively for robust stability, robust stability cannot be achieved. The SRMS suffers from lightly damped poles with real parametric uncertainties. Such a system renders the micro-analysis test, which allows for complex peturbations, too conservative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, S.; Toll, J.; Cothern, K.
1995-12-31
The authors have performed robust sensitivity studies of the physico-chemical Hudson River PCB model PCHEPM to identify the parameters and process uncertainties contributing the most to uncertainty in predictions of water column and sediment PCB concentrations, over the time period 1977--1991 in one segment of the lower Hudson River. The term ``robust sensitivity studies`` refers to the use of several sensitivity analysis techniques to obtain a more accurate depiction of the relative importance of different sources of uncertainty. Local sensitivity analysis provided data on the sensitivity of PCB concentration estimates to small perturbations in nominal parameter values. Range sensitivity analysismore » provided information about the magnitude of prediction uncertainty associated with each input uncertainty. Rank correlation analysis indicated which parameters had the most dominant influence on model predictions. Factorial analysis identified important interactions among model parameters. Finally, term analysis looked at the aggregate influence of combinations of parameters representing physico-chemical processes. The authors scored the results of the local and range sensitivity and rank correlation analyses. The authors considered parameters that scored high on two of the three analyses to be important contributors to PCB concentration prediction uncertainty, and treated them probabilistically in simulations. They also treated probabilistically parameters identified in the factorial analysis as interacting with important parameters. The authors used the term analysis to better understand how uncertain parameters were influencing the PCB concentration predictions. The importance analysis allowed us to reduce the number of parameters to be modeled probabilistically from 16 to 5. This reduced the computational complexity of Monte Carlo simulations, and more importantly, provided a more lucid depiction of prediction uncertainty and its causes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van den Heuvel, F; Hackett, S; Fiorini, F
Purpose: Currently, planning systems allow robustness calculations to be performed, but a generalized assessment methodology is not yet available. We introduce and evaluate a methodology to quantify the robustness of a plan on an individual patient basis. Methods: We introduce the notion of characterizing a treatment instance (i.e. one single fraction delivery) by describing the dose distribution within an organ as an alpha-stable distribution. The parameters of the distribution (shape(α), scale(γ), position(δ), and symmetry(β)), will vary continuously (in a mathematical sense) as the distributions change with the different positions. The rate of change of the parameters provides a measure ofmore » the robustness of the treatment. The methodology is tested in a planning study of 25 patients with known residual errors at each fraction. Each patient was planned using Eclipse with an IBA-proton beam model. The residual error space for every patient was sampled 30 times, yielding 31 treatment plans for each patient and dose distributions in 5 organs. The parameters’ change rate as a function of Euclidean distance from the original plan was analyzed. Results: More than 1,000 dose distributions were analyzed. For 4 of the 25 patients the change in scale rate (γ) was considerably higher than the lowest change rate, indicating a lack of robustness. The sign of the shape change rate (α) also seemed indicative but the experiment lacked the power to prove significance. Conclusion: There are indications that this robustness measure is a valuable tool to allow a more patient individualized approach to the determination of margins. In a further study we will also evaluate this robustness measure using photon treatments, and evaluate the impact of using breath hold techniques, and the a Monte Carlo based dose deposition calculation. A principle component analysis is also planned.« less
Sampling Technique for Robust Odorant Detection Based on MIT RealNose Data
NASA Technical Reports Server (NTRS)
Duong, Tuan A.
2012-01-01
This technique enhances the detection capability of the autonomous Real-Nose system from MIT to detect odorants and their concentrations in noisy and transient environments. The lowcost, portable system with low power consumption will operate at high speed and is suited for unmanned and remotely operated long-life applications. A deterministic mathematical model was developed to detect odorants and calculate their concentration in noisy environments. Real data from MIT's NanoNose was examined, from which a signal conditioning technique was proposed to enable robust odorant detection for the RealNose system. Its sensitivity can reach to sub-part-per-billion (sub-ppb). A Space Invariant Independent Component Analysis (SPICA) algorithm was developed to deal with non-linear mixing that is an over-complete case, and it is used as a preprocessing step to recover the original odorant sources for detection. This approach, combined with the Cascade Error Projection (CEP) Neural Network algorithm, was used to perform odorant identification. Signal conditioning is used to identify potential processing windows to enable robust detection for autonomous systems. So far, the software has been developed and evaluated with current data sets provided by the MIT team. However, continuous data streams are made available where even the occurrence of a new odorant is unannounced and needs to be noticed by the system autonomously before its unambiguous detection. The challenge for the software is to be able to separate the potential valid signal from the odorant and from the noisy transition region when the odorant is just introduced.
Gan, Yanjun; Duan, Qingyun; Gong, Wei; ...
2014-01-01
Sensitivity analysis (SA) is a commonly used approach for identifying important parameters that dominate model behaviors. We use a newly developed software package, a Problem Solving environment for Uncertainty Analysis and Design Exploration (PSUADE), to evaluate the effectiveness and efficiency of ten widely used SA methods, including seven qualitative and three quantitative ones. All SA methods are tested using a variety of sampling techniques to screen out the most sensitive (i.e., important) parameters from the insensitive ones. The Sacramento Soil Moisture Accounting (SAC-SMA) model, which has thirteen tunable parameters, is used for illustration. The South Branch Potomac River basin nearmore » Springfield, West Virginia in the U.S. is chosen as the study area. The key findings from this study are: (1) For qualitative SA methods, Correlation Analysis (CA), Regression Analysis (RA), and Gaussian Process (GP) screening methods are shown to be not effective in this example. Morris One-At-a-Time (MOAT) screening is the most efficient, needing only 280 samples to identify the most important parameters, but it is the least robust method. Multivariate Adaptive Regression Splines (MARS), Delta Test (DT) and Sum-Of-Trees (SOT) screening methods need about 400–600 samples for the same purpose. Monte Carlo (MC), Orthogonal Array (OA) and Orthogonal Array based Latin Hypercube (OALH) are appropriate sampling techniques for them; (2) For quantitative SA methods, at least 2777 samples are needed for Fourier Amplitude Sensitivity Test (FAST) to identity parameter main effect. McKay method needs about 360 samples to evaluate the main effect, more than 1000 samples to assess the two-way interaction effect. OALH and LPτ (LPTAU) sampling techniques are more appropriate for McKay method. For the Sobol' method, the minimum samples needed are 1050 to compute the first-order and total sensitivity indices correctly. These comparisons show that qualitative SA methods are more efficient but less accurate and robust than quantitative ones.« less
On robust parameter estimation in brain-computer interfacing
NASA Astrophysics Data System (ADS)
Samek, Wojciech; Nakajima, Shinichi; Kawanabe, Motoaki; Müller, Klaus-Robert
2017-12-01
Objective. The reliable estimation of parameters such as mean or covariance matrix from noisy and high-dimensional observations is a prerequisite for successful application of signal processing and machine learning algorithms in brain-computer interfacing (BCI). This challenging task becomes significantly more difficult if the data set contains outliers, e.g. due to subject movements, eye blinks or loose electrodes, as they may heavily bias the estimation and the subsequent statistical analysis. Although various robust estimators have been developed to tackle the outlier problem, they ignore important structural information in the data and thus may not be optimal. Typical structural elements in BCI data are the trials consisting of a few hundred EEG samples and indicating the start and end of a task. Approach. This work discusses the parameter estimation problem in BCI and introduces a novel hierarchical view on robustness which naturally comprises different types of outlierness occurring in structured data. Furthermore, the class of minimum divergence estimators is reviewed and a robust mean and covariance estimator for structured data is derived and evaluated with simulations and on a benchmark data set. Main results. The results show that state-of-the-art BCI algorithms benefit from robustly estimated parameters. Significance. Since parameter estimation is an integral part of various machine learning algorithms, the presented techniques are applicable to many problems beyond BCI.
NASA Astrophysics Data System (ADS)
Tramutoli, V.; Armandi, B.; Filizzola, C.; Genzano, N.; Lisi, M.; Paciello, R.; Pergola, N.
2014-12-01
More than ten years of applications of the RST (Robust Satellite Techniques) methodology for monitoring earthquake prone area by using satellite TIR(Thermal InfraRed) data, have shown the ability of this approach to discern anomalous TIR signals possibly associated to seismic activity from normal fluctuations of Earth's thermal emission related to other causes independent on the earthquake occurrence. The RST approach was already tested in the case of tens of earthquakes occurred in different continents (Europe, Asia, America and Africa), in various geo-tectonic settings (compressive, extensional and transcurrent) and with a wide range of magnitudes (from 4.0 to 7.9), by analyzing time series of TIR images acquired by sensors on board of polar (like NOAA/AVHRR, EOS/MODIS) and geostationary satellites (like MFG/MVIRI, MSG/SEVIRI, GOES/IMAGER). In addition RST method has been independently tested by several researchers around the world as well as in the framework of several projects funded by different national space agencies (like the Italian ASI, the U.S. NASA and the German DLR) and recently during the EC-FP7 projectPRE-EARTHQUAKES (www.pre-earthquakes.org),which was devoted to study the earthquake precursors using satellite techniques. This paper will show the results of RST analysis on 6 years (2006-2011)of TIR satellite record collected by GOES-W/IMAGER over Southern part United State (California).Results will be discussed particularly in the prospective of an integrated approach devoted to systematically collectand analyze in real-time, independent observations for a time-Dependent Assessment of Seismic Hazard (t-DASH).
Random forest meteorological normalisation models for Swiss PM10 trend analysis
NASA Astrophysics Data System (ADS)
Grange, Stuart K.; Carslaw, David C.; Lewis, Alastair C.; Boleti, Eirini; Hueglin, Christoph
2018-05-01
Meteorological normalisation is a technique which accounts for changes in meteorology over time in an air quality time series. Controlling for such changes helps support robust trend analysis because there is more certainty that the observed trends are due to changes in emissions or chemistry, not changes in meteorology. Predictive random forest models (RF; a decision tree machine learning technique) were grown for 31 air quality monitoring sites in Switzerland using surface meteorological, synoptic scale, boundary layer height, and time variables to explain daily PM10 concentrations. The RF models were used to calculate meteorologically normalised trends which were formally tested and evaluated using the Theil-Sen estimator. Between 1997 and 2016, significantly decreasing normalised PM10 trends ranged between -0.09 and -1.16 µg m-3 yr-1 with urban traffic sites experiencing the greatest mean decrease in PM10 concentrations at -0.77 µg m-3 yr-1. Similar magnitudes have been reported for normalised PM10 trends for earlier time periods in Switzerland which indicates PM10 concentrations are continuing to decrease at similar rates as in the past. The ability for RF models to be interpreted was leveraged using partial dependence plots to explain the observed trends and relevant physical and chemical processes influencing PM10 concentrations. Notably, two regimes were suggested by the models which cause elevated PM10 concentrations in Switzerland: one related to poor dispersion conditions and a second resulting from high rates of secondary PM generation in deep, photochemically active boundary layers. The RF meteorological normalisation process was found to be robust, user friendly and simple to implement, and readily interpretable which suggests the technique could be useful in many air quality exploratory data analysis situations.
Advanced Techniques for Scene Analysis
2010-06-01
robustness prefers a bigger intergration window to handle larger motions. The advantage of pyramidal implementation is that, while each motion vector dL...labeled SAR images. Now the previous algorithm leads to a more dedicated classifier for the particular target; however, our algorithm trades generality for...accuracy is traded for generality. 7.3.2 I-RELIEF Feature weighting transforms the original feature vector x into a new feature vector x′ by assigning each
Comby, G.
1996-10-01
The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)
NASA Astrophysics Data System (ADS)
Lara, J. L.; Cowen, E. A.; Sou, I. M.
2002-06-01
Boundary layer flows are ubiquitous in the environment, but their study is often complicated by their thinness, geometric irregularity and boundary porosity. In this paper, we present an approach to making laboratory-based particle image velocimetry (PIV) measurements in these complex flow environments. Clear polycarbonate spheres were used to model a porous and rough bed. The strong curvature of the spheres results in a diffuse volume illuminated region instead of the more traditional finite and thin light sheet illuminated region, resulting in the imaging of both in-focus and significantly out-of-focus particles. Results of a traditional cross-correlation-based PIV-type analysis of these images demonstrate that the mean and turbulent features of an oscillatory boundary layer driven by a free-surface wave over an irregular-shaped porous bed can be robustly measured. Measurements of the mean flow, turbulent intensities, viscous and turbulent stresses are presented and discussed. Velocity spectra have been calculated showing an inertial subrange confirming that the PIV analysis is sufficiently robust to extract turbulence. The presented technique is particularly well suited for the study of highly dynamic free-surface flows that prevent the delivery of the light sheet from above the bed, such as swash flows.
NASA Astrophysics Data System (ADS)
Pinar, Anthony; Havens, Timothy C.; Rice, Joseph; Masarik, Matthew; Burns, Joseph; Thelen, Brian
2016-05-01
Explosive hazards are a deadly threat in modern conflicts; hence, detecting them before they cause injury or death is of paramount importance. One method of buried explosive hazard discovery relies on data collected from ground penetrating radar (GPR) sensors. Threat detection with downward looking GPR is challenging due to large returns from non-target objects and clutter. This leads to a large number of false alarms (FAs), and since the responses of clutter and targets can form very similar signatures, classifier design is not trivial. One approach to combat these issues uses robust principal component analysis (RPCA) to enhance target signatures while suppressing clutter and background responses, though there are many versions of RPCA. This work applies some of these RPCA techniques to GPR sensor data and evaluates their merit using the peak signal-to-clutter ratio (SCR) of the RPCA-processed B-scans. Experimental results on government furnished data show that while some of the RPCA methods yield similar results, there are indeed some methods that outperform others. Furthermore, we show that the computation time required by the different RPCA methods varies widely, and the selection of tuning parameters in the RPCA algorithms has a major effect on the peak SCR.
Krishnan, Sunder Ram; Seelamantula, Chandra Sekhar; Bouwens, Arno; Leutenegger, Marcel; Lasser, Theo
2012-10-01
We address the problem of high-resolution reconstruction in frequency-domain optical-coherence tomography (FDOCT). The traditional method employed uses the inverse discrete Fourier transform, which is limited in resolution due to the Heisenberg uncertainty principle. We propose a reconstruction technique based on zero-crossing (ZC) interval analysis. The motivation for our approach lies in the observation that, for a multilayered specimen, the backscattered signal may be expressed as a sum of sinusoids, and each sinusoid manifests as a peak in the FDOCT reconstruction. The successive ZC intervals of a sinusoid exhibit high consistency, with the intervals being inversely related to the frequency of the sinusoid. The statistics of the ZC intervals are used for detecting the frequencies present in the input signal. The noise robustness of the proposed technique is improved by using a cosine-modulated filter bank for separating the input into different frequency bands, and the ZC analysis is carried out on each band separately. The design of the filter bank requires the design of a prototype, which we accomplish using a Kaiser window approach. We show that the proposed method gives good results on synthesized and experimental data. The resolution is enhanced, and noise robustness is higher compared with the standard Fourier reconstruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Liang, X; Kalbasi, A
2014-06-01
Purpose: Advanced radiotherapy (RT) techniques such as proton pencil beam scanning (PBS) and photon-based volumetric modulated arc therapy (VMAT) have dosimetric advantages in the treatment of head and neck malignancies. However, anatomic or alignment changes during treatment may limit robustness of PBS and VMAT plans. We assess the feasibility of automated deformable registration tools for robustness evaluation in adaptive PBS and VMAT RT of oropharyngeal cancer (OPC). Methods: We treated 10 patients with bilateral OPC with advanced RT techniques and obtained verification CT scans with physician-reviewed target and OAR contours. We generated 3 advanced RT plans for each patient: protonmore » PBS plan using 2 posterior oblique fields (2F), proton PBS plan using an additional third low-anterior field (3F), and a photon VMAT plan using 2 arcs (Arc). For each of the planning techniques, we forward calculated initial (Ini) plans on the verification scans to create verification (V) plans. We extracted DVH indicators based on physician-generated contours for 2 target and 14 OAR structures to investigate the feasibility of two automated tools (contour propagation (CP) and dose deformation (DD)) as surrogates for routine clinical plan robustness evaluation. For each verification scan, we compared DVH indicators of V, CP and DD plans in a head-to-head fashion using Student's t-test. Results: We performed 39 verification scans; each patient underwent 3 to 6 verification scan. We found no differences in doses to target or OAR structures between V and CP, V and DD, and CP and DD plans across all patients (p > 0.05). Conclusions: Automated robustness evaluation tools, CP and DD, accurately predicted dose distributions of verification (V) plans using physician-generated contours. These tools may be further developed as a potential robustness screening tool in the workflow for adaptive treatment of OPC using advanced RT techniques, reducing the need for physician-generated contours.« less
Tunable laser techniques for improving the precision of observational astronomy
NASA Astrophysics Data System (ADS)
Cramer, Claire E.; Brown, Steven W.; Lykke, Keith R.; Woodward, John T.; Bailey, Stephen; Schlegel, David J.; Bolton, Adam S.; Brownstein, Joel; Doherty, Peter E.; Stubbs, Christopher W.; Vaz, Amali; Szentgyorgyi, Andrew
2012-09-01
Improving the precision of observational astronomy requires not only new telescopes and instrumentation, but also advances in observing protocols, calibrations and data analysis. The Laser Applications Group at the National Institute of Standards and Technology in Gaithersburg, Maryland has been applying advances in detector metrology and tunable laser calibrations to problems in astronomy since 2007. Using similar measurement techniques, we have addressed a number of seemingly disparate issues: precision flux calibration for broad-band imaging, precision wavelength calibration for high-resolution spectroscopy, and precision PSF mapping for fiber spectrographs of any resolution. In each case, we rely on robust, commercially-available laboratory technology that is readily adapted to use at an observatory. In this paper, we give an overview of these techniques.
Wavelet-based techniques for the gamma-ray sky
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDermott, Samuel D.; Fox, Patrick J.; Cholis, Ilias
2016-07-01
Here, we demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from darkmore » matter annihilation and extended gamma-ray point source populations in a data-driven way.« less
On the Use of Statistics in Design and the Implications for Deterministic Computer Experiments
NASA Technical Reports Server (NTRS)
Simpson, Timothy W.; Peplinski, Jesse; Koch, Patrick N.; Allen, Janet K.
1997-01-01
Perhaps the most prevalent use of statistics in engineering design is through Taguchi's parameter and robust design -- using orthogonal arrays to compute signal-to-noise ratios in a process of design improvement. In our view, however, there is an equally exciting use of statistics in design that could become just as prevalent: it is the concept of metamodeling whereby statistical models are built to approximate detailed computer analysis codes. Although computers continue to get faster, analysis codes always seem to keep pace so that their computational time remains non-trivial. Through metamodeling, approximations of these codes are built that are orders of magnitude cheaper to run. These metamodels can then be linked to optimization routines for fast analysis, or they can serve as a bridge for integrating analysis codes across different domains. In this paper we first review metamodeling techniques that encompass design of experiments, response surface methodology, Taguchi methods, neural networks, inductive learning, and kriging. We discuss their existing applications in engineering design and then address the dangers of applying traditional statistical techniques to approximate deterministic computer analysis codes. We conclude with recommendations for the appropriate use of metamodeling techniques in given situations and how common pitfalls can be avoided.
Different techniques of multispectral data analysis for vegetation fraction retrieval
NASA Astrophysics Data System (ADS)
Kancheva, Rumiana; Georgiev, Georgi
2012-07-01
Vegetation monitoring is one of the most important applications of remote sensing technologies. In respect to farmlands, the assessment of crop condition constitutes the basis of growth, development, and yield processes monitoring. Plant condition is defined by a set of biometric variables, such as density, height, biomass amount, leaf area index, and etc. The canopy cover fraction is closely related to these variables, and is state-indicative of the growth process. At the same time it is a defining factor of the soil-vegetation system spectral signatures. That is why spectral mixtures decomposition is a primary objective in remotely sensed data processing and interpretation, specifically in agricultural applications. The actual usefulness of the applied methods depends on their prediction reliability. The goal of this paper is to present and compare different techniques for quantitative endmember extraction from soil-crop patterns reflectance. These techniques include: linear spectral unmixing, two-dimensional spectra analysis, spectral ratio analysis (vegetation indices), spectral derivative analysis (red edge position), colorimetric analysis (tristimulus values sum, chromaticity coordinates and dominant wavelength). The objective is to reveal their potential, accuracy and robustness for plant fraction estimation from multispectral data. Regression relationships have been established between crop canopy cover and various spectral estimators.
Improvements to direct quantitative analysis of multiple microRNAs facilitating faster analysis.
Ghasemi, Farhad; Wegman, David W; Kanoatov, Mirzo; Yang, Burton B; Liu, Stanley K; Yousef, George M; Krylov, Sergey N
2013-11-05
Studies suggest that patterns of deregulation in sets of microRNA (miRNA) can be used as cancer diagnostic and prognostic biomarkers. Establishing a "miRNA fingerprint"-based diagnostic technique requires a suitable miRNA quantitation method. The appropriate method must be direct, sensitive, capable of simultaneous analysis of multiple miRNAs, rapid, and robust. Direct quantitative analysis of multiple microRNAs (DQAMmiR) is a recently introduced capillary electrophoresis-based hybridization assay that satisfies most of these criteria. Previous implementations of the method suffered, however, from slow analysis time and required lengthy and stringent purification of hybridization probes. Here, we introduce a set of critical improvements to DQAMmiR that address these technical limitations. First, we have devised an efficient purification procedure that achieves the required purity of the hybridization probe in a fast and simple fashion. Second, we have optimized the concentrations of the DNA probe to decrease the hybridization time to 10 min. Lastly, we have demonstrated that the increased probe concentrations and decreased incubation time removed the need for masking DNA, further simplifying the method and increasing its robustness. The presented improvements bring DQAMmiR closer to use in a clinical setting.
Measurement Protocols for In situ Analysis of Organic Compounds at Mars and Comets
NASA Technical Reports Server (NTRS)
Mahaffy, P. R.; Brinckerhuff, W. B.; Buch, A.; Cabane, M.; Coll, P.; Demick, J.; Glavin, D. P.; Navarro-Gonzalez, R.
2005-01-01
The determination of the abundance and chemical and isotopic composition of organic molecules in comets and those that might be found in protected environments at Mars is a first step toward understanding prebiotic chemistries on these solar system bodies. While future sample return missions from Mars and comets will enable detailed chemical and isotopic analysis with a wide range of analytical techniques, precursor insitu investigations can complement these missions and facilitate the identification of optimal sites for sample return. Robust automated experiments that make efficient use of limited spacecraft power, mass, and data volume resources are required for use by insitu missions. Within these constraints we continue to explore a range of instrument techniques and measurement protocols that can maximize the return from such insitu investigations.
NASA Astrophysics Data System (ADS)
Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio
2012-04-01
A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.
Winfield, Jessica M.; Payne, Geoffrey S.; Weller, Alex; deSouza, Nandita M.
2016-01-01
Abstract Multi-parametric magnetic resonance imaging (mpMRI) offers a unique insight into tumor biology by combining functional MRI techniques that inform on cellularity (diffusion-weighted MRI), vascular properties (dynamic contrast-enhanced MRI), and metabolites (magnetic resonance spectroscopy) and has scope to provide valuable information for prognostication and response assessment. Challenges in the application of mpMRI in the clinic include the technical considerations in acquiring good quality functional MRI data, development of robust techniques for analysis, and clinical interpretation of the results. This article summarizes the technical challenges in acquisition and analysis of multi-parametric MRI data before reviewing the key applications of multi-parametric MRI in clinical research and practice. PMID:27748710
Measurement Protocols for In Situ Analysis of Organic Compounds at Mars and Comets
NASA Technical Reports Server (NTRS)
Mahaffy, P. R.; Brinckerhoff, W. B.; Buch, A.; Cabane, M.; Coll, P.; Demick, J.; Glavin, D. P.; Navarro-Gonzalez, R.
2005-01-01
The determination of the abundance and chemical and isotopic composition of organic molecules in comets and those that might be found in protected environments at Mars is a first step toward understanding prebiotic chemistries on these solar system bodies. While future sample return missions from Mars and comets will enable detailed chemical and isotopic analysis with a wide range of analytical techniques, precursor insitu investigations can complement these missions and facilitate the identification of optimal sites for sample return. Robust automated experiments that make efficient use of limited spacecraft power, mass, and data volume resources are required for use by insitu missions. Within these constraints we continue to explore a range of instrument techniques and measurement protocols that can maximize the return from such insitu investigations.
Robust stability of interval bidirectional associative memory neural network with time delays.
Liao, Xiaofeng; Wong, Kwok-wo
2004-04-01
In this paper, the conventional bidirectional associative memory (BAM) neural network with signal transmission delay is intervalized in order to study the bounded effect of deviations in network parameters and external perturbations. The resultant model is referred to as a novel interval dynamic BAM (IDBAM) model. By combining a number of different Lyapunov functionals with the Razumikhin technique, some sufficient conditions for the existence of unique equilibrium and robust stability are derived. These results are fairly general and can be verified easily. To go further, we extend our investigation to the time-varying delay case. Some robust stability criteria for BAM with perturbations of time-varying delays are derived. Besides, our approach for the analysis allows us to consider several different types of activation functions, including piecewise linear sigmoids with bounded activations as well as the usual C1-smooth sigmoids. We believe that the results obtained have leading significance in the design and application of BAM neural networks.
NASA Astrophysics Data System (ADS)
Boudjema, Zinelaabidine; Taleb, Rachid; Bounadja, Elhadj
2017-02-01
Traditional filed oriented control strategy including proportional-integral (PI) regulator for the speed drive of the doubly fed induction motor (DFIM) have some drawbacks such as parameter tuning complications, mediocre dynamic performances and reduced robustness. Therefore, based on the analysis of the mathematical model of a DFIM supplied by two five-level SVPWM inverters, this paper proposes a new robust control scheme based on super twisting sliding mode and fuzzy logic. The conventional sliding mode control (SMC) has vast chattering effect on the electromagnetic torque developed by the DFIM. In order to resolve this problem, a second order sliding mode technique based on super twisting algorithm and fuzzy logic functions is employed. The validity of the employed approach was tested by using Matlab/Simulink software. Interesting simulation results were obtained and remarkable advantages of the proposed control scheme were exposed including simple design of the control system, reduced chattering as well as the other advantages.
Sheldon, E M; Downar, J B
2000-08-15
Novel approaches to the development of analytical procedures for monitoring incoming starting material in support of chemical/pharmaceutical processes are described. High technology solutions were utilized for timely process development and preparation of high quality clinical supplies. A single robust HPLC method was developed and characterized for the analysis of the key starting material from three suppliers. Each supplier used a different process for the preparation of this material and, therefore, each suppliers' material exhibited a unique impurity profile. The HPLC method utilized standard techniques acceptable for release testing in a QC/manufacturing environment. An automated experimental design protocol was used to characterize the robustness of the HPLC method. The method was evaluated for linearity, limit of quantitation, solution stability, and precision of replicate injections. An LC-MS method that emulated the release HPLC method was developed and the identities of impurities were mapped between the two methods.
Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.
Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi
2013-01-01
The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.
Synthesis Methods for Robust Passification and Control
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)
2000-01-01
The research effort under this cooperative agreement has been essentially the continuation of the work from previous grants. The ongoing work has primarily focused on developing passivity-based control techniques for Linear Time-Invariant (LTI) systems. During this period, there has been a significant progress made in the area of passivity-based control of LTI systems and some preliminary results have also been obtained for nonlinear systems, as well. The prior work has addressed optimal control design for inherently passive as well as non- passive linear systems. For exploiting the robustness characteristics of passivity-based controllers the passification methodology was developed for LTI systems that are not inherently passive. Various methods of passification were first proposed in and further developed. The robustness of passification was addressed for multi-input multi-output (MIMO) systems for certain classes of uncertainties using frequency-domain methods. For MIMO systems, a state-space approach using Linear Matrix Inequality (LMI)-based formulation was presented, for passification of non-passive LTI systems. An LMI-based robust passification technique was presented for systems with redundant actuators and sensors. The redundancy in actuators and sensors was used effectively for robust passification using the LMI formulation. The passification was designed to be robust to an interval-type uncertainties in system parameters. The passification techniques were used to design a robust controller for Benchmark Active Control Technology wing under parametric uncertainties. The results on passive nonlinear systems, however, are very limited to date. Our recent work in this area was presented, wherein some stability results were obtained for passive nonlinear systems that are affine in control.
Are pound and euro the same currency?
NASA Astrophysics Data System (ADS)
Matsushita, Raul; Gleria, Iram; Figueiredo, Annibal; da Silva, Sergio
2007-08-01
Based on long-range dependence, some analysts claim that the exchange rate time series of the pound sterling and of an artificially extended euro have been locked together for years despite daily changes [M. Ausloos, K. Ivanova, Physica A 286 (2000) 353; K. Ivanova, M. Ausloos, False EUR exchange rates vs DKK, CHF, JPY and USD. What is a strong currency? in: H. Takayasu (Ed.), Empirical Sciences in Financial Fluctuations: The Advent of Econophysics, Springer-Verlag, Berlin, 2002, pp. 62 76]. They conclude that pound and euro are in practice the same currency. We assess the long-range dependence over time through Hurst exponents of pound dollar and extended euro dollar exchange rates employing three alternative techniques, namely rescaled range analysis, detrended fluctuation analysis, and detrended moving average. We find the result above (which is based on detrended fluctuation analysis) not to be robust to the changing techniques and parameterizing.
Robust dynamical decoupling for quantum computing and quantum memory.
Souza, Alexandre M; Alvarez, Gonzalo A; Suter, Dieter
2011-06-17
Dynamical decoupling (DD) is a popular technique for protecting qubits from the environment. However, unless special care is taken, experimental errors in the control pulses used in this technique can destroy the quantum information instead of preserving it. Here, we investigate techniques for making DD sequences robust against different types of experimental errors while retaining good decoupling efficiency in a fluctuating environment. We present experimental data from solid-state nuclear spin qubits and introduce a new DD sequence that is suitable for quantum computing and quantum memory.
Parametric robust control and system identification: Unified approach
NASA Technical Reports Server (NTRS)
Keel, Leehyun
1994-01-01
Despite significant advancement in the area of robust parametric control, the problem of synthesizing such a controller is still a wide open problem. Thus, we attempt to give a solution to this important problem. Our approach captures the parametric uncertainty as an H(sub infinity) unstructured uncertainty so that H(sub infinity) synthesis techniques are applicable. Although the techniques cannot cope with the exact parametric uncertainty, they give a reasonable guideline to model the unstructured uncertainty that contains the parametric uncertainty. An additional loop shaping technique is also introduced to relax its conservatism.
Liu, Wei; Li, Yupeng; Li, Xiaoqiang; Cao, Wenhua; Zhang, Xiaodong
2012-01-01
Purpose: The distal edge tracking (DET) technique in intensity-modulated proton therapy (IMPT) allows for high energy efficiency, fast and simple delivery, and simple inverse treatment planning; however, it is highly sensitive to uncertainties. In this study, the authors explored the application of DET in IMPT (IMPT-DET) and conducted robust optimization of IMPT-DET to see if the planning technique’s sensitivity to uncertainties was reduced. They also compared conventional and robust optimization of IMPT-DET with three-dimensional IMPT (IMPT-3D) to gain understanding about how plan robustness is achieved. Methods: They compared the robustness of IMPT-DET and IMPT-3D plans to uncertainties by analyzing plans created for a typical prostate cancer case and a base of skull (BOS) cancer case (using data for patients who had undergone proton therapy at our institution). Spots with the highest and second highest energy layers were chosen so that the Bragg peak would be at the distal edge of the targets in IMPT-DET using 36 equally spaced angle beams; in IMPT-3D, 3 beams with angles chosen by a beam angle optimization algorithm were planned. Dose contributions for a number of range and setup uncertainties were calculated, and a worst-case robust optimization was performed. A robust quantification technique was used to evaluate the plans’ sensitivity to uncertainties. Results: With no uncertainties considered, the DET is less robust to uncertainties than is the 3D method but offers better normal tissue protection. With robust optimization to account for range and setup uncertainties, robust optimization can improve the robustness of IMPT plans to uncertainties; however, our findings show the extent of improvement varies. Conclusions: IMPT’s sensitivity to uncertainties can be improved by using robust optimization. They found two possible mechanisms that made improvements possible: (1) a localized single-field uniform dose distribution (LSFUD) mechanism, in which the optimization algorithm attempts to produce a single-field uniform dose distribution while minimizing the patching field as much as possible; and (2) perturbed dose distribution, which follows the change in anatomical geometry. Multiple-instance optimization has more knowledge of the influence matrices; this greater knowledge improves IMPT plans’ ability to retain robustness despite the presence of uncertainties. PMID:22755694
A secure and robust information hiding technique for covert communication
NASA Astrophysics Data System (ADS)
Parah, S. A.; Sheikh, J. A.; Hafiz, A. M.; Bhat, G. M.
2015-08-01
The unprecedented advancement of multimedia and growth of the internet has made it possible to reproduce and distribute digital media easier and faster. This has given birth to information security issues, especially when the information pertains to national security, e-banking transactions, etc. The disguised form of encrypted data makes an adversary suspicious and increases the chance of attack. Information hiding overcomes this inherent problem of cryptographic systems and is emerging as an effective means of securing sensitive data being transmitted over insecure channels. In this paper, a secure and robust information hiding technique referred to as Intermediate Significant Bit Plane Embedding (ISBPE) is presented. The data to be embedded is scrambled and embedding is carried out using the concept of Pseudorandom Address Vector (PAV) and Complementary Address Vector (CAV) to enhance the security of the embedded data. The proposed ISBPE technique is fully immune to Least Significant Bit (LSB) removal/replacement attack. Experimental investigations reveal that the proposed technique is more robust to various image processing attacks like JPEG compression, Additive White Gaussian Noise (AWGN), low pass filtering, etc. compared to conventional LSB techniques. The various advantages offered by ISBPE technique make it a good candidate for covert communication.
NASA Astrophysics Data System (ADS)
Martowicz, Adam; Uhl, Tadeusz
2012-10-01
The paper discusses the applicability of a reliability- and performance-based multi-criteria robust design optimization technique for micro-electromechanical systems, considering their technological uncertainties. Nowadays, micro-devices are commonly applied systems, especially in the automotive industry, taking advantage of utilizing both the mechanical structure and electronic control circuit on one board. Their frequent use motivates the elaboration of virtual prototyping tools that can be applied in design optimization with the introduction of technological uncertainties and reliability. The authors present a procedure for the optimization of micro-devices, which is based on the theory of reliability-based robust design optimization. This takes into consideration the performance of a micro-device and its reliability assessed by means of uncertainty analysis. The procedure assumes that, for each checked design configuration, the assessment of uncertainty propagation is performed with the meta-modeling technique. The described procedure is illustrated with an example of the optimization carried out for a finite element model of a micro-mirror. The multi-physics approach allowed the introduction of several physical phenomena to correctly model the electrostatic actuation and the squeezing effect present between electrodes. The optimization was preceded by sensitivity analysis to establish the design and uncertain domains. The genetic algorithms fulfilled the defined optimization task effectively. The best discovered individuals are characterized by a minimized value of the multi-criteria objective function, simultaneously satisfying the constraint on material strength. The restriction of the maximum equivalent stresses was introduced with the conditionally formulated objective function with a penalty component. The yielded results were successfully verified with a global uniform search through the input design domain.
Robustness analysis of an air heating plant and control law by using polynomial chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colón, Diego; Ferreira, Murillo A. S.; Bueno, Átila M.
2014-12-10
This paper presents a robustness analysis of an air heating plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the air input (that forces the air through the tube) and a mass flux sensor in the output. A heating resistance warms the air as it flows inside the tube, and a thermo-couple sensor measures the air temperature. The plant has thus two inputs (the fan's rotation intensity and heat generated by the resistance, both measured in percent of the maximum value) and two outputsmore » (air temperature and air mass flux, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass flux sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.« less
Adaptive Core Simulation Employing Discrete Inverse Theory - Part II: Numerical Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Khalik, Hany S.; Turinsky, Paul J.
2005-07-15
Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. The companion paper, ''Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory,'' describes in detail the theoretical background of the proposed adaptive techniques. This paper, Part II, demonstrates several computational experiments conducted to assess the fidelity and robustness of the proposed techniques. The intentmore » is to check the ability of the adapted core simulator model to predict future core observables that are not included in the adaption or core observables that are recorded at core conditions that differ from those at which adaption is completed. Also, this paper demonstrates successful utilization of an efficient sensitivity analysis approach to calculate the sensitivity information required to perform the adaption for millions of input core parameters. Finally, this paper illustrates a useful application for adaptive simulation - reducing the inconsistencies between two different core simulator code systems, where the multitudes of input data to one code are adjusted to enhance the agreement between both codes for important core attributes, i.e., core reactivity and power distribution. Also demonstrated is the robustness of such an application.« less
A Robust Absorbing Boundary Condition for Compressible Flows
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; orgenson, Philip C. E.
2005-01-01
An absorbing non-reflecting boundary condition (NRBC) for practical computations in fluid dynamics and aeroacoustics is presented with theoretical proof. This paper is a continuation and improvement of a previous paper by the author. The absorbing NRBC technique is based on a first principle of non reflecting, which contains the essential physics that a plane wave solution of the Euler equations remains intact across the boundary. The technique is theoretically shown to work for a large class of finite volume approaches. When combined with the hyperbolic conservation laws, the NRBC is simple, robust and truly multi-dimensional; no additional implementation is needed except the prescribed physical boundary conditions. Several numerical examples in multi-dimensional spaces using two different finite volume schemes are illustrated to demonstrate its robustness in practical computations. Limitations and remedies of the technique are also discussed.
Hybrid approach for robust diagnostics of cutting tools
NASA Astrophysics Data System (ADS)
Ramamurthi, K.; Hough, C. L., Jr.
1994-03-01
A new multisensor based hybrid technique has been developed for robust diagnosis of cutting tools. The technique combines the concepts of pattern classification and real-time knowledge based systems (RTKBS) and draws upon their strengths; learning facility in the case of pattern classification and a higher level of reasoning in the case of RTKBS. It eliminates some of their major drawbacks: false alarms or delayed/lack of diagnosis in case of pattern classification and tedious knowledge base generation in case of RTKBS. It utilizes a dynamic distance classifier, developed upon a new separability criterion and a new definition of robust diagnosis for achieving these benefits. The promise of this technique has been proven concretely through an on-line diagnosis of drill wear. Its suitability for practical implementation is substantiated by the use of practical, inexpensive, machine-mounted sensors and low-cost delivery systems.
NASA Astrophysics Data System (ADS)
Genzano, Nicola; Filizzola, Carolina; Hattori, Katsumi; Lisi, Mariano; Paciello, Rossana; Pergola, Nicola; Tramutoli, Valerio
2017-04-01
In order to increase reliability and precision of short-term seismic hazard assessment (but also a possible earthquakes forecast), the integration of different kinds of observations (chemical, physical, biological, etc.) in a multi-parametric approach could be a useful strategy to be undertaken. Among the different observational methodologies, the fluctuations of Earth's thermally emitted radiation, measured by satellite sensors operating in the thermal infrared (TIR) spectral range, have been proposed since eighties as a potential earthquake precursor. Since 2001, the general change detention approach Robust Satellite Techniques (RST), used in combination with RETIRA (Robust Estimator of TIR Anomalies) index, showed good ability to discriminate anomalous TIR signals possibly associated to seismic activity, from the normal variability of TIR signal due to other causes (e.g. meteorological). In this paper, the RST data analysis approach has been implemented on TIR satellite records collected over Japan by the geostationary satellite sensor MTSAT (Multifunctional Transport SATellites) in the period June 2005 - December 2015 in order to evaluate its possible contribute to an improved multi parametric system for a time-Dependent Assessment of Seismic Hazard (t-DASH). For the first time, thermal anomalies have been identified comparing the daily TIR radiation of each location of the considered satellite portions, with its historical expected value and variation range (i.e. RST reference fields) computed using a a 30 days moving window (i.e. 15 days before and 15 days after the considered day of the year) instead than fixed monthly window. Preliminary results of correlation analysis among the appearance of Significant Sequences of TIR Anomalies (SSTAs) and time, location and magnitude of earthquakes (M≥5), performed by applying predefined space-temporal and magnitude constraints, show that 80% of SSTAs were in an apparent space-time relations with earthquakes with a false alarm rate of 20%.
Sehgal, Muhammad Shoaib B; Gondal, Iqbal; Dooley, Laurence S
2005-05-15
Microarray data are used in a range of application areas in biology, although often it contains considerable numbers of missing values. These missing values can significantly affect subsequent statistical analysis and machine learning algorithms so there is a strong motivation to estimate these values as accurately as possible before using these algorithms. While many imputation algorithms have been proposed, more robust techniques need to be developed so that further analysis of biological data can be accurately undertaken. In this paper, an innovative missing value imputation algorithm called collateral missing value estimation (CMVE) is presented which uses multiple covariance-based imputation matrices for the final prediction of missing values. The matrices are computed and optimized using least square regression and linear programming methods. The new CMVE algorithm has been compared with existing estimation techniques including Bayesian principal component analysis imputation (BPCA), least square impute (LSImpute) and K-nearest neighbour (KNN). All these methods were rigorously tested to estimate missing values in three separate non-time series (ovarian cancer based) and one time series (yeast sporulation) dataset. Each method was quantitatively analyzed using the normalized root mean square (NRMS) error measure, covering a wide range of randomly introduced missing value probabilities from 0.01 to 0.2. Experiments were also undertaken on the yeast dataset, which comprised 1.7% actual missing values, to test the hypothesis that CMVE performed better not only for randomly occurring but also for a real distribution of missing values. The results confirmed that CMVE consistently demonstrated superior and robust estimation capability of missing values compared with other methods for both series types of data, for the same order of computational complexity. A concise theoretical framework has also been formulated to validate the improved performance of the CMVE algorithm. The CMVE software is available upon request from the authors.
A robust background regression based score estimation algorithm for hyperspectral anomaly detection
NASA Astrophysics Data System (ADS)
Zhao, Rui; Du, Bo; Zhang, Liangpei; Zhang, Lefei
2016-12-01
Anomaly detection has become a hot topic in the hyperspectral image analysis and processing fields in recent years. The most important issue for hyperspectral anomaly detection is the background estimation and suppression. Unreasonable or non-robust background estimation usually leads to unsatisfactory anomaly detection results. Furthermore, the inherent nonlinearity of hyperspectral images may cover up the intrinsic data structure in the anomaly detection. In order to implement robust background estimation, as well as to explore the intrinsic data structure of the hyperspectral image, we propose a robust background regression based score estimation algorithm (RBRSE) for hyperspectral anomaly detection. The Robust Background Regression (RBR) is actually a label assignment procedure which segments the hyperspectral data into a robust background dataset and a potential anomaly dataset with an intersection boundary. In the RBR, a kernel expansion technique, which explores the nonlinear structure of the hyperspectral data in a reproducing kernel Hilbert space, is utilized to formulate the data as a density feature representation. A minimum squared loss relationship is constructed between the data density feature and the corresponding assigned labels of the hyperspectral data, to formulate the foundation of the regression. Furthermore, a manifold regularization term which explores the manifold smoothness of the hyperspectral data, and a maximization term of the robust background average density, which suppresses the bias caused by the potential anomalies, are jointly appended in the RBR procedure. After this, a paired-dataset based k-nn score estimation method is undertaken on the robust background and potential anomaly datasets, to implement the detection output. The experimental results show that RBRSE achieves superior ROC curves, AUC values, and background-anomaly separation than some of the other state-of-the-art anomaly detection methods, and is easy to implement in practice.
A comparison of solute-transport solution techniques based on inverse modelling results
Mehl, S.; Hill, M.C.
2000-01-01
Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly distributed homogeneous blocks of five sand types. This experimental model provides an outstanding opportunity to compare the solution techniques because of the heterogeneous hydraulic conductivity distribution of known structure, and the availability of detailed measurements with which to compare simulated concentrations. The present work uses this opportunity to investigate how three common types of results-simulated breakthrough curves, sensitivity analysis, and calibrated parameter values-change in this heterogeneous situation, given the different methods of simulating solute transport. The results show that simulated peak concentrations, even at very fine grid spacings, varied because of different amounts of numerical dispersion. Sensitivity analysis results were robust in that they were independent of the solution technique. They revealed extreme correlation between hydraulic conductivity and porosity, and that the breakthrough curve data did not provide enough information about the dispersivities to estimate individual values for the five sands. However, estimated hydraulic conductivity values are significantly influenced by both the large possible variations in model dispersion and the amount of numerical dispersion present in the solution technique.Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly distributed homogeneous blocks of five sand types. This experimental model provides an outstanding opportunity to compare the solution techniques because of the heterogeneous hydraulic conductivity distribution of known structure, and the availability of detailed measurements with which to compare simulated concentrations. The present work uses this opportunity to investigate how three common types of results - simulated breakthrough curves, sensitivity analysis, and calibrated parameter values - change in this heterogeneous situation, given the different methods of simulating solute transport. The results show that simulated peak concentrations, even at very fine grid spacings, varied because of different amounts of numerical dispersion. Sensitivity analysis results were robust in that they were independent of the solution technique. They revealed extreme correlation between hydraulic conductivity and porosity, and that the breakthrough curve data did not provide enough information about the dispersivities to estimate individual values for the five sands. However, estimated hydraulic conductivity values are significantly influenced by both the large possible variations in model dispersion and the amount of numerical dispersion present in the solution technique.
Motion Evaluation for Rehabilitation Training of the Disabled
NASA Astrophysics Data System (ADS)
Kim, Tae-Young; Park, Jun; Lim, Cheol-Su
In this paper, a motion evaluation technique for rehabilitation training is introduced. Motion recognition technologies have been developed for determining matching motions in the training set. However, we need to measure how well and how much of the motion has been followed for training motion evaluation. We employed a Finite State Machine as a framework of motion evaluation. For similarity analysis, we used weighted angular value differences although any template matching algorithm may be used. For robustness under illumination changes, IR LED's and cameras with IR-pass filter were used. Developed technique was successfully used for rehabilitation training of the disabled. Therapists appraised the system as practically useful.
NASA Astrophysics Data System (ADS)
Gazzarri, J. I.; Kesler, O.
In the first part of this two-paper series, we presented a numerical model of the impedance behaviour of a solid oxide fuel cell (SOFC) aimed at simulating the change in the impedance spectrum induced by contact degradation at the interconnect-electrode, and at the electrode-electrolyte interfaces. The purpose of that investigation was to develop a non-invasive diagnostic technique to identify degradation modes in situ. In the present paper, we appraise the predictive capabilities of the proposed method in terms of its robustness to uncertainties in the input parameters, many of which are very difficult to measure independently. We applied this technique to the degradation modes simulated in Part I, in addition to anode sulfur poisoning. Electrode delamination showed the highest robustness to input parameter variations, followed by interconnect oxidation and interconnect detachment. The most sensitive degradation mode was sulfur poisoning, due to strong parameter interactions. In addition, we simulate several simultaneous two-degradation-mode scenarios, assessing the method's capabilities and limitations for the prediction of electrochemical behaviour of SOFC's undergoing multiple simultaneous degradation modes.
NASA Astrophysics Data System (ADS)
Adhikari, Nilanjan; Amin, Sk. Abdul; Saha, Achintya; Jha, Tarun
2018-03-01
Matrix metalloproteinase-2 (MMP-2) is a promising pharmacological target for designing potential anticancer drugs. MMP-2 plays critical functions in apoptosis by cleaving the DNA repair enzyme namely poly (ADP-ribose) polymerase (PARP). Moreover, MMP-2 expression triggers the vascular endothelial growth factor (VEGF) having a positive influence on tumor size, invasion, and angiogenesis. Therefore, it is an urgent need to develop potential MMP-2 inhibitors without any toxicity but better pharmacokinetic property. In this article, robust validated multi-quantitative structure-activity relationship (QSAR) modeling approaches were attempted on a dataset of 222 MMP-2 inhibitors to explore the important structural and pharmacophoric requirements for higher MMP-2 inhibition. Different validated regression and classification-based QSARs, pharmacophore mapping and 3D-QSAR techniques were performed. These results were challenged and subjected to further validation to explain 24 in house MMP-2 inhibitors to judge the reliability of these models further. All these models were individually validated internally as well as externally and were supported and validated by each other. These results were further justified by molecular docking analysis. Modeling techniques adopted here not only helps to explore the necessary structural and pharmacophoric requirements but also for the overall validation and refinement techniques for designing potential MMP-2 inhibitors.
Detecting Weak Spectral Lines in Interferometric Data through Matched Filtering
NASA Astrophysics Data System (ADS)
Loomis, Ryan A.; Öberg, Karin I.; Andrews, Sean M.; Walsh, Catherine; Czekala, Ian; Huang, Jane; Rosenfeld, Katherine A.
2018-04-01
Modern radio interferometers enable observations of spectral lines with unprecedented spatial resolution and sensitivity. In spite of these technical advances, many lines of interest are still at best weakly detected and therefore necessitate detection and analysis techniques specialized for the low signal-to-noise ratio (S/N) regime. Matched filters can leverage knowledge of the source structure and kinematics to increase sensitivity of spectral line observations. Application of the filter in the native Fourier domain improves S/N while simultaneously avoiding the computational cost and ambiguities associated with imaging, making matched filtering a fast and robust method for weak spectral line detection. We demonstrate how an approximate matched filter can be constructed from a previously observed line or from a model of the source, and we show how this filter can be used to robustly infer a detection significance for weak spectral lines. When applied to ALMA Cycle 2 observations of CH3OH in the protoplanetary disk around TW Hya, the technique yields a ≈53% S/N boost over aperture-based spectral extraction methods, and we show that an even higher boost will be achieved for observations at higher spatial resolution. A Python-based open-source implementation of this technique is available under the MIT license at http://github.com/AstroChem/VISIBLE.
A Robust and Device-Free System for the Recognition and Classification of Elderly Activities.
Li, Fangmin; Al-Qaness, Mohammed Abdulaziz Aide; Zhang, Yong; Zhao, Bihai; Luan, Xidao
2016-12-01
Human activity recognition, tracking and classification is an essential trend in assisted living systems that can help support elderly people with their daily activities. Traditional activity recognition approaches depend on vision-based or sensor-based techniques. Nowadays, a novel promising technique has obtained more attention, namely device-free human activity recognition that neither requires the target object to wear or carry a device nor install cameras in a perceived area. The device-free technique for activity recognition uses only the signals of common wireless local area network (WLAN) devices available everywhere. In this paper, we present a novel elderly activities recognition system by leveraging the fluctuation of the wireless signals caused by human motion. We present an efficient method to select the correct data from the Channel State Information (CSI) streams that were neglected in previous approaches. We apply a Principle Component Analysis method that exposes the useful information from raw CSI. Thereafter, Forest Decision (FD) is adopted to classify the proposed activities and has gained a high accuracy rate. Extensive experiments have been conducted in an indoor environment to test the feasibility of the proposed system with a total of five volunteer users. The evaluation shows that the proposed system is applicable and robust to electromagnetic noise.
Zheng, Xianlin; Lu, Yiqing; Zhao, Jiangbo; Zhang, Yuhai; Ren, Wei; Liu, Deming; Lu, Jie; Piper, James A; Leif, Robert C; Liu, Xiaogang; Jin, Dayong
2016-01-19
Compared with routine microscopy imaging of a few analytes at a time, rapid scanning through the whole sample area of a microscope slide to locate every single target object offers many advantages in terms of simplicity, speed, throughput, and potential for robust quantitative analysis. Existing techniques that accommodate solid-phase samples incorporating individual micrometer-sized targets generally rely on digital microscopy and image analysis, with intrinsically low throughput and reliability. Here, we report an advanced on-the-fly stage scanning method to achieve high-precision target location across the whole slide. By integrating X- and Y-axis linear encoders to a motorized stage as the virtual "grids" that provide real-time positional references, we demonstrate an orthogonal scanning automated microscopy (OSAM) technique which can search a coverslip area of 50 × 24 mm(2) in just 5.3 min and locate individual 15 μm lanthanide luminescent microspheres with standard deviations of 1.38 and 1.75 μm in X and Y directions. Alongside implementation of an autofocus unit that compensates the tilt of a slide in the Z-axis in real time, we increase the luminescence detection efficiency by 35% with an improved coefficient of variation. We demonstrate the capability of advanced OSAM for robust quantification of luminescence intensities and lifetimes for a variety of micrometer-scale luminescent targets, specifically single down-shifting and upconversion microspheres, crystalline microplates, and color-barcoded microrods, as well as quantitative suspension array assays of biotinylated-DNA functionalized upconversion nanoparticles.
Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
Ge, Ruiyang; Wang, Yubao; Zhang, Jipeng; Yao, Li; Zhang, Hang; Long, Zhiying
2016-04-01
As a blind source separation technique, independent component analysis (ICA) has many applications in functional magnetic resonance imaging (fMRI). Although either temporal or spatial prior information has been introduced into the constrained ICA and semi-blind ICA methods to improve the performance of ICA in fMRI data analysis, certain types of additional prior information, such as the sparsity, has seldom been added to the ICA algorithms as constraints. In this study, we proposed a SparseFastICA method by adding the source sparsity as a constraint to the FastICA algorithm to improve the performance of the widely used FastICA. The source sparsity is estimated through a smoothed ℓ0 norm method. We performed experimental tests on both simulated data and real fMRI data to investigate the feasibility and robustness of SparseFastICA and made a performance comparison between SparseFastICA, FastICA and Infomax ICA. Results of the simulated and real fMRI data demonstrated the feasibility and robustness of SparseFastICA for the source separation in fMRI data. Both the simulated and real fMRI experimental results showed that SparseFastICA has better robustness to noise and better spatial detection power than FastICA. Although the spatial detection power of SparseFastICA and Infomax did not show significant difference, SparseFastICA had faster computation speed than Infomax. SparseFastICA was comparable to the Infomax algorithm with a faster computation speed. More importantly, SparseFastICA outperformed FastICA in robustness and spatial detection power and can be used to identify more accurate brain networks than FastICA algorithm. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Campbell, Ian S.; Ton, Alain T.; Mulligan, Christopher C.
2011-07-01
An ambient mass spectrometric method based on desorption electrospray ionization (DESI) has been developed to allow rapid, direct analysis of contaminated water samples, and the technique was evaluated through analysis of a wide array of pharmaceutical and personal care product (PPCP) contaminants. Incorporating direct infusion of aqueous sample and thermal assistance into the source design has allowed low ppt detection limits for the target analytes in drinking water matrices. With this methodology, mass spectral information can be collected in less than 1 min, consuming ~100 μL of total sample. Quantitative ability was also demonstrated without the use of an internal standard, yielding decent linearity and reproducibility. Initial results suggest that this source configuration is resistant to carryover effects and robust towards multi-component samples. The rapid, continuous analysis afforded by this method offers advantages in terms of sample analysis time and throughput over traditional hyphenated mass spectrometric techniques.
Campbell, Ian S; Ton, Alain T; Mulligan, Christopher C
2011-07-01
An ambient mass spectrometric method based on desorption electrospray ionization (DESI) has been developed to allow rapid, direct analysis of contaminated water samples, and the technique was evaluated through analysis of a wide array of pharmaceutical and personal care product (PPCP) contaminants. Incorporating direct infusion of aqueous sample and thermal assistance into the source design has allowed low ppt detection limits for the target analytes in drinking water matrices. With this methodology, mass spectral information can be collected in less than 1 min, consuming ~100 μL of total sample. Quantitative ability was also demonstrated without the use of an internal standard, yielding decent linearity and reproducibility. Initial results suggest that this source configuration is resistant to carryover effects and robust towards multi-component samples. The rapid, continuous analysis afforded by this method offers advantages in terms of sample analysis time and throughput over traditional hyphenated mass spectrometric techniques.
Robust design of a 2-DOF GMV controller: a direct self-tuning and fuzzy scheduling approach.
Silveira, Antonio S; Rodríguez, Jaime E N; Coelho, Antonio A R
2012-01-01
This paper presents a study on self-tuning control strategies with generalized minimum variance control in a fixed two degree of freedom structure-or simply GMV2DOF-within two adaptive perspectives. One, from the process model point of view, using a recursive least squares estimator algorithm for direct self-tuning design, and another, using a Mamdani fuzzy GMV2DOF parameters scheduling technique based on analytical and physical interpretations from robustness analysis of the system. Both strategies are assessed by simulation and real plants experimentation environments composed of a damped pendulum and an under development wind tunnel from the Department of Automation and Systems of the Federal University of Santa Catarina. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Mehrotra, Sanjay; Kim, Kibaek
2011-12-01
We consider the problem of outcomes based budget allocations to chronic disease prevention programs across the United States (US) to achieve greater geographical healthcare equity. We use Diabetes Prevention and Control Programs (DPCP) by the Center for Disease Control and Prevention (CDC) as an example. We present a multi-criteria robust weighted sum model for such multi-criteria decision making in a group decision setting. The principal component analysis and an inverse linear programming techniques are presented and used to study the actual 2009 budget allocation by CDC. Our results show that the CDC budget allocation process for the DPCPs is not likely model based. In our empirical study, the relative weights for different prevalence and comorbidity factors and the corresponding budgets obtained under different weight regions are discussed. Parametric analysis suggests that money should be allocated to states to promote diabetes education and to increase patient-healthcare provider interactions to reduce disparity across the US.
NASA Astrophysics Data System (ADS)
Deliparaschos, Kyriakos M.; Michail, Konstantinos; Zolotas, Argyrios C.; Tzafestas, Spyros G.
2016-05-01
This work presents a field programmable gate array (FPGA)-based embedded software platform coupled with a software-based plant, forming a hardware-in-the-loop (HIL) that is used to validate a systematic sensor selection framework. The systematic sensor selection framework combines multi-objective optimization, linear-quadratic-Gaussian (LQG)-type control, and the nonlinear model of a maglev suspension. A robustness analysis of the closed-loop is followed (prior to implementation) supporting the appropriateness of the solution under parametric variation. The analysis also shows that quantization is robust under different controller gains. While the LQG controller is implemented on an FPGA, the physical process is realized in a high-level system modeling environment. FPGA technology enables rapid evaluation of the algorithms and test designs under realistic scenarios avoiding heavy time penalty associated with hardware description language (HDL) simulators. The HIL technique facilitates significant speed-up in the required execution time when compared to its software-based counterpart model.
Critical review of the United Kingdom's "gold standard" survey of public attitudes to science.
Smith, Benjamin K; Jensen, Eric A
2016-02-01
Since 2000, the UK government has funded surveys aimed at understanding the UK public's attitudes toward science, scientists, and science policy. Known as the Public Attitudes to Science series, these surveys and their predecessors have long been used in UK science communication policy, practice, and scholarship as a source of authoritative knowledge about science-related attitudes and behaviors. Given their importance and the significant public funding investment they represent, detailed academic scrutiny of the studies is needed. In this essay, we critically review the most recently published Public Attitudes to Science survey (2014), assessing the robustness of its methods and claims. The review casts doubt on the quality of key elements of the Public Attitudes to Science 2014 survey data and analysis while highlighting the importance of robust quantitative social research methodology. Our analysis comparing the main sample and booster sample for young people demonstrates that quota sampling cannot be assumed equivalent to probability-based sampling techniques. © The Author(s) 2016.
Doménech, José David; Muñoz, Pascual; Capmany, José
2009-11-09
In this paper, a novel technique to set the coupling constant between cells of a coupled resonator optical waveguide (CROW) device, in order to tailor the filter response, is presented. The technique is demonstrated by simulation assuming a racetrack ring resonator geometry. It consists on changing the effective length of the coupling section by applying a longitudinal offset between the resonators. On the contrary, the conventional techniques are based in the transversal change of the distance between the ring resonators, in steps that are commonly below the current fabrication resolution step (nm scale), leading to strong restrictions in the designs. The proposed longitudinal offset technique allows a more precise control of the coupling and presents an increased robustness against the fabrication limitations, since the needed resolution step is two orders of magnitude higher. Both techniques are compared in terms of the transmission esponse of CROW devices, under finite fabrication resolution steps.
Advantages of Synthetic Noise and Machine Learning for Analyzing Radioecological Data Sets.
Shuryak, Igor
2017-01-01
The ecological effects of accidental or malicious radioactive contamination are insufficiently understood because of the hazards and difficulties associated with conducting studies in radioactively-polluted areas. Data sets from severely contaminated locations can therefore be small. Moreover, many potentially important factors, such as soil concentrations of toxic chemicals, pH, and temperature, can be correlated with radiation levels and with each other. In such situations, commonly-used statistical techniques like generalized linear models (GLMs) may not be able to provide useful information about how radiation and/or these other variables affect the outcome (e.g. abundance of the studied organisms). Ensemble machine learning methods such as random forests offer powerful alternatives. We propose that analysis of small radioecological data sets by GLMs and/or machine learning can be made more informative by using the following techniques: (1) adding synthetic noise variables to provide benchmarks for distinguishing the performances of valuable predictors from irrelevant ones; (2) adding noise directly to the predictors and/or to the outcome to test the robustness of analysis results against random data fluctuations; (3) adding artificial effects to selected predictors to test the sensitivity of the analysis methods in detecting predictor effects; (4) running a selected machine learning method multiple times (with different random-number seeds) to test the robustness of the detected "signal"; (5) using several machine learning methods to test the "signal's" sensitivity to differences in analysis techniques. Here, we applied these approaches to simulated data, and to two published examples of small radioecological data sets: (I) counts of fungal taxa in samples of soil contaminated by the Chernobyl nuclear power plan accident (Ukraine), and (II) bacterial abundance in soil samples under a ruptured nuclear waste storage tank (USA). We show that the proposed techniques were advantageous compared with the methodology used in the original publications where the data sets were presented. Specifically, our approach identified a negative effect of radioactive contamination in data set I, and suggested that in data set II stable chromium could have been a stronger limiting factor for bacterial abundance than the radionuclides 137Cs and 99Tc. This new information, which was extracted from these data sets using the proposed techniques, can potentially enhance the design of radioactive waste bioremediation.
Advantages of Synthetic Noise and Machine Learning for Analyzing Radioecological Data Sets
Shuryak, Igor
2017-01-01
The ecological effects of accidental or malicious radioactive contamination are insufficiently understood because of the hazards and difficulties associated with conducting studies in radioactively-polluted areas. Data sets from severely contaminated locations can therefore be small. Moreover, many potentially important factors, such as soil concentrations of toxic chemicals, pH, and temperature, can be correlated with radiation levels and with each other. In such situations, commonly-used statistical techniques like generalized linear models (GLMs) may not be able to provide useful information about how radiation and/or these other variables affect the outcome (e.g. abundance of the studied organisms). Ensemble machine learning methods such as random forests offer powerful alternatives. We propose that analysis of small radioecological data sets by GLMs and/or machine learning can be made more informative by using the following techniques: (1) adding synthetic noise variables to provide benchmarks for distinguishing the performances of valuable predictors from irrelevant ones; (2) adding noise directly to the predictors and/or to the outcome to test the robustness of analysis results against random data fluctuations; (3) adding artificial effects to selected predictors to test the sensitivity of the analysis methods in detecting predictor effects; (4) running a selected machine learning method multiple times (with different random-number seeds) to test the robustness of the detected “signal”; (5) using several machine learning methods to test the “signal’s” sensitivity to differences in analysis techniques. Here, we applied these approaches to simulated data, and to two published examples of small radioecological data sets: (I) counts of fungal taxa in samples of soil contaminated by the Chernobyl nuclear power plan accident (Ukraine), and (II) bacterial abundance in soil samples under a ruptured nuclear waste storage tank (USA). We show that the proposed techniques were advantageous compared with the methodology used in the original publications where the data sets were presented. Specifically, our approach identified a negative effect of radioactive contamination in data set I, and suggested that in data set II stable chromium could have been a stronger limiting factor for bacterial abundance than the radionuclides 137Cs and 99Tc. This new information, which was extracted from these data sets using the proposed techniques, can potentially enhance the design of radioactive waste bioremediation. PMID:28068401
Advanced Vibration Analysis Tool Developed for Robust Engine Rotor Designs
NASA Technical Reports Server (NTRS)
Min, James B.
2005-01-01
The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo- Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using natural-frequency curve veerings to identify ranges of operating conditions (rotational speeds and engine orders) in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued.
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.; Chang, B.-C.; Fischl, Robert
1989-01-01
In the design and analysis of robust control systems for uncertain plants, the technique of formulating what is termed an M-delta model has become widely accepted and applied in the robust control literature. The M represents the transfer function matrix M(s) of the nominal system, and delta represents an uncertainty matrix acting on M(s). The uncertainty can arise from various sources, such as structured uncertainty from parameter variations or multiple unstructured uncertainties from unmodeled dynamics and other neglected phenomena. In general, delta is a block diagonal matrix, and for real parameter variations the diagonal elements are real. As stated in the literature, this structure can always be formed for any linear interconnection of inputs, outputs, transfer functions, parameter variations, and perturbations. However, very little of the literature addresses methods for obtaining this structure, and none of this literature addresses a general methodology for obtaining a minimal M-delta model for a wide class of uncertainty. Since have a delta matrix of minimum order would improve the efficiency of structured singular value (or multivariable stability margin) computations, a method of obtaining a minimal M-delta model would be useful. A generalized method of obtaining a minimal M-delta structure for systems with real parameter variations is given.
Jeuken, Judith; Sijben, Angelique; Alenda, Cristina; Rijntjes, Jos; Dekkers, Marieke; Boots-Sprenger, Sandra; McLendon, Roger; Wesseling, Pieter
2009-10-01
Epidermal growth factor receptor (EGFR) is commonly affected in cancer, generally in the form of an increase in DNA copy number and/or as mutation variants [e.g., EGFR variant III (EGFRvIII), an in-frame deletion of exons 2-7]. While detection of EGFR aberrations can be expected to be relevant for glioma patients, such analysis has not yet been implemented in a routine setting, also because feasible and robust assays were lacking. We evaluated multiplex ligation-dependent probe amplification (MLPA) for detection of EGFR amplification and EGFRvIII in DNA of a spectrum of 216 diffuse gliomas. EGFRvIII detection was verified at the protein level by immunohistochemistry and at the RNA level using the conventionally used endpoint RT-PCR as well as a newly developed quantitative RT-PCR. Compared to these techniques, the DNA-based MLPA assay for EGFR/EGFRvIII analysis tested showed 100% sensitivity and specificity. We conclude that MLPA is a robust assay for detection of EGFR/EGFRvIII aberrations. While the exact diagnostic, prognostic and predictive value of such EGFR testing remains to be seen, MLPA has great potential as it can reliably and relatively easily be performed on routinely processed (formalin-fixed, paraffin-embedded) tumor tissue in combination with testing for other relevant glioma markers.
Fractal dimension based damage identification incorporating multi-task sparse Bayesian learning
NASA Astrophysics Data System (ADS)
Huang, Yong; Li, Hui; Wu, Stephen; Yang, Yongchao
2018-07-01
Sensitivity to damage and robustness to noise are critical requirements for the effectiveness of structural damage detection. In this study, a two-stage damage identification method based on the fractal dimension analysis and multi-task Bayesian learning is presented. The Higuchi’s fractal dimension (HFD) based damage index is first proposed, directly examining the time-frequency characteristic of local free vibration data of structures based on the irregularity sensitivity and noise robustness analysis of HFD. Katz’s fractal dimension is then presented to analyze the abrupt irregularity change of the spatial curve of the displacement mode shape along the structure. At the second stage, the multi-task sparse Bayesian learning technique is employed to infer the final damage localization vector, which borrow the dependent strength of the two fractal dimension based damage indication information and also incorporate the prior knowledge that structural damage occurs at a limited number of locations in a structure in the absence of its collapse. To validate the capability of the proposed method, a steel beam and a bridge, named Yonghe Bridge, are analyzed as illustrative examples. The damage identification results demonstrate that the proposed method is capable of localizing single and multiple damages regardless of its severity, and show superior robustness under heavy noise as well.
Fiber optic sensor for continuous health monitoring in CFRP composite materials
NASA Astrophysics Data System (ADS)
Rippert, Laurent; Papy, Jean-Michel; Wevers, Martine; Van Huffel, Sabine
2002-07-01
An intensity modulated sensor, based on the microbending concept, has been incorporated in laminates produced from a C/epoxy prepreg. Pencil lead break tests (Hsu-Neilsen sources) and tensile tests have been performed on this material. In this research study, fibre optic sensors will be proven to offer an alternative for the robust piezoelectric transducers used for Acoustic Emission (AE) monitoring. The main emphasis has been put on the use of advanced signal processing techniques based on time-frequency analysis. The signal Short Time Fourier Transform (STFT) has been computed and several robust noise reduction algorithms, such as Wiener adaptive filtering, improved spectral subtraction filtering, and Singular Value Decomposition (SVD) -based filtering, have been applied. An energy and frequency -based detection criterion is put forward to detect transient signals that can be correlated with Modal Acoustic Emission (MAE) results and thus damage in the composite material. There is a strong indication that time-frequency analysis and the Hankel Total Least Squares (HTLS) method can also be used for damage characterization. This study shows that the signal from a quite simple microbend optical sensor contains information on the elastic energy released whenever damage is being introduced in the host material by mechanical loading. Robust algorithms can be used to retrieve and analyze this information.
Low order H∞ optimal control for ACFA blended wing body aircraft
NASA Astrophysics Data System (ADS)
Haniš, T.; Kucera, V.; Hromčík, M.
2013-12-01
Advanced nonconvex nonsmooth optimization techniques for fixed-order H∞ robust control are proposed in this paper for design of flight control systems (FCS) with prescribed structure. Compared to classical techniques - tuning of and successive closures of particular single-input single-output (SISO) loops like dampers, attitude stabilizers, etc. - all loops are designed simultaneously by means of quite intuitive weighting filters selection. In contrast to standard optimization techniques, though (H2, H∞ optimization), the resulting controller respects the prescribed structure in terms of engaged channels and orders (e. g., proportional (P), proportional-integral (PI), and proportional-integralderivative (PID) controllers). In addition, robustness with regard to multimodel uncertainty is also addressed which is of most importance for aerospace applications as well. Such a way, robust controllers for various Mach numbers, altitudes, or mass cases can be obtained directly, based only on particular mathematical models for respective combinations of the §ight parameters.
Correlation techniques to determine model form in robust nonlinear system realization/identification
NASA Technical Reports Server (NTRS)
Stry, Greselda I.; Mook, D. Joseph
1991-01-01
The fundamental challenge in identification of nonlinear dynamic systems is determining the appropriate form of the model. A robust technique is presented which essentially eliminates this problem for many applications. The technique is based on the Minimum Model Error (MME) optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature is the ability to identify nonlinear dynamic systems without prior assumption regarding the form of the nonlinearities, in contrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. Model form is determined via statistical correlation of the MME optimal state estimates with the MME optimal model error estimates. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.
NASA Astrophysics Data System (ADS)
Taylor, Stephen; Ellis, Justin; Gair, Jonathan
2014-11-01
We describe several new techniques which accelerate Bayesian searches for continuous gravitational-wave emission from supermassive black-hole binaries using pulsar-timing arrays. These techniques mitigate the problematic increase of search dimensionality with the size of the pulsar array which arises from having to include an extra parameter per pulsar as the array is expanded. This extra parameter corresponds to searching over the phase of the gravitational wave as it propagates past each pulsar so that we can coherently include the pulsar term in our search strategies. Our techniques make the analysis tractable with powerful evidence-evaluation packages like MultiNest. We find good agreement of our techniques with the parameter-estimation and Bayes factor evaluation performed with full signal templates and conclude that these techniques make excellent first-cut tools for detection and characterization of continuous gravitational-wave signals with pulsar-timing arrays. Crucially, at low to moderate signal-to-noise ratios the factor by which the analysis is sped up can be ≳100 , permitting rigorous programs of systematic injection and recovery of signals to establish robust detection criteria within a Bayesian formalism.
Gauglitz, Günter; Wimmer, Benedikt; Melzer, Tanja; Huhn, Carolin
2018-01-01
Since its introduction in 1974, the herbicide glyphosate has experienced a tremendous increase in use, with about one million tons used annually today. This review focuses on sensors and electromigration separation techniques as alternatives to chromatographic methods for the analysis of glyphosate and its metabolite aminomethyl phosphonic acid. Even with the large number of studies published, glyphosate analysis remains challenging. With its polar and depending on pH even ionic functional groups lacking a chromophore, it is difficult to analyze with chromatographic techniques. Its analysis is mostly achieved after derivatization. Its purification from food and environmental samples inevitably results incoextraction of ionic matrix components, with a further impact on analysis derivatization. Its purification from food and environmental samples inevitably results in coextraction of ionic matrix components, with a further impact on analysis and also derivatization reactions. Its ability to form chelates with metal cations is another obstacle for precise quantification. Lastly, the low limits of detection required by legislation have to be met. These challenges preclude glyphosate from being analyzed together with many other pesticides in common multiresidue (chromatographic) methods. For better monitoring of glyphosate in environmental and food samples, further fast and robust methods are required. In this review, analytical methods are summarized and discussed from the perspective of biosensors and various formats of electromigration separation techniques, including modes such as capillary electrophoresis and micellar electrokinetic chromatography, combined with various detection techniques. These methods are critically discussed with regard to matrix tolerance, limits of detection reached, and selectivity.
Protocol Design Challenges in the Detection of Awareness in Aware Subjects Using EEG Signals.
Henriques, J; Gabriel, D; Grigoryeva, L; Haffen, E; Moulin, T; Aubry, R; Pazart, L; Ortega, J-P
2016-10-01
Recent studies have evidenced serious difficulties in detecting covert awareness with electroencephalography-based techniques both in unresponsive patients and in healthy control subjects. This work reproduces the protocol design in two recent mental imagery studies with a larger group comprising 20 healthy volunteers. The main goal is assessing if modifications in the signal extraction techniques, training-testing/cross-validation routines, and hypotheses evoked in the statistical analysis, can provide solutions to the serious difficulties documented in the literature. The lack of robustness in the results advises for further search of alternative protocols more suitable for machine learning classification and of better performing signal treatment techniques. Specific recommendations are made using the findings in this work. © EEG and Clinical Neuroscience Society (ECNS) 2014.
Efficient Analysis of Mass Spectrometry Data Using the Isotope Wavelet
NASA Astrophysics Data System (ADS)
Hussong, Rene; Tholey, Andreas; Hildebrandt, Andreas
2007-09-01
Mass spectrometry (MS) has become today's de-facto standard for high-throughput analysis in proteomics research. Its applications range from toxicity analysis to MS-based diagnostics. Often, the time spent on the MS experiment itself is significantly less than the time necessary to interpret the measured signals, since the amount of data can easily exceed several gigabytes. In addition, automated analysis is hampered by baseline artifacts, chemical as well as electrical noise, and an irregular spacing of data points. Thus, filtering techniques originating from signal and image analysis are commonly employed to address these problems. Unfortunately, smoothing, base-line reduction, and in particular a resampling of data points can affect important characteristics of the experimental signal. To overcome these problems, we propose a new family of wavelet functions based on the isotope wavelet, which is hand-tailored for the analysis of mass spectrometry data. The resulting technique is theoretically well-founded and compares very well with standard peak picking tools, since it is highly robust against noise spoiling the data, but at the same time sufficiently sensitive to detect even low-abundant peptides.
NASA Astrophysics Data System (ADS)
Ben-Zikri, Yehuda Kfir; Linte, Cristian A.
2016-03-01
Region of interest detection is a precursor to many medical image processing and analysis applications, including segmentation, registration and other image manipulation techniques. The optimal region of interest is often selected manually, based on empirical knowledge and features of the image dataset. However, if inconsistently identified, the selected region of interest may greatly affect the subsequent image analysis or interpretation steps, in turn leading to incomplete assessment during computer-aided diagnosis or incomplete visualization or identification of the surgical targets, if employed in the context of pre-procedural planning or image-guided interventions. Therefore, the need for robust, accurate and computationally efficient region of interest localization techniques is prevalent in many modern computer-assisted diagnosis and therapy applications. Here we propose a fully automated, robust, a priori learning-based approach that provides reliable estimates of the left and right ventricle features from cine cardiac MR images. The proposed approach leverages the temporal frame-to-frame motion extracted across a range of short axis left ventricle slice images with small training set generated from les than 10% of the population. This approach is based on histogram of oriented gradients features weighted by local intensities to first identify an initial region of interest depicting the left and right ventricles that exhibits the greatest extent of cardiac motion. This region is correlated with the homologous region that belongs to the training dataset that best matches the test image using feature vector correlation techniques. Lastly, the optimal left ventricle region of interest of the test image is identified based on the correlation of known ground truth segmentations associated with the training dataset deemed closest to the test image. The proposed approach was tested on a population of 100 patient datasets and was validated against the ground truth region of interest of the test images manually annotated by experts. This tool successfully identified a mask around the LV and RV and furthermore the minimal region of interest around the LV that fully enclosed the left ventricle from all testing datasets, yielding a 98% overlap with their corresponding ground truth. The achieved mean absolute distance error between the two contours that normalized by the radius of the ground truth is 0.20 +/- 0.09.
Image Analysis in Plant Sciences: Publish Then Perish.
Lobet, Guillaume
2017-07-01
Image analysis has become a powerful technique for most plant scientists. In recent years dozens of image analysis tools have been published in plant science journals. These tools cover the full spectrum of plant scales, from single cells to organs and canopies. However, the field of plant image analysis remains in its infancy. It still has to overcome important challenges, such as the lack of robust validation practices or the absence of long-term support. In this Opinion article, I: (i) present the current state of the field, based on data from the plant-image-analysis.org database; (ii) identify the challenges faced by its community; and (iii) propose workable ways of improvement. Copyright © 2017 Elsevier Ltd. All rights reserved.
Robust, Decoupled, Flight Control Design with Rate Saturating Actuators
NASA Technical Reports Server (NTRS)
Snell, S. A.; Hess, R. A.
1997-01-01
Techniques for the design of control systems for manually controlled, high-performance aircraft must provide the following: (1) multi-input, multi-output (MIMO) solutions, (2) acceptable handling qualities including no tendencies for pilot-induced oscillations, (3) a tractable approach for compensator design, (4) performance and stability robustness in the presence of significant plant uncertainty, and (5) performance and stability robustness in the presence actuator saturation (particularly rate saturation). A design technique built upon Quantitative Feedback Theory is offered as a candidate methodology which can provide flight control systems meeting these requirements, and do so over a considerable part of the flight envelope. An example utilizing a simplified model of a supermaneuverable fighter aircraft demonstrates the proposed design methodology.
Evolutionary computing for the design search and optimization of space vehicle power subsystems
NASA Technical Reports Server (NTRS)
Kordon, Mark; Klimeck, Gerhard; Hanks, David; Hua, Hook
2004-01-01
Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment. Out preliminary results demonstrate that this approach has the potential to improve the space system trade study process by allowing engineers to statistically weight subsystem goals of mass, cost and performance then automatically size power elements based on anticipated performance of the subsystem rather than on worst-case estimates.
Robust Methods for Moderation Analysis with a Two-Level Regression Model.
Yang, Miao; Yuan, Ke-Hai
2016-01-01
Moderation analysis has many applications in social sciences. Most widely used estimation methods for moderation analysis assume that errors are normally distributed and homoscedastic. When these assumptions are not met, the results from a classical moderation analysis can be misleading. For more reliable moderation analysis, this article proposes two robust methods with a two-level regression model when the predictors do not contain measurement error. One method is based on maximum likelihood with Student's t distribution and the other is based on M-estimators with Huber-type weights. An algorithm for obtaining the robust estimators is developed. Consistent estimates of standard errors of the robust estimators are provided. The robust approaches are compared against normal-distribution-based maximum likelihood (NML) with respect to power and accuracy of parameter estimates through a simulation study. Results show that the robust approaches outperform NML under various distributional conditions. Application of the robust methods is illustrated through a real data example. An R program is developed and documented to facilitate the application of the robust methods.
Biometric feature embedding using robust steganography technique
NASA Astrophysics Data System (ADS)
Rashid, Rasber D.; Sellahewa, Harin; Jassim, Sabah A.
2013-05-01
This paper is concerned with robust steganographic techniques to hide and communicate biometric data in mobile media objects like images, over open networks. More specifically, the aim is to embed binarised features extracted using discrete wavelet transforms and local binary patterns of face images as a secret message in an image. The need for such techniques can arise in law enforcement, forensics, counter terrorism, internet/mobile banking and border control. What differentiates this problem from normal information hiding techniques is the added requirement that there should be minimal effect on face recognition accuracy. We propose an LSB-Witness embedding technique in which the secret message is already present in the LSB plane but instead of changing the cover image LSB values, the second LSB plane will be changed to stand as a witness/informer to the receiver during message recovery. Although this approach may affect the stego quality, it is eliminating the weakness of traditional LSB schemes that is exploited by steganalysis techniques for LSB, such as PoV and RS steganalysis, to detect the existence of secrete message. Experimental results show that the proposed method is robust against PoV and RS attacks compared to other variants of LSB. We also discussed variants of this approach and determine capacity requirements for embedding face biometric feature vectors while maintain accuracy of face recognition.
Recent patents of nanopore DNA sequencing technology: progress and challenges.
Zhou, Jianfeng; Xu, Bingqian
2010-11-01
DNA sequencing techniques witnessed fast development in the last decades, primarily driven by the Human Genome Project. Among the proposed new techniques, Nanopore was considered as a suitable candidate for the single DNA sequencing with ultrahigh speed and very low cost. Several fabrication and modification techniques have been developed to produce robust and well-defined nanopore devices. Many efforts have also been done to apply nanopore to analyze the properties of DNA molecules. By comparing with traditional sequencing techniques, nanopore has demonstrated its distinctive superiorities in main practical issues, such as sample preparation, sequencing speed, cost-effective and read-length. Although challenges still remain, recent researches in improving the capabilities of nanopore have shed a light to achieve its ultimate goal: Sequence individual DNA strand at single nucleotide level. This patent review briefly highlights recent developments and technological achievements for DNA analysis and sequencing at single molecule level, focusing on nanopore based methods.
Adaptive torque estimation of robot joint with harmonic drive transmission
NASA Astrophysics Data System (ADS)
Shi, Zhiguo; Li, Yuankai; Liu, Guangjun
2017-11-01
Robot joint torque estimation using input and output position measurements is a promising technique, but the result may be affected by the load variation of the joint. In this paper, a torque estimation method with adaptive robustness and optimality adjustment according to load variation is proposed for robot joint with harmonic drive transmission. Based on a harmonic drive model and a redundant adaptive robust Kalman filter (RARKF), the proposed approach can adapt torque estimation filtering optimality and robustness to the load variation by self-tuning the filtering gain and self-switching the filtering mode between optimal and robust. The redundant factor of RARKF is designed as a function of the motor current for tolerating the modeling error and load-dependent filtering mode switching. The proposed joint torque estimation method has been experimentally studied in comparison with a commercial torque sensor and two representative filtering methods. The results have demonstrated the effectiveness of the proposed torque estimation technique.
Dual measurement self-sensing technique of NiTi actuators for use in robust control
NASA Astrophysics Data System (ADS)
Gurley, Austin; Lambert, Tyler Ross; Beale, David; Broughton, Royall
2017-10-01
Using a shape memory alloy actuator as both an actuator and a sensor provides huge benefits in cost reduction and miniaturization of robotic devices. Despite much effort, reliable and robust self-sensing (using the actuator as a position sensor) had not been achieved for general temperature, loading, hysteresis path, and fatigue conditions. Prior research has sought to model the intricacies of the electrical resistivity changes within the NiTi material. However, for the models to be solvable, nearly every previous technique only models the actuator within very specific boundary conditions. Here, we measure both the voltage across the entire NiTi wire and of a fixed-length segment of it; these dual measurements allow direct calculation of the actuator length without a material model. We review previous self-sensing literature, illustrate the mechanism design that makes the new technique possible, and use the dual measurement technique to determine the length of a single straight wire actuator under controlled conditions. This robust measurement can be used for feedback control in unknown ambient and loading conditions.
Realisation and robustness evaluation of a blind spatial domain watermarking technique
NASA Astrophysics Data System (ADS)
Parah, Shabir A.; Sheikh, Javaid A.; Assad, Umer I.; Bhat, Ghulam M.
2017-04-01
A blind digital image watermarking scheme based on spatial domain is presented and investigated in this paper. The watermark has been embedded in intermediate significant bit planes besides the least significant bit plane at the address locations determined by pseudorandom address vector (PAV). The watermark embedding using PAV makes it difficult for an adversary to locate the watermark and hence adds to security of the system. The scheme has been evaluated to ascertain the spatial locations that are robust to various image processing and geometric attacks JPEG compression, additive white Gaussian noise, salt and pepper noise, filtering and rotation. The experimental results obtained, reveal an interesting fact, that, for all the above mentioned attacks, other than rotation, higher the bit plane in which watermark is embedded more robust the system. Further, the perceptual quality of the watermarked images obtained in the proposed system has been compared with some state-of-art watermarking techniques. The proposed technique outperforms the techniques under comparison, even if compared with the worst case peak signal-to-noise ratio obtained in our scheme.
NASA Technical Reports Server (NTRS)
Schierman, John D.; Lovell, T. A.; Schmidt, David K.
1993-01-01
Three multivariable robustness analysis methods are compared and contrasted. The focus of the analysis is on system stability and performance robustness to uncertainty in the coupling dynamics between two interacting subsystems. Of particular interest is interacting airframe and engine subsystems, and an example airframe/engine vehicle configuration is utilized in the demonstration of these approaches. The singular value (SV) and structured singular value (SSV) analysis methods are compared to a method especially well suited for analysis of robustness to uncertainties in subsystem interactions. This approach is referred to here as the interacting subsystem (IS) analysis method. This method has been used previously to analyze airframe/engine systems, emphasizing the study of stability robustness. However, performance robustness is also investigated here, and a new measure of allowable uncertainty for acceptable performance robustness is introduced. The IS methodology does not require plant uncertainty models to measure the robustness of the system, and is shown to yield valuable information regarding the effects of subsystem interactions. In contrast, the SV and SSV methods allow for the evaluation of the robustness of the system to particular models of uncertainty, and do not directly indicate how the airframe (engine) subsystem interacts with the engine (airframe) subsystem.
Clustering of financial time series with application to index and enhanced index tracking portfolio
NASA Astrophysics Data System (ADS)
Dose, Christian; Cincotti, Silvano
2005-09-01
A stochastic-optimization technique based on time series cluster analysis is described for index tracking and enhanced index tracking problems. Our methodology solves the problem in two steps, i.e., by first selecting a subset of stocks and then setting the weight of each stock as a result of an optimization process (asset allocation). Present formulation takes into account constraints on the number of stocks and on the fraction of capital invested in each of them, whilst not including transaction costs. Computational results based on clustering selection are compared to those of random techniques and show the importance of clustering in noise reduction and robust forecasting applications, in particular for enhanced index tracking.
Phase-based motion magnification video for monitoring of vital signals using the Hermite transform
NASA Astrophysics Data System (ADS)
Brieva, Jorge; Moya-Albor, Ernesto
2017-11-01
In this paper we present a new Eulerian phase-based motion magnification technique using the Hermite Transform (HT) decomposition that is inspired in the Human Vision System (HVS). We test our method in one sequence of the breathing of a newborn baby and on a video sequence that shows the heartbeat on the wrist. We detect and magnify the heart pulse applying our technique. Our motion magnification approach is compared to the Laplacian phase based approach by means of quantitative metrics (based on the RMS error and the Fourier transform) to measure the quality of both reconstruction and magnification. In addition a noise robustness analysis is performed for the two methods.
Multigrid techniques for the solution of the passive scalar advection-diffusion equation
NASA Technical Reports Server (NTRS)
Phillips, R. E.; Schmidt, F. W.
1985-01-01
The solution of elliptic passive scalar advection-diffusion equations is required in the analysis of many turbulent flow and convective heat transfer problems. The accuracy of the solution may be affected by the presence of regions containing large gradients of the dependent variables. The multigrid concept of local grid refinement is a method for improving the accuracy of the calculations in these problems. In combination with the multilevel acceleration techniques, an accurate and efficient computational procedure is developed. In addition, a robust implementation of the QUICK finite-difference scheme is described. Calculations of a test problem are presented to quantitatively demonstrate the advantages of the multilevel-multigrid method.
Chew, Gina; Walczyk, Thomas
2013-04-02
Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.
Recent Advances in Techniques for Hyperspectral Image Processing
NASA Technical Reports Server (NTRS)
Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony;
2009-01-01
Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms
NASA Astrophysics Data System (ADS)
Shi, J. T.; Han, X. T.; Xie, J. F.; Yao, L.; Huang, L. T.; Li, L.
2013-03-01
A Pulsed High Magnetic Field Facility (PHMFF) has been established in Wuhan National High Magnetic Field Center (WHMFC) and various protection measures are applied in its control system. In order to improve the reliability and robustness of the control system, the safety analysis of the PHMFF is carried out based on Fault Tree Analysis (FTA) technique. The function and realization of 5 protection systems, which include sequence experiment operation system, safety assistant system, emergency stop system, fault detecting and processing system and accident isolating protection system, are given. The tests and operation indicate that these measures improve the safety of the facility and ensure the safety of people.
Martinez-Lozano Sinues, Pablo; Landoni, Elena; Miceli, Rosalba; Dibari, Vincenza F; Dugo, Matteo; Agresti, Roberto; Tagliabue, Elda; Cristoni, Simone; Orlandi, Rosaria
2015-09-21
Breath analysis represents a new frontier in medical diagnosis and a powerful tool for cancer biomarker discovery due to the recent development of analytical platforms for the detection and identification of human exhaled volatile compounds. Statistical and bioinformatic tools may represent an effective complement to the technical and instrumental enhancements needed to fully exploit clinical applications of breath analysis. Our exploratory study in a cohort of 14 breast cancer patients and 11 healthy volunteers used secondary electrospray ionization-mass spectrometry (SESI-MS) to detect a cancer-related volatile profile. SESI-MS full-scan spectra were acquired in a range of 40-350 mass-to-charge ratio (m/z), converted to matrix data and analyzed using a procedure integrating data pre-processing for quality control, and a two-step class prediction based on machine-learning techniques, including a robust feature selection, and a classifier development with internal validation. MS spectra from exhaled breath showed an individual-specific breath profile and high reciprocal homogeneity among samples, with strong agreement among technical replicates, suggesting a robust responsiveness of SESI-MS. Supervised analysis of breath data identified a support vector machine (SVM) model including 8 features corresponding to m/z 106, 126, 147, 78, 148, 52, 128, 315 and able to discriminate exhaled breath from breast cancer patients from that of healthy individuals, with sensitivity and specificity above 0.9.Our data highlight the significance of SESI-MS as an analytical technique for clinical studies of breath analysis and provide evidence that our noninvasive strategy detects volatile signatures that may support existing technologies to diagnose breast cancer.
Ross, James D.; Cullen, D. Kacy; Harris, James P.; LaPlaca, Michelle C.; DeWeerth, Stephen P.
2015-01-01
Three-dimensional (3-D) image analysis techniques provide a powerful means to rapidly and accurately assess complex morphological and functional interactions between neural cells. Current software-based identification methods of neural cells generally fall into two applications: (1) segmentation of cell nuclei in high-density constructs or (2) tracing of cell neurites in single cell investigations. We have developed novel methodologies to permit the systematic identification of populations of neuronal somata possessing rich morphological detail and dense neurite arborization throughout thick tissue or 3-D in vitro constructs. The image analysis incorporates several novel automated features for the discrimination of neurites and somata by initially classifying features in 2-D and merging these classifications into 3-D objects; the 3-D reconstructions automatically identify and adjust for over and under segmentation errors. Additionally, the platform provides for software-assisted error corrections to further minimize error. These features attain very accurate cell boundary identifications to handle a wide range of morphological complexities. We validated these tools using confocal z-stacks from thick 3-D neural constructs where neuronal somata had varying degrees of neurite arborization and complexity, achieving an accuracy of ≥95%. We demonstrated the robustness of these algorithms in a more complex arena through the automated segmentation of neural cells in ex vivo brain slices. These novel methods surpass previous techniques by improving the robustness and accuracy by: (1) the ability to process neurites and somata, (2) bidirectional segmentation correction, and (3) validation via software-assisted user input. This 3-D image analysis platform provides valuable tools for the unbiased analysis of neural tissue or tissue surrogates within a 3-D context, appropriate for the study of multi-dimensional cell-cell and cell-extracellular matrix interactions. PMID:26257609
Identifying Rodent Resting-State Brain Networks with Independent Component Analysis
Bajic, Dusica; Craig, Michael M.; Mongerson, Chandler R. L.; Borsook, David; Becerra, Lino
2017-01-01
Rodent models have opened the door to a better understanding of the neurobiology of brain disorders and increased our ability to evaluate novel treatments. Resting-state functional magnetic resonance imaging (rs-fMRI) allows for in vivo exploration of large-scale brain networks with high spatial resolution. Its application in rodents affords researchers a powerful translational tool to directly assess/explore the effects of various pharmacological, lesion, and/or disease states on known neural circuits within highly controlled settings. Integration of animal and human research at the molecular-, systems-, and behavioral-levels using diverse neuroimaging techniques empowers more robust interrogations of abnormal/ pathological processes, critical for evolving our understanding of neuroscience. We present a comprehensive protocol to evaluate resting-state brain networks using Independent Component Analysis (ICA) in rodent model. Specifically, we begin with a brief review of the physiological basis for rs-fMRI technique and overview of rs-fMRI studies in rodents to date, following which we provide a robust step-by-step approach for rs-fMRI investigation including data collection, computational preprocessing, and brain network analysis. Pipelines are interwoven with underlying theory behind each step and summarized methodological considerations, such as alternative methods available and current consensus in the literature for optimal results. The presented protocol is designed in such a way that investigators without previous knowledge in the field can implement the analysis and obtain viable results that reliably detect significant differences in functional connectivity between experimental groups. Our goal is to empower researchers to implement rs-fMRI in their respective fields by incorporating technical considerations to date into a workable methodological framework. PMID:29311770
Fuzzy logic-based flight control system design
NASA Astrophysics Data System (ADS)
Nho, Kyungmoon
The application of fuzzy logic to aircraft motion control is studied in this dissertation. The self-tuning fuzzy techniques are developed by changing input scaling factors to obtain a robust fuzzy controller over a wide range of operating conditions and nonlinearities for a nonlinear aircraft model. It is demonstrated that the properly adjusted input scaling factors can meet the required performance and robustness in a fuzzy controller. For a simple demonstration of the easy design and control capability of a fuzzy controller, a proportional-derivative (PD) fuzzy control system is compared to the conventional controller for a simple dynamical system. This thesis also describes the design principles and stability analysis of fuzzy control systems by considering the key features of a fuzzy control system including the fuzzification, rule-base and defuzzification. The wing-rock motion of slender delta wings, a linear aircraft model and the six degree of freedom nonlinear aircraft dynamics are considered to illustrate several self-tuning methods employing change in input scaling factors. Finally, this dissertation is concluded with numerical simulation of glide-slope capture in windshear demonstrating the robustness of the fuzzy logic based flight control system.
Adaptive local thresholding for robust nucleus segmentation utilizing shape priors
NASA Astrophysics Data System (ADS)
Wang, Xiuzhong; Srinivas, Chukka
2016-03-01
This paper describes a novel local thresholding method for foreground detection. First, a Canny edge detection method is used for initial edge detection. Then, tensor voting is applied on the initial edge pixels, using a nonsymmetric tensor field tailored to encode prior information about nucleus size, shape, and intensity spatial distribution. Tensor analysis is then performed to generate the saliency image and, based on that, the refined edge. Next, the image domain is divided into blocks. In each block, at least one foreground and one background pixel are sampled for each refined edge pixel. The saliency weighted foreground histogram and background histogram are then created. These two histograms are used to calculate a threshold by minimizing the background and foreground pixel classification error. The block-wise thresholds are then used to generate the threshold for each pixel via interpolation. Finally, the foreground is obtained by comparing the original image with the threshold image. The effective use of prior information, combined with robust techniques, results in far more reliable foreground detection, which leads to robust nucleus segmentation.
NASA Astrophysics Data System (ADS)
Bureick, Johannes; Alkhatib, Hamza; Neumann, Ingo
2016-03-01
In many geodetic engineering applications it is necessary to solve the problem of describing a measured data point cloud, measured, e. g. by laser scanner, by means of free-form curves or surfaces, e. g., with B-Splines as basis functions. The state of the art approaches to determine B-Splines yields results which are seriously manipulated by the occurrence of data gaps and outliers. Optimal and robust B-Spline fitting depend, however, on optimal selection of the knot vector. Hence we combine in our approach Monte-Carlo methods and the location and curvature of the measured data in order to determine the knot vector of the B-Spline in such a way that no oscillating effects at the edges of data gaps occur. We introduce an optimized approach based on computed weights by means of resampling techniques. In order to minimize the effect of outliers, we apply robust M-estimators for the estimation of control points. The above mentioned approach will be applied to a multi-sensor system based on kinematic terrestrial laserscanning in the field of rail track inspection.
Self-synchronization for spread spectrum audio watermarks after time scale modification
NASA Astrophysics Data System (ADS)
Nadeau, Andrew; Sharma, Gaurav
2014-02-01
De-synchronizing operations such as insertion, deletion, and warping pose significant challenges for watermarking. Because these operations are not typical for classical communications, watermarking techniques such as spread spectrum can perform poorly. Conversely, specialized synchronization solutions can be challenging to analyze/ optimize. This paper addresses desynchronization for blind spread spectrum watermarks, detected without reference to any unmodified signal, using the robustness properties of short blocks. Synchronization relies on dynamic time warping to search over block alignments to find a sequence with maximum correlation to the watermark. This differs from synchronization schemes that must first locate invariant features of the original signal, or estimate and reverse desynchronization before detection. Without these extra synchronization steps, analysis for the proposed scheme builds on classical SS concepts and allows characterizes the relationship between the size of search space (number of detection alignment tests) and intrinsic robustness (continuous search space region covered by each individual detection test). The critical metrics that determine the search space, robustness, and performance are: time-frequency resolution of the watermarking transform, and blocklength resolution of the alignment. Simultaneous robustness to (a) MP3 compression, (b) insertion/deletion, and (c) time-scale modification is also demonstrated for a practical audio watermarking scheme developed in the proposed framework.
Boukattaya, Mohamed; Mezghani, Neila; Damak, Tarak
2018-06-01
In this paper, robust and adaptive nonsingular fast terminal sliding-mode (NFTSM) control schemes for the trajectory tracking problem are proposed with known or unknown upper bound of the system uncertainty and external disturbances. The developed controllers take the advantage of the NFTSM theory to ensure fast convergence rate, singularity avoidance, and robustness against uncertainties and external disturbances. First, a robust NFTSM controller is proposed which guarantees that sliding surface and equilibrium point can be reached in a short finite-time from any initial state. Then, in order to cope with the unknown upper bound of the system uncertainty which may be occurring in practical applications, a new adaptive NFTSM algorithm is developed. One feature of the proposed control law is their adaptation techniques where the prior knowledge of parameters uncertainty and disturbances is not needed. However, the adaptive tuning law can estimate the upper bound of these uncertainties using only position and velocity measurements. Moreover, the proposed controller eliminates the chattering effect without losing the robustness property and the precision. Stability analysis is performed using the Lyapunov stability theory, and simulation studies are conducted to verify the effectiveness of the developed control schemes. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
A formal concept analysis approach to consensus clustering of multi-experiment expression data
2014-01-01
Background Presently, with the increasing number and complexity of available gene expression datasets, the combination of data from multiple microarray studies addressing a similar biological question is gaining importance. The analysis and integration of multiple datasets are expected to yield more reliable and robust results since they are based on a larger number of samples and the effects of the individual study-specific biases are diminished. This is supported by recent studies suggesting that important biological signals are often preserved or enhanced by multiple experiments. An approach to combining data from different experiments is the aggregation of their clusterings into a consensus or representative clustering solution which increases the confidence in the common features of all the datasets and reveals the important differences among them. Results We propose a novel generic consensus clustering technique that applies Formal Concept Analysis (FCA) approach for the consolidation and analysis of clustering solutions derived from several microarray datasets. These datasets are initially divided into groups of related experiments with respect to a predefined criterion. Subsequently, a consensus clustering algorithm is applied to each group resulting in a clustering solution per group. These solutions are pooled together and further analysed by employing FCA which allows extracting valuable insights from the data and generating a gene partition over all the experiments. In order to validate the FCA-enhanced approach two consensus clustering algorithms are adapted to incorporate the FCA analysis. Their performance is evaluated on gene expression data from multi-experiment study examining the global cell-cycle control of fission yeast. The FCA results derived from both methods demonstrate that, although both algorithms optimize different clustering characteristics, FCA is able to overcome and diminish these differences and preserve some relevant biological signals. Conclusions The proposed FCA-enhanced consensus clustering technique is a general approach to the combination of clustering algorithms with FCA for deriving clustering solutions from multiple gene expression matrices. The experimental results presented herein demonstrate that it is a robust data integration technique able to produce good quality clustering solution that is representative for the whole set of expression matrices. PMID:24885407
Techniques for measurement of thoracoabdominal asynchrony
NASA Technical Reports Server (NTRS)
Prisk, G. Kim; Hammer, J.; Newth, Christopher J L.
2002-01-01
Respiratory motion measured by respiratory inductance plethysmography often deviates from the sinusoidal pattern assumed in the traditional Lissajous figure (loop) analysis used to determine thoraco-abdominal asynchrony, or phase angle phi. We investigated six different time-domain methods of measuring phi, using simulated data with sinusoidal and triangular waveforms, phase shifts of 0-135 degrees, and 10% noise. The techniques were then used on data from 11 lightly anesthetized rhesus monkeys (Macaca mulatta; 7.6 +/- 0.8 kg; 5.7 +/- 0.5 years old), instrumented with a respiratory inductive plethysmograph, and subjected to increasing levels of inspiratory resistive loading ranging from 5-1,000 cmH(2)O. L(-1). sec(-1).The best results were obtained from cross-correlation and maximum linear correlation, with errors less than approximately 5 degrees from the actual phase angle in the simulated data. The worst performance was produced by the loop analysis, which in some cases was in error by more than 30 degrees. Compared to correlation, other analysis techniques performed at an intermediate level. Maximum linear correlation and cross-correlation produced similar results on the data collected from monkeys (SD of the difference, 4.1 degrees ) but all other techniques had a high SD of the difference compared to the correlation techniques.We conclude that phase angles are best measured using cross-correlation or maximum linear correlation, techniques that are independent of waveform shape, and robust in the presence of noise. Copyright 2002 Wiley-Liss, Inc.
Design and fabrication of chemically robust three-dimensional microfluidic valves.
Maltezos, George; Garcia, Erika; Hanrahan, Grady; Gomez, Frank A; Vyawahare, Saurabh; Vyawhare, Saurabh; van Dam, R Michael; Chen, Yan; Scherer, Axel
2007-09-01
A current problem in microfluidics is that poly(dimethylsiloxane) (PDMS), used to fabricate many microfluidic devices, is not compatible with most organic solvents. Fluorinated compounds are more chemically robust than PDMS but, historically, it has been nearly impossible to construct valves out of them by multilayer soft lithography (MSL) due to the difficulty of bonding layers made of "non-stick" fluoropolymers necessary to create traditional microfluidic valves. With our new three-dimensional (3D) valve design we can fabricate microfluidic devices from fluorinated compounds in a single monolithic layer that is resistant to most organic solvents with minimal swelling. This paper describes the design and development of 3D microfluidic valves by molding of a perfluoropolyether, termed Sifel, onto printed wax molds. The fabrication of Sifel-based microfluidic devices using this technique has great potential in chemical synthesis and analysis.
Zhang, Zhongcai; Wu, Yuqiang; Huang, Jinming
2016-11-01
The antiswing control and accurate positioning are simultaneously investigated for underactuated crane systems in the presence of two parallel payloads on the trolley and rail length limitation. The equations of motion for the crane system in question are established via the Euler-Lagrange equation. An adaptive control strategy is proposed with the help of system energy function and energy shaping technique. Stability analysis shows that under the designed adaptive controller, the payload swings can be suppressed ultimately and the trolley can be regulated to the destination while not exceeding the pre-specified boundaries. Simulation results are provided to show the satisfactory control performances of the presented control method in terms of working efficiency as well as robustness with respect to external disturbances. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Seed robustness of oriented relative fuzzy connectedness: core computation and its applications
NASA Astrophysics Data System (ADS)
Tavares, Anderson C. M.; Bejar, Hans H. C.; Miranda, Paulo A. V.
2017-02-01
In this work, we present a formal definition and an efficient algorithm to compute the cores of Oriented Relative Fuzzy Connectedness (ORFC), a recent seed-based segmentation technique. The core is a region where the seed can be moved without altering the segmentation, an important aspect for robust techniques and reduction of user effort. We show how ORFC cores can be used to build a powerful hybrid image segmentation approach. We also provide some new theoretical relations between ORFC and Oriented Image Foresting Transform (OIFT), as well as their cores. Experimental results among several methods show that the hybrid approach conserves high accuracy, avoids the shrinking problem and provides robustness to seed placement inside the desired object due to the cores properties.
H.264/AVC digital fingerprinting based on spatio-temporal just noticeable distortion
NASA Astrophysics Data System (ADS)
Ait Saadi, Karima; Bouridane, Ahmed; Guessoum, Abderrezak
2014-01-01
This paper presents a robust adaptive embedding scheme using a modified Spatio-Temporal noticeable distortion (JND) model that is designed for tracing the distribution of the H.264/AVC video content and protecting them from unauthorized redistribution. The Embedding process is performed during coding process in selected macroblocks type Intra 4x4 within I-Frame. The method uses spread-spectrum technique in order to obtain robustness against collusion attacks and the JND model to dynamically adjust the embedding strength and control the energy of the embedded fingerprints so as to ensure their imperceptibility. Linear and non linear collusion attacks are performed to show the robustness of the proposed technique against collusion attacks while maintaining visual quality unchanged.
A Method to Achieve High Fidelity in Internet-Distributed Hardware-in-the-Loop Simulation
2012-08-01
2008. [17] M. Compere , J. Goodell, M. Simon, W. Smith, and M. Brudnak, "Robust control techniques enabling duty cycle experiments utilizing a 6-DOF...01-3077, 2006. [18] J. Goodell, M. Compere , M. Simon, W. Smith, R. Wright, and M. Brudnak, "Robust control techniques for state tracking in the...presence of variable time delays," SAE Technical Paper, 2006-01-1163, 2006. [19] M. Brudnak, M. Pozolo, V. Paul, S. Mohammad, W. Smith, M. Compere , J
2012-06-15
pp. 535-543. [17] Compere , M., Goodell, J., Simon, M., Smith, W., and Brudnak, M., 2006, "Robust Control Techniques Enabling Duty Cycle...Technical Paper, 2006-01-3077. [18] Goodell, J., Compere , M., Simon, M., Smith, W., Wright, R., and Brudnak, M., 2006, "Robust Control Techniques for...Smith, W., Compere , M., Goodell, J., Holtz, D., Mortsfield, T., and Shvartsman, A., 2007, "Soldier/Harware-in-the-Loop Simulation- Based Combat Vehicle
NASA Astrophysics Data System (ADS)
Latorre, Borja; Peña-Sancho, Carolina; Angulo-Jaramillo, Rafaël; Moret-Fernández, David
2015-04-01
Measurement of soil hydraulic properties is of paramount importance in fields such as agronomy, hydrology or soil science. Fundamented on the analysis of the Haverkamp et al. (1994) model, the aim of this paper is to explain a technique to estimate the soil hydraulic properties (sorptivity, S, and hydraulic conductivity, K) from the full-time cumulative infiltration curves. The method (NSH) was validated by means of 12 synthetic infiltration curves generated with HYDRUS-3D from known soil hydraulic properties. The K values used to simulate the synthetic curves were compared to those estimated with the proposed method. A procedure to identify and remove the effect of the contact sand layer on the cumulative infiltration curve was also developed. A sensitivity analysis was performed using the water level measurement as uncertainty source. Finally, the procedure was evaluated using different infiltration times and data noise. Since a good correlation between the K used in HYDRUS-3D to model the infiltration curves and those estimated by the NSH method was obtained, (R2 =0.98), it can be concluded that this technique is robust enough to estimate the soil hydraulic conductivity from complete infiltration curves. The numerical procedure to detect and remove the influence of the contact sand layer on the K and S estimates seemed to be robust and efficient. An effect of the curve infiltration noise on the K estimate was observed, which uncertainty increased with increasing noise. Finally, the results showed that infiltration time was an important factor to estimate K. Lower values of K or smaller uncertainty needed longer infiltration times.
Building biochips: a protein production pipeline
NASA Astrophysics Data System (ADS)
de Carvalho-Kavanagh, Marianne G. S.; Albala, Joanna S.
2004-06-01
Protein arrays are emerging as a practical format in which to study proteins in high-throughput using many of the same techniques as that of the DNA microarray. The key advantage to array-based methods for protein study is the potential for parallel analysis of thousands of samples in an automated, high-throughput fashion. Building protein arrays capable of this analysis capacity requires a robust expression and purification system capable of generating hundreds to thousands of purified recombinant proteins. We have developed a method to utilize LLNL-I.M.A.G.E. cDNAs to generate recombinant protein libraries using a baculovirus-insect cell expression system. We have used this strategy to produce proteins for analysis of protein/DNA and protein/protein interactions using protein microarrays in order to understand the complex interactions of proteins involved in homologous recombination and DNA repair. Using protein array techniques, a novel interaction between the DNA repair protein, Rad51B, and histones has been identified.
Lorentz Invariance Violation: the Latest Fermi Results and the GRB-AGN Complementarity
NASA Technical Reports Server (NTRS)
Bolmont, J.; Vasileiou, V.; Jacholkowska, A.; Piron, F.; Couturier, C.; Granot, J.; Stecker, F. W.; Cohen-Tanugi, J.; Longo, F.
2013-01-01
Because they are bright and distant, Gamma-ray Bursts (GRBs) have been used for more than a decade to test propagation of photons and to constrain relevant Quantum Gravity (QG) models in which the velocity of photons in vacuum can depend on their energy. With its unprecedented sensitivity and energy coverage, the Fermi satellite has provided the most constraining results on the QG energy scale so far. In this talk, the latest results obtained from the analysis of four bright GRBs observed by the Large Area Telescope will be reviewed. These robust results, cross-checked using three different analysis techniques set the limit on QG energy scale at E(sub QG,1) greater than 7.6 times the Planck energy for linear dispersion and E(sub QG,2) greater than 1.3 x 10(exp 11) gigaelectron volts for quadratic dispersion (95% CL). After describing the data and the analysis techniques in use, results will be discussed and confronted to latest constraints obtained with Active Galactic Nuclei.
Study of archaeological coins of different dynasties using libs coupled with multivariate analysis
NASA Astrophysics Data System (ADS)
Awasthi, Shikha; Kumar, Rohit; Rai, G. K.; Rai, A. K.
2016-04-01
Laser Induced Breakdown Spectroscopy (LIBS) is an atomic emission spectroscopic technique having unique capability of an in-situ monitoring tool for detection and quantification of elements present in different artifacts. Archaeological coins collected form G.R. Sharma Memorial Museum; University of Allahabad, India has been analyzed using LIBS technique. These coins were obtained from excavation of Kausambi, Uttar Pradesh, India. LIBS system assembled in the laboratory (laser Nd:YAG 532 nm, 4 ns pulse width FWHM with Ocean Optics LIBS 2000+ spectrometer) is employed for spectral acquisition. The spectral lines of Ag, Cu, Ca, Sn, Si, Fe and Mg are identified in the LIBS spectra of different coins. LIBS along with Multivariate Analysis play an effective role for classification and contribution of spectral lines in different coins. The discrimination between five coins with Archaeological interest has been carried out using Principal Component Analysis (PCA). The results show the potential relevancy of the methodology used in the elemental identification and classification of artifacts with high accuracy and robustness.
High-Temperature Strain Sensing for Aerospace Applications
NASA Technical Reports Server (NTRS)
Piazza, Anthony; Richards, Lance W.; Hudson, Larry D.
2008-01-01
Thermal protection systems (TPS) and hot structures are utilizing advanced materials that operate at temperatures that exceed abilities to measure structural performance. Robust strain sensors that operate accurately and reliably beyond 1800 F are needed but do not exist. These shortcomings hinder the ability to validate analysis and modeling techniques and hinders the ability to optimize structural designs. This presentation examines high-temperature strain sensing for aerospace applications and, more specifically, seeks to provide strain data for validating finite element models and thermal-structural analyses. Efforts have been made to develop sensor attachment techniques for relevant structural materials at the small test specimen level and to perform laboratory tests to characterize sensor and generate corrections to apply to indicated strains. Areas highlighted in this presentation include sensors, sensor attachment techniques, laboratory evaluation/characterization of strain measurement, and sensor use in large-scale structures.
Orion FSW V and V and Kedalion Engineering Lab Insight
NASA Technical Reports Server (NTRS)
Mangieri, Mark L.
2010-01-01
NASA, along with its prime Orion contractor and its subcontractor s are adapting an avionics system paradigm borrowed from the manned commercial aircraft industry for use in manned space flight systems. Integrated Modular Avionics (IMA) techniques have been proven as a robust avionics solution for manned commercial aircraft (B737/777/787, MD 10/90). This presentation will outline current approaches to adapt IMA, along with its heritage FSW V&V paradigms, into NASA's manned space flight program for Orion. NASA's Kedalion engineering analysis lab is on the forefront of validating many of these contemporary IMA based techniques. Kedalion has already validated many of the proposed Orion FSW V&V paradigms using Orion's precursory Flight Test Article (FTA) Pad Abort 1 (PA-1) program. The Kedalion lab will evolve its architectures, tools, and techniques in parallel with the evolving Orion program.
Alibhai, Sky; Jewell, Zoe; Evans, Jonah
2017-01-01
Acquiring reliable data on large felid populations is crucial for effective conservation and management. However, large felids, typically solitary, elusive and nocturnal, are difficult to survey. Tagging and following individuals with VHF or GPS technology is the standard approach, but costs are high and these methodologies can compromise animal welfare. Such limitations can restrict the use of these techniques at population or landscape levels. In this paper we describe a robust technique to identify and sex individual pumas from footprints. We used a standardized image collection protocol to collect a reference database of 535 footprints from 35 captive pumas over 10 facilities; 19 females (300 footprints) and 16 males (235 footprints), ranging in age from 1-20 yrs. Images were processed in JMP data visualization software, generating one hundred and twenty three measurements from each footprint. Data were analyzed using a customized model based on a pairwise trail comparison using robust cross-validated discriminant analysis with a Ward's clustering method. Classification accuracy was consistently > 90% for individuals, and for the correct classification of footprints within trails, and > 99% for sex classification. The technique has the potential to greatly augment the methods available for studying puma and other elusive felids, and is amenable to both citizen-science and opportunistic/local community data collection efforts, particularly as the data collection protocol is inexpensive and intuitive.
Stochastic Effects in Computational Biology of Space Radiation Cancer Risk
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Pluth, Janis; Harper, Jane; O'Neill, Peter
2007-01-01
Estimating risk from space radiation poses important questions on the radiobiology of protons and heavy ions. We are considering systems biology models to study radiation induced repair foci (RIRF) at low doses, in which less than one-track on average transverses the cell, and the subsequent DNA damage processing and signal transduction events. Computational approaches for describing protein regulatory networks coupled to DNA and oxidative damage sites include systems of differential equations, stochastic equations, and Monte-Carlo simulations. We review recent developments in the mathematical description of protein regulatory networks and possible approaches to radiation effects simulation. These include robustness, which states that regulatory networks maintain their functions against external and internal perturbations due to compensating properties of redundancy and molecular feedback controls, and modularity, which leads to general theorems for considering molecules that interact through a regulatory mechanism without exchange of matter leading to a block diagonal reduction of the connecting pathways. Identifying rate-limiting steps, robustness, and modularity in pathways perturbed by radiation damage are shown to be valid techniques for reducing large molecular systems to realistic computer simulations. Other techniques studied are the use of steady-state analysis, and the introduction of composite molecules or rate-constants to represent small collections of reactants. Applications of these techniques to describe spatial and temporal distributions of RIRF and cell populations following low dose irradiation are described.
Computational unsteady aerodynamics for lifting surfaces
NASA Technical Reports Server (NTRS)
Edwards, John W.
1988-01-01
Two dimensional problems are solved using numerical techniques. Navier-Stokes equations are studied both in the vorticity-stream function formulation which appears to be the optimal choice for two dimensional problems, using a storage approach, and in the velocity pressure formulation which minimizes the number of unknowns in three dimensional problems. Analysis shows that compact centered conservative second order schemes for the vorticity equation are the most robust for high Reynolds number flows. Serious difficulties remain in the choice of turbulent models, to keep reasonable CPU efficiency.
Overview of Recent Flight Flutter Testing Research at NASA Dryden
NASA Technical Reports Server (NTRS)
Brenner, Martin J.; Lind, Richard C.; Voracek, David F.
1997-01-01
In response to the concerns of the aeroelastic community, NASA Dryden Flight Research Center, Edwards, California, is conducting research into improving the flight flutter (including aeroservoelasticity) test process with more accurate and automated techniques for stability boundary prediction. The important elements of this effort so far include the following: (1) excitation mechanisms for enhanced vibration data to reduce uncertainty levels in stability estimates; (2) investigation of a variety of frequency, time, and wavelet analysis techniques for signal processing, stability estimation, and nonlinear identification; and (3) robust flutter boundary prediction to substantially reduce the test matrix for flutter clearance. These are critical research topics addressing the concerns of a recent AGARD Specialists' Meeting on Advanced Aeroservoelastic Testing and Data Analysis. This paper addresses these items using flight test data from the F/A-18 Systems Research Aircraft and the F/A-18 High Alpha Research Vehicle.
NASA Astrophysics Data System (ADS)
Davis, Benjamin L.; Berrier, J. C.; Shields, D. W.; Kennefick, J.; Kennefick, D.; Seigar, M. S.; Lacy, C. H. S.; Puerari, I.
2012-01-01
A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing Two-Dimensional Fast Fourier Transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow the precise comparison of spiral galaxy evolution to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques. The authors gratefully acknowledge support for this work from NASA Grant NNX08AW03A.
A new perspective on global mean sea level (GMSL) acceleration
NASA Astrophysics Data System (ADS)
Watson, Phil J.
2016-06-01
The vast body of contemporary climate change science is largely underpinned by the premise of a measured acceleration from anthropogenic forcings evident in key climate change proxies -- greenhouse gas emissions, temperature, and mean sea level. By virtue, over recent years, the issue of whether or not there is a measurable acceleration in global mean sea level has resulted in fierce, widespread professional, social, and political debate. Attempts to measure acceleration in global mean sea level (GMSL) have often used comparatively crude analysis techniques providing little temporal instruction on these key questions. This work proposes improved techniques to measure real-time velocity and acceleration based on five GMSL reconstructions spanning the time frame from 1807 to 2014 with substantially improved temporal resolution. While this analysis highlights key differences between the respective reconstructions, there is now more robust, convincing evidence of recent acceleration in the trend of GMSL.
Heart rate estimation from FBG sensors using cepstrum analysis and sensor fusion.
Zhu, Yongwei; Fook, Victor Foo Siang; Jianzhong, Emily Hao; Maniyeri, Jayachandran; Guan, Cuntai; Zhang, Haihong; Jiliang, Eugene Phua; Biswas, Jit
2014-01-01
This paper presents a method of estimating heart rate from arrays of fiber Bragg grating (FBG) sensors embedded in a mat. A cepstral domain signal analysis technique is proposed to characterize Ballistocardiogram (BCG) signals. With this technique, the average heart beat intervals can be estimated by detecting the dominant peaks in the cepstrum, and the signals of multiple sensors can be fused together to obtain higher signal to noise ratio than each individual sensor. Experiments were conducted with 10 human subjects lying on 2 different postures on a bed. The estimated heart rate from BCG was compared with heart rate ground truth from ECG, and the mean error of estimation obtained is below 1 beat per minute (BPM). The results show that the proposed fusion method can achieve promising heart rate measurement accuracy and robustness against various sensor contact conditions.
DCT-based cyber defense techniques
NASA Astrophysics Data System (ADS)
Amsalem, Yaron; Puzanov, Anton; Bedinerman, Anton; Kutcher, Maxim; Hadar, Ofer
2015-09-01
With the increasing popularity of video streaming services and multimedia sharing via social networks, there is a need to protect the multimedia from malicious use. An attacker may use steganography and watermarking techniques to embed malicious content, in order to attack the end user. Most of the attack algorithms are robust to basic image processing techniques such as filtering, compression, noise addition, etc. Hence, in this article two novel, real-time, defense techniques are proposed: Smart threshold and anomaly correction. Both techniques operate at the DCT domain, and are applicable for JPEG images and H.264 I-Frames. The defense performance was evaluated against a highly robust attack, and the perceptual quality degradation was measured by the well-known PSNR and SSIM quality assessment metrics. A set of defense techniques is suggested for improving the defense efficiency. For the most aggressive attack configuration, the combination of all the defense techniques results in 80% protection against cyber-attacks with PSNR of 25.74 db.
Video multiple watermarking technique based on image interlacing using DWT.
Ibrahim, Mohamed M; Abdel Kader, Neamat S; Zorkany, M
2014-01-01
Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.
Measurement Consistency from Magnetic Resonance Images
Chung, Dongjun; Chung, Moo K.; Durtschi, Reid B.; Lindell, R. Gentry; Vorperian, Houri K.
2010-01-01
Rationale and Objectives In quantifying medical images, length-based measurements are still obtained manually. Due to possible human error, a measurement protocol is required to guarantee the consistency of measurements. In this paper, we review various statistical techniques that can be used in determining measurement consistency. The focus is on detecting a possible measurement bias and determining the robustness of the procedures to outliers. Materials and Methods We review correlation analysis, linear regression, Bland-Altman method, paired t-test, and analysis of variance (ANOVA). These techniques were applied to measurements, obtained by two raters, of head and neck structures from magnetic resonance images (MRI). Results The correlation analysis and the linear regression were shown to be insufficient for detecting measurement inconsistency. They are also very sensitive to outliers. The widely used Bland-Altman method is a visualization technique so it lacks the numerical quantification. The paired t-test tends to be sensitive to small measurement bias. On the other hand, ANOVA performs well even under small measurement bias. Conclusion In almost all cases, using only one method is insufficient and it is recommended to use several methods simultaneously. In general, ANOVA performs the best. PMID:18790405
Unsupervised, Robust Estimation-based Clustering for Multispectral Images
NASA Technical Reports Server (NTRS)
Netanyahu, Nathan S.
1997-01-01
To prepare for the challenge of handling the archiving and querying of terabyte-sized scientific spatial databases, the NASA Goddard Space Flight Center's Applied Information Sciences Branch (AISB, Code 935) developed a number of characterization algorithms that rely on supervised clustering techniques. The research reported upon here has been aimed at continuing the evolution of some of these supervised techniques, namely the neural network and decision tree-based classifiers, plus extending the approach to incorporating unsupervised clustering algorithms, such as those based on robust estimation (RE) techniques. The algorithms developed under this task should be suited for use by the Intelligent Information Fusion System (IIFS) metadata extraction modules, and as such these algorithms must be fast, robust, and anytime in nature. Finally, so that the planner/schedule module of the IlFS can oversee the use and execution of these algorithms, all information required by the planner/scheduler must be provided to the IIFS development team to ensure the timely integration of these algorithms into the overall system.
NASA Astrophysics Data System (ADS)
Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia
2017-05-01
A variety of compartment models are used for the quantitative analysis of dynamic positron emission tomography (PET) data. Traditionally, these models use an iterative fitting (IF) method to find the least squares between the measured and calculated values over time, which may encounter some problems such as the overfitting of model parameters and a lack of reproducibility, especially when handling noisy data or error data. In this paper, a machine learning (ML) based kinetic modeling method is introduced, which can fully utilize a historical reference database to build a moderate kinetic model directly dealing with noisy data but not trying to smooth the noise in the image. Also, due to the database, the presented method is capable of automatically adjusting the models using a multi-thread grid parameter searching technique. Furthermore, a candidate competition concept is proposed to combine the advantages of the ML and IF modeling methods, which could find a balance between fitting to historical data and to the unseen target curve. The machine learning based method provides a robust and reproducible solution that is user-independent for VOI-based and pixel-wise quantitative analysis of dynamic PET data.
Background recovery via motion-based robust principal component analysis with matrix factorization
NASA Astrophysics Data System (ADS)
Pan, Peng; Wang, Yongli; Zhou, Mingyuan; Sun, Zhipeng; He, Guoping
2018-03-01
Background recovery is a key technique in video analysis, but it still suffers from many challenges, such as camouflage, lighting changes, and diverse types of image noise. Robust principal component analysis (RPCA), which aims to recover a low-rank matrix and a sparse matrix, is a general framework for background recovery. The nuclear norm is widely used as a convex surrogate for the rank function in RPCA, which requires computing the singular value decomposition (SVD), a task that is increasingly costly as matrix sizes and ranks increase. However, matrix factorization greatly reduces the dimension of the matrix for which the SVD must be computed. Motion information has been shown to improve low-rank matrix recovery in RPCA, but this method still finds it difficult to handle original video data sets because of its batch-mode formulation and implementation. Hence, in this paper, we propose a motion-assisted RPCA model with matrix factorization (FM-RPCA) for background recovery. Moreover, an efficient linear alternating direction method of multipliers with a matrix factorization (FL-ADM) algorithm is designed for solving the proposed FM-RPCA model. Experimental results illustrate that the method provides stable results and is more efficient than the current state-of-the-art algorithms.
Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia
2017-05-07
A variety of compartment models are used for the quantitative analysis of dynamic positron emission tomography (PET) data. Traditionally, these models use an iterative fitting (IF) method to find the least squares between the measured and calculated values over time, which may encounter some problems such as the overfitting of model parameters and a lack of reproducibility, especially when handling noisy data or error data. In this paper, a machine learning (ML) based kinetic modeling method is introduced, which can fully utilize a historical reference database to build a moderate kinetic model directly dealing with noisy data but not trying to smooth the noise in the image. Also, due to the database, the presented method is capable of automatically adjusting the models using a multi-thread grid parameter searching technique. Furthermore, a candidate competition concept is proposed to combine the advantages of the ML and IF modeling methods, which could find a balance between fitting to historical data and to the unseen target curve. The machine learning based method provides a robust and reproducible solution that is user-independent for VOI-based and pixel-wise quantitative analysis of dynamic PET data.
TopoMS: Comprehensive topological exploration for molecular and condensed-matter systems.
Bhatia, Harsh; Gyulassy, Attila G; Lordi, Vincenzo; Pask, John E; Pascucci, Valerio; Bremer, Peer-Timo
2018-06-15
We introduce TopoMS, a computational tool enabling detailed topological analysis of molecular and condensed-matter systems, including the computation of atomic volumes and charges through the quantum theory of atoms in molecules, as well as the complete molecular graph. With roots in techniques from computational topology, and using a shared-memory parallel approach, TopoMS provides scalable, numerically robust, and topologically consistent analysis. TopoMS can be used as a command-line tool or with a GUI (graphical user interface), where the latter also enables an interactive exploration of the molecular graph. This paper presents algorithmic details of TopoMS and compares it with state-of-the-art tools: Bader charge analysis v1.0 (Arnaldsson et al., 01/11/17) and molecular graph extraction using Critic2 (Otero-de-la-Roza et al., Comput. Phys. Commun. 2014, 185, 1007). TopoMS not only combines the functionality of these individual codes but also demonstrates up to 4× performance gain on a standard laptop, faster convergence to fine-grid solution, robustness against lattice bias, and topological consistency. TopoMS is released publicly under BSD License. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Aeroservoelastic Model Validation and Test Data Analysis of the F/A-18 Active Aeroelastic Wing
NASA Technical Reports Server (NTRS)
Brenner, Martin J.; Prazenica, Richard J.
2003-01-01
Model validation and flight test data analysis require careful consideration of the effects of uncertainty, noise, and nonlinearity. Uncertainty prevails in the data analysis techniques and results in a composite model uncertainty from unmodeled dynamics, assumptions and mechanics of the estimation procedures, noise, and nonlinearity. A fundamental requirement for reliable and robust model development is an attempt to account for each of these sources of error, in particular, for model validation, robust stability prediction, and flight control system development. This paper is concerned with data processing procedures for uncertainty reduction in model validation for stability estimation and nonlinear identification. F/A-18 Active Aeroelastic Wing (AAW) aircraft data is used to demonstrate signal representation effects on uncertain model development, stability estimation, and nonlinear identification. Data is decomposed using adaptive orthonormal best-basis and wavelet-basis signal decompositions for signal denoising into linear and nonlinear identification algorithms. Nonlinear identification from a wavelet-based Volterra kernel procedure is used to extract nonlinear dynamics from aeroelastic responses, and to assist model development and uncertainty reduction for model validation and stability prediction by removing a class of nonlinearity from the uncertainty.
Farnsworth, Nikki L; Hemmati, Alireza; Pozzoli, Marina; Benninger, Richard K P
2014-01-01
The pancreatic islets are central to the maintenance of glucose homeostasis through insulin secretion. Glucose-stimulated insulin secretion is tightly linked to electrical activity in β cells within the islet. Gap junctions, composed of connexin36 (Cx36), form intercellular channels between β cells, synchronizing electrical activity and insulin secretion. Loss of gap junction coupling leads to altered insulin secretion dynamics and disrupted glucose homeostasis. Gap junction coupling is known to be disrupted in mouse models of pre-diabetes. Although approaches to measure gap junction coupling have been devised, they either lack cell specificity, suitable quantification of coupling or spatial resolution, or are invasive. The purpose of this study was to develop fluorescence recovery after photobleaching (FRAP) as a technique to accurately and robustly measure gap junction coupling in the islet. The cationic dye Rhodamine 123 was used with FRAP to quantify dye diffusion between islet β cells as a measure of Cx36 gap junction coupling. Measurements in islets with reduced Cx36 verified the accuracy of this technique in distinguishing between distinct levels of gap junction coupling. Analysis of individual cells revealed that the distribution of coupling across the islet is highly heterogeneous. Analysis of several modulators of gap junction coupling revealed glucose- and cAMP-dependent modulation of gap junction coupling in islets. Finally, FRAP was used to determine cell population specific coupling, where no functional gap junction coupling was observed between α cells and β cells in the islet. The results of this study show FRAP to be a robust technique which provides the cellular resolution to quantify the distribution and regulation of Cx36 gap junction coupling in specific cell populations within the islet. Future studies utilizing this technique may elucidate the role of gap junction coupling in the progression of diabetes and identify mechanisms of gap junction regulation for potential therapies. PMID:25172942
Farnsworth, Nikki L; Hemmati, Alireza; Pozzoli, Marina; Benninger, Richard K P
2014-10-15
The pancreatic islets are central to the maintenance of glucose homeostasis through insulin secretion. Glucose‐stimulated insulin secretion is tightly linked to electrical activity in β cells within the islet. Gap junctions, composed of connexin36 (Cx36), form intercellular channels between β cells, synchronizing electrical activity and insulin secretion. Loss of gap junction coupling leads to altered insulin secretion dynamics and disrupted glucose homeostasis. Gap junction coupling is known to be disrupted in mouse models of pre‐diabetes. Although approaches to measure gap junction coupling have been devised, they either lack cell specificity, suitable quantification of coupling or spatial resolution, or are invasive. The purpose of this study was to develop fluorescence recovery after photobleaching (FRAP) as a technique to accurately and robustly measure gap junction coupling in the islet. The cationic dye Rhodamine 123 was used with FRAP to quantify dye diffusion between islet β cells as a measure of Cx36 gap junction coupling. Measurements in islets with reduced Cx36 verified the accuracy of this technique in distinguishing between distinct levels of gap junction coupling. Analysis of individual cells revealed that the distribution of coupling across the islet is highly heterogeneous. Analysis of several modulators of gap junction coupling revealed glucose‐ and cAMP‐dependent modulation of gap junction coupling in islets. Finally, FRAP was used to determine cell population specific coupling, where no functional gap junction coupling was observed between α cells and β cells in the islet. The results of this study show FRAP to be a robust technique which provides the cellular resolution to quantify the distribution and regulation of Cx36 gap junction coupling in specific cell populations within the islet. Future studies utilizing this technique may elucidate the role of gap junction coupling in the progression of diabetes and identify mechanisms of gap junction regulation for potential therapies.
Robust estimation approach for blind denoising.
Rabie, Tamer
2005-11-01
This work develops a new robust statistical framework for blind image denoising. Robust statistics addresses the problem of estimation when the idealized assumptions about a system are occasionally violated. The contaminating noise in an image is considered as a violation of the assumption of spatial coherence of the image intensities and is treated as an outlier random variable. A denoised image is estimated by fitting a spatially coherent stationary image model to the available noisy data using a robust estimator-based regression method within an optimal-size adaptive window. The robust formulation aims at eliminating the noise outliers while preserving the edge structures in the restored image. Several examples demonstrating the effectiveness of this robust denoising technique are reported and a comparison with other standard denoising filters is presented.
Li, Zhaoying; Zhou, Wenjie; Liu, Hao
2016-09-01
This paper addresses the nonlinear robust tracking controller design problem for hypersonic vehicles. This problem is challenging due to strong coupling between the aerodynamics and the propulsion system, and the uncertainties involved in the vehicle dynamics including parametric uncertainties, unmodeled model uncertainties, and external disturbances. By utilizing the feedback linearization technique, a linear tracking error system is established with prescribed references. For the linear model, a robust controller is proposed based on the signal compensation theory to guarantee that the tracking error dynamics is robustly stable. Numerical simulation results are given to show the advantages of the proposed nonlinear robust control method, compared to the robust loop-shaping control approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sutrisno, Agung; Gunawan, Indra; Vanany, Iwan
2017-11-01
In spite of being integral part in risk - based quality improvement effort, studies improving quality of selection of corrective action priority using FMEA technique are still limited in literature. If any, none is considering robustness and risk in selecting competing improvement initiatives. This study proposed a theoretical model to select risk - based competing corrective action by considering robustness and risk of competing corrective actions. We incorporated the principle of robust design in counting the preference score among corrective action candidates. Along with considering cost and benefit of competing corrective actions, we also incorporate the risk and robustness of corrective actions. An example is provided to represent the applicability of the proposed model.
Takamura, Ayari; Watanabe, Ken; Akutsu, Tomoko; Ozawa, Takeaki
2018-05-31
Body fluid (BF) identification is a critical part of a criminal investigation because of its ability to suggest how the crime was committed and to provide reliable origins of DNA. In contrast to current methods using serological and biochemical techniques, vibrational spectroscopic approaches provide alternative advantages for forensic BF identification, such as non-destructivity and versatility for various BF types and analytical interests. However, unexplored issues remain for its practical application to forensics; for example, a specific BF needs to be discriminated from all other suspicious materials as well as other BFs, and the method should be applicable even to aged BF samples. Herein, we describe an innovative modeling method for discriminating the ATR FT-IR spectra of various BFs, including peripheral blood, saliva, semen, urine and sweat, to meet the practical demands described above. Spectra from unexpected non-BF samples were efficiently excluded as outliers by adopting the Q-statistics technique. The robustness of the models against aged BFs was significantly improved by using the discrimination scheme of a dichotomous classification tree with hierarchical clustering. The present study advances the use of vibrational spectroscopy and a chemometric strategy for forensic BF identification.
A New Color Image Encryption Scheme Using CML and a Fractional-Order Chaotic System
Wu, Xiangjun; Li, Yang; Kurths, Jürgen
2015-01-01
The chaos-based image cryptosystems have been widely investigated in recent years to provide real-time encryption and transmission. In this paper, a novel color image encryption algorithm by using coupled-map lattices (CML) and a fractional-order chaotic system is proposed to enhance the security and robustness of the encryption algorithms with a permutation-diffusion structure. To make the encryption procedure more confusing and complex, an image division-shuffling process is put forward, where the plain-image is first divided into four sub-images, and then the position of the pixels in the whole image is shuffled. In order to generate initial conditions and parameters of two chaotic systems, a 280-bit long external secret key is employed. The key space analysis, various statistical analysis, information entropy analysis, differential analysis and key sensitivity analysis are introduced to test the security of the new image encryption algorithm. The cryptosystem speed is analyzed and tested as well. Experimental results confirm that, in comparison to other image encryption schemes, the new algorithm has higher security and is fast for practical image encryption. Moreover, an extensive tolerance analysis of some common image processing operations such as noise adding, cropping, JPEG compression, rotation, brightening and darkening, has been performed on the proposed image encryption technique. Corresponding results reveal that the proposed image encryption method has good robustness against some image processing operations and geometric attacks. PMID:25826602
Unsupervised EEG analysis for automated epileptic seizure detection
NASA Astrophysics Data System (ADS)
Birjandtalab, Javad; Pouyan, Maziyar Baran; Nourani, Mehrdad
2016-07-01
Epilepsy is a neurological disorder which can, if not controlled, potentially cause unexpected death. It is extremely crucial to have accurate automatic pattern recognition and data mining techniques to detect the onset of seizures and inform care-givers to help the patients. EEG signals are the preferred biosignals for diagnosis of epileptic patients. Most of the existing pattern recognition techniques used in EEG analysis leverage the notion of supervised machine learning algorithms. Since seizure data are heavily under-represented, such techniques are not always practical particularly when the labeled data is not sufficiently available or when disease progression is rapid and the corresponding EEG footprint pattern will not be robust. Furthermore, EEG pattern change is highly individual dependent and requires experienced specialists to annotate the seizure and non-seizure events. In this work, we present an unsupervised technique to discriminate seizures and non-seizures events. We employ power spectral density of EEG signals in different frequency bands that are informative features to accurately cluster seizure and non-seizure events. The experimental results tried so far indicate achieving more than 90% accuracy in clustering seizure and non-seizure events without having any prior knowledge on patient's history.
Extracting neuronal functional network dynamics via adaptive Granger causality analysis.
Sheikhattar, Alireza; Miran, Sina; Liu, Ji; Fritz, Jonathan B; Shamma, Shihab A; Kanold, Patrick O; Babadi, Behtash
2018-04-24
Quantifying the functional relations between the nodes in a network based on local observations is a key challenge in studying complex systems. Most existing time series analysis techniques for this purpose provide static estimates of the network properties, pertain to stationary Gaussian data, or do not take into account the ubiquitous sparsity in the underlying functional networks. When applied to spike recordings from neuronal ensembles undergoing rapid task-dependent dynamics, they thus hinder a precise statistical characterization of the dynamic neuronal functional networks underlying adaptive behavior. We develop a dynamic estimation and inference paradigm for extracting functional neuronal network dynamics in the sense of Granger, by integrating techniques from adaptive filtering, compressed sensing, point process theory, and high-dimensional statistics. We demonstrate the utility of our proposed paradigm through theoretical analysis, algorithm development, and application to synthetic and real data. Application of our techniques to two-photon Ca 2+ imaging experiments from the mouse auditory cortex reveals unique features of the functional neuronal network structures underlying spontaneous activity at unprecedented spatiotemporal resolution. Our analysis of simultaneous recordings from the ferret auditory and prefrontal cortical areas suggests evidence for the role of rapid top-down and bottom-up functional dynamics across these areas involved in robust attentive behavior.
Correlations Between the Contributions of Individual IVS Analysis Centers
NASA Technical Reports Server (NTRS)
Bockmann, Sarah; Artz, Thomas; Nothnagel, Axel
2010-01-01
Within almost all space-geodetic techniques, contributions of different analysis centers (ACs) are combined in order to improve the robustness of the final product. So far, the contributing series are assumed to be independent as each AC processes the observations in different ways. However, the series cannot be completely independent as each analyst uses the same set of original observations and many applied models are subject to conventions used by each AC. In this paper, it is shown that neglecting correlations between the contributing series yields too optimistic formal errors and small, but insignificant, errors in the estimated parameters derived from the adjustment of the combined solution.
NASA Astrophysics Data System (ADS)
Zhou, Jiangying; Lopresti, Daniel P.; Tasdizen, Tolga
1998-04-01
In this paper, we consider the problem of locating and extracting text from WWW images. A previous algorithm based on color clustering and connected components analysis works well as long as the color of each character is relatively uniform and the typography is fairly simple. It breaks down quickly, however, when these assumptions are violated. In this paper, we describe more robust techniques for dealing with this challenging problem. We present an improved color clustering algorithm that measures similarity based on both RGB and spatial proximity. Layout analysis is also incorporated to handle more complex typography. THese changes significantly enhance the performance of our text detection procedure.
NASA Astrophysics Data System (ADS)
Mokhtar, Nurkhairany Amyra; Zubairi, Yong Zulina; Hussin, Abdul Ghapor
2017-05-01
Outlier detection has been used extensively in data analysis to detect anomalous observation in data and has important application in fraud detection and robust analysis. In this paper, we propose a method in detecting multiple outliers for circular variables in linear functional relationship model. Using the residual values of the Caires and Wyatt model, we applied the hierarchical clustering procedure. With the use of tree diagram, we illustrate the graphical approach of the detection of outlier. A simulation study is done to verify the accuracy of the proposed method. Also, an illustration to a real data set is given to show its practical applicability.
Piovesan, Davide; Pierobon, Alberto; DiZio, Paul; Lackner, James R
2012-01-01
This study presents and validates a Time-Frequency technique for measuring 2-dimensional multijoint arm stiffness throughout a single planar movement as well as during static posture. It is proposed as an alternative to current regressive methods which require numerous repetitions to obtain average stiffness on a small segment of the hand trajectory. The method is based on the analysis of the reassigned spectrogram of the arm's response to impulsive perturbations and can estimate arm stiffness on a trial-by-trial basis. Analytic and empirical methods are first derived and tested through modal analysis on synthetic data. The technique's accuracy and robustness are assessed by modeling the estimation of stiffness time profiles changing at different rates and affected by different noise levels. Our method obtains results comparable with two well-known regressive techniques. We also test how the technique can identify the viscoelastic component of non-linear and higher than second order systems with a non-parametrical approach. The technique proposed here is very impervious to noise and can be used easily for both postural and movement tasks. Estimations of stiffness profiles are possible with only one perturbation, making our method a useful tool for estimating limb stiffness during motor learning and adaptation tasks, and for understanding the modulation of stiffness in individuals with neurodegenerative diseases.
Robust control for a biaxial servo with time delay system based on adaptive tuning technique.
Chen, Tien-Chi; Yu, Chih-Hsien
2009-07-01
A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.
Rasmussen, Peter M.; Smith, Amy F.; Sakadžić, Sava; Boas, David A.; Pries, Axel R.; Secomb, Timothy W.; Østergaard, Leif
2017-01-01
Objective In vivo imaging of the microcirculation and network-oriented modeling have emerged as powerful means of studying microvascular function and understanding its physiological significance. Network-oriented modeling may provide the means of summarizing vast amounts of data produced by high-throughput imaging techniques in terms of key, physiological indices. To estimate such indices with sufficient certainty, however, network-oriented analysis must be robust to the inevitable presence of uncertainty due to measurement errors as well as model errors. Methods We propose the Bayesian probabilistic data analysis framework as a means of integrating experimental measurements and network model simulations into a combined and statistically coherent analysis. The framework naturally handles noisy measurements and provides posterior distributions of model parameters as well as physiological indices associated with uncertainty. Results We applied the analysis framework to experimental data from three rat mesentery networks and one mouse brain cortex network. We inferred distributions for more than five hundred unknown pressure and hematocrit boundary conditions. Model predictions were consistent with previous analyses, and remained robust when measurements were omitted from model calibration. Conclusion Our Bayesian probabilistic approach may be suitable for optimizing data acquisition and for analyzing and reporting large datasets acquired as part of microvascular imaging studies. PMID:27987383
Schmidt, Paul; Schmid, Volker J; Gaser, Christian; Buck, Dorothea; Bührlen, Susanne; Förschler, Annette; Mühlau, Mark
2013-01-01
Aiming at iron-related T2-hypointensity, which is related to normal aging and neurodegenerative processes, we here present two practicable approaches, based on Bayesian inference, for preprocessing and statistical analysis of a complex set of structural MRI data. In particular, Markov Chain Monte Carlo methods were used to simulate posterior distributions. First, we rendered a segmentation algorithm that uses outlier detection based on model checking techniques within a Bayesian mixture model. Second, we rendered an analytical tool comprising a Bayesian regression model with smoothness priors (in the form of Gaussian Markov random fields) mitigating the necessity to smooth data prior to statistical analysis. For validation, we used simulated data and MRI data of 27 healthy controls (age: [Formula: see text]; range, [Formula: see text]). We first observed robust segmentation of both simulated T2-hypointensities and gray-matter regions known to be T2-hypointense. Second, simulated data and images of segmented T2-hypointensity were analyzed. We found not only robust identification of simulated effects but also a biologically plausible age-related increase of T2-hypointensity primarily within the dentate nucleus but also within the globus pallidus, substantia nigra, and red nucleus. Our results indicate that fully Bayesian inference can successfully be applied for preprocessing and statistical analysis of structural MRI data.
Elzanfaly, Eman S; Hassan, Said A; Salem, Maissa Y; El-Zeany, Badr A
2015-12-05
A comparative study was established between two signal processing techniques showing the theoretical algorithm for each method and making a comparison between them to indicate the advantages and limitations. The methods under study are Numerical Differentiation (ND) and Continuous Wavelet Transform (CWT). These methods were studied as spectrophotometric resolution tools for simultaneous analysis of binary and ternary mixtures. To present the comparison, the two methods were applied for the resolution of Bisoprolol (BIS) and Hydrochlorothiazide (HCT) in their binary mixture and for the analysis of Amlodipine (AML), Aliskiren (ALI) and Hydrochlorothiazide (HCT) as an example for ternary mixtures. By comparing the results in laboratory prepared mixtures, it was proven that CWT technique is more efficient and advantageous in analysis of mixtures with severe overlapped spectra than ND. The CWT was applied for quantitative determination of the drugs in their pharmaceutical formulations and validated according to the ICH guidelines where accuracy, precision, repeatability and robustness were found to be within the acceptable limit. Copyright © 2015 Elsevier B.V. All rights reserved.
Control algorithms for aerobraking in the Martian atmosphere
NASA Technical Reports Server (NTRS)
Ward, Donald T.; Shipley, Buford W., Jr.
1991-01-01
The Analytic Predictor Corrector (APC) and Energy Controller (EC) atmospheric guidance concepts were adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. Changes are made to the APC to improve its robustness to density variations. These changes include adaptation of a new exit phase algorithm, an adaptive transition velocity to initiate the exit phase, refinement of the reference dynamic pressure calculation and two improved density estimation techniques. The modified controller with the hybrid density estimation technique is called the Mars Hybrid Predictor Corrector (MHPC), while the modified controller with a polynomial density estimator is called the Mars Predictor Corrector (MPC). A Lyapunov Steepest Descent Controller (LSDC) is adapted to control the vehicle. The LSDC lacked robustness, so a Lyapunov tracking exit phase algorithm is developed to guide the vehicle along a reference trajectory. This algorithm, when using the hybrid density estimation technique to define the reference path, is called the Lyapunov Hybrid Tracking Controller (LHTC). With the polynomial density estimator used to define the reference trajectory, the algorithm is called the Lyapunov Tracking Controller (LTC). These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. The MHPC, MPC, LHTC, and LTC show dramatic improvements in robustness over the APC and EC.
Kim, Jongpal; Kim, Jihoon; Ko, Hyoungho
2015-12-31
To overcome light interference, including a large DC offset and ambient light variation, a robust photoplethysmogram (PPG) readout chip is fabricated using a 0.13-μm complementary metal-oxide-semiconductor (CMOS) process. Against the large DC offset, a saturation detection and current feedback circuit is proposed to compensate for an offset current of up to 30 μA. For robustness against optical path variation, an automatic emitted light compensation method is adopted. To prevent ambient light interference, an alternating sampling and charge redistribution technique is also proposed. In the proposed technique, no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26.4 μW and has an input referred current noise of 260 pArms.
Kim, Jongpal; Kim, Jihoon; Ko, Hyoungho
2015-01-01
To overcome light interference, including a large DC offset and ambient light variation, a robust photoplethysmogram (PPG) readout chip is fabricated using a 0.13-μm complementary metal–oxide–semiconductor (CMOS) process. Against the large DC offset, a saturation detection and current feedback circuit is proposed to compensate for an offset current of up to 30 μA. For robustness against optical path variation, an automatic emitted light compensation method is adopted. To prevent ambient light interference, an alternating sampling and charge redistribution technique is also proposed. In the proposed technique, no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26.4 μW and has an input referred current noise of 260 pArms. PMID:26729122
Biologically-inspired data decorrelation for hyper-spectral imaging
NASA Astrophysics Data System (ADS)
Picon, Artzai; Ghita, Ovidiu; Rodriguez-Vaamonde, Sergio; Iriondo, Pedro Ma; Whelan, Paul F.
2011-12-01
Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors) is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA), linear discriminant analysis (LDA), wavelet decomposition (WD), or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral) characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification
Gibson, Scott M; Ficklin, Stephen P; Isaacson, Sven; Luo, Feng; Feltus, Frank A; Smith, Melissa C
2013-01-01
The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust.
Xu, Yuan; Ding, Kun; Huo, Chunlei; Zhong, Zisha; Li, Haichang; Pan, Chunhong
2015-01-01
Very high resolution (VHR) image change detection is challenging due to the low discriminative ability of change feature and the difficulty of change decision in utilizing the multilevel contextual information. Most change feature extraction techniques put emphasis on the change degree description (i.e., in what degree the changes have happened), while they ignore the change pattern description (i.e., how the changes changed), which is of equal importance in characterizing the change signatures. Moreover, the simultaneous consideration of the classification robust to the registration noise and the multiscale region-consistent fusion is often neglected in change decision. To overcome such drawbacks, in this paper, a novel VHR image change detection method is proposed based on sparse change descriptor and robust discriminative dictionary learning. Sparse change descriptor combines the change degree component and the change pattern component, which are encoded by the sparse representation error and the morphological profile feature, respectively. Robust change decision is conducted by multiscale region-consistent fusion, which is implemented by the superpixel-level cosparse representation with robust discriminative dictionary and the conditional random field model. Experimental results confirm the effectiveness of the proposed change detection technique. PMID:25918748
Robustness Analysis and Optimally Robust Control Design via Sum-of-Squares
NASA Technical Reports Server (NTRS)
Dorobantu, Andrei; Crespo, Luis G.; Seiler, Peter J.
2012-01-01
A control analysis and design framework is proposed for systems subject to parametric uncertainty. The underlying strategies are based on sum-of-squares (SOS) polynomial analysis and nonlinear optimization to design an optimally robust controller. The approach determines a maximum uncertainty range for which the closed-loop system satisfies a set of stability and performance requirements. These requirements, de ned as inequality constraints on several metrics, are restricted to polynomial functions of the uncertainty. To quantify robustness, SOS analysis is used to prove that the closed-loop system complies with the requirements for a given uncertainty range. The maximum uncertainty range, calculated by assessing a sequence of increasingly larger ranges, serves as a robustness metric for the closed-loop system. To optimize the control design, nonlinear optimization is used to enlarge the maximum uncertainty range by tuning the controller gains. Hence, the resulting controller is optimally robust to parametric uncertainty. This approach balances the robustness margins corresponding to each requirement in order to maximize the aggregate system robustness. The proposed framework is applied to a simple linear short-period aircraft model with uncertain aerodynamic coefficients.
NASA Astrophysics Data System (ADS)
McClanahan, James Patrick
Eddy Current Testing (ECT) is a Non-Destructive Examination (NDE) technique that is widely used in power generating plants (both nuclear and fossil) to test the integrity of heat exchanger (HX) and steam generator (SG) tubing. Specifically for this research, laboratory-generated, flawed tubing data were examined. The purpose of this dissertation is to develop and implement an automated method for the classification and an advanced characterization of defects in HX and SG tubing. These two improvements enhanced the robustness of characterization as compared to traditional bobbin-coil ECT data analysis methods. A more robust classification and characterization of the tube flaw in-situ (while the SG is on-line but not when the plant is operating), should provide valuable information to the power industry. The following are the conclusions reached from this research. A feature extraction program acquiring relevant information from both the mixed, absolute and differential data was successfully implemented. The CWT was utilized to extract more information from the mixed, complex differential data. Image Processing techniques used to extract the information contained in the generated CWT, classified the data with a high success rate. The data were accurately classified, utilizing the compressed feature vector and using a Bayes classification system. An estimation of the upper bound for the probability of error, using the Bhattacharyya distance, was successfully applied to the Bayesian classification. The classified data were separated according to flaw-type (classification) to enhance characterization. The characterization routine used dedicated, flaw-type specific ANNs that made the characterization of the tube flaw more robust. The inclusion of outliers may help complete the feature space so that classification accuracy is increased. Given that the eddy current test signals appear very similar, there may not be sufficient information to make an extremely accurate (>95%) classification or an advanced characterization using this system. It is necessary to have a larger database fore more accurate system learning.
Characterizing Detrended Fluctuation Analysis of multifractional Brownian motion
NASA Astrophysics Data System (ADS)
Setty, V. A.; Sharma, A. S.
2015-02-01
The Hurst exponent (H) is widely used to quantify long range dependence in time series data and is estimated using several well known techniques. Recognizing its ability to remove trends the Detrended Fluctuation Analysis (DFA) is used extensively to estimate a Hurst exponent in non-stationary data. Multifractional Brownian motion (mBm) broadly encompasses a set of models of non-stationary data exhibiting time varying Hurst exponents, H(t) as against a constant H. Recently, there has been a growing interest in time dependence of H(t) and sliding window techniques have been used to estimate a local time average of the exponent. This brought to fore the ability of DFA to estimate scaling exponents in systems with time varying H(t) , such as mBm. This paper characterizes the performance of DFA on mBm data with linearly varying H(t) and further test the robustness of estimated time average with respect to data and technique related parameters. Our results serve as a bench-mark for using DFA as a sliding window estimator to obtain H(t) from time series data.
Beam position monitor engineering
NASA Astrophysics Data System (ADS)
Smith, Stephen R.
1997-01-01
The design of beam position monitors often involves challenging system design choices. Position transducers must be robust, accurate, and generate adequate position signal without unduly disturbing the beam. Electronics must be reliable and affordable, usually while meeting tough requirements on precision, accuracy, and dynamic range. These requirements may be difficult to achieve simultaneously, leading the designer into interesting opportunities for optimization or compromise. Some useful techniques and tools are shown. Both finite element analysis and analytic techniques will be used to investigate quasi-static aspects of electromagnetic fields such as the impedance of and the coupling of beam to striplines or buttons. Finite-element tools will be used to understand dynamic aspects of the electromagnetic fields of beams, such as wake fields and transmission-line and cavity effects in vacuum-to-air feedthroughs. Mathematical modeling of electrical signals through a processing chain will be demonstrated, in particular to illuminate areas where neither a pure time-domain nor a pure frequency-domain analysis is obviously advantageous. Emphasis will be on calculational techniques, in particular on using both time domain and frequency domain approaches to the applicable parts of interesting problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, S; Garden, A; Anderson, M
Purpose: Multi-field optimization intensity modulated proton therapy (MFO-IMPT) for oropharyngeal tumors has been established using robust planning, robust analysis, and robust optimization techniques. While there are inherent uncertainties in proton therapy treatment planning and delivery, outcome reporting are important to validate the proton treatment process. The purpose of this study is to report the first 50 oropharyngeal tumor patients treated de-novo at a single institution with MFO-IMPT. Methods: The data from the first 50 patients with squamous cell carcinoma of the oropharynx treated at MD Anderson Cancer Center from January 2011 to December 2014 on a prospective IRB approved protocolmore » were analyzed. Outcomes were analyzed to include local, regional, and distant treatment failures. Acute and late toxicities were analyzed by CTCAE v4.0. Results: All patients were treated with definitive intent. The median follow-up time of the 50 patients was 25 months. Patients by gender were male (84%) and female (16%). The average age was 61 years. 50% of patients were never smokers and 4% were current smokers. Presentation by stage; I–1, II–0, III– 9, IVA–37 (74%), IVB–3. 88% of patients were HPV/p16+. Patients were treated to 66–70 CGE. One local failure was reported at 13 months following treatment. One neck failure was reported at 12 months. 94% of patients were alive with no evidence of disease. One patient died without evidence of disease. There were no Grade 4 or Grade 5 toxicities. Conclusion: MFO-IMPT for oropharyngeal tumors is robust and provides excellent outcomes 2 years after treatment. A randomized trial is underway to determine if proton therapy will reduce chronic late toxicities of IMRT.« less
Nonlinear Acoustic and Ultrasonic NDT of Aeronautical Components
NASA Astrophysics Data System (ADS)
Van Den Abeele, Koen; Katkowski, Tomasz; Mattei, Christophe
2006-05-01
In response to the demand for innovative microdamage inspection systems, with high sensitivity and undoubted accuracy, we are currently investigating the use and robustness of several acoustic and ultrasonic NDT techniques based on Nonlinear Elastic Wave Spectroscopy (NEWS) for the characterization of microdamage in aeronautical components. In this report, we illustrate the results of an amplitude dependent analysis of the resonance behaviour, both in time (signal reverberation) and in frequency (sweep) domain. The technique is applied to intact and damaged samples of Carbon Fiber Reinforced Plastics (CFRP) composites after thermal loading or mechanical fatigue. The method shows a considerable gain in sensitivity and an incontestable interpretation of the results for nonlinear signatures in comparison with the linear characteristics. For highly fatigued samples, slow dynamical effects are observed.
Polling, Saskia; Hatters, Danny M; Mok, Yee-Foong
2013-01-01
Defining the aggregation process of proteins formed by poly-amino acid repeats in cells remains a challenging task due to a lack of robust techniques for their isolation and quantitation. Sedimentation velocity methodology using fluorescence detected analytical ultracentrifugation is one approach that can offer significant insight into aggregation formation and kinetics. While this technique has traditionally been used with purified proteins, it is now possible for substantial information to be collected with studies using cell lysates expressing a GFP-tagged protein of interest. In this chapter, we describe protocols for sample preparation and setting up the fluorescence detection system in an analytical ultracentrifuge to perform sedimentation velocity experiments on cell lysates containing aggregates formed by poly-amino acid repeat proteins.
Automatic video segmentation and indexing
NASA Astrophysics Data System (ADS)
Chahir, Youssef; Chen, Liming
1999-08-01
Indexing is an important aspect of video database management. Video indexing involves the analysis of video sequences, which is a computationally intensive process. However, effective management of digital video requires robust indexing techniques. The main purpose of our proposed video segmentation is twofold. Firstly, we develop an algorithm that identifies camera shot boundary. The approach is based on the use of combination of color histograms and block-based technique. Next, each temporal segment is represented by a color reference frame which specifies the shot similarities and which is used in the constitution of scenes. Experimental results using a variety of videos selected in the corpus of the French Audiovisual National Institute are presented to demonstrate the effectiveness of performing shot detection, the content characterization of shots and the scene constitution.
2015-06-04
that involve physics coupling with phase change in the simulation of 3D deep convection. We show that the VMS+DC approach is a robust technique that can...of 3D deep convection. We show that the VMS+DC approach is a robust technique that can damp the high order modes characterizing the spectral element...of Spectral Elements, Deep Convection, Kessler Microphysics Preprint J. Comput. Phys. 283 (2015) 360-373 June 4, 2015 1. Introduction In the field of
Texture analysis of medical images for radiotherapy applications
Rizzo, Giovanna
2017-01-01
The high-throughput extraction of quantitative information from medical images, known as radiomics, has grown in interest due to the current necessity to quantitatively characterize tumour heterogeneity. In this context, texture analysis, consisting of a variety of mathematical techniques that can describe the grey-level patterns of an image, plays an important role in assessing the spatial organization of different tissues and organs. For these reasons, the potentiality of texture analysis in the context of radiotherapy has been widely investigated in several studies, especially for the prediction of the treatment response of tumour and normal tissues. Nonetheless, many different factors can affect the robustness, reproducibility and reliability of textural features, thus limiting the impact of this technique. In this review, an overview of the most recent works that have applied texture analysis in the context of radiotherapy is presented, with particular focus on the assessment of tumour and tissue response to radiations. Preliminary, the main factors that have an influence on features estimation are discussed, highlighting the need of more standardized image acquisition and reconstruction protocols and more accurate methods for region of interest identification. Despite all these limitations, texture analysis is increasingly demonstrating its ability to improve the characterization of intratumour heterogeneity and the prediction of clinical outcome, although prospective studies and clinical trials are required to draw a more complete picture of the full potential of this technique. PMID:27885836
Robust decentralized control laws for the ACES structure
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; Phillips, Douglas J.; Hyland, David C.
1991-01-01
Control system design for the Active Control Technique Evaluation for Spacecraft (ACES) structure at NASA Marshall Space Flight Center is discussed. The primary objective of this experiment is to design controllers that provide substantial reduction of the line-of-sight pointing errors. Satisfaction of this objective requires the controllers to attenuate beam vibration significantly. The primary method chosen for control design is the optimal projection approach for uncertain systems (OPUS). The OPUS design process allows the simultaneous tradeoff of five fundamental issues in control design: actuator sizing, sensor accuracy, controller order, robustness, and system performance. A brief description of the basic ACES configuration is given. The development of the models used for control design and control design for eight system loops that were selected by analysis of test data collected from the structure are discussed. Experimental results showing that very significant performance improvement is achieved when all eight feedback loops are closed are presented.
Medeiros, Renan Landau Paiva de; Barra, Walter; Bessa, Iury Valente de; Chaves Filho, João Edgar; Ayres, Florindo Antonio de Cavalho; Neves, Cleonor Crescêncio das
2018-02-01
This paper describes a novel robust decentralized control design methodology for a single inductor multiple output (SIMO) DC-DC converter. Based on a nominal multiple input multiple output (MIMO) plant model and performance requirements, a pairing input-output analysis is performed to select the suitable input to control each output aiming to attenuate the loop coupling. Thus, the plant uncertainty limits are selected and expressed in interval form with parameter values of the plant model. A single inductor dual output (SIDO) DC-DC buck converter board is developed for experimental tests. The experimental results show that the proposed methodology can maintain a desirable performance even in the presence of parametric uncertainties. Furthermore, the performance indexes calculated from experimental data show that the proposed methodology outperforms classical MIMO control techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Validating Coherence Measurements Using Aligned and Unaligned Coherence Functions
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton
2006-01-01
This paper describes a novel approach based on the use of coherence functions and statistical theory for sensor validation in a harsh environment. By the use of aligned and unaligned coherence functions and statistical theory one can test for sensor degradation, total sensor failure or changes in the signal. This advanced diagnostic approach and the novel data processing methodology discussed provides a single number that conveys this information. This number as calculated with standard statistical procedures for comparing the means of two distributions is compared with results obtained using Yuen's robust statistical method to create confidence intervals. Examination of experimental data from Kulite pressure transducers mounted in a Pratt & Whitney PW4098 combustor using spectrum analysis methods on aligned and unaligned time histories has verified the effectiveness of the proposed method. All the procedures produce good results which demonstrates how robust the technique is.
Zaafouri, Abderrahmen; Regaya, Chiheb Ben; Azza, Hechmi Ben; Châari, Abdelkader
2016-01-01
This paper presents a modified structure of the backstepping nonlinear control of the induction motor (IM) fitted with an adaptive backstepping speed observer. The control design is based on the backstepping technique complemented by the introduction of integral tracking errors action to improve its robustness. Unlike other research performed on backstepping control with integral action, the control law developed in this paper does not propose the increase of the number of system state so as not increase the complexity of differential equations resolution. The digital simulation and experimental results show the effectiveness of the proposed control compared to the conventional PI control. The results analysis shows the characteristic robustness of the adaptive control to disturbances of the load, the speed variation and low speed. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Advances in Modal Analysis Using a Robust and Multiscale Method
NASA Astrophysics Data System (ADS)
Picard, Cécile; Frisson, Christian; Faure, François; Drettakis, George; Kry, Paul G.
2010-12-01
This paper presents a new approach to modal synthesis for rendering sounds of virtual objects. We propose a generic method that preserves sound variety across the surface of an object at different scales of resolution and for a variety of complex geometries. The technique performs automatic voxelization of a surface model and automatic tuning of the parameters of hexahedral finite elements, based on the distribution of material in each cell. The voxelization is performed using a sparse regular grid embedding of the object, which permits the construction of plausible lower resolution approximations of the modal model. We can compute the audible impulse response of a variety of objects. Our solution is robust and can handle nonmanifold geometries that include both volumetric and surface parts. We present a system which allows us to manipulate and tune sounding objects in an appropriate way for games, training simulations, and other interactive virtual environments.
Application of Ultrasound Phase-Shift Analysis to Authenticate Wooden Panel Paintings
Bravo, José M.; Sánchez-Pérez, Juan V.; Ferri, Marcelino; Redondo, Javier; Picó, Rubén
2014-01-01
Artworks are a valuable part of the World's cultural and historical heritage. Conservation and authentication of authorship are important aspects to consider in the protection of cultural patrimony. In this paper we present a novel application of a well-known method based on the phase-shift analysis of an ultrasonic signal, providing an integrated encoding system that enables authentication of the authorship of wooden panel paintings. The method has been evaluated in comparison with optical analysis and shows promising results. The proposed method provides an integrated fingerprint of the artwork, and could be used to enrich the cataloging and protection of artworks. Other advantages that make particularly attractive the proposed technique are its robustness and the use of low-cost sensors. PMID:24803191
Multivariate Analysis of Seismic Field Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, M. Kathleen
1999-06-01
This report includes the details of the model building procedure and prediction of seismic field data. Principal Components Regression, a multivariate analysis technique, was used to model seismic data collected as two pieces of equipment were cycled on and off. Models built that included only the two pieces of equipment of interest had trouble predicting data containing signals not included in the model. Evidence for poor predictions came from the prediction curves as well as spectral F-ratio plots. Once the extraneous signals were included in the model, predictions improved dramatically. While Principal Components Regression performed well for the present datamore » sets, the present data analysis suggests further work will be needed to develop more robust modeling methods as the data become more complex.« less
Time-Series Analysis: A Cautionary Tale
NASA Technical Reports Server (NTRS)
Damadeo, Robert
2015-01-01
Time-series analysis has often been a useful tool in atmospheric science for deriving long-term trends in various atmospherically important parameters (e.g., temperature or the concentration of trace gas species). In particular, time-series analysis has been repeatedly applied to satellite datasets in order to derive the long-term trends in stratospheric ozone, which is a critical atmospheric constituent. However, many of the potential pitfalls relating to the non-uniform sampling of the datasets were often ignored and the results presented by the scientific community have been unknowingly biased. A newly developed and more robust application of this technique is applied to the Stratospheric Aerosol and Gas Experiment (SAGE) II version 7.0 ozone dataset and the previous biases and newly derived trends are presented.
Flight-determined stability analysis of multiple-input-multiple-output control systems
NASA Technical Reports Server (NTRS)
Burken, John J.
1992-01-01
Singular value analysis can give conservative stability margin results. Applying structure to the uncertainty can reduce this conservatism. This paper presents flight-determined stability margins for the X-29A lateral-directional, multiloop control system. These margins are compared with the predicted unscaled singular values and scaled structured singular values. The algorithm was further evaluated with flight data by changing the roll-rate-to-aileron command-feedback gain by +/- 20 percent. Minimum eigenvalues of the return difference matrix which bound the singular values are also presented. Extracting multiloop singular values from flight data and analyzing the feedback gain variations validates this technique as a measure of robustness. This analysis can be used for near-real-time flight monitoring and safety testing.
Flight-determined stability analysis of multiple-input-multiple-output control systems
NASA Technical Reports Server (NTRS)
Burken, John J.
1992-01-01
Singular value analysis can give conservative stability margin results. Applying structure to the uncertainty can reduce this conservatism. This paper presents flight-determined stability margins for the X-29A lateral-directional, multiloop control system. These margins are compared with the predicted unscaled singular values and scaled structured singular values. The algorithm was further evaluated with flight data by changing the roll-rate-to-aileron-command-feedback gain by +/- 20 percent. Also presented are the minimum eigenvalues of the return difference matrix which bound the singular values. Extracting multiloop singular values from flight data and analyzing the feedback gain variations validates this technique as a measure of robustness. This analysis can be used for near-real-time flight monitoring and safety testing.
NASA Astrophysics Data System (ADS)
Parente, M.; Bishop, J. L.
2008-12-01
Mapping of Mars by MRO has revealed the presence of numerous small phyllosilicate outcrops. These are typically identified in CRISM images using "summary products" (Pelkey, 2007) that consist of band ratios, depths and spectral slopes around diagnostic wavelengths. The summary products are designed to capture spectral features related to both surface mineralogy and atmospheric gases and aerosols. Such products, as an analysis tool to characterize composition as well as a targeting tool to identify areas of mineralogical interest, have been successful in capturing the known diversity of the Martian surface, and in highlighting locations with strong spectral signatures. Here we present alternative mineral mapping technique that 1) aims to increase the robustness of mineral detections with respect to the specific CRISM artifacts, 2) takes advantage of the spatial context of each pixel and 3) develops new parameters for the discrimination of species in the phyllosilicates family. We include spatial context by evaluating spectral shapes, band depths and spectral slopes for the current pixel based on its spatial neighbors within the same geological unit. Furthermore, the parameters are based on estimates that are more robust to CRISM speckling noise that might alter the parameters and potentially the mineral interpretation. As an effort to distinguish between phyllosilicates species, we are augmenting the suite of existent parameters with a set of mineral parameters that involve the position, number and shapes of diagnostic phyllosilicate absorptions. We are comparing the effectiveness of this new approach to the summary product procedure. The study shows that homogeneous mineral maps and diagnostic spectral identifications are possible as a result of the application of such new parameters. We applied the technique to the discrimination of kaolinite in Mawrth Vallis. The experiments show several small kaolinite outcrops dispersed within the more extensive Al-rich phyllosilicates in regions around the MSL landing sites. Another test was the discrimination of montmorillonite and nontronite in Mawrth Vallis that can be successfully accomplished by band depths summary products near 2.2 and 2.3 μm. The new technique produces improved maps with lower noise levels and lower percentage of false detections.
Armstrong, Anderson C.; Ricketts, Erin P.; Cox, Christopher; Adler, Paul; Arynchyn, Alexander; Liu, Kiang; Stengel, Ellen; RDCS; Sidney, Stephen; Lewis, Cora E.; Schreiner, Pamela J.; Shikany, James M.; Keck, Kimberly; Merlo, Jamie; Gidding, Samuel S.; Lima, João A. C.
2014-01-01
Introduction Few large studies describe quality control procedures and reproducibility findings in cardiovascular ultra-sound, particularly in novel techniques such as Speckle Tracking (STE). We evaluate the echocardiography assessment performance in the CARDIA study Y25 examination (2010-2011) and report findings from a quality control and reproducibility program conducted to assess Field Center image acquisition and Reading Center (RC) accuracy. Methods The CARDIA Y25 examination had 3,475 echocardiograms performed in 4 US Field Centers and analyzed in a Reading Center, assessing standard echocardiography (LA dimension, aortic root, LV mass, LV end-diastolic volume [LVEDV], ejection fraction [LVEF]), and STE (2- and 4-chamber longitudinal, circumferential, and radial strains). Reproducibility was assessed using intra-class correlation coefficients (ICC), coefficients of variation (CV), and Bland-Altman plots. Results For standard echocardiography reproducibility, LV mass and LVEDV consistently had CV above 10% and aortic root below 6%. Intra-sonographer aortic root and LV mass had the most robust values of ICC in standard echocardiography. For STE, the number of properly tracking segments was above 80% in short-axis and 4-chamber and 58% in 2-chamber. Longitudinal strain parameters were the most robust and radial strain showed the highest variation. Comparing Field Centers with Echo RC STE readings, mean differences ranged from 0.4% to 4.1% and ICC from 0.37 to 0.66, with robust results for longitudinal strains. Conclusion Echocardiography image acquisition and reading processes in the CARDIA study were highly reproducible, including robust results for STE analysis. Consistent quality control may increase the reliability of echocardiography measurements in large cohort studies. PMID:25382818
Armstrong, Anderson C; Ricketts, Erin P; Cox, Christopher; Adler, Paul; Arynchyn, Alexander; Liu, Kiang; Stengel, Ellen; Sidney, Stephen; Lewis, Cora E; Schreiner, Pamela J; Shikany, James M; Keck, Kimberly; Merlo, Jamie; Gidding, Samuel S; Lima, João A C
2015-08-01
Few large studies describe quality control procedures and reproducibility findings in cardiovascular ultrasound, particularly in novel techniques such as speckle tracking echocardiography (STE). We evaluate the echocardiography assessment performance in the Coronary Artery Risk Development in Young Adults (CARDIA) study Year 25 (Y25) examination (2010-2011) and report findings from a quality control and reproducibility program conducted to assess Field Center image acquisition and reading center (RC) accuracy. The CARDIA Y25 examination had 3475 echocardiograms performed in 4 US Field Centers and analyzed in a RC, assessing standard echocardiography (LA dimension, aortic root, LV mass, LV end-diastolic volume [LVEDV], ejection fraction [LVEF]), and STE (two- and four-chamber longitudinal, circumferential, and radial strains). Reproducibility was assessed using intraclass correlation coefficients (ICC), coefficients of variation (CV), and Bland-Altman plots. For standard echocardiography reproducibility, LV mass and LVEDV consistently had CV above 10% and aortic root below 6%. Intra-sonographer aortic root and LV mass had the most robust values of ICC in standard echocardiography. For STE, the number of properly tracking segments was above 80% in short-axis and four-chamber and 58% in two-chamber views. Longitudinal strain parameters were the most robust and radial strain showed the highest variation. Comparing Field Centers with echocardiography RC STE readings, mean differences ranged from 0.4% to 4.1% and ICC from 0.37 to 0.66, with robust results for longitudinal strains. Echocardiography image acquisition and reading processes in the CARDIA study were highly reproducible, including robust results for STE analysis. Consistent quality control may increase the reliability of echocardiography measurements in large cohort studies. © 2014, Wiley Periodicals, Inc.
A new blood vessel extraction technique using edge enhancement and object classification.
Badsha, Shahriar; Reza, Ahmed Wasif; Tan, Kim Geok; Dimyati, Kaharudin
2013-12-01
Diabetic retinopathy (DR) is increasing progressively pushing the demand of automatic extraction and classification of severity of diseases. Blood vessel extraction from the fundus image is a vital and challenging task. Therefore, this paper presents a new, computationally simple, and automatic method to extract the retinal blood vessel. The proposed method comprises several basic image processing techniques, namely edge enhancement by standard template, noise removal, thresholding, morphological operation, and object classification. The proposed method has been tested on a set of retinal images. The retinal images were collected from the DRIVE database and we have employed robust performance analysis to evaluate the accuracy. The results obtained from this study reveal that the proposed method offers an average accuracy of about 97 %, sensitivity of 99 %, specificity of 86 %, and predictive value of 98 %, which is superior to various well-known techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zheng; Ukida, H.; Ramuhalli, Pradeep
2010-06-05
Imaging- and vision-based techniques play an important role in industrial inspection. The sophistication of the techniques assures high- quality performance of the manufacturing process through precise positioning, online monitoring, and real-time classification. Advanced systems incorporating multiple imaging and/or vision modalities provide robust solutions to complex situations and problems in industrial applications. A diverse range of industries, including aerospace, automotive, electronics, pharmaceutical, biomedical, semiconductor, and food/beverage, etc., have benefited from recent advances in multi-modal imaging, data fusion, and computer vision technologies. Many of the open problems in this context are in the general area of image analysis methodologies (preferably in anmore » automated fashion). This editorial article introduces a special issue of this journal highlighting recent advances and demonstrating the successful applications of integrated imaging and vision technologies in industrial inspection.« less
Security of Color Image Data Designed by Public-Key Cryptosystem Associated with 2D-DWT
NASA Astrophysics Data System (ADS)
Mishra, D. C.; Sharma, R. K.; Kumar, Manish; Kumar, Kuldeep
2014-08-01
In present times the security of image data is a major issue. So, we have proposed a novel technique for security of color image data by public-key cryptosystem or asymmetric cryptosystem. In this technique, we have developed security of color image data using RSA (Rivest-Shamir-Adleman) cryptosystem with two-dimensional discrete wavelet transform (2D-DWT). Earlier proposed schemes for security of color images designed on the basis of keys, but this approach provides security of color images with the help of keys and correct arrangement of RSA parameters. If the attacker knows about exact keys, but has no information of exact arrangement of RSA parameters, then the original information cannot be recovered from the encrypted data. Computer simulation based on standard example is critically examining the behavior of the proposed technique. Security analysis and a detailed comparison between earlier developed schemes for security of color images and proposed technique are also mentioned for the robustness of the cryptosystem.
Feedback system design with an uncertain plant
NASA Technical Reports Server (NTRS)
Milich, D.; Valavani, L.; Athans, M.
1986-01-01
A method is developed to design a fixed-parameter compensator for a linear, time-invariant, SISO (single-input single-output) plant model characterized by significant structured, as well as unstructured, uncertainty. The controller minimizes the H(infinity) norm of the worst-case sensitivity function over the operating band and the resulting feedback system exhibits robust stability and robust performance. It is conjectured that such a robust nonadaptive control design technique can be used on-line in an adaptive control system.
Research in robust control for hypersonic aircraft
NASA Technical Reports Server (NTRS)
Calise, A. J.
1993-01-01
The research during the second reporting period has focused on robust control design for hypersonic vehicles. An already existing design for the Hypersonic Winged-Cone Configuration has been enhanced. Uncertainty models for the effects of propulsion system perturbations due to angle of attack variations, structural vibrations, and uncertainty in control effectiveness were developed. Using H(sub infinity) and mu-synthesis techniques, various control designs were performed in order to investigate the impact of these effects on achievable robust performance.
Sparse coding for flexible, robust 3D facial-expression synthesis.
Lin, Yuxu; Song, Mingli; Quynh, Dao Thi Phuong; He, Ying; Chen, Chun
2012-01-01
Computer animation researchers have been extensively investigating 3D facial-expression synthesis for decades. However, flexible, robust production of realistic 3D facial expressions is still technically challenging. A proposed modeling framework applies sparse coding to synthesize 3D expressive faces, using specified coefficients or expression examples. It also robustly recovers facial expressions from noisy and incomplete data. This approach can synthesize higher-quality expressions in less time than the state-of-the-art techniques.
Covariate selection with group lasso and doubly robust estimation of causal effects
Koch, Brandon; Vock, David M.; Wolfson, Julian
2017-01-01
Summary The efficiency of doubly robust estimators of the average causal effect (ACE) of a treatment can be improved by including in the treatment and outcome models only those covariates which are related to both treatment and outcome (i.e., confounders) or related only to the outcome. However, it is often challenging to identify such covariates among the large number that may be measured in a given study. In this paper, we propose GLiDeR (Group Lasso and Doubly Robust Estimation), a novel variable selection technique for identifying confounders and predictors of outcome using an adaptive group lasso approach that simultaneously performs coefficient selection, regularization, and estimation across the treatment and outcome models. The selected variables and corresponding coefficient estimates are used in a standard doubly robust ACE estimator. We provide asymptotic results showing that, for a broad class of data generating mechanisms, GLiDeR yields a consistent estimator of the ACE when either the outcome or treatment model is correctly specified. A comprehensive simulation study shows that GLiDeR is more efficient than doubly robust methods using standard variable selection techniques and has substantial computational advantages over a recently proposed doubly robust Bayesian model averaging method. We illustrate our method by estimating the causal treatment effect of bilateral versus single-lung transplant on forced expiratory volume in one year after transplant using an observational registry. PMID:28636276
Covariate selection with group lasso and doubly robust estimation of causal effects.
Koch, Brandon; Vock, David M; Wolfson, Julian
2018-03-01
The efficiency of doubly robust estimators of the average causal effect (ACE) of a treatment can be improved by including in the treatment and outcome models only those covariates which are related to both treatment and outcome (i.e., confounders) or related only to the outcome. However, it is often challenging to identify such covariates among the large number that may be measured in a given study. In this article, we propose GLiDeR (Group Lasso and Doubly Robust Estimation), a novel variable selection technique for identifying confounders and predictors of outcome using an adaptive group lasso approach that simultaneously performs coefficient selection, regularization, and estimation across the treatment and outcome models. The selected variables and corresponding coefficient estimates are used in a standard doubly robust ACE estimator. We provide asymptotic results showing that, for a broad class of data generating mechanisms, GLiDeR yields a consistent estimator of the ACE when either the outcome or treatment model is correctly specified. A comprehensive simulation study shows that GLiDeR is more efficient than doubly robust methods using standard variable selection techniques and has substantial computational advantages over a recently proposed doubly robust Bayesian model averaging method. We illustrate our method by estimating the causal treatment effect of bilateral versus single-lung transplant on forced expiratory volume in one year after transplant using an observational registry. © 2017, The International Biometric Society.
van Elk, Michiel; Matzke, Dora; Gronau, Quentin F.; Guan, Maime; Vandekerckhove, Joachim; Wagenmakers, Eric-Jan
2015-01-01
According to a recent meta-analysis, religious priming has a positive effect on prosocial behavior (Shariff et al., 2015). We first argue that this meta-analysis suffers from a number of methodological shortcomings that limit the conclusions that can be drawn about the potential benefits of religious priming. Next we present a re-analysis of the religious priming data using two different meta-analytic techniques. A Precision-Effect Testing–Precision-Effect-Estimate with Standard Error (PET-PEESE) meta-analysis suggests that the effect of religious priming is driven solely by publication bias. In contrast, an analysis using Bayesian bias correction suggests the presence of a religious priming effect, even after controlling for publication bias. These contradictory statistical results demonstrate that meta-analytic techniques alone may not be sufficiently robust to firmly establish the presence or absence of an effect. We argue that a conclusive resolution of the debate about the effect of religious priming on prosocial behavior – and about theoretically disputed effects more generally – requires a large-scale, preregistered replication project, which we consider to be the sole remedy for the adverse effects of experimenter bias and publication bias. PMID:26441741
Surrogate marker analysis in cancer clinical trials through time-to-event mediation techniques.
Vandenberghe, Sjouke; Duchateau, Luc; Slaets, Leen; Bogaerts, Jan; Vansteelandt, Stijn
2017-01-01
The meta-analytic approach is the gold standard for validation of surrogate markers, but has the drawback of requiring data from several trials. We refine modern mediation analysis techniques for time-to-event endpoints and apply them to investigate whether pathological complete response can be used as a surrogate marker for disease-free survival in the EORTC 10994/BIG 1-00 randomised phase 3 trial in which locally advanced breast cancer patients were randomised to either taxane or anthracycline based neoadjuvant chemotherapy. In the mediation analysis, the treatment effect is decomposed into an indirect effect via pathological complete response and the remaining direct effect. It shows that only 4.2% of the treatment effect on disease-free survival after five years is mediated by the treatment effect on pathological complete response. There is thus no evidence from our analysis that pathological complete response is a valuable surrogate marker to evaluate the effect of taxane versus anthracycline based chemotherapies on progression free survival of locally advanced breast cancer patients. The proposed analysis strategy is broadly applicable to mediation analyses of time-to-event endpoints, is easy to apply and outperforms existing strategies in terms of precision as well as robustness against model misspecification.
NASA Astrophysics Data System (ADS)
Gasbarri, Paolo; Monti, Riccardo; Campolo, Giovanni; Toglia, Chiara
2012-12-01
The design of large space structures (LSS) requires the use of design and analysis tools that include different disciplines. For such a kind of spacecrafts it is in fact mandatory that mechanical design and guidance navigation and control (GNC) design are developed within a common framework. One of the key-points in the development of LSS is related to the dynamic phenomena. These phenomena usually lead to two different interpretations. The former one is related to the overall motion of the spacecraft, i.e., the motion of the centre of gravity and motion around the centre of gravity. The latter one is related to the local motion of the elastic elements that leads to oscillations. These oscillations have in turn a disturbing effect on the motion of the spacecraft. From an engineering perspective, the structural model of flexible spacecrafts is generally obtained via FEM involving thousands of degrees of freedom (DOFs). Many of them are not significant from the attitude control point of view. One of the procedures to reduce the structural DOFs is tied to the modal decomposition technique. In the present paper a technique to develop a control-oriented structural model will be proposed. Starting from a detailed FE model of the spacecraft and using a special modal condensation approach, a continuous model is defined. With this transformation the number of DOFs necessary to study the coupled elastic/rigid dynamic is reduced. The final dynamic model will be suitable for the control design implementation. In order to properly design a satellite controller, it is important to recall that the characteristic parameters of the satellite are uncertain. The effect that uncertainties have on control performance must be investigated. A possible solution is that, after the attitude controller is designed on the nominal model, a Verification and Validation (V&V) process is performed to guarantee a correct functionality under a large number of scenarios. The V&V process can be very lengthy and expensive: difficulty and cost do increase because of the overall system dimension that depends on the number of uncertainties. Uncertain parameters have to be parametrically investigated to determine robust performance of the control laws via gridding approaches. In particular in this paper we propose to consider two methods: (i) a conventional Monte Carlo analysis, and (ii) a worst-case analysis, i.e., an optimization process to find an estimation of the true worst-case behaviour. Both techniques allow to verify that the design is robust enough to meet the system performance specification in case of uncertainties.
The beauty of simple adaptive control and new developments in nonlinear systems stability analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkana, Itzhak, E-mail: ibarkana@gmail.com
Although various adaptive control techniques have been around for a long time and in spite of successful proofs of stability and even successful demonstrations of performance, the eventual use of adaptive control methodologies in practical real world systems has met a rather strong resistance from practitioners and has remained limited. Apparently, it is difficult to guarantee or even understand the conditions that can guarantee stable operations of adaptive control systems under realistic operational environments. Besides, it is difficult to measure the robustness of adaptive control system stability and allow it to be compared with the common and widely used measuremore » of phase margin and gain margin that is utilized by present, mainly LTI, controllers. Furthermore, customary stability analysis methods seem to imply that the mere stability of adaptive systems may be adversely affected by any tiny deviation from the pretty idealistic and assumably required stability conditions. This paper first revisits the fundamental qualities of customary direct adaptive control methodologies, in particular the classical Model Reference Adaptive Control, and shows that some of their basic drawbacks have been addressed and eliminated within the so-called Simple Adaptive Control methodology. Moreover, recent developments in the stability analysis methods of nonlinear systems show that prior conditions that were customarily assumed to be needed for stability are only apparent and can be eliminated. As a result, sufficient conditions that guarantee stability are clearly stated and lead to similarly clear proofs of stability. As many real-world applications show, once robust stability of the adaptive systems can be guaranteed, the added value of using Add-On Adaptive Control along with classical Control design techniques is pushing the desired performance beyond any previous limits.« less
NASA Astrophysics Data System (ADS)
Cesar, Roberto Marcondes; Costa, Luciano da Fontoura
1997-05-01
The estimation of the curvature of experimentally obtained curves is an important issue in many applications of image analysis including biophysics, biology, particle physics, and high energy physics. However, the accurate calculation of the curvature of digital contours has proven to be a difficult endeavor, mainly because of the noise and distortions that are always present in sampled signals. Errors ranging from 1% to 1000% have been reported with respect to the application of standard techniques in the estimation of the curvature of circular contours [M. Worring and A. W. M. Smeulders, CVGIP: Im. Understanding, 58, 366 (1993)]. This article explains how diagrams of multiscale bending energy can be easily obtained from curvegrams and used as a robust general feature for morphometric characterization of neural cells. The bending energy is an interesting global feature for shape characterization that expresses the amount of energy needed to transform the specific shape under analysis into its lowest energy state (i.e., a circle). The curvegram, which can be accurately obtained by using digital signal processing techniques (more specifically through the Fourier transform and its inverse, as described in this work), provides multiscale representation of the curvature of digital contours. The estimation of the bending energy from the curvegram is introduced and exemplified with respect to a series of neural cells. The masked high curvature effect is reported and its implications to shape analysis are discussed. It is also discussed and illustrated that, by normalizing the multiscale bending energy with respect to a standard circle of unitary perimeter, this feature becomes an effective means for expressing shape complexity in a way that is invariant to rotation, translation, and scaling, and that is robust to noise and other artifacts implied by image acquisition.
NASA Astrophysics Data System (ADS)
Valdes, Raymond
The characterization of thermal barrier coating (TBC) systems is increasingly important because they enable gas turbine engines to operate at high temperatures and efficiency. Phase of photothermal emission analysis (PopTea) has been developed to analyze the thermal behavior of the ceramic top-coat of TBCs, as a nondestructive and noncontact method for measuring thermal diffusivity and thermal conductivity. Most TBC allocations are on actively-cooled high temperature turbine blades, which makes it difficult to precisely model heat transfer in the metallic subsystem. This reduces the ability of rote thermal modeling to reflect the actual physical conditions of the system and can lead to higher uncertainty in measured thermal properties. This dissertation investigates fundamental issues underpinning robust thermal property measurements that are adaptive to non-specific, complex, and evolving system characteristics using the PopTea method. A generic and adaptive subsystem PopTea thermal model was developed to account for complex geometry beyond a well-defined coating and substrate system. Without a priori knowledge of the subsystem characteristics, two different measurement techniques were implemented using the subsystem model. In the first technique, the properties of the subsystem were resolved as part of the PopTea parameter estimation algorithm; and, the second technique independently resolved the subsystem properties using a differential "bare" subsystem. The confidence in thermal properties measured using the generic subsystem model is similar to that from a standard PopTea measurement on a "well-defined" TBC system. Non-systematic bias-error on experimental observations in PopTea measurements due to generic thermal model discrepancies was also mitigated using a regression-based sensitivity analysis. The sensitivity analysis reported measurement uncertainty and was developed into a data reduction method to filter out these "erroneous" observations. It was found that the adverse impact of bias-error can be greatly reduced, leaving measurement observations with only random Gaussian noise in PopTea thermal property measurements. Quantifying the influence of the coating-substrate interface in PopTea measurements is important to resolving the thermal conductivity of the coating. However, the reduced significance of this interface in thicker coating systems can give rise to large uncertainties in thermal conductivity measurements. A first step towards improving PopTea measurements for such circumstances has been taken by implementing absolute temperature measurements using harmonically-sustained two-color pyrometry. Although promising, even small uncertainties in thermal emission observations were found to lead to significant noise in temperature measurements. However, PopTea analysis on bulk graphite samples were able to resolve its thermal conductivity to the expected literature values.
Statistics based sampling for controller and estimator design
NASA Astrophysics Data System (ADS)
Tenne, Dirk
The purpose of this research is the development of statistical design tools for robust feed-forward/feedback controllers and nonlinear estimators. This dissertation is threefold and addresses the aforementioned topics nonlinear estimation, target tracking and robust control. To develop statistically robust controllers and nonlinear estimation algorithms, research has been performed to extend existing techniques, which propagate the statistics of the state, to achieve higher order accuracy. The so-called unscented transformation has been extended to capture higher order moments. Furthermore, higher order moment update algorithms based on a truncated power series have been developed. The proposed techniques are tested on various benchmark examples. Furthermore, the unscented transformation has been utilized to develop a three dimensional geometrically constrained target tracker. The proposed planar circular prediction algorithm has been developed in a local coordinate framework, which is amenable to extension of the tracking algorithm to three dimensional space. This tracker combines the predictions of a circular prediction algorithm and a constant velocity filter by utilizing the Covariance Intersection. This combined prediction can be updated with the subsequent measurement using a linear estimator. The proposed technique is illustrated on a 3D benchmark trajectory, which includes coordinated turns and straight line maneuvers. The third part of this dissertation addresses the design of controller which include knowledge of parametric uncertainties and their distributions. The parameter distributions are approximated by a finite set of points which are calculated by the unscented transformation. This set of points is used to design robust controllers which minimize a statistical performance of the plant over the domain of uncertainty consisting of a combination of the mean and variance. The proposed technique is illustrated on three benchmark problems. The first relates to the design of prefilters for a linear and nonlinear spring-mass-dashpot system and the second applies a feedback controller to a hovering helicopter. Lastly, the statistical robust controller design is devoted to a concurrent feed-forward/feedback controller structure for a high-speed low tension tape drive.
Ku, Yuen-Ching; Chan, Chun-Kit; Chen, Lian-Kuan
2007-06-15
We propose and experimentally demonstrate a novel in-band optical signal-to-noise ratio (OSNR) monitoring technique using a phase-modulator-embedded fiber loop mirror. This technique measures the in-band OSNR accurately by observing the output power of a fiber loop mirror filter, where the transmittance is adjusted by an embedded phase modulator driven by a low-frequency periodic signal. The measurement errors are less than 0.5 dB for an OSNR between 0 and 40 dB in a 10 Gbit/s non-return-to-zero system. This technique was also shown experimentally to have high robustness against various system impairments and high feasibility to be deployed in practical implementation.
NASA Astrophysics Data System (ADS)
Mapp, Peter
2002-11-01
Although RaSTI is a good indicator of the speech intelligibility capability of auditoria and similar spaces, during the past 2-3 years it has been shown that RaSTI is not a robust predictor of sound system intelligibility performance. Instead, it is now recommended, within both national and international codes and standards, that full STI measurement and analysis be employed. However, new research is reported, that indicates that STI is not as flawless, nor robust as many believe. The paper highlights a number of potential error mechanisms. It is shown that the measurement technique and signal excitation stimulus can have a significant effect on the overall result and accuracy, particularly where DSP-based equipment is employed. It is also shown that in its current state of development, STI is not capable of appropriately accounting for a number of fundamental speech and system attributes, including typical sound system frequency response variations and anomalies. This is particularly shown to be the case when a system is operating under reverberant conditions. Comparisons between actual system measurements and corresponding word score data are reported where errors of up to 50 implications for VA and PA system performance verification will be discussed.
A Novel Technique to Detect Code for SAC-OCDMA System
NASA Astrophysics Data System (ADS)
Bharti, Manisha; Kumar, Manoj; Sharma, Ajay K.
2018-04-01
The main task of optical code division multiple access (OCDMA) system is the detection of code used by a user in presence of multiple access interference (MAI). In this paper, new method of detection known as XOR subtraction detection for spectral amplitude coding OCDMA (SAC-OCDMA) based on double weight codes has been proposed and presented. As MAI is the main source of performance deterioration in OCDMA system, therefore, SAC technique is used in this paper to eliminate the effect of MAI up to a large extent. A comparative analysis is then made between the proposed scheme and other conventional detection schemes used like complimentary subtraction detection, AND subtraction detection and NAND subtraction detection. The system performance is characterized by Q-factor, BER and received optical power (ROP) with respect to input laser power and fiber length. The theoretical and simulation investigations reveal that the proposed detection technique provides better quality factor, security and received power in comparison to other conventional techniques. The wide opening of eye in case of proposed technique also proves its robustness.
Approximate analytical relationships for linear optimal aeroelastic flight control laws
NASA Astrophysics Data System (ADS)
Kassem, Ayman Hamdy
1998-09-01
This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.
Design and implementation of robust controllers for a gait trainer.
Wang, F C; Yu, C H; Chou, T Y
2009-08-01
This paper applies robust algorithms to control an active gait trainer for children with walking disabilities. Compared with traditional rehabilitation procedures, in which two or three trainers are required to assist the patient, a motor-driven mechanism was constructed to improve the efficiency of the procedures. First, a six-bar mechanism was designed and constructed to mimic the trajectory of children's ankles in walking. Second, system identification techniques were applied to obtain system transfer functions at different operating points by experiments. Third, robust control algorithms were used to design Hinfinity robust controllers for the system. Finally, the designed controllers were implemented to verify experimentally the system performance. From the results, the proposed robust control strategies are shown to be effective.
Li, Zukui; Ding, Ran; Floudas, Christodoulos A.
2011-01-01
Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263
Robust Eye Center Localization through Face Alignment and Invariant Isocentric Patterns
Teng, Dongdong; Chen, Dihu; Tan, Hongzhou
2015-01-01
The localization of eye centers is a very useful cue for numerous applications like face recognition, facial expression recognition, and the early screening of neurological pathologies. Several methods relying on available light for accurate eye-center localization have been exploited. However, despite the considerable improvements that eye-center localization systems have undergone in recent years, only few of these developments deal with the challenges posed by the profile (non-frontal face). In this paper, we first use the explicit shape regression method to obtain the rough location of the eye centers. Because this method extracts global information from the human face, it is robust against any changes in the eye region. We exploit this robustness and utilize it as a constraint. To locate the eye centers accurately, we employ isophote curvature features, the accuracy of which has been demonstrated in a previous study. By applying these features, we obtain a series of eye-center locations which are candidates for the actual position of the eye-center. Among these locations, the estimated locations which minimize the reconstruction error between the two methods mentioned above are taken as the closest approximation for the eye centers locations. Therefore, we combine explicit shape regression and isophote curvature feature analysis to achieve robustness and accuracy, respectively. In practical experiments, we use BioID and FERET datasets to test our approach to obtaining an accurate eye-center location while retaining robustness against changes in scale and pose. In addition, we apply our method to non-frontal faces to test its robustness and accuracy, which are essential in gaze estimation but have seldom been mentioned in previous works. Through extensive experimentation, we show that the proposed method can achieve a significant improvement in accuracy and robustness over state-of-the-art techniques, with our method ranking second in terms of accuracy. According to our implementation on a PC with a Xeon 2.5Ghz CPU, the frame rate of the eye tracking process can achieve 38 Hz. PMID:26426929
Time domain modal identification/estimation of the mini-mast testbed
NASA Technical Reports Server (NTRS)
Roemer, Michael J.; Mook, D. Joseph
1991-01-01
The Mini-Mast is a 20 meter long 3-dimensional, deployable/retractable truss structure designed to imitate future trusses in space. Presented here are results from a robust (with respect to measurement noise sensitivity), time domain, modal identification technique for identifying the modal properties of the Mini-Mast structure even in the face of noisy environments. Three testing/analysis procedures are considered: sinusoidal excitation near resonant frequencies of the Mini-Mast, frequency response function averaging of several modal tests, and random input excitation with a free response period.
Robust Control Analysis of Hydraulic Turbine Speed
NASA Astrophysics Data System (ADS)
Jekan, P.; Subramani, C.
2018-04-01
An effective control strategy for the hydro-turbine governor in time scenario is adjective for this paper. Considering the complex dynamic characteristic and the uncertainty of the hydro-turbine governor model and taking the static and dynamic performance of the governing system as the ultimate goal, the designed logic combined the classical PID control theory with artificial intelligence used to obtain the desired output. The used controller will be a variable control techniques, therefore, its parameters can be adaptively adjusted according to the information about the control error signal.
Quantitative local analysis of nonlinear systems
NASA Astrophysics Data System (ADS)
Topcu, Ufuk
This thesis investigates quantitative methods for local robustness and performance analysis of nonlinear dynamical systems with polynomial vector fields. We propose measures to quantify systems' robustness against uncertainties in initial conditions (regions-of-attraction) and external disturbances (local reachability/gain analysis). S-procedure and sum-of-squares relaxations are used to translate Lyapunov-type characterizations to sum-of-squares optimization problems. These problems are typically bilinear/nonconvex (due to local analysis rather than global) and their size grows rapidly with state/uncertainty space dimension. Our approach is based on exploiting system theoretic interpretations of these optimization problems to reduce their complexity. We propose a methodology incorporating simulation data in formal proof construction enabling more reliable and efficient search for robustness and performance certificates compared to the direct use of general purpose solvers. This technique is adapted both to region-of-attraction and reachability analysis. We extend the analysis to uncertain systems by taking an intentionally simplistic and potentially conservative route, namely employing parameter-independent rather than parameter-dependent certificates. The conservatism is simply reduced by a branch-and-hound type refinement procedure. The main thrust of these methods is their suitability for parallel computing achieved by decomposing otherwise challenging problems into relatively tractable smaller ones. We demonstrate proposed methods on several small/medium size examples in each chapter and apply each method to a benchmark example with an uncertain short period pitch axis model of an aircraft. Additional practical issues leading to a more rigorous basis for the proposed methodology as well as promising further research topics are also addressed. We show that stability of linearized dynamics is not only necessary but also sufficient for the feasibility of the formulations in region-of-attraction analysis. Furthermore, we generalize an upper bound refinement procedure in local reachability/gain analysis which effectively generates non-polynomial certificates from polynomial ones. Finally, broader applicability of optimization-based tools stringently depends on the availability of scalable/hierarchial algorithms. As an initial step toward this direction, we propose a local small-gain theorem and apply to stability region analysis in the presence of unmodeled dynamics.
UNIX-based operating systems robustness evaluation
NASA Technical Reports Server (NTRS)
Chang, Yu-Ming
1996-01-01
Robust operating systems are required for reliable computing. Techniques for robustness evaluation of operating systems not only enhance the understanding of the reliability of computer systems, but also provide valuable feed- back to system designers. This thesis presents results from robustness evaluation experiments on five UNIX-based operating systems, which include Digital Equipment's OSF/l, Hewlett Packard's HP-UX, Sun Microsystems' Solaris and SunOS, and Silicon Graphics' IRIX. Three sets of experiments were performed. The methodology for evaluation tested (1) the exception handling mechanism, (2) system resource management, and (3) system capacity under high workload stress. An exception generator was used to evaluate the exception handling mechanism of the operating systems. Results included exit status of the exception generator and the system state. Resource management techniques used by individual operating systems were tested using programs designed to usurp system resources such as physical memory and process slots. Finally, the workload stress testing evaluated the effect of the workload on system performance by running a synthetic workload and recording the response time of local and remote user requests. Moderate to severe performance degradations were observed on the systems under stress.
Precise visual navigation using multi-stereo vision and landmark matching
NASA Astrophysics Data System (ADS)
Zhu, Zhiwei; Oskiper, Taragay; Samarasekera, Supun; Kumar, Rakesh
2007-04-01
Traditional vision-based navigation system often drifts over time during navigation. In this paper, we propose a set of techniques which greatly reduce the long term drift and also improve its robustness to many failure conditions. In our approach, two pairs of stereo cameras are integrated to form a forward/backward multi-stereo camera system. As a result, the Field-Of-View of the system is extended significantly to capture more natural landmarks from the scene. This helps to increase the pose estimation accuracy as well as reduce the failure situations. Secondly, a global landmark matching technique is used to recognize the previously visited locations during navigation. Using the matched landmarks, a pose correction technique is used to eliminate the accumulated navigation drift. Finally, in order to further improve the robustness of the system, measurements from low-cost Inertial Measurement Unit (IMU) and Global Positioning System (GPS) sensors are integrated with the visual odometry in an extended Kalman Filtering framework. Our system is significantly more accurate and robust than previously published techniques (1~5% localization error) over long-distance navigation both indoors and outdoors. Real world experiments on a human worn system show that the location can be estimated within 1 meter over 500 meters (around 0.1% localization error averagely) without the use of GPS information.
In-vivo analysis of ankle joint movement for patient-specific kinematic characterization.
Ferraresi, Carlo; De Benedictis, Carlo; Franco, Walter; Maffiodo, Daniela; Leardini, Alberto
2017-09-01
In this article, a method for the experimental in-vivo characterization of the ankle kinematics is proposed. The method is meant to improve personalization of various ankle joint treatments, such as surgical decision-making or design and application of an orthosis, possibly to increase their effectiveness. This characterization in fact would make the treatments more compatible with the specific patient's joint physiological conditions. This article describes the experimental procedure and the analytical method adopted, based on the instantaneous and mean helical axis theories. The results obtained in this experimental analysis reveal that more accurate techniques are necessary for a robust in-vivo assessment of the tibio-talar axis of rotation.
Single-molecule dilution and multiple displacement amplification for molecular haplotyping.
Paul, Philip; Apgar, Josh
2005-04-01
Separate haploid analysis is frequently required for heterozygous genotyping to resolve phase ambiguity or confirm allelic sequence. We demonstrate a technique of single-molecule dilution followed by multiple strand displacement amplification to haplotype polymorphic alleles. Dilution of DNA to haploid equivalency, or a single molecule, is a simple method for separating di-allelic DNA. Strand displacement amplification is a robust method for non-specific DNA expansion that employs random hexamers and phage polymerase Phi29 for double-stranded DNA displacement and primer extension, resulting in high processivity and exceptional product length. Single-molecule dilution was followed by strand displacement amplification to expand separated alleles to microgram quantities of DNA for more efficient haplotype analysis of heterozygous genes.
Three-dimensional analysis of scoliosis surgery using stereophotogrammetry
NASA Astrophysics Data System (ADS)
Jang, Stanley B.; Booth, Kellogg S.; Reilly, Chris W.; Sawatzky, Bonita J.; Tredwell, Stephen J.
1994-04-01
A new stereophotogrammetric analysis and 3D visualization allow accurate assessment of the scoliotic spine during instrumentation. Stereophoto pairs taken at each stage of the operation and robust statistical techniques are used to compute 3D transformations of the vertebrae between stages. These determine rotation, translation, goodness of fit, and overall spinal contour. A polygonal model of the spine using commercial 3D modeling package is used to produce an animation sequence of the transformation. The visualization have provided some important observation. Correction of the scoliosis is achieved largely through vertebral translation and coronal plane rotation, contrary to claims that large axial rotations are required. The animations provide valuable qualitative information for surgeons assessing the results of scoliotic correction.
The performance of trellis coded multilevel DPSK on a fading mobile satellite channel
NASA Technical Reports Server (NTRS)
Simon, Marvin K.; Divsalar, Dariush
1987-01-01
The performance of trellis coded multilevel differential phase-shift-keying (MDPSK) over Rician and Rayleigh fading channels is discussed. For operation at L-Band, this signalling technique leads to a more robust system than the coherent system with dual pilot tone calibration previously proposed for UHF. The results are obtained using a combination of analysis and simulation. The analysis shows that the design criterion for trellis codes to be operated on fading channels with interleaving/deinterleaving is no longer free Euclidean distance. The correct design criterion for optimizing bit error probability of trellis coded MDPSK over fading channels will be presented along with examples illustrating its application.
A robust optimization methodology for preliminary aircraft design
NASA Astrophysics Data System (ADS)
Prigent, S.; Maréchal, P.; Rondepierre, A.; Druot, T.; Belleville, M.
2016-05-01
This article focuses on a robust optimization of an aircraft preliminary design under operational constraints. According to engineers' know-how, the aircraft preliminary design problem can be modelled as an uncertain optimization problem whose objective (the cost or the fuel consumption) is almost affine, and whose constraints are convex. It is shown that this uncertain optimization problem can be approximated in a conservative manner by an uncertain linear optimization program, which enables the use of the techniques of robust linear programming of Ben-Tal, El Ghaoui, and Nemirovski [Robust Optimization, Princeton University Press, 2009]. This methodology is then applied to two real cases of aircraft design and numerical results are presented.
Isaacson, Sven; Luo, Feng; Feltus, Frank A.; Smith, Melissa C.
2013-01-01
The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust. PMID:23409071
An improved, robust, axial line singularity method for bodies of revolution
NASA Technical Reports Server (NTRS)
Hemsch, Michael J.
1989-01-01
The failures encountered in attempts to increase the range of applicability of the axial line singularity method for representing incompressible, inviscid flow about an inclined and slender body-of-revolution are presently noted to be common to all efforts to solve Fredholm equations of the first kind. It is shown that a previously developed smoothing technique yields a robust method for numerical solution of the governing equations; this technique is easily retrofitted to existing codes, and allows the number of circularities to be increased until the most accurate line singularity solution is obtained.
Analysis of Protein Expression in Cell Microarrays: A Tool for Antibody-based Proteomics
Andersson, Ann-Catrin; Strömberg, Sara; Bäckvall, Helena; Kampf, Caroline; Uhlen, Mathias; Wester, Kenneth; Pontén, Fredrik
2006-01-01
Tissue microarray (TMA) technology provides a possibility to explore protein expression patterns in a multitude of normal and disease tissues in a high-throughput setting. Although TMAs have been used for analysis of tissue samples, robust methods for studying in vitro cultured cell lines and cell aspirates in a TMA format have been lacking. We have adopted a technique to homogeneously distribute cells in an agarose gel matrix, creating an artificial tissue. This enables simultaneous profiling of protein expression in suspension- and adherent-grown cell samples assembled in a microarray. In addition, the present study provides an optimized strategy for the basic laboratory steps to efficiently produce TMAs. Presented modifications resulted in an improved quality of specimens and a higher section yield compared with standard TMA production protocols. Sections from the generated cell TMAs were tested for immunohistochemical staining properties using 20 well-characterized antibodies. Comparison of immunoreactivity in cultured dispersed cells and corresponding cells in tissue samples showed congruent results for all tested antibodies. We conclude that a modified TMA technique, including cell samples, provides a valuable tool for high-throughput analysis of protein expression, and that this technique can be used for global approaches to explore the human proteome. PMID:16957166
Robust Approach for Nonuniformity Correction in Infrared Focal Plane Array.
Boutemedjet, Ayoub; Deng, Chenwei; Zhao, Baojun
2016-11-10
In this paper, we propose a new scene-based nonuniformity correction technique for infrared focal plane arrays. Our work is based on the use of two well-known scene-based methods, namely, adaptive and interframe registration-based exploiting pure translation motion model between frames. The two approaches have their benefits and drawbacks, which make them extremely effective in certain conditions and not adapted for others. Following on that, we developed a method robust to various conditions, which may slow or affect the correction process by elaborating a decision criterion that adapts the process to the most effective technique to ensure fast and reliable correction. In addition to that, problems such as bad pixels and ghosting artifacts are also dealt with to enhance the overall quality of the correction. The performance of the proposed technique is investigated and compared to the two state-of-the-art techniques cited above.
Robust Approach for Nonuniformity Correction in Infrared Focal Plane Array
Boutemedjet, Ayoub; Deng, Chenwei; Zhao, Baojun
2016-01-01
In this paper, we propose a new scene-based nonuniformity correction technique for infrared focal plane arrays. Our work is based on the use of two well-known scene-based methods, namely, adaptive and interframe registration-based exploiting pure translation motion model between frames. The two approaches have their benefits and drawbacks, which make them extremely effective in certain conditions and not adapted for others. Following on that, we developed a method robust to various conditions, which may slow or affect the correction process by elaborating a decision criterion that adapts the process to the most effective technique to ensure fast and reliable correction. In addition to that, problems such as bad pixels and ghosting artifacts are also dealt with to enhance the overall quality of the correction. The performance of the proposed technique is investigated and compared to the two state-of-the-art techniques cited above. PMID:27834893
Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System
NASA Technical Reports Server (NTRS)
Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.
2010-01-01
The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.
Maznah, Zainol; Halimah, Muhamad; Shitan, Mahendran; Kumar Karmokar, Provash; Najwa, Sulaiman
2017-01-01
Ganoderma boninense is a fungus that can affect oil palm trees and cause a serious disease called the basal stem root (BSR). This disease causes the death of more than 80% of oil palm trees midway through their economic life and hexaconazole is one of the particular fungicides that can control this fungus. Hexaconazole can be applied by the soil drenching method and it will be of interest to know the concentration of the residue in the soil after treatment with respect to time. Hence, a field study was conducted in order to determine the actual concentration of hexaconazole in soil. In the present paper, a new approach that can be used to predict the concentration of pesticides in the soil is proposed. The statistical analysis revealed that the Exploratory Data Analysis (EDA) techniques would be appropriate in this study. The EDA techniques were used to fit a robust resistant model and predict the concentration of the residue in the topmost layer of the soil. PMID:28060816
Maznah, Zainol; Halimah, Muhamad; Shitan, Mahendran; Kumar Karmokar, Provash; Najwa, Sulaiman
2017-01-01
Ganoderma boninense is a fungus that can affect oil palm trees and cause a serious disease called the basal stem root (BSR). This disease causes the death of more than 80% of oil palm trees midway through their economic life and hexaconazole is one of the particular fungicides that can control this fungus. Hexaconazole can be applied by the soil drenching method and it will be of interest to know the concentration of the residue in the soil after treatment with respect to time. Hence, a field study was conducted in order to determine the actual concentration of hexaconazole in soil. In the present paper, a new approach that can be used to predict the concentration of pesticides in the soil is proposed. The statistical analysis revealed that the Exploratory Data Analysis (EDA) techniques would be appropriate in this study. The EDA techniques were used to fit a robust resistant model and predict the concentration of the residue in the topmost layer of the soil.
NASA Astrophysics Data System (ADS)
Blyth, Alison
2016-04-01
Speleothems are well used archives for chemical records of terrestrial environmental change, and the integration of records from a range of isotopic, inorganic, and organic geochemical techniques offers significant power in reconstructing both changes in past climates and identifying the resultant response in the overlying terrestrial ecosystems. The use of organic geochemistry in this field offers the opportunity to recover new records of vegetation change (via biomarkers and compound specific isotopes), temperature change (via analysis of glycerol dialkyl glycerol tetraethers, a compound group derived from microbes and varying in structure in response to temperature and pH), and changes in soil microbial behaviour (via combined carbon isotope analysis). However, to date the use of organic geochemical techniques has been relatively limited, due to issues relating to sample size, concerns about contamination, and unanswered questions about the origins of the preserved organic matter and rates of transport. Here I will briefly review recent progress in the field, and present a framework for the future research needed to establish organic geochemical analysis in speleothems as a robust palaeo-proxy approach.
Hypersonic vehicle control law development using H infinity and mu-synthesis
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.
1992-01-01
Applicability and effectiveness of robust control techniques to a single-stage-to-orbit (SSTO) airbreathing hypersonic vehicle on an ascent accelerating path and their effectiveness are explored in this paper. An SSTO control system design problem, requiring high accuracy tracking of velocity and altitude commands while limiting angle of attack oscillations, minimizing control power usage and stabilizing the vehicle all in the presence of atmospheric turbulence and uncertainty in the system, was formulated to compare results of the control designs using H infinity and mu-synthesis procedures. The math model, an integrated flight/propulsion dynamic model of a conical accelerator class vehicle, was linearized as the vehicle accelerated through Mach 8. Controller analysis was conducted using the singular value technique and the mu-analysis approach. Analysis results were obtained in both the frequency and the time domains. The results clearly demonstrate the inherent advantages of the structured singular value framework for this class of problems. Since payload performance margins are so critical for the SSTO mission, it is crucial that adequate stability margins be provided without sacrificing any payload mass.
Permanent Scatterer InSAR Analysis and Validation in the Gulf of Corinth.
Elias, Panagiotis; Kontoes, Charalabos; Papoutsis, Ioannis; Kotsis, Ioannis; Marinou, Aggeliki; Paradissis, Dimitris; Sakellariou, Dimitris
2009-01-01
The Permanent Scatterers Interferometric SAR technique (PSInSAR) is a method that accurately estimates the near vertical terrain deformation rates, of the order of ∼1 mm year(-1), overcoming the physical and technical restrictions of classic InSAR. In this paper the method is strengthened by creating a robust processing chain, incorporating PSInSAR analysis together with algorithmic adaptations for Permanent Scatterer Candidates (PSCs) and Permanent Scatterers (PSs) selection. The processing chain, called PerSePHONE, was applied and validated in the geophysically active area of the Gulf of Corinth. The analysis indicated a clear subsidence trend in the north-eastern part of the gulf, with the maximum deformation of ∼2.5 mm year(-1) occurring in the region north of the Gulf of Alkyonides. The validity of the results was assessed against geophysical/geological and geodetic studies conducted in the area, which include continuous seismic profiling data and GPS height measurements. All these observations converge to the same deformation pattern as the one derived by the PSInSAR technique.
Permanent Scatterer InSAR Analysis and Validation in the Gulf of Corinth
Elias, Panagiotis; Kontoes, Charalabos; Papoutsis, Ioannis; Kotsis, Ioannis; Marinou, Aggeliki; Paradissis, Dimitris; Sakellariou, Dimitris
2009-01-01
The Permanent Scatterers Interferometric SAR technique (PSInSAR) is a method that accurately estimates the near vertical terrain deformation rates, of the order of ∼1 mm year-1, overcoming the physical and technical restrictions of classic InSAR. In this paper the method is strengthened by creating a robust processing chain, incorporating PSInSAR analysis together with algorithmic adaptations for Permanent Scatterer Candidates (PSCs) and Permanent Scatterers (PSs) selection. The processing chain, called PerSePHONE, was applied and validated in the geophysically active area of the Gulf of Corinth. The analysis indicated a clear subsidence trend in the north-eastern part of the gulf, with the maximum deformation of ∼2.5 mm year-1 occurring in the region north of the Gulf of Alkyonides. The validity of the results was assessed against geophysical/geological and geodetic studies conducted in the area, which include continuous seismic profiling data and GPS height measurements. All these observations converge to the same deformation pattern as the one derived by the PSInSAR technique. PMID:22389587
HYPOTHESIS SETTING AND ORDER STATISTIC FOR ROBUST GENOMIC META-ANALYSIS.
Song, Chi; Tseng, George C
2014-01-01
Meta-analysis techniques have been widely developed and applied in genomic applications, especially for combining multiple transcriptomic studies. In this paper, we propose an order statistic of p-values ( r th ordered p-value, rOP) across combined studies as the test statistic. We illustrate different hypothesis settings that detect gene markers differentially expressed (DE) "in all studies", "in the majority of studies", or "in one or more studies", and specify rOP as a suitable method for detecting DE genes "in the majority of studies". We develop methods to estimate the parameter r in rOP for real applications. Statistical properties such as its asymptotic behavior and a one-sided testing correction for detecting markers of concordant expression changes are explored. Power calculation and simulation show better performance of rOP compared to classical Fisher's method, Stouffer's method, minimum p-value method and maximum p-value method under the focused hypothesis setting. Theoretically, rOP is found connected to the naïve vote counting method and can be viewed as a generalized form of vote counting with better statistical properties. The method is applied to three microarray meta-analysis examples including major depressive disorder, brain cancer and diabetes. The results demonstrate rOP as a more generalizable, robust and sensitive statistical framework to detect disease-related markers.
Boundary layer noise subtraction in hydrodynamic tunnel using robust principal component analysis.
Amailland, Sylvain; Thomas, Jean-Hugh; Pézerat, Charles; Boucheron, Romuald
2018-04-01
The acoustic study of propellers in a hydrodynamic tunnel is of paramount importance during the design process, but can involve significant difficulties due to the boundary layer noise (BLN). Indeed, advanced denoising methods are needed to recover the acoustic signal in case of poor signal-to-noise ratio. The technique proposed in this paper is based on the decomposition of the wall-pressure cross-spectral matrix (CSM) by taking advantage of both the low-rank property of the acoustic CSM and the sparse property of the BLN CSM. Thus, the algorithm belongs to the class of robust principal component analysis (RPCA), which derives from the widely used principal component analysis. If the BLN is spatially decorrelated, the proposed RPCA algorithm can blindly recover the acoustical signals even for negative signal-to-noise ratio. Unfortunately, in a realistic case, acoustic signals recorded in a hydrodynamic tunnel show that the noise may be partially correlated. A prewhitening strategy is then considered in order to take into account the spatially coherent background noise. Numerical simulations and experimental results show an improvement in terms of BLN reduction in the large hydrodynamic tunnel. The effectiveness of the denoising method is also investigated in the context of acoustic source localization.
Robustness in practice--the regional planning of health services.
Best, G; Parston, G; Rosenhead, J
1986-05-01
Earlier work has criticized the dominant tendencies in operational research contributions to health services planning as characterized by optimization, implausible demands for data, depoliticization, hierarchy and inflexibility. This paper describes an effort which avoids at least some of these pitfalls. The project was to construct a planning system for a regional health council in Ontario, Canada, which would take account of the possible alternative future states of the health-care system's environment and would aim to keep options for future development open. The planning system devised is described in the paper. It is based on robustness analysis, which evaluates alternative initial action sets in terms of the useful flexibility they preserve. Other features include the explicit incorporation of pressures for change generated outside the health-care system, and a satisficing approach to the identification of both initial action sets and alternative future configurations of the health-care system. It was found possible to borrow and radically 're-use' techniques or formulations from the mainstream of O.R. contributions. Thus the 'reference projection' method was used to identify inadequacies in performance which future health-care system configurations must repair. And Delphi analysis, normally a method for generating consensus, was used in conjunction with cluster analysis of responses to generate meaningfully different alternative futures.
NASA Astrophysics Data System (ADS)
Naumenko, Natalya F.
2014-09-01
A numerical technique characterized by a unified approach for the analysis of different types of acoustic waves utilized in resonators in which a periodic metal grating is used for excitation and reflection of such waves is described. The combination of the Finite Element Method analysis of the electrode domain with the Spectral Domain Analysis (SDA) applied to the adjacent upper and lower semi-infinite regions, which may be multilayered and include air as a special case of a dielectric material, enables rigorous simulation of the admittance in resonators using surface acoustic waves, Love waves, plate modes including Lamb waves, Stonely waves, and other waves propagating along the interface between two media, and waves with transient structure between the mentioned types. The matrix formalism with improved convergence incorporated into SDA provides fast and robust simulation for multilayered structures with arbitrary thickness of each layer. The described technique is illustrated by a few examples of its application to various combinations of LiNbO3, isotropic silicon dioxide and silicon with a periodic array of Cu electrodes. The wave characteristics extracted from the admittance functions change continuously with the variation of the film and plate thicknesses over wide ranges, even when the wave nature changes. The transformation of the wave nature with the variation of the layer thicknesses is illustrated by diagrams and contour plots of the displacements calculated at resonant frequencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Xuanfeng, E-mail: Xuanfeng.ding@beaumont.org; Li, Xiaoqiang; Zhang, J. Michele
Purpose: To present a novel robust and delivery-efficient spot-scanning proton arc (SPArc) therapy technique. Methods and Materials: A SPArc optimization algorithm was developed that integrates control point resampling, energy layer redistribution, energy layer filtration, and energy layer resampling. The feasibility of such a technique was evaluated using sample patients: 1 patient with locally advanced head and neck oropharyngeal cancer with bilateral lymph node coverage, and 1 with a nonmobile lung cancer. Plan quality, robustness, and total estimated delivery time were compared with the robust optimized multifield step-and-shoot arc plan without SPArc optimization (Arc{sub multi-field}) and the standard robust optimized intensity modulatedmore » proton therapy (IMPT) plan. Dose-volume histograms of target and organs at risk were analyzed, taking into account the setup and range uncertainties. Total delivery time was calculated on the basis of a 360° gantry room with 1 revolutions per minute gantry rotation speed, 2-millisecond spot switching time, 1-nA beam current, 0.01 minimum spot monitor unit, and energy layer switching time of 0.5 to 4 seconds. Results: The SPArc plan showed potential dosimetric advantages for both clinical sample cases. Compared with IMPT, SPArc delivered 8% and 14% less integral dose for oropharyngeal and lung cancer cases, respectively. Furthermore, evaluating the lung cancer plan compared with IMPT, it was evident that the maximum skin dose, the mean lung dose, and the maximum dose to ribs were reduced by 60%, 15%, and 35%, respectively, whereas the conformity index was improved from 7.6 (IMPT) to 4.0 (SPArc). The total treatment delivery time for lung and oropharyngeal cancer patients was reduced by 55% to 60% and 56% to 67%, respectively, when compared with Arc{sub multi-field} plans. Conclusion: The SPArc plan is the first robust and delivery-efficient proton spot-scanning arc therapy technique, which could potentially be implemented into routine clinical practice.« less
Piovesan, Davide; Pierobon, Alberto; DiZio, Paul; Lackner, James R.
2012-01-01
This study presents and validates a Time-Frequency technique for measuring 2-dimensional multijoint arm stiffness throughout a single planar movement as well as during static posture. It is proposed as an alternative to current regressive methods which require numerous repetitions to obtain average stiffness on a small segment of the hand trajectory. The method is based on the analysis of the reassigned spectrogram of the arm's response to impulsive perturbations and can estimate arm stiffness on a trial-by-trial basis. Analytic and empirical methods are first derived and tested through modal analysis on synthetic data. The technique's accuracy and robustness are assessed by modeling the estimation of stiffness time profiles changing at different rates and affected by different noise levels. Our method obtains results comparable with two well-known regressive techniques. We also test how the technique can identify the viscoelastic component of non-linear and higher than second order systems with a non-parametrical approach. The technique proposed here is very impervious to noise and can be used easily for both postural and movement tasks. Estimations of stiffness profiles are possible with only one perturbation, making our method a useful tool for estimating limb stiffness during motor learning and adaptation tasks, and for understanding the modulation of stiffness in individuals with neurodegenerative diseases. PMID:22448233
NASA Astrophysics Data System (ADS)
Martel, Anne L.
2004-04-01
In order to extract quantitative information from dynamic contrast-enhanced MR images (DCE-MRI) it is usually necessary to identify an arterial input function. This is not a trivial problem if there are no major vessels present in the field of view. Most existing techniques rely on operator intervention or use various curve parameters to identify suitable pixels but these are often specific to the anatomical region or the acquisition method used. They also require the signal from several pixels to be averaged in order to improve the signal to noise ratio, however this introduces errors due to partial volume effects. We have described previously how factor analysis can be used to automatically separate arterial and venous components from DCE-MRI studies of the brain but although that method works well for single slice images through the brain when the blood brain barrier technique is intact, it runs into problems for multi-slice images with more complex dynamics. This paper will describe a factor analysis method that is more robust in such situations and is relatively insensitive to the number of physiological components present in the data set. The technique is very similar to that used to identify spectral end-members from multispectral remote sensing images.
NASA Astrophysics Data System (ADS)
McReynolds, Naomi; Auñón Garcia, Juan M.; Guengerich, Zoe; Smith, Terry K.; Dholakia, Kishan
2017-02-01
We present an optical spectroscopic technique, making use of both Raman signals and fluorescence spectroscopy, for the identification of five brands of commercially available extra-virgin olive-oil (EVOO). We demonstrate our technique on both a `bulk-optics' free-space system and a compact device. Using the compact device, which is capable of recording both Raman and fluorescence signals, we achieved an average sensitivity and specificity of 98.4% and 99.6% for discrimination, respectively. Our approach demonstrates that both Raman and fluorescence spectroscopy can be used for portable discrimination of EVOOs which obviates the need to use centralised laboratories and opens up the prospect of in-field testing. This technique may enable detection of EVOO that has undergone counterfeiting or adulteration. One of the main challenges facing Raman spectroscopy for use in quality control of EVOOs is that the oxidation of EVOO, which naturally occurs due to aging, causes shifts in Raman spectra with time, which implies regular retraining would be necessary. We present a potential method of analysis to minimize the effect that aging has on discrimination efficiency; we show that by discarding the first principal component, which contains information on the variations due to oxidation, we can improve discrimination efficiency thus improving the robustness of our technique.
Generating Options for Active Risk Control (GO-ARC): introducing a novel technique.
Card, Alan J; Ward, James R; Clarkson, P John
2014-01-01
After investing significant amounts of time and money in conducting formal risk assessments, such as root cause analysis (RCA) or failure mode and effects analysis (FMEA), healthcare workers are left to their own devices in generating high-quality risk control options. They often experience difficulty in doing so, and tend toward an overreliance on administrative controls (the weakest category in the hierarchy of risk controls). This has important implications for patient safety and the cost effectiveness of risk management operations. This paper describes a before and after pilot study of the Generating Options for Active Risk Control (GO-ARC) technique, a novel tool to improve the quality of the risk control options generation process. The quantity, quality (using the three-tiered hierarchy of risk controls), variety, and novelty of risk controls generated. Use of the GO-ARC technique was associated with improvement on all measures. While this pilot study has some notable limitations, it appears that the GO-ARC technique improved the risk control options generation process. Further research is needed to confirm this finding. It is also important to note that improved risk control options are a necessary, but not sufficient, step toward the implementation of more robust risk controls. © 2013 National Association for Healthcare Quality.
Polur, Prasad D; Miller, Gerald E
2006-10-01
Computer speech recognition of individuals with dysarthria, such as cerebral palsy patients requires a robust technique that can handle conditions of very high variability and limited training data. In this study, application of a 10 state ergodic hidden Markov model (HMM)/artificial neural network (ANN) hybrid structure for a dysarthric speech (isolated word) recognition system, intended to act as an assistive tool, was investigated. A small size vocabulary spoken by three cerebral palsy subjects was chosen. The effect of such a structure on the recognition rate of the system was investigated by comparing it with an ergodic hidden Markov model as a control tool. This was done in order to determine if this modified technique contributed to enhanced recognition of dysarthric speech. The speech was sampled at 11 kHz. Mel frequency cepstral coefficients were extracted from them using 15 ms frames and served as training input to the hybrid model setup. The subsequent results demonstrated that the hybrid model structure was quite robust in its ability to handle the large variability and non-conformity of dysarthric speech. The level of variability in input dysarthric speech patterns sometimes limits the reliability of the system. However, its application as a rehabilitation/control tool to assist dysarthric motor impaired individuals holds sufficient promise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venghaus, Florian; Eisfeld, Wolfgang, E-mail: wolfgang.eisfeld@uni-bielefeld.de
2016-03-21
Robust diabatization techniques are key for the development of high-dimensional coupled potential energy surfaces (PESs) to be used in multi-state quantum dynamics simulations. In the present study we demonstrate that, besides the actual diabatization technique, common problems with the underlying electronic structure calculations can be the reason why a diabatization fails. After giving a short review of the theoretical background of diabatization, we propose a method based on the block-diagonalization to analyse the electronic structure data. This analysis tool can be used in three different ways: First, it allows to detect issues with the ab initio reference data and ismore » used to optimize the setup of the electronic structure calculations. Second, the data from the block-diagonalization are utilized for the development of optimal parametrized diabatic model matrices by identifying the most significant couplings. Third, the block-diagonalization data are used to fit the parameters of the diabatic model, which yields an optimal initial guess for the non-linear fitting required by standard or more advanced energy based diabatization methods. The new approach is demonstrated by the diabatization of 9 electronic states of the propargyl radical, yielding fully coupled full-dimensional (12D) PESs in closed form.« less
Adjustment of geochemical background by robust multivariate statistics
Zhou, D.
1985-01-01
Conventional analyses of exploration geochemical data assume that the background is a constant or slowly changing value, equivalent to a plane or a smoothly curved surface. However, it is better to regard the geochemical background as a rugged surface, varying with changes in geology and environment. This rugged surface can be estimated from observed geological, geochemical and environmental properties by using multivariate statistics. A method of background adjustment was developed and applied to groundwater and stream sediment reconnaissance data collected from the Hot Springs Quadrangle, South Dakota, as part of the National Uranium Resource Evaluation (NURE) program. Source-rock lithology appears to be a dominant factor controlling the chemical composition of groundwater or stream sediments. The most efficacious adjustment procedure is to regress uranium concentration on selected geochemical and environmental variables for each lithologic unit, and then to delineate anomalies by a common threshold set as a multiple of the standard deviation of the combined residuals. Robust versions of regression and RQ-mode principal components analysis techniques were used rather than ordinary techniques to guard against distortion caused by outliers Anomalies delineated by this background adjustment procedure correspond with uranium prospects much better than do anomalies delineated by conventional procedures. The procedure should be applicable to geochemical exploration at different scales for other metals. ?? 1985.
Plane wave analysis of coherent holographic image reconstruction by phase transfer (CHIRPT).
Field, Jeffrey J; Winters, David G; Bartels, Randy A
2015-11-01
Fluorescent imaging plays a critical role in a myriad of scientific endeavors, particularly in the biological sciences. Three-dimensional imaging of fluorescent intensity often requires serial data acquisition, that is, voxel-by-voxel collection of fluorescent light emitted throughout the specimen with a nonimaging single-element detector. While nonimaging fluorescence detection offers some measure of scattering robustness, the rate at which dynamic specimens can be imaged is severely limited. Other fluorescent imaging techniques utilize imaging detection to enhance collection rates. A notable example is light-sheet fluorescence microscopy, also known as selective-plane illumination microscopy, which illuminates a large region within the specimen and collects emitted fluorescent light at an angle either perpendicular or oblique to the illumination light sheet. Unfortunately, scattering of the emitted fluorescent light can cause blurring of the collected images in highly turbid biological media. We recently introduced an imaging technique called coherent holographic image reconstruction by phase transfer (CHIRPT) that combines light-sheet-like illumination with nonimaging fluorescent light detection. By combining the speed of light-sheet illumination with the scattering robustness of nonimaging detection, CHIRPT is poised to have a dramatic impact on biological imaging, particularly for in vivo preparations. Here we present the mathematical formalism for CHIRPT imaging under spatially coherent illumination and present experimental data that verifies the theoretical model.
Comparison of frequency-domain and time-domain rotorcraft vibration control methods
NASA Technical Reports Server (NTRS)
Gupta, N. K.
1984-01-01
Active control of rotor-induced vibration in rotorcraft has received significant attention recently. Two classes of techniques have been proposed. The more developed approach works with harmonic analysis of measured time histories and is called the frequency-domain approach. The more recent approach computes the control input directly using the measured time history data and is called the time-domain approach. The report summarizes the results of a theoretical investigation to compare the two approaches. Five specific areas were addressed: (1) techniques to derive models needed for control design (system identification methods), (2) robustness with respect to errors, (3) transient response, (4) susceptibility to noise, and (5) implementation difficulties. The system identification methods are more difficult for the time-domain models. The time-domain approach is more robust (e.g., has higher gain and phase margins) than the frequency-domain approach. It might thus be possible to avoid doing real-time system identification in the time-domain approach by storing models at a number of flight conditions. The most significant error source is the variation in open-loop vibrations caused by pilot inputs, maneuvers or gusts. The implementation requirements are similar except that the time-domain approach can be much simpler to implement if real-time system identification were not necessary.
Xu, Yisheng; Tong, Yunxia; Liu, Siyuan; Chow, Ho Ming; AbdulSabur, Nuria Y.; Mattay, Govind S.; Braun, Allen R.
2014-01-01
A comprehensive set of methods based on spatial independent component analysis (sICA) is presented as a robust technique for artifact removal, applicable to a broad range of functional magnetic resonance imaging (fMRI) experiments that have been plagued by motion-related artifacts. Although the applications of sICA for fMRI denoising have been studied previously, three fundamental elements of this approach have not been established as follows: 1) a mechanistically-based ground truth for component classification; 2) a general framework for evaluating the performance and generalizability of automated classifiers; 3) a reliable method for validating the effectiveness of denoising. Here we perform a thorough investigation of these issues and demonstrate the power of our technique by resolving the problem of severe imaging artifacts associated with continuous overt speech production. As a key methodological feature, a dual-mask sICA method is proposed to isolate a variety of imaging artifacts by directly revealing their extracerebral spatial origins. It also plays an important role for understanding the mechanistic properties of noise components in conjunction with temporal measures of physical or physiological motion. The potentials of a spatially-based machine learning classifier and the general criteria for feature selection have both been examined, in order to maximize the performance and generalizability of automated component classification. The effectiveness of denoising is quantitatively validated by comparing the activation maps of fMRI with those of positron emission tomography acquired under the same task conditions. The general applicability of this technique is further demonstrated by the successful reduction of distance-dependent effect of head motion on resting-state functional connectivity. PMID:25225001
Xu, Yisheng; Tong, Yunxia; Liu, Siyuan; Chow, Ho Ming; AbdulSabur, Nuria Y; Mattay, Govind S; Braun, Allen R
2014-12-01
A comprehensive set of methods based on spatial independent component analysis (sICA) is presented as a robust technique for artifact removal, applicable to a broad range of functional magnetic resonance imaging (fMRI) experiments that have been plagued by motion-related artifacts. Although the applications of sICA for fMRI denoising have been studied previously, three fundamental elements of this approach have not been established as follows: 1) a mechanistically-based ground truth for component classification; 2) a general framework for evaluating the performance and generalizability of automated classifiers; and 3) a reliable method for validating the effectiveness of denoising. Here we perform a thorough investigation of these issues and demonstrate the power of our technique by resolving the problem of severe imaging artifacts associated with continuous overt speech production. As a key methodological feature, a dual-mask sICA method is proposed to isolate a variety of imaging artifacts by directly revealing their extracerebral spatial origins. It also plays an important role for understanding the mechanistic properties of noise components in conjunction with temporal measures of physical or physiological motion. The potentials of a spatially-based machine learning classifier and the general criteria for feature selection have both been examined, in order to maximize the performance and generalizability of automated component classification. The effectiveness of denoising is quantitatively validated by comparing the activation maps of fMRI with those of positron emission tomography acquired under the same task conditions. The general applicability of this technique is further demonstrated by the successful reduction of distance-dependent effect of head motion on resting-state functional connectivity. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Santos, Léonard; Thirel, Guillaume; Perrin, Charles
2018-04-01
In many conceptual rainfall-runoff models, the water balance differential equations are not explicitly formulated. These differential equations are solved sequentially by splitting the equations into terms that can be solved analytically with a technique called operator splitting
. As a result, only the solutions of the split equations are used to present the different models. This article provides a methodology to make the governing water balance equations of a bucket-type rainfall-runoff model explicit and to solve them continuously. This is done by setting up a comprehensive state-space representation of the model. By representing it in this way, the operator splitting, which makes the structural analysis of the model more complex, could be removed. In this state-space representation, the lag functions (unit hydrographs), which are frequent in rainfall-runoff models and make the resolution of the representation difficult, are first replaced by a so-called Nash cascade
and then solved with a robust numerical integration technique. To illustrate this methodology, the GR4J model is taken as an example. The substitution of the unit hydrographs with a Nash cascade, even if it modifies the model behaviour when solved using operator splitting, does not modify it when the state-space representation is solved using an implicit integration technique. Indeed, the flow time series simulated by the new representation of the model are very similar to those simulated by the classic model. The use of a robust numerical technique that approximates a continuous-time model also improves the lag parameter consistency across time steps and provides a more time-consistent model with time-independent parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barten, Danique L. J., E-mail: d.barten@vumc.nl; Tol, Jim P.; Dahele, Max
Purpose: Proton radiotherapy for head-and-neck cancer (HNC) aims to improve organ-at-risk (OAR) sparing over photon radiotherapy. However, it may be less robust for setup and range uncertainties. The authors investigated OAR sparing and plan robustness for spot-scanning proton planning techniques and compared these with volumetric modulated arc therapy (VMAT) photon plans. Methods: Ten HNC patients were replanned using two arc VMAT (RapidArc) and spot-scanning proton techniques. OARs to be spared included the contra- and ipsilateral parotid and submandibular glands and individual swallowing muscles. Proton plans were made using Multifield Optimization (MFO, using three, five, and seven fields) and Single-field Optimizationmore » (SFO, using three fields). OAR sparing was evaluated using mean dose to composite salivary glands (Comp{sub Sal}) and composite swallowing muscles (Comp{sub Swal}). Plan robustness was determined for setup and range uncertainties (±3 mm for setup, ±3% HU) evaluating V95% and V107% for clinical target volumes. Results: Averaged over all patients Comp{sub Sal}/Comp{sub Swal} mean doses were lower for the three-field MFO plans (14.6/16.4 Gy) compared to the three-field SFO plans (20.0/23.7 Gy) and VMAT plans (23.0/25.3 Gy). Using more than three fields resulted in differences in OAR sparing of less than 1.5 Gy between plans. SFO plans were significantly more robust than MFO plans. VMAT plans were the most robust. Conclusions: MFO plans had improved OAR sparing but were less robust than SFO and VMAT plans, while SFO plans were more robust than MFO plans but resulted in less OAR sparing. Robustness of the MFO plans did not increase with more fields.« less
High throughput-screening of animal urine samples: It is fast but is it also reliable?
Kaufmann, Anton
2016-05-01
Advanced analytical technologies like ultra-high-performance liquid chromatography coupled to high resolution mass spectrometry can be used for veterinary drug screening of animal urine. The technique is sufficiently robust and reliable to detect veterinary drugs in urine samples of animals where the maximum residue limit of these compounds in organs like muscle, kidney, or liver has been exceeded. The limitations and possibilities of the technique are discussed. The most critical point is the variability of the drug concentration ratio between the tissue and urine. Ways to manage the false positive and false negatives are discussed. The capability to confirm findings and the possibility of semi-targeted analysis are also addressed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Polarization-color mapping strategies: catching up with color theory
NASA Astrophysics Data System (ADS)
Kruse, Andrew W.; Alenin, Andrey S.; Vaughn, Israel J.; Tyo, J. Scott
2017-09-01
Current visualization techniques for mapping polarization data to a color coordinates defined by the Hue, Saturation, Value (HSV) color representation are analyzed in the context of perceptual uniformity. Since HSV is not designed to be perceptually uniform, the extent of non-uniformity should be evaluated by using robust color difference formulae and by comparison to the state-of-the-art uniform color space CAM02-UCS. For mapping just angle of polarization with HSV hue, the results show clear non-uniformity and implications for how this can misrepresent the data. UCS can be used to create alternative mapping techniques that are perceptually uniform. Implementing variation in lightness may increase shape discrimination within the scene. Future work will be dedicated to measuring performance of both current and proposed methods using psychophysical analysis.
NASA Technical Reports Server (NTRS)
Bebis, George (Inventor); Amayeh, Gholamreza (Inventor)
2015-01-01
Hand-based biometric analysis systems and techniques are described which provide robust hand-based identification and verification. An image of a hand is obtained, which is then segmented into a palm region and separate finger regions. Acquisition of the image is performed without requiring particular orientation or placement restrictions. Segmentation is performed without the use of reference points on the images. Each segment is analyzed by calculating a set of Zernike moment descriptors for the segment. The feature parameters thus obtained are then fused and compared to stored sets of descriptors in enrollment templates to arrive at an identity decision. By using Zernike moments, and through additional manipulation, the biometric analysis is invariant to rotation, scale, or translation or an in put image. Additionally, the analysis utilizes re-use of commonly-seen terms in Zernike calculations to achieve additional efficiencies over traditional Zernike moment calculation.
NASA Technical Reports Server (NTRS)
Bebis, George
2013-01-01
Hand-based biometric analysis systems and techniques provide robust hand-based identification and verification. An image of a hand is obtained, which is then segmented into a palm region and separate finger regions. Acquisition of the image is performed without requiring particular orientation or placement restrictions. Segmentation is performed without the use of reference points on the images. Each segment is analyzed by calculating a set of Zernike moment descriptors for the segment. The feature parameters thus obtained are then fused and compared to stored sets of descriptors in enrollment templates to arrive at an identity decision. By using Zernike moments, and through additional manipulation, the biometric analysis is invariant to rotation, scale, or translation or an input image. Additionally, the analysis uses re-use of commonly seen terms in Zernike calculations to achieve additional efficiencies over traditional Zernike moment calculation.
Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms
NASA Astrophysics Data System (ADS)
Lee, Chien-Cheng; Huang, Shin-Sheng; Shih, Cheng-Yuan
2010-12-01
This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB) with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO) algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.
Codimension-Two Bifurcation Analysis in DC Microgrids Under Droop Control
NASA Astrophysics Data System (ADS)
Lenz, Eduardo; Pagano, Daniel J.; Tahim, André P. N.
This paper addresses local and global bifurcations that may appear in electrical power systems, such as DC microgrids, which recently has attracted interest from the electrical engineering society. Most sources in these networks are voltage-type and operate in parallel. In such configuration, the basic technique for stabilizing the bus voltage is the so-called droop control. The main contribution of this work is a codimension-two bifurcation analysis of a small DC microgrid considering the droop control gain and the power processed by the load as bifurcation parameters. The codimension-two bifurcation set leads to practical rules for achieving a robust droop control design. Moreover, the bifurcation analysis also offers a better understanding of the dynamics involved in the problem and how to avoid possible instabilities. Simulation results are presented in order to illustrate the bifurcation analysis.
Scalable analysis of nonlinear systems using convex optimization
NASA Astrophysics Data System (ADS)
Papachristodoulou, Antonis
In this thesis, we investigate how convex optimization can be used to analyze different classes of nonlinear systems at various scales algorithmically. The methodology is based on the construction of appropriate Lyapunov-type certificates using sum of squares techniques. After a brief introduction on the mathematical tools that we will be using, we turn our attention to robust stability and performance analysis of systems described by Ordinary Differential Equations. A general framework for constrained systems analysis is developed, under which stability of systems with polynomial, non-polynomial vector fields and switching systems, as well estimating the region of attraction and the L2 gain can be treated in a unified manner. We apply our results to examples from biology and aerospace. We then consider systems described by Functional Differential Equations (FDEs), i.e., time-delay systems. Their main characteristic is that they are infinite dimensional, which complicates their analysis. We first show how the complete Lyapunov-Krasovskii functional can be constructed algorithmically for linear time-delay systems. Then, we concentrate on delay-independent and delay-dependent stability analysis of nonlinear FDEs using sum of squares techniques. An example from ecology is given. The scalable stability analysis of congestion control algorithms for the Internet is investigated next. The models we use result in an arbitrary interconnection of FDE subsystems, for which we require that stability holds for arbitrary delays, network topologies and link capacities. Through a constructive proof, we develop a Lyapunov functional for FAST---a recently developed network congestion control scheme---so that the Lyapunov stability properties scale with the system size. We also show how other network congestion control schemes can be analyzed in the same way. Finally, we concentrate on systems described by Partial Differential Equations. We show that axially constant perturbations of the Navier-Stokes equations for Hagen-Poiseuille flow are globally stable, even though the background noise is amplified as R3 where R is the Reynolds number, giving a 'robust yet fragile' interpretation. We also propose a sum of squares methodology for the analysis of systems described by parabolic PDEs. We conclude this work with an account for future research.
Chen, Wen; Chowdhury, Fahmida N; Djuric, Ana; Yeh, Chih-Ping
2014-09-01
This paper provides a new design of robust fault detection for turbofan engines with adaptive controllers. The critical issue is that the adaptive controllers can depress the faulty effects such that the actual system outputs remain the pre-specified values, making it difficult to detect faults/failures. To solve this problem, a Total Measurable Fault Information Residual (ToMFIR) technique with the aid of system transformation is adopted to detect faults in turbofan engines with adaptive controllers. This design is a ToMFIR-redundancy-based robust fault detection. The ToMFIR is first introduced and existing results are also summarized. The Detailed design process of the ToMFIRs is presented and a turbofan engine model is simulated to verify the effectiveness of the proposed ToMFIR-based fault-detection strategy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Robust pupil center detection using a curvature algorithm
NASA Technical Reports Server (NTRS)
Zhu, D.; Moore, S. T.; Raphan, T.; Wall, C. C. (Principal Investigator)
1999-01-01
Determining the pupil center is fundamental for calculating eye orientation in video-based systems. Existing techniques are error prone and not robust because eyelids, eyelashes, corneal reflections or shadows in many instances occlude the pupil. We have developed a new algorithm which utilizes curvature characteristics of the pupil boundary to eliminate these artifacts. Pupil center is computed based solely on points related to the pupil boundary. For each boundary point, a curvature value is computed. Occlusion of the boundary induces characteristic peaks in the curvature function. Curvature values for normal pupil sizes were determined and a threshold was found which together with heuristics discriminated normal from abnormal curvature. Remaining boundary points were fit with an ellipse using a least squares error criterion. The center of the ellipse is an estimate of the pupil center. This technique is robust and accurately estimates pupil center with less than 40% of the pupil boundary points visible.
Generation of phase edge singularities by coplanar three-beam interference and their detection.
Patorski, Krzysztof; Sluzewski, Lukasz; Trusiak, Maciej; Pokorski, Krzysztof
2017-02-06
In recent years singular optics has gained considerable attention in science and technology. Up to now optical vortices (phase point dislocations) have been of main interest. This paper presents the first general analysis of formation of phase edge singularities by coplanar three-beam interference. They can be generated, for example, by three-slit interference or self-imaging in the Fresnel diffraction field of a sinusoidal grating. We derive a general condition for the ratio of amplitudes of interfering beams resulting in phase edge dislocations, lateral separation of dislocations depends on this ratio as well. Analytically derived properties are corroborated by numerical and experimental studies. We develop a simple, robust, common path optical self-imaging configuration aided by a coherent tilted reference wave and spatial filtering. Finally, we propose an automatic fringe pattern analysis technique for detecting phase edge dislocations, based on the continuous wavelet transform. Presented studies open new possibilities for developing grating based sensing techniques for precision metrology of very small phase differences.
High-Throughput Assessment of Cellular Mechanical Properties.
Darling, Eric M; Di Carlo, Dino
2015-01-01
Traditionally, cell analysis has focused on using molecular biomarkers for basic research, cell preparation, and clinical diagnostics; however, new microtechnologies are enabling evaluation of the mechanical properties of cells at throughputs that make them amenable to widespread use. We review the current understanding of how the mechanical characteristics of cells relate to underlying molecular and architectural changes, describe how these changes evolve with cell-state and disease processes, and propose promising biomedical applications that will be facilitated by the increased throughput of mechanical testing: from diagnosing cancer and monitoring immune states to preparing cells for regenerative medicine. We provide background about techniques that laid the groundwork for the quantitative understanding of cell mechanics and discuss current efforts to develop robust techniques for rapid analysis that aim to implement mechanophenotyping as a routine tool in biomedicine. Looking forward, we describe additional milestones that will facilitate broad adoption, as well as new directions not only in mechanically assessing cells but also in perturbing them to passively engineer cell state.
Theory and applications of structured light single pixel imaging
NASA Astrophysics Data System (ADS)
Stokoe, Robert J.; Stockton, Patrick A.; Pezeshki, Ali; Bartels, Randy A.
2018-02-01
Many single-pixel imaging techniques have been developed in recent years. Though the methods of image acquisition vary considerably, the methods share unifying features that make general analysis possible. Furthermore, the methods developed thus far are based on intuitive processes that enable simple and physically-motivated reconstruction algorithms, however, this approach may not leverage the full potential of single-pixel imaging. We present a general theoretical framework of single-pixel imaging based on frame theory, which enables general, mathematically rigorous analysis. We apply our theoretical framework to existing single-pixel imaging techniques, as well as provide a foundation for developing more-advanced methods of image acquisition and reconstruction. The proposed frame theoretic framework for single-pixel imaging results in improved noise robustness, decrease in acquisition time, and can take advantage of special properties of the specimen under study. By building on this framework, new methods of imaging with a single element detector can be developed to realize the full potential associated with single-pixel imaging.
Boosting Higgs pair production in the [Formula: see text] final state with multivariate techniques.
Behr, J Katharina; Bortoletto, Daniela; Frost, James A; Hartland, Nathan P; Issever, Cigdem; Rojo, Juan
2016-01-01
The measurement of Higgs pair production will be a cornerstone of the LHC program in the coming years. Double Higgs production provides a crucial window upon the mechanism of electroweak symmetry breaking and has a unique sensitivity to the Higgs trilinear coupling. We study the feasibility of a measurement of Higgs pair production in the [Formula: see text] final state at the LHC. Our analysis is based on a combination of traditional cut-based methods with state-of-the-art multivariate techniques. We account for all relevant backgrounds, including the contributions from light and charm jet mis-identification, which are ultimately comparable in size to the irreducible 4 b QCD background. We demonstrate the robustness of our analysis strategy in a high pileup environment. For an integrated luminosity of [Formula: see text] ab[Formula: see text], a signal significance of [Formula: see text] is obtained, indicating that the [Formula: see text] final state alone could allow for the observation of double Higgs production at the High Luminosity LHC.
Flores, Danielle; Miller, Amy L.; Showman, Angelique; Tobita, Caitlyn; Shimoda, Lori M.N.; Sung, Carl; Stokes, Alexander J.; Tomberlin, Jeffrey K.; Carter, David O.; Turner, Helen
2016-01-01
Entomological protocols for aging blow fly (Diptera: Calliphoridae) larvae to estimate the time of colonization (TOC) are commonly used to assist in death investigations. While the methodologies for analysing fly larvae differ, most rely on light microscopy, genetic analysis or, more rarely, electron microscopy. This pilot study sought to improve resolution of larval stage in the forensically-important blow fly Chrysomya rufifacies using high-content fluorescence microscopy and biochemical measures of developmental marker proteins. We established fixation and mounting protocols, defined a set of measurable morphometric criteria and captured developmental transitions of 2nd instar to 3rd instar using both fluorescence microscopy and anti-ecdysone receptor Western blot analysis. The data show that these instars can be distinguished on the basis of robust, non-bleaching, autofluorescence of larval posterior spiracles. High content imaging techniques using confocal microscopy, combined with morphometric and biochemical techniques, may therefore aid forensic entomologists in estimating TOC. PMID:27706817
DSC of human hair: a tool for claim support or incorrect data analysis?
Popescu, C; Gummer, C
2016-10-01
Differential scanning calorimetry (DSC) data are increasingly used to substantiate product claims of hair repair. Decreasing peak temperatures may indicate structural changes and chemical damage. Increasing the DSC, wet peak temperature is, therefore, often considered as proof of hair repair. A detailed understanding of the technique and hair structure indicates that this may not be a sound approach. Surveying the rich literature on the use of dynamic thermal analysis (DTA) and differential scanning calorimetry (DSC) for the analyses of human hair and the effect of cosmetic treatments, we underline some of the problems of hair structure and data interpretation. To overcome some of the difficulties of data interpretation, we advise that DSC acquired data should be supported by other techniques when used for claim substantiation. In this way, one can provide meaningful interpretation of the hair science and robust data for product claims support. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Kappagantu, Madhu; Villamor, Dan Edward V; Bullock, Jeff M; Eastwell, Kenneth C
2017-07-01
Hop stunt disease caused by Hop stunt viroid (HSVd) is a growing threat to hop cultivation globally. HSVd spreads mainly by use of contaminated planting material and by mechanical means. Thorough testing of hop yards and removal of infected bines are critical components of efforts to control the spread of the disease. Reverse transcription-polymerase chain reaction (RT-PCR) has become the primary technique used for HSVd detection; however, sample handling and analysis are technically challenging. In this study, a robust reverse transcription-recombinase polymerase amplification (RT-RPA) assay was developed to facilitate analysis of multiple samples. The assay was optimized with all major variants of HSVd from other host species in addition to hop variants. Used in conjunction with sample collection cards, RT-RPA accommodates large sample numbers. Greenhouse and farm samples tested with RT-RPA were also tested with RT-PCR and a 100% correlation between the two techniques was found. Copyright © 2017. Published by Elsevier B.V.
Interference Resilient Sigma Delta-Based Pulse Oximeter.
Shokouhian, Mohsen; Morling, Richard; Kale, Izzet
2016-06-01
Ambient light and optical interference can severely affect the performance of pulse oximeters. The deployment of a robust modulation technique to drive the pulse oximeter LEDs can reduce these unwanted effects and increases the resilient of the pulse oximeter against artificial ambient light. The time division modulation technique used in conventional pulse oximeters can not remove the effect of modulated light coming from surrounding environment and this may cause huge measurement error in pulse oximeter readings. This paper presents a novel cross-coupled sigma delta modulator which ensures that measurement accuracy will be more robust in comparison with conventional fixed-frequency oximeter modulation technique especially in the presence of pulsed artificial ambient light. Moreover, this novel modulator gives an extra control over the pulse oximeter power consumption leading to improved power management.
Fault Accommodation in Control of Flexible Systems
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Sparks, Dean W., Jr.; Lim, Kyong B.
1998-01-01
New synthesis techniques for the design of fault accommodating controllers for flexible systems are developed. Three robust control design strategies, static dissipative, dynamic dissipative and mu-synthesis, are used in the approach. The approach provides techniques for designing controllers that maximize, in some sense, the tolerance of the closed-loop system against faults in actuators and sensors, while guaranteeing performance robustness at a specified performance level, measured in terms of the proximity of the closed-loop poles to the imaginary axis (the degree of stability). For dissipative control designs, nonlinear programming is employed to synthesize the controllers, whereas in mu-synthesis, the traditional D-K iteration is used. To demonstrate the feasibility of the proposed techniques, they are applied to the control design of a structural model of a flexible laboratory test structure.
Multi-frequency local wavenumber analysis and ply correlation of delamination damage.
Juarez, Peter D; Leckey, Cara A C
2015-09-01
Wavenumber domain analysis through use of scanning laser Doppler vibrometry has been shown to be effective for non-contact inspection of damage in composites. Qualitative and semi-quantitative local wavenumber analysis of realistic delamination damage and quantitative analysis of idealized damage scenarios (Teflon inserts) have been performed previously in the literature. This paper presents a new methodology based on multi-frequency local wavenumber analysis for quantitative assessment of multi-ply delamination damage in carbon fiber reinforced polymer (CFRP) composite specimens. The methodology is presented and applied to a real world damage scenario (impact damage in an aerospace CFRP composite). The methodology yields delamination size and also correlates local wavenumber results from multiple excitation frequencies to theoretical dispersion curves in order to robustly determine the delamination ply depth. Results from the wavenumber based technique are validated against a traditional nondestructive evaluation method. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Chinowsky, Timothy M.; Yee, Sinclair S.
2002-02-01
Surface plasmon resonance (SPR) affinity sensing, the problem of bulk refractive index (RI) interference in SPR sensing, and a sensor developed to overcome this problem are briefly reviewed. The sensor uses a design based on Texas Instruments' Spreeta SPR sensor to simultaneously measure both bulk and surface RI. The bulk RI measurement is then used to compensate the surface measurement and remove the effects of bulk RI interference. To achieve accurate compensation, robust data analysis and calibration techniques are necessary. Simple linear data analysis techniques derived from measurements of the sensor response were found to provide a versatile, low noise method for extracting measurements of bulk and surface refractive index from the raw sensor data. Automatic calibration using RI gradients was used to correct the linear estimates, enabling the sensor to produce accurate data even when the sensor has a complicated nonlinear response which varies with time. The calibration procedure is described, and the factors influencing calibration accuracy are discussed. Data analysis and calibration principles are illustrated with an experiment in which sucrose and detergent solutions are used to produce changes in bulk and surface RI, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevcik, R. S.; Hyman, D. A.; Basumallich, L.
2013-01-01
A technique for carbohydrate analysis for bioprocess samples has been developed, providing reduced analysis time compared to current practice in the biofuels R&D community. The Thermofisher CarboPac SA10 anion-exchange column enables isocratic separation of monosaccharides, sucrose and cellobiose in approximately 7 minutes. Additionally, use of a low-volume (0.2 mL) injection valve in combination with a high-volume detection cell minimizes the extent of sample dilution required to bring sugar concentrations into the linear range of the pulsed amperometric detector (PAD). Three laboratories, representing academia, industry, and government, participated in an interlaboratory study which analyzed twenty-one opportunistic samples representing biomass pretreatment, enzymaticmore » saccharification, and fermentation samples. The technique's robustness, linearity, and interlaboratory reproducibility were evaluated and showed excellent-to-acceptable characteristics. Additionally, quantitation by the CarboPac SA10/PAD was compared with the current practice method utilizing a HPX-87P/RID. While these two methods showed good agreement a statistical comparison found significant quantitation difference between them, highlighting the difference between selective and universal detection modes.« less
Robustness Analysis of Integrated LPV-FDI Filters and LTI-FTC System for a Transport Aircraft
NASA Technical Reports Server (NTRS)
Khong, Thuan H.; Shin, Jong-Yeob
2007-01-01
This paper proposes an analysis framework for robustness analysis of a nonlinear dynamics system that can be represented by a polynomial linear parameter varying (PLPV) system with constant bounded uncertainty. The proposed analysis framework contains three key tools: 1) a function substitution method which can convert a nonlinear system in polynomial form into a PLPV system, 2) a matrix-based linear fractional transformation (LFT) modeling approach, which can convert a PLPV system into an LFT system with the delta block that includes key uncertainty and scheduling parameters, 3) micro-analysis, which is a well known robust analysis tool for linear systems. The proposed analysis framework is applied to evaluating the performance of the LPV-fault detection and isolation (FDI) filters of the closed-loop system of a transport aircraft in the presence of unmodeled actuator dynamics and sensor gain uncertainty. The robustness analysis results are compared with nonlinear time simulations.
Towards robust optimal design of storm water systems
NASA Astrophysics Data System (ADS)
Marquez Calvo, Oscar; Solomatine, Dimitri
2015-04-01
In this study the focus is on the design of a storm water or a combined sewer system. Such a system should be capable to handle properly most of the storm to minimize the damages caused by flooding due to the lack of capacity of the system to cope with rain water at peak times. This problem is a multi-objective optimization problem: we have to take into account the minimization of the construction costs, the minimization of damage costs due to flooding, and possibly other criteria. One of the most important factors influencing the design of storm water systems is the expected amount of water to deal with. It is common that this infrastructure is developed with the capacity to cope with events that occur once in, say 10 or 20 years - so-called design rainfall events. However, rainfall is a random variable and such uncertainty typically is not taken explicitly into account in optimization. Rainfall design data is based on historical information of rainfalls, but many times this data is based on unreliable measures; or in not enough historical information; or as we know, the patterns of rainfall are changing regardless of historical information. There are also other sources of uncertainty influencing design, for example, leakages in the pipes and accumulation of sediments in pipes. In the context of storm water or combined sewer systems design or rehabilitation, robust optimization technique should be able to find the best design (or rehabilitation plan) within the available budget but taking into account uncertainty in those variables that were used to design the system. In this work we consider various approaches to robust optimization proposed by various authors (Gabrel, Murat, Thiele 2013; Beyer, Sendhoff 2007) and test a novel method ROPAR (Solomatine 2012) to analyze robustness. References Beyer, H.G., & Sendhoff, B. (2007). Robust optimization - A comprehensive survey. Comput. Methods Appl. Mech. Engrg., 3190-3218. Gabrel, V.; Murat, C., Thiele, A. (2014). Recent advances in robust optimization: An overview. European Journal of Operational Research. 471-483. Solomatine, D.P. (2012). Robust Optimization and Probabilistic Analysis of Robustness (ROPAR). http://www.unesco-ihe.org/hi/sol/papers/ ROPAR.pdf.
Robust Means and Covariance Matrices by the Minimum Volume Ellipsoid (MVE).
ERIC Educational Resources Information Center
Blankmeyer, Eric
P. Rousseeuw and A. Leroy (1987) proposed a very robust alternative to classical estimates of mean vectors and covariance matrices, the Minimum Volume Ellipsoid (MVE). This paper describes the MVE technique and presents a BASIC program to implement it. The MVE is a "high breakdown" estimator, one that can cope with samples in which as…
Visual control of flight speed in Drosophila melanogaster.
Fry, Steven N; Rohrseitz, Nicola; Straw, Andrew D; Dickinson, Michael H
2009-04-01
Flight control in insects depends on self-induced image motion (optic flow), which the visual system must process to generate appropriate corrective steering maneuvers. Classic experiments in tethered insects applied rigorous system identification techniques for the analysis of turning reactions in the presence of rotating pattern stimuli delivered in open-loop. However, the functional relevance of these measurements for visual free-flight control remains equivocal due to the largely unknown effects of the highly constrained experimental conditions. To perform a systems analysis of the visual flight speed response under free-flight conditions, we implemented a 'one-parameter open-loop' paradigm using 'TrackFly' in a wind tunnel equipped with real-time tracking and virtual reality display technology. Upwind flying flies were stimulated with sine gratings of varying temporal and spatial frequencies, and the resulting speed responses were measured from the resulting flight speed reactions. To control flight speed, the visual system of the fruit fly extracts linear pattern velocity robustly over a broad range of spatio-temporal frequencies. The speed signal is used for a proportional control of flight speed within locomotor limits. The extraction of pattern velocity over a broad spatio-temporal frequency range may require more sophisticated motion processing mechanisms than those identified in flies so far. In Drosophila, the neuromotor pathways underlying flight speed control may be suitably explored by applying advanced genetic techniques, for which our data can serve as a baseline. Finally, the high-level control principles identified in the fly can be meaningfully transferred into a robotic context, such as for the robust and efficient control of autonomous flying micro air vehicles.
Parks, Donovan H; Beiko, Robert G
2013-01-01
High-throughput sequencing techniques have made large-scale spatial and temporal surveys of microbial communities routine. Gaining insight into microbial diversity requires methods for effectively analyzing and visualizing these extensive data sets. Phylogenetic β-diversity measures address this challenge by allowing the relationship between large numbers of environmental samples to be explored using standard multivariate analysis techniques. Despite the success and widespread use of phylogenetic β-diversity measures, an extensive comparative analysis of these measures has not been performed. Here, we compare 39 measures of phylogenetic β diversity in order to establish the relative similarity of these measures along with key properties and performance characteristics. While many measures are highly correlated, those commonly used within microbial ecology were found to be distinct from those popular within classical ecology, and from the recently recommended Gower and Canberra measures. Many of the measures are surprisingly robust to different rootings of the gene tree, the choice of similarity threshold used to define operational taxonomic units, and the presence of outlying basal lineages. Measures differ considerably in their sensitivity to rare organisms, and the effectiveness of measures can vary substantially under alternative models of differentiation. Consequently, the depth of sequencing required to reveal underlying patterns of relationships between environmental samples depends on the selected measure. Our results demonstrate that using complementary measures of phylogenetic β diversity can further our understanding of how communities are phylogenetically differentiated. Open-source software implementing the phylogenetic β-diversity measures evaluated in this manuscript is available at http://kiwi.cs.dal.ca/Software/ExpressBetaDiversity.
Unmanned Ground Vehicle for Autonomous Non-Destructive Testing of FRP Bridge Decks
NASA Astrophysics Data System (ADS)
Klinkhachorn, P.; Mercer, A. Scott; Halabe, Udaya B.; GangaRao, Hota V. S.
2007-03-01
Current non-destructive techniques for defect analysis of FRP bridge decks have a narrow scope. These techniques are very good at detecting certain types of defects but are not robust enough to detect all defects by themselves. For example, infrared thermography (IRT) can detect air filled defects and Ground Penetrating Radar (GPR) is good at detecting water filled ones. These technologies can be combined to create a more robust defect detection scheme. To accomplish this, an Unmanned Ground Vehicle (UGV) has been designed that incorporates both IR and GPR analysis to create a comprehensive defect map of a bridge deck. The UGV autonomously surveys the deck surface and acquires data. The UGV has two 1.5 GHz ground coupled GPR antennas that are mounted on the front of the UGV to collect GPR data. It also incorporates an active heating source and a radiometric IR camera to capture IR images of the deck, even in less than ideal weather scenarios such as cold cloudy days. The UGV is designed so that it can collect data in an assembly line fashion. It moves in 1 foot increments. When moving, it collects GPR data from the two antennas. When it stops it heats a section of the deck. The next time it stops to heat a section, the IR camera is analyzing the preheated deck section while preparing for the next section. Because the data is being continually collected using this method, the UGV can survey the entire deck in an efficient and timely manner.
Vilas, Carlos; Balsa-Canto, Eva; García, Maria-Sonia G; Banga, Julio R; Alonso, Antonio A
2012-07-02
Systems biology allows the analysis of biological systems behavior under different conditions through in silico experimentation. The possibility of perturbing biological systems in different manners calls for the design of perturbations to achieve particular goals. Examples would include, the design of a chemical stimulation to maximize the amplitude of a given cellular signal or to achieve a desired pattern in pattern formation systems, etc. Such design problems can be mathematically formulated as dynamic optimization problems which are particularly challenging when the system is described by partial differential equations.This work addresses the numerical solution of such dynamic optimization problems for spatially distributed biological systems. The usual nonlinear and large scale nature of the mathematical models related to this class of systems and the presence of constraints on the optimization problems, impose a number of difficulties, such as the presence of suboptimal solutions, which call for robust and efficient numerical techniques. Here, the use of a control vector parameterization approach combined with efficient and robust hybrid global optimization methods and a reduced order model methodology is proposed. The capabilities of this strategy are illustrated considering the solution of a two challenging problems: bacterial chemotaxis and the FitzHugh-Nagumo model. In the process of chemotaxis the objective was to efficiently compute the time-varying optimal concentration of chemotractant in one of the spatial boundaries in order to achieve predefined cell distribution profiles. Results are in agreement with those previously published in the literature. The FitzHugh-Nagumo problem is also efficiently solved and it illustrates very well how dynamic optimization may be used to force a system to evolve from an undesired to a desired pattern with a reduced number of actuators. The presented methodology can be used for the efficient dynamic optimization of generic distributed biological systems.
GPS Imaging of Time-Dependent Seasonal Strain in Central California
NASA Astrophysics Data System (ADS)
Kraner, M.; Hammond, W. C.; Kreemer, C.; Borsa, A. A.; Blewitt, G.
2016-12-01
Recently, studies are suggesting that crustal deformation can be time-dependent and nontectonic. Continuous global positioning system (cGPS) measurements are now showing how steady long-term deformation can be influenced by factors such as fluctuations in loading and temperature variations. Here we model the seasonal time-dependent dilatational and shear strain in Central California, specifically surrounding the Parkfield region and try to uncover the sources of these deformation patterns. We use 8 years of cGPS data (2008 - 2016) processed by the Nevada Geodetic Laboratory and carefully select the cGPS stations for our analysis based on the vertical position of cGPS time series during the drought period. In building our strain model, we first detrend the selected station time series using a set of velocities from the robust MIDAS trend estimator. This estimation algorithm is a robust approach that is insensitive to common problems such as step discontinuities, outliers, and seasonality. We use these detrended time series to estimate the median cGPS positions for each month of the 8-year period and filter displacement differences between these monthly median positions using a filtering technique called "GPS Imaging." This technique improves the overall robustness and spatial resolution of the input displacements for the strain model. We then model our dilatational and shear strain field for each month of time series. We also test a variety of a priori constraints, which controls the style of faulting within the strain model. Upon examining our strain maps, we find that a seasonal strain signal exists in Central California. We investigate how this signal compares to thermoelastic, hydrologic, and atmospheric loading models during the 8-year period. We additionally determine whether the drought played a role in influencing the seasonal signal.
Li, Guo-Sheng; Wei, Xian-Yong
2017-01-01
Elucidation of chemical composition of biooil is essentially important to evaluate the process of lignocellulosic biomass (LCBM) conversion and its upgrading and suggest proper value-added utilization like producing fuel and feedstock for fine chemicals. Although the main components of LCBM are cellulose, hemicelluloses, and lignin, the chemicals derived from LCBM differ significantly due to the various feedstock and methods used for the decomposition. Biooil, produced from pyrolysis of LCBM, contains hundreds of organic chemicals with various classes. This review covers the methodologies used for the componential analysis of biooil, including pretreatments and instrumental analysis techniques. The use of chromatographic and spectrometric methods was highlighted, covering the conventional techniques such as gas chromatography, high performance liquid chromatography, Fourier transform infrared spectroscopy, nuclear magnetic resonance, and mass spectrometry. The combination of preseparation methods and instrumental technologies is a robust pathway for the detailed componential characterization of biooil. The organic species in biooils can be classified into alkanes, alkenes, alkynes, benzene-ring containing hydrocarbons, ethers, alcohols, phenols, aldehydes, ketones, esters, carboxylic acids, and other heteroatomic organic compounds. The recent development of high resolution mass spectrometry and multidimensional hyphenated chromatographic and spectrometric techniques has considerably elucidated the composition of biooils. PMID:29387086
Santos, Rui; Pombo, Nuno; Flórez-Revuelta, Francisco
2018-01-01
An increase in the accuracy of identification of Activities of Daily Living (ADL) is very important for different goals of Enhanced Living Environments and for Ambient Assisted Living (AAL) tasks. This increase may be achieved through identification of the surrounding environment. Although this is usually used to identify the location, ADL recognition can be improved with the identification of the sound in that particular environment. This paper reviews audio fingerprinting techniques that can be used with the acoustic data acquired from mobile devices. A comprehensive literature search was conducted in order to identify relevant English language works aimed at the identification of the environment of ADLs using data acquired with mobile devices, published between 2002 and 2017. In total, 40 studies were analyzed and selected from 115 citations. The results highlight several audio fingerprinting techniques, including Modified discrete cosine transform (MDCT), Mel-frequency cepstrum coefficients (MFCC), Principal Component Analysis (PCA), Fast Fourier Transform (FFT), Gaussian mixture models (GMM), likelihood estimation, logarithmic moduled complex lapped transform (LMCLT), support vector machine (SVM), constant Q transform (CQT), symmetric pairwise boosting (SPB), Philips robust hash (PRH), linear discriminant analysis (LDA) and discrete cosine transform (DCT). PMID:29315232
Robust Ambiguity Estimation for an Automated Analysis of the Intensive Sessions
NASA Astrophysics Data System (ADS)
Kareinen, Niko; Hobiger, Thomas; Haas, Rüdiger
2016-12-01
Very Long Baseline Interferometry (VLBI) is a unique space-geodetic technique that can directly determine the Earth's phase of rotation, namely UT1. The daily estimates of the difference between UT1 and Coordinated Universal Time (UTC) are computed from one-hour long VLBI Intensive sessions. These sessions are essential for providing timely UT1 estimates for satellite navigation systems. To produce timely UT1 estimates, efforts have been made to completely automate the analysis of VLBI Intensive sessions. This requires automated processing of X- and S-band group delays. These data often contain an unknown number of integer ambiguities in the observed group delays. In an automated analysis with the c5++ software the standard approach in resolving the ambiguities is to perform a simplified parameter estimation using a least-squares adjustment (L2-norm minimization). We implement the robust L1-norm with an alternative estimation method in c5++. The implemented method is used to automatically estimate the ambiguities in VLBI Intensive sessions for the Kokee-Wettzell baseline. The results are compared to an analysis setup where the ambiguity estimation is computed using the L2-norm. Additionally, we investigate three alternative weighting strategies for the ambiguity estimation. The results show that in automated analysis the L1-norm resolves ambiguities better than the L2-norm. The use of the L1-norm leads to a significantly higher number of good quality UT1-UTC estimates with each of the three weighting strategies.
Directions of arrival estimation with planar antenna arrays in the presence of mutual coupling
NASA Astrophysics Data System (ADS)
Akkar, Salem; Harabi, Ferid; Gharsallah, Ali
2013-06-01
Directions of arrival (DoAs) estimation of multiple sources using an antenna array is a challenging topic in wireless communication. The DoAs estimation accuracy depends not only on the selected technique and algorithm, but also on the geometrical configuration of the antenna array used during the estimation. In this article the robustness of common planar antenna arrays against unaccounted mutual coupling is examined and their DoAs estimation capabilities are compared and analysed through computer simulations using the well-known MUltiple SIgnal Classification (MUSIC) algorithm. Our analysis is based on an electromagnetic concept to calculate an approximation of the impedance matrices that define the mutual coupling matrix (MCM). Furthermore, a CRB analysis is presented and used as an asymptotic performance benchmark of the studied antenna arrays. The impact of the studied antenna arrays geometry on the MCM structure is also investigated. Simulation results show that the UCCA has more robustness against unaccounted mutual coupling and performs better results than both UCA and URA geometries. The performed simulations confirm also that, although the UCCA achieves better performance under complicated scenarios, the URA shows better asymptotic (CRB) behaviour which promises more accuracy on DoAs estimation.
Process for manufacture of semipermeable silicon nitride membranes
Galambos, Paul Charles; Shul, Randy J.; Willison, Christi Gober
2003-12-09
A new class of semipermeable membranes, and techniques for their fabrication, have been developed. These membranes, formed by appropriate etching of a deposited silicon nitride layer, are robust, easily manufacturable, and compatible with a wide range of silicon micromachining techniques.
APPLICATION OF STABLE ISOTOPE TECHNIQUES TO AIR POLLUTION RESEARCH
Stable isotope techniques provide a robust, yet under-utilized tool for examining pollutant effects on plant growth and ecosystem function. Here, we survey a range of mixing model, physiological and system level applications for documenting pollutant effects. Mixing model examp...
Modern CACSD using the Robust-Control Toolbox
NASA Technical Reports Server (NTRS)
Chiang, Richard Y.; Safonov, Michael G.
1989-01-01
The Robust-Control Toolbox is a collection of 40 M-files which extend the capability of PC/PRO-MATLAB to do modern multivariable robust control system design. Included are robust analysis tools like singular values and structured singular values, robust synthesis tools like continuous/discrete H(exp 2)/H infinity synthesis and Linear Quadratic Gaussian Loop Transfer Recovery methods and a variety of robust model reduction tools such as Hankel approximation, balanced truncation and balanced stochastic truncation, etc. The capabilities of the toolbox are described and illustated with examples to show how easily they can be used in practice. Examples include structured singular value analysis, H infinity loop-shaping and large space structure model reduction.
NASA Astrophysics Data System (ADS)
Azzawi, Wessam Al; Epaarachchi, J. A.; Islam, Mainul; Leng, Jinsong
2017-12-01
Shape memory polymers (SMPs) offer a unique ability to undergo a substantial shape deformation and subsequently recover the original shape when exposed to a particular external stimulus. Comparatively low mechanical properties being the major drawback for extended use of SMPs in engineering applications. However the inclusion of reinforcing fibres in to SMPs improves mechanical properties significantly while retaining intrinsic shape memory effects. The implementation of shape memory polymer composites (SMPCs) in any engineering application is a unique task which requires profound materials and design optimization. However currently available analytical tools have critical limitations to undertake accurate analysis/simulations of SMPC structures and slower derestrict transformation of breakthrough research outcomes to real-life applications. Many finite element (FE) models have been presented. But majority of them require a complicated user-subroutines to integrate with standard FE software packages. Furthermore, those subroutines are problem specific and difficult to use for a wider range of SMPC materials and related structures. This paper presents a FE simulation technique to model the thermomechanical behaviour of the SMPCs using commercial FE software ABAQUS. Proposed technique incorporates material time-dependent viscoelastic behaviour. The ability of the proposed technique to predict the shape fixity and shape recovery was evaluated by experimental data acquired by a bending of a SMPC cantilever beam. The excellent correlation between the experimental and FE simulation results has confirmed the robustness of the proposed technique.
Tian, Yuan; Hassmiller Lich, Kristen; Osgood, Nathaniel D; Eom, Kirsten; Matchar, David B
2016-11-01
As health services researchers and decision makers tackle more difficult problems using simulation models, the number of parameters and the corresponding degree of uncertainty have increased. This often results in reduced confidence in such complex models to guide decision making. To demonstrate a systematic approach of linked sensitivity analysis, calibration, and uncertainty analysis to improve confidence in complex models. Four techniques were integrated and applied to a System Dynamics stroke model of US veterans, which was developed to inform systemwide intervention and research planning: Morris method (sensitivity analysis), multistart Powell hill-climbing algorithm and generalized likelihood uncertainty estimation (calibration), and Monte Carlo simulation (uncertainty analysis). Of 60 uncertain parameters, sensitivity analysis identified 29 needing calibration, 7 that did not need calibration but significantly influenced key stroke outcomes, and 24 not influential to calibration or stroke outcomes that were fixed at their best guess values. One thousand alternative well-calibrated baselines were obtained to reflect calibration uncertainty and brought into uncertainty analysis. The initial stroke incidence rate among veterans was identified as the most influential uncertain parameter, for which further data should be collected. That said, accounting for current uncertainty, the analysis of 15 distinct prevention and treatment interventions provided a robust conclusion that hypertension control for all veterans would yield the largest gain in quality-adjusted life years. For complex health care models, a mixed approach was applied to examine the uncertainty surrounding key stroke outcomes and the robustness of conclusions. We demonstrate that this rigorous approach can be practical and advocate for such analysis to promote understanding of the limits of certainty in applying models to current decisions and to guide future data collection. © The Author(s) 2016.
Efficient morse decompositions of vector fields.
Chen, Guoning; Mischaikow, Konstantin; Laramee, Robert S; Zhang, Eugene
2008-01-01
Existing topology-based vector field analysis techniques rely on the ability to extract the individual trajectories such as fixed points, periodic orbits, and separatrices that are sensitive to noise and errors introduced by simulation and interpolation. This can make such vector field analysis unsuitable for rigorous interpretations. We advocate the use of Morse decompositions, which are robust with respect to perturbations, to encode the topological structures of a vector field in the form of a directed graph, called a Morse connection graph (MCG). While an MCG exists for every vector field, it need not be unique. Previous techniques for computing MCG's, while fast, are overly conservative and usually results in MCG's that are too coarse to be useful for the applications. To address this issue, we present a new technique for performing Morse decomposition based on the concept of tau-maps, which typically provides finer MCG's than existing techniques. Furthermore, the choice of tau provides a natural tradeoff between the fineness of the MCG's and the computational costs. We provide efficient implementations of Morse decomposition based on tau-maps, which include the use of forward and backward mapping techniques and an adaptive approach in constructing better approximations of the images of the triangles in the meshes used for simulation.. Furthermore, we propose the use of spatial tau-maps in addition to the original temporal tau-maps. These techniques provide additional trade-offs between the quality of the MCGs and the speed of computation. We demonstrate the utility of our technique with various examples in the plane and on surfaces including engine simulation data sets.
Robust Extraction and Multi-Technique Analysis of Micrometeoroids Captured in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Westphal, A. J.; Graham, G. A.; Bench, G.; Brennan, S.; Luening, K.; Pianetta, P.; Keller, L. P.; Flynn, G. J.; Snead, C.; Dominquez, G.
2003-01-01
The use of low-density silica aerogel as the primary capture cell technology for the NASA Discovery mission Stardust to Comet Wild-2 [1] is a strong motivation for researchers within the Meteoritics community to develop techniques to handle this material. The unique properties of silica aerogel allow dust particles to be captured at hypervelocity speeds and to remain partially intact. The same unique properties present difficulties in the preparation of particles for analysis. Using tools borrowed from microbiologists, we have developed techniques for robustly extracting captured hypervelocity dust particles and their residues from aerogel collectors[2-3]. It is important not only to refine these extraction techniques but also to develop protocols for analyzing the captured particles. Since Stardust does not return material to Earth until 2006, researchers must either analyze particles that are impacted in the laboratory using light-gasgun facilities [e.g. 41 or examine aerogel collectors that have been exposed in low-Earth orbit (LEO) [5]. While there are certainly benefits in laboratory shots, i.e. accelerating known compositions of projectiles into aerogel, the LEO capture particles offer the opportunity to investigate real particles captured under real conditions. The aerogel collectors used in this research are part of the NASA Orbital Debris Collection Experiment that was exposed on the MIR Space Station for 18 months [5]. We have developed the capability at the UCB Space Sciences Laboratory to extract tiny volumes of aerogel that completely contain each impact event, and to mount them on micromachined fixtures so that they can be analyzed with no interfering support (Fig.1). These aerogel keystones simultaneously bring the terminal particle and the particle track to within 10 m (15 g cm- ) of the nearest aerogel surface. The extracted aerogel wedges containing both the impact tracks and the captured particles have been characterized using the synchrotron total external reflection X-ray fluorescence (TXRF) microprobe at SSRL, the Nuclear Microprobe at LLNL, synchrotron infrared microscopy at the ALS facility at LBL and the NSLS at BNL, and the Total Reflection X-ray Fluorescence (TXRF) facility at SLAC.
Vezér, Martin A
2016-04-01
To study climate change, scientists employ computer models, which approximate target systems with various levels of skill. Given the imperfection of climate models, how do scientists use simulations to generate knowledge about the causes of observed climate change? Addressing a similar question in the context of biological modelling, Levins (1966) proposed an account grounded in robustness analysis. Recent philosophical discussions dispute the confirmatory power of robustness, raising the question of how the results of computer modelling studies contribute to the body of evidence supporting hypotheses about climate change. Expanding on Staley's (2004) distinction between evidential strength and security, and Lloyd's (2015) argument connecting variety-of-evidence inferences and robustness analysis, I address this question with respect to recent challenges to the epistemology robustness analysis. Applying this epistemology to case studies of climate change, I argue that, despite imperfections in climate models, and epistemic constraints on variety-of-evidence reasoning and robustness analysis, this framework accounts for the strength and security of evidence supporting climatological inferences, including the finding that global warming is occurring and its primary causes are anthropogenic. Copyright © 2016 Elsevier Ltd. All rights reserved.
Robust Mediation Analysis Based on Median Regression
Yuan, Ying; MacKinnon, David P.
2014-01-01
Mediation analysis has many applications in psychology and the social sciences. The most prevalent methods typically assume that the error distribution is normal and homoscedastic. However, this assumption may rarely be met in practice, which can affect the validity of the mediation analysis. To address this problem, we propose robust mediation analysis based on median regression. Our approach is robust to various departures from the assumption of homoscedasticity and normality, including heavy-tailed, skewed, contaminated, and heteroscedastic distributions. Simulation studies show that under these circumstances, the proposed method is more efficient and powerful than standard mediation analysis. We further extend the proposed robust method to multilevel mediation analysis, and demonstrate through simulation studies that the new approach outperforms the standard multilevel mediation analysis. We illustrate the proposed method using data from a program designed to increase reemployment and enhance mental health of job seekers. PMID:24079925
Evaluating metrics of local topographic position for multiscale geomorphometric analysis
NASA Astrophysics Data System (ADS)
Newman, D. R.; Lindsay, J. B.; Cockburn, J. M. H.
2018-07-01
The field of geomorphometry has increasingly moved towards the use of multiscale analytical techniques, due to the availability of fine-resolution digital elevation models (DEMs) and the inherent scale-dependency of many DEM-derived attributes such as local topographic position (LTP). LTP is useful for landform and soils mapping and numerous other environmental applications. Multiple LTP metrics have been proposed and applied in the literature; however, elevation percentile (EP) is notable for its robustness to elevation error and applicability to non-Gaussian local elevation distributions, both of which are common characteristics of DEM data sets. Multiscale LTP analysis involves the estimation of spatial patterns using a range of neighborhood sizes, traditionally achieved by applying spatial filtering techniques with varying kernel sizes. While EP can be demonstrated to provide accurate estimates of LTP, the computationally intensive method of its calculation makes it unsuited to multiscale LTP analysis, particularly at large neighborhood sizes or with fine-resolution DEMs. This research assessed the suitability of three LTP metrics for multiscale terrain characterization by quantifying their computational efficiency and by comparing their ability to approximate EP spatial patterns under varying topographic conditions. The tested LTP metrics included: deviation from mean elevation (DEV), percent elevation range (PER), and the novel relative topographic position (RTP) index. The results demonstrated that DEV, calculated using the integral image technique, offers fast and scale-invariant computation. DEV spatial patterns were strongly correlated with EP (r2 range of 0.699 to 0.967) under all tested topographic conditions. RTP was also a strong predictor of EP (r2 range of 0.594 to 0.917). PER was the weakest predictor of EP (r2 range of 0.031 to 0.801) without offering a substantial improvement in computational efficiency over RTP. PER was therefore determined to be unsuitable for most multiscale applications. It was concluded that the scale-invariant property offered by the integral image used by the DEV method counters the minor losses in robustness compared to EP, making DEV the optimal LTP metric for multiscale applications.
Topology of foreign exchange markets using hierarchical structure methods
NASA Astrophysics Data System (ADS)
Naylor, Michael J.; Rose, Lawrence C.; Moyle, Brendan J.
2007-08-01
This paper uses two physics derived hierarchical techniques, a minimal spanning tree and an ultrametric hierarchical tree, to extract a topological influence map for major currencies from the ultrametric distance matrix for 1995-2001. We find that these two techniques generate a defined and robust scale free network with meaningful taxonomy. The topology is shown to be robust with respect to method, to time horizon and is stable during market crises. This topology, appropriately used, gives a useful guide to determining the underlying economic or regional causal relationships for individual currencies and to understanding the dynamics of exchange rate price determination as part of a complex network.
NASA Astrophysics Data System (ADS)
Dimova, E.; Steflekova, V.; Karatodorov, S.; Kyoseva, E.
2018-03-01
We propose a way of achieving efficient and robust second-harmonic generation. The technique proposed is similar to the adiabatic population transfer in a two-state quantum system with crossing energies. If the phase mismatching changes slowly, e.g., due to a temperature gradient along the crystal, and makes the phase match for second-harmonic generation to occur, then the energy would be converted adiabatically to the second harmonic. As an adiabatic technique, the second-harmonic generation scheme presented is stable to variations in the crystal parameters, as well as in the input light, crystal length, input intensity, wavelength and angle of incidence.
Design, test, and evaluation of three active flutter suppression controllers
NASA Technical Reports Server (NTRS)
Adams, William M., Jr.; Christhilf, David M.; Waszak, Martin R.; Mukhopadhyay, Vivek; Srinathkumar, S.
1992-01-01
Three control law design techniques for flutter suppression are presented. Each technique uses multiple control surfaces and/or sensors. The first method uses traditional tools (such as pole/zero loci and Nyquist diagrams) for producing a controller that has minimal complexity and which is sufficiently robust to handle plant uncertainty. The second procedure uses linear combinations of several accelerometer signals and dynamic compensation to synthesize the model rate of the critical mode for feedback to the distributed control surfaces. The third technique starts with a minimum-energy linear quadratic Gaussian controller, iteratively modifies intensity matrices corresponding to input and output noise, and applies controller order reduction to achieve a low-order, robust controller. The resulting designs were implemented digitally and tested subsonically on the active flexible wing wind-tunnel model in the Langley Transonic Dynamics Tunnel. Only the traditional pole/zero loci design was sufficiently robust to errors in the nominal plant to successfully suppress flutter during the test. The traditional pole/zero loci design provided simultaneous suppression of symmetric and antisymmetric flutter with a 24-percent increase in attainable dynamic pressure. Posttest analyses are shown which illustrate the problems encountered with the other laws.
Chaotic CDMA watermarking algorithm for digital image in FRFT domain
NASA Astrophysics Data System (ADS)
Liu, Weizhong; Yang, Wentao; Feng, Zhuoming; Zou, Xuecheng
2007-11-01
A digital image-watermarking algorithm based on fractional Fourier transform (FRFT) domain is presented by utilizing chaotic CDMA technique in this paper. As a popular and typical transmission technique, CDMA has many advantages such as privacy, anti-jamming and low power spectral density, which can provide robustness against image distortions and malicious attempts to remove or tamper with the watermark. A super-hybrid chaotic map, with good auto-correlation and cross-correlation characteristics, is adopted to produce many quasi-orthogonal codes (QOC) that can replace the periodic PN-code used in traditional CDAM system. The watermarking data is divided into a lot of segments that correspond to different chaotic QOC respectively and are modulated into the CDMA watermarking data embedded into low-frequency amplitude coefficients of FRFT domain of the cover image. During watermark detection, each chaotic QOC extracts its corresponding watermarking segment by calculating correlation coefficients between chaotic QOC and watermarked data of the detected image. The CDMA technique not only can enhance the robustness of watermark but also can compress the data of the modulated watermark. Experimental results show that the watermarking algorithm has good performances in three aspects: better imperceptibility, anti-attack robustness and security.
A Novel MEMS Gyro North Finder Design Based on the Rotation Modulation Technique
Zhang, Yongjian; Zhou, Bin; Song, Mingliang; Hou, Bo; Xing, Haifeng; Zhang, Rong
2017-01-01
Gyro north finders have been widely used in maneuvering weapon orientation, oil drilling and other areas. This paper proposes a novel Micro-Electro-Mechanical System (MEMS) gyroscope north finder based on the rotation modulation (RM) technique. Two rotation modulation modes (static and dynamic modulation) are applied. Compared to the traditional gyro north finders, only one single MEMS gyroscope and one MEMS accelerometer are needed, reducing the total cost since high-precision gyroscopes and accelerometers are the most expensive components in gyro north finders. To reduce the volume and enhance the reliability, wireless power and wireless data transmission technique are introduced into the rotation modulation system for the first time. To enhance the system robustness, the robust least square method (RLSM) and robust Kalman filter (RKF) are applied in the static and dynamic north finding methods, respectively. Experimental characterization resulted in a static accuracy of 0.66° and a dynamic repeatability accuracy of 1°, respectively, confirming the excellent potential of the novel north finding system. The proposed single gyro and single accelerometer north finding scheme is universal, and can be an important reference to both scientific research and industrial applications. PMID:28452936
Sainath, Kamalesh; Teixeira, Fernando L; Donderici, Burkay
2014-01-01
We develop a general-purpose formulation, based on two-dimensional spectral integrals, for computing electromagnetic fields produced by arbitrarily oriented dipoles in planar-stratified environments, where each layer may exhibit arbitrary and independent anisotropy in both its (complex) permittivity and permeability tensors. Among the salient features of our formulation are (i) computation of eigenmodes (characteristic plane waves) supported in arbitrarily anisotropic media in a numerically robust fashion, (ii) implementation of an hp-adaptive refinement for the numerical integration to evaluate the radiation and weakly evanescent spectra contributions, and (iii) development of an adaptive extension of an integral convergence acceleration technique to compute the strongly evanescent spectrum contribution. While other semianalytic techniques exist to solve this problem, none have full applicability to media exhibiting arbitrary double anisotropies in each layer, where one must account for the whole range of possible phenomena (e.g., mode coupling at interfaces and nonreciprocal mode propagation). Brute-force numerical methods can tackle this problem but only at a much higher computational cost. The present formulation provides an efficient and robust technique for field computation in arbitrary planar-stratified environments. We demonstrate the formulation for a number of problems related to geophysical exploration.
Kesselmeier, Miriam; Lorenzo Bermejo, Justo
2017-11-01
Logistic regression is the most common technique used for genetic case-control association studies. A disadvantage of standard maximum likelihood estimators of the genotype relative risk (GRR) is their strong dependence on outlier subjects, for example, patients diagnosed at unusually young age. Robust methods are available to constrain outlier influence, but they are scarcely used in genetic studies. This article provides a non-intimidating introduction to robust logistic regression, and investigates its benefits and limitations in genetic association studies. We applied the bounded Huber and extended the R package 'robustbase' with the re-descending Hampel functions to down-weight outlier influence. Computer simulations were carried out to assess the type I error rate, mean squared error (MSE) and statistical power according to major characteristics of the genetic study and investigated markers. Simulations were complemented with the analysis of real data. Both standard and robust estimation controlled type I error rates. Standard logistic regression showed the highest power but standard GRR estimates also showed the largest bias and MSE, in particular for associated rare and recessive variants. For illustration, a recessive variant with a true GRR=6.32 and a minor allele frequency=0.05 investigated in a 1000 case/1000 control study by standard logistic regression resulted in power=0.60 and MSE=16.5. The corresponding figures for Huber-based estimation were power=0.51 and MSE=0.53. Overall, Hampel- and Huber-based GRR estimates did not differ much. Robust logistic regression may represent a valuable alternative to standard maximum likelihood estimation when the focus lies on risk prediction rather than identification of susceptibility variants. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bayesian Inference and Application of Robust Growth Curve Models Using Student's "t" Distribution
ERIC Educational Resources Information Center
Zhang, Zhiyong; Lai, Keke; Lu, Zhenqiu; Tong, Xin
2013-01-01
Despite the widespread popularity of growth curve analysis, few studies have investigated robust growth curve models. In this article, the "t" distribution is applied to model heavy-tailed data and contaminated normal data with outliers for growth curve analysis. The derived robust growth curve models are estimated through Bayesian…
Tanner-Smith, Emily E; Tipton, Elizabeth
2014-03-01
Methodologists have recently proposed robust variance estimation as one way to handle dependent effect sizes in meta-analysis. Software macros for robust variance estimation in meta-analysis are currently available for Stata (StataCorp LP, College Station, TX, USA) and spss (IBM, Armonk, NY, USA), yet there is little guidance for authors regarding the practical application and implementation of those macros. This paper provides a brief tutorial on the implementation of the Stata and spss macros and discusses practical issues meta-analysts should consider when estimating meta-regression models with robust variance estimates. Two example databases are used in the tutorial to illustrate the use of meta-analysis with robust variance estimates. Copyright © 2013 John Wiley & Sons, Ltd.
USING BIOASSAYS TO EVALUATE THE PERFORMANCE OF RISK MANAGEMENT TECHNIQUES
Often, the performance of risk management techniques is evaluated by measuring the concentrations of the chemials of concern before and after risk management effoprts. However, using bioassays and chemical data provides a more robust understanding of the effectiveness of risk man...
Li, Yanyun; Chen, Minjian; Liu, Cuiping; Xia, Yankai; Xu, Bo; Hu, Yanhui; Chen, Ting; Shen, Meiping; Tang, Wei
2018-05-01
Papillary thyroid carcinoma (PTC) is the most common thyroid cancer. Nuclear magnetic resonance (NMR)‑based metabolomic technique is the gold standard in metabolite structural elucidation, and can provide different coverage of information compared with other metabolomic techniques. Here, we firstly conducted NMR based metabolomics study regarding detailed metabolic changes especially metabolic pathway changes related to PTC pathogenesis. 1H NMR-based metabolomic technique was adopted in conju-nction with multivariate analysis to analyze matched tumor and normal thyroid tissues obtained from 16 patients. The results were further annotated with Kyoto Encyclopedia of Genes and Genomes (KEGG), and Human Metabolome Database, and then were analyzed using modules of pathway analysis and enrichment analysis of MetaboAnalyst 3.0. Based on the analytical techniques, we established the models of principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and orthogonal partial least-squares discriminant analysis (OPLS‑DA) which could discriminate PTC from normal thyroid tissue, and found 15 robust differentiated metabolites from two OPLS-DA models. We identified 8 KEGG pathways and 3 pathways of small molecular pathway database which were significantly related to PTC by using pathway analysis and enrichment analysis, respectively, through which we identified metabolisms related to PTC including branched chain amino acid metabolism (leucine and valine), other amino acid metabolism (glycine and taurine), glycolysis (lactate), tricarboxylic acid cycle (citrate), choline metabolism (choline, ethanolamine and glycerolphosphocholine) and lipid metabolism (very-low‑density lipoprotein and low-density lipoprotein). In conclusion, the PTC was characterized with increased glycolysis and inhibited tricarboxylic acid cycle, increased oncogenic amino acids as well as abnormal choline and lipid metabolism. The findings in this study provide new insights into detailed metabolic changes of PTC, and hold great potential in the treatment of PTC.
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik
1996-01-01
For a space mission to be successful it is vitally important to have a good control strategy. For example, with the Space Shuttle it is necessary to guarantee the success and smoothness of docking, the smoothness and fuel efficiency of trajectory control, etc. For an automated planetary mission it is important to control the spacecraft's trajectory, and after that, to control the planetary rover so that it would be operable for the longest possible period of time. In many complicated control situations, traditional methods of control theory are difficult or even impossible to apply. In general, in uncertain situations, where no routine methods are directly applicable, we must rely on the creativity and skill of the human operators. In order to simulate these experts, an intelligent control methodology must be developed. The research objectives of this project were: to analyze existing control techniques; to find out which of these techniques is the best with respect to the basic optimality criteria (stability, smoothness, robustness); and, if for some problems, none of the existing techniques is satisfactory, to design new, better intelligent control techniques.
NASA Astrophysics Data System (ADS)
Shimoyama, Koji; Jeong, Shinkyu; Obayashi, Shigeru
A new approach for multi-objective robust design optimization was proposed and applied to a real-world design problem with a large number of objective functions. The present approach is assisted by response surface approximation and visual data-mining, and resulted in two major gains regarding computational time and data interpretation. The Kriging model for response surface approximation can markedly reduce the computational time for predictions of robustness. In addition, the use of self-organizing maps as a data-mining technique allows visualization of complicated design information between optimality and robustness in a comprehensible two-dimensional form. Therefore, the extraction and interpretation of trade-off relations between optimality and robustness of design, and also the location of sweet spots in the design space, can be performed in a comprehensive manner.
Coertjens, Liesje; Donche, Vincent; De Maeyer, Sven; Vanthournout, Gert; Van Petegem, Peter
2017-01-01
Longitudinal data is almost always burdened with missing data. However, in educational and psychological research, there is a large discrepancy between methodological suggestions and research practice. The former suggests applying sensitivity analysis in order to the robustness of the results in terms of varying assumptions regarding the mechanism generating the missing data. However, in research practice, participants with missing data are usually discarded by relying on listwise deletion. To help bridge the gap between methodological recommendations and applied research in the educational and psychological domain, this study provides a tutorial example of sensitivity analysis for latent growth analysis. The example data concern students' changes in learning strategies during higher education. One cohort of students in a Belgian university college was asked to complete the Inventory of Learning Styles-Short Version, in three measurement waves. A substantial number of students did not participate on each occasion. Change over time in student learning strategies was assessed using eight missing data techniques, which assume different mechanisms for missingness. The results indicated that, for some learning strategy subscales, growth estimates differed between the models. Guidelines in terms of reporting the results from sensitivity analysis are synthesised and applied to the results from the tutorial example.
Hoseinpour, Fatemeh; Foroughi, Azadeh; Nomanpour, Bizhan; Nasab, Rezvan Sobhani
2017-07-01
Campylobacter jejuni and Campylobacter coli are the important food-born zoonotic pathogen, also are leading causes of human food borne illnesses worldwide. cadF gene is expressed in all C. jejuni and C. coli strains and mediates cell binding to the cell matrix protein, Fibronectin. High-resolution melting (HRM) analysis is emerging as an efficient and robust method for discriminating DNA sequence variants. The goal of this study was to apply HRM analysis to identification of C. jejuni and C. coli. A total of 100 samples were obtained from chicken in Kermanshah, Iran. HRM analysis based on cadF gene and Eva Green was developed to the identification of Campylobacter to the species level. Fifty-five of 100 samples were positive as campylobacter (7 C. jejuni, 29 C. coli, 16 mixes and 3 unknown). Minor variations were observed in melting point temperatures of C. coli or C. jejuni isolates and this variation can be used to the differentiation between C. coli or C. jejuni isolates. The results of this study indicated that HRM curve analysis can be a suitable technique and rapid technique for distinguishing between C. jejuni and C. coli isolates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimization of design parameters of low-energy buildings
NASA Astrophysics Data System (ADS)
Vala, Jiří; Jarošová, Petra
2017-07-01
Evaluation of temperature development and related consumption of energy required for heating, air-conditioning, etc. in low-energy buildings requires the proper physical analysis, covering heat conduction, convection and radiation, including beam and diffusive components of solar radiation, on all building parts and interfaces. The system approach and the Fourier multiplicative decomposition together with the finite element technique offers the possibility of inexpensive and robust numerical and computational analysis of corresponding direct problems, as well as of the optimization ones with several design variables, using the Nelder-Mead simplex method. The practical example demonstrates the correlation between such numerical simulations and the time series of measurements of energy consumption on a small family house in Ostrov u Macochy (35 km northern from Brno).
NASA Astrophysics Data System (ADS)
Laurantzon, F.; Örlü, R.; Segalini, A.; Alfredsson, P. H.
2010-12-01
Vortex flowmeters are commonly employed in technical applications and are obtainable in a variety of commercially available types. However their robustness and accuracy can easily be impaired by environmental conditions, such as inflow disturbances and/or pulsating conditions. Various post-processing techniques of the vortex signal have been used, but all of these methods are so far targeted on obtaining an improved estimate of the time-averaged bulk velocity. Here, on the other hand, we propose, based on wavelet analysis, a straightforward way to utilize the signal from a vortex shedder to extract the time-resolved and thereby the phase-averaged velocity under pulsatile flow conditions. The method was verified with hot-wire and laser Doppler velocimetry measurements.
NASA Astrophysics Data System (ADS)
Deshpande, Ruchi R.; Requejo, Philip; Sutisna, Erry; Wang, Ximing; Liu, Margaret; McNitt-Gray, Sarah; Ruparel, Puja; Liu, Brent J.
2012-02-01
Patients confined to manual wheel-chairs are at an added risk of shoulder injury. There is a need for developing optimal bio-mechanical techniques for wheel-chair propulsion through movement analysis. Data collected is diverse and in need of normalization and integration. Current databases are ad-hoc and do not provide flexibility, extensibility and ease of access. The need for an efficient means to retrieve specific trial data, display it and compare data from multiple trials is unmet through lack of data association and synchronicity. We propose the development of a robust web-based ePR system that will enhance workflow and facilitate efficient data management.
NASA Astrophysics Data System (ADS)
Yang, Xinxin; Ge, Shuzhi Sam; He, Wei
2018-04-01
In this paper, both the closed-form dynamics and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances are developed. The dynamic model of the system is described with assumed modes approach and Lagrangian method. The flexible manipulators are represented as Euler-Bernoulli beams. Based on singular perturbation technique, the displacements/joint angles and flexible modes are modelled as slow and fast variables, respectively. A sliding mode control is designed for trajectories tracking of the slow subsystem under unknown but bounded disturbances, and an adaptive sliding mode control is derived for slow subsystem under unknown slowly time-varying disturbances. An optimal linear quadratic regulator method is proposed for the fast subsystem to damp out the vibrations of the flexible manipulators. Theoretical analysis validates the stability of the proposed composite controller. Numerical simulation results demonstrate the performance of the closed-loop flexible space robot system.
NASA Astrophysics Data System (ADS)
Chartosias, Marios
Acceptance of Carbon Fiber Reinforced Polymer (CFRP) structures requires a robust surface preparation method with improved process controls capable of ensuring high bond quality. Surface preparation in a production clean room environment prior to applying adhesive for bonding would minimize risk of contamination and reduce cost. Plasma treatment is a robust surface preparation process capable of being applied in a production clean room environment with process parameters that are easily controlled and documented. Repeatable and consistent processing is enabled through the development of a process parameter window utilizing techniques such as Design of Experiments (DOE) tailored to specific adhesive and substrate bonding applications. Insight from respective plasma treatment Original Equipment Manufacturers (OEMs) and screening tests determined critical process factors from non-factors and set the associated factor levels prior to execution of the DOE. Results from mode I Double Cantilever Beam (DCB) testing per ASTM D 5528 [1] standard and DOE statistical analysis software are used to produce a regression model and determine appropriate optimum settings for each factor.
Experimental Evaluation of a Planning Language Suitable for Formal Verification
NASA Technical Reports Server (NTRS)
Butler, Rick W.; Munoz, Cesar A.; Siminiceanu, Radu I.
2008-01-01
The marriage of model checking and planning faces two seemingly diverging alternatives: the need for a planning language expressive enough to capture the complexity of real-life applications, as opposed to a language simple, yet robust enough to be amenable to exhaustive verification and validation techniques. In an attempt to reconcile these differences, we have designed an abstract plan description language, ANMLite, inspired from the Action Notation Modeling Language (ANML) [17]. We present the basic concepts of the ANMLite language as well as an automatic translator from ANMLite to the model checker SAL (Symbolic Analysis Laboratory) [7]. We discuss various aspects of specifying a plan in terms of constraints and explore the implications of choosing a robust logic behind the specification of constraints, rather than simply propose a new planning language. Additionally, we provide an initial assessment of the efficiency of model checking to search for solutions of planning problems. To this end, we design a basic test benchmark and study the scalability of the generated SAL models in terms of plan complexity.
Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions.
Drouard, Vincent; Horaud, Radu; Deleforge, Antoine; Ba, Sileye; Evangelidis, Georgios
2017-03-01
Head-pose estimation has many applications, such as social event analysis, human-robot and human-computer interaction, driving assistance, and so forth. Head-pose estimation is challenging, because it must cope with changing illumination conditions, variabilities in face orientation and in appearance, partial occlusions of facial landmarks, as well as bounding-box-to-face alignment errors. We propose to use a mixture of linear regressions with partially-latent output. This regression method learns to map high-dimensional feature vectors (extracted from bounding boxes of faces) onto the joint space of head-pose angles and bounding-box shifts, such that they are robustly predicted in the presence of unobservable phenomena. We describe in detail the mapping method that combines the merits of unsupervised manifold learning techniques and of mixtures of regressions. We validate our method with three publicly available data sets and we thoroughly benchmark four variants of the proposed algorithm with several state-of-the-art head-pose estimation methods.
Fabrication of hydrophobic compressed oil palm trunk surface by sol-gel process
NASA Astrophysics Data System (ADS)
Muzakir, Syafiqah; Salim, Nurjannah; Huda Abu Bakar, Nurul; Roslan, Rasidi; Sin, Lim Wan; Hashim, Rokiah
2018-04-01
Improvement of the robustness of hydrophobic surfaces is crucial to achieving commercial applications of these surfaces in such various areas as self-cleaning, water repellency and corrosion resistance. Compressed oil palm trunk (OPT) panel is one of potential product which can be used as panelling and indoor furniture application. By adding hydrophobic properties to compressed oil palm trunk panel might increase the application of compressed oil palm trunk especially for outdoor application. In this study, fabrication is using the sol-gel technique. Sol-gel was prepared by adding ethanol with Hexadecyl Trimethyl Ammonium Bromide (CTAB) solution with Tetraethyl Orthosilicate (TEOS) with surface modification of chlorotrimethylsilane (CTMS). The surface with hydrophobic coating was undergone surface analysis with contact angle machine with the aid of software SCA 20 and the determined of the morphology of surface with scanning electron microscope (SEM). The produced compressed oil palm trunk surfaces exhibited promising hydrophobic properties with a contact angle of 104° and the relatively better mechanical robustness.
Comparative analysis of feature extraction methods in satellite imagery
NASA Astrophysics Data System (ADS)
Karim, Shahid; Zhang, Ye; Asif, Muhammad Rizwan; Ali, Saad
2017-10-01
Feature extraction techniques are extensively being used in satellite imagery and getting impressive attention for remote sensing applications. The state-of-the-art feature extraction methods are appropriate according to the categories and structures of the objects to be detected. Based on distinctive computations of each feature extraction method, different types of images are selected to evaluate the performance of the methods, such as binary robust invariant scalable keypoints (BRISK), scale-invariant feature transform, speeded-up robust features (SURF), features from accelerated segment test (FAST), histogram of oriented gradients, and local binary patterns. Total computational time is calculated to evaluate the speed of each feature extraction method. The extracted features are counted under shadow regions and preprocessed shadow regions to compare the functioning of each method. We have studied the combination of SURF with FAST and BRISK individually and found very promising results with an increased number of features and less computational time. Finally, feature matching is conferred for all methods.
MultiNest: Efficient and Robust Bayesian Inference
NASA Astrophysics Data System (ADS)
Feroz, F.; Hobson, M. P.; Bridges, M.
2011-09-01
We present further development and the first public release of our multimodal nested sampling algorithm, called MultiNest. This Bayesian inference tool calculates the evidence, with an associated error estimate, and produces posterior samples from distributions that may contain multiple modes and pronounced (curving) degeneracies in high dimensions. The developments presented here lead to further substantial improvements in sampling efficiency and robustness, as compared to the original algorithm presented in Feroz & Hobson (2008), which itself significantly outperformed existing MCMC techniques in a wide range of astrophysical inference problems. The accuracy and economy of the MultiNest algorithm is demonstrated by application to two toy problems and to a cosmological inference problem focusing on the extension of the vanilla LambdaCDM model to include spatial curvature and a varying equation of state for dark energy. The MultiNest software is fully parallelized using MPI and includes an interface to CosmoMC. It will also be released as part of the SuperBayeS package, for the analysis of supersymmetric theories of particle physics, at this http URL.
A robust adaptive observer for a class of singular nonlinear uncertain systems
NASA Astrophysics Data System (ADS)
Arefinia, Elaheh; Talebi, Heidar Ali; Doustmohammadi, Ali
2017-05-01
This paper proposes a robust adaptive observer for a class of singular nonlinear non-autonomous uncertain systems with unstructured unknown system and derivative matrices, and unknown bounded nonlinearities. Unlike many existing observers, no strong assumption such as Lipschitz condition is imposed on the recommended system. An augmented system is constructed, and the unknown bounds are calculated online using adaptive bounding technique. Considering the continuous nonlinear gain removes the chattering which may appear in practical applications such as analysis of electrical circuits and estimation of interaction force in beating heart robotic-assisted surgery. Moreover, a simple yet precise structure is attained which is easy to implement in many systems with significant uncertainties. The existence conditions of the standard form observer are obtained in terms of linear matrix inequality and the constrained generalised Sylvester's equations, and global stability is ensured. Finally, simulation results are obtained to evaluate the performance of the proposed estimator and demonstrate the effectiveness of the developed scheme.
Noise suppression methods for robust speech processing
NASA Astrophysics Data System (ADS)
Boll, S. F.; Ravindra, H.; Randall, G.; Armantrout, R.; Power, R.
1980-05-01
Robust speech processing in practical operating environments requires effective environmental and processor noise suppression. This report describes the technical findings and accomplishments during this reporting period for the research program funded to develop real time, compressed speech analysis synthesis algorithms whose performance in invariant under signal contamination. Fulfillment of this requirement is necessary to insure reliable secure compressed speech transmission within realistic military command and control environments. Overall contributions resulting from this research program include the understanding of how environmental noise degrades narrow band, coded speech, development of appropriate real time noise suppression algorithms, and development of speech parameter identification methods that consider signal contamination as a fundamental element in the estimation process. This report describes the current research and results in the areas of noise suppression using the dual input adaptive noise cancellation using the short time Fourier transform algorithms, articulation rate change techniques, and a description of an experiment which demonstrated that the spectral subtraction noise suppression algorithm can improve the intelligibility of 2400 bps, LPC 10 coded, helicopter speech by 10.6 point.
Alves, Pedro; Liu, Shuang; Wang, Daifeng; Gerstein, Mark
2018-01-01
Machine learning is an integral part of computational biology, and has already shown its use in various applications, such as prognostic tests. In the last few years in the non-biological machine learning community, ensembling techniques have shown their power in data mining competitions such as the Netflix challenge; however, such methods have not found wide use in computational biology. In this work, we endeavor to show how ensembling techniques can be applied to practical problems, including problems in the field of bioinformatics, and how they often outperform other machine learning techniques in both predictive power and robustness. Furthermore, we develop a methodology of ensembling, Multi-Swarm Ensemble (MSWE) by using multiple particle swarm optimizations and demonstrate its ability to further enhance the performance of ensembles.
Cole-Cole, linear and multivariate modeling of capacitance data for on-line monitoring of biomass.
Dabros, Michal; Dennewald, Danielle; Currie, David J; Lee, Mark H; Todd, Robert W; Marison, Ian W; von Stockar, Urs
2009-02-01
This work evaluates three techniques of calibrating capacitance (dielectric) spectrometers used for on-line monitoring of biomass: modeling of cell properties using the theoretical Cole-Cole equation, linear regression of dual-frequency capacitance measurements on biomass concentration, and multivariate (PLS) modeling of scanning dielectric spectra. The performance and robustness of each technique is assessed during a sequence of validation batches in two experimental settings of differing signal noise. In more noisy conditions, the Cole-Cole model had significantly higher biomass concentration prediction errors than the linear and multivariate models. The PLS model was the most robust in handling signal noise. In less noisy conditions, the three models performed similarly. Estimates of the mean cell size were done additionally using the Cole-Cole and PLS models, the latter technique giving more satisfactory results.
Image Hashes as Templates for Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janik, Tadeusz; Jarman, Kenneth D.; Robinson, Sean M.
2012-07-17
Imaging systems can provide measurements that confidently assess characteristics of nuclear weapons and dismantled weapon components, and such assessment will be needed in future verification for arms control. Yet imaging is often viewed as too intrusive, raising concern about the ability to protect sensitive information. In particular, the prospect of using image-based templates for verifying the presence or absence of a warhead, or of the declared configuration of fissile material in storage, may be rejected out-of-hand as being too vulnerable to violation of information barrier (IB) principles. Development of a rigorous approach for generating and comparing reduced-information templates from images,more » and assessing the security, sensitivity, and robustness of verification using such templates, are needed to address these concerns. We discuss our efforts to develop such a rigorous approach based on a combination of image-feature extraction and encryption-utilizing hash functions to confirm proffered declarations, providing strong classified data security while maintaining high confidence for verification. The proposed work is focused on developing secure, robust, tamper-sensitive and automatic techniques that may enable the comparison of non-sensitive hashed image data outside an IB. It is rooted in research on so-called perceptual hash functions for image comparison, at the interface of signal/image processing, pattern recognition, cryptography, and information theory. Such perceptual or robust image hashing—which, strictly speaking, is not truly cryptographic hashing—has extensive application in content authentication and information retrieval, database search, and security assurance. Applying and extending the principles of perceptual hashing to imaging for arms control, we propose techniques that are sensitive to altering, forging and tampering of the imaged object yet robust and tolerant to content-preserving image distortions and noise. Ensuring that the information contained in the hashed image data (available out-of-IB) cannot be used to extract sensitive information about the imaged object is of primary concern. Thus the techniques are characterized by high unpredictability to guarantee security. We will present an assessment of the performance of our techniques with respect to security, sensitivity and robustness on the basis of a methodical and mathematically precise framework.« less