Characterizing uncertain sea-level rise projections to support investment decisions.
Sriver, Ryan L; Lempert, Robert J; Wikman-Svahn, Per; Keller, Klaus
2018-01-01
Many institutions worldwide are considering how to include uncertainty about future changes in sea-levels and storm surges into their investment decisions regarding large capital infrastructures. Here we examine how to characterize deeply uncertain climate change projections to support such decisions using Robust Decision Making analysis. We address questions regarding how to confront the potential for future changes in low probability but large impact flooding events due to changes in sea-levels and storm surges. Such extreme events can affect investments in infrastructure but have proved difficult to consider in such decisions because of the deep uncertainty surrounding them. This study utilizes Robust Decision Making methods to address two questions applied to investment decisions at the Port of Los Angeles: (1) Under what future conditions would a Port of Los Angeles decision to harden its facilities against extreme flood scenarios at the next upgrade pass a cost-benefit test, and (2) Do sea-level rise projections and other information suggest such conditions are sufficiently likely to justify such an investment? We also compare and contrast the Robust Decision Making methods with a full probabilistic analysis. These two analysis frameworks result in similar investment recommendations for different idealized future sea-level projections, but provide different information to decision makers and envision different types of engagement with stakeholders. In particular, the full probabilistic analysis begins by aggregating the best scientific information into a single set of joint probability distributions, while the Robust Decision Making analysis identifies scenarios where a decision to invest in near-term response to extreme sea-level rise passes a cost-benefit test, and then assembles scientific information of differing levels of confidence to help decision makers judge whether or not these scenarios are sufficiently likely to justify making such investments. Results highlight the highly-localized and context dependent nature of applying Robust Decision Making methods to inform investment decisions.
Characterizing uncertain sea-level rise projections to support investment decisions
Lempert, Robert J.; Wikman-Svahn, Per; Keller, Klaus
2018-01-01
Many institutions worldwide are considering how to include uncertainty about future changes in sea-levels and storm surges into their investment decisions regarding large capital infrastructures. Here we examine how to characterize deeply uncertain climate change projections to support such decisions using Robust Decision Making analysis. We address questions regarding how to confront the potential for future changes in low probability but large impact flooding events due to changes in sea-levels and storm surges. Such extreme events can affect investments in infrastructure but have proved difficult to consider in such decisions because of the deep uncertainty surrounding them. This study utilizes Robust Decision Making methods to address two questions applied to investment decisions at the Port of Los Angeles: (1) Under what future conditions would a Port of Los Angeles decision to harden its facilities against extreme flood scenarios at the next upgrade pass a cost-benefit test, and (2) Do sea-level rise projections and other information suggest such conditions are sufficiently likely to justify such an investment? We also compare and contrast the Robust Decision Making methods with a full probabilistic analysis. These two analysis frameworks result in similar investment recommendations for different idealized future sea-level projections, but provide different information to decision makers and envision different types of engagement with stakeholders. In particular, the full probabilistic analysis begins by aggregating the best scientific information into a single set of joint probability distributions, while the Robust Decision Making analysis identifies scenarios where a decision to invest in near-term response to extreme sea-level rise passes a cost-benefit test, and then assembles scientific information of differing levels of confidence to help decision makers judge whether or not these scenarios are sufficiently likely to justify making such investments. Results highlight the highly-localized and context dependent nature of applying Robust Decision Making methods to inform investment decisions. PMID:29414978
A simulation-optimization-based decision support tool for mitigating traffic congestion.
DOT National Transportation Integrated Search
2009-12-01
"Traffic congestion has grown considerably in the United States over the past twenty years. In this paper, we develop : a robust decision support tool based on simulation optimization to evaluate and recommend congestion-mitigation : strategies to tr...
Designing Dynamic Adaptive Policy Pathways using Many-Objective Robust Decision Making
NASA Astrophysics Data System (ADS)
Kwakkel, Jan; Haasnoot, Marjolijn
2017-04-01
Dealing with climate risks in water management requires confronting a wide variety of deeply uncertain factors, while navigating a many dimensional space of trade-offs amongst objectives. There is an emerging body of literature on supporting this type of decision problem, under the label of decision making under deep uncertainty. Two approaches within this literature are Many-Objective Robust Decision Making, and Dynamic Adaptive Policy Pathways. In recent work, these approaches have been compared. One of the main conclusions of this comparison was that they are highly complementary. Many-Objective Robust Decision Making is a model based decision support approach, while Dynamic Adaptive Policy Pathways is primarily a conceptual framework for the design of flexible strategies that can be adapted over time in response to how the future is actually unfolding. In this research we explore this complementarity in more detail. Specifically, we demonstrate how Many-Objective Robust Decision Making can be used to design adaptation pathways. We demonstrate this combined approach using a water management problem, in the Netherlands. The water level of Lake IJselmeer, the main fresh water resource of the Netherlands, is currently managed through discharge by gravity. Due to climate change, this won't be possible in the future, unless water levels are changed. Changing the water level has undesirable flood risk and spatial planning consequences. The challenge is to find promising adaptation pathways that balance objectives related to fresh water supply, flood risk, and spatial issues, while accounting for uncertain climatic and land use change. We conclude that the combination of Many-Objective Robust Decision Making and Dynamic Adaptive Policy Pathways is particularly suited for dealing with deeply uncertain climate risks.
Intelligent Model Management in a Forest Ecosystem Management Decision Support System
Donald Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mark Twery; H. Michael Rauscher; Peter Knopp; Scott Thomasma; Mayukh Dass; Hajime Uchiyama
2002-01-01
Decision making for forest ecosystem management can include the use of a wide variety of modeling tools. These tools include vegetation growth models, wildlife models, silvicultural models, GIS, and visualization tools. NED-2 is a robust, intelligent, goal-driven decision support system that integrates tools in each of these categories. NED-2 uses a blackboard...
Autonomous Task Management and Decision Support Tools
NASA Technical Reports Server (NTRS)
Burian, Barbara
2017-01-01
For some time aircraft manufacturers and researchers have been pursuing mechanisms for reducing crew workload and providing better decision support to the pilots, especially during non-normal situations. Some previous attempts to develop task managers or pilot decision support tools have not resulted in robust and fully functional systems. However, the increasing sophistication of sensors and automated reasoners, and the exponential surge in the amount of digital data that is now available create a ripe environment for the development of a robust, dynamic, task manager and decision support tool that is context sensitive and integrates information from a wide array of on-board and off aircraft sourcesa tool that monitors systems and the overall flight situation, anticipates information needs, prioritizes tasks appropriately, keeps pilots well informed, and is nimble and able to adapt to changing circumstances. This presentation will discuss the many significant challenges and issues associated with the development and functionality of such a system for use on the aircraft flight deck.
A conceptual evolutionary aseismic decision support framework for hospitals
NASA Astrophysics Data System (ADS)
Hu, Yufeng; Dargush, Gary F.; Shao, Xiaoyun
2012-12-01
In this paper, aconceptual evolutionary framework for aseismic decision support for hospitalsthat attempts to integrate a range of engineering and sociotechnical models is presented. Genetic algorithms are applied to find the optimal decision sets. A case study is completed to demonstrate how the frameworkmay applytoa specific hospital.The simulations show that the proposed evolutionary decision support framework is able to discover robust policy sets in either uncertain or fixed environments. The framework also qualitatively identifies some of the characteristicbehavior of the critical care organization. Thus, by utilizing the proposedframework, the decision makers are able to make more informed decisions, especially toenhance the seismic safety of the hospitals.
NASA Technical Reports Server (NTRS)
Chen, Wei; Tsui, Kwok-Leung; Allen, Janet K.; Mistree, Farrokh
1994-01-01
In this paper we introduce a comprehensive and rigorous robust design procedure to overcome some limitations of the current approaches. A comprehensive approach is general enough to model the two major types of robust design applications, namely, robust design associated with the minimization of the deviation of performance caused by the deviation of noise factors (uncontrollable parameters), and robust design due to the minimization of the deviation of performance caused by the deviation of control factors (design variables). We achieve mathematical rigor by using, as a foundation, principles from the design of experiments and optimization. Specifically, we integrate the Response Surface Method (RSM) with the compromise Decision Support Problem (DSP). Our approach is especially useful for design problems where there are no closed-form solutions and system performance is computationally expensive to evaluate. The design of a solar powered irrigation system is used as an example. Our focus in this paper is on illustrating our approach rather than on the results per se.
ERIC Educational Resources Information Center
Lang, Robin Lynn Neal
2012-01-01
A growing national emphasis has been placed on health information technology (HIT) with robust computerized clinical decision support (CCDS) integration into health care delivery. Catheter-associated urinary tract infection is the most frequent health care-associated infection in the United States and is associated with high cost, high volumes and…
Robustness for slope stability modelling under deep uncertainty
NASA Astrophysics Data System (ADS)
Almeida, Susana; Holcombe, Liz; Pianosi, Francesca; Wagener, Thorsten
2015-04-01
Landslides can have large negative societal and economic impacts, such as loss of life and damage to infrastructure. However, the ability of slope stability assessment to guide management is limited by high levels of uncertainty in model predictions. Many of these uncertainties cannot be easily quantified, such as those linked to climate change and other future socio-economic conditions, restricting the usefulness of traditional decision analysis tools. Deep uncertainty can be managed more effectively by developing robust, but not necessarily optimal, policies that are expected to perform adequately under a wide range of future conditions. Robust strategies are particularly valuable when the consequences of taking a wrong decision are high as is often the case of when managing natural hazard risks such as landslides. In our work a physically based numerical model of hydrologically induced slope instability (the Combined Hydrology and Stability Model - CHASM) is applied together with robust decision making to evaluate the most important uncertainties (storm events, groundwater conditions, surface cover, slope geometry, material strata and geotechnical properties) affecting slope stability. Specifically, impacts of climate change on long-term slope stability are incorporated, accounting for the deep uncertainty in future climate projections. Our findings highlight the potential of robust decision making to aid decision support for landslide hazard reduction and risk management under conditions of deep uncertainty.
Reasoned Decision Making Without Math? Adaptability and Robustness in Response to Surprise.
Smithson, Michael; Ben-Haim, Yakov
2015-10-01
Many real-world planning and decision problems are far too uncertain, too variable, and too complicated to support realistic mathematical models. Nonetheless, we explain the usefulness, in these situations, of qualitative insights from mathematical decision theory. We demonstrate the integration of info-gap robustness in decision problems in which surprise and ignorance are predominant and where personal and collective psychological factors are critical. We present practical guidelines for employing adaptable-choice strategies as a proxy for robustness against uncertainty. These guidelines include being prepared for more surprises than we intuitively expect, retaining sufficiently many options to avoid premature closure and conflicts among preferences, and prioritizing outcomes that are steerable, whose consequences are observable, and that do not entail sunk costs, resource depletion, or high transition costs. We illustrate these concepts and guidelines with the example of the medical management of the 2003 SARS outbreak in Vietnam. © 2015 Society for Risk Analysis.
Fuzzy Based Decision Support System for Condition Assessment and Rating of Bridges
NASA Astrophysics Data System (ADS)
Srinivas, Voggu; Sasmal, Saptarshi; Karusala, Ramanjaneyulu
2016-09-01
In this work, a knowledge based decision support system has been developed to efficiently handle the issues such as distress diagnosis, assessment of damages and condition rating of existing bridges towards developing an exclusive and robust Bridge Management System (BMS) for sustainable bridges. The Knowledge Based Expert System (KBES) diagnoses the distresses and finds the cause of distress in the bridge by processing the data which are heuristic and combined with site inspection results, laboratory test results etc. The coupling of symbolic and numeric type of data has been successfully implemented in the expert system to strengthen its decision making process. Finally, the condition rating of the bridge is carried out using the assessment results obtained from the KBES and the information received from the bridge inspector. A systematic procedure has been developed using fuzzy mathematics for condition rating of bridges by combining the fuzzy weighted average and resolution identity technique. The proposed methodologies and the decision support system will facilitate in developing a robust and exclusive BMS for a network of bridges across the country and allow the bridge engineers and decision makers to carry out maintenance of bridges in a rational and systematic way.
Hall, Jim W; Lempert, Robert J; Keller, Klaus; Hackbarth, Andrew; Mijere, Christophe; McInerney, David J
2012-10-01
This study compares two widely used approaches for robustness analysis of decision problems: the info-gap method originally developed by Ben-Haim and the robust decision making (RDM) approach originally developed by Lempert, Popper, and Bankes. The study uses each approach to evaluate alternative paths for climate-altering greenhouse gas emissions given the potential for nonlinear threshold responses in the climate system, significant uncertainty about such a threshold response and a variety of other key parameters, as well as the ability to learn about any threshold responses over time. Info-gap and RDM share many similarities. Both represent uncertainty as sets of multiple plausible futures, and both seek to identify robust strategies whose performance is insensitive to uncertainties. Yet they also exhibit important differences, as they arrange their analyses in different orders, treat losses and gains in different ways, and take different approaches to imprecise probabilistic information. The study finds that the two approaches reach similar but not identical policy recommendations and that their differing attributes raise important questions about their appropriate roles in decision support applications. The comparison not only improves understanding of these specific methods, it also suggests some broader insights into robustness approaches and a framework for comparing them. © 2012 RAND Corporation.
Personalized health care and health information technology policy: an exploratory analysis.
Wald, Jonathan S; Shapiro, Michael
2013-01-01
Personalized healthcare (PHC) is envisioned to enhance clinical practice decision-making using new genome-driven knowledge that tailors diagnosis, treatment, and prevention to the individual patient. In 2012, we conducted a focused environmental scan and informal interviews with fifteen experts to anticipate how PHC might impact health Information Technology (IT) policy in the United States. Findings indicatedthat PHC has a variable impact on current clinical practice, creates complex questions for providers, patients, and policy-makers, and will require a robust health IT infrastructure with advanced data architecture, clinical decision support, provider workflow tools, and re-use of clinical data for research. A number of health IT challenge areas were identified, along with five policy areas including: interoperable clinical decision support, standards for patient values and preferences, patient engagement, data transparency, and robust privacy and security.
An engineering approach to modelling, decision support and control for sustainable systems.
Day, W; Audsley, E; Frost, A R
2008-02-12
Engineering research and development contributes to the advance of sustainable agriculture both through innovative methods to manage and control processes, and through quantitative understanding of the operation of practical agricultural systems using decision models. This paper describes how an engineering approach, drawing on mathematical models of systems and processes, contributes new methods that support decision making at all levels from strategy and planning to tactics and real-time control. The ability to describe the system or process by a simple and robust mathematical model is critical, and the outputs range from guidance to policy makers on strategic decisions relating to land use, through intelligent decision support to farmers and on to real-time engineering control of specific processes. Precision in decision making leads to decreased use of inputs, less environmental emissions and enhanced profitability-all essential to sustainable systems.
A robust optimisation approach to the problem of supplier selection and allocation in outsourcing
NASA Astrophysics Data System (ADS)
Fu, Yelin; Keung Lai, Kin; Liang, Liang
2016-03-01
We formulate the supplier selection and allocation problem in outsourcing under an uncertain environment as a stochastic programming problem. Both the decision-maker's attitude towards risk and the penalty parameters for demand deviation are considered in the objective function. A service level agreement, upper bound for each selected supplier's allocation and the number of selected suppliers are considered as constraints. A novel robust optimisation approach is employed to solve this problem under different economic situations. Illustrative examples are presented with managerial implications highlighted to support decision-making.
NASA Astrophysics Data System (ADS)
Fischbach, J. R.; Lempert, R. J.; Molina-Perez, E.
2017-12-01
The U.S. Environmental Protection Agency (USEPA), together with state and local partners, develops watershed implementation plans designed to meet water quality standards. Climate uncertainty, along with uncertainty about future land use changes or the performance of water quality best management practices (BMPs), may make it difficult for these implementation plans to meet water quality goals. In this effort, we explored how decision making under deep uncertainty (DMDU) methods such as Robust Decision Making (RDM) could help USEPA and its partners develop implementation plans that are more robust to future uncertainty. The study focuses on one part of the Chesapeake Bay watershed, the Patuxent River, which is 2,479 sq km in area, highly urbanized, and has a rapidly growing population. We simulated the contribution of stormwater contaminants from the Patuxent to the overall Total Maximum Daily Load (TMDL) for the Chesapeake Bay under multiple scenarios reflecting climate and other uncertainties. Contaminants considered included nitrogen, phosphorus, and sediment loads. The assessment included a large set of scenario simulations using the USEPA Chesapeake Bay Program's Phase V watershed model. Uncertainties represented in the analysis included 18 downscaled climate projections (based on 6 general circulation models and 3 emissions pathways), 12 land use scenarios with different population projections and development patterns, and alternative assumptions about BMP performance standards and efficiencies associated with different suites of stormwater BMPs. Finally, we developed cost estimates for each of the performance standards and compared cost to TMDL performance as a key tradeoff for future water quality management decisions. In this talk, we describe how this research can help inform climate-related decision support at USEPA's Chesapeake Bay Program, and more generally how RDM and other DMDU methods can support improved water quality management under climate uncertainty.
Trabelsi, O; Villalobos, J L López; Ginel, A; Cortes, E Barrot; Doblaré, M
2014-05-01
Swallowing depends on physiological variables that have a decisive influence on the swallowing capacity and on the tracheal stress distribution. Prosthetic implantation modifies these values and the overall performance of the trachea. The objective of this work was to develop a decision support system based on experimental, numerical and statistical approaches, with clinical verification, to help the thoracic surgeon in deciding the position and appropriate dimensions of a Dumon prosthesis for a specific patient in an optimal time and with sufficient robustness. A code for mesh adaptation to any tracheal geometry was implemented and used to develop a robust experimental design, based on the Taguchi's method and the analysis of variance. This design was able to establish the main swallowing influencing factors. The equations to fit the stress and the vertical displacement distributions were obtained. The resulting fitted values were compared to those calculated directly by the finite element method (FEM). Finally, a checking and clinical validation of the statistical study were made, by studying two cases of real patients. The vertical displacements and principal stress distribution obtained for the specific tracheal model were in agreement with those calculated by FE simulations with a maximum absolute error of 1.2 mm and 0.17 MPa, respectively. It was concluded that the resulting decision support tool provides a fast, accurate and simple tool for the thoracic surgeon to predict the stress state of the trachea and the reduction in the ability to swallow after implantation. Thus, it will help them in taking decisions during pre-operative planning of tracheal interventions.
A multicriteria decision making model for assessment and selection of an ERP in a logistics context
NASA Astrophysics Data System (ADS)
Pereira, Teresa; Ferreira, Fernanda A.
2017-07-01
The aim of this work is to apply a methodology of decision support based on a multicriteria decision analyses (MCDA) model that allows the assessment and selection of an Enterprise Resource Planning (ERP) in a Portuguese logistics company by Group Decision Maker (GDM). A Decision Support system (DSS) that implements a MCDA - Multicriteria Methodology for the Assessment and Selection of Information Systems / Information Technologies (MMASSI / IT) is used based on its features and facility to change and adapt the model to a given scope. Using this DSS it was obtained the information system that best suited to the decisional context, being this result evaluated through a sensitivity and robustness analysis.
Achieving Robustness to Uncertainty for Financial Decision-making
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnum, George M.; Van Buren, Kendra L.; Hemez, Francois M.
2014-01-10
This report investigates the concept of robustness analysis to support financial decision-making. Financial models, that forecast future stock returns or market conditions, depend on assumptions that might be unwarranted and variables that might exhibit large fluctuations from their last-known values. The analysis of robustness explores these sources of uncertainty, and recommends model settings such that the forecasts used for decision-making are as insensitive as possible to the uncertainty. A proof-of-concept is presented with the Capital Asset Pricing Model. The robustness of model predictions is assessed using info-gap decision theory. Info-gaps are models of uncertainty that express the “distance,” or gapmore » of information, between what is known and what needs to be known in order to support the decision. The analysis yields a description of worst-case stock returns as a function of increasing gaps in our knowledge. The analyst can then decide on the best course of action by trading-off worst-case performance with “risk”, which is how much uncertainty they think needs to be accommodated in the future. The report also discusses the Graphical User Interface, developed using the MATLAB® programming environment, such that the user can control the analysis through an easy-to-navigate interface. Three directions of future work are identified to enhance the present software. First, the code should be re-written using the Python scientific programming software. This change will achieve greater cross-platform compatibility, better portability, allow for a more professional appearance, and render it independent from a commercial license, which MATLAB® requires. Second, a capability should be developed to allow users to quickly implement and analyze their own models. This will facilitate application of the software to the evaluation of proprietary financial models. The third enhancement proposed is to add the ability to evaluate multiple models simultaneously. When two models reflect past data with similar accuracy, the more robust of the two is preferable for decision-making because its predictions are, by definition, less sensitive to the uncertainty.« less
Gregersen, I B; Arnbjerg-Nielsen, K
2012-01-01
Several extraordinary rainfall events have occurred in Denmark within the last few years. For each event, problems in urban areas occurred as the capacity of the existing drainage systems were exceeded. Adaptation to climate change is necessary but also very challenging as urban drainage systems are characterized by long technical lifetimes and high, unrecoverable construction costs. One of the most important barriers for the initiation and implementation of the adaptation strategies is therefore the uncertainty when predicting the magnitude of the extreme rainfall in the future. This challenge is explored through the application and discussion of three different theoretical decision support strategies: the precautionary principle, the minimax strategy and Bayesian decision support. The reviewed decision support strategies all proved valuable for addressing the identified uncertainties, at best applied together as they all yield information that improved decision making and thus enabled more robust decisions.
Optimal data systems: the future of clinical predictions and decision support.
Celi, Leo A; Csete, Marie; Stone, David
2014-10-01
The purpose of the review is to describe the evolving concept and role of data as it relates to clinical predictions and decision-making. Critical care medicine is, as an especially data-rich specialty, becoming acutely cognizant not only of its historic deficits in data utilization but also of its enormous potential for capturing, mining, and leveraging such data into well-designed decision support modalities as well as the formulation of robust best practices. Modern electronic medical records create an opportunity to design complete and functional data systems that can support clinical care to a degree never seen before. Such systems are often referred to as 'data-driven,' but a better term is 'optimal data systems' (ODS). Here we discuss basic features of an ODS and its benefits, including the potential to transform clinical prediction and decision support.
Alamaniotis, Miltiadis; Agarwal, Vivek
2014-04-01
Anticipatory control systems are a class of systems whose decisions are based on predictions for the future state of the system under monitoring. Anticipation denotes intelligence and is an inherent property of humans that make decisions by projecting in future. Likewise, artificially intelligent systems equipped with predictive functions may be utilized for anticipating future states of complex systems, and therefore facilitate automated control decisions. Anticipatory control of complex energy systems is paramount to their normal and safe operation. In this paper a new intelligent methodology integrating fuzzy inference with support vector regression is introduced. Our proposed methodology implements an anticipatorymore » system aiming at controlling energy systems in a robust way. Initially a set of support vector regressors is adopted for making predictions over critical system parameters. Furthermore, the predicted values are fed into a two stage fuzzy inference system that makes decisions regarding the state of the energy system. The inference system integrates the individual predictions into a single one at its first stage, and outputs a decision together with a certainty factor computed at its second stage. The certainty factor is an index of the significance of the decision. The proposed anticipatory control system is tested on a real world set of data obtained from a complex energy system, describing the degradation of a turbine. Results exhibit the robustness of the proposed system in controlling complex energy systems.« less
Diaby, Vakaramoko; Goeree, Ron
2014-02-01
In recent years, the quest for more comprehensiveness, structure and transparency in reimbursement decision-making in healthcare has prompted the research into alternative decision-making frameworks. In this environment, multi-criteria decision analysis (MCDA) is arising as a valuable tool to support healthcare decision-making. In this paper, we present the main MCDA decision support methods (elementary methods, value-based measurement models, goal programming models and outranking models) using a case study approach. For each family of methods, an example of how an MCDA model would operate in a real decision-making context is presented from a critical perspective, highlighting the parameters setting, the selection of the appropriate evaluation model as well as the role of sensitivity and robustness analyses. This study aims to provide a step-by-step guide on how to use MCDA methods for reimbursement decision-making in healthcare.
Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.
Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi
2013-01-01
The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.
Grimmett, Chloe; Pickett, Karen; Shepherd, Jonathan; Welch, Karen; Recio-Saucedo, Alejandra; Streit, Elke; Seers, Helen; Armstrong, Anne; Cutress, Ramsey I; Evans, D Gareth; Copson, Ellen; Meiser, Bettina; Eccles, Diana; Foster, Claire
2018-05-01
Identify existing resources developed and/or evaluated empirically in the published literature designed to support women with breast cancer making decisions regarding genetic testing for BRCA1/2 mutations. Systematic review of seven electronic databases. Studies were included if they described or evaluated resources that were designed to support women with breast cancer in making a decision to have genetic counselling or testing for familial breast cancer. Outcome and process evaluations, using any type of study design, as well as articles reporting the development of decision aids, were eligible for inclusion. Total of 9 publications, describing 6 resources were identified. Resources were effective at increasing knowledge or understanding of hereditary breast cancer. Satisfaction with resources was high. There was no evidence that any resource increased distress, worry or decisional conflict. Few resources included active functionalities for example, values-based exercises, to support decision-making. Tailored resources supporting decision-making may be helpful and valued by patients and increase knowledge of hereditary breast cancer, without causing additional distress. Clinicians should provide supportive written information to patients where it is available. However, there is a need for robustly developed decision tools to support decision-making around genetic testing in women with breast cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Subagadis, Y. H.; Schütze, N.; Grundmann, J.
2014-09-01
The conventional methods used to solve multi-criteria multi-stakeholder problems are less strongly formulated, as they normally incorporate only homogeneous information at a time and suggest aggregating objectives of different decision-makers avoiding water-society interactions. In this contribution, Multi-Criteria Group Decision Analysis (MCGDA) using a fuzzy-stochastic approach has been proposed to rank a set of alternatives in water management decisions incorporating heterogeneous information under uncertainty. The decision making framework takes hydrologically, environmentally, and socio-economically motivated conflicting objectives into consideration. The criteria related to the performance of the physical system are optimized using multi-criteria simulation-based optimization, and fuzzy linguistic quantifiers have been used to evaluate subjective criteria and to assess stakeholders' degree of optimism. The proposed methodology is applied to find effective and robust intervention strategies for the management of a coastal hydrosystem affected by saltwater intrusion due to excessive groundwater extraction for irrigated agriculture and municipal use. Preliminary results show that the MCGDA based on a fuzzy-stochastic approach gives useful support for robust decision-making and is sensitive to the decision makers' degree of optimism.
Robustness of risk maps and survey networks to knowledge gaps about a new invasive pest
Denys Yemshanov; Frank H. Koch; Yakov Ben-Haim; William D. Smith
2010-01-01
In pest risk assessment it is frequently necessary to make management decisions regarding emerging threats under severe uncertainty. Although risk maps provide useful decision support for invasive alien species, they rarely address knowledge gaps associated with the underlying risk model or how they may change the risk estimates. Failure to recognize uncertainty leads...
Ensemble modelling and structured decision-making to support Emergency Disease Management.
Webb, Colleen T; Ferrari, Matthew; Lindström, Tom; Carpenter, Tim; Dürr, Salome; Garner, Graeme; Jewell, Chris; Stevenson, Mark; Ward, Michael P; Werkman, Marleen; Backer, Jantien; Tildesley, Michael
2017-03-01
Epidemiological models in animal health are commonly used as decision-support tools to understand the impact of various control actions on infection spread in susceptible populations. Different models contain different assumptions and parameterizations, and policy decisions might be improved by considering outputs from multiple models. However, a transparent decision-support framework to integrate outputs from multiple models is nascent in epidemiology. Ensemble modelling and structured decision-making integrate the outputs of multiple models, compare policy actions and support policy decision-making. We briefly review the epidemiological application of ensemble modelling and structured decision-making and illustrate the potential of these methods using foot and mouth disease (FMD) models. In case study one, we apply structured decision-making to compare five possible control actions across three FMD models and show which control actions and outbreak costs are robustly supported and which are impacted by model uncertainty. In case study two, we develop a methodology for weighting the outputs of different models and show how different weighting schemes may impact the choice of control action. Using these case studies, we broadly illustrate the potential of ensemble modelling and structured decision-making in epidemiology to provide better information for decision-making and outline necessary development of these methods for their further application. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Putting cognitive psychology to work: Improving decision-making in the medical encounter.
Schwab, Abraham P
2008-12-01
Empirical research in social psychology has provided robust support for the accuracy of the heuristics and biases approach to human judgment. This research, however, has not been systematically investigated regarding its potential applications for specific health care decision-makers. This paper makes the case for investigating the heuristics and biases approach in the patient-physician relationship and recommends strategic empirical research. It is argued that research will be valuable for particular decisions in the clinic and for examining and altering the background conditions of patient and physician decision-making.
Pointblank: Acts on the Eve of War, 1938-1939
2012-06-01
Russians.52 This horsepower took the form of US concentrated industry supported by a robust transportation network, both of which were critical...ground to a halt and civilians endured hardship. The steel industry shared some of the same robustness as the oil industry in terms of distribution...these two industries shared the consumption of another, more decisive commodity. The commercial power industry was the most vulnerable target set
NASA Astrophysics Data System (ADS)
Sabeur, Z. A.; Wächter, J.; Middleton, S. E.; Zlatev, Z.; Häner, R.; Hammitzsch, M.; Loewe, P.
2012-04-01
The intelligent management of large volumes of environmental monitoring data for early tsunami warning requires the deployment of robust and scalable service oriented infrastructure that is supported by an agile knowledge-base for critical decision-support In the TRIDEC project (TRIDEC 2010-2013), a sensor observation service bus of the TRIDEC system is being developed for the advancement of complex tsunami event processing and management. Further, a dedicated TRIDEC system knowledge-base is being implemented to enable on-demand access to semantically rich OGC SWE compliant hydrodynamic observations and operationally oriented meta-information to multiple subscribers. TRIDEC decision support requires a scalable and agile real-time processing architecture which enables fast response to evolving subscribers requirements as the tsunami crisis develops. This is also achieved with the support of intelligent processing services which specialise in multi-level fusion methods with relevance feedback and deep learning. The TRIDEC knowledge base development work coupled with that of the generic sensor bus platform shall be presented to demonstrate advanced decision-support with situation awareness in context of tsunami early warning and crisis management.
Robustness of risk maps and survey networks to knowledge gaps about a new invasive pest.
Yemshanov, Denys; Koch, Frank H; Ben-Haim, Yakov; Smith, William D
2010-02-01
In pest risk assessment it is frequently necessary to make management decisions regarding emerging threats under severe uncertainty. Although risk maps provide useful decision support for invasive alien species, they rarely address knowledge gaps associated with the underlying risk model or how they may change the risk estimates. Failure to recognize uncertainty leads to risk-ignorant decisions and miscalculation of expected impacts as well as the costs required to minimize these impacts. Here we use the information gap concept to evaluate the robustness of risk maps to uncertainties in key assumptions about an invading organism. We generate risk maps with a spatial model of invasion that simulates potential entries of an invasive pest via international marine shipments, their spread through a landscape, and establishment on a susceptible host. In particular, we focus on the question of how much uncertainty in risk model assumptions can be tolerated before the risk map loses its value. We outline this approach with an example of a forest pest recently detected in North America, Sirex noctilio Fabricius. The results provide a spatial representation of the robustness of predictions of S. noctilio invasion risk to uncertainty and show major geographic hotspots where the consideration of uncertainty in model parameters may change management decisions about a new invasive pest. We then illustrate how the dependency between the extent of uncertainties and the degree of robustness of a risk map can be used to select a surveillance network design that is most robust to knowledge gaps about the pest.
NASA Astrophysics Data System (ADS)
Smith, R.; Kasprzyk, J. R.; Balaji, R.
2017-12-01
In light of deeply uncertain factors like future climate change and population shifts, responsible resource management will require new types of information and strategies. For water utilities, this entails potential expansion and efficient management of water supply infrastructure systems for changes in overall supply; changes in frequency and severity of climate extremes such as droughts and floods; and variable demands, all while accounting for conflicting long and short term performance objectives. Multiobjective Evolutionary Algorithms (MOEAs) are emerging decision support tools that have been used by researchers and, more recently, water utilities to efficiently generate and evaluate thousands of planning portfolios. The tradeoffs between conflicting objectives are explored in an automated way to produce (often large) suites of portfolios that strike different balances of performance. Once generated, the sets of optimized portfolios are used to support relatively subjective assertions of priorities and human reasoning, leading to adoption of a plan. These large tradeoff sets contain information about complex relationships between decisions and between groups of decisions and performance that, until now, has not been quantitatively described. We present a novel use of Multivariate Regression Trees (MRTs) to analyze tradeoff sets to reveal these relationships and critical decisions. Additionally, when MRTs are applied to tradeoff sets developed for different realizations of an uncertain future, they can identify decisions that are robust across a wide range of conditions and produce fundamental insights about the system being optimized.
Reliable binary cell-fate decisions based on oscillations
NASA Astrophysics Data System (ADS)
Pfeuty, B.; Kaneko, K.
2014-02-01
Biological systems have often to perform binary decisions under highly dynamic and noisy environments, such as during cell-fate determination. These decisions can be implemented by two main bifurcation mechanisms based on the transitions from either monostability or oscillation to bistability. We compare these two mechanisms by using stochastic models with time-varying fields and by establishing asymptotic formulas for the choice probabilities. Different scaling laws for decision sensitivity with respect to noise strength and signal timescale are obtained, supporting a role for oscillatory dynamics in performing noise-robust and temporally tunable binary decision-making. This result provides a rationale for recent experimental evidences showing that oscillatory expression of proteins often precedes binary cell-fate decisions.
NASA Astrophysics Data System (ADS)
Vatcha, Rashna; Lee, Seok-Won; Murty, Ajeet; Tolone, William; Wang, Xiaoyu; Dou, Wenwen; Chang, Remco; Ribarsky, William; Liu, Wanqiu; Chen, Shen-en; Hauser, Edd
2009-05-01
Infrastructure management (and its associated processes) is complex to understand, perform and thus, hard to make efficient and effective informed decisions. The management involves a multi-faceted operation that requires the most robust data fusion, visualization and decision making. In order to protect and build sustainable critical assets, we present our on-going multi-disciplinary large-scale project that establishes the Integrated Remote Sensing and Visualization (IRSV) system with a focus on supporting bridge structure inspection and management. This project involves specific expertise from civil engineers, computer scientists, geographers, and real-world practitioners from industry, local and federal government agencies. IRSV is being designed to accommodate the essential needs from the following aspects: 1) Better understanding and enforcement of complex inspection process that can bridge the gap between evidence gathering and decision making through the implementation of ontological knowledge engineering system; 2) Aggregation, representation and fusion of complex multi-layered heterogeneous data (i.e. infrared imaging, aerial photos and ground-mounted LIDAR etc.) with domain application knowledge to support machine understandable recommendation system; 3) Robust visualization techniques with large-scale analytical and interactive visualizations that support users' decision making; and 4) Integration of these needs through the flexible Service-oriented Architecture (SOA) framework to compose and provide services on-demand. IRSV is expected to serve as a management and data visualization tool for construction deliverable assurance and infrastructure monitoring both periodically (annually, monthly, even daily if needed) as well as after extreme events.
Using Computational Cognitive Modeling to Diagnose Possible Sources of Aviation Error
NASA Technical Reports Server (NTRS)
Byrne, M. D.; Kirlik, Alex
2003-01-01
We present a computational model of a closed-loop, pilot-aircraft-visual scene-taxiway system created to shed light on possible sources of taxi error. Creating the cognitive aspects of the model using ACT-R required us to conduct studies with subject matter experts to identify experiential adaptations pilots bring to taxiing. Five decision strategies were found, ranging from cognitively-intensive but precise, to fast, frugal but robust. We provide evidence for the model by comparing its behavior to a NASA Ames Research Center simulation of Chicago O'Hare surface operations. Decision horizons were highly variable; the model selected the most accurate strategy given time available. We found a signature in the simulation data of the use of globally robust heuristics to cope with short decision horizons as revealed by errors occurring most frequently at atypical taxiway geometries or clearance routes. These data provided empirical support for the model.
Building an Evidence-Driven Child Welfare Workforce: A University–Agency Partnership
Lery, Bridgette; Wiegmann, Wendy; Berrick, Jill Duerr
2016-01-01
The federal government increasingly expects child welfare systems to be more responsive to the needs of their local populations, connect strategies to results, and use continuous quality improvement (CQI) to accomplish these goals. A method for improving decision making, CQI relies on an inflow of high-quality data, up-to-date research evidence, and a robust organizational structure and climate that supports the deliberate use of evidence for decision making. This article describes an effort to build and support these essential system components through one public-private child welfare agency–university partnership. PMID:27429534
Decision Support Methods and Tools
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Alexandrov, Natalia M.; Brown, Sherilyn A.; Cerro, Jeffrey A.; Gumbert, Clyde r.; Sorokach, Michael R.; Burg, Cecile M.
2006-01-01
This paper is one of a set of papers, developed simultaneously and presented within a single conference session, that are intended to highlight systems analysis and design capabilities within the Systems Analysis and Concepts Directorate (SACD) of the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC). This paper focuses on the specific capabilities of uncertainty/risk analysis, quantification, propagation, decomposition, and management, robust/reliability design methods, and extensions of these capabilities into decision analysis methods within SACD. These disciplines are discussed together herein under the name of Decision Support Methods and Tools. Several examples are discussed which highlight the application of these methods within current or recent aerospace research at the NASA LaRC. Where applicable, commercially available, or government developed software tools are also discussed
Info-gap robust-satisficing model of foraging behavior: do foragers optimize or satisfice?
Carmel, Yohay; Ben-Haim, Yakov
2005-11-01
In this note we compare two mathematical models of foraging that reflect two competing theories of animal behavior: optimizing and robust satisficing. The optimal-foraging model is based on the marginal value theorem (MVT). The robust-satisficing model developed here is an application of info-gap decision theory. The info-gap robust-satisficing model relates to the same circumstances described by the MVT. We show how these two alternatives translate into specific predictions that at some points are quite disparate. We test these alternative predictions against available data collected in numerous field studies with a large number of species from diverse taxonomic groups. We show that a large majority of studies appear to support the robust-satisficing model and reject the optimal-foraging model.
Robust parameter extraction for decision support using multimodal intensive care data
Clifford, G.D.; Long, W.J.; Moody, G.B.; Szolovits, P.
2008-01-01
Digital information flow within the intensive care unit (ICU) continues to grow, with advances in technology and computational biology. Recent developments in the integration and archiving of these data have resulted in new opportunities for data analysis and clinical feedback. New problems associated with ICU databases have also arisen. ICU data are high-dimensional, often sparse, asynchronous and irregularly sampled, as well as being non-stationary, noisy and subject to frequent exogenous perturbations by clinical staff. Relationships between different physiological parameters are usually nonlinear (except within restricted ranges), and the equipment used to measure the observables is often inherently error-prone and biased. The prior probabilities associated with an individual's genetics, pre-existing conditions, lifestyle and ongoing medical treatment all affect prediction and classification accuracy. In this paper, we describe some of the key problems and associated methods that hold promise for robust parameter extraction and data fusion for use in clinical decision support in the ICU. PMID:18936019
NASA Astrophysics Data System (ADS)
Riegels, Niels; Jessen, Oluf; Madsen, Henrik
2016-04-01
A multi-objective robust decision making approach is demonstrated that supports seasonal water management in the Chao Phraya River basin in Thailand. The approach uses multi-objective optimization to identify a Pareto-optimal set of management alternatives. Ensemble simulation is used to evaluate how each member of the Pareto set performs under a range of uncertain future conditions, and a robustness criterion is used to select a preferred alternative. Data mining tools are then used to identify ranges of uncertain factor values that lead to unacceptable performance for the preferred alternative. The approach is compared to a multi-criteria scenario analysis approach to estimate whether the introduction of additional complexity has the potential to improve decision making. Dry season irrigation in Thailand is managed through non-binding recommendations about the maximum extent of rice cultivation along with incentives for less water-intensive crops. Management authorities lack authority to prevent river withdrawals for irrigation when rice cultivation exceeds recommendations. In practice, this means that water must be provided to irrigate the actual planted area because of downstream municipal water supply requirements and water quality constraints. This results in dry season reservoir withdrawals that exceed planned withdrawals, reducing carryover storage to hedge against insufficient wet season runoff. The dry season planning problem in Thailand can therefore be framed in terms of decisions, objectives, constraints, and uncertainties. Decisions include recommendations about the maximum extent of rice cultivation and incentives for growing less water-intensive crops. Objectives are to maximize benefits to farmers, minimize the risk of inadequate carryover storage, and minimize incentives. Constraints include downstream municipal demands and water quality requirements. Uncertainties include the actual extent of rice cultivation, dry season precipitation, and precipitation in the following wet season. The multi-objective robust decision making approach is implemented as follows. First, three baseline simulation models are developed, including a crop water demand model, a river basin simulation model, and model of the impact of incentives on cropping patterns. The crop water demand model estimates irrigation water demands; the river basin simulation model estimates reservoir drawdown required to meet demands given forecasts of precipitation, evaporation, and runoff; the model of incentive impacts estimates the cost of incentives as function of marginal changes in rice yields. Optimization is used to find a set of non-dominated alternatives as a function of rice area and incentive decisions. An ensemble of uncertain model inputs is generated to represent uncertain hydrological and crop area forecasts. An ensemble of indicator values is then generated for each of the decision objectives: farmer benefits, end-of-wet-season reservoir storage, and the cost of incentives. A single alternative is selected from the Pareto set using a robustness criterion. Threshold values are defined for each of the objectives to identify ensemble members for which objective values are unacceptable, and the PRIM data mining algorithm is then used to identify input values associated with unacceptable model outcomes.
Zeng, X T; Huang, G H; Li, Y P; Zhang, J L; Cai, Y P; Liu, Z P; Liu, L R
2016-12-01
This study developed a fuzzy-stochastic programming with Green Z-score criterion (FSGZ) method for water resources allocation and water quality management with a trading-mechanism (WAQT) under uncertainties. FSGZ can handle uncertainties expressed as probability distributions, and it can also quantify objective/subjective fuzziness in the decision-making process. Risk-averse attitudes and robustness coefficient are joined to express the relationship between the expected target and outcome under various risk preferences of decision makers and systemic robustness. The developed method is applied to a real-world case of WAQT in the Kaidu-Kongque River Basin in northwest China, where an effective mechanism (e.g., market trading) to simultaneously confront severely diminished water availability and degraded water quality is required. Results of water transaction amounts, water allocation patterns, pollution mitigation schemes, and system benefits under various scenarios are analyzed, which indicate that a trading-mechanism is a more sustainable method to manage water-environment crisis in the study region. Additionally, consideration of anthropogenic (e.g., a risk-averse attitude) and systemic factors (e.g., the robustness coefficient) can support the generation of a robust plan associated with risk control for WAQT when uncertainty is present. These findings assist local policy and decision makers to gain insights into water-environment capacity planning to balance the basin's social and economic growth with protecting the region's ecosystems.
Data for Renewable Energy Planning, Policy, and Investment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Sarah L
Reliable, robust, and validated data are critical for informed planning, policy development, and investment in the clean energy sector. The Renewable Energy (RE) Explorer was developed to support data-driven renewable energy analysis that can inform key renewable energy decisions globally. This document presents the types of geospatial and other data at the core of renewable energy analysis and decision making. Individual data sets used to inform decisions vary in relation to spatial and temporal resolution, quality, and overall usefulness. From Data to Decisions, a complementary geospatial data and analysis decision guide, provides an in-depth view of these and other considerationsmore » to enable data-driven planning, policymaking, and investment. Data support a wide variety of renewable energy analyses and decisions, including technical and economic potential assessment, renewable energy zone analysis, grid integration, risk and resiliency identification, electrification, and distributed solar photovoltaic potential. This fact sheet provides information on the types of data that are important for renewable energy decision making using the RE Data Explorer or similar types of geospatial analysis tools.« less
Robust Decision Making Approach to Managing Water Resource Risks (Invited)
NASA Astrophysics Data System (ADS)
Lempert, R.
2010-12-01
The IPCC and US National Academies of Science have recommended iterative risk management as the best approach for water management and many other types of climate-related decisions. Such an approach does not rely on a single set of judgments at any one time but rather actively updates and refines strategies as new information emerges. In addition, the approach emphasizes that a portfolio of different types of responses, rather than any single action, often provides the best means to manage uncertainty. Implementing an iterative risk management approach can however prove difficult in actual decision support applications. This talk will suggest that robust decision making (RDM) provides a particularly useful set of quantitative methods for implementing iterative risk management. This RDM approach is currently being used in a wide variety of water management applications. RDM employs three key concepts that differentiate it from most types of probabilistic risk analysis: 1) characterizing uncertainty with multiple views of the future (which can include sets of probability distributions) rather than a single probabilistic best-estimate, 2) employing a robustness rather than an optimality criterion to assess alternative policies, and 3) organizing the analysis with a vulnerability and response option framework, rather than a predict-then-act framework. This talk will summarize the RDM approach, describe its use in several different types of water management applications, and compare the results to those obtained with other methods.
Robust optimization modelling with applications to industry and environmental problems
NASA Astrophysics Data System (ADS)
Chaerani, Diah; Dewanto, Stanley P.; Lesmana, Eman
2017-10-01
Robust Optimization (RO) modeling is one of the existing methodology for handling data uncertainty in optimization problem. The main challenge in this RO methodology is how and when we can reformulate the robust counterpart of uncertain problems as a computationally tractable optimization problem or at least approximate the robust counterpart by a tractable problem. Due to its definition the robust counterpart highly depends on how we choose the uncertainty set. As a consequence we can meet this challenge only if this set is chosen in a suitable way. The development on RO grows fast, since 2004, a new approach of RO called Adjustable Robust Optimization (ARO) is introduced to handle uncertain problems when the decision variables must be decided as a ”wait and see” decision variables. Different than the classic Robust Optimization (RO) that models decision variables as ”here and now”. In ARO, the uncertain problems can be considered as a multistage decision problem, thus decision variables involved are now become the wait and see decision variables. In this paper we present the applications of both RO and ARO. We present briefly all results to strengthen the importance of RO and ARO in many real life problems.
Niyogi, Ritwik K.; Wong-Lin, KongFatt
2013-01-01
Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation, their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory neurons into our previous biologically based decision circuit model. We base our computational study in the context of two classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate, with a timescale that is surprisingly near the experimentally fitted value. Our work provides insights into the simultaneous and rapid modulation of excitatory and inhibitory neuronal gains, which enables flexible, robust, and optimal decision-making. PMID:23825935
NASA Astrophysics Data System (ADS)
McPhail, C.; Maier, H. R.; Kwakkel, J. H.; Giuliani, M.; Castelletti, A.; Westra, S.
2018-02-01
Robustness is being used increasingly for decision analysis in relation to deep uncertainty and many metrics have been proposed for its quantification. Recent studies have shown that the application of different robustness metrics can result in different rankings of decision alternatives, but there has been little discussion of what potential causes for this might be. To shed some light on this issue, we present a unifying framework for the calculation of robustness metrics, which assists with understanding how robustness metrics work, when they should be used, and why they sometimes disagree. The framework categorizes the suitability of metrics to a decision-maker based on (1) the decision-context (i.e., the suitability of using absolute performance or regret), (2) the decision-maker's preferred level of risk aversion, and (3) the decision-maker's preference toward maximizing performance, minimizing variance, or some higher-order moment. This article also introduces a conceptual framework describing when relative robustness values of decision alternatives obtained using different metrics are likely to agree and disagree. This is used as a measure of how "stable" the ranking of decision alternatives is when determined using different robustness metrics. The framework is tested on three case studies, including water supply augmentation in Adelaide, Australia, the operation of a multipurpose regulated lake in Italy, and flood protection for a hypothetical river based on a reach of the river Rhine in the Netherlands. The proposed conceptual framework is confirmed by the case study results, providing insight into the reasons for disagreements between rankings obtained using different robustness metrics.
Two-stage fuzzy-stochastic robust programming: a hybrid model for regional air quality management.
Li, Yongping; Huang, Guo H; Veawab, Amornvadee; Nie, Xianghui; Liu, Lei
2006-08-01
In this study, a hybrid two-stage fuzzy-stochastic robust programming (TFSRP) model is developed and applied to the planning of an air-quality management system. As an extension of existing fuzzy-robust programming and two-stage stochastic programming methods, the TFSRP can explicitly address complexities and uncertainties of the study system without unrealistic simplifications. Uncertain parameters can be expressed as probability density and/or fuzzy membership functions, such that robustness of the optimization efforts can be enhanced. Moreover, economic penalties as corrective measures against any infeasibilities arising from the uncertainties are taken into account. This method can, thus, provide a linkage to predefined policies determined by authorities that have to be respected when a modeling effort is undertaken. In its solution algorithm, the fuzzy decision space can be delimited through specification of the uncertainties using dimensional enlargement of the original fuzzy constraints. The developed model is applied to a case study of regional air quality management. The results indicate that reasonable solutions have been obtained. The solutions can be used for further generating pollution-mitigation alternatives with minimized system costs and for providing a more solid support for sound environmental decisions.
A web-based decision support tool for prognosis simulation in multiple sclerosis.
Veloso, Mário
2014-09-01
A multiplicity of natural history studies of multiple sclerosis provides valuable knowledge of the disease progression but individualized prognosis remains elusive. A few decision support tools that assist the clinician in such task have emerged but have not received proper attention from clinicians and patients. The objective of the current work is to implement a web-based tool, conveying decision relevant prognostic scientific evidence, which will help clinicians discuss prognosis with individual patients. Data were extracted from a set of reference studies, especially those dealing with the natural history of multiple sclerosis. The web-based decision support tool for individualized prognosis simulation was implemented with NetLogo, a program environment suited for the development of complex adaptive systems. Its prototype has been launched online; it enables clinicians to predict both the likelihood of CIS to CDMS conversion, and the long-term prognosis of disability level and SPMS conversion, as well as assess and monitor the effects of treatment. More robust decision support tools, which convey scientific evidence and satisfy the needs of clinical practice by helping clinicians discuss prognosis expectations with individual patients, are required. The web-based simulation model herein introduced proposes to be a step forward toward this purpose. Copyright © 2014 Elsevier B.V. All rights reserved.
Testing take-the-best in new and changing environments.
Lee, Michael D; Blanco, Gabrielle; Bo, Nikole
2017-08-01
Take-the-best is a decision-making strategy that chooses between alternatives, by searching the cues representing the alternatives in order of cue validity, and choosing the alternative with the first discriminating cue. Theoretical support for take-the-best comes from the "fast and frugal" approach to modeling cognition, which assumes decision-making strategies need to be fast to cope with a competitive world, and be simple to be robust to uncertainty and environmental change. We contribute to the empirical evaluation of take-the-best in two ways. First, we generate four new environments-involving bridge lengths, hamburger prices, theme park attendances, and US university rankings-supplementing the relatively limited number of naturally cue-based environments previously considered. We find that take-the-best is as accurate as rival decision strategies that use all of the available cues. Secondly, we develop 19 new data sets characterizing the change in cities and their populations in four countries. We find that take-the-best maintains its accuracy and limited search as the environments change, even if cue validities learned in one environment are used to make decisions in another. Once again, we find that take-the-best is as accurate as rival strategies that use all of the cues. We conclude that these new evaluations support the theoretical claims of the accuracy, frugality, and robustness for take-the-best, and that the new data sets provide a valuable resource for the more general study of the relationship between effective decision-making strategies and the environments in which they operate.
Passman, Dina B.
2013-01-01
Objective The objective of this demonstration is to show conference attendees how they can integrate, analyze, and visualize diverse data type data from across a variety of systems by leveraging an off-the-shelf enterprise business intelligence (EBI) solution to support decision-making in disasters. Introduction Fusion Analytics is the data integration system developed by the Fusion Cell at the U.S. Department of Health and Human Services (HHS), Office of the Assistant Secretary for Preparedness and Response (ASPR). Fusion Analytics meaningfully augments traditional public and population health surveillance reporting by providing web-based data analysis and visualization tools. Methods Fusion Analytics serves as a one-stop-shop for the web-based data visualizations of multiple real-time data sources within ASPR. The 24-7 web availability makes it an ideal analytic tool for situational awareness and response allowing stakeholders to access the portal from any internet-enabled device without installing any software. The Fusion Analytics data integration system was built using off-the-shelf EBI software. Fusion Analytics leverages the full power of statistical analysis software and delivers reports to users in a secure web-based environment. Fusion Analytics provides an example of how public health staff can develop and deploy a robust public health informatics solution using an off-the shelf product and with limited development funding. It also provides the unique example of a public health information system that combines patient data for traditional disease surveillance with manpower and resource data to provide overall decision support for federal public health and medical disaster response operations. Conclusions We are currently in a unique position within public health. One the one hand, we have been gaining greater and greater access to electronic data of all kinds over the last few years. On the other, we are working in a time of reduced government spending to support leveraging this data for decision support with robust analytics and visualizations. Fusion Analytics provides an opportunity for attendees to see how various types of data are integrated into a single application for population health decision support. It also can provide them with ideas of how they can use their own staff to create analyses and reports that support their public health activities.
NASA Astrophysics Data System (ADS)
Kwakkel, Jan; Haasnoot, Marjolijn
2015-04-01
In response to climate and socio-economic change, in various policy domains there is increasingly a call for robust plans or policies. That is, plans or policies that performs well in a very large range of plausible futures. In the literature, a wide range of alternative robustness metrics can be found. The relative merit of these alternative conceptualizations of robustness has, however, received less attention. Evidently, different robustness metrics can result in different plans or policies being adopted. This paper investigates the consequences of several robustness metrics on decision making, illustrated here by the design of a flood risk management plan. A fictitious case, inspired by a river reach in the Netherlands is used. The performance of this system in terms of casualties, damages, and costs for flood and damage mitigation actions is explored using a time horizon of 100 years, and accounting for uncertainties pertaining to climate change and land use change. A set of candidate policy options is specified up front. This set of options includes dike raising, dike strengthening, creating more space for the river, and flood proof building and evacuation options. The overarching aim is to design an effective flood risk mitigation strategy that is designed from the outset to be adapted over time in response to how the future actually unfolds. To this end, the plan will be based on the dynamic adaptive policy pathway approach (Haasnoot, Kwakkel et al. 2013) being used in the Dutch Delta Program. The policy problem is formulated as a multi-objective robust optimization problem (Kwakkel, Haasnoot et al. 2014). We solve the multi-objective robust optimization problem using several alternative robustness metrics, including both satisficing robustness metrics and regret based robustness metrics. Satisficing robustness metrics focus on the performance of candidate plans across a large ensemble of plausible futures. Regret based robustness metrics compare the performance of a candidate plan with the performance of other candidate plans across a large ensemble of plausible futures. Initial results suggest that the simplest satisficing metric, inspired by the signal to noise ratio, results in very risk averse solutions. Other satisficing metrics, which handle the average performance and the dispersion around the average separately, provide substantial additional insights into the trade off between the average performance, and the dispersion around this average. In contrast, the regret-based metrics enhance insight into the relative merits of candidate plans, while being less clear on the average performance or the dispersion around this performance. These results suggest that it is beneficial to use multiple robustness metrics when doing a robust decision analysis study. Haasnoot, M., J. H. Kwakkel, W. E. Walker and J. Ter Maat (2013). "Dynamic Adaptive Policy Pathways: A New Method for Crafting Robust Decisions for a Deeply Uncertain World." Global Environmental Change 23(2): 485-498. Kwakkel, J. H., M. Haasnoot and W. E. Walker (2014). "Developing Dynamic Adaptive Policy Pathways: A computer-assisted approach for developing adaptive strategies for a deeply uncertain world." Climatic Change.
Morrison, James J; Hostetter, Jason; Wang, Kenneth; Siegel, Eliot L
2015-02-01
Real-time mining of large research trial datasets enables development of case-based clinical decision support tools. Several applicable research datasets exist including the National Lung Screening Trial (NLST), a dataset unparalleled in size and scope for studying population-based lung cancer screening. Using these data, a clinical decision support tool was developed which matches patient demographics and lung nodule characteristics to a cohort of similar patients. The NLST dataset was converted into Structured Query Language (SQL) tables hosted on a web server, and a web-based JavaScript application was developed which performs real-time queries. JavaScript is used for both the server-side and client-side language, allowing for rapid development of a robust client interface and server-side data layer. Real-time data mining of user-specified patient cohorts achieved a rapid return of cohort cancer statistics and lung nodule distribution information. This system demonstrates the potential of individualized real-time data mining using large high-quality clinical trial datasets to drive evidence-based clinical decision-making.
Turning science on robust cattle into improved genetic selection decisions.
Amer, P R
2012-04-01
More robust cattle have the potential to increase farm profitability, improve animal welfare, reduce the contribution of ruminant livestock to greenhouse gas emissions and decrease the risk of food shortages in the face of increased variability in the farm environment. Breeding is a powerful tool for changing the robustness of cattle; however, insufficient recording of breeding goal traits and selection of animals at younger ages tend to favour genetic change in productivity traits relative to robustness traits. This paper has extended a previously proposed theory of artificial evolution to demonstrate, using deterministic simulation, how choice of breeding scheme design can be used as a tool to manipulate the direction of genetic progress, whereas the breeding goal remains focussed on the factors motivating individual farm decision makers. Particular focus was placed on the transition from progeny testing or mass selection to genomic selection breeding strategies. Transition to genomic selection from a breeding strategy where candidates are selected before records from progeny being available was shown to be highly likely to favour genetic progress in robustness traits relative to productivity traits. This was shown even with modest numbers of animals available for training and when heritability for robustness traits was only slightly lower than that for productivity traits. When transitioning from progeny testing to a genomic selection strategy without progeny testing, it was shown that there is a significant risk that robustness traits could become less influential in selection relative to productivity traits. Augmentations of training populations using genotyped cows and support for industry-wide improvements in phenotypic recording of robustness traits were put forward as investment opportunities for stakeholders wishing to facilitate the application of science on robust cattle into improved genetic selection schemes.
NASA Astrophysics Data System (ADS)
Spahr, K.; Hogue, T. S.
2016-12-01
Selecting the most appropriate green, gray, and / or hybrid system for stormwater treatment and conveyance can prove challenging to decision markers across all scales, from site managers to large municipalities. To help streamline the selection process, a multi-disciplinary team of academics and professionals is developing an industry standard for selecting and evaluating the most appropriate stormwater management technology for different regions. To make the tool more robust and comprehensive, life-cycle cost assessment and optimization modules will be included to evaluate non-monetized and ecosystem benefits of selected technologies. Initial work includes surveying advisory board members based in cities that use existing decision support tools in their infrastructure planning process. These surveys will qualify the decisions currently being made and identify challenges within the current planning process across a range of hydroclimatic regions and city size. Analysis of social and other non-technical barriers to adoption of the existing tools is also being performed, with identification of regional differences and institutional challenges. Surveys will also gage the regional appropriateness of certain stormwater technologies based off experiences in implementing stormwater treatment and conveyance plans. In additional to compiling qualitative data on existing decision support tools, a technical review of components of the decision support tool used will be performed. Gaps in each tool's analysis, like the lack of certain critical functionalities, will be identified and ease of use will be evaluated. Conclusions drawn from both the qualitative and quantitative analyses will be used to inform the development of the new decision support tool and its eventual dissemination.
New methods in hydrologic modeling and decision support for culvert flood risk under climate change
NASA Astrophysics Data System (ADS)
Rosner, A.; Letcher, B. H.; Vogel, R. M.; Rees, P. S.
2015-12-01
Assessing culvert flood vulnerability under climate change poses an unusual combination of challenges. We seek a robust method of planning for an uncertain future, and therefore must consider a wide range of plausible future conditions. Culverts in our case study area, northwestern Massachusetts, USA, are predominantly found in small, ungaged basins. The need to predict flows both at numerous sites and under numerous plausible climate conditions requires a statistical model with low data and computational requirements. We present a statistical streamflow model that is driven by precipitation and temperature, allowing us to predict flows without reliance on reference gages of observed flows. The hydrological analysis is used to determine each culvert's risk of failure under current conditions. We also explore the hydrological response to a range of plausible future climate conditions. These results are used to determine the tolerance of each culvert to future increases in precipitation. In a decision support context, current flood risk as well as tolerance to potential climate changes are used to provide a robust assessment and prioritization for culvert replacements.
Ji, Xiaoting; Niu, Yifeng; Shen, Lincheng
2016-01-01
This paper presents a robust satisficing decision-making method for Unmanned Aerial Vehicles (UAVs) executing complex missions in an uncertain environment. Motivated by the info-gap decision theory, we formulate this problem as a novel robust satisficing optimization problem, of which the objective is to maximize the robustness while satisfying some desired mission requirements. Specifically, a new info-gap based Markov Decision Process (IMDP) is constructed to abstract the uncertain UAV system and specify the complex mission requirements with the Linear Temporal Logic (LTL). A robust satisficing policy is obtained to maximize the robustness to the uncertain IMDP while ensuring a desired probability of satisfying the LTL specifications. To this end, we propose a two-stage robust satisficing solution strategy which consists of the construction of a product IMDP and the generation of a robust satisficing policy. In the first stage, a product IMDP is constructed by combining the IMDP with an automaton representing the LTL specifications. In the second, an algorithm based on robust dynamic programming is proposed to generate a robust satisficing policy, while an associated robustness evaluation algorithm is presented to evaluate the robustness. Finally, through Monte Carlo simulation, the effectiveness of our algorithms is demonstrated on an UAV search mission under severe uncertainty so that the resulting policy can maximize the robustness while reaching the desired performance level. Furthermore, by comparing the proposed method with other robust decision-making methods, it can be concluded that our policy can tolerate higher uncertainty so that the desired performance level can be guaranteed, which indicates that the proposed method is much more effective in real applications. PMID:27835670
Ji, Xiaoting; Niu, Yifeng; Shen, Lincheng
2016-01-01
This paper presents a robust satisficing decision-making method for Unmanned Aerial Vehicles (UAVs) executing complex missions in an uncertain environment. Motivated by the info-gap decision theory, we formulate this problem as a novel robust satisficing optimization problem, of which the objective is to maximize the robustness while satisfying some desired mission requirements. Specifically, a new info-gap based Markov Decision Process (IMDP) is constructed to abstract the uncertain UAV system and specify the complex mission requirements with the Linear Temporal Logic (LTL). A robust satisficing policy is obtained to maximize the robustness to the uncertain IMDP while ensuring a desired probability of satisfying the LTL specifications. To this end, we propose a two-stage robust satisficing solution strategy which consists of the construction of a product IMDP and the generation of a robust satisficing policy. In the first stage, a product IMDP is constructed by combining the IMDP with an automaton representing the LTL specifications. In the second, an algorithm based on robust dynamic programming is proposed to generate a robust satisficing policy, while an associated robustness evaluation algorithm is presented to evaluate the robustness. Finally, through Monte Carlo simulation, the effectiveness of our algorithms is demonstrated on an UAV search mission under severe uncertainty so that the resulting policy can maximize the robustness while reaching the desired performance level. Furthermore, by comparing the proposed method with other robust decision-making methods, it can be concluded that our policy can tolerate higher uncertainty so that the desired performance level can be guaranteed, which indicates that the proposed method is much more effective in real applications.
NASA Astrophysics Data System (ADS)
Hadjimichael, A.; Corominas, L.; Comas, J.
2017-12-01
With sustainable development as their overarching goal, urban wastewater system (UWS) managers need to take into account multiple social, economic, technical and environmental facets related to their decisions. In this complex decision-making environment, uncertainty can be formidable. It is present both in the ways the system is interpreted stochastically, but also in its natural ever-shifting behavior. This inherent uncertainty suggests that wiser decisions would be made under an adaptive and iterative decision-making regime. No decision-support framework has been presented in the literature to effectively addresses all these needs. The objective of this work is to describe such a conceptual framework to evaluate and compare alternative solutions for various UWS challenges within an adaptive management structure. Socio-economic aspects such as externalities are taken into account, along with other traditional criteria as necessary. Robustness, reliability and resilience analyses test the performance of the system against present and future variability. A valuation uncertainty analysis incorporates uncertain valuation assumptions in the decision-making process. The framework is demonstrated with an application to a case study presenting a typical problem often faced by managers: poor river water quality, increasing population, and more stringent water quality legislation. The application of the framework made use of: i) a cost-benefit analysis including monetized environmental benefits and damages; ii) a robustness analysis of system performance against future conditions; iii) reliability and resilience analyses of the system given contextual variability; and iv) a valuation uncertainty analysis of model parameters. The results suggest that the installation of bigger volumes would give rise to increased benefits despite larger capital costs, as well as increased robustness and resilience. Population numbers appear to affect the estimated benefits most, followed by electricity prices and climate change projections. The presented framework is expected to be a valuable tool for the next generation of UWS decision-making and the application demonstrates a novel and valuable integration of metrics and methods for UWS analysis.
Robust averaging protects decisions from noise in neural computations
Herce Castañón, Santiago; Solomon, Joshua A.; Vandormael, Hildward
2017-01-01
An ideal observer will give equivalent weight to sources of information that are equally reliable. However, when averaging visual information, human observers tend to downweight or discount features that are relatively outlying or deviant (‘robust averaging’). Why humans adopt an integration policy that discards important decision information remains unknown. Here, observers were asked to judge the average tilt in a circular array of high-contrast gratings, relative to an orientation boundary defined by a central reference grating. Observers showed robust averaging of orientation, but the extent to which they did so was a positive predictor of their overall performance. Using computational simulations, we show that although robust averaging is suboptimal for a perfect integrator, it paradoxically enhances performance in the presence of “late” noise, i.e. which corrupts decisions during integration. In other words, robust decision strategies increase the brain’s resilience to noise arising in neural computations during decision-making. PMID:28841644
Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems.
Whitacre, James M; Bender, Axel
2010-06-15
A generic mechanism--networked buffering--is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems.
Adding flexibility to the search for robust portfolios in non-linear water resource planning
NASA Astrophysics Data System (ADS)
Tomlinson, James; Harou, Julien
2017-04-01
To date robust optimisation of water supply systems has sought to find portfolios or strategies that are robust to a range of uncertainties or scenarios. The search for a single portfolio that is robust in all scenarios is necessarily suboptimal compared to portfolios optimised for a single scenario deterministic future. By contrast establishing a separate portfolio for each future scenario is unhelpful to the planner who must make a single decision today under deep uncertainty. In this work we show that a middle ground is possible by allowing a small number of different portfolios to be found that are each robust to a different subset of the global scenarios. We use evolutionary algorithms and a simple water resource system model to demonstrate this approach. The primary contribution is to demonstrate that flexibility can be added to the search for portfolios, in complex non-linear systems, at the expense of complete robustness across all future scenarios. In this context we define flexibility as the ability to design a portfolio in which some decisions are delayed, but those decisions that are not delayed are themselves shown to be robust to the future. We recognise that some decisions in our portfolio are more important than others. An adaptive portfolio is found by allowing no flexibility for these near-term "important" decisions, but maintaining flexibility in the remaining longer term decisions. In this sense we create an effective 2-stage decision process for a non-linear water resource supply system. We show how this reduces a measure of regret versus the inflexible robust solution for the same system.
Robustness Regions for Dichotomous Decisions.
ERIC Educational Resources Information Center
Vijn, Pieter; Molenaar, Ivo W.
1981-01-01
In the case of dichotomous decisions, the total set of all assumptions/specifications for which the decision would have been the same is the robustness region. Inspection of this (data-dependent) region is a form of sensitivity analysis which may lead to improved decision making. (Author/BW)
van der Burg, Max Post; Tyre, Andrew J
2011-01-01
Wildlife managers often make decisions under considerable uncertainty. In the most extreme case, a complete lack of data leads to uncertainty that is unquantifiable. Information-gap decision theory deals with assessing management decisions under extreme uncertainty, but it is not widely used in wildlife management. So too, robust population management methods were developed to deal with uncertainties in multiple-model parameters. However, the two methods have not, as yet, been used in tandem to assess population management decisions. We provide a novel combination of the robust population management approach for matrix models with the information-gap decision theory framework for making conservation decisions under extreme uncertainty. We applied our model to the problem of nest survival management in an endangered bird species, the Mountain Plover (Charadrius montanus). Our results showed that matrix sensitivities suggest that nest management is unlikely to have a strong effect on population growth rate, confirming previous analyses. However, given the amount of uncertainty about adult and juvenile survival, our analysis suggested that maximizing nest marking effort was a more robust decision to maintain a stable population. Focusing on the twin concepts of opportunity and robustness in an information-gap model provides a useful method of assessing conservation decisions under extreme uncertainty.
Facey, Karen; Boivin, Antoine; Gracia, Javier; Hansen, Helle Ploug; Lo Scalzo, Alessandra; Mossman, Jean; Single, Ann
2010-07-01
There is increasing emphasis on providing patient-focused health care and ensuring patient involvement in the design of health services. As health technology assessment (HTA) is meant to be a multidisciplinary, wide-ranging policy analysis that informs decision making, it would be expected that patients' views should be incorporated into the assessment. However, HTA is still driven by collection of quantitative evidence to determine the clinical and cost effectiveness of a health technology. Patients' perspectives about their illness and the technology are rarely included, perhaps because they are seen as anecdotal, biased views. There are two distinct but complementary ways in which HTAs can be strengthened by: (i) gathering robust evidence about the patients' perspectives, and (ii) ensuring effective engagement of patients in the HTA process from scoping, through evidence gathering, assessment of value, development of recommendations and dissemination of findings. Robust evidence eliciting patients' perspectives can be obtained through social science research that is well conducted, critically appraised and carefully reported, either through meta-synthesis of existing studies or new primary research. Engagement with patients can occur at several levels and we propose that HTA should seek to support effective patient participation to create a fair deliberative process. This should allow two-way flow of information, so that the views of patients are obtained in a supportive way and fed into decision-making processes in a transparent manner.
Addressing Climate Change in Long-Term Water Planning Using Robust Decisionmaking
NASA Astrophysics Data System (ADS)
Groves, D. G.; Lempert, R.
2008-12-01
Addressing climate change in long-term natural resource planning is difficult because future management conditions are deeply uncertain and the range of possible adaptation options are so extensive. These conditions pose challenges to standard optimization decision-support techniques. This talk will describe a methodology called Robust Decisionmaking (RDM) that can complement more traditional analytic approaches by utilizing screening-level water management models to evaluate large numbers of strategies against a wide range of plausible future scenarios. The presentation will describe a recent application of the methodology to evaluate climate adaptation strategies for the Inland Empire Utilities Agency in Southern California. This project found that RDM can provide a useful way for addressing climate change uncertainty and identify robust adaptation strategies.
Pronk, Nicolaas P; Boucher, Jackie L; Gehling, Eve; Boyle, Raymond G; Jeffery, Robert W
2002-10-01
To describe an integrated, operational platform from which mail- and telephone-based health promotion programs are implemented and to specifically relate this approach to weight management programming in a managed care setting. In-depth description of essential systems structures, including people, computer technology, and decision-support protocols. The roles of support staff, counselors, a librarian, and a manager in delivering a weight management program are described. Information availability using computer technology is a critical component in making this system effective and is presented according to its architectural layout and design. Protocols support counselors and administrative support staff in decision making, and a detailed flowchart presents the layout of this part of the system. This platform is described in the context of a weight management program, and we present baseline characteristics of 1801 participants, their behaviors, self-reported medical conditions, and initial pattern of enrollment in the various treatment options. Considering the prevalence and upward trend of overweight and obesity in the United States, a need exists for robust intervention platforms that can systematically support multiple types of programs. Weight management interventions implemented using this platform are scalable to the population level and are sustainable over time despite the limits of defined resources and budgets. The present article describes an innovative approach to reaching a large population with effective programs in an integrated, coordinated, and systematic manner. This comprehensive, robust platform represents an example of how obesity prevention and treatment research may be translated into the applied setting.
Chevance, Aurélie; Schuster, Tibor; Steele, Russell; Ternès, Nils; Platt, Robert W
2015-10-01
Robustness of an existing meta-analysis can justify decisions on whether to conduct an additional study addressing the same research question. We illustrate the graphical assessment of the potential impact of an additional study on an existing meta-analysis using published data on statin use and the risk of acute kidney injury. A previously proposed graphical augmentation approach is used to assess the sensitivity of the current test and heterogeneity statistics extracted from existing meta-analysis data. In addition, we extended the graphical augmentation approach to assess potential changes in the pooled effect estimate after updating a current meta-analysis and applied the three graphical contour definitions to data from meta-analyses on statin use and acute kidney injury risk. In the considered example data, the pooled effect estimates and heterogeneity indices demonstrated to be considerably robust to the addition of a future study. Supportingly, for some previously inconclusive meta-analyses, a study update might yield statistically significant kidney injury risk increase associated with higher statin exposure. The illustrated contour approach should become a standard tool for the assessment of the robustness of meta-analyses. It can guide decisions on whether to conduct additional studies addressing a relevant research question. Copyright © 2015 Elsevier Inc. All rights reserved.
A Hybrid Interval-Robust Optimization Model for Water Quality Management.
Xu, Jieyu; Li, Yongping; Huang, Guohe
2013-05-01
In water quality management problems, uncertainties may exist in many system components and pollution-related processes ( i.e. , random nature of hydrodynamic conditions, variability in physicochemical processes, dynamic interactions between pollutant loading and receiving water bodies, and indeterminacy of available water and treated wastewater). These complexities lead to difficulties in formulating and solving the resulting nonlinear optimization problems. In this study, a hybrid interval-robust optimization (HIRO) method was developed through coupling stochastic robust optimization and interval linear programming. HIRO can effectively reflect the complex system features under uncertainty, where implications of water quality/quantity restrictions for achieving regional economic development objectives are studied. By delimiting the uncertain decision space through dimensional enlargement of the original chemical oxygen demand (COD) discharge constraints, HIRO enhances the robustness of the optimization processes and resulting solutions. This method was applied to planning of industry development in association with river-water pollution concern in New Binhai District of Tianjin, China. Results demonstrated that the proposed optimization model can effectively communicate uncertainties into the optimization process and generate a spectrum of potential inexact solutions supporting local decision makers in managing benefit-effective water quality management schemes. HIRO is helpful for analysis of policy scenarios related to different levels of economic penalties, while also providing insight into the tradeoff between system benefits and environmental requirements.
NASA Astrophysics Data System (ADS)
Bhave, Ajay; Dessai, Suraje; Conway, Declan; Stainforth, David
2016-04-01
Deep uncertainty in future climate change and socio-economic conditions necessitates the use of assess-risk-of-policy approaches over predict-then-act approaches for adaptation decision making. Robust Decision Making (RDM) approaches embody this principle and help evaluate the ability of adaptation options to satisfy stakeholder preferences under wide-ranging future conditions. This study involves the simultaneous application of two RDM approaches; qualitative and quantitative, in the Cauvery River Basin in Karnataka (population ~23 million), India. The study aims to (a) determine robust water resources adaptation options for the 2030s and 2050s and (b) compare the usefulness of a qualitative stakeholder-driven approach with a quantitative modelling approach. For developing a large set of future scenarios a combination of climate narratives and socio-economic narratives was used. Using structured expert elicitation with a group of climate experts in the Indian Summer Monsoon, climatic narratives were developed. Socio-economic narratives were developed to reflect potential future urban and agricultural water demand. In the qualitative RDM approach, a stakeholder workshop helped elicit key vulnerabilities, water resources adaptation options and performance criteria for evaluating options. During a second workshop, stakeholders discussed and evaluated adaptation options against the performance criteria for a large number of scenarios of climatic and socio-economic change in the basin. In the quantitative RDM approach, a Water Evaluation And Planning (WEAP) model was forced by precipitation and evapotranspiration data, coherent with the climatic narratives, together with water demand data based on socio-economic narratives. We find that compared to business-as-usual conditions options addressing urban water demand satisfy performance criteria across scenarios and provide co-benefits like energy savings and reduction in groundwater depletion, while options reducing agricultural water demand significantly affect downstream water availability. Water demand options demonstrate potential to improve environmental flow conditions and satisfy legal water supply requirements for downstream riparian states. On the other hand, currently planned large scale infrastructural projects demonstrate reduced value in certain scenarios, illustrating the impacts of lock-in effects of large scale infrastructure. From a methodological perspective, we find that while the stakeholder-driven approach revealed robust options in a resource-light manner and helped initiate much needed interaction amongst stakeholders, the modelling approach provides complementary quantitative information. The study reveals robust adaptation options for this important basin and provides a strong methodological basis for carrying out future studies that support adaptation decision making.
Integrating uncertainty into public energy research and development decisions
NASA Astrophysics Data System (ADS)
Anadón, Laura Díaz; Baker, Erin; Bosetti, Valentina
2017-05-01
Public energy research and development (R&D) is recognized as a key policy tool for transforming the world's energy system in a cost-effective way. However, managing the uncertainty surrounding technological change is a critical challenge for designing robust and cost-effective energy policies. The design of such policies is particularly important if countries are going to both meet the ambitious greenhouse-gas emissions reductions goals set by the Paris Agreement and achieve the required harmonization with the broader set of objectives dictated by the Sustainable Development Goals. The complexity of informing energy technology policy requires, and is producing, a growing collaboration between different academic disciplines and practitioners. Three analytical components have emerged to support the integration of technological uncertainty into energy policy: expert elicitations, integrated assessment models, and decision frameworks. Here we review efforts to incorporate all three approaches to facilitate public energy R&D decision-making under uncertainty. We highlight emerging insights that are robust across elicitations, models, and frameworks, relating to the allocation of public R&D investments, and identify gaps and challenges that remain.
Nearing, Kathryn A; Hunt, Cerise; Presley, Jessica H; Nuechterlein, Bridget M; Moss, Marc; Manson, Spero M
2015-10-01
This paper is the first in a five-part series on the clinical and translational science educational pipeline and presents strategies to support recruitment and retention to create diverse pathways into clinical and translational research (CTR). The strategies address multiple levels or contexts of persistence decisions and include: (1) creating a seamless pipeline by forming strategic partnerships to achieve continuity of support for scholars and collective impact; (2) providing meaningful research opportunities to support identity formation as a scientist and sustain motivation to pursue and persist in CTR careers; (3) fostering an environment for effective mentorship and peer support to promote academic and social integration; (4) advocating for institutional policies to alleviate environmental pull factors; and, (5) supporting program evaluation-particularly, the examination of longitudinal outcomes. By combining institutional policies that promote a culture and climate for diversity with quality, evidence-based programs and integrated networks of support, we can create the environment necessary for diverse scholars to progress successfully and efficiently through the pipeline to achieve National Institutes of Health's vision of a robust CTR workforce. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chou, Shuo-Ju
2011-12-01
In recent years the United States has shifted from a threat-based acquisition policy that developed systems for countering specific threats to a capabilities-based strategy that emphasizes the acquisition of systems that provide critical national defense capabilities. This shift in policy, in theory, allows for the creation of an "optimal force" that is robust against current and future threats regardless of the tactics and scenario involved. In broad terms, robustness can be defined as the insensitivity of an outcome to "noise" or non-controlled variables. Within this context, the outcome is the successful achievement of defense strategies and the noise variables are tactics and scenarios that will be associated with current and future enemies. Unfortunately, a lack of system capability, budget, and schedule robustness against technology performance and development uncertainties has led to major setbacks in recent acquisition programs. This lack of robustness stems from the fact that immature technologies have uncertainties in their expected performance, development cost, and schedule that cause to variations in system effectiveness and program development budget and schedule requirements. Unfortunately, the Technology Readiness Assessment process currently used by acquisition program managers and decision-makers to measure technology uncertainty during critical program decision junctions does not adequately capture the impact of technology performance and development uncertainty on program capability and development metrics. The Technology Readiness Level metric employed by the TRA to describe program technology elements uncertainties can only provide a qualitative and non-descript estimation of the technology uncertainties. In order to assess program robustness, specifically requirements robustness, against technology performance and development uncertainties, a new process is needed. This process should provide acquisition program managers and decision-makers with the ability to assess or measure the robustness of program requirements against such uncertainties. A literature review of techniques for forecasting technology performance and development uncertainties and subsequent impacts on capability, budget, and schedule requirements resulted in the conclusion that an analysis process that coupled a probabilistic analysis technique such as Monte Carlo Simulations with quantitative and parametric models of technology performance impact and technology development time and cost requirements would allow the probabilities of meeting specific constraints of these requirements to be established. These probabilities of requirements success metrics can then be used as a quantitative and probabilistic measure of program requirements robustness against technology uncertainties. Combined with a Multi-Objective Genetic Algorithm optimization process and computer-based Decision Support System, critical information regarding requirements robustness against technology uncertainties can be captured and quantified for acquisition decision-makers. This results in a more informed and justifiable selection of program technologies during initial program definition as well as formulation of program development and risk management strategies. To meet the stated research objective, the ENhanced TEchnology Robustness Prediction and RISk Evaluation (ENTERPRISE) methodology was formulated to provide a structured and transparent process for integrating these enabling techniques to provide a probabilistic and quantitative assessment of acquisition program requirements robustness against technology performance and development uncertainties. In order to demonstrate the capabilities of the ENTERPRISE method and test the research Hypotheses, an demonstration application of this method was performed on a notional program for acquiring the Carrier-based Suppression of Enemy Air Defenses (SEAD) using Unmanned Combat Aircraft Systems (UCAS) and their enabling technologies. The results of this implementation provided valuable insights regarding the benefits and inner workings of this methodology as well as its limitations that should be addressed in the future to narrow the gap between current state and the desired state.
A framework for developing safe and effective large-fire response in a new fire management paradigm
Christopher J. Dunn; Matthew P. Thompson; David E. Calkin
2017-01-01
The impacts of wildfires have increased in recent decades because of historical forest and fire management, a rapidly changing climate, and an increasingly populated wildland urban interface. This increasingly complex fire environment highlights the importance of developing robust tools to support risk-informed decision making. While tools have been developed to aid...
The Mental Capacity Act: 'Best interests'-a review of the literature.
Marshall, Helen; Sprung, Sally
2017-08-02
The Mental Capacity Act (MCA) is statutory legislation introduced in 2007 in order to provide a consistent, robust framework with the aim to protect and empower people to make decisions themselves. However, an assessment as per the MCA may demonstrate that a person is lacking mental capacity and therefore unable to make an autonomous decision at the time it needs to be made. In this case, a 'best interests' decision may be made on their behalf, ensuring their wishes and beliefs are at the centre of the decision-making process. When making a best interests decision, a health practitioner must follow the guidance as set out in the MCA legislation to ensure fair and consistent approaches to safeguard and provide assurance that the outcome is truly the best decision for the individual. This review of the literature supports the findings of a 2014 post-legislative review by the House of Lords, which concluded the principles of the MCA are not sufficiently embedded into the practice of all health practitioners, due to a lack of knowledge, awareness and understanding. However, the evidence base also appreciates making a decision on behalf of another person can be a stressful, complex and intricate process when further support may be required from the wider multidisciplinary team, including potentially seeking legal advice.
Corbin, Jonathan C.; Reyna, Valerie F.; Weldon, Rebecca B.; Brainerd, Charles J.
2015-01-01
Fuzzy-trace theory distinguishes verbatim (literal, exact) from gist (meaningful) representations, predicting that reliance on gist increases with experience and expertise. Thus, many judgment-and-decision-making biases increase with development, such that cognition is colored by context in ways that violate logical coherence and probability theories. Nevertheless, this increase in gist-based intuition is adaptive: Gist is stable, less sensitive to interference, and easier to manipulate. Moreover, gist captures the functionally significant essence of information, supporting healthier and more robust decision processes. We describe how fuzzy-trace theory accounts for judgment-and-decision making phenomena, predicting the paradoxical arc of these processes with the development of experience and expertise. We present data linking gist memory processes to gist processing in decision making and provide illustrations of gist reliance in medicine, public health, and intelligence analysis. PMID:26664820
Corbin, Jonathan C; Reyna, Valerie F; Weldon, Rebecca B; Brainerd, Charles J
2015-12-01
Fuzzy-trace theory distinguishes verbatim (literal, exact) from gist (meaningful) representations, predicting that reliance on gist increases with experience and expertise. Thus, many judgment-and-decision-making biases increase with development, such that cognition is colored by context in ways that violate logical coherence and probability theories. Nevertheless, this increase in gist-based intuition is adaptive: Gist is stable, less sensitive to interference, and easier to manipulate. Moreover, gist captures the functionally significant essence of information, supporting healthier and more robust decision processes. We describe how fuzzy-trace theory accounts for judgment-and-decision making phenomena, predicting the paradoxical arc of these processes with the development of experience and expertise. We present data linking gist memory processes to gist processing in decision making and provide illustrations of gist reliance in medicine, public health, and intelligence analysis.
Moghimi, Fatemeh Hoda; Cheung, Michael; Wickramasinghe, Nilmini
2013-01-01
Healthcare is an information rich industry where successful outcomes require the processing of multi-spectral data and sound decision making. The exponential growth of data and big data issues coupled with a rapid increase of service demands in healthcare contexts today, requires a robust framework enabled by IT (information technology) solutions as well as real-time service handling in order to ensure superior decision making and successful healthcare outcomes. Such a context is appropriate for the application of real time intelligent risk detection decision support systems using predictive analytic techniques such as data mining. To illustrate the power and potential of data science technologies in healthcare decision making scenarios, the use of an intelligent risk detection (IRD) model is proffered for the context of Congenital Heart Disease (CHD) in children, an area which requires complex high risk decisions that need to be made expeditiously and accurately in order to ensure successful healthcare outcomes.
Helzer, Erik G; Fleeson, William; Furr, R Michael; Meindl, Peter; Barranti, Maxwell
2017-08-01
Although individual differences in the application of moral principles, such as utilitarianism, have been documented, so too have powerful context effects-effects that raise doubts about the durability of people's moral principles. In this article, we examine the robustness of individual differences in moral judgment by examining them across time and across different decision contexts. In Study 1, consistency in utilitarian judgment of 122 adult participants was examined over two different survey sessions. In Studies 2A and 2B, large samples (Ns = 130 and 327, respectively) of adult participants made a series of 32 moral judgments across eight different contexts that are known to affect utilitarian endorsement. Contrary to some contemporary theorizing, our results reveal a strong degree of consistency in moral judgment. Across time and experimental manipulations of context, individuals maintained their relative standing on utilitarianism, and aggregated moral decisions reached levels of near-perfect consistency. Results support the view that on at least one dimension (utilitarianism), people's moral judgments are robustly consistent, with context effects tailoring the application of principles to the particulars of any given moral judgment. © 2016 Wiley Periodicals, Inc.
New decision support tool for acute lymphoblastic leukemia classification
NASA Astrophysics Data System (ADS)
Madhukar, Monica; Agaian, Sos; Chronopoulos, Anthony T.
2012-03-01
In this paper, we build up a new decision support tool to improve treatment intensity choice in childhood ALL. The developed system includes different methods to accurately measure furthermore cell properties in microscope blood film images. The blood images are exposed to series of pre-processing steps which include color correlation, and contrast enhancement. By performing K-means clustering on the resultant images, the nuclei of the cells under consideration are obtained. Shape features and texture features are then extracted for classification. The system is further tested on the classification of spectra measured from the cell nuclei in blood samples in order to distinguish normal cells from those affected by Acute Lymphoblastic Leukemia. The results show that the proposed system robustly segments and classifies acute lymphoblastic leukemia based on complete microscopic blood images.
Framing of Uncertainty in Scientific Publications: Towards Recommendations for Decision Support
NASA Astrophysics Data System (ADS)
Guillaume, J. H. A.; Helgeson, C.; Elsawah, S.; Jakeman, A. J.; Kummu, M.
2016-12-01
Uncertainty is recognised as an essential issue in environmental decision making and decision support. As modellers, we notably use a variety of tools and techniques within an analysis, for example related to uncertainty quantification and model validation. We also address uncertainty by how we present results. For example, experienced modellers are careful to distinguish robust conclusions from those that need further work, and the precision of quantitative results is tailored to their accuracy. In doing so, the modeller frames how uncertainty should be interpreted by their audience. This is an area which extends beyond modelling to fields such as philosophy of science, semantics, discourse analysis, intercultural communication and rhetoric. We propose that framing of uncertainty deserves greater attention in the context of decision support, and that there are opportunities in this area for fundamental research, synthesis and knowledge transfer, development of teaching curricula, and significant advances in managing uncertainty in decision making. This presentation reports preliminary results of a study of framing practices. Specifically, we analyse the framing of uncertainty that is visible in the abstracts from a corpus of scientific articles. We do this through textual analysis of the content and structure of those abstracts. Each finding that appears in an abstract is classified according to the uncertainty framing approach used, using a classification scheme that was iteratively revised based on reflection and comparison amongst three coders. This analysis indicates how frequently the different framing approaches are used, and provides initial insights into relationships between frames, how the frames relate to interpretation of uncertainty, and how rhetorical devices are used by modellers to communicate uncertainty in their work. We propose initial hypotheses for how the resulting insights might influence decision support, and help advance decision making to better address uncertainty.
Frantzidis, Christos A; Gilou, Sotiria; Billis, Antonis; Karagianni, Maria; Bratsas, Charalampos D; Bamidis, Panagiotis
2016-03-01
Recent neuroscientific studies focused on the identification of pathological neurophysiological patterns (emotions, geriatric depression, memory impairment and sleep disturbances) through computerised clinical decision-support systems. Almost all these research attempts employed either resting-state condition (e.g. eyes-closed) or event-related potentials extracted during a cognitive task known to be affected by the disease under consideration. This Letter reviews existing data mining techniques and aims to enhance their robustness by proposing a holistic decision framework dealing with comorbidities and early symptoms' identification, while it could be applied in realistic occasions. Multivariate features are elicited and fused in order to be compared with average activities characteristic of each neuropathology group. A proposed model of the specific cognitive function which may be based on previous findings (a priori information) and/or validated by current experimental data should be then formed. So, the proposed scheme facilitates the early identification and prevention of neurodegenerative phenomena. Neurophysiological semantic annotation is hypothesised to enhance the importance of the proposed framework in facilitating the personalised healthcare of the information society and medical informatics research community.
What Is Robustness?: Problem Framing Challenges for Water Systems Planning Under Change
NASA Astrophysics Data System (ADS)
Herman, J. D.; Reed, P. M.; Zeff, H. B.; Characklis, G. W.
2014-12-01
Water systems planners have long recognized the need for robust solutions capable of withstanding deviations from the conditions for which they were designed. Faced with a set of alternatives to choose from—for example, resulting from a multi-objective optimization—existing analysis frameworks offer competing definitions of robustness under change. Robustness analyses have moved from expected utility to exploratory "bottom-up" approaches in which vulnerable scenarios are identified prior to assigning likelihoods; examples include Robust Decision Making (RDM), Decision Scaling, Info-Gap, and Many-Objective Robust Decision Making (MORDM). We propose a taxonomy of robustness frameworks to compare and contrast these approaches, based on their methods of (1) alternative selection, (2) sampling of states of the world, (3) quantification of robustness measures, and (4) identification of key uncertainties using sensitivity analysis. Using model simulations from recent work in multi-objective urban water supply portfolio planning, we illustrate the decision-relevant consequences that emerge from each of these choices. Results indicate that the methodological choices in the taxonomy lead to substantially different planning alternatives, underscoring the importance of an informed definition of robustness. We conclude with a set of recommendations for problem framing: that alternatives should be searched rather than prespecified; dominant uncertainties should be discovered rather than assumed; and that a multivariate satisficing measure of robustness allows stakeholders to achieve their problem-specific performance requirements. This work highlights the importance of careful problem formulation, and provides a common vocabulary to link the robustness frameworks widely used in the field of water systems planning.
NASA Astrophysics Data System (ADS)
Herman, J. D.; Zeff, H. B.; Reed, P. M.; Characklis, G. W.
2013-12-01
In the Eastern United States, water infrastructure and institutional frameworks have evolved in a historically water-rich environment. However, large regional droughts over the past decade combined with continuing population growth have marked a transition to a state of water scarcity, for which current planning paradigms are ill-suited. Significant opportunities exist to improve the efficiency of water infrastructure via regional coordination, namely, regional 'portfolios' of water-related assets such as reservoirs, conveyance, conservation measures, and transfer agreements. Regional coordination offers the potential to improve reliability, cost, and environmental impact in the expected future state of the world, and, with informed planning, to improve robustness to future uncertainty. In support of this challenge, this study advances a multi-agent many-objective robust decision making (multi-agent MORDM) framework that blends novel computational search and uncertainty analysis tools to discover flexible, robust regional portfolios. Our multi-agent MORDM framework is demonstrated for four water utilities in the Research Triangle region of North Carolina, USA. The utilities supply nearly two million customers and have the ability to interact with one another via transfer agreements and shared infrastructure. We show that strategies for this region which are Pareto-optimal in the expected future state of the world remain vulnerable to performance degradation under alternative scenarios of deeply uncertain hydrologic and economic factors. We then apply the Patient Rule Induction Method (PRIM) to identify which of these uncertain factors drives the individual and collective vulnerabilities for the four cooperating utilities. Our results indicate that clear multi-agent tradeoffs emerge for attaining robustness across the utilities. Furthermore, the key factor identified for improving the robustness of the region's water supply is cooperative demand reduction. This type of approach is critically important given the risks and challenges posed by rising supply development costs, limits on new infrastructure, growing water demands and the underlying uncertainties associated with climate change. The proposed framework serves as a planning template for other historically water-rich regions which must now confront the reality of impending water scarcity.
Leitner, Stephan; Brauneis, Alexander; Rausch, Alexandra
2015-01-01
In this paper, we investigate the impact of inaccurate forecasting on the coordination of distributed investment decisions. In particular, by setting up a computational multi-agent model of a stylized firm, we investigate the case of investment opportunities that are mutually carried out by organizational departments. The forecasts of concern pertain to the initial amount of money necessary to launch and operate an investment opportunity, to the expected intertemporal distribution of cash flows, and the departments' efficiency in operating the investment opportunity at hand. We propose a budget allocation mechanism for coordinating such distributed decisions The paper provides guidance on how to set framework conditions, in terms of the number of investment opportunities considered in one round of funding and the number of departments operating one investment opportunity, so that the coordination mechanism is highly robust to forecasting errors. Furthermore, we show that-in some setups-a certain extent of misforecasting is desirable from the firm's point of view as it supports the achievement of the corporate objective of value maximization. We then address the question of how to improve forecasting quality in the best possible way, and provide policy advice on how to sequence activities for improving forecasting quality so that the robustness of the coordination mechanism to errors increases in the best possible way. At the same time, we show that wrong decisions regarding the sequencing can lead to a decrease in robustness. Finally, we conduct a comprehensive sensitivity analysis and prove that-in particular for relatively good forecasters-most of our results are robust to changes in setting the parameters of our multi-agent simulation model.
Leitner, Stephan; Brauneis, Alexander; Rausch, Alexandra
2015-01-01
In this paper, we investigate the impact of inaccurate forecasting on the coordination of distributed investment decisions. In particular, by setting up a computational multi-agent model of a stylized firm, we investigate the case of investment opportunities that are mutually carried out by organizational departments. The forecasts of concern pertain to the initial amount of money necessary to launch and operate an investment opportunity, to the expected intertemporal distribution of cash flows, and the departments’ efficiency in operating the investment opportunity at hand. We propose a budget allocation mechanism for coordinating such distributed decisions The paper provides guidance on how to set framework conditions, in terms of the number of investment opportunities considered in one round of funding and the number of departments operating one investment opportunity, so that the coordination mechanism is highly robust to forecasting errors. Furthermore, we show that—in some setups—a certain extent of misforecasting is desirable from the firm’s point of view as it supports the achievement of the corporate objective of value maximization. We then address the question of how to improve forecasting quality in the best possible way, and provide policy advice on how to sequence activities for improving forecasting quality so that the robustness of the coordination mechanism to errors increases in the best possible way. At the same time, we show that wrong decisions regarding the sequencing can lead to a decrease in robustness. Finally, we conduct a comprehensive sensitivity analysis and prove that—in particular for relatively good forecasters—most of our results are robust to changes in setting the parameters of our multi-agent simulation model. PMID:25803736
A Hybrid Interval–Robust Optimization Model for Water Quality Management
Xu, Jieyu; Li, Yongping; Huang, Guohe
2013-01-01
Abstract In water quality management problems, uncertainties may exist in many system components and pollution-related processes (i.e., random nature of hydrodynamic conditions, variability in physicochemical processes, dynamic interactions between pollutant loading and receiving water bodies, and indeterminacy of available water and treated wastewater). These complexities lead to difficulties in formulating and solving the resulting nonlinear optimization problems. In this study, a hybrid interval–robust optimization (HIRO) method was developed through coupling stochastic robust optimization and interval linear programming. HIRO can effectively reflect the complex system features under uncertainty, where implications of water quality/quantity restrictions for achieving regional economic development objectives are studied. By delimiting the uncertain decision space through dimensional enlargement of the original chemical oxygen demand (COD) discharge constraints, HIRO enhances the robustness of the optimization processes and resulting solutions. This method was applied to planning of industry development in association with river-water pollution concern in New Binhai District of Tianjin, China. Results demonstrated that the proposed optimization model can effectively communicate uncertainties into the optimization process and generate a spectrum of potential inexact solutions supporting local decision makers in managing benefit-effective water quality management schemes. HIRO is helpful for analysis of policy scenarios related to different levels of economic penalties, while also providing insight into the tradeoff between system benefits and environmental requirements. PMID:23922495
A decision modeling for phasor measurement unit location selection in smart grid systems
NASA Astrophysics Data System (ADS)
Lee, Seung Yup
As a key technology for enhancing the smart grid system, Phasor Measurement Unit (PMU) provides synchronized phasor measurements of voltages and currents of wide-area electric power grid. With various benefits from its application, one of the critical issues in utilizing PMUs is the optimal site selection of units. The main aim of this research is to develop a decision support system, which can be used in resource allocation task for smart grid system analysis. As an effort to suggest a robust decision model and standardize the decision modeling process, a harmonized modeling framework, which considers operational circumstances of component, is proposed in connection with a deterministic approach utilizing integer programming. With the results obtained from the optimal PMU placement problem, the advantages and potential that the harmonized modeling process possesses are assessed and discussed.
NASA Astrophysics Data System (ADS)
Song, Yanpo; Peng, Xiaoqi; Tang, Ying; Hu, Zhikun
2013-07-01
To improve the operation level of copper converter, the approach to optimal decision making modeling for coppermatte converting process based on data mining is studied: in view of the characteristics of the process data, such as containing noise, small sample size and so on, a new robust improved ANN (artificial neural network) modeling method is proposed; taking into account the application purpose of decision making model, three new evaluation indexes named support, confidence and relative confidence are proposed; using real production data and the methods mentioned above, optimal decision making model for blowing time of S1 period (the 1st slag producing period) are developed. Simulation results show that this model can significantly improve the converting quality of S1 period, increase the optimal probability from about 70% to about 85%.
NASA Astrophysics Data System (ADS)
Pierce, S. A.; Wagner, K.; Schwartz, S.; Gentle, J. N., Jr.
2016-12-01
Critical water resources face the effects of historic drought, increased demand, and potential contamination, the need has never been greater to develop resources to effectively communicate conservation and protection across a broad audience and geographical area. The Watermark application and macro-analysis methodology merges topical analysis of context rich corpus from policy texts with multi-attributed solution sets from integrated models of water resource and other subsystems, such as mineral, food, energy, or environmental systems to construct a scalable, robust, and reproducible approach for identifying links between policy and science knowledge bases. The Watermark application is an open-source, interactive workspace to support science-based visualization and decision making. Designed with generalization in mind, Watermark is a flexible platform that allows for data analysis and inclusion of large datasets with an interactive front-end capable of connecting with other applications as well as advanced computing resources. In addition, the Watermark analysis methodology offers functionality that streamlines communication with non-technical users for policy, education, or engagement with groups around scientific topics of societal relevance. The technology stack for Watermark was selected with the goal of creating a robust and dynamic modular codebase that can be adjusted to fit many use cases and scale to support usage loads that range between simple data display to complex scientific simulation-based modelling and analytics. The methodology uses to topical analysis and simulation-optimization to systematically analyze the policy and management realities of resource systems and explicitly connect the social and problem contexts with science-based and engineering knowledge from models. A case example demonstrates use in a complex groundwater resources management study highlighting multi-criteria spatial decision making and uncertainty comparisons.
The Implications of Meno’s Paradox for the Mental Capacity Act 2005
2016-01-01
Meno’s paradox—which asks ‘how will you know it is the thing you didn’t know?’—appears in Plato’s dialogue of the same name. This article suggests that a similar question arises in some supportive relationships. Attention to this question clarifies one condition necessary to justify making a best interests decisions against someone’s will: the decided-for person must be unable to recognise that they have failed to recognise a need. From this condition, two duties are derived: a duty to ensure that someone cannot recognise that they have failed to recognise a need before making a decision against their will; and a duty to provide consensual support to those who have had decisions made against their will, in order to help them to avoid such second-order failures of recognition in the future. The article assesses the Mental Capacity Act 2005 against each of these duties. For each duty, it finds that the Act allows compliance, but does not robustly require it. PMID:28007809
2015-07-14
AFRL-OSR-VA-TR-2015-0202 Robust Decision Making: The Cognitive and Computational Modeling of Team Problem Solving for Decision Making under Complex...Computational Modeling of Team Problem Solving for Decision Making Under Complex and Dynamic Conditions 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1...functioning as they solve complex problems, and propose the means to improve the performance of teams, under changing or adversarial conditions. By
NASA Astrophysics Data System (ADS)
Reed, P. M.
2013-12-01
Water resources planning and management has always required the consideration of uncertainties and the associated system vulnerabilities that they may cause. Despite the long legacy of these issues, our decision support frameworks that have dominated the literature over the past 50 years have struggled with the strongly multiobjective and deeply uncertain nature of water resources systems. The term deep uncertainty (or Knightian uncertainty) refers to factors in planning that strongly shape system risks that maybe unknown and even if known there is a strong lack of consensus on their likelihoods over decadal planning horizons (population growth, financial stability, valuation of resources, ecosystem requirements, evolving water institutions, regulations, etc). In this presentation, I will propose and demonstrate the many-objective robust decision making (MORDM) framework for water resources management under deep uncertainty. The MORDM framework will be demonstrated using an urban water portfolio management test case. In the test case, a city in the Lower Rio Grande Valley managing population and drought pressures must cost effectively maintain the reliability of its water supply by blending permanent rights to reservoir inflows with alternative strategies for purchasing water within the region's water market. The case study illustrates the significant potential pitfalls in the classic Cost-Reliability conception of the problem. Moreover, the proposed MORDM framework exploits recent advances in multiobjective search, visualization, and sensitivity analysis to better expose these pitfalls en route to identifying highly robust water planning alternatives.
Robust Decision Making for Improved Mission Assurance
2014-06-01
Technology Team (STT) proposed and was approved to receive funding for a set of four research projects advancing foundational decision science and... technology over a three year period of performance. At the time it was approved, the initiative involved 27 collaborating scientists and engineers from five...Appendix E. Sensors Directorate Technologies for Robust Decision Making for Improved Mission Assurance
Neural integrators for decision making: a favorable tradeoff between robustness and sensitivity
Cain, Nicholas; Barreiro, Andrea K.; Shadlen, Michael
2013-01-01
A key step in many perceptual decision tasks is the integration of sensory inputs over time, but a fundamental questions remain about how this is accomplished in neural circuits. One possibility is to balance decay modes of membranes and synapses with recurrent excitation. To allow integration over long timescales, however, this balance must be exceedingly precise. The need for fine tuning can be overcome via a “robust integrator” mechanism in which momentary inputs must be above a preset limit to be registered by the circuit. The degree of this limiting embodies a tradeoff between sensitivity to the input stream and robustness against parameter mistuning. Here, we analyze the consequences of this tradeoff for decision-making performance. For concreteness, we focus on the well-studied random dot motion discrimination task and constrain stimulus parameters by experimental data. We show that mistuning feedback in an integrator circuit decreases decision performance but that the robust integrator mechanism can limit this loss. Intriguingly, even for perfectly tuned circuits with no immediate need for a robustness mechanism, including one often does not impose a substantial penalty for decision-making performance. The implication is that robust integrators may be well suited to subserve the basic function of evidence integration in many cognitive tasks. We develop these ideas using simulations of coupled neural units and the mathematics of sequential analysis. PMID:23446688
Barnhardt, Terrence M
2005-10-01
Three experiments explored the distinction between identification and production processes (e.g., Gabrieli et al., 1999). A stem decision test was introduced, in which participants were asked to state whether there were any English words that began with the presented three-letter stems. In Experiment 1, stem decision priming was robust for single-solution stems, but much reduced for many-solution stems. In Experiment 2, the solutions effect in stem decision was replicated in a within-subjects design, as was the contrast between the presence of priming in a many-solution stem completion test and the absence of priming in a many-solution stem decision test. In Experiment 3, for each critical many-solution stem in the stem decision test, participants studied three words that began with those three letters. Again, priming was not observed. These results were consistent with the notions that (a) many-solution stem completion relies on production processes, (b) the stem decision test eliminates production processes, and (c) single-solution priming relies on identification processes, regardless of whether the test is stem completion or stem decision.
Lynn, Elizabeth; Shakir, Saad
2018-01-01
Objectives To assess the sources of publicly available evidence supporting withdrawal, revocation or suspension of marketing authorisations (‘regulatory actions’) due to safety reasons in the EU since 2012 and to investigate the time taken since initial marketing authorisation to reach these regulatory decisions. Setting This investigation examined the sources of evidence supporting 18 identified prescription medicinal products which underwent regulatory action due to safety reasons within the EU in the period 1 July 2012 to 31 December 2016. Results Eighteen single or combined active substances (‘medicinal products’) withdrawn, revoked or suspended within the EU for safety reasons between 2012 and 2016 met the inclusion criteria. Case reports were most commonly cited, supporting 94.4% of regulatory actions (n=17), followed by randomised controlled trial, meta-analyses, animal and in vitro, ex vivo or in silico study designs, each cited in 72.2% of regulatory actions (n=13). Epidemiological study designs were least commonly cited (n=8, 44.4%). Multiple sources of evidence contributed to 94.4% of regulatory decisions (n=17). Death was the most common adverse drug reaction leading to regulatory action (n=5; 27.8%), with four of these related to medication error or overdose. Median (IQR) time taken to reach a decision from the start of regulatory review was found to be 204.5 days (143, 535 days) and decreased across the study period. Duration of marketing prior to regulatory action, from the medicinal product’s authorisation date, increased across the period 2012–2016. Conclusions The sources of evidence supporting pharmacovigilance regulatory activities appear to have changed since implementation of Directive 2010/84/EU and Regulation (EU) No. 1235/2010. This, together with a small improvement in regulatory efficiency, suggests progress towards more rapid regulatory decisions based on more robust evidence. Future research should continue to monitor sources of evidence supporting regulatory decisions and the time taken to reach these decisions over time. PMID:29362275
Planning for successful outcomes in the new millennium.
Matthews, P
2000-02-01
The complexity of the health care environment will increase in the next millennium. Organizations must adopt an approach of selecting outcomes management solutions that are focused on data capture, analysis, and comparative reviews and reporting. They must decisively and creatively implement, in a phased approach, integrated solutions from existing robust systems, while considering future systems targeted for implementation. Outcomes management solutions must be integrated with the organization's information systems strategic plan. The successful organization must be able to turn business-critical data into information that supports both business and clinical decision-making activities. In short, health care organizations will have to become information-driven.
NASA Biomedical Informatics Capabilities and Needs
NASA Technical Reports Server (NTRS)
Johnson-Throop, Kathy A.
2009-01-01
To improve on-orbit clinical capabilities by developing and providing operational support for intelligent, robust, reliable, and secure, enterprise-wide and comprehensive health care and biomedical informatics systems with increasing levels of autonomy, for use on Earth, low Earth orbit & exploration class missions. Biomedical Informatics is an emerging discipline that has been defined as the study, invention, and implementation of structures and algorithms to improve communication, understanding and management of medical information. The end objective of biomedical informatics is the coalescing of data, knowledge, and the tools necessary to apply that data and knowledge in the decision-making process, at the time and place that a decision needs to be made.
McCormack, James L; Sittig, Dean F; Wright, Adam; McMullen, Carmit; Bates, David W
2012-01-01
Objective Computerized provider order entry (CPOE) with clinical decision support (CDS) can help hospitals improve care. Little is known about what CDS is presently in use and how it is managed, however, especially in community hospitals. This study sought to address this knowledge gap by identifying standard practices related to CDS in US community hospitals with mature CPOE systems. Materials and Methods Representatives of 34 community hospitals, each of which had over 5 years experience with CPOE, were interviewed to identify standard practices related to CDS. Data were analyzed with a mix of descriptive statistics and qualitative approaches to the identification of patterns, themes and trends. Results This broad sample of community hospitals had robust levels of CDS despite their small size and the independent nature of many of their physician staff members. The hospitals uniformly used medication alerts and order sets, had sophisticated governance procedures for CDS, and employed staff to customize CDS. Discussion The level of customization needed for most CDS before implementation was greater than expected. Customization requires skilled individuals who represent an emerging manpower need at this type of hospital. Conclusion These results bode well for robust diffusion of CDS to similar hospitals in the process of adopting CDS and suggest that national policies to promote CDS use may be successful. PMID:22707744
Kawamoto, Kensaku; Lobach, David F; Willard, Huntington F; Ginsburg, Geoffrey S
2009-03-23
In recent years, the completion of the Human Genome Project and other rapid advances in genomics have led to increasing anticipation of an era of genomic and personalized medicine, in which an individual's health is optimized through the use of all available patient data, including data on the individual's genome and its downstream products. Genomic and personalized medicine could transform healthcare systems and catalyze significant reductions in morbidity, mortality, and overall healthcare costs. Critical to the achievement of more efficient and effective healthcare enabled by genomics is the establishment of a robust, nationwide clinical decision support infrastructure that assists clinicians in their use of genomic assays to guide disease prevention, diagnosis, and therapy. Requisite components of this infrastructure include the standardized representation of genomic and non-genomic patient data across health information systems; centrally managed repositories of computer-processable medical knowledge; and standardized approaches for applying these knowledge resources against patient data to generate and deliver patient-specific care recommendations. Here, we provide recommendations for establishing a national decision support infrastructure for genomic and personalized medicine that fulfills these needs, leverages existing resources, and is aligned with the Roadmap for National Action on Clinical Decision Support commissioned by the U.S. Office of the National Coordinator for Health Information Technology. Critical to the establishment of this infrastructure will be strong leadership and substantial funding from the federal government. A national clinical decision support infrastructure will be required for reaping the full benefits of genomic and personalized medicine. Essential components of this infrastructure include standards for data representation; centrally managed knowledge repositories; and standardized approaches for leveraging these knowledge repositories to generate patient-specific care recommendations at the point of care.
Processing of social and monetary rewards in the human striatum.
Izuma, Keise; Saito, Daisuke N; Sadato, Norihiro
2008-04-24
Despite an increasing focus on the neural basis of human decision making in neuroscience, relatively little attention has been paid to decision making in social settings. Moreover, although human social decision making has been explored in a social psychology context, few neural explanations for the observed findings have been considered. To bridge this gap and improve models of human social decision making, we investigated whether acquiring a good reputation, which is an important incentive in human social behaviors, activates the same reward circuitry as monetary rewards. In total, 19 subjects participated in functional magnetic resonance imaging (fMRI) experiments involving monetary and social rewards. The acquisition of one's good reputation robustly activated reward-related brain areas, notably the striatum, and these overlapped with the areas activated by monetary rewards. Our findings support the idea of a "common neural currency" for rewards and represent an important first step toward a neural explanation for complex human social behaviors.
Gasche, Loïc; Mahévas, Stéphanie; Marchal, Paul
2013-01-01
Ecosystems are usually complex, nonlinear and strongly influenced by poorly known environmental variables. Among these systems, marine ecosystems have high uncertainties: marine populations in general are known to exhibit large levels of natural variability and the intensity of fishing efforts can change rapidly. These uncertainties are a source of risks that threaten the sustainability of both fish populations and fishing fleets targeting them. Appropriate management measures have to be found in order to reduce these risks and decrease sensitivity to uncertainties. Methods have been developed within decision theory that aim at allowing decision making under severe uncertainty. One of these methods is the information-gap decision theory. The info-gap method has started to permeate ecological modelling, with recent applications to conservation. However, these practical applications have so far been restricted to simple models with analytical solutions. Here we implement a deterministic approach based on decision theory in a complex model of the Eastern English Channel. Using the ISIS-Fish modelling platform, we model populations of sole and plaice in this area. We test a wide range of values for ecosystem, fleet and management parameters. From these simulations, we identify management rules controlling fish harvesting that allow reaching management goals recommended by ICES (International Council for the Exploration of the Sea) working groups while providing the highest robustness to uncertainties on ecosystem parameters. PMID:24204873
Gasche, Loïc; Mahévas, Stéphanie; Marchal, Paul
2013-01-01
Ecosystems are usually complex, nonlinear and strongly influenced by poorly known environmental variables. Among these systems, marine ecosystems have high uncertainties: marine populations in general are known to exhibit large levels of natural variability and the intensity of fishing efforts can change rapidly. These uncertainties are a source of risks that threaten the sustainability of both fish populations and fishing fleets targeting them. Appropriate management measures have to be found in order to reduce these risks and decrease sensitivity to uncertainties. Methods have been developed within decision theory that aim at allowing decision making under severe uncertainty. One of these methods is the information-gap decision theory. The info-gap method has started to permeate ecological modelling, with recent applications to conservation. However, these practical applications have so far been restricted to simple models with analytical solutions. Here we implement a deterministic approach based on decision theory in a complex model of the Eastern English Channel. Using the ISIS-Fish modelling platform, we model populations of sole and plaice in this area. We test a wide range of values for ecosystem, fleet and management parameters. From these simulations, we identify management rules controlling fish harvesting that allow reaching management goals recommended by ICES (International Council for the Exploration of the Sea) working groups while providing the highest robustness to uncertainties on ecosystem parameters.
Flood risk assessment and robust management under deep uncertainty: Application to Dhaka City
NASA Astrophysics Data System (ADS)
Mojtahed, Vahid; Gain, Animesh Kumar; Giupponi, Carlo
2014-05-01
The socio-economic changes as well as climatic changes have been the main drivers of uncertainty in environmental risk assessment and in particular flood. The level of future uncertainty that researchers face when dealing with problems in a future perspective with focus on climate change is known as Deep Uncertainty (also known as Knightian uncertainty), since nobody has already experienced and undergone those changes before and our knowledge is limited to the extent that we have no notion of probabilities, and therefore consolidated risk management approaches have limited potential.. Deep uncertainty is referred to circumstances that analysts and experts do not know or parties to decision making cannot agree on: i) the appropriate models describing the interaction among system variables, ii) probability distributions to represent uncertainty about key parameters in the model 3) how to value the desirability of alternative outcomes. The need thus emerges to assist policy-makers by providing them with not a single and optimal solution to the problem at hand, such as crisp estimates for the costs of damages of natural hazards considered, but instead ranges of possible future costs, based on the outcomes of ensembles of assessment models and sets of plausible scenarios. Accordingly, we need to substitute optimality as a decision criterion with robustness. Under conditions of deep uncertainty, the decision-makers do not have statistical and mathematical bases to identify optimal solutions, while instead they should prefer to implement "robust" decisions that perform relatively well over all conceivable outcomes out of all future unknown scenarios. Under deep uncertainty, analysts cannot employ probability theory or other statistics that usually can be derived from observed historical data and therefore, we turn to non-statistical measures such as scenario analysis. We construct several plausible scenarios with each scenario being a full description of what may happen in future and based on a meaningful synthesis of parameters' values with control of their correlations for maintaining internal consistencies. This paper aims at incorporating a set of data mining and sampling tools to assess uncertainty of model outputs under future climatic and socio-economic changes for Dhaka city and providing a decision support system for robust flood management and mitigation policies. After constructing an uncertainty matrix to identify the main sources of uncertainty for Dhaka City, we identify several hazard and vulnerability maps based on future climatic and socio-economic scenarios. The vulnerability of each flood management alternative under different set of scenarios is determined and finally the robustness of each plausible solution considered is defined based on the above assessment.
Coping strategies and immune neglect in affective forecasting: Direct evidence and key moderators
Hoerger, Michael
2012-01-01
Affective forecasting skills have important implications for decision making. However, recent research suggests that immune neglect – the tendency to overlook coping strategies that reduce future distress – may lead to affective forecasting problems. Prior evidence for immune neglect has been indirect. More direct evidence and a deeper understanding of immune neglect are vital to informing the design of future decision-support interventions. In the current study, young adults (N = 325) supplied predicted, actual, and recollected reactions to an emotionally-evocative interpersonal event, Valentine’s Day. Based on participants’ qualitative descriptions of the holiday, a team of raters reliably coded the effectiveness of their coping strategies. Supporting the immune neglect hypothesis, participants overlooked the powerful role of coping strategies when predicting their emotional reactions. Immune neglect was present not only for those experiencing the holiday negatively (non-daters) but also for those experiencing it positively (daters), suggesting that the bias may be more robust than originally theorized. Immune neglect was greater for immediate emotional reactions than more enduring reactions. Further, immune neglect was conspicuously absent from recollected emotional reactions. Implications for decision-support interventions are discussed. PMID:22375161
Financial Forecasting and Stochastic Modeling: Predicting the Impact of Business Decisions.
Rubin, Geoffrey D; Patel, Bhavik N
2017-05-01
In health care organizations, effective investment of precious resources is critical to assure that the organization delivers high-quality and sustainable patient care within a supportive environment for patients, their families, and the health care providers. This holds true for organizations independent of size, from small practices to large health systems. For radiologists whose role is to oversee the delivery of imaging services and the interpretation, communication, and curation of imaging-informed information, business decisions influence where and how they practice, the tools available for image acquisition and interpretation, and ultimately their professional satisfaction. With so much at stake, physicians must understand and embrace the methods necessary to develop and interpret robust financial analyses so they effectively participate in and better understand decision making. This review discusses the financial drivers upon which health care organizations base investment decisions and the central role that stochastic financial modeling should play in support of strategically aligned capital investments. Given a health care industry that has been slow to embrace advanced financial analytics, a fundamental message of this review is that the skills and analytical tools are readily attainable and well worth the effort to implement in the interest of informed decision making. © RSNA, 2017 Online supplemental material is available for this article.
Registration of MRI to Intraoperative Radiographs for Target Localization in Spinal Interventions
De Silva, T; Uneri, A; Ketcha, M D; Reaungamornrat, S; Goerres, J; Jacobson, M W; Vogt, S; Kleinszig, G; Khanna, A J; Wolinsky, J-P; Siewerdsen, J H
2017-01-01
Purpose Decision support to assist in target vertebra localization could provide a useful aid to safe and effective spine surgery. Previous solutions have shown 3D-2D registration of preoperative CT to intraoperative radiographs to reliably annotate vertebral labels for assistance during level localization. We present an algorithm (referred to as MR-LevelCheck) to perform 3D-2D registration based on a preoperative MRI to accommodate the increasingly common clinical scenario in which MRI is used instead of CT for preoperative planning. Methods Straightforward adaptation of gradient/intensity-based methods appropriate to CT-to-radiograph registration is confounded by large mismatch and noncorrespondence in image intensity between MRI and radiographs. The proposed method overcomes such challenges with a simple vertebrae segmentation step using vertebra centroids as seed points (automatically defined within existing workflow). Forwards projections are computed using segmented MRI and registered to radiographs via gradient orientation (GO) similarity and the CMA-ES (Covariance-Matrix-Adaptation Evolutionary-Strategy) optimizer. The method was tested in an IRB-approved study involving 10 patients undergoing cervical, thoracic, or lumbar spine surgery following preoperative MRI. Results The method successfully registered each preoperative MRI to intraoperative radiographs and maintained desirable properties of robustness against image content mismatch and large capture range. Robust registration performance was achieved with projection distance error (PDE) (median ± iqr) = 4.3 ± 2.6 mm (median ± iqr) and 0% failure rate. Segmentation accuracy for the continuous max-flow method yielded Dice coefficient = 88.1 ± 5.2, Accuracy = 90.6 ± 5.7, RMSE = 1.8 ± 0.6 mm, and contour affinity ratio (CAR) = 0.82 ± 0.08. Registration performance was found to be robust for segmentation methods exhibiting RMSE < 3 mm and CAR > 0.50. Conclusion The MR-LevelCheck method provides a potentially valuable extension to a previously developed decision support tool for spine surgery target localization by extending its utility to preoperative MRI while maintaining characteristics of accuracy and robustness. PMID:28050972
Wonodi, C B; Privor-Dumm, L; Aina, M; Pate, A M; Reis, R; Gadhoke, P; Levine, O S
2012-05-01
The decision-making process to introduce new vaccines into national immunization programmes is often complex, involving many stakeholders who provide technical information, mobilize finance, implement programmes and garner political support. Stakeholders may have different levels of interest, knowledge and motivations to introduce new vaccines. Lack of consensus on the priority, public health value or feasibility of adding a new vaccine can delay policy decisions. Efforts to support country-level decision-making have largely focused on establishing global policies and equipping policy makers with the information to support decision-making on new vaccine introduction (NVI). Less attention has been given to understanding the interactions of policy actors and how the distribution of influence affects the policy process and decision-making. Social network analysis (SNA) is a social science technique concerned with explaining social phenomena using the structural and relational features of the network of actors involved. This approach can be used to identify how information is exchanged and who is included or excluded from the process. For this SNA of vaccine decision-making in Nigeria, we interviewed federal and state-level government officials, officers of bilateral and multilateral partner organizations, and other stakeholders such as health providers and the media. Using data culled from those interviews, we performed an SNA in order to map formal and informal relationships and the distribution of influence among vaccine decision-makers, as well as to explore linkages and pathways to stakeholders who can influence critical decisions in the policy process. Our findings indicate a relatively robust engagement of key stakeholders in Nigeria. We hypothesized that economic stakeholders and implementers would be important to ensure sustainable financing and strengthen programme implementation, but some economic and implementation stakeholders did not appear centrally on the map; this may suggest a need to strengthen the decision-making processes by engaging these stakeholders more centrally and earlier.
Failure detection system design methodology. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chow, E. Y.
1980-01-01
The design of a failure detection and identification system consists of designing a robust residual generation process and a high performance decision making process. The design of these two processes are examined separately. Residual generation is based on analytical redundancy. Redundancy relations that are insensitive to modelling errors and noise effects are important for designing robust residual generation processes. The characterization of the concept of analytical redundancy in terms of a generalized parity space provides a framework in which a systematic approach to the determination of robust redundancy relations are developed. The Bayesian approach is adopted for the design of high performance decision processes. The FDI decision problem is formulated as a Bayes sequential decision problem. Since the optimal decision rule is incomputable, a methodology for designing suboptimal rules is proposed. A numerical algorithm is developed to facilitate the design and performance evaluation of suboptimal rules.
Decision Support Systems for Launch and Range Operations Using Jess
NASA Technical Reports Server (NTRS)
Thirumalainambi, Rajkumar
2007-01-01
The virtual test bed for launch and range operations developed at NASA Ames Research Center consists of various independent expert systems advising on weather effects, toxic gas dispersions and human health risk assessment during space-flight operations. An individual dedicated server supports each expert system and the master system gather information from the dedicated servers to support the launch decision-making process. Since the test bed is based on the web system, reducing network traffic and optimizing the knowledge base is critical to its success of real-time or near real-time operations. Jess, a fast rule engine and powerful scripting environment developed at Sandia National Laboratory has been adopted to build the expert systems providing robustness and scalability. Jess also supports XML representation of knowledge base with forward and backward chaining inference mechanism. Facts added - to working memory during run-time operations facilitates analyses of multiple scenarios. Knowledge base can be distributed with one inference engine performing the inference process. This paper discusses details of the knowledge base and inference engine using Jess for a launch and range virtual test bed.
Whitacre, James M; Rohlfshagen, Philipp; Bender, Axel; Yao, Xin
2012-09-01
Engineered systems are designed to deftly operate under predetermined conditions yet are notoriously fragile when unexpected perturbations arise. In contrast, biological systems operate in a highly flexible manner; learn quickly adequate responses to novel conditions, and evolve new routines and traits to remain competitive under persistent environmental change. A recent theory on the origins of biological flexibility has proposed that degeneracy-the existence of multi-functional components with partially overlapping functions-is a primary determinant of the robustness and adaptability found in evolved systems. While degeneracy's contribution to biological flexibility is well documented, there has been little investigation of degeneracy design principles for achieving flexibility in systems engineering. Actually, the conditions that can lead to degeneracy are routinely eliminated in engineering design. With the planning of transportation vehicle fleets taken as a case study, this article reports evidence that degeneracy improves the robustness and adaptability of a simulated fleet towards unpredicted changes in task requirements without incurring costs to fleet efficiency. We find that degeneracy supports faster rates of design adaptation and ultimately leads to better fleet designs. In investigating the limitations of degeneracy as a design principle, we consider decision-making difficulties that arise from degeneracy's influence on fleet complexity. While global decision-making becomes more challenging, we also find degeneracy accommodates rapid distributed decision-making leading to (near-optimal) robust system performance. Given the range of conditions where favorable short-term and long-term performance outcomes are observed, we propose that degeneracy may fundamentally alter the propensity for adaptation and is useful within different engineering and planning contexts.
NASA Astrophysics Data System (ADS)
Quinn, J. D.; Reed, P. M.; Keller, K.
2015-12-01
Recent multi-objective extensions of the classical shallow lake problem are useful for exploring the conceptual and computational challenges that emerge when managing irreversible water quality tipping points. Building on this work, we explore a four objective version of the lake problem where a hypothetical town derives economic benefits from polluting a nearby lake, but at the risk of irreversibly tipping the lake into a permanently polluted state. The trophic state of the lake exhibits non-linear threshold dynamics; below some critical phosphorus (P) threshold it is healthy and oligotrophic, but above this threshold it is irreversibly eutrophic. The town must decide how much P to discharge each year, a decision complicated by uncertainty in the natural P inflow to the lake. The shallow lake problem provides a conceptually rich set of dynamics, low computational demands, and a high level of mathematical difficulty. These properties maximize its value for benchmarking the relative merits and limitations of emerging decision support frameworks, such as Direct Policy Search (DPS). Here, we explore the use of DPS as a formal means of developing robust environmental pollution control rules that effectively account for deeply uncertain system states and conflicting objectives. The DPS reformulation of the shallow lake problem shows promise in formalizing pollution control triggers and signposts, while dramatically reducing the computational complexity of the multi-objective pollution control problem. More broadly, the insights from the DPS variant of the shallow lake problem formulated in this study bridge emerging work related to socio-ecological systems management, tipping points, robust decision making, and robust control.
Graeden, Ellie; Kerr, Justin; Sorrell, Erin M.; Katz, Rebecca
2018-01-01
Managing infectious disease requires rapid and effective response to support decision making. The decisions are complex and require understanding of the diseases, disease intervention and control measures, and the disease-relevant characteristics of the local community. Though disease modeling frameworks have been developed to address these questions, the complexity of current models presents a significant barrier to community-level decision makers in using the outputs of the most scientifically robust methods to support pragmatic decisions about implementing a public health response effort, even for endemic diseases with which they are already familiar. Here, we describe the development of an application available on the internet, including from mobile devices, with a simple user interface, to support on-the-ground decision-making for integrating disease control programs, given local conditions and practical constraints. The model upon which the tool is built provides predictive analysis for the effectiveness of integration of schistosomiasis and malaria control, two diseases with extensive geographical and epidemiological overlap, and which result in significant morbidity and mortality in affected regions. Working with data from countries across sub-Saharan Africa and the Middle East, we present a proof-of-principle method and corresponding prototype tool to provide guidance on how to optimize integration of vertical disease control programs. This method and tool demonstrate significant progress in effectively translating the best available scientific models to support practical decision making on the ground with the potential to significantly increase the efficacy and cost-effectiveness of disease control. Author summary Designing and implementing effective programs for infectious disease control requires complex decision-making, informed by an understanding of the diseases, the types of disease interventions and control measures available, and the disease-relevant characteristics of the local community. Though disease modeling frameworks have been developed to address these questions and support decision-making, the complexity of current models presents a significant barrier to on-the-ground end users. The picture is further complicated when considering approaches for integration of different disease control programs, where co-infection dynamics, treatment interactions, and other variables must also be taken into account. Here, we describe the development of an application available on the internet with a simple user interface, to support on-the-ground decision-making for integrating disease control, given local conditions and practical constraints. The model upon which the tool is built provides predictive analysis for the effectiveness of integration of schistosomiasis and malaria control, two diseases with extensive geographical and epidemiological overlap. This proof-of-concept method and tool demonstrate significant progress in effectively translating the best available scientific models to support pragmatic decision-making on the ground, with the potential to significantly increase the impact and cost-effectiveness of disease control. PMID:29649260
Factors related to drug approvals: predictors of outcome?
Liberti, Lawrence; Breckenridge, Alasdair; Hoekman, Jarno; McAuslane, Neil; Stolk, Pieter; Leufkens, Hubert
2017-06-01
There is growing interest in characterising factors associated with positive regulatory outcomes for drug marketing authorisations. We assessed empirical studies published over the past 15 years seeking to identify predictive factors. Factors were classified to one of four 'factor clusters': evidentiary support; product or indication characteristics; company experience or strategy; social and regulatory factors. We observed a heterogeneous mix of technical factors (e.g., study designs, clinical evidence of efficacy) and less studied social factors (e.g., company-regulator interactions). We confirmed factors known to be of relevance to drug approval decisions (imperative) and a cohort of less understood (compensatory) social factors. Having robust supportive clinical evidence, addressing rare or serious illness, following scientific advice and prior company experience were associated with positive outcomes, which illustrated the multifactorial nature of regulatory decision making and factors need to be considered holistically while having varying, context-dependent importance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dantzker, Heather C.; Portier, Christopher J.
2014-01-01
Background: Biological pathway-based chemical testing approaches are central to the National Research Council’s vision for 21st century toxicity testing. Approaches such as high-throughput in vitro screening offer the potential to evaluate thousands of chemicals faster and cheaper than ever before and to reduce testing on laboratory animals. Collaborative scientific engagement is important in addressing scientific issues arising in new federal chemical testing programs and for achieving stakeholder support of their use. Objectives: We present two recommendations specifically focused on increasing scientific engagement in the U.S. Environmental Protection Agency (EPA) ToxCast™ initiative. Through these recommendations we seek to bolster the scientific foundation of federal chemical testing efforts such as ToxCast™ and the public health decisions that rely upon them. Discussion: Environmental Defense Fund works across disciplines and with diverse groups to improve the science underlying environmental health decisions. We propose that the U.S. EPA can strengthen the scientific foundation of its new chemical testing efforts and increase support for them in the scientific research community by a) expanding and diversifying scientific input into the development and application of new chemical testing methods through collaborative workshops, and b) seeking out mutually beneficial research partnerships. Conclusions: Our recommendations provide concrete actions for the U.S. EPA to increase and diversify engagement with the scientific research community in its ToxCast™ initiative. We believe that such engagement will help ensure that new chemical testing data are scientifically robust and that the U.S. EPA gains the support and acceptance needed to sustain new testing efforts to protect public health. Citation: McPartland J, Dantzker HC, Portier CJ. 2015. Building a robust 21st century chemical testing program at the U.S. Environmental Protection Agency: recommendations for strengthening scientific engagement. Environ Health Perspect 123:1–5; http://dx.doi.org/10.1289/ehp.1408601 PMID:25343778
Robustness analysis of a green chemistry-based model for the ...
This paper proposes a robustness analysis based on Multiple Criteria Decision Aiding (MCDA). The ensuing model was used to assess the implementation of green chemistry principles in the synthesis of silver nanoparticles. Its recommendations were also compared to an earlier developed model for the same purpose to investigate concordance between the models and potential decision support synergies. A three-phase procedure was adopted to achieve the research objectives. Firstly, an ordinal ranking of the evaluation criteria used to characterize the implementation of green chemistry principles was identified through relative ranking analysis. Secondly, a structured selection process for an MCDA classification method was conducted, which ensued in the identification of Stochastic Multi-Criteria Acceptability Analysis (SMAA). Lastly, the agreement of the classifications by the two MCDA models and the resulting synergistic role of decision recommendations were studied. This comparison showed that the results of the two models agree between 76% and 93% of the simulation set-ups and it confirmed that different MCDA models provide a more inclusive and transparent set of recommendations. This integrative research confirmed the beneficial complementary use of MCDA methods to aid responsible development of nanosynthesis, by accounting for multiple objectives and helping communication of complex information in a comprehensive and traceable format, suitable for stakeholders and
NASA Astrophysics Data System (ADS)
Noacco, V.; Wagener, T.; Pianosi, F.; Philp, T.
2017-12-01
Insurance companies provide insurance against a wide range of threats, such as natural catastrophes, nuclear incidents and terrorism. To quantify risk and support investment decisions, mathematical models are used, for example to set the premiums charged to clients that protect from financial loss, should deleterious events occur. While these models are essential tools for adequately assessing the risk attached to an insurer's portfolio, their development is costly and their value for decision-making may be limited by an incomplete understanding of uncertainty and sensitivity. Aside from the business need to understand risk and uncertainty, the insurance sector also faces regulation which requires them to test their models in such a way that uncertainties are appropriately captured and that plans are in place to assess the risks and their mitigation. The building and testing of models constitutes a high cost for insurance companies, and it is a time intensive activity. This study uses an established global sensitivity analysis toolbox (SAFE) to more efficiently capture the uncertainties and sensitivities embedded in models used by a leading re/insurance firm, with structured approaches to validate these models and test the impact of assumptions on the model predictions. It is hoped that this in turn will lead to better-informed and more robust business decisions.
NASA Astrophysics Data System (ADS)
Tang, Zhongqian; Zhang, Hua; Yi, Shanzhen; Xiao, Yangfan
2018-03-01
GIS-based multi-criteria decision analysis (MCDA) is increasingly used to support flood risk assessment. However, conventional GIS-MCDA methods fail to adequately represent spatial variability and are accompanied with considerable uncertainty. It is, thus, important to incorporate spatial variability and uncertainty into GIS-based decision analysis procedures. This research develops a spatially explicit, probabilistic GIS-MCDA approach for the delineation of potentially flood susceptible areas. The approach integrates the probabilistic and the local ordered weighted averaging (OWA) methods via Monte Carlo simulation, to take into account the uncertainty related to criteria weights, spatial heterogeneity of preferences and the risk attitude of the analyst. The approach is applied to a pilot study for the Gucheng County, central China, heavily affected by the hazardous 2012 flood. A GIS database of six geomorphological and hydrometeorological factors for the evaluation of susceptibility was created. Moreover, uncertainty and sensitivity analysis were performed to investigate the robustness of the model. The results indicate that the ensemble method improves the robustness of the model outcomes with respect to variation in criteria weights and identifies which criteria weights are most responsible for the variability of model outcomes. Therefore, the proposed approach is an improvement over the conventional deterministic method and can provides a more rational, objective and unbiased tool for flood susceptibility evaluation.
Marino, Christopher J; Mahan, Robert R
2005-01-01
The nutrition label format currently used by consumers to make dietary-related decisions presents significant information-processing demands for integration-based decisions; however, those demands were not considered as primary factors when the format was adopted. Labels designed in accordance with known principles of cognitive psychology might enhance the kind of decision making that food labeling was intended to facilitate. Three experiments were designed on the basis of the proximity compatibility principle (PCP) to investigate the relationship between nutrition label format and decision making; the experiments involved two types of integration decisions and one type of filtering decision. Based on the PCP, decision performance was measured to test the overall hypothesis that matched task-display tandems would result in better decision performance than would mismatched tandems. In each experiment, a statistically significant increase in mean decision performance was found when the display design was cognitively matched to the demands of the task. Combined, the results from all three experiments support the general hypothesis that task-display matching is a design principle that may enhance the utility of nutrition labeling in nutrition-related decision making. Actual or potential applications of this research include developing robust display solutions that aid in less effortful assimilation of nutrition-related information for consumers.
Design of decision support interventions for medication prescribing.
Horsky, Jan; Phansalkar, Shobha; Desai, Amrita; Bell, Douglas; Middleton, Blackford
2013-06-01
Describe optimal design attributes of clinical decision support (CDS) interventions for medication prescribing, emphasizing perceptual, cognitive and functional characteristics that improve human-computer interaction (HCI) and patient safety. Findings from published reports on success, failures and lessons learned during implementation of CDS systems were reviewed and interpreted with regard to HCI and software usability principles. We then formulated design recommendations for CDS alerts that would reduce unnecessary workflow interruptions and allow clinicians to make informed decisions quickly, accurately and without extraneous cognitive and interactive effort. Excessive alerting that tends to distract clinicians rather than provide effective CDS can be reduced by designing only high severity alerts as interruptive dialog boxes and less severe warnings without explicit response requirement, by curating system knowledge bases to suppress warnings with low clinical utility and by integrating contextual patient data into the decision logic. Recommended design principles include parsimonious and consistent use of color and language, minimalist approach to the layout of information and controls, the use of font attributes to convey hierarchy and visual prominence of important data over supporting information, the inclusion of relevant patient data in the context of the alert and allowing clinicians to respond with one or two clicks. Although HCI and usability principles are well established and robust, CDS and EHR system interfaces rarely conform to the best known design conventions and are seldom conceived and designed well enough to be truly versatile and dependable tools. These relatively novel interventions still require careful monitoring, research and analysis of its track record to mature. Clarity and specificity of alert content and optimal perceptual and cognitive attributes, for example, are essential for providing effective decision support to clinicians. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
The Problem of Size in Robust Design
NASA Technical Reports Server (NTRS)
Koch, Patrick N.; Allen, Janet K.; Mistree, Farrokh; Mavris, Dimitri
1997-01-01
To facilitate the effective solution of multidisciplinary, multiobjective complex design problems, a departure from the traditional parametric design analysis and single objective optimization approaches is necessary in the preliminary stages of design. A necessary tradeoff becomes one of efficiency vs. accuracy as approximate models are sought to allow fast analysis and effective exploration of a preliminary design space. In this paper we apply a general robust design approach for efficient and comprehensive preliminary design to a large complex system: a high speed civil transport (HSCT) aircraft. Specifically, we investigate the HSCT wing configuration design, incorporating life cycle economic uncertainties to identify economically robust solutions. The approach is built on the foundation of statistical experimentation and modeling techniques and robust design principles, and is specialized through incorporation of the compromise Decision Support Problem for multiobjective design. For large problems however, as in the HSCT example, this robust design approach developed for efficient and comprehensive design breaks down with the problem of size - combinatorial explosion in experimentation and model building with number of variables -and both efficiency and accuracy are sacrificed. Our focus in this paper is on identifying and discussing the implications and open issues associated with the problem of size for the preliminary design of large complex systems.
A robust ordering strategy for retailers facing a free shipping option.
Meng, Qing-chun; Wan, Xiao-le; Rong, Xiao-xia
2015-01-01
Free shipping with conditions has become one of the most effective marketing tools available. An increasing number of companies, especially e-businesses, prefer to offer free shipping with some predetermined condition, such as a minimum purchase amount by the customer. However, in practice, the demands of buyers are uncertain; they are often affected by many factors, such as the weather and season. We begin by modeling the centralized ordering problem in which the supplier offers a free shipping service and retailers face stochastic demands. As these random data are considered, only partial information such as the known mean, support, and deviation is needed. The model is then analyzed via a robust optimization method, and the two types of equivalent sets of uncertainty constraints that are obtained provide good mathematical properties with consideration of the robustness of solutions. Subsequently, a numerical example is used to compare the results achieved from a robust optimization method and the linear decision rules. Additionally, the robustness of the optimal solution is discussed, as it is affected by the minimum quantity parameters. The increasing cost-threshold relationship is divided into three periods. In addition, the case study shows that the proposed method achieves better stability as well as computational complexity.
Patterns of out-of-home placement decision-making in child welfare.
Chor, Ka Ho Brian; McClelland, Gary M; Weiner, Dana A; Jordan, Neil; Lyons, John S
2013-10-01
Out-of-home placement decision-making in child welfare is founded on the best interest of the child in the least restrictive setting. After a child is removed from home, however, little is known about the mechanism of placement decision-making. This study aims to systematically examine the patterns of out-of-home placement decisions made in a state's child welfare system by comparing two models of placement decision-making: a multidisciplinary team decision-making model and a clinically based decision support algorithm. Based on records of 7816 placement decisions representing 6096 children over a 4-year period, hierarchical log-linear modeling characterized concordance or agreement, and discordance or disagreement when comparing the two models and accounting for age-appropriate placement options. Children aged below 16 had an overall concordance rate of 55.7%, most apparent in the least restrictive (20.4%) and the most restrictive placement (18.4%). Older youth showed greater discordant distributions (62.9%). Log-linear analysis confirmed the overall robustness of concordance (odd ratios [ORs] range: 2.9-442.0), though discordance was most evident from small deviations from the decision support algorithm, such as one-level under-placement in group home (OR=5.3) and one-level over-placement in residential treatment center (OR=4.8). Concordance should be further explored using child-level clinical and placement stability outcomes. Discordance might be explained by dynamic factors such as availability of placements, caregiver preferences, or policy changes and could be justified by positive child-level outcomes. Empirical placement decision-making is critical to a child's journey in child welfare and should be continuously improved to effect positive child welfare outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Reply to "transforming oncology care": advancing value, accessing innovation.
Paradis, Rebecca
2015-09-01
Alternative payment models in oncology are already successfully standardizing care, curbing costs, and improving the patient experience. Yet, it is unclear whether decision makers are adequately considering patient access to innovation when creating these models, which could have severe consequences for a robust innovation ecosystem and the lives of afflicted patients. The suggested chart includes recommendations on: Allowing for the adoption of new, promising therapies; Promoting the measurement of patient-centered outcomes; and Providing support for personalized medicine.
Improving Empirical Approaches to Estimating Local Greenhouse Gas Emissions
NASA Astrophysics Data System (ADS)
Blackhurst, M.; Azevedo, I. L.; Lattanzi, A.
2016-12-01
Evidence increasingly indicates our changing climate will have significant global impacts on public health, economies, and ecosystems. As a result, local governments have become increasingly interested in climate change mitigation. In the U.S., cities and counties representing nearly 15% of the domestic population plan to reduce 300 million metric tons of greenhouse gases over the next 40 years (or approximately 1 ton per capita). Local governments estimate greenhouse gas emissions to establish greenhouse gas mitigation goals and select supporting mitigation measures. However, current practices produce greenhouse gas estimates - also known as a "greenhouse gas inventory " - of empirical quality often insufficient for robust mitigation decision making. Namely, current mitigation planning uses sporadic, annual, and deterministic estimates disaggregated by broad end use sector, obscuring sources of emissions uncertainty, variability, and exogeneity that influence mitigation opportunities. As part of AGU's Thriving Earth Exchange, Ari Lattanzi of City of Pittsburgh, PA recently partnered with Dr. Inez Lima Azevedo (Carnegie Mellon University) and Dr. Michael Blackhurst (University of Pittsburgh) to improve the empirical approach to characterizing Pittsburgh's greenhouse gas emissions. The project will produce first-order estimates of the underlying sources of uncertainty, variability, and exogeneity influencing Pittsburgh's greenhouse gases and discuss implications of mitigation decision making. The results of the project will enable local governments to collect more robust greenhouse gas inventories to better support their mitigation goals and improve measurement and verification efforts.
Fuzzy robust credibility-constrained programming for environmental management and planning.
Zhang, Yimei; Hang, Guohe
2010-06-01
In this study, a fuzzy robust credibility-constrained programming (FRCCP) is developed and applied to the planning for waste management systems. It incorporates the concepts of credibility-based chance-constrained programming and robust programming within an optimization framework. The developed method can reflect uncertainties presented as possibility-density by fuzzy-membership functions. Fuzzy credibility constraints are transformed to the crisp equivalents with different credibility levels, and ordinary fuzzy inclusion constraints are determined by their robust deterministic constraints by setting a-cut levels. The FRCCP method can provide different system costs under different credibility levels (lambda). From the results of sensitivity analyses, the operation cost of the landfill is a critical parameter. For the management, any factors that would induce cost fluctuation during landfilling operation would deserve serious observation and analysis. By FRCCP, useful solutions can be obtained to provide decision-making support for long-term planning of solid waste management systems. It could be further enhanced through incorporating methods of inexact analysis into its framework. It can also be applied to other environmental management problems.
Tinghög, Gustav; Andersson, David; Bonn, Caroline; Johannesson, Magnus; Kirchler, Michael; Koppel, Lina; Västfjäll, Daniel
2016-01-01
Do individuals intuitively favor certain moral actions over others? This study explores the role of intuitive thinking-induced by time pressure and cognitive load-in moral judgment and behavior. We conduct experiments in three different countries (Sweden, Austria, and the United States) involving over 1,400 subjects. All subjects responded to four trolley type dilemmas and four dictator games involving different charitable causes. Decisions were made under time pressure/time delay or while experiencing cognitive load or control. Overall we find converging evidence that intuitive states do not influence moral decisions. Neither time-pressure nor cognitive load had any effect on moral judgments or altruistic behavior. Thus we find no supporting evidence for the claim that intuitive moral judgments and dictator game giving differ from more reflectively taken decisions. Across all samples and decision tasks men were more likely to make utilitarian moral judgments and act selfishly compared to women, providing further evidence that there are robust gender differences in moral decision-making. However, there were no significant interactions between gender and the treatment manipulations of intuitive versus reflective decision-making.
Bonn, Caroline; Johannesson, Magnus; Kirchler, Michael; Koppel, Lina; Västfjäll, Daniel
2016-01-01
Do individuals intuitively favor certain moral actions over others? This study explores the role of intuitive thinking—induced by time pressure and cognitive load—in moral judgment and behavior. We conduct experiments in three different countries (Sweden, Austria, and the United States) involving over 1,400 subjects. All subjects responded to four trolley type dilemmas and four dictator games involving different charitable causes. Decisions were made under time pressure/time delay or while experiencing cognitive load or control. Overall we find converging evidence that intuitive states do not influence moral decisions. Neither time-pressure nor cognitive load had any effect on moral judgments or altruistic behavior. Thus we find no supporting evidence for the claim that intuitive moral judgments and dictator game giving differ from more reflectively taken decisions. Across all samples and decision tasks men were more likely to make utilitarian moral judgments and act selfishly compared to women, providing further evidence that there are robust gender differences in moral decision-making. However, there were no significant interactions between gender and the treatment manipulations of intuitive versus reflective decision-making. PMID:27783704
Urich, Christian; Rauch, Wolfgang
2014-12-01
Long-term projections for key drivers needed in urban water infrastructure planning such as climate change, population growth, and socio-economic changes are deeply uncertain. Traditional planning approaches heavily rely on these projections, which, if a projection stays unfulfilled, can lead to problematic infrastructure decisions causing high operational costs and/or lock-in effects. New approaches based on exploratory modelling take a fundamentally different view. Aim of these is, to identify an adaptation strategy that performs well under many future scenarios, instead of optimising a strategy for a handful. However, a modelling tool to support strategic planning to test the implication of adaptation strategies under deeply uncertain conditions for urban water management does not exist yet. This paper presents a first step towards a new generation of such strategic planning tools, by combing innovative modelling tools, which coevolve the urban environment and urban water infrastructure under many different future scenarios, with robust decision making. The developed approach is applied to the city of Innsbruck, Austria, which is spatially explicitly evolved 20 years into the future under 1000 scenarios to test the robustness of different adaptation strategies. Key findings of this paper show that: (1) Such an approach can be used to successfully identify parameter ranges of key drivers in which a desired performance criterion is not fulfilled, which is an important indicator for the robustness of an adaptation strategy; and (2) Analysis of the rich dataset gives new insights into the adaptive responses of agents to key drivers in the urban system by modifying a strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Development of a robust space power system decision model
NASA Astrophysics Data System (ADS)
Chew, Gilbert; Pelaccio, Dennis G.; Jacobs, Mark; Stancati, Michael; Cataldo, Robert
2001-02-01
NASA continues to evaluate power systems to support human exploration of the Moon and Mars. The system(s) would address all power needs of surface bases and on-board power for space transfer vehicles. Prior studies have examined both solar and nuclear-based alternatives with respect to individual issues such as sizing or cost. What has not been addressed is a comprehensive look at the risks and benefits of the options that could serve as the analytical framework to support a system choice that best serves the needs of the exploration program. This paper describes the SAIC developed Space Power System Decision Model, which uses a formal Two-step Analytical Hierarchy Process (TAHP) methodology that is used in the decision-making process to clearly distinguish candidate power systems in terms of benefits, safety, and risk. TAHP is a decision making process based on the Analytical Hierarchy Process, which employs a hierarchic approach of structuring decision factors by weights, and relatively ranks system design options on a consistent basis. This decision process also includes a level of data gathering and organization that produces a consistent, well-documented assessment, from which the capability of each power system option to meet top-level goals can be prioritized. The model defined on this effort focuses on the comparative assessment candidate power system options for Mars surface application(s). This paper describes the principles of this approach, the assessment criteria and weighting procedures, and the tools to capture and assess the expert knowledge associated with space power system evaluation. .
NASA Technical Reports Server (NTRS)
Hall, Justin R.; Hastrup, Rolf C.
1990-01-01
The principal challenges in providing effective deep space navigation, telecommunications, and information management architectures and designs for Mars exploration support are presented. The fundamental objectives are to provide the mission with the means to monitor and control mission elements, obtain science, navigation, and engineering data, compute state vectors and navigate, and to move these data efficiently and automatically between mission nodes for timely analysis and decision making. New requirements are summarized, and related issues and challenges including the robust connectivity for manned and robotic links, are identified. Enabling strategies are discussed, and candidate architectures and driving technologies are described.
NASA Astrophysics Data System (ADS)
Hall, Justin R.; Hastrup, Rolf C.
1990-10-01
The principal challenges in providing effective deep space navigation, telecommunications, and information management architectures and designs for Mars exploration support are presented. The fundamental objectives are to provide the mission with the means to monitor and control mission elements, obtain science, navigation, and engineering data, compute state vectors and navigate, and to move these data efficiently and automatically between mission nodes for timely analysis and decision making. New requirements are summarized, and related issues and challenges including the robust connectivity for manned and robotic links, are identified. Enabling strategies are discussed, and candidate architectures and driving technologies are described.
Clinical decision rules for termination of resuscitation in out-of-hospital cardiac arrest.
Sherbino, Jonathan; Keim, Samuel M; Davis, Daniel P
2010-01-01
Out-of-hospital cardiac arrest (OHCA) has a low probability of survival to hospital discharge. Four clinical decision rules (CDRs) have been validated to identify patients with no probability of survival. Three of these rules focus on exclusive prehospital basic life support care for OHCA, and two of these rules focus on prehospital advanced life support care for OHCA. Can a CDR for the termination of resuscitation identify a patient with no probability of survival in the setting of OHCA? Six validation studies were selected from a PubMed search. A structured review of each of the studies is presented. In OHCA receiving basic life support care, the BLS-TOR (basic life support termination of resuscitation) rule has a positive predictive value for death of 99.5% (95% confidence interval 98.9-99.8%), and decreases the transportation of all patients by 62.6%. This rule has been appropriately validated for widespread use. In OHCA receiving advanced life support care, no current rule has been appropriately validated for widespread use. The BLS-TOR rule is a simple rule that identifies patients who will not survive OHCA. Further research is required to identify similarly robust CDRs for patients receiving advanced life support care in the setting of OHCA. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Subagadis, Yohannes Hagos; Schütze, Niels; Grundmann, Jens
2014-05-01
An amplified interconnectedness between a hydro-environmental and socio-economic system brings about profound challenges of water management decision making. In this contribution, we present a fuzzy stochastic approach to solve a set of decision making problems, which involve hydrologically, environmentally, and socio-economically motivated criteria subjected to uncertainty and ambiguity. The proposed methodological framework combines objective and subjective criteria in a decision making procedure for obtaining an acceptable ranking in water resources management alternatives under different type of uncertainty (subjective/objective) and heterogeneous information (quantitative/qualitative) simultaneously. The first step of the proposed approach involves evaluating the performance of alternatives with respect to different types of criteria. The ratings of alternatives with respect to objective and subjective criteria are evaluated by simulation-based optimization and fuzzy linguistic quantifiers, respectively. Subjective and objective uncertainties related to the input information are handled through linking fuzziness and randomness together. Fuzzy decision making helps entail the linguistic uncertainty and a Monte Carlo simulation process is used to map stochastic uncertainty. With this framework, the overall performance of each alternative is calculated using an Order Weighted Averaging (OWA) aggregation operator accounting for decision makers' experience and opinions. Finally, ranking is achieved by conducting pair-wise comparison of management alternatives. This has been done on the basis of the risk defined by the probability of obtaining an acceptable ranking and mean difference in total performance for the pair of management alternatives. The proposed methodology is tested in a real-world hydrosystem, to find effective and robust intervention strategies for the management of a coastal aquifer system affected by saltwater intrusion due to excessive groundwater extraction for irrigated agriculture and municipal use. The results show that the approach gives useful support for robust decision-making and is sensitive to the decision makers' degree of optimism.
Dynamic Routing of Aircraft in the Presence of Adverse Weather Using a POMDP Framework
NASA Technical Reports Server (NTRS)
Balaban, Edward; Roychoudhury, Indranil; Spirkovska, Lilly; Sankararaman, Shankar; Kulkarni, Chetan; Arnon, Tomer
2017-01-01
Each year weather-related airline delays result in hundreds of millions of dollars in additional fuel burn, maintenance, and lost revenue, not to mention passenger inconvenience. The current approaches for aircraft route planning in the presence of adverse weather still mainly rely on deterministic methods. In contrast, this work aims to deal with the problem using a Partially Observable Markov Decision Processes (POMDPs) framework, which allows for reasoning over uncertainty (including uncertainty in weather evolution over time) and results in solutions that are more robust to disruptions. The POMDP-based decision support system is demonstrated on several scenarios involving convective weather cells and is benchmarked against a deterministic planning system with functionality similar to those currently in use or under development.
NASA Astrophysics Data System (ADS)
Flaming, Susan C.
2007-12-01
The continuing saga of satellite technology development is as much a story of successful risk management as of innovative engineering. How do program leaders on complex, technology projects manage high stakes risks that threaten business success and satellite performance? This grounded theory study of risk decision making portrays decision leadership practices at one communication satellite company. Integrated product team (IPT) leaders of multi-million dollar programs were interviewed and observed to develop an extensive description of the leadership skills required to navigate organizational influences and drive challenging risk decisions to closure. Based on the study's findings the researcher proposes a new decision making model, Deliberative Decision Making, to describe the program leaders' cognitive and organizational leadership practices. This Deliberative Model extends the insights of prominent decision making models including the rational (or classical) and the naturalistic and qualifies claims made by bounded rationality theory. The Deliberative Model describes how leaders proactively engage resources to play a variety of decision leadership roles. The Model incorporates six distinct types of leadership decision activities, undertaken in varying sequence based on the challenges posed by specific risks. Novel features of the Deliberative Decision Model include: an inventory of leadership methods for managing task challenges, potential stakeholder bias and debates; four types of leadership meta-decisions that guide decision processes, and aligned organizational culture. Both supporting and constraining organizational influences were observed as leaders managed major risks, requiring active leadership on the most difficult decisions. Although the company's engineering culture emphasized the importance of data-based decisions, the uncertainties intrinsic to satellite risks required expert engineering judgment to be exercised throughout. An investigation into the co-variation of decision methods with uncertainty suggests that perceived risk severity may serve as a robust indicator for choices about decision practices. The Deliberative Decision processes incorporate multiple organizational and cultural controls as cross-checks to mitigate potential parochial bias of individuals, stakeholder groups, or leaders. Overall the Deliberative Decision framework describes how expert leadership practices, supportive organizational systems along with aligned cultural values and behavioral norms help leaders drive high stakes risk decisions to closure in this complex, advanced-technology setting.
Robust Economic Control Decision Method of Uncertain System on Urban Domestic Water Supply.
Li, Kebai; Ma, Tianyi; Wei, Guo
2018-03-31
As China quickly urbanizes, urban domestic water generally presents the circumstances of both rising tendency and seasonal cycle fluctuation. A robust economic control decision method for dynamic uncertain systems is proposed in this paper. It is developed based on the internal model principle and pole allocation method, and it is applied to an urban domestic water supply system with rising tendency and seasonal cycle fluctuation. To achieve this goal, first a multiplicative model is used to describe the urban domestic water demand. Then, a capital stock and a labor stock are selected as the state vector, and the investment and labor are designed as the control vector. Next, the compensator subsystem is devised in light of the internal model principle. Finally, by using the state feedback control strategy and pole allocation method, the multivariable robust economic control decision method is implemented. The implementation with this model can accomplish the urban domestic water supply control goal, with the robustness for the variation of parameters. The methodology presented in this study may be applied to the water management system in other parts of the world, provided all data used in this study are available. The robust control decision method in this paper is also applicable to deal with tracking control problems as well as stabilization control problems of other general dynamic uncertain systems.
Robust Economic Control Decision Method of Uncertain System on Urban Domestic Water Supply
Li, Kebai; Ma, Tianyi; Wei, Guo
2018-01-01
As China quickly urbanizes, urban domestic water generally presents the circumstances of both rising tendency and seasonal cycle fluctuation. A robust economic control decision method for dynamic uncertain systems is proposed in this paper. It is developed based on the internal model principle and pole allocation method, and it is applied to an urban domestic water supply system with rising tendency and seasonal cycle fluctuation. To achieve this goal, first a multiplicative model is used to describe the urban domestic water demand. Then, a capital stock and a labor stock are selected as the state vector, and the investment and labor are designed as the control vector. Next, the compensator subsystem is devised in light of the internal model principle. Finally, by using the state feedback control strategy and pole allocation method, the multivariable robust economic control decision method is implemented. The implementation with this model can accomplish the urban domestic water supply control goal, with the robustness for the variation of parameters. The methodology presented in this study may be applied to the water management system in other parts of the world, provided all data used in this study are available. The robust control decision method in this paper is also applicable to deal with tracking control problems as well as stabilization control problems of other general dynamic uncertain systems. PMID:29614749
Robustness and Uncertainty: Applications for Policy in Climate and Hydrological Modeling
NASA Astrophysics Data System (ADS)
Fields, A. L., III
2015-12-01
Policymakers must often decide how to proceed when presented with conflicting simulation data from hydrological, climatological, and geological models. While laboratory sciences often appeal to the reproducibility of results to argue for the validity of their conclusions, simulations cannot use this strategy for a number of pragmatic and methodological reasons. However, robustness of predictions and causal structures can serve the same function for simulations as reproducibility does for laboratory experiments and field observations in either adjudicating between conflicting results or showing that there is insufficient justification to externally validate the results. Additionally, an interpretation of the argument from robustness is presented that involves appealing to the convergence of many well-built and diverse models rather than the more common version which involves appealing to the probability that one of a set of models is likely to be true. This interpretation strengthens the case for taking robustness as an additional requirement for the validation of simulation results and ultimately supports the idea that computer simulations can provide information about the world that is just as trustworthy as data from more traditional laboratory studies and field observations. Understanding the importance of robust results for the validation of simulation data is especially important for policymakers making decisions on the basis of potentially conflicting models. Applications will span climate, hydrological, and hydroclimatological models.
A Robust Ordering Strategy for Retailers Facing a Free Shipping Option
Meng, Qing-chun; Wan, Xiao-le; Rong, Xiao-xia
2015-01-01
Free shipping with conditions has become one of the most effective marketing tools available. An increasing number of companies, especially e-businesses, prefer to offer free shipping with some predetermined condition, such as a minimum purchase amount by the customer. However, in practice, the demands of buyers are uncertain; they are often affected by many factors, such as the weather and season. We begin by modeling the centralized ordering problem in which the supplier offers a free shipping service and retailers face stochastic demands. As these random data are considered, only partial information such as the known mean, support, and deviation is needed. The model is then analyzed via a robust optimization method, and the two types of equivalent sets of uncertainty constraints that are obtained provide good mathematical properties with consideration of the robustness of solutions. Subsequently, a numerical example is used to compare the results achieved from a robust optimization method and the linear decision rules. Additionally, the robustness of the optimal solution is discussed, as it is affected by the minimum quantity parameters. The increasing cost-threshold relationship is divided into three periods. In addition, the case study shows that the proposed method achieves better stability as well as computational complexity. PMID:25993533
Delusion proneness and 'jumping to conclusions': relative and absolute effects.
van der Leer, L; Hartig, B; Goldmanis, M; McKay, R
2015-04-01
That delusional and delusion-prone individuals 'jump to conclusions' is one of the most robust and important findings in the literature on delusions. However, although the notion of 'jumping to conclusions' (JTC) implies gathering insufficient evidence and reaching premature decisions, previous studies have not investigated whether the evidence gathering of delusion-prone individuals is, in fact, suboptimal. The standard JTC effect is a relative effect but using relative comparisons to substantiate absolute claims is problematic. In this study we investigated whether delusion-prone participants jump to conclusions in both a relative and an absolute sense. Healthy participants (n = 112) completed an incentivized probabilistic reasoning task in which correct decisions were rewarded and additional information could be requested for a small price. This combination of rewards and costs generated optimal decision points. Participants also completed measures of delusion proneness, intelligence and risk aversion. Replicating the standard relative finding, we found that delusion proneness significantly predicted task decisions, such that the more delusion prone the participants were, the earlier they decided. This finding was robust when accounting for the effects of risk aversion and intelligence. Importantly, high-delusion-prone participants also decided in advance of an objective rational optimum, gathering fewer data than would have maximized their expected payoff. Surprisingly, we found that even low-delusion-prone participants jumped to conclusions in this absolute sense. Our findings support and clarify the claim that delusion formation is associated with a tendency to 'jump to conclusions'. In short, most people jump to conclusions, but more delusion-prone individuals 'jump further'.
Observations to support adaptation: Principles, scales and decision-making
NASA Astrophysics Data System (ADS)
Pulwarty, R. S.
2012-12-01
As has been long noted, a comprehensive, coordinated observing system is the backbone of any Earth information system. Demands are increasingly placed on earth observation and prediction systems and attendant services to address the needs of economically and environmentally vulnerable sectors and investments, including energy, water, human health, transportation, agriculture, fisheries, tourism, biodiversity, and national security. Climate services include building capacity to interpret information and recognize standards and limitations of data in the promotion of social and economic development in a changing climate. This includes improving the understanding of climate in the context of a variety of temporal and spatial scales (including the influence of decadal scale forcings and land surface feedbacks on seasonal forecast reliability). Climate data and information are central for developing decision options that are sensitive to climate-related uncertainties and the design of flexible adaptation pathways. Ideally monitoring should be action oriented to support climate risk assessment and adaptation including informing robust decision making to multiple risks over the long term. Based on the experience of global observations programs and empirical research we outline- Challenges in developing effective monitoring and climate information systems to support adaptation. The types of observations of critical importance needed for sector planning to enhance food, water and energy security, and to improve early warning for disaster risk reduction Observations needed for ecosystem-based adaptation including the identification of thresholds, maintenance of biological diversity and land degradation The benefits and limits of linking regional model output to local observations including analogs and verification for adaptation planning To support these goals a robust systems of integrated observations are needed to characterize the uncertainty surrounding emergent risks including overcoming unrealistically precise information demands. While monitoring systems design and operation should be guided by the standards and requirements of management, those who provide information to the system (e.g. hydromet services) should also derive benefits. Drawing on identified information needs to support climate risk management (in drought, water resources and other areas) we outline principles of effective monitoring and develop preliminary strategic guidance for information systems being developed through the GEO, GCOS and Global and national frameworks for climate services. The efficacy of such services are improved by a problem-solving orientation, participatory planning, extension management and improvements in the use and value of existing data to legitimize new investments.
Is Israel ready for disease management?
Linden, Ariel
2006-10-01
Approximately 60% of all worldwide deaths are caused by chronic disease resulting from modifiable health behaviors. In the United States, structured programs tailored to identify and modify health behaviors of patients with chronic illness have grown into a robust industry called disease management. DM is premised upon the basic assumption that health services utilization and morbidity can be reduced for those with chronic illness by augmenting traditional episodic medical care services and support between physician visits. Given that Israel and the U.S. have similar demographics in their chronically ill populations, it would make intuitive sense for Israel to replicate efforts made in the U.S. to incorporate DM strategies. This paper provides a conceptual framework of how DM could be integrated within the current organizational structure of the Israeli healthcare system, which is uniquely conducive to the implementation of DM on a population-wide basis. While ultimately the decision to invest in DM lies with stakeholders at various institutional levels in Israel, this paper is intended to provide direction and support for that decision-making process.
Alkasab, Tarik K; Bizzo, Bernardo C; Berland, Lincoln L; Nair, Sujith; Pandharipande, Pari V; Harvey, H Benjamin
2017-09-01
Decreasing unnecessary variation in radiology reporting and producing guideline-concordant reports is fundamental to radiology's success in value-based payment models and good for patient care. In this article, we present an open authoring system for point-of-care clinical decision support tools integrated into the radiologist reporting environment referred to as the computer-assisted reporting and decision support (CAR/DS) framework. The CAR/DS authoring system, described herein, includes: (1) a definition format for representing radiology clinical guidelines as structured, machine-readable Extensible Markup Language documents and (2) a user-friendly reference implementation to test the fidelity of the created definition files with the clinical guideline. The proposed definition format and reference implementation will enable content creators to develop CAR/DS tools that voice recognition software (VRS) vendors can use to extend the commercial tools currently in use. In making the definition format and reference implementation software freely available, we hope to empower individual radiologists, expert groups such as the ACR, and VRS vendors to develop a robust ecosystem of CAR/DS tools that can further improve the quality and efficiency of the patient care that our field provides. We hope that this initial effort can serve as the basis for a community-owned open standard for guideline definition that the imaging informatics and VRS vendor communities will embrace and strengthen. To this end, the ACR Assist™ initiative is intended to make the College's clinical content, including the Incidental Findings Committee White Papers, available for decision support tool creation based upon the herein described CAR/DS framework. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Maurer, Max; Lienert, Judit
2017-01-01
We compare the use of multi-criteria decision analysis (MCDA)–or more precisely, models used in multi-attribute value theory (MAVT)–to integrated assessment (IA) models for supporting long-term water supply planning in a small town case study in Switzerland. They are used to evaluate thirteen system scale water supply alternatives in four future scenarios regarding forty-four objectives, covering technical, social, environmental, and economic aspects. The alternatives encompass both conventional and unconventional solutions and differ regarding technical, spatial and organizational characteristics. This paper focuses on the impact assessment and final evaluation step of the structured MCDA decision support process. We analyze the performance of the alternatives for ten stakeholders. We demonstrate the implications of model assumptions by comparing two IA and three MAVT evaluation model layouts of different complexity. For this comparison, we focus on the validity (ranking stability), desirability (value), and distinguishability (value range) of the alternatives given the five model layouts. These layouts exclude or include stakeholder preferences and uncertainties. Even though all five led us to identify the same best alternatives, they did not produce identical rankings. We found that the MAVT-type models provide higher distinguishability and a more robust basis for discussion than the IA-type models. The needed complexity of the model, however, should be determined based on the intended use of the model within the decision support process. The best-performing alternatives had consistently strong performance for all stakeholders and future scenarios, whereas the current water supply system was outperformed in all evaluation layouts. The best-performing alternatives comprise proactive pipe rehabilitation, adapted firefighting provisions, and decentralized water storage and/or treatment. We present recommendations for possible ways of improving water supply planning in the case study and beyond. PMID:28481881
NASA Astrophysics Data System (ADS)
Brennan-Tonetta, Margaret
This dissertation seeks to provide key information and a decision support tool that states can use to support long-term goals of fossil fuel displacement and greenhouse gas reductions. The research yields three outcomes: (1) A methodology that allows for a comprehensive and consistent inventory and assessment of bioenergy feedstocks in terms of type, quantity, and energy potential. Development of a standardized methodology for consistent inventorying of biomass resources fosters research and business development of promising technologies that are compatible with the state's biomass resource base. (2) A unique interactive decision support tool that allows for systematic bioenergy analysis and evaluation of policy alternatives through the generation of biomass inventory and energy potential data for a wide variety of feedstocks and applicable technologies, using New Jersey as a case study. Development of a database that can assess the major components of a bioenergy system in one tool allows for easy evaluation of technology, feedstock and policy options. The methodology and decision support tool is applicable to other states and regions (with location specific modifications), thus contributing to the achievement of state and federal goals of renewable energy utilization. (3) Development of policy recommendations based on the results of the decision support tool that will help to guide New Jersey into a sustainable renewable energy future. The database developed in this research represents the first ever assessment of bioenergy potential for New Jersey. It can serve as a foundation for future research and modifications that could increase its power as a more robust policy analysis tool. As such, the current database is not able to perform analysis of tradeoffs across broad policy objectives such as economic development vs. CO2 emissions, or energy independence vs. source reduction of solid waste. Instead, it operates one level below that with comparisons of kWh or GGE generated by different feedstock/technology combinations at the state and county level. Modification of the model to incorporate factors that will enable the analysis of broader energy policy issues as those mentioned above, are recommended for future research efforts.
Xu, Yuan; Ding, Kun; Huo, Chunlei; Zhong, Zisha; Li, Haichang; Pan, Chunhong
2015-01-01
Very high resolution (VHR) image change detection is challenging due to the low discriminative ability of change feature and the difficulty of change decision in utilizing the multilevel contextual information. Most change feature extraction techniques put emphasis on the change degree description (i.e., in what degree the changes have happened), while they ignore the change pattern description (i.e., how the changes changed), which is of equal importance in characterizing the change signatures. Moreover, the simultaneous consideration of the classification robust to the registration noise and the multiscale region-consistent fusion is often neglected in change decision. To overcome such drawbacks, in this paper, a novel VHR image change detection method is proposed based on sparse change descriptor and robust discriminative dictionary learning. Sparse change descriptor combines the change degree component and the change pattern component, which are encoded by the sparse representation error and the morphological profile feature, respectively. Robust change decision is conducted by multiscale region-consistent fusion, which is implemented by the superpixel-level cosparse representation with robust discriminative dictionary and the conditional random field model. Experimental results confirm the effectiveness of the proposed change detection technique. PMID:25918748
Land Cover Applications, Landscape Dynamics, and Global Change
Tieszen, Larry L.
2007-01-01
The Land Cover Applications, Landscape Dynamics, and Global Change project at U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) seeks to integrate remote sensing and simulation models to better understand and seek solutions to national and global issues. Modeling processes related to population impacts, natural resource management, climate change, invasive species, land use changes, energy development, and climate mitigation all pose significant scientific opportunities. The project activities use remotely sensed data to support spatial monitoring, provide sensitivity analyses across landscapes and large regions, and make the data and results available on the Internet with data access and distribution, decision support systems, and on-line modeling. Applications support sustainable natural resource use, carbon cycle science, biodiversity conservation, climate change mitigation, and robust simulation modeling approaches that evaluate ecosystem and landscape dynamics.
Decision insight into stakeholder conflict for ERN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siirola, John; Tidwell, Vincent Carroll; Benz, Zachary O.
Participatory modeling has become an important tool in facilitating resource decision making and dispute resolution. Approaches to modeling that are commonly used in this context often do not adequately account for important human factors. Current techniques provide insights into how certain human activities and variables affect resource outcomes; however, they do not directly simulate the complex variables that shape how, why, and under what conditions different human agents behave in ways that affect resources and human interactions related to them. Current approaches also do not adequately reveal how the effects of individual decisions scale up to have systemic level effectsmore » in complex resource systems. This lack of integration prevents the development of more robust models to support decision making and dispute resolution processes. Development of integrated tools is further hampered by the fact that collection of primary data for decision-making modeling is costly and time consuming. This project seeks to develop a new approach to resource modeling that incorporates both technical and behavioral modeling techniques into a single decision-making architecture. The modeling platform is enhanced by use of traditional and advanced processes and tools for expedited data capture. Specific objectives of the project are: (1) Develop a proof of concept for a new technical approach to resource modeling that combines the computational techniques of system dynamics and agent based modeling, (2) Develop an iterative, participatory modeling process supported with traditional and advance data capture techniques that may be utilized to facilitate decision making, dispute resolution, and collaborative learning processes, and (3) Examine potential applications of this technology and process. The development of this decision support architecture included both the engineering of the technology and the development of a participatory method to build and apply the technology. Stakeholder interaction with the model and associated data capture was facilitated through two very different modes of engagement, one a standard interface involving radio buttons, slider bars, graphs and plots, while the other utilized an immersive serious gaming interface. The decision support architecture developed through this project was piloted in the Middle Rio Grande Basin to examine how these tools might be utilized to promote enhanced understanding and decision-making in the context of complex water resource management issues. Potential applications of this architecture and its capacity to lead to enhanced understanding and decision-making was assessed through qualitative interviews with study participants who represented key stakeholders in the basin.« less
From the microscope to the macroscopic: changing from the bench to portfolio management
Sachs, Michael
2017-01-01
A role in portfolio management is ideal for individuals who enjoy tackling challenges that have both technical and business components. Portfolio management provides objective insights and analytics to support research and development decision making and planning. Successful practitioners usually have strong analytical abilities developed from a background in either science or business. Portfolio managers often advise key decision makers at both the team and senior management level and thus require robust oral, written, and interpersonal communication skills. Day-to-day tasks are rarely the same, and comfort with change and the unknown is essential. Here I will discuss my experience as a portfolio manager in a larger biopharmaceutical company and the skills from academic research I leveraged to make the transition. PMID:29084911
Simulation reduction using the Taguchi method
NASA Technical Reports Server (NTRS)
Mistree, Farrokh; Lautenschlager, Ume; Erikstad, Stein Owe; Allen, Janet K.
1993-01-01
A large amount of engineering effort is consumed in conducting experiments to obtain information needed for making design decisions. Efficiency in generating such information is the key to meeting market windows, keeping development and manufacturing costs low, and having high-quality products. The principal focus of this project is to develop and implement applications of Taguchi's quality engineering techniques. In particular, we show how these techniques are applied to reduce the number of experiments for trajectory simulation of the LifeSat space vehicle. Orthogonal arrays are used to study many parameters simultaneously with a minimum of time and resources. Taguchi's signal to noise ratio is being employed to measure quality. A compromise Decision Support Problem and Robust Design are applied to demonstrate how quality is designed into a product in the early stages of designing.
NASA Astrophysics Data System (ADS)
Zarindast, Atousa; Seyed Hosseini, Seyed Mohamad; Pishvaee, Mir Saman
2017-06-01
Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss decision variables, respectively, by a two-stage stochastic planning model, a robust stochastic optimization planning model which integrates worst case scenario in modeling approach and finally by equivalent deterministic planning model. The experimental study is carried out to compare the performances of the three models. Robust model resulted in remarkable cost saving and it illustrated that to cope with such uncertainties, we should consider them in advance in our planning. In our case study different supplier were selected due to this uncertainties and since supplier selection is a strategic decision, it is crucial to consider these uncertainties in planning approach.
Psychosocial work environment and mental health--a meta-analytic review.
Stansfeld, Stephen; Candy, Bridget
2006-12-01
To clarify the associations between psychosocial work stressors and mental ill health, a meta-analysis of psychosocial work stressors and common mental disorders was undertaken using longitudinal studies identified through a systematic literature review. The review used a standardized search strategy and strict inclusion and quality criteria in seven databases in 1994-2005. Papers were identified from 24,939 citations covering social determinants of health, 50 relevant papers were identified, 38 fulfilled inclusion criteria, and 11 were suitable for a meta-analysis. The Comprehensive Meta-analysis Programme was used for decision authority, decision latitude, psychological demands, and work social support, components of the job-strain and iso-strain models, and the combination of effort and reward that makes up the effort-reward imbalance model and job insecurity. Cochran's Q statistic assessed the heterogeneity of the results, and the I2 statistic determined any inconsistency between studies. Job strain, low decision latitude, low social support, high psychological demands, effort-reward imbalance, and high job insecurity predicted common mental disorders despite the heterogeneity for psychological demands and social support among men. The strongest effects were found for job strain and effort-reward imbalance. This meta-analysis provides robust consistent evidence that (combinations of) high demands and low decision latitude and (combinations of) high efforts and low rewards are prospective risk factors for common mental disorders and suggests that the psychosocial work environment is important for mental health. The associations are not merely explained by response bias. The impact of work stressors on common mental disorders differs for women and men.
Chung, Eun-Sung; Kim, Yeonjoo
2014-12-15
This study proposed a robust prioritization framework to identify the priorities of treated wastewater (TWW) use locations with consideration of various uncertainties inherent in the climate change scenarios and the decision-making process. First, a fuzzy concept was applied because future forecast precipitation and their hydrological impact analysis results displayed significant variances when considering various climate change scenarios and long periods (e.g., 2010-2099). Second, various multi-criteria decision making (MCDM) techniques including weighted sum method (WSM), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and fuzzy TOPSIS were introduced to robust prioritization because different MCDM methods use different decision philosophies. Third, decision making method under complete uncertainty (DMCU) including maximin, maximax, minimax regret, Hurwicz, and equal likelihood were used to find robust final rankings. This framework is then applied to a Korean urban watershed. As a result, different rankings were obviously appeared between fuzzy TOPSIS and non-fuzzy MCDMs (e.g., WSM and TOPSIS) because the inter-annual variability in effectiveness was considered only with fuzzy TOPSIS. Then, robust prioritizations were derived based on 18 rankings from nine decadal periods of RCP4.5 and RCP8.5. For more robust rankings, five DMCU approaches using the rankings from fuzzy TOPSIS were derived. This framework combining fuzzy TOPSIS with DMCU approaches can be rendered less controversial among stakeholders under complete uncertainty of changing environments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Risk, Robustness and Water Resources Planning Under Uncertainty
NASA Astrophysics Data System (ADS)
Borgomeo, Edoardo; Mortazavi-Naeini, Mohammad; Hall, Jim W.; Guillod, Benoit P.
2018-03-01
Risk-based water resources planning is based on the premise that water managers should invest up to the point where the marginal benefit of risk reduction equals the marginal cost of achieving that benefit. However, this cost-benefit approach may not guarantee robustness under uncertain future conditions, for instance under climatic changes. In this paper, we expand risk-based decision analysis to explore possible ways of enhancing robustness in engineered water resources systems under different risk attitudes. Risk is measured as the expected annual cost of water use restrictions, while robustness is interpreted in the decision-theoretic sense as the ability of a water resource system to maintain performance—expressed as a tolerable risk of water use restrictions—under a wide range of possible future conditions. Linking risk attitudes with robustness allows stakeholders to explicitly trade-off incremental increases in robustness with investment costs for a given level of risk. We illustrate the framework through a case study of London's water supply system using state-of-the -art regional climate simulations to inform the estimation of risk and robustness.
Framing effect debiasing in medical decision making.
Almashat, Sammy; Ayotte, Brian; Edelstein, Barry; Margrett, Jennifer
2008-04-01
Numerous studies have demonstrated the robustness of the framing effect in a variety of contexts. The present study investigated the effects of a debiasing procedure designed to prevent the framing effect for young adults who made decisions based on hypothetical medical decision-making vignettes. The debiasing technique involved participants listing advantages and disadvantages of each treatment prior to making a choice. One hundred and two undergraduate students read a set of three medical treatment vignettes that presented information in terms of different outcome probabilities under either debiasing or control conditions. The framing effect was demonstrated by the control group in two of the three vignettes. The debiasing group successfully avoided the framing effect for both of these vignettes. These results further support previous findings of the framing effect as well as an effective debiasing technique. This study improved upon previous framing debiasing studies by including a control group and personal medical scenarios, as well as demonstrating debiasing in a framing condition in which the framing effect was demonstrated without a debiasing procedure. The findings suggest a relatively simple manipulation may circumvent the use of decision-making heuristics in patients.
Hager, Rebecca; Tsiatis, Anastasios A; Davidian, Marie
2018-05-18
Clinicians often make multiple treatment decisions at key points over the course of a patient's disease. A dynamic treatment regime is a sequence of decision rules, each mapping a patient's observed history to the set of available, feasible treatment options at each decision point, and thus formalizes this process. An optimal regime is one leading to the most beneficial outcome on average if used to select treatment for the patient population. We propose a method for estimation of an optimal regime involving two decision points when the outcome of interest is a censored survival time, which is based on maximizing a locally efficient, doubly robust, augmented inverse probability weighted estimator for average outcome over a class of regimes. By casting this optimization as a classification problem, we exploit well-studied classification techniques such as support vector machines to characterize the class of regimes and facilitate implementation via a backward iterative algorithm. Simulation studies of performance and application of the method to data from a sequential, multiple assignment randomized clinical trial in acute leukemia are presented. © 2018, The International Biometric Society.
Puig, Rita; Fullana-I-Palmer, Pere; Baquero, Grau; Riba, Jordi-Roger; Bala, Alba
2013-12-01
Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport. Copyright © 2013. Published by Elsevier Ltd.
The hospital tech laboratory: quality innovation in a new era of value-conscious care.
Keteyian, Courtland K; Nallamothu, Brahmajee K; Ryan, Andrew M
2017-08-01
For decades, the healthcare industry has been incentivized to develop new diagnostic technologies, but this limitless progress fueled rapidly growing expenditures. With an emphasis on value, the future will favor information synthesis and processing over pure data generation, and hospitals will play a critical role in developing these systems. A Michigan Medicine, IBM, and AirStrip partnership created a robust streaming analytics platform tasked with creating predictive algorithms for critical care with the potential to support clinical decisions and deliver significant value.
NASA Astrophysics Data System (ADS)
Shahzad, Muhammad A.
1999-02-01
With the emergence of data warehousing, Decision support systems have evolved to its best. At the core of these warehousing systems lies a good database management system. Database server, used for data warehousing, is responsible for providing robust data management, scalability, high performance query processing and integration with other servers. Oracle being the initiator in warehousing servers, provides a wide range of features for facilitating data warehousing. This paper is designed to review the features of data warehousing - conceptualizing the concept of data warehousing and, lastly, features of Oracle servers for implementing a data warehouse.
Czarnuch, Stephen; Mihailidis, Alex
2015-03-27
We present the development and evaluation of a robust hand tracker based on single overhead depth images for use in the COACH, an assistive technology for people with dementia. The new hand tracker was designed to overcome limitations experienced by the COACH in previous clinical trials. We train a random decision forest classifier using ∼5000 manually labeled, unbalanced, training images. Hand positions from the classifier are translated into task actions based on proximity to environmental objects. Tracker performance is evaluated using a large set of ∼24 000 manually labeled images captured from 41 participants in a fully-functional washroom, and compared to the system's previous colour-based hand tracker. Precision and recall were 0.994 and 0.938 for the depth tracker compared to 0.981 and 0.822 for the colour tracker with the current data, and 0.989 and 0.466 in the previous study. The improved tracking performance supports integration of the depth-based tracker into the COACH toward unsupervised, real-world trials. Implications for Rehabilitation The COACH is an intelligent assistive technology that can enable people with cognitive disabilities to stay at home longer, supporting the concept of aging-in-place. Automated prompting systems, a type of intelligent assistive technology, can help to support the independent completion of activities of daily living, increasing the independence of people with cognitive disabilities while reducing the burden of care experienced by caregivers. Robust motion tracking using depth imaging supports the development of intelligent assistive technologies like the COACH. Robust motion tracking also has application to other forms of assistive technologies including gaming, human-computer interaction and automated assessments.
Nowcasting for a high-resolution weather radar network
NASA Astrophysics Data System (ADS)
Ruzanski, Evan
Short-term prediction (nowcasting) of high-impact weather events can lead to significant improvement in warnings and advisories and is of great practical importance. Nowcasting using weather radar reflectivity data has been shown to be particularly useful. The Collaborative Adaptive Sensing of the Atmosphere (CASA) radar network provides high-resolution reflectivity data amenable to producing valuable nowcasts. The high-resolution nature of CASA data requires the use of an efficient nowcasting approach, which necessitated the development of the Dynamic Adaptive Radar Tracking of Storms (DARTS) and sinc kernel-based advection nowcasting methodology. This methodology was implemented operationally in the CASA Distributed Collaborative Adaptive Sensing (DCAS) system in a robust and efficient manner necessitated by the high-resolution nature of CASA data and distributed nature of the environment in which the nowcasting system operates. Nowcasts up to 10 min to support emergency manager decision-making and 1--5 min to steer the CASA radar nodes to better observe the advecting storm patterns for forecasters and researchers are currently provided by this system. Results of nowcasting performance during the 2009 CASA IP experiment are presented. Additionally, currently state-of-the-art scale-based filtering methods were adapted and evaluated for use in the CASA DCAS to provide a scale-based analysis of nowcasting. DARTS was also incorporated in the Weather Support to Deicing Decision Making system to provide more accurate and efficient snow water equivalent nowcasts for aircraft deicing decision support relative to the radar-based nowcasting method currently used in the operational system. Results of an evaluation using data collected from 2007--2008 by the Weather Service Radar-1988 Doppler (WSR-88D) located near Denver, Colorado, and the National Center for Atmospheric Research Marshall Test Site near Boulder, Colorado, are presented. DARTS was also used to study the short-term predictability of precipitation patterns depicted by high-resolution reflectivity data observed at microalpha (0.2--2 km) to mesobeta (20--200 km) scales by the CASA radar network. Additionally, DARTS was used to investigate the performance of nowcasting rainfall fields derived from specific differential phase estimates, which have been shown to provide more accurate and robust rainfall estimates compared to those made from radar reflectivity data.
Why bother with the brain? A role for decision neuroscience in understanding strategic variability.
Venkatraman, Vinod
2013-01-01
Neuroscience, by its nature, seems to hold considerable promise for understanding the fundamental mechanisms of decision making. In recent years, several studies in the domain of "neuroeconomics" or "decision neuroscience" have provided important insights into brain function. Yet, the apparent success and value of each of these domains are frequently called into question by researchers in economics and behavioral decision making. Critics often charge that knowledge about the brain is unnecessary for understanding decision preferences. In this chapter, I contend that knowledge about underlying brain mechanisms helps in the development of biologically plausible models of behavior, which can then help elucidate the mechanisms underlying individual choice biases and strategic preferences. Using a novel risky choice paradigm, I will demonstrate that people vary in whether they adopt compensatory or noncompensatory rules in economic decision making. Importantly, neuroimaging studies using functional magnetic resonance imaging reveal that distinct neural mechanisms support variability in choices and variability in strategic preferences. Converging evidence from a study involving decisions between hypothetical stocks illustrates how knowledge about the underlying mechanisms can help inform neuroanatomical models of cognitive control. Last, I will demonstrate how knowledge about these underlying neural mechanisms can provide novel insights into the effects of decision states like sleep deprivation on decision preferences. Together, these findings suggest that neuroscience can play a critical role in creating robust and flexible models of real-world decision behavior. Copyright © 2013 Elsevier B.V. All rights reserved.
Putting intelligent structured intermittent auscultation (ISIA) into practice.
Maude, Robyn M; Skinner, Joan P; Foureur, Maralyn J
2016-06-01
Fetal monitoring guidelines recommend intermittent auscultation for the monitoring of fetal wellbeing during labour for low-risk women. However, these guidelines are not being translated into practice and low-risk women birthing in institutional maternity units are increasingly exposed to continuous cardiotocographic monitoring, both on admission to hospital and during labour. When continuous fetal monitoring becomes routinised, midwives and obstetricians lose practical skills around intermittent auscultation. To support clinical practice and decision-making around auscultation modality, the intelligent structured intermittent auscultation (ISIA) framework was developed. The purpose of this discussion paper is to describe the application of intelligent structured intermittent auscultation in practice. The intelligent structured intermittent auscultation decision-making framework is a knowledge translation tool that supports the implementation of evidence into practice around the use of intermittent auscultation for fetal heart monitoring for low-risk women during labour. An understanding of the physiology of the materno-utero-placental unit and control of the fetal heart underpin the development of the framework. Intelligent structured intermittent auscultation provides midwives with a robust means of demonstrating their critical thinking and clinical reasoning and supports their understanding of normal physiological birth. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Effective Team Support: From Modeling to Software Agents
NASA Technical Reports Server (NTRS)
Remington, Roger W. (Technical Monitor); John, Bonnie; Sycara, Katia
2003-01-01
The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and engineers and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in modeling infrastructure and task infrastructure. Work is continuing under a different contract to complete empirical data collection, cognitive modeling, and the building of software agents to support the teams task.
NASA Technical Reports Server (NTRS)
Remington, Roger W. (Technical Monitor); John, Bonnie E.; Sycara, Katia
2005-01-01
The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in completing a system for empirical data collection, cognitive modeling, and the building of software agents to support a team's tasks, and in running experiments for the collection of baseline data.
Probabilistic Decision Making with Spikes: From ISI Distributions to Behaviour via Information Gain.
Caballero, Javier A; Lepora, Nathan F; Gurney, Kevin N
2015-01-01
Computational theories of decision making in the brain usually assume that sensory 'evidence' is accumulated supporting a number of hypotheses, and that the first accumulator to reach threshold triggers a decision in favour of its associated hypothesis. However, the evidence is often assumed to occur as a continuous process whose origins are somewhat abstract, with no direct link to the neural signals - action potentials or 'spikes' - that must ultimately form the substrate for decision making in the brain. Here we introduce a new variant of the well-known multi-hypothesis sequential probability ratio test (MSPRT) for decision making whose evidence observations consist of the basic unit of neural signalling - the inter-spike interval (ISI) - and which is based on a new form of the likelihood function. We dub this mechanism s-MSPRT and show its precise form for a range of realistic ISI distributions with positive support. In this way we show that, at the level of spikes, the refractory period may actually facilitate shorter decision times, and that the mechanism is robust against poor choice of the hypothesized data distribution. We show that s-MSPRT performance is related to the Kullback-Leibler divergence (KLD) or information gain between ISI distributions, through which we are able to link neural signalling to psychophysical observation at the behavioural level. Thus, we find the mean information needed for a decision is constant, thereby offering an account of Hick's law (relating decision time to the number of choices). Further, the mean decision time of s-MSPRT shows a power law dependence on the KLD offering an account of Piéron's law (relating reaction time to stimulus intensity). These results show the foundations for a research programme in which spike train analysis can be made the basis for predictions about behavior in multi-alternative choice tasks.
Probabilistic Decision Making with Spikes: From ISI Distributions to Behaviour via Information Gain
Caballero, Javier A.; Lepora, Nathan F.; Gurney, Kevin N.
2015-01-01
Computational theories of decision making in the brain usually assume that sensory 'evidence' is accumulated supporting a number of hypotheses, and that the first accumulator to reach threshold triggers a decision in favour of its associated hypothesis. However, the evidence is often assumed to occur as a continuous process whose origins are somewhat abstract, with no direct link to the neural signals - action potentials or 'spikes' - that must ultimately form the substrate for decision making in the brain. Here we introduce a new variant of the well-known multi-hypothesis sequential probability ratio test (MSPRT) for decision making whose evidence observations consist of the basic unit of neural signalling - the inter-spike interval (ISI) - and which is based on a new form of the likelihood function. We dub this mechanism s-MSPRT and show its precise form for a range of realistic ISI distributions with positive support. In this way we show that, at the level of spikes, the refractory period may actually facilitate shorter decision times, and that the mechanism is robust against poor choice of the hypothesized data distribution. We show that s-MSPRT performance is related to the Kullback-Leibler divergence (KLD) or information gain between ISI distributions, through which we are able to link neural signalling to psychophysical observation at the behavioural level. Thus, we find the mean information needed for a decision is constant, thereby offering an account of Hick's law (relating decision time to the number of choices). Further, the mean decision time of s-MSPRT shows a power law dependence on the KLD offering an account of Piéron's law (relating reaction time to stimulus intensity). These results show the foundations for a research programme in which spike train analysis can be made the basis for predictions about behavior in multi-alternative choice tasks. PMID:25923907
Zhang, Xiaodong; Huang, Guo H; Nie, Xianghui
2009-12-20
Nonpoint source (NPS) water pollution is one of serious environmental issues, especially within an agricultural system. This study aims to propose a robust chance-constrained fuzzy possibilistic programming (RCFPP) model for water quality management within an agricultural system, where solutions for farming area, manure/fertilizer application amount, and livestock husbandry size under different scenarios are obtained and interpreted. Through improving upon the existing fuzzy possibilistic programming, fuzzy robust programming and chance-constrained programming approaches, the RCFPP can effectively reflect the complex system features under uncertainty, where implications of water quality/quantity restrictions for achieving regional economic development objectives are studied. By delimiting the uncertain decision space through dimensional enlargement of the original fuzzy constraints, the RCFPP enhances the robustness of the optimization processes and resulting solutions. The results of the case study indicate that useful information can be obtained through the proposed RCFPP model for providing feasible decision schemes for different agricultural activities under different scenarios (combinations of different p-necessity and p(i) levels). A p-necessity level represents the certainty or necessity degree of the imprecise objective function, while a p(i) level means the probabilities at which the constraints will be violated. A desire to acquire high agricultural income would decrease the certainty degree of the event that maximization of the objective be satisfied, and potentially violate water management standards; willingness to accept low agricultural income will run into the risk of potential system failure. The decision variables under combined p-necessity and p(i) levels were useful for the decision makers to justify and/or adjust the decision schemes for the agricultural activities through incorporation of their implicit knowledge. The results also suggest that this developed approach is applicable to many practical problems where fuzzy and probabilistic distribution information simultaneously exist.
Many-objective robust decision making for water allocation under climate change.
Yan, Dan; Ludwig, Fulco; Huang, He Qing; Werners, Saskia E
2017-12-31
Water allocation is facing profound challenges due to climate change uncertainties. To identify adaptive water allocation strategies that are robust to climate change uncertainties, a model framework combining many-objective robust decision making and biophysical modeling is developed for large rivers. The framework was applied to the Pearl River basin (PRB), China where sufficient flow to the delta is required to reduce saltwater intrusion in the dry season. Before identifying and assessing robust water allocation plans for the future, the performance of ten state-of-the-art MOEAs (multi-objective evolutionary algorithms) is evaluated for the water allocation problem in the PRB. The Borg multi-objective evolutionary algorithm (Borg MOEA), which is a self-adaptive optimization algorithm, has the best performance during the historical periods. Therefore it is selected to generate new water allocation plans for the future (2079-2099). This study shows that robust decision making using carefully selected MOEAs can help limit saltwater intrusion in the Pearl River Delta. However, the framework could perform poorly due to larger than expected climate change impacts on water availability. Results also show that subjective design choices from the researchers and/or water managers could potentially affect the ability of the model framework, and cause the most robust water allocation plans to fail under future climate change. Developing robust allocation plans in a river basin suffering from increasing water shortage requires the researchers and water managers to well characterize future climate change of the study regions and vulnerabilities of their tools. Copyright © 2017 Elsevier B.V. All rights reserved.
Correlates of healthcare and financial decision making among older adults without dementia.
Stewart, Christopher C; Yu, Lei; Wilson, Robert S; Bennett, David A; Boyle, Patricia A
2018-03-22
Healthcare and financial decision making among older persons has been previously associated with cognition, health and financial literacy, and risk aversion; however, the manner by which these resources support decision making remains unclear, as past studies have not systematically investigated the pathways linking these resources with decision making. In the current study, we use path analysis to examine the direct and indirect pathways linking age, education, cognition, literacy, and risk aversion with decision making. We also decomposed literacy into its subcomponents, conceptual knowledge and numeracy, in order to examine their associations with decision making. Participants were 937 community-based older adults without dementia from the Rush Memory and Aging Project who completed a battery of cognitive tests and assessments of healthcare and financial decision making, health and financial literacy, and risk aversion. Age and education exerted effects on decision making, but nearly two thirds of their effects were indirect, working mostly through cognition and literacy. Cognition exerted a strong direct effect on decision making and a robust indirect effect working primarily through literacy. Literacy also exerted a powerful direct effect on decision making, as did its subcomponents, conceptual knowledge and numeracy. The direct effect of risk aversion was comparatively weak. In addition to cognition, health and financial literacy emerged as independent and primary correlates of healthcare and financial decision making. These findings suggest specific actions that might be taken to optimize healthcare and financial decision making and, by extension, improve health and well-being in advanced age. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Resolving Multi-Stakeholder Robustness Asymmetries in Coupled Agricultural and Urban Systems
NASA Astrophysics Data System (ADS)
Li, Yu; Giuliani, Matteo; Castelletti, Andrea; Reed, Patrick
2016-04-01
The evolving pressures from a changing climate and society are increasingly motivating decision support frameworks that consider the robustness of management actions across many possible futures. Focusing on robustness is helpful for investigating key vulnerabilities within current water systems and for identifying potential tradeoffs across candidate adaptation responses. To date, most robustness studies assume a social planner perspective by evaluating highly aggregated measures of system performance. This aggregate treatment of stakeholders does not explore the equity or intrinsic multi-stakeholder conflicts implicit to the system-wide measures of performance benefits and costs. The commonly present heterogeneity across complex management interests, however, may produce strong asymmetries for alternative adaptation options, designed to satisfy system-level targets. In this work, we advance traditional robustness decision frameworks by replacing the centralized social planner with a bottom-up, agent-based approach, where stakeholders are modeled as individuals, and represented as potentially self-interested agents. This agent-based model enables a more explicit exploration of the potential inequities and asymmetries in the distribution of the system-wide benefit. The approach is demonstrated by exploring the potential conflicts between urban flooding and agricultural production in the Lake Como system (Italy). Lake Como is a regulated lake that is operated to supply water to the downstream agricultural district (Muzza as the pilot study area in this work) composed of a set of farmers with heterogeneous characteristics in terms of water allocation, cropping patterns, and land properties. Supplying water to farmers increases the risk of floods along the lakeshore and therefore the system is operated based on the tradeoff between these two objectives. We generated an ensemble of co-varying climate and socio-economic conditions and evaluated the robustness of the current Lake Como system management as well as of possible adaptation options (e.g., improved irrigation efficiency or changes in the dam operating rules). Numerical results show that crops prices and costs are the main drivers of the simulated system failures when evaluated in terms of system-level expected profitability. Analysis conducted at the farmer-agent scale highlights alternatively that temperature and inflows are the critical drivers leading to failures. Finally, we show that the robustness of the considered adaptation options varies spatially, strongly influenced by stakeholders' context, the metrics used to define success, and the assumed preferences for reservoir operations in balancing urban flooding and agricultural productivity.
Sun, Wei; Zhang, Xiaorui; Peeta, Srinivas; He, Xiaozheng; Li, Yongfu; Zhu, Senlai
2015-01-01
To improve the effectiveness and robustness of fatigue driving recognition, a self-adaptive dynamic recognition model is proposed that incorporates information from multiple sources and involves two sequential levels of fusion, constructed at the feature level and the decision level. Compared with existing models, the proposed model introduces a dynamic basic probability assignment (BPA) to the decision-level fusion such that the weight of each feature source can change dynamically with the real-time fatigue feature measurements. Further, the proposed model can combine the fatigue state at the previous time step in the decision-level fusion to improve the robustness of the fatigue driving recognition. An improved correction strategy of the BPA is also proposed to accommodate the decision conflict caused by external disturbances. Results from field experiments demonstrate that the effectiveness and robustness of the proposed model are better than those of models based on a single fatigue feature and/or single-source information fusion, especially when the most effective fatigue features are used in the proposed model. PMID:26393615
Hooijmans, Carlijn R.; de Vries, Rob B. M.; Ritskes-Hoitinga, Merel; Rovers, Maroeska M.; Leeflang, Mariska M.; IntHout, Joanna; Wever, Kimberley E.; Hooft, Lotty; de Beer, Hans; Kuijpers, Ton; Macleod, Malcolm R.; Sena, Emily S.; ter Riet, Gerben; Morgan, Rebecca L.; Thayer, Kristina A.; Rooney, Andrew A.; Guyatt, Gordon H.; Schünemann, Holger J.
2018-01-01
Laboratory animal studies are used in a wide range of human health related research areas, such as basic biomedical research, drug research, experimental surgery and environmental health. The results of these studies can be used to inform decisions regarding clinical research in humans, for example the decision to proceed to clinical trials. If the research question relates to potential harms with no expectation of benefit (e.g., toxicology), studies in experimental animals may provide the only relevant or controlled data and directly inform clinical management decisions. Systematic reviews and meta-analyses are important tools to provide robust and informative evidence summaries of these animal studies. Rating how certain we are about the evidence could provide important information about the translational probability of findings in experimental animal studies to clinical practice and probably improve it. Evidence summaries and certainty in the evidence ratings could also be used (1) to support selection of interventions with best therapeutic potential to be tested in clinical trials, (2) to justify a regulatory decision limiting human exposure (to drug or toxin), or to (3) support decisions on the utility of further animal experiments. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach is the most widely used framework to rate the certainty in the evidence and strength of health care recommendations. Here we present how the GRADE approach could be used to rate the certainty in the evidence of preclinical animal studies in the context of therapeutic interventions. We also discuss the methodological challenges that we identified, and for which further work is needed. Examples are defining the importance of consistency within and across animal species and using GRADE’s indirectness domain as a tool to predict translation from animal models to humans. PMID:29324741
Hooijmans, Carlijn R; de Vries, Rob B M; Ritskes-Hoitinga, Merel; Rovers, Maroeska M; Leeflang, Mariska M; IntHout, Joanna; Wever, Kimberley E; Hooft, Lotty; de Beer, Hans; Kuijpers, Ton; Macleod, Malcolm R; Sena, Emily S; Ter Riet, Gerben; Morgan, Rebecca L; Thayer, Kristina A; Rooney, Andrew A; Guyatt, Gordon H; Schünemann, Holger J; Langendam, Miranda W
2018-01-01
Laboratory animal studies are used in a wide range of human health related research areas, such as basic biomedical research, drug research, experimental surgery and environmental health. The results of these studies can be used to inform decisions regarding clinical research in humans, for example the decision to proceed to clinical trials. If the research question relates to potential harms with no expectation of benefit (e.g., toxicology), studies in experimental animals may provide the only relevant or controlled data and directly inform clinical management decisions. Systematic reviews and meta-analyses are important tools to provide robust and informative evidence summaries of these animal studies. Rating how certain we are about the evidence could provide important information about the translational probability of findings in experimental animal studies to clinical practice and probably improve it. Evidence summaries and certainty in the evidence ratings could also be used (1) to support selection of interventions with best therapeutic potential to be tested in clinical trials, (2) to justify a regulatory decision limiting human exposure (to drug or toxin), or to (3) support decisions on the utility of further animal experiments. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach is the most widely used framework to rate the certainty in the evidence and strength of health care recommendations. Here we present how the GRADE approach could be used to rate the certainty in the evidence of preclinical animal studies in the context of therapeutic interventions. We also discuss the methodological challenges that we identified, and for which further work is needed. Examples are defining the importance of consistency within and across animal species and using GRADE's indirectness domain as a tool to predict translation from animal models to humans.
Bischoff-Mattson, Zachary; Lynch, Amanda H
2017-07-01
Integration, a widely promoted response to the multi-scale complexities of social-environmental sustainability, is diversely and sometimes poorly conceptualized. In this paper we explore integrative governance, which we define as an iterative and contextual process for negotiating and advancing the common interest. We ground this definition in a discussion of institutional factors conditioning integrative governance of environmental water in Australia's Murray-Darling Basin. The Murray-Darling Basin is an iconic system of social-ecological complexity, evocative of large-scale conservation challenges in other developed arid river basins. Our critical assessment of integrative governance practices in that context emerges through analysis of interviews with policy participants and documents pertaining to environmental water management in the tri-state area of southwestern New South Wales, northwestern Victoria, and the South Australian Riverland. We identify four linked challenges: (i) decision support for developing socially robust environmental water management goals, (ii) resource constraints on adaptive practice, (iii) inter-state differences in participatory decision-making and devolution of authority, and (iv) representative inclusion in decision-making. Our appraisal demonstrates these as pivotal challenges for integrative governance in the common interest. We conclude by offering a perspective on the potential for supporting integrative governance through the bridging capacity of Australia's Commonwealth Environmental Water Holder.
Overcoming Indecision by Changing the Decision Boundary
2017-01-01
The dominant theoretical framework for decision making asserts that people make decisions by integrating noisy evidence to a threshold. It has recently been shown that in many ecologically realistic situations, decreasing the decision boundary maximizes the reward available from decisions. However, empirical support for decreasing boundaries in humans is scant. To investigate this problem, we used an ideal observer model to identify the conditions under which participants should change their decision boundaries with time to maximize reward rate. We conducted 6 expanded-judgment experiments that precisely matched the assumptions of this theoretical model. In this paradigm, participants could sample noisy, binary evidence presented sequentially. Blocks of trials were fixed in duration, and each trial was an independent reward opportunity. Participants therefore had to trade off speed (getting as many rewards as possible) against accuracy (sampling more evidence). Having access to the actual evidence samples experienced by participants enabled us to infer the slope of the decision boundary. We found that participants indeed modulated the slope of the decision boundary in the direction predicted by the ideal observer model, although we also observed systematic deviations from optimality. Participants using suboptimal boundaries do so in a robust manner, so that any error in their boundary setting is relatively inexpensive. The use of a normative model provides insight into what variable(s) human decision makers are trying to optimize. Furthermore, this normative model allowed us to choose diagnostic experiments and in doing so we present clear evidence for time-varying boundaries. PMID:28406682
Sankari, E Siva; Manimegalai, D
2017-12-21
Predicting membrane protein types is an important and challenging research area in bioinformatics and proteomics. Traditional biophysical methods are used to classify membrane protein types. Due to large exploration of uncharacterized protein sequences in databases, traditional methods are very time consuming, expensive and susceptible to errors. Hence, it is highly desirable to develop a robust, reliable, and efficient method to predict membrane protein types. Imbalanced datasets and large datasets are often handled well by decision tree classifiers. Since imbalanced datasets are taken, the performance of various decision tree classifiers such as Decision Tree (DT), Classification And Regression Tree (CART), C4.5, Random tree, REP (Reduced Error Pruning) tree, ensemble methods such as Adaboost, RUS (Random Under Sampling) boost, Rotation forest and Random forest are analysed. Among the various decision tree classifiers Random forest performs well in less time with good accuracy of 96.35%. Another inference is RUS boost decision tree classifier is able to classify one or two samples in the class with very less samples while the other classifiers such as DT, Adaboost, Rotation forest and Random forest are not sensitive for the classes with fewer samples. Also the performance of decision tree classifiers is compared with SVM (Support Vector Machine) and Naive Bayes classifier. Copyright © 2017 Elsevier Ltd. All rights reserved.
Robust Distribution Network Reconfiguration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Changhyeok; Liu, Cong; Mehrotra, Sanjay
2015-03-01
We propose a two-stage robust optimization model for the distribution network reconfiguration problem with load uncertainty. The first-stage decision is to configure the radial distribution network and the second-stage decision is to find the optimal a/c power flow of the reconfigured network for given demand realization. We solve the two-stage robust model by using a column-and-constraint generation algorithm, where the master problem and subproblem are formulated as mixed-integer second-order cone programs. Computational results for 16, 33, 70, and 94-bus test cases are reported. We find that the configuration from the robust model does not compromise much the power loss undermore » the nominal load scenario compared to the configuration from the deterministic model, yet it provides the reliability of the distribution system for all scenarios in the uncertainty set.« less
NASA Astrophysics Data System (ADS)
Quinta-Nova, Luis; Fernandez, Paulo; Pedro, Nuno
2017-12-01
This work focuses on developed a decision support system based on multicriteria spatial analysis to assess the potential for generation of biomass residues from forestry sources in a region of Portugal (Beira Baixa). A set of environmental, economic and social criteria was defined, evaluated and weighted in the context of Saaty’s analytic hierarchies. The best alternatives were obtained after applying Analytic Hierarchy Process (AHP). The model was applied to the central region of Portugal where forest and agriculture are the most representative land uses. Finally, sensitivity analysis of the set of factors and their associated weights was performed to test the robustness of the model. The proposed evaluation model provides a valuable reference for decision makers in establishing a standardized means of selecting the optimal location for new biomass plants.
Robust allocation of a defensive budget considering an attacker's private information.
Nikoofal, Mohammad E; Zhuang, Jun
2012-05-01
Attackers' private information is one of the main issues in defensive resource allocation games in homeland security. The outcome of a defense resource allocation decision critically depends on the accuracy of estimations about the attacker's attributes. However, terrorists' goals may be unknown to the defender, necessitating robust decisions by the defender. This article develops a robust-optimization game-theoretical model for identifying optimal defense resource allocation strategies for a rational defender facing a strategic attacker while the attacker's valuation of targets, being the most critical attribute of the attacker, is unknown but belongs to bounded distribution-free intervals. To our best knowledge, no previous research has applied robust optimization in homeland security resource allocation when uncertainty is defined in bounded distribution-free intervals. The key features of our model include (1) modeling uncertainty in attackers' attributes, where uncertainty is characterized by bounded intervals; (2) finding the robust-optimization equilibrium for the defender using concepts dealing with budget of uncertainty and price of robustness; and (3) applying the proposed model to real data. © 2011 Society for Risk Analysis.
Goldfarb, S
1999-03-01
Whether one seeks to reduce inappropriate utilization of resources, improve diagnostic accuracy, increase utilization of effective therapies, or reduce the incidence of complications, the key to change is physician involvement in change. Unfortunately, a simple approach to the problem of inducing change in physician behavior is not available. There is a generally accepted view that expert, best-practice guidelines will improve clinical performance. However, there may be a bias to report positive results and a lack of careful analysis of guideline usage in routine practice in a "postmarketing" study akin to that seen in the pharmaceutical industry. Systems that allow the reliable assessment of quality of outcomes, efficiency of resource utilization, and accurate assessment of the risks associated with the care of given patient populations must be widely available before deciding whether an incentive-based system for providing the full range of medical care is feasible. Decision support focuses on providing information, ideally at the "point of service" and in the context of a particular clinical situation. Rules are self-imposed by physicians and are therefore much more likely to be adopted. As health care becomes corporatized, with increasing numbers of physicians employed by large organizations with the capacity to provide detailed information on the nature and quality of clinical care, it is possible that properly constructed guidelines, appropriate financial incentives, and robust forms of decision support will lead to a physician-led, process improvement approach to more rational and affordable health care.
Visualization-based decision support for value-driven system design
NASA Astrophysics Data System (ADS)
Tibor, Elliott
In the past 50 years, the military, communication, and transportation systems that permeate our world, have grown exponentially in size and complexity. The development and production of these systems has seen ballooning costs and increased risk. This is particularly critical for the aerospace industry. The inability to deal with growing system complexity is a crippling force in the advancement of engineered systems. Value-Driven Design represents a paradigm shift in the field of design engineering that has potential to help counteract this trend. The philosophy of Value-Driven Design places the desires of the stakeholder at the forefront of the design process to capture true preferences and reveal system alternatives that were never previously thought possible. Modern aerospace engineering design problems are large, complex, and involve multiple levels of decision-making. To find the best design, the decision-maker is often required to analyze hundreds or thousands of combinations of design variables and attributes. Visualization can be used to support these decisions, by communicating large amounts of data in a meaningful way. Understanding the design space, the subsystem relationships, and the design uncertainties is vital to the advancement of Value-Driven Design as an accepted process for the development of more effective, efficient, robust, and elegant aerospace systems. This research investigates the use of multi-dimensional data visualization tools to support decision-making under uncertainty during the Value-Driven Design process. A satellite design system comprising a satellite, ground station, and launch vehicle is used to demonstrate effectiveness of new visualization methods to aid in decision support during complex aerospace system design. These methods are used to facilitate the exploration of the feasible design space by representing the value impact of system attribute changes and comparing the results of multi-objective optimization formulations with a Value-Driven Design formulation. The visualization methods are also used to assist in the decomposition of a value function, by representing attribute sensitivities to aid with trade-off studies. Lastly, visualization is used to enable greater understanding of the subsystem relationships, by displaying derivative-based couplings, and the design uncertainties, through implementation of utility theory. The use of these visualization methods is shown to enhance the decision-making capabilities of the designer by granting them a more holistic view of the complex design space.
A Fuzzy Robust Optimization Model for Waste Allocation Planning Under Uncertainty
Xu, Ye; Huang, Guohe; Xu, Ling
2014-01-01
Abstract In this study, a fuzzy robust optimization (FRO) model was developed for supporting municipal solid waste management under uncertainty. The Development Zone of the City of Dalian, China, was used as a study case for demonstration. Comparing with traditional fuzzy models, the FRO model made improvement by considering the minimization of the weighted summation among the expected objective values, the differences between two extreme possible objective values, and the penalty of the constraints violation as the objective function, instead of relying purely on the minimization of expected value. Such an improvement leads to enhanced system reliability and the model becomes especially useful when multiple types of uncertainties and complexities are involved in the management system. Through a case study, the applicability of the FRO model was successfully demonstrated. Solutions under three future planning scenarios were provided by the FRO model, including (1) priority on economic development, (2) priority on environmental protection, and (3) balanced consideration for both. The balanced scenario solution was recommended for decision makers, since it respected both system economy and reliability. The model proved valuable in providing a comprehensive profile about the studied system and helping decision makers gain an in-depth insight into system complexity and select cost-effective management strategies. PMID:25317037
Sperstad, Iver Bakken; Stålhane, Magnus; Dinwoodie, Iain; ...
2017-09-23
Optimising the operation and maintenance (O&M) and logistics strategy of offshore wind farms implies the decision problem of selecting the vessel fleet for O&M. Different strategic decision support tools can be applied to this problem, but much uncertainty remains regarding both input data and modelling assumptions. Our paper aims to investigate and ultimately reduce this uncertainty by comparing four simulation tools, one mathematical optimisation tool and one analytic spreadsheet-based tool applied to select the O&M access vessel fleet that minimizes the total O&M cost of a reference wind farm. The comparison shows that the tools generally agree on the optimalmore » vessel fleet, but only partially agree on the relative ranking of the different vessel fleets in terms of total O&M cost. The robustness of the vessel fleet selection to various input data assumptions was tested, and the ranking was found to be particularly sensitive to the vessels' limiting significant wave height for turbine access. Also the parameter with the greatest discrepancy between the tools, implies that accurate quantification and modelling of this parameter is crucial. The ranking is moderately sensitive to turbine failure rates and vessel day rates but less sensitive to electricity price and vessel transit speed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sperstad, Iver Bakken; Stålhane, Magnus; Dinwoodie, Iain
Optimising the operation and maintenance (O&M) and logistics strategy of offshore wind farms implies the decision problem of selecting the vessel fleet for O&M. Different strategic decision support tools can be applied to this problem, but much uncertainty remains regarding both input data and modelling assumptions. Our paper aims to investigate and ultimately reduce this uncertainty by comparing four simulation tools, one mathematical optimisation tool and one analytic spreadsheet-based tool applied to select the O&M access vessel fleet that minimizes the total O&M cost of a reference wind farm. The comparison shows that the tools generally agree on the optimalmore » vessel fleet, but only partially agree on the relative ranking of the different vessel fleets in terms of total O&M cost. The robustness of the vessel fleet selection to various input data assumptions was tested, and the ranking was found to be particularly sensitive to the vessels' limiting significant wave height for turbine access. Also the parameter with the greatest discrepancy between the tools, implies that accurate quantification and modelling of this parameter is crucial. The ranking is moderately sensitive to turbine failure rates and vessel day rates but less sensitive to electricity price and vessel transit speed.« less
A Fuzzy Robust Optimization Model for Waste Allocation Planning Under Uncertainty.
Xu, Ye; Huang, Guohe; Xu, Ling
2014-10-01
In this study, a fuzzy robust optimization (FRO) model was developed for supporting municipal solid waste management under uncertainty. The Development Zone of the City of Dalian, China, was used as a study case for demonstration. Comparing with traditional fuzzy models, the FRO model made improvement by considering the minimization of the weighted summation among the expected objective values, the differences between two extreme possible objective values, and the penalty of the constraints violation as the objective function, instead of relying purely on the minimization of expected value. Such an improvement leads to enhanced system reliability and the model becomes especially useful when multiple types of uncertainties and complexities are involved in the management system. Through a case study, the applicability of the FRO model was successfully demonstrated. Solutions under three future planning scenarios were provided by the FRO model, including (1) priority on economic development, (2) priority on environmental protection, and (3) balanced consideration for both. The balanced scenario solution was recommended for decision makers, since it respected both system economy and reliability. The model proved valuable in providing a comprehensive profile about the studied system and helping decision makers gain an in-depth insight into system complexity and select cost-effective management strategies.
Climate Risk Informed Decision Analysis: A Hypothetical Application to the Waas Region
NASA Astrophysics Data System (ADS)
Gilroy, Kristin; Mens, Marjolein; Haasnoot, Marjolijn; Jeuken, Ad
2016-04-01
More frequent and intense hydrologic events under climate change are expected to enhance water security and flood risk management challenges worldwide. Traditional planning approaches must be adapted to address climate change and develop solutions with an appropriate level of robustness and flexibility. The Climate Risk Informed Decision Analysis (CRIDA) method is a novel planning approach embodying a suite of complementary methods, including decision scaling and adaptation pathways. Decision scaling offers a bottom-up approach to assess risk and tailors the complexity of the analysis to the problem at hand and the available capacity. Through adaptation pathway,s an array of future strategies towards climate robustness are developed, ranging in flexibility and immediacy of investments. Flexible pathways include transfer points to other strategies to ensure that the system can be adapted if future conditions vary from those expected. CRIDA combines these two approaches in a stakeholder driven process which guides decision makers through the planning and decision process, taking into account how the confidence in the available science, the consequences in the system, and the capacity of institutions should influence strategy selection. In this presentation, we will explain the CRIDA method and compare it to existing planning processes, such as the US Army Corps of Engineers Principles and Guidelines as well as Integrated Water Resources Management Planning. Then, we will apply the approach to a hypothetical case study for the Waas Region, a large downstream river basin facing rapid development threatened by increased flood risks. Through the case study, we will demonstrate how a stakeholder driven process can be used to evaluate system robustness to climate change; develop adaptation pathways for multiple objectives and criteria; and illustrate how varying levels of confidence, consequences, and capacity would play a role in the decision making process, specifically in regards to the level of robustness and flexibility in the selected strategy. This work will equip practitioners and decision makers with an example of a structured process for decision making under climate uncertainty that can be scaled as needed to the problem at hand. This presentation builds further on another submitted abstract "Climate Risk Informed Decision Analysis (CRIDA): A novel practical guidance for Climate Resilient Investments and Planning" by Jeuken et al.
Registration of MRI to intraoperative radiographs for target localization in spinal interventions
NASA Astrophysics Data System (ADS)
De Silva, T.; Uneri, A.; Ketcha, M. D.; Reaungamornrat, S.; Goerres, J.; Jacobson, M. W.; Vogt, S.; Kleinszig, G.; Khanna, A. J.; Wolinsky, J.-P.; Siewerdsen, J. H.
2017-01-01
Decision support to assist in target vertebra localization could provide a useful aid to safe and effective spine surgery. Previous solutions have shown 3D-2D registration of preoperative CT to intraoperative radiographs to reliably annotate vertebral labels for assistance during level localization. We present an algorithm (referred to as MR-LevelCheck) to perform 3D-2D registration based on a preoperative MRI to accommodate the increasingly common clinical scenario in which MRI is used instead of CT for preoperative planning. Straightforward adaptation of gradient/intensity-based methods appropriate to CT-to-radiograph registration is confounded by large mismatch and noncorrespondence in image intensity between MRI and radiographs. The proposed method overcomes such challenges with a simple vertebrae segmentation step using vertebra centroids as seed points (automatically defined within existing workflow). Forwards projections are computed using segmented MRI and registered to radiographs via gradient orientation (GO) similarity and the CMA-ES (covariance-matrix-adaptation evolutionary-strategy) optimizer. The method was tested in an IRB-approved study involving 10 patients undergoing cervical, thoracic, or lumbar spine surgery following preoperative MRI. The method successfully registered each preoperative MRI to intraoperative radiographs and maintained desirable properties of robustness against image content mismatch and large capture range. Robust registration performance was achieved with projection distance error (PDE) (median ± IQR) = 4.3 ± 2.6 mm (median ± IQR) and 0% failure rate. Segmentation accuracy for the continuous max-flow method yielded dice coefficient = 88.1 ± 5.2, accuracy = 90.6 ± 5.7, RMSE = 1.8 ± 0.6 mm, and contour affinity ratio (CAR) = 0.82 ± 0.08. Registration performance was found to be robust for segmentation methods exhibiting RMSE <3 mm and CAR >0.50. The MR-LevelCheck method provides a potentially valuable extension to a previously developed decision support tool for spine surgery target localization by extending its utility to preoperative MRI while maintaining characteristics of accuracy and robustness.
Robust, Optimal Water Infrastructure Planning Under Deep Uncertainty Using Metamodels
NASA Astrophysics Data System (ADS)
Maier, H. R.; Beh, E. H. Y.; Zheng, F.; Dandy, G. C.; Kapelan, Z.
2015-12-01
Optimal long-term planning plays an important role in many water infrastructure problems. However, this task is complicated by deep uncertainty about future conditions, such as the impact of population dynamics and climate change. One way to deal with this uncertainty is by means of robustness, which aims to ensure that water infrastructure performs adequately under a range of plausible future conditions. However, as robustness calculations require computationally expensive system models to be run for a large number of scenarios, it is generally computationally intractable to include robustness as an objective in the development of optimal long-term infrastructure plans. In order to overcome this shortcoming, an approach is developed that uses metamodels instead of computationally expensive simulation models in robustness calculations. The approach is demonstrated for the optimal sequencing of water supply augmentation options for the southern portion of the water supply for Adelaide, South Australia. A 100-year planning horizon is subdivided into ten equal decision stages for the purpose of sequencing various water supply augmentation options, including desalination, stormwater harvesting and household rainwater tanks. The objectives include the minimization of average present value of supply augmentation costs, the minimization of average present value of greenhouse gas emissions and the maximization of supply robustness. The uncertain variables are rainfall, per capita water consumption and population. Decision variables are the implementation stages of the different water supply augmentation options. Artificial neural networks are used as metamodels to enable all objectives to be calculated in a computationally efficient manner at each of the decision stages. The results illustrate the importance of identifying optimal staged solutions to ensure robustness and sustainability of water supply into an uncertain long-term future.
NASA Technical Reports Server (NTRS)
Morales, Lester
2012-01-01
The fundamental goal of this vision is to advance U.S. scientific, security and economic interest through a robust space exploration program. Implement a sustained and affordable human and robotic program to explore the solar system and beyond. Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations. Develop the innovative technologies, knowledge, and infrastructures both to explore and to support decisions about the destinations for human exploration. Promote international and commercial participation in exploration to further U.S. scientific, security, and economic interests.
A climate robust integrated modelling framework for regional impact assessment of climate change
NASA Astrophysics Data System (ADS)
Janssen, Gijs; Bakker, Alexander; van Ek, Remco; Groot, Annemarie; Kroes, Joop; Kuiper, Marijn; Schipper, Peter; van Walsum, Paul; Wamelink, Wieger; Mol, Janet
2013-04-01
Decision making towards climate proofing the water management of regional catchments can benefit greatly from the availability of a climate robust integrated modelling framework, capable of a consistent assessment of climate change impacts on the various interests present in the catchments. In the Netherlands, much effort has been devoted to developing state-of-the-art regional dynamic groundwater models with a very high spatial resolution (25x25 m2). Still, these models are not completely satisfactory to decision makers because the modelling concepts do not take into account feedbacks between meteorology, vegetation/crop growth, and hydrology. This introduces uncertainties in forecasting the effects of climate change on groundwater, surface water, agricultural yields, and development of groundwater dependent terrestrial ecosystems. These uncertainties add to the uncertainties about the predictions on climate change itself. In order to create an integrated, climate robust modelling framework, we coupled existing model codes on hydrology, agriculture and nature that are currently in use at the different research institutes in the Netherlands. The modelling framework consists of the model codes MODFLOW (groundwater flow), MetaSWAP (vadose zone), WOFOST (crop growth), SMART2-SUMO2 (soil-vegetation) and NTM3 (nature valuation). MODFLOW, MetaSWAP and WOFOST are coupled online (i.e. exchange information on time step basis). Thus, changes in meteorology and CO2-concentrations affect crop growth and feedbacks between crop growth, vadose zone water movement and groundwater recharge are accounted for. The model chain WOFOST-MetaSWAP-MODFLOW generates hydrological input for the ecological prediction model combination SMART2-SUMO2-NTM3. The modelling framework was used to support the regional water management decision making process in the 267 km2 Baakse Beek-Veengoot catchment in the east of the Netherlands. Computations were performed for regionalized 30-year climate change scenarios developed by KNMI for precipitation and reference evapotranspiration according to Penman-Monteith. Special focus in the project was on the role of uncertainty. How valid is the information that is generated by this modelling framework? What are the most important uncertainties of the input data, how do they affect the results of the model chain and how can the uncertainties of the data, results, and model concepts be quantified and communicated? Besides these technical issues, an important part of the study was devoted to the perception of stakeholders. Stakeholder analysis and additional working sessions yielded insight into how the models, their results and the uncertainties are perceived, how the modelling framework and results connect to the stakeholders' information demands and what kind of additional information is needed for adequate support on decision making.
Stewart, G B; Mengersen, K; Meader, N
2014-03-01
Bayesian networks (BNs) are tools for representing expert knowledge or evidence. They are especially useful for synthesising evidence or belief concerning a complex intervention, assessing the sensitivity of outcomes to different situations or contextual frameworks and framing decision problems that involve alternative types of intervention. Bayesian networks are useful extensions to logic maps when initiating a review or to facilitate synthesis and bridge the gap between evidence acquisition and decision-making. Formal elicitation techniques allow development of BNs on the basis of expert opinion. Such applications are useful alternatives to 'empty' reviews, which identify knowledge gaps but fail to support decision-making. Where review evidence exists, it can inform the development of a BN. We illustrate the construction of a BN using a motivating example that demonstrates how BNs can ensure coherence, transparently structure the problem addressed by a complex intervention and assess sensitivity to context, all of which are critical components of robust reviews of complex interventions. We suggest that BNs should be utilised to routinely synthesise reviews of complex interventions or empty reviews where decisions must be made despite poor evidence. Copyright © 2013 John Wiley & Sons, Ltd.
Assessment of undergraduate nursing students from an Irish perspective: Decisions and dilemmas?
Kennedy, Sara; Chesser-Smyth, Patricia
2017-11-01
Assessment of clinical competence plays a pivotal role in the education of undergraduate nursing students in preparation for registration. The challenges that face preceptors are represented in the international literature yet few studies have focused on the factors that influence the decision-making process by preceptors when students under-perform or appear to be borderline status in relation to clinical practice. This study explored the lived experiences of the preceptors during the assessment process using a phenomenological approach. This was a qualitative study that utilised a phenomenological approach to explore the lived experiences of the preceptors in relation to student assessment of those students who were incompetent and underperformed in clinical practice. Three categories emerged from the findings: First impressions, Emotional turmoil of failing a clinical assessment and competing demands in the workplace. It is proposed that employing a tripartite approach would enhance the assessment process to ensure a more robust and decision-sharing mechanism. This would support decisions that are made in the cases of incompetent or borderline nursing students and increase the objectivity of the competency assessment to ameliorate the emotional turmoil that is experienced by preceptors. Copyright © 2017 Elsevier Ltd. All rights reserved.
An index-based robust decision making framework for watershed management in a changing climate.
Kim, Yeonjoo; Chung, Eun-Sung
2014-03-01
This study developed an index-based robust decision making framework for watershed management dealing with water quantity and quality issues in a changing climate. It consists of two parts of management alternative development and analysis. The first part for alternative development consists of six steps: 1) to understand the watershed components and process using HSPF model, 2) to identify the spatial vulnerability ranking using two indices: potential streamflow depletion (PSD) and potential water quality deterioration (PWQD), 3) to quantify the residents' preferences on water management demands and calculate the watershed evaluation index which is the weighted combinations of PSD and PWQD, 4) to set the quantitative targets for water quantity and quality, 5) to develop a list of feasible alternatives and 6) to eliminate the unacceptable alternatives. The second part for alternative analysis has three steps: 7) to analyze all selected alternatives with a hydrologic simulation model considering various climate change scenarios, 8) to quantify the alternative evaluation index including social and hydrologic criteria with utilizing multi-criteria decision analysis methods and 9) to prioritize all options based on a minimax regret strategy for robust decision. This framework considers the uncertainty inherent in climate models and climate change scenarios with utilizing the minimax regret strategy, a decision making strategy under deep uncertainty and thus this procedure derives the robust prioritization based on the multiple utilities of alternatives from various scenarios. In this study, the proposed procedure was applied to the Korean urban watershed, which has suffered from streamflow depletion and water quality deterioration. Our application shows that the framework provides a useful watershed management tool for incorporating quantitative and qualitative information into the evaluation of various policies with regard to water resource planning and management. Copyright © 2013 Elsevier B.V. All rights reserved.
Connected Classroom Technology Facilitates Multiple Components of Formative Assessment Practice
NASA Astrophysics Data System (ADS)
Shirley, Melissa L.; Irving, Karen E.
2015-02-01
Formative assessment has been demonstrated to result in increased student achievement across a variety of educational contexts. When using formative assessment strategies, teachers engage students in instructional tasks that allow the teacher to uncover levels of student understanding so that the teacher may change instruction accordingly. Tools that support the implementation of formative assessment strategies are therefore likely to enhance student achievement. Connected classroom technologies (CCTs) include a family of devices that show promise in facilitating formative assessment. By promoting the use of interactive student tasks and providing both teachers and students with rapid and accurate data on student learning, CCT can provide teachers with necessary evidence for making instructional decisions about subsequent lessons. In this study, the experiences of four middle and high school science teachers in their first year of implementing the TI-Navigator™ system, a specific type of CCT, are used to characterize the ways in which CCT supports the goals of effective formative assessment. We present excerpts of participant interviews to demonstrate the alignment of CCT with several main phases of the formative assessment process. CCT was found to support implementation of a variety of instructional tasks that generate evidence of student learning for the teacher. The rapid aggregation and display of student learning evidence provided teachers with robust data on which to base subsequent instructional decisions.
Convertino, Matteo; Foran, Christy M.; Keisler, Jeffrey M.; Scarlett, Lynn; LoSchiavo, Andy; Kiker, Gregory A.; Linkov, Igor
2013-01-01
We propose to enhance existing adaptive management efforts with a decision-analytical approach that can guide the initial selection of robust restoration alternative plans and inform the need to adjust these alternatives in the course of action based on continuously acquired monitoring information and changing stakeholder values. We demonstrate an application of enhanced adaptive management for a wetland restoration case study inspired by the Florida Everglades restoration effort. We find that alternatives designed to reconstruct the pre-drainage flow may have a positive ecological impact, but may also have high operational costs and only marginally contribute to meeting other objectives such as reduction of flooding. Enhanced adaptive management allows managers to guide investment in ecosystem modeling and monitoring efforts through scenario and value of information analyses to support optimal restoration strategies in the face of uncertain and changing information. PMID:24113217
A meta-analysis of decision-making and attention in adults with ADHD.
Mowinckel, Athanasia M; Pedersen, Mads Lund; Eilertsen, Espen; Biele, Guido
2015-05-01
Deficient reward processing has gained attention as an important aspect of ADHD, but little is known about reward-based decision-making (DM) in adults with ADHD. This article summarizes research on DM in adult ADHD and contextualizes DM deficits by comparing them to attention deficits. Meta-analytic methods were used to calculate average effect sizes for different DM domains and continuous performance task (CPT) measures. None of the 59 included studies (DM: 12 studies; CPT: 43; both: 4) had indications of publication bias. DM and CPT measures showed robust, small to medium effects. Large effect sizes were found for a drift diffusion model analysis of the CPT. The results support the existence of DM deficits in adults with ADHD, which are of similar magnitude as attention deficits. These findings warrant further examination of DM in adults with ADHD to improve the understanding of underlying neurocognitive mechanisms. © 2014 SAGE Publications.
NASA Astrophysics Data System (ADS)
Pierce, S. A.; Gentle, J.
2015-12-01
The multi-criteria decision support system (MCSDSS) is a newly completed application for touch-enabled group decision support that uses D3 data visualization tools, a geojson conversion utility that we developed, and Paralelex to create an interactive tool. The MCSDSS is a prototype system intended to demonstrate the potential capabilities of a single page application (SPA) running atop a web and cloud based architecture utilizing open source technologies. The application is implemented on current web standards while supporting human interface design that targets both traditional mouse/keyboard interactions and modern touch/gesture enabled interactions. The technology stack for MCSDSS was selected with the goal of creating a robust and dynamic modular codebase that can be adjusted to fit many use cases and scale to support usage loads that range between simple data display to complex scientific simulation-based modelling and analytics. The application integrates current frameworks for highly performant agile development with unit testing, statistical analysis, data visualization, mapping technologies, geographic data manipulation, and cloud infrastructure while retaining support for traditional HTML5/CSS3 web standards. The software lifecylcle for MCSDSS has following best practices to develop, share, and document the codebase and application. Code is documented and shared via an online repository with the option for programmers to see, contribute, or fork the codebase. Example data files and tutorial documentation have been shared with clear descriptions and data object identifiers. And the metadata about the application has been incorporated into an OntoSoft entry to ensure that MCSDSS is searchable and clearly described. MCSDSS is a flexible platform that allows for data fusion and inclusion of large datasets in an interactive front-end application capable of connecting with other science-based applications and advanced computing resources. In addition, MCSDSS offers functionality that enables communication with non-technical users for policy, education, or engagement with groups around scientific topics with societal relevance.
Nonstationary decision model for flood risk decision scaling
NASA Astrophysics Data System (ADS)
Spence, Caitlin M.; Brown, Casey M.
2016-11-01
Hydroclimatic stationarity is increasingly questioned as a default assumption in flood risk management (FRM), but successor methods are not yet established. Some potential successors depend on estimates of future flood quantiles, but methods for estimating future design storms are subject to high levels of uncertainty. Here we apply a Nonstationary Decision Model (NDM) to flood risk planning within the decision scaling framework. The NDM combines a nonstationary probability distribution of annual peak flow with optimal selection of flood management alternatives using robustness measures. The NDM incorporates structural and nonstructural FRM interventions and valuation of flows supporting ecosystem services to calculate expected cost of a given FRM strategy. A search for the minimum-cost strategy under incrementally varied representative scenarios extending across the plausible range of flood trend and value of the natural flow regime discovers candidate FRM strategies that are evaluated and compared through a decision scaling analysis (DSA). The DSA selects a management strategy that is optimal or close to optimal across the broadest range of scenarios or across the set of scenarios deemed most likely to occur according to estimates of future flood hazard. We illustrate the decision framework using a stylized example flood management decision based on the Iowa City flood management system, which has experienced recent unprecedented high flow episodes. The DSA indicates a preference for combining infrastructural and nonstructural adaptation measures to manage flood risk and makes clear that options-based approaches cannot be assumed to be "no" or "low regret."
Mei, Chao; Liu, Jiahong; Wang, Hao; Yang, Zhiyong; Ding, Xiangyi; Shao, Weiwei
2018-10-15
Green Infrastructure (GI) has become increasingly important in urban stormwater management because of the effects of climate change and urbanization. To mitigate severe urban water-related problems, China is implementing GI at the national scale under its Sponge City Program (SCP). The SCP is currently in a pilot period, however, little attention has been paid to the cost-effectiveness of GI implementation in China. In this study, an evaluation framework based on the Storm Water Management Model (SWMM) and life cycle cost analysis (LCCA) was applied to undertake integrated assessments of the development of GI for flood mitigation, to support robust decision making regarding sponge city construction in urbanized watersheds. A baseline scenario and 15 GI scenarios under six design rainfall events with recurrence intervals ranging from 2-100 years were simulated and assessed. Model simulation results confirmed the effectiveness of GI for flood mitigation. Nevertheless, even under the most beneficial scenario, the results showed the hydrological performance of GI was incapable of eliminating flooding. Analysis indicated the bioretention cell (BC) plus vegetated swale (VS) scenario was the most cost-effective GI option for unit investment under all rainfall events. However, regarding the maximum potential of the implementation areas of all GI scenarios, the porous pavement plus BC + VS strategy was considered most reasonable for the study area. Although the optimal combinations are influenced by uncertainties in both the model and the GI parameters, the main trends and key insights derived remain unaffected; therefore, the conclusions are relevant regarding sponge city construction within the study area. Copyright © 2018 Elsevier B.V. All rights reserved.
A framework for sensitivity analysis of decision trees.
Kamiński, Bogumił; Jakubczyk, Michał; Szufel, Przemysław
2018-01-01
In the paper, we consider sequential decision problems with uncertainty, represented as decision trees. Sensitivity analysis is always a crucial element of decision making and in decision trees it often focuses on probabilities. In the stochastic model considered, the user often has only limited information about the true values of probabilities. We develop a framework for performing sensitivity analysis of optimal strategies accounting for this distributional uncertainty. We design this robust optimization approach in an intuitive and not overly technical way, to make it simple to apply in daily managerial practice. The proposed framework allows for (1) analysis of the stability of the expected-value-maximizing strategy and (2) identification of strategies which are robust with respect to pessimistic/optimistic/mode-favoring perturbations of probabilities. We verify the properties of our approach in two cases: (a) probabilities in a tree are the primitives of the model and can be modified independently; (b) probabilities in a tree reflect some underlying, structural probabilities, and are interrelated. We provide a free software tool implementing the methods described.
Applications of fuzzy logic to control and decision making
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1991-01-01
Long range space missions will require high operational efficiency as well as autonomy to enhance the effectivity of performance. Fuzzy logic technology has been shown to be powerful and robust in interpreting imprecise measurements and generating appropriate control decisions for many space operations. Several applications are underway, studying the fuzzy logic approach to solving control and decision making problems. Fuzzy logic algorithms for relative motion and attitude control have been developed and demonstrated for proximity operations. Based on this experience, motion control algorithms that include obstacle avoidance were developed for a Mars Rover prototype for maneuvering during the sample collection process. A concept of an intelligent sensor system that can identify objects and track them continuously and learn from its environment is under development to support traffic management and proximity operations around the Space Station Freedom. For safe and reliable operation of Lunar/Mars based crew quarters, high speed controllers with ability to combine imprecise measurements from several sensors is required. A fuzzy logic approach that uses high speed fuzzy hardware chips is being studied.
Cooke, Steven J; Birnie-Gauvin, Kim; Lennox, Robert J; Taylor, Jessica J; Rytwinski, Trina; Rummer, Jodie L; Franklin, Craig E; Bennett, Joseph R; Haddaway, Neal R
2017-01-01
Policy development and management decisions should be based upon the best available evidence. In recent years, approaches to evidence synthesis, originating in the medical realm (such as systematic reviews), have been applied to conservation to promote evidence-based conservation and environmental management. Systematic reviews involve a critical appraisal of evidence, but studies that lack the necessary rigour (e.g. experimental, technical and analytical aspects) to justify their conclusions are typically excluded from systematic reviews or down-weighted in terms of their influence. One of the strengths of conservation physiology is the reliance on experimental approaches that help to more clearly establish cause-and-effect relationships. Indeed, experimental biology and ecology have much to offer in terms of building the evidence base that is needed to inform policy and management options related to pressing issues such as enacting endangered species recovery plans or evaluating the effectiveness of conservation interventions. Here, we identify a number of pitfalls that can prevent experimental findings from being relevant to conservation or would lead to their exclusion or down-weighting during critical appraisal in a systematic review. We conclude that conservation physiology is well positioned to support evidence-based conservation, provided that experimental designs are robust and that conservation physiologists understand the nuances associated with informing decision-making processes so that they can be more relevant.
Birnie-Gauvin, Kim; Lennox, Robert J.; Taylor, Jessica J.; Rytwinski, Trina; Rummer, Jodie L.; Franklin, Craig E.; Bennett, Joseph R.; Haddaway, Neal R.
2017-01-01
Abstract Policy development and management decisions should be based upon the best available evidence. In recent years, approaches to evidence synthesis, originating in the medical realm (such as systematic reviews), have been applied to conservation to promote evidence-based conservation and environmental management. Systematic reviews involve a critical appraisal of evidence, but studies that lack the necessary rigour (e.g. experimental, technical and analytical aspects) to justify their conclusions are typically excluded from systematic reviews or down-weighted in terms of their influence. One of the strengths of conservation physiology is the reliance on experimental approaches that help to more clearly establish cause-and-effect relationships. Indeed, experimental biology and ecology have much to offer in terms of building the evidence base that is needed to inform policy and management options related to pressing issues such as enacting endangered species recovery plans or evaluating the effectiveness of conservation interventions. Here, we identify a number of pitfalls that can prevent experimental findings from being relevant to conservation or would lead to their exclusion or down-weighting during critical appraisal in a systematic review. We conclude that conservation physiology is well positioned to support evidence-based conservation, provided that experimental designs are robust and that conservation physiologists understand the nuances associated with informing decision-making processes so that they can be more relevant. PMID:28835842
Staged decision making based on probabilistic forecasting
NASA Astrophysics Data System (ADS)
Booister, Nikéh; Verkade, Jan; Werner, Micha; Cranston, Michael; Cumiskey, Lydia; Zevenbergen, Chris
2016-04-01
Flood forecasting systems reduce, but cannot eliminate uncertainty about the future. Probabilistic forecasts explicitly show that uncertainty remains. However, as - compared to deterministic forecasts - a dimension is added ('probability' or 'likelihood'), with this added dimension decision making is made slightly more complicated. A technique of decision support is the cost-loss approach, which defines whether or not to issue a warning or implement mitigation measures (risk-based method). With the cost-loss method a warning will be issued when the ratio of the response costs to the damage reduction is less than or equal to the probability of the possible flood event. This cost-loss method is not widely used, because it motivates based on only economic values and is a technique that is relatively static (no reasoning, yes/no decision). Nevertheless it has high potential to improve risk-based decision making based on probabilistic flood forecasting because there are no other methods known that deal with probabilities in decision making. The main aim of this research was to explore the ways of making decision making based on probabilities with the cost-loss method better applicable in practice. The exploration began by identifying other situations in which decisions were taken based on uncertain forecasts or predictions. These cases spanned a range of degrees of uncertainty: from known uncertainty to deep uncertainty. Based on the types of uncertainties, concepts of dealing with situations and responses were analysed and possible applicable concepts where chosen. Out of this analysis the concepts of flexibility and robustness appeared to be fitting to the existing method. Instead of taking big decisions with bigger consequences at once, the idea is that actions and decisions are cut-up into smaller pieces and finally the decision to implement is made based on economic costs of decisions and measures and the reduced effect of flooding. The more lead-time there is in flood event management, the more damage can be reduced. And with decisions based on probabilistic forecasts, partial decisions can be made earlier in time (with a lower probability) and can be scaled up or down later in time when there is more certainty; whether the event takes place or not. Partial decisions are often more cheap, or shorten the final mitigation-time at the moment when there is more certainty. The proposed method is tested on Stonehaven, on the Carron River in Scotland. Decisions to implement demountable defences in the town are currently made based on a very short lead-time due to the absence of certainty. Application showed that staged decision making is possible and gives the decision maker more time to respond to a situation. The decision maker is able to take a lower regret decision with higher uncertainty and less related negative consequences. Although it is not possible to quantify intangible effects, it is part of the analysis to reduce these effects. Above all, the proposed approach has shown to be a possible improvement in economic terms and opens up possibilities of more flexible and robust decision making.
A water management decision support system contributing to sustainability
NASA Astrophysics Data System (ADS)
Horváth, Klaudia; van Esch, Bart; Baayen, Jorn; Pothof, Ivo; Talsma, Jan; van Heeringen, Klaas-Jan
2017-04-01
Deltares and Eindhoven University of Technology are developing a new decision support system (DSS) for regional water authorities. In order to maintain water levels in the Dutch polder system, water should be drained and pumped out from the polders to the sea. The time and amount of pumping depends on the current sea level, the water level in the polder, the weather forecast and the electricity price forecast and possibly local renewable power production. This is a multivariable optimisation problem, where the goal is to keep the water level in the polder within certain bounds. By optimizing the operation of the pumps the energy usage and costs can be reduced, hence the operation of the regional water authorities can be more sustainable, while also anticipating on increasing share of renewables in the energy mix in a cost-effective way. The decision support system, based on Delft-FEWS as operational data-integration platform, is running an optimization model built in RTC-Tools 2, which is performing real-time optimization in order to calculate the pumping strategy. It is taking into account the present and future circumstances. As being the core of the real time decision support system, RTC-Tools 2 fulfils the key requirements to a DSS: it is fast, robust and always finds the optimal solution. These properties are associated with convex optimization. In such problems the global optimum can always be found. The challenge in the development is to maintain the convex formulation of all the non-linear components in the system, i.e. open channels, hydraulic structures, and pumps. The system is introduced through 4 pilot projects, one of which is a pilot of the Dutch Water Authority Rivierenland. This is a typical Dutch polder system: several polders are drained to the main water system, the Linge. The water from the Linge can be released to the main rivers that are subject to tidal fluctuations. In case of low tide, water can be released via the gates. In case of high tide, water should be pumped. The goal of the pilot is to make the operation of the regional water authority more sustainable and cost-efficient. Sustainability can be achieved by minimizing the CO2 production trough minimizing the energy used for pumping. This work is showing the functionalities of the new decision support system, using RTC-Tools 2, through the example of a pilot project.
Evaluation of Rgb-Based Vegetation Indices from Uav Imagery to Estimate Forage Yield in Grassland
NASA Astrophysics Data System (ADS)
Lussem, U.; Bolten, A.; Gnyp, M. L.; Jasper, J.; Bareth, G.
2018-04-01
Monitoring forage yield throughout the growing season is of key importance to support management decisions on grasslands/pastures. Especially on intensely managed grasslands, where nitrogen fertilizer and/or manure are applied regularly, precision agriculture applications are beneficial to support sustainable, site-specific management decisions on fertilizer treatment, grazing management and yield forecasting to mitigate potential negative impacts. To support these management decisions, timely and accurate information is needed on plant parameters (e.g. forage yield) with a high spatial and temporal resolution. However, in highly heterogeneous plant communities such as grasslands, assessing their in-field variability non-destructively to determine e.g. adequate fertilizer application still remains challenging. Especially biomass/yield estimation, as an important parameter in assessing grassland quality and quantity, is rather laborious. Forage yield (dry or fresh matter) is mostly measured manually with rising plate meters (RPM) or ultrasonic sensors (handheld or mounted on vehicles). Thus the in-field variability cannot be assessed for the entire field or only with potential disturbances. Using unmanned aerial vehicles (UAV) equipped with consumer grade RGB cameras in-field variability can be assessed by computing RGB-based vegetation indices. In this contribution we want to test and evaluate the robustness of RGB-based vegetation indices to estimate dry matter forage yield on a recently established experimental grassland site in Germany. Furthermore, the RGB-based VIs are compared to indices computed from the Yara N-Sensor. The results show a good correlation of forage yield with RGB-based VIs such as the NGRDI with R2 values of 0.62.
Robust Bayesian decision theory applied to optimal dosage.
Abraham, Christophe; Daurès, Jean-Pierre
2004-04-15
We give a model for constructing an utility function u(theta,d) in a dose prescription problem. theta and d denote respectively the patient state of health and the dose. The construction of u is based on the conditional probabilities of several variables. These probabilities are described by logistic models. Obviously, u is only an approximation of the true utility function and that is why we investigate the sensitivity of the final decision with respect to the utility function. We construct a class of utility functions from u and approximate the set of all Bayes actions associated to that class. Then, we measure the sensitivity as the greatest difference between the expected utilities of two Bayes actions. Finally, we apply these results to weighing up a chemotherapy treatment of lung cancer. This application emphasizes the importance of measuring robustness through the utility of decisions rather than the decisions themselves. Copyright 2004 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Johnson, Lee F.; Maneta, Marco P.; Kimball, John S.
2016-01-01
Water cycle extremes such as droughts and floods present a challenge for water managers and for policy makers responsible for the administration of water supplies in agricultural regions. In addition to the inherent uncertainties associated with forecasting extreme weather events, water planners need to anticipate water demands and water user behavior in a typical circumstances. This requires the use decision support systems capable of simulating agricultural water demand with the latest available data. Unfortunately, managers from local and regional agencies often use different datasets of variable quality, which complicates coordinated action. In previous work we have demonstrated novel methodologies to use satellite-based observational technologies, in conjunction with hydro-economic models and state of the art data assimilation methods, to enable robust regional assessment and prediction of drought impacts on agricultural production, water resources, and land allocation. These methods create an opportunity for new, cost-effective analysis tools to support policy and decision-making over large spatial extents. The methods can be driven with information from existing satellite-derived operational products, such as the Satellite Irrigation Management Support system (SIMS) operational over California, the Cropland Data Layer (CDL), and using a modified light-use efficiency algorithm to retrieve crop yield from the synergistic use of MODIS and Landsat imagery. Here we present an integration of this modeling framework in a client-server architecture based on the Hydra platform. Assimilation and processing of resource intensive remote sensing data, as well as hydrologic and other ancillary information occur on the server side. This information is processed and summarized as attributes in water demand nodes that are part of a vector description of the water distribution network. With this architecture, our decision support system becomes a light weight 'app' that connects to the server to retrieve the latest information regarding water demands, land use, yields and hydrologic information required to run different management scenarios. Furthermore, this architecture ensures all agencies and teams involved in water management use the same, up-to-date information in their simulations.
NASA Astrophysics Data System (ADS)
Maneta, M. P.; Johnson, L.; Kimball, J. S.
2016-12-01
Water cycle extremes such as droughts and floods present a challenge for water managers and for policy makers responsible for the administration of water supplies in agricultural regions. In addition to the inherent uncertainties associated with forecasting extreme weather events, water planners need to anticipate water demands and water user behavior in atypical circumstances. This requires the use decision support systems capable of simulating agricultural water demand with the latest available data. Unfortunately, managers from local and regional agencies often use different datasets of variable quality, which complicates coordinated action. In previous work we have demonstrated novel methodologies to use satellite-based observational technologies, in conjunction with hydro-economic models and state of the art data assimilation methods, to enable robust regional assessment and prediction of drought impacts on agricultural production, water resources, and land allocation. These methods create an opportunity for new, cost-effective analysis tools to support policy and decision-making over large spatial extents. The methods can be driven with information from existing satellite-derived operational products, such as the Satellite Irrigation Management Support system (SIMS) operational over California, the Cropland Data Layer (CDL), and using a modified light-use efficiency algorithm to retrieve crop yield from the synergistic use of MODIS and Landsat imagery. Here we present an integration of this modeling framework in a client-server architecture based on the Hydra platform. Assimilation and processing of resource intensive remote sensing data, as well as hydrologic and other ancillary information occur on the server side. This information is processed and summarized as attributes in water demand nodes that are part of a vector description of the water distribution network. With this architecture, our decision support system becomes a light weight `app` that connects to the server to retrieve the latest information regarding water demands, land use, yields and hydrologic information required to run different management scenarios. Furthermore, this architecture ensures all agencies and teams involved in water management use the same, up-to-date information in their simulations.
Hierarchical Modeling and Robust Synthesis for the Preliminary Design of Large Scale Complex Systems
NASA Technical Reports Server (NTRS)
Koch, Patrick N.
1997-01-01
Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis; Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration; and Noise modeling techniques for implementing robust preliminary design when approximate models are employed. Hierarchical partitioning and modeling techniques including intermediate responses, linking variables, and compatibility constraints are incorporated within a hierarchical compromise decision support problem formulation for synthesizing subproblem solutions for a partitioned system. Experimentation and approximation techniques are employed for concurrent investigations and modeling of partitioned subproblems. A modified composite experiment is introduced for fitting better predictive models across the ranges of the factors, and an approach for constructing partitioned response surfaces is developed to reduce the computational expense of experimentation for fitting models in a large number of factors. Noise modeling techniques are compared and recommendations are offered for the implementation of robust design when approximate models are sought. These techniques, approaches, and recommendations are incorporated within the method developed for hierarchical robust preliminary design exploration. This method as well as the associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system. The case study is developed in collaboration with Allison Engine Company, Rolls Royce Aerospace, and is based on the Allison AE3007 existing engine designed for midsize commercial, regional business jets. For this case study, the turbofan system-level problem is partitioned into engine cycle design and configuration design and a compressor modules integrated for more detailed subsystem-level design exploration, improving system evaluation. The fan and low pressure turbine subsystems are also modeled, but in less detail. Given the defined partitioning, these subproblems are investigated independently and concurrently, and response surface models are constructed to approximate the responses of each. These response models are then incorporated within a commercial turbofan hierarchical compromise decision support problem formulation. Five design scenarios are investigated, and robust solutions are identified. The method and solutions identified are verified by comparison with the AE3007 engine. The solutions obtained are similar to the AE3007 cycle and configuration, but are better with respect to many of the requirements.
The boundaries of instance-based learning theory for explaining decisions from experience.
Gonzalez, Cleotilde
2013-01-01
Most demonstrations of how people make decisions in risky situations rely on decisions from description, where outcomes and their probabilities are explicitly stated. But recently, more attention has been given to decisions from experience where people discover these outcomes and probabilities through exploration. More importantly, risky behavior depends on how decisions are made (from description or experience), and although prospect theory explains decisions from description, a comprehensive model of decisions from experience is yet to be found. Instance-based learning theory (IBLT) explains how decisions are made from experience through interactions with dynamic environments (Gonzalez et al., 2003). The theory has shown robust explanations of behavior across multiple tasks and contexts, but it is becoming unclear what the theory is able to explain and what it does not. The goal of this chapter is to start addressing this problem. I will introduce IBLT and a recent cognitive model based on this theory: the IBL model of repeated binary choice; then I will discuss the phenomena that the IBL model explains and those that the model does not. The argument is for the theory's robustness but also for clarity in terms of concrete effects that the theory can or cannot account for. Copyright © 2013 Elsevier B.V. All rights reserved.
Influence of framing on medical decision making
Gong, Jingjing; Zhang, Yan; Feng, Jun; Huang, Yonghua; Wei, Yazhou; Zhang, Weiwei
2013-01-01
Numerous studies have demonstrated the robustness of the framing effect in a variety of contexts, especially in medical decision making. Unfortunately, research is still inconsistent as to how so many variables impact framing effects in medical decision making. Additionally, much attention should be paid to the framing effect not only in hypothetical scenarios but also in clinical experience. PMID:27034630
Influence of framing on medical decision making.
Gong, Jingjing; Zhang, Yan; Feng, Jun; Huang, Yonghua; Wei, Yazhou; Zhang, Weiwei
2013-01-01
Numerous studies have demonstrated the robustness of the framing effect in a variety of contexts, especially in medical decision making. Unfortunately, research is still inconsistent as to how so many variables impact framing effects in medical decision making. Additionally, much attention should be paid to the framing effect not only in hypothetical scenarios but also in clinical experience.
Impacts of psychological science on national security agencies post-9/11.
Brandon, Susan E
2011-09-01
Psychologists have been an integral part of national security agencies since World War I, when psychological science helped in personnel selection. A robust infrastructure supporting wider applications of psychology to military and intelligence problems developed further during World War II and the years following, primarily in the areas of testing, human factors, perception, and the decision sciences. Although the nature of the attacks on 9/11 raised the level of perceived need for increased human-based intelligence, the impacts of psychologists on the policies and practices of national security agencies in the decade since have not increased significantly. © 2011 American Psychological Association
Evaluation of Improved Pushback Forecasts Derived from Airline Ground Operations Data
NASA Technical Reports Server (NTRS)
Carr, Francis; Theis, Georg; Feron, Eric; Clarke, John-Paul
2003-01-01
Accurate and timely predictions of airline pushbacks can potentially lead to improved performance of automated decision-support tools for airport surface traffic, thus reducing the variability and average duration of costly airline delays. One factor which affects the realization of these benefits is the level of uncertainty inherent in the turn processes. To characterize this inherent uncertainty, three techniques are developed for predicting time-to-go until pushback as a function of available ground-time; elapsed ground-time; and the status (not-started/in-progress/completed) of individual turn processes (cleaning, fueling, etc.). These techniques are tested against a large and detailed dataset covering approximately l0(exp 4) real-world turn operations obtained through collaboration with Deutsche Lufthansa AG. Even after the dataset is filtered to obtain a sample of turn operations with minimal uncertainty, the standard deviation of forecast error for all three techniques is lower-bounded away from zero, indicating that turn operations have a significant stochastic component. This lower-bound result shows that decision-support tools must be designed to incorporate robust mechanisms for coping with pushback demand stochasticity, rather than treating the pushback demand process as a known deterministic input.
Testing and validation of computerized decision support systems.
Sailors, R M; East, T D; Wallace, C J; Carlson, D A; Franklin, M A; Heermann, L K; Kinder, A T; Bradshaw, R L; Randolph, A G; Morris, A H
1996-01-01
Systematic, through testing of decision support systems (DSSs) prior to release to general users is a critical aspect of high quality software design. Omission of this step may lead to the dangerous, and potentially fatal, condition of relying on a system with outputs of uncertain quality. Thorough testing requires a great deal of effort and is a difficult job because tools necessary to facilitate testing are not well developed. Testing is a job ill-suited to humans because it requires tireless attention to a large number of details. For these reasons, the majority of DSSs available are probably not well tested prior to release. We have successfully implemented a software design and testing plan which has helped us meet our goal of continuously improving the quality of our DSS software prior to release. While requiring large amounts of effort, we feel that the process of documenting and standardizing our testing methods are important steps toward meeting recognized national and international quality standards. Our testing methodology includes both functional and structural testing and requires input from all levels of development. Our system does not focus solely on meeting design requirements but also addresses the robustness of the system and the completeness of testing.
McFarland, Michael J; Nelson, Tim M; Rasmussen, Steve L; Palmer, Glenn R; Olivas, Arthur C
2005-03-01
All U.S. Department of Defense (DoD) facilities are required under Executive Order (EO) 13148, "Greening the Government through Leadership in Environmental Management," to establish quality-based environmental management systems (EMSs) that support environmental decision-making and verification of continuous environmental improvement by December 31, 2005. Compliance with EO 13148 as well as other federal, state, and local environmental regulations places a significant information management burden on DoD facilities. Cost-effective management of environmental data compels DoD facilities to establish robust database systems that not only address the complex and multifaceted environmental monitoring, record-keeping, and reporting requirements demanded by these rules but enable environmental management decision-makers to gauge improvements in environmental performance. The Enterprise Environmental Safety and Occupational Health Management Information System (EESOH-MIS) is a new electronic database developed by the U.S. Air Force to manage both the data needs associated with regulatory compliance programs across its facilities as well as the non-regulatory environmental information that supports installation business practices. The U.S. Air Force, which has adopted the Plan-Do-Check-Act methodology as the EMS standard that it will employ to address EO 13148 requirements.
Fraccaro, Paolo; Vigo, Markel; Balatsoukas, Panagiotis; Buchan, Iain E; Peek, Niels; van der Veer, Sabine N
2018-03-01
Patient portals are considered valuable conduits for supporting patients' self-management. However, it is unknown why they often fail to impact on health care processes and outcomes. This may be due to a scarcity of robust studies focusing on the steps that are required to induce improvement: users need to effectively interact with the portal (step 1) in order to receive information (step 2), which might influence their decision-making (step 3). We aimed to explore this potential knowledge gap by investigating to what extent each step has been investigated for patient portals, and explore the methodological approaches used. We performed a systematic literature review using Coiera's information value chain as a guiding theoretical framework. We searched MEDLINE and Scopus by combining terms related to patient portals and evaluation methodologies. Two reviewers selected relevant papers through duplicate screening, and one extracted data from the included papers. We included 115 articles. The large majority (n = 104) evaluated aspects related to interaction with patient portals (step 1). Usage was most often assessed (n = 61), mainly by analysing system interaction data (n = 50), with most authors considering participants as active users if they logged in at least once. Overall usability (n = 57) was commonly assessed through non-validated questionnaires (n = 44). Step 2 (information received) was investigated in 58 studies, primarily by analysing interaction data to evaluate usage of specific system functionalities (n = 34). Eleven studies explicitly assessed the influence of patient portals on patients' and clinicians' decisions (step 3). Whereas interaction with patient portals has been extensively studied, their influence on users' decision-making remains under-investigated. Methodological approaches to evaluating usage and usability of portals showed room for improvement. To unlock the potential of patient portals, more (robust) research should focus on better understanding the complex process of how portals lead to improved health and care. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Human Decision Processes: Implications for SSA Support Tools
NASA Astrophysics Data System (ADS)
Picciano, P.
2013-09-01
Despite significant advances in computing power and artificial intelligence (AI), few critical decisions are made without a human decision maker in the loop. Space Situational Awareness (SSA) missions are both critical and complex, typically adhering to the human-in-the-loop (HITL) model. The collection of human operators injects a needed diversity of expert knowledge, experience, and authority required to successfully fulfill SSA tasking. A wealth of literature on human decision making exists citing myriad empirical studies and offering a varied set of prescriptive and descriptive models of judgment and decision making (Hastie & Dawes, 2001; Baron, 2000). Many findings have been proven sufficiently robust to allow information architects or system/interface designers to take action to improve decision processes. For the purpose of discussion, these concepts are bifurcated in two groups: 1) vulnerabilities to mitigate, and 2) capabilities to augment. These vulnerabilities and capabilities refer specifically to the decision process and should not be confused with a shortcoming or skill of a specific human operator. Thus the framing of questions and orders, the automated tools with which to collaborate, priming and contextual data, and the delivery of information all play a critical role in human judgment and choice. Evaluating the merits of any decision can be elusive; in order to constrain this discussion, ‘rational choice' will tend toward the economic model characteristics such as maximizing utility and selection consistency (e.g., if A preferred to B, and B preferred to C, than A should be preferred to C). Simple decision models often encourage one to list the pros and cons of a decision, perhaps use a weighting schema, but one way or another weigh the future benefit (or harm) of making a selection. The result (sought by the rationalist models) should drive toward higher utility. Despite notable differences in researchers' theses (to be discussed in the full paper), one opinion shared is that the rational, economic, deliberate listing/evaluation of all options is NOT representative of how many decision are made. A framework gaining interest lately describes two systems predominantly at work: intuition and reasoning (Kahneman, 2003). Intuition is fast, automatic, and parallel contrasted with the more effortful, deliberative, and sequential reasoning. One of the issues of contention is that considerable research is stacked supporting both sides claiming that intuition is: • A hallmark of expertise responsible for rapid, optimal decisions in the face of adversity • A vulnerability where biases serve as decision traps leading to wrong choices Using seminal studies from a range of domains and tasking, potential solutions for SSA decision support will be offered. Important issues such as managing uncertainty, framing inquiries, and information architecture, and contextual cues will be discussed. The purpose is to provide awareness of the human limitations and capabilities in complex decision making so engineers and designers can consider such factors in their development of SSA tools.
Irwin, Brian J.; Conroy, Michael J.
2013-01-01
The success of natural resource management depends on monitoring, assessment and enforcement. In support of these efforts, reference points (RPs) are often viewed as critical values of management-relevant indicators. This paper considers RPs from the standpoint of objective-driven decision making in dynamic resource systems, guided by principles of structured decision making (SDM) and adaptive resource management (AM). During the development of natural resource policy, RPs have been variously treated as either ‘targets’ or ‘triggers’. Under a SDM/AM paradigm, target RPs correspond approximately to value-based objectives, which may in turn be either of fundamental interest to stakeholders or intermediaries to other central objectives. By contrast, trigger RPs correspond to decision rules that are presumed to lead to desirable outcomes (such as the programme targets). Casting RPs as triggers or targets within a SDM framework is helpful towards clarifying why (or whether) a particular metric is appropriate. Further, the benefits of a SDM/AM process include elucidation of underlying untested assumptions that may reveal alternative metrics for use as RPs. Likewise, a structured decision-analytic framework may also reveal that failure to achieve management goals is not because the metrics are wrong, but because the decision-making process in which they are embedded is insufficiently robust to uncertainty, is not efficiently directed at producing a resource objective, or is incapable of adaptation to new knowledge.
A Robust Decision-Making Technique for Water Management under Decadal Scale Climate Variability
NASA Astrophysics Data System (ADS)
Callihan, L.; Zagona, E. A.; Rajagopalan, B.
2013-12-01
Robust decision making, a flexible and dynamic approach to managing water resources in light of deep uncertainties associated with climate variability at inter-annual to decadal time scales, is an analytical framework that detects when a system is in or approaching a vulnerable state. It provides decision makers the opportunity to implement strategies that both address the vulnerabilities and perform well over a wide range of plausible future scenarios. A strategy that performs acceptably over a wide range of possible future states is not likely to be optimal with respect to the actual future state. The degree of success--the ability to avoid vulnerable states and operate efficiently--thus depends on the skill in projecting future states and the ability to select the most efficient strategies to address vulnerabilities. This research develops a robust decision making framework that incorporates new methods of decadal scale projections with selection of efficient strategies. Previous approaches to water resources planning under inter-annual climate variability combining skillful seasonal flow forecasts with climatology for subsequent years are not skillful for medium term (i.e. decadal scale) projections as decision makers are not able to plan adequately to avoid vulnerabilities. We address this need by integrating skillful decadal scale streamflow projections into the robust decision making framework and making the probability distribution of this projection available to the decision making logic. The range of possible future hydrologic scenarios can be defined using a variety of nonparametric methods. Once defined, an ensemble projection of decadal flow scenarios are generated from a wavelet-based spectral K-nearest-neighbor resampling approach using historical and paleo-reconstructed data. This method has been shown to generate skillful medium term projections with a rich variety of natural variability. The current state of the system in combination with the probability distribution of the projected flow ensembles enables the selection of appropriate decision options. This process is repeated for each year of the planning horizon--resulting in system outcomes that can be evaluated on their performance and resiliency. The research utilizes the RiverSMART suite of software modeling and analysis tools developed under the Bureau of Reclamation's WaterSMART initiative and built around the RiverWare modeling environment. A case study is developed for the Gunnison and Upper Colorado River Basins. The ability to mitigate vulnerability using the framework is gauged by system performance indicators that measure the ability of the system to meet various water demands (i.e. agriculture, environmental flows, hydropower etc.). Options and strategies for addressing vulnerabilities include measures such as conservation, reallocation and adjustments to operational policy. In addition to being able to mitigate vulnerabilities, options and strategies are evaluated based on benefits, costs and reliability. Flow ensembles are also simulated to incorporate mean and variance from climate change projections for the planning horizon and the above robust decision-making framework is applied to evaluate its performance under changing climate.
Richmond, Paul; Buesing, Lars; Giugliano, Michele; Vasilaki, Eleni
2011-05-04
High performance computing on the Graphics Processing Unit (GPU) is an emerging field driven by the promise of high computational power at a low cost. However, GPU programming is a non-trivial task and moreover architectural limitations raise the question of whether investing effort in this direction may be worthwhile. In this work, we use GPU programming to simulate a two-layer network of Integrate-and-Fire neurons with varying degrees of recurrent connectivity and investigate its ability to learn a simplified navigation task using a policy-gradient learning rule stemming from Reinforcement Learning. The purpose of this paper is twofold. First, we want to support the use of GPUs in the field of Computational Neuroscience. Second, using GPU computing power, we investigate the conditions under which the said architecture and learning rule demonstrate best performance. Our work indicates that networks featuring strong Mexican-Hat-shaped recurrent connections in the top layer, where decision making is governed by the formation of a stable activity bump in the neural population (a "non-democratic" mechanism), achieve mediocre learning results at best. In absence of recurrent connections, where all neurons "vote" independently ("democratic") for a decision via population vector readout, the task is generally learned better and more robustly. Our study would have been extremely difficult on a desktop computer without the use of GPU programming. We present the routines developed for this purpose and show that a speed improvement of 5x up to 42x is provided versus optimised Python code. The higher speed is achieved when we exploit the parallelism of the GPU in the search of learning parameters. This suggests that efficient GPU programming can significantly reduce the time needed for simulating networks of spiking neurons, particularly when multiple parameter configurations are investigated.
NASA Astrophysics Data System (ADS)
Raseman, W. J.; Kasprzyk, J. R.; Rosario-Ortiz, F.; Summers, R. S.; Stewart, J.; Livneh, B.
2016-12-01
To promote public health, the United States Environmental Protection Agency (US EPA), and similar entities around the world enact strict laws to regulate drinking water quality. These laws, such as the Stage 1 and 2 Disinfectants and Disinfection Byproducts (D/DBP) Rules, come at a cost to water treatment plants (WTPs) which must alter their operations and designs to meet more stringent standards and the regulation of new contaminants of concern. Moreover, external factors such as changing influent water quality due to climate extremes and climate change, may force WTPs to adapt their treatment methods. To grapple with these issues, decision support systems (DSSs) have been developed to aid WTP operation and planning. However, there is a critical need to better address long-term decision making for WTPs. In this poster, we propose a DSS framework for WTPs for long-term planning, which improves upon the current treatment of deep uncertainties within the overall potable water system including the impact of climate on influent water quality and uncertainties in treatment process efficiencies. We present preliminary results exploring how a multi-objective evolutionary algorithm (MOEA) search can be coupled with models of WTP processes to identify high-performing plans for their design and operation. This coupled simulation-optimization technique uses Borg MOEA, an auto-adaptive algorithm, and the Water Treatment Plant Model, a simulation model developed by the US EPA to assist in creating the D/DBP Rules. Additionally, Monte Carlo sampling methods were used to study the impact of uncertainty of influent water quality on WTP decision-making and generate plans for robust WTP performance.
Rahman, M Azizur; Rusteberg, Bernd; Gogu, R C; Lobo Ferreira, J P; Sauter, Martin
2012-05-30
This study reports the development of a new spatial multi-criteria decision analysis (SMCDA) software tool for selecting suitable sites for Managed Aquifer Recharge (MAR) systems. The new SMCDA software tool functions based on the combination of existing multi-criteria evaluation methods with modern decision analysis techniques. More specifically, non-compensatory screening, criteria standardization and weighting, and Analytical Hierarchy Process (AHP) have been combined with Weighted Linear Combination (WLC) and Ordered Weighted Averaging (OWA). This SMCDA tool may be implemented with a wide range of decision maker's preferences. The tool's user-friendly interface helps guide the decision maker through the sequential steps for site selection, those steps namely being constraint mapping, criteria hierarchy, criteria standardization and weighting, and criteria overlay. The tool offers some predetermined default criteria and standard methods to increase the trade-off between ease-of-use and efficiency. Integrated into ArcGIS, the tool has the advantage of using GIS tools for spatial analysis, and herein data may be processed and displayed. The tool is non-site specific, adaptive, and comprehensive, and may be applied to any type of site-selection problem. For demonstrating the robustness of the new tool, a case study was planned and executed at Algarve Region, Portugal. The efficiency of the SMCDA tool in the decision making process for selecting suitable sites for MAR was also demonstrated. Specific aspects of the tool such as built-in default criteria, explicit decision steps, and flexibility in choosing different options were key features, which benefited the study. The new SMCDA tool can be augmented by groundwater flow and transport modeling so as to achieve a more comprehensive approach to the selection process for the best locations of the MAR infiltration basins, as well as the locations of recovery wells and areas of groundwater protection. The new spatial multicriteria analysis tool has already been implemented within the GIS based Gabardine decision support system as an innovative MAR planning tool. Copyright © 2012 Elsevier Ltd. All rights reserved.
Robust MOE Detector for DS-CDMA Systems with Signature Waveform Mismatch
NASA Astrophysics Data System (ADS)
Lin, Tsui-Tsai
In this letter, a decision-directed MOE detector with excellent robustness against signature waveform mismatch is proposed for DS-CDMA systems. Both the theoretic analysis and computer simulation results demonstrate that the proposed detector can provide better SINR performance than that of conventional detectors.
Hawkins, Melanie; Elsworth, Gerald R; Osborne, Richard H
2018-07-01
Data from subjective patient-reported outcome measures (PROMs) are now being used in the health sector to make or support decisions about individuals, groups and populations. Contemporary validity theorists define validity not as a statistical property of the test but as the extent to which empirical evidence supports the interpretation of test scores for an intended use. However, validity testing theory and methodology are rarely evident in the PROM validation literature. Application of this theory and methodology would provide structure for comprehensive validation planning to support improved PROM development and sound arguments for the validity of PROM score interpretation and use in each new context. This paper proposes the application of contemporary validity theory and methodology to PROM validity testing. The validity testing principles will be applied to a hypothetical case study with a focus on the interpretation and use of scores from a translated PROM that measures health literacy (the Health Literacy Questionnaire or HLQ). Although robust psychometric properties of a PROM are a pre-condition to its use, a PROM's validity lies in the sound argument that a network of empirical evidence supports the intended interpretation and use of PROM scores for decision making in a particular context. The health sector is yet to apply contemporary theory and methodology to PROM development and validation. The theoretical and methodological processes in this paper are offered as an advancement of the theory and practice of PROM validity testing in the health sector.
Robust path planning for flexible needle insertion using Markov decision processes.
Tan, Xiaoyu; Yu, Pengqian; Lim, Kah-Bin; Chui, Chee-Kong
2018-05-11
Flexible needle has the potential to accurately navigate to a treatment region in the least invasive manner. We propose a new planning method using Markov decision processes (MDPs) for flexible needle navigation that can perform robust path planning and steering under the circumstance of complex tissue-needle interactions. This method enhances the robustness of flexible needle steering from three different perspectives. First, the method considers the problem caused by soft tissue deformation. The method then resolves the common needle penetration failure caused by patterns of targets, while the last solution addresses the uncertainty issues in flexible needle motion due to complex and unpredictable tissue-needle interaction. Computer simulation and phantom experimental results show that the proposed method can perform robust planning and generate a secure control policy for flexible needle steering. Compared with a traditional method using MDPs, the proposed method achieves higher accuracy and probability of success in avoiding obstacles under complicated and uncertain tissue-needle interactions. Future work will involve experiment with biological tissue in vivo. The proposed robust path planning method can securely steer flexible needle within soft phantom tissues and achieve high adaptability in computer simulation.
This paper proposes a robustness analysis based on Multiple Criteria Decision Aiding (MCDA). The ensuing model was used to assess the implementation of green chemistry principles in the synthesis of silver nanoparticles. Its recommendations were also compared to an earlier develo...
Hatala, Rose; Sawatsky, Adam P; Dudek, Nancy; Ginsburg, Shiphra; Cook, David A
2017-06-01
In-training evaluation reports (ITERs) constitute an integral component of medical student and postgraduate physician trainee (resident) assessment. ITER narrative comments have received less attention than the numeric scores. The authors sought both to determine what validity evidence informs the use of narrative comments from ITERs for assessing medical students and residents and to identify evidence gaps. Reviewers searched for relevant English-language studies in MEDLINE, EMBASE, Scopus, and ERIC (last search June 5, 2015), and in reference lists and author files. They included all original studies that evaluated ITERs for qualitative assessment of medical students and residents. Working in duplicate, they selected articles for inclusion, evaluated quality, and abstracted information on validity evidence using Kane's framework (inferences of scoring, generalization, extrapolation, and implications). Of 777 potential articles, 22 met inclusion criteria. The scoring inference is supported by studies showing that rich narratives are possible, that changing the prompt can stimulate more robust narratives, and that comments vary by context. Generalization is supported by studies showing that narratives reach thematic saturation and that analysts make consistent judgments. Extrapolation is supported by favorable relationships between ITER narratives and numeric scores from ITERs and non-ITER performance measures, and by studies confirming that narratives reflect constructs deemed important in clinical work. Evidence supporting implications is scant. The use of ITER narratives for trainee assessment is generally supported, except that evidence is lacking for implications and decisions. Future research should seek to confirm implicit assumptions and evaluate the impact of decisions.
An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images.
Chin Neoh, Siew; Srisukkham, Worawut; Zhang, Li; Todryk, Stephen; Greystoke, Brigit; Peng Lim, Chee; Alamgir Hossain, Mohammed; Aslam, Nauman
2015-10-09
This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-cluster evaluation is formulated based on the trade-off of several between-cluster measures of well-known feature extraction methods. The SDM measures are used in conjuction with Genetic Algorithm for clustering nucleus, cytoplasm, and background regions. Subsequently, a total of eighty features consisting of shape, texture, and colour information of the nucleus and cytoplasm sub-images are extracted. A number of classifiers (multi-layer perceptron, Support Vector Machine (SVM) and Dempster-Shafer ensemble) are employed for lymphocyte/lymphoblast classification. Evaluated with the ALL-IDB2 database, the proposed SDM-based clustering overcomes the shortcomings of Fuzzy C-means which focuses purely on within-cluster scatter variance. It also outperforms Linear Discriminant Analysis and Fuzzy Compactness and Separation for nucleus-cytoplasm separation. The overall system achieves superior recognition rates of 96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with Dempster-Shafer and SVM, respectively. The results also compare favourably with those reported in the literature, indicating the usefulness of the proposed SDM-based clustering method.
An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images
Chin Neoh, Siew; Srisukkham, Worawut; Zhang, Li; Todryk, Stephen; Greystoke, Brigit; Peng Lim, Chee; Alamgir Hossain, Mohammed; Aslam, Nauman
2015-01-01
This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-cluster evaluation is formulated based on the trade-off of several between-cluster measures of well-known feature extraction methods. The SDM measures are used in conjuction with Genetic Algorithm for clustering nucleus, cytoplasm, and background regions. Subsequently, a total of eighty features consisting of shape, texture, and colour information of the nucleus and cytoplasm sub-images are extracted. A number of classifiers (multi-layer perceptron, Support Vector Machine (SVM) and Dempster-Shafer ensemble) are employed for lymphocyte/lymphoblast classification. Evaluated with the ALL-IDB2 database, the proposed SDM-based clustering overcomes the shortcomings of Fuzzy C-means which focuses purely on within-cluster scatter variance. It also outperforms Linear Discriminant Analysis and Fuzzy Compactness and Separation for nucleus-cytoplasm separation. The overall system achieves superior recognition rates of 96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with Dempster-Shafer and SVM, respectively. The results also compare favourably with those reported in the literature, indicating the usefulness of the proposed SDM-based clustering method. PMID:26450665
quantGenius: implementation of a decision support system for qPCR-based gene quantification.
Baebler, Špela; Svalina, Miha; Petek, Marko; Stare, Katja; Rotter, Ana; Pompe-Novak, Maruša; Gruden, Kristina
2017-05-25
Quantitative molecular biology remains a challenge for researchers due to inconsistent approaches for control of errors in the final results. Due to several factors that can influence the final result, quantitative analysis and interpretation of qPCR data are still not trivial. Together with the development of high-throughput qPCR platforms, there is a need for a tool allowing for robust, reliable and fast nucleic acid quantification. We have developed "quantGenius" ( http://quantgenius.nib.si ), an open-access web application for a reliable qPCR-based quantification of nucleic acids. The quantGenius workflow interactively guides the user through data import, quality control (QC) and calculation steps. The input is machine- and chemistry-independent. Quantification is performed using the standard curve approach, with normalization to one or several reference genes. The special feature of the application is the implementation of user-guided QC-based decision support system, based on qPCR standards, that takes into account pipetting errors, assay amplification efficiencies, limits of detection and quantification of the assays as well as the control of PCR inhibition in individual samples. The intermediate calculations and final results are exportable in a data matrix suitable for further statistical analysis or visualization. We additionally compare the most important features of quantGenius with similar advanced software tools and illustrate the importance of proper QC system in the analysis of qPCR data in two use cases. To our knowledge, quantGenius is the only qPCR data analysis tool that integrates QC-based decision support and will help scientists to obtain reliable results which are the basis for biologically meaningful data interpretation.
Working Memory and Decision-Making in a Frontoparietal Circuit Model
2017-01-01
Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models. SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental “building blocks” of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal cortex (PPC) at the core. It is not clear, however, what the contributions of PPC and PFC are in light of the computations that subserve working memory and decision-making. We constructed a biophysical model of a reciprocally connected frontoparietal circuit that revealed shared and distinct functions for the PFC and PPC across working memory and decision-making tasks. Our parsimonious model connects circuit-level properties to cognitive functions and suggests novel design principles beyond those of local circuits for cognitive processing in multiregional brain networks. PMID:29114071
Working Memory and Decision-Making in a Frontoparietal Circuit Model.
Murray, John D; Jaramillo, Jorge; Wang, Xiao-Jing
2017-12-13
Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models. SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental "building blocks" of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal cortex (PPC) at the core. It is not clear, however, what the contributions of PPC and PFC are in light of the computations that subserve working memory and decision-making. We constructed a biophysical model of a reciprocally connected frontoparietal circuit that revealed shared and distinct functions for the PFC and PPC across working memory and decision-making tasks. Our parsimonious model connects circuit-level properties to cognitive functions and suggests novel design principles beyond those of local circuits for cognitive processing in multiregional brain networks. Copyright © 2017 the authors 0270-6474/17/3712167-20$15.00/0.
Freebairn, L; Atkinson, J; Kelly, P; McDonnell, G; Rychetnik, L
2016-09-21
Evidence-informed decision-making is essential to ensure that health programs and services are effective and offer value for money; however, barriers to the use of evidence persist. Emerging systems science approaches and advances in technology are providing new methods and tools to facilitate evidence-based decision-making. Simulation modelling offers a unique tool for synthesising and leveraging existing evidence, data and expert local knowledge to examine, in a robust, low risk and low cost way, the likely impact of alternative policy and service provision scenarios. This case study will evaluate participatory simulation modelling to inform the prevention and management of gestational diabetes mellitus (GDM). The risks associated with GDM are well recognised; however, debate remains regarding diagnostic thresholds and whether screening and treatment to reduce maternal glucose levels reduce the associated risks. A diagnosis of GDM may provide a leverage point for multidisciplinary lifestyle modification interventions. This research will apply and evaluate a simulation modelling approach to understand the complex interrelation of factors that drive GDM rates, test options for screening and interventions, and optimise the use of evidence to inform policy and program decision-making. The study design will use mixed methods to achieve the objectives. Policy, clinical practice and research experts will work collaboratively to develop, test and validate a simulation model of GDM in the Australian Capital Territory (ACT). The model will be applied to support evidence-informed policy dialogues with diverse stakeholders for the management of GDM in the ACT. Qualitative methods will be used to evaluate simulation modelling as an evidence synthesis tool to support evidence-based decision-making. Interviews and analysis of workshop recordings will focus on the participants' engagement in the modelling process; perceived value of the participatory process, perceived commitment, influence and confidence of stakeholders in implementing policy and program decisions identified in the modelling process; and the impact of the process in terms of policy and program change. The study will generate empirical evidence on the feasibility and potential value of simulation modelling to support knowledge mobilisation and consensus building in health settings.
Robust sampling of decision information during perceptual choice
Vandormael, Hildward; Herce Castañón, Santiago; Balaguer, Jan; Li, Vickie; Summerfield, Christopher
2017-01-01
Humans move their eyes to gather information about the visual world. However, saccadic sampling has largely been explored in paradigms that involve searching for a lone target in a cluttered array or natural scene. Here, we investigated the policy that humans use to overtly sample information in a perceptual decision task that required information from across multiple spatial locations to be combined. Participants viewed a spatial array of numbers and judged whether the average was greater or smaller than a reference value. Participants preferentially sampled items that were less diagnostic of the correct answer (“inlying” elements; that is, elements closer to the reference value). This preference to sample inlying items was linked to decisions, enhancing the tendency to give more weight to inlying elements in the final choice (“robust averaging”). These findings contrast with a large body of evidence indicating that gaze is directed preferentially to deviant information during natural scene viewing and visual search, and suggest that humans may sample information “robustly” with their eyes during perceptual decision-making. PMID:28223519
Uncertainty and risk in wildland fire management: a review.
Thompson, Matthew P; Calkin, Dave E
2011-08-01
Wildland fire management is subject to manifold sources of uncertainty. Beyond the unpredictability of wildfire behavior, uncertainty stems from inaccurate/missing data, limited resource value measures to guide prioritization across fires and resources at risk, and an incomplete scientific understanding of ecological response to fire, of fire behavior response to treatments, and of spatiotemporal dynamics involving disturbance regimes and climate change. This work attempts to systematically align sources of uncertainty with the most appropriate decision support methodologies, in order to facilitate cost-effective, risk-based wildfire planning efforts. We review the state of wildfire risk assessment and management, with a specific focus on uncertainties challenging implementation of integrated risk assessments that consider a suite of human and ecological values. Recent advances in wildfire simulation and geospatial mapping of highly valued resources have enabled robust risk-based analyses to inform planning across a variety of scales, although improvements are needed in fire behavior and ignition occurrence models. A key remaining challenge is a better characterization of non-market resources at risk, both in terms of their response to fire and how society values those resources. Our findings echo earlier literature identifying wildfire effects analysis and value uncertainty as the primary challenges to integrated wildfire risk assessment and wildfire management. We stress the importance of identifying and characterizing uncertainties in order to better quantify and manage them. Leveraging the most appropriate decision support tools can facilitate wildfire risk assessment and ideally improve decision-making. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Noble, Bram F.; Christmas, Lisa M.
2008-01-01
This article presents a methodological framework for strategic environmental assessment (SEA) application. The overall objective is to demonstrate SEA as a systematic and structured policy, plan, and program (PPP) decision support tool. In order to accomplish this objective, a stakeholder-based SEA application to greenhouse gas (GHG) mitigation policy options in Canadian agriculture is presented. Using a mail-out impact assessment exercise, agricultural producers and nonproducers from across the Canadian prairie region were asked to evaluate five competing GHG mitigation options against 13 valued environmental components (VECs). Data were analyzed using multi-criteria and exploratory analytical techniques. The results suggest considerable variation in perceived impacts and GHG mitigation policy preferences, suggesting that a blanket policy approach to GHG mitigation will create gainers and losers based on soil type and associate cropping and on-farm management practices. It is possible to identify a series of regional greenhouse gas mitigation programs that are robust, socially meaningful, and operationally relevant to both agricultural producers and policy decision makers. The assessment demonstrates the ability of SEA to address, in an operational sense, environmental problems that are characterized by conflicting interests and competing objectives and alternatives. A structured and systematic SEA methodology provides the necessary decision support framework for the consideration of impacts, and allows for PPPs to be assessed based on a much broader set of properties, objectives, criteria, and constraints whereas maintaining rigor and accountability in the assessment process.
Rapid Review Summit: an overview and initiation of a research agenda.
Polisena, Julie; Garritty, Chantelle; Umscheid, Craig A; Kamel, Chris; Samra, Kevin; Smith, Jeannette; Vosilla, Ann
2015-09-26
The demand for accelerated forms of evidence synthesis is on the rise, largely in response to requests by health care decision makers for expeditious assessment and up-to-date information about health care technologies and health services and programs. As a field, rapid review evidence synthesis is marked by a tension between the strategic priority to inform health care decision-making and the scientific imperative to produce robust, high-quality research that soundly supports health policy and practice. In early 2015, the Canadian Agency for Drugs and Technologies in Health convened a forum in partnership with the British Columbia Ministry of Health, the British Columbia Centre for Clinical Epidemiology and Evaluation, the Ottawa Hospital Research Institute, and the University of Pennsylvania. More than 150 evidence synthesis producers and end users attended the Rapid Review Summit: Then, Now and in the Future. The Summit program focused on the evolving role and practices of rapid reviews to support informed health care policy and clinical decision-making, including the uptake and use of health technology assessment. Our discussion paper highlights the important discussions that occurred during the Rapid Review Summit. It focuses on the initial development of a research agenda that resulted from the Summit presentations and discussions. The research topics centered on three key areas of interest: (1) how to conduct a rapid review; (2) investigating the validity and utility of rapid reviews; and (3) how to improve access to rapid reviews.
The neural systems for perceptual updating.
Stöttinger, Elisabeth; Aichhorn, Markus; Anderson, Britt; Danckert, James
2018-04-01
In a constantly changing environment we must adapt to both abrupt and gradual changes to incoming information. Previously, we demonstrated that a distributed network (including the anterior insula and anterior cingulate cortex) was active when participants updated their initial representations (e.g., it's a cat) in a gradually morphing picture task (e.g., now it's a rabbit; Stöttinger et al., 2015). To shed light on whether these activations reflect the proactive decisions to update or perceptual uncertainty, we introduced two additional conditions. By presenting picture morphs twice we controlled for uncertainty in perceptual decision making. Inducing an abrupt shift in a third condition allowed us to differentiate between a proactive decision in uncertainty-driven updating and a reactive decision in surprise-based updating. We replicated our earlier result, showing the robustness of the effect. In addition, we found activation in the anterior insula (bilaterally) and the mid frontal area/ACC in all three conditions, indicative of the importance of these areas in updating of all kinds. When participants were naïve as to the identity of the second object, we found higher activations in the mid-cingulate cortex and cuneus - areas typically associated with task difficulty, in addition to higher activations in the right TPJ most likely reflecting the shift to a new perspective. Activations associated with the proactive decision to update to a new interpretation were found in a network including the dorsal ACC known to be involved in exploration and the endogenous decision to switch to a new interpretation. These findings suggest a general network commonly engaged in all types of perceptual decision making supported by additional networks associated with perceptual uncertainty or updating provoked by either proactive or reactive decision making. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Groundwater Remediation using Bayesian Information-Gap Decision Theory
NASA Astrophysics Data System (ADS)
O'Malley, D.; Vesselinov, V. V.
2016-12-01
Probabilistic analyses of groundwater remediation scenarios frequently fail because the probability of an adverse, unanticipated event occurring is often high. In general, models of flow and transport in contaminated aquifers are always simpler than reality. Further, when a probabilistic analysis is performed, probability distributions are usually chosen more for convenience than correctness. The Bayesian Information-Gap Decision Theory (BIGDT) was designed to mitigate the shortcomings of the models and probabilistic decision analyses by leveraging a non-probabilistic decision theory - information-gap decision theory. BIGDT considers possible models that have not been explicitly enumerated and does not require us to commit to a particular probability distribution for model and remediation-design parameters. Both the set of possible models and the set of possible probability distributions grow as the degree of uncertainty increases. The fundamental question that BIGDT asks is "How large can these sets be before a particular decision results in an undesirable outcome?". The decision that allows these sets to be the largest is considered to be the best option. In this way, BIGDT enables robust decision-support for groundwater remediation problems. Here we apply BIGDT to in a representative groundwater remediation scenario where different options for hydraulic containment and pump & treat are being considered. BIGDT requires many model runs and for complex models high-performance computing resources are needed. These analyses are carried out on synthetic problems, but are applicable to real-world problems such as LANL site contaminations. BIGDT is implemented in Julia (a high-level, high-performance dynamic programming language for technical computing) and is part of the MADS framework (http://mads.lanl.gov/ and https://github.com/madsjulia/Mads.jl).
Cold adaptation shapes the robustness of metabolic networks in Drosophila melanogaster
Williams, CM; Watanabe, M; Guarracino, MR; Ferraro, MB; Edison, AS; Morgan, TJ; Boroujerdi, AFB; Hahn, DA
2015-01-01
When ectotherms are exposed to low temperatures, they enter a cold-induced coma (chill coma) that prevents resource acquisition, mating, oviposition, and escape from predation. There is substantial variation in time taken to recover from chill coma both within and among species, and this variation is correlated with habitat temperatures such that insects from cold environments recover more quickly. This suggests an adaptive response, but the mechanisms underlying variation in recovery times are unknown, making it difficult to decisively test adaptive hypotheses. We use replicated lines of Drosophila melanogaster selected in the laboratory for fast (hardy) or slow (susceptible) chill-coma recovery times to investigate modifications to metabolic profiles associated with cold adaptation. We measured metabolite concentrations of flies before, during, and after cold exposure using NMR spectroscopy to test the hypotheses that hardy flies maintain metabolic homeostasis better during cold exposure and recovery, and that their metabolic networks are more robust to cold-induced perturbations. The metabolites of cold-hardy flies were less cold responsive and their metabolic networks during cold exposure were more robust, supporting our hypotheses. Metabolites involved in membrane lipid synthesis, tryptophan metabolism, oxidative stress, energy balance, and proline metabolism were altered by selection on cold tolerance. We discuss the potential significance of these alterations. PMID:25308124
NASA Astrophysics Data System (ADS)
Mendoza, G.; Tkach, M.; Kucharski, J.; Chaudhry, R.
2017-12-01
This discussion is focused around the application of a bottom-up vulnerability assessment procedure for planning of climate resilience to a water treament plant for teh city of Iolanda, Zambia. This project is a Millennium Challenge Corporation (MCC) innitiaive with technical support by the UNESCO category II, International Center for Integrated Water Resources Management (ICIWaRM) with secretariat at the US Army Corps of Engineers Institute for Water Resources. The MCC is an innovative and independent U.S. foreign aid agency that is helping lead the fight against global poverty. The bottom-up vulnerability assessmentt framework examines critical performance thresholds, examines the external drivers that would lead to failure, establishes plausibility and analytical uncertainty that would lead to failure, and provides the economic justification for robustness or adaptability. This presentation will showcase the experiences in the application of the bottom-up framework to a region that is very vulnerable to climate variability, has poor instituional capacities, and has very limited data. It will illustrate the technical analysis and a decision process that led to a non-obvious climate robust solution. Most importantly it will highlight the challenges of utilizing discounted cash flow analysis (DCFA), such as net present value, in justifying robust or adaptive solutions, i.e. comparing solution under different future risks. We highlight a solution to manage the potential biases these DCFA procedures can incur.
Efficient Computation of Info-Gap Robustness for Finite Element Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stull, Christopher J.; Hemez, Francois M.; Williams, Brian J.
2012-07-05
A recent research effort at LANL proposed info-gap decision theory as a framework by which to measure the predictive maturity of numerical models. Info-gap theory explores the trade-offs between accuracy, that is, the extent to which predictions reproduce the physical measurements, and robustness, that is, the extent to which predictions are insensitive to modeling assumptions. Both accuracy and robustness are necessary to demonstrate predictive maturity. However, conducting an info-gap analysis can present a formidable challenge, from the standpoint of the required computational resources. This is because a robustness function requires the resolution of multiple optimization problems. This report offers anmore » alternative, adjoint methodology to assess the info-gap robustness of Ax = b-like numerical models solved for a solution x. Two situations that can arise in structural analysis and design are briefly described and contextualized within the info-gap decision theory framework. The treatments of the info-gap problems, using the adjoint methodology are outlined in detail, and the latter problem is solved for four separate finite element models. As compared to statistical sampling, the proposed methodology offers highly accurate approximations of info-gap robustness functions for the finite element models considered in the report, at a small fraction of the computational cost. It is noted that this report considers only linear systems; a natural follow-on study would extend the methodologies described herein to include nonlinear systems.« less
Robust support vector regression networks for function approximation with outliers.
Chuang, Chen-Chia; Su, Shun-Feng; Jeng, Jin-Tsong; Hsiao, Chih-Ching
2002-01-01
Support vector regression (SVR) employs the support vector machine (SVM) to tackle problems of function approximation and regression estimation. SVR has been shown to have good robust properties against noise. When the parameters used in SVR are improperly selected, overfitting phenomena may still occur. However, the selection of various parameters is not straightforward. Besides, in SVR, outliers may also possibly be taken as support vectors. Such an inclusion of outliers in support vectors may lead to seriously overfitting phenomena. In this paper, a novel regression approach, termed as the robust support vector regression (RSVR) network, is proposed to enhance the robust capability of SVR. In the approach, traditional robust learning approaches are employed to improve the learning performance for any selected parameters. From the simulation results, our RSVR can always improve the performance of the learned systems for all cases. Besides, it can be found that even the training lasted for a long period, the testing errors would not go up. In other words, the overfitting phenomenon is indeed suppressed.
Robust Decision-making Applied to Model Selection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemez, Francois M.
2012-08-06
The scientific and engineering communities are relying more and more on numerical models to simulate ever-increasingly complex phenomena. Selecting a model, from among a family of models that meets the simulation requirements, presents a challenge to modern-day analysts. To address this concern, a framework is adopted anchored in info-gap decision theory. The framework proposes to select models by examining the trade-offs between prediction accuracy and sensitivity to epistemic uncertainty. The framework is demonstrated on two structural engineering applications by asking the following question: Which model, of several numerical models, approximates the behavior of a structure when parameters that define eachmore » of those models are unknown? One observation is that models that are nominally more accurate are not necessarily more robust, and their accuracy can deteriorate greatly depending upon the assumptions made. It is posited that, as reliance on numerical models increases, establishing robustness will become as important as demonstrating accuracy.« less
NASA Astrophysics Data System (ADS)
Zachary, Wayne; Eggleston, Robert; Donmoyer, Jason; Schremmer, Serge
2003-09-01
Decision-making is strongly shaped and influenced by the work context in which decisions are embedded. This suggests that decision support needs to be anchored by a model (implicit or explicit) of the work process, in contrast to traditional approaches that anchor decision support to either context free decision models (e.g., utility theory) or to detailed models of the external (e.g., battlespace) environment. An architecture for cognitively-based, work centered decision support called the Work-centered Informediary Layer (WIL) is presented. WIL separates decision support into three overall processes that build and dynamically maintain an explicit context model, use the context model to identify opportunities for decision support and tailor generic decision-support strategies to the current context and offer them to the system-user/decision-maker. The generic decision support strategies include such things as activity/attention aiding, decision process structuring, work performance support (selective, contextual automation), explanation/ elaboration, infosphere data retrieval, and what if/action-projection and visualization. A WIL-based application is a work-centered decision support layer that provides active support without intent inferencing, and that is cognitively based without requiring classical cognitive task analyses. Example WIL applications are detailed and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graesser, Jordan B; Cheriyadat, Anil M; Vatsavai, Raju
The high rate of global urbanization has resulted in a rapid increase in informal settlements, which can be de ned as unplanned, unauthorized, and/or unstructured housing. Techniques for ef ciently mapping these settlement boundaries can bene t various decision making bodies. From a remote sensing perspective, informal settlements share unique spatial characteristics that distinguish them from other types of structures (e.g., industrial, commercial, and formal residential). These spatial characteristics are often captured in high spatial resolution satellite imagery. We analyzed the role of spatial, structural, and contextual features (e.g., GLCM, Histogram of Oriented Gradients, Line Support Regions, Lacunarity) for urbanmore » neighborhood mapping, and computed several low-level image features at multiple scales to characterize local neighborhoods. The decision parameters to classify formal-, informal-, and non-settlement classes were learned under Decision Trees and a supervised classi cation framework. Experiments were conducted on high-resolution satellite imagery from the CitySphere collection, and four different cities (i.e., Caracas, Kabul, Kandahar, and La Paz) with varying spatial characteristics were represented. Overall accuracy ranged from 85% in La Paz, Bolivia, to 92% in Kandahar, Afghanistan. While the disparities between formal and informal neighborhoods varied greatly, many of the image statistics tested proved robust.« less
Innovation and nested preferential growth in chess playing behavior
NASA Astrophysics Data System (ADS)
Perotti, J. I.; Jo, H.-H.; Schaigorodsky, A. L.; Billoni, O. V.
2013-11-01
Complexity develops via the incorporation of innovative properties. Chess is one of the most complex strategy games, where expert contenders exercise decision making by imitating old games or introducing innovations. In this work, we study innovation in chess by analyzing how different move sequences are played at the population level. It is found that the probability of exploring a new or innovative move decreases as a power law with the frequency of the preceding move sequence. Chess players also exploit already known move sequences according to their frequencies, following a preferential growth mechanism. Furthermore, innovation in chess exhibits Heaps' law suggesting similarities with the process of vocabulary growth. We propose a robust generative mechanism based on nested Yule-Simon preferential growth processes that reproduces the empirical observations. These results, supporting the self-similar nature of innovations in chess are important in the context of decision making in a competitive scenario, and extend the scope of relevant findings recently discovered regarding the emergence of Zipf's law in chess.
Collaboration pathway(s) using new tools for optimizing operational climate monitoring from space
NASA Astrophysics Data System (ADS)
Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.
2014-10-01
Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the needs of decision makers, scientific investigators and global users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent (2014) rulebased decision engine modeling runs that targeted optimizing the intended NPOESS architecture, becomes a surrogate for global operational climate monitoring architecture(s). This rule-based systems tools provide valuable insight for Global climate architectures, through the comparison and evaluation of alternatives considered and the exhaustive range of trade space explored. A representative optimization of Global ECV's (essential climate variables) climate monitoring architecture(s) is explored and described in some detail with thoughts on appropriate rule-based valuations. The optimization tools(s) suggest and support global collaboration pathways and hopefully elicit responses from the audience and climate science shareholders.
Induced abortion and psychological sequelae.
Cameron, Sharon
2010-10-01
The decision to seek an abortion is never easy. Women have different reasons for choosing an abortion and their social, economic and religious background may influence how they cope. Furthermore, once pregnant, the alternatives of childbirth and adoption or keeping the baby may not be psychologically neutral. Research studies in this area have been hampered by methodological problems, but most of the better-quality studies have shown no increased risk of mental health problems in women having an abortion. A consistent finding has been that of pre-existing mental illness and subsequent mental health problems after either abortion or childbirth. Furthermore, studies have shown that only a minority of women experience any lasting sadness or regret. Risk factors for this include ambivalence about the decision, level of social support and whether or not the pregnancy was originally intended. More robust, definitive research studies are required on mental health after abortion and alternative outcomes such as childbirth. Copyright 2010 Elsevier Ltd. All rights reserved.
Alcohol Use Disorders in Pregnancy
DeVido, Jeffrey; Bogunovic, Olivera; Weiss, Roger D.
2015-01-01
Alcohol use disorders (AUD) during pregnancy are less prevalent than in non-pregnant women, but they can create a host of clinical challenges when encountered. Unfortunately, there is little research information available to guide clinical decision-making in this population. Drinking alcohol during pregnancy can have negative consequences on both fetus and mother, but there is controversy regarding the volume of alcohol consumption that correlates with these consequences. There is little evidence to support the use of pharmacologic interventions for AUD during pregnancy. Similarly, there are few data to guide management of alcohol detoxification in pregnant women, and the use of benzodiazepines (the mainstay of most alcohol detoxification protocols) in pregnant women is controversial. Despite a lack of robust data to guide management of AUDs in pregnancy, clinicians must nonetheless make management decisions when confronted with these challenging situations. Therefore, this paper reviews the epidemiology of AUDs in pregnancy, and the pharmacologic management of both AUDs and alcohol withdrawal in pregnant women, to better inform clinicians about what is known about managing these co-occurring conditions. PMID:25747924
Stacey, Dawn; Chambers, Suzanne K; Jacobsen, Mary Jane; Dunn, Jeff
2008-11-01
To evaluate the effect of an intervention on healthcare professionals' perceptions of barriers influencing their provision of decision support for callers facing cancer-related decisions. A pre- and post-test study guided by the Ottawa Model of Research Use. Australian statewide cancer call center that provides public access to information and supportive cancer services. 34 nurses, psychologists, and other allied healthcare professionals at the cancer call center. Participants completed baseline measures and, subsequently, were exposed to an intervention that included a decision support tutorial, coaching protocol, and skill-building workshop. Strategies were implemented to address organizational barriers. Perceived barriers and facilitators influencing provision of decision support, decision support knowledge, quality of decision support provided to standardized callers, and call length. Postintervention participants felt more prepared, confident in providing decision support, and aware of decision support resources. They had a stronger belief that providing decision support was within their role. Participants significantly improved their knowledge and provided higher-quality decision support to standardized callers without changing call length. The implementation intervention overcame several identified barriers that influenced call center professionals when providing decision support. Nurses and other helpline professionals have the potential to provide decision support designed to help callers understand cancer information, clarify their values associated with their options, and reduce decisional conflict. However, they require targeted education and organizational interventions to reduce their perceived barriers to providing decision support.
Analytical redundancy and the design of robust failure detection systems
NASA Technical Reports Server (NTRS)
Chow, E. Y.; Willsky, A. S.
1984-01-01
The Failure Detection and Identification (FDI) process is viewed as consisting of two stages: residual generation and decision making. It is argued that a robust FDI system can be achieved by designing a robust residual generation process. Analytical redundancy, the basis for residual generation, is characterized in terms of a parity space. Using the concept of parity relations, residuals can be generated in a number of ways and the design of a robust residual generation process can be formulated as a minimax optimization problem. An example is included to illustrate this design methodology. Previously announcedd in STAR as N83-20653
Optimization of Operations Resources via Discrete Event Simulation Modeling
NASA Technical Reports Server (NTRS)
Joshi, B.; Morris, D.; White, N.; Unal, R.
1996-01-01
The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.
Evidence, illness, and causation: an epidemiological perspective on the Russo-Williamson Thesis.
Fiorentino, Alexander R; Dammann, Olaf
2015-12-01
According to the Russo-Williamson Thesis, causal claims in the health sciences need to be supported by both difference-making and mechanistic evidence. In this article, we attempt to determine whether Evidence-based Medicine (EBM) can be improved through the consideration of mechanistic evidence. We discuss the practical composition and function of each RWT evidence type and propose that exposure-outcome evidence (previously known as difference-making evidence) provides associations that can be explained through a hypothesis of causation, while mechanistic evidence provides finer-grained associations and knowledge of entities that ultimately explains a causal hypothesis. We suggest that mechanistic evidence holds untapped potential to add value to the assessment of evidence quality in EBM and propose initial recommendations for the integration of mechanistic and exposure-outcome evidence to improve EBM by robustly leveraging available evidence in support of good medical decisions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Meta-T: TetrisⓇ as an experimental paradigm for cognitive skills research.
Lindstedt, John K; Gray, Wayne D
2015-12-01
Studies of human performance in complex tasks using video games are an attractive prospect, but many existing games lack a comprehensive way to modify the game and track performance beyond basic levels of analysis. Meta-T provides experimenters a tool to study behavior in a dynamic task environment with time-stressed decision-making and strong perceptual-motor elements, offering a host of experimental manipulations with a robust and detailed logging system for all user events, system events, and screen objects. Its experimenter-friendly interface provides control over detailed parameters of the task environment without need for programming expertise. Support for eye-tracking and computational cognitive modeling extend the paradigm's scope.
Hunt, Louise A; McGee, Paula; Gutteridge, Robin; Hughes, Malcolm
2016-04-01
This study was undertaken in response to concerns that mentors who assessed practical competence were reluctant to fail student nurses which generated doubts about the fitness to practise of some registered nurses. Limited evidence was available about the experiences of mentors who had failed underperforming students and what had helped them to do this. To investigate what enabled some mentors to fail underperforming students when it was recognised that many were hesitant to do so. An ethically approved, grounded theory approach was used to explore thirty-one nurses' experiences of failing student nurses in practical assessments in England. Participants were recruited using theoretical sampling techniques. Semi-structured interviews were conducted. Analysis was undertaken using iterative, constant comparative techniques and reflexive processes. The theoretical framework which emerged had strong resonance with professionals. Five categories emerged from the findings: (1) Braving the assessment vortex; (2) Identifying the 'gist' of underperformance; (3) Tempering Reproach; (4) Standing up to scrutiny; and (5) Drawing on an interpersonal network. These categories together revealed that mentors needed to feel secure to fail a student nurse in a practical assessment and that they used a three stage decision making process to ascertain if this was the case. Many of the components which helped mentors to feel secure were informal in nature and functioned on goodwill and local arrangements rather than on timely, formal, organisational systems. The mentor's partner/spouse and practice education facilitator or link lecturer were identified as the key people who provided essential emotional support during this challenging experience. This study contributes to understanding of the combined supportive elements required for robust practical assessment. It presents a new explanatory framework about how mentors formulate the decision to fail a student nurse and the supportive structures which are necessary for this to occur. Copyright © 2016 Elsevier Ltd. All rights reserved.
Casal-Campos, Arturo; Fu, Guangtao; Butler, David; Moore, Andrew
2015-07-21
The robustness of a range of watershed-scale "green" and "gray" drainage strategies in the future is explored through comprehensive modeling of a fully integrated urban wastewater system case. Four socio-economic future scenarios, defined by parameters affecting the environmental performance of the system, are proposed to account for the uncertain variability of conditions in the year 2050. A regret-based approach is applied to assess the relative performance of strategies in multiple impact categories (environmental, economic, and social) as well as to evaluate their robustness across future scenarios. The concept of regret proves useful in identifying performance trade-offs and recognizing states of the world most critical to decisions. The study highlights the robustness of green strategies (particularly rain gardens, resulting in half the regret of most options) over end-of-pipe gray alternatives (surface water separation or sewer and storage rehabilitation), which may be costly (on average, 25% of the total regret of these options) and tend to focus on sewer flooding and CSO alleviation while compromising on downstream system performance (this accounts for around 50% of their total regret). Trade-offs and scenario regrets observed in the analysis suggest that the combination of green and gray strategies may still offer further potential for robustness.
ERIC Educational Resources Information Center
Groombridge, Brian
2008-01-01
Foresight reports are meant to help "decision-makers" understand the possible future effects of their decisions. "Visions of the future", based on "robust science", should be used by policymakers "to inform government policy and strategy, and to improve how science and technology are used within government and by society". They are also intended…
A Distributed Ensemble Approach for Mining Healthcare Data under Privacy Constraints
Li, Yan; Bai, Changxin; Reddy, Chandan K.
2015-01-01
In recent years, electronic health records (EHRs) have been widely adapted at many healthcare facilities in an attempt to improve the quality of patient care and increase the productivity and efficiency of healthcare delivery. These EHRs can accurately diagnose diseases if utilized appropriately. While the EHRs can potentially resolve many of the existing problems associated with disease diagnosis, one of the main obstacles in effectively using them is the patient privacy and sensitivity of the medical information available in the EHR. Due to these concerns, even if the EHRs are available for storage and retrieval purposes, sharing of the patient records between different healthcare facilities has become a major concern and has hampered some of the effective advantages of using EHRs. Due to this lack of data sharing, most of the facilities aim at building clinical decision support systems using limited amount of patient data from their own EHR systems to provide important diagnosis related decisions. It becomes quite infeasible for a newly established healthcare facility to build a robust decision making system due to the lack of sufficient patient records. However, to make effective decisions from clinical data, it is indispensable to have large amounts of data to train the decision models. In this regard, there are conflicting objectives of preserving patient privacy and having sufficient data for modeling and decision making. To handle such disparate goals, we develop two adaptive distributed privacy-preserving algorithms based on a distributed ensemble strategy. The basic idea of our approach is to build an elegant model for each participating facility to accurately learn the data distribution, and then can transfer the useful healthcare knowledge acquired on their data from these participators in the form of their own decision models without revealing and sharing the patient-level sensitive data, thus protecting patient privacy. We demonstrate that our approach can successfully build accurate and robust prediction models, under privacy constraints, using the healthcare data collected from different geographical locations. We demonstrate the performance of our method using the Type-2 diabetes EHRs accumulated from multiple sources from all fifty states in the U.S. Our method was evaluated on diagnosing diabetes in the presence of insufficient number of patient records from certain regions without revealing the actual patient data from other regions. Using the proposed approach, we also discovered the important biomarkers, both universal and region-specific, and validated the selected biomarkers using the biomedical literature. PMID:26681811
A Distributed Ensemble Approach for Mining Healthcare Data under Privacy Constraints.
Li, Yan; Bai, Changxin; Reddy, Chandan K
2016-02-10
In recent years, electronic health records (EHRs) have been widely adapted at many healthcare facilities in an attempt to improve the quality of patient care and increase the productivity and efficiency of healthcare delivery. These EHRs can accurately diagnose diseases if utilized appropriately. While the EHRs can potentially resolve many of the existing problems associated with disease diagnosis, one of the main obstacles in effectively using them is the patient privacy and sensitivity of the medical information available in the EHR. Due to these concerns, even if the EHRs are available for storage and retrieval purposes, sharing of the patient records between different healthcare facilities has become a major concern and has hampered some of the effective advantages of using EHRs. Due to this lack of data sharing, most of the facilities aim at building clinical decision support systems using limited amount of patient data from their own EHR systems to provide important diagnosis related decisions. It becomes quite infeasible for a newly established healthcare facility to build a robust decision making system due to the lack of sufficient patient records. However, to make effective decisions from clinical data, it is indispensable to have large amounts of data to train the decision models. In this regard, there are conflicting objectives of preserving patient privacy and having sufficient data for modeling and decision making. To handle such disparate goals, we develop two adaptive distributed privacy-preserving algorithms based on a distributed ensemble strategy. The basic idea of our approach is to build an elegant model for each participating facility to accurately learn the data distribution, and then can transfer the useful healthcare knowledge acquired on their data from these participators in the form of their own decision models without revealing and sharing the patient-level sensitive data, thus protecting patient privacy. We demonstrate that our approach can successfully build accurate and robust prediction models, under privacy constraints, using the healthcare data collected from different geographical locations. We demonstrate the performance of our method using the Type-2 diabetes EHRs accumulated from multiple sources from all fifty states in the U.S. Our method was evaluated on diagnosing diabetes in the presence of insufficient number of patient records from certain regions without revealing the actual patient data from other regions. Using the proposed approach, we also discovered the important biomarkers, both universal and region-specific, and validated the selected biomarkers using the biomedical literature.
Expanding Health Technology Assessments to Include Effects on the Environment.
Marsh, Kevin; Ganz, Michael L; Hsu, John; Strandberg-Larsen, Martin; Gonzalez, Raquel Palomino; Lund, Niels
2016-01-01
There is growing awareness of the impact of human activity on the climate and the need to stem this impact. Public health care decision makers from Sweden and the United Kingdom have started examining environmental impacts when assessing new technologies. This article considers the case for incorporating environmental impacts into the health technology assessment (HTA) process and discusses the associated challenges. Two arguments favor incorporating environmental impacts into HTA: 1) environmental changes could directly affect people's health and 2) policy decision makers have broad mandates and objectives extending beyond health care. Two types of challenges hinder this process. First, the nascent evidence base is insufficient to support the accurate comparison of technologies' environmental impacts. Second, cost-utility analysis, which is favored by many HTA agencies, could capture some of the value of environmental impacts, especially those generating health impacts, but might not be suitable for addressing broader concerns. Both cost-benefit and multicriteria decision analyses are potential methods for evaluating health and environmental outcomes, but are less familiar to health care decision makers. Health care is an important and sizable sector of the economy that could warrant closer policy attention to its impact on the environment. Considerable work is needed to track decision makers' demands, augment the environmental evidence base, and develop robust methods for capturing and incorporating environmental data as part of HTA. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Advanced Computational Framework for Environmental Management ZEM, Version 1.x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vesselinov, Velimir V.; O'Malley, Daniel; Pandey, Sachin
2016-11-04
Typically environmental management problems require analysis of large and complex data sets originating from concurrent data streams with different data collection frequencies and pedigree. These big data sets require on-the-fly integration into a series of models with different complexity for various types of model analyses where the data are applied as soft and hard model constraints. This is needed to provide fast iterative model analyses based on the latest available data to guide decision-making. Furthermore, the data and model are associated with uncertainties. The uncertainties are probabilistic (e.g. measurement errors) and non-probabilistic (unknowns, e.g. alternative conceptual models characterizing site conditions).more » To address all of these issues, we have developed an integrated framework for real-time data and model analyses for environmental decision-making called ZEM. The framework allows for seamless and on-the-fly integration of data and modeling results for robust and scientifically-defensible decision-making applying advanced decision analyses tools such as Bayesian- Information-Gap Decision Theory (BIG-DT). The framework also includes advanced methods for optimization that are capable of dealing with a large number of unknown model parameters, and surrogate (reduced order) modeling capabilities based on support vector regression techniques. The framework is coded in Julia, a state-of-the-art high-performance programing language (http://julialang.org). The ZEM framework is open-source and can be applied to any environmental management site. The framework will be open-source and released under GPL V3 license.« less
Lobach, David F; Kawamoto, Kensaku; Anstrom, Kevin J; Russell, Michael L; Woods, Peter; Smith, Dwight
2007-01-01
Clinical decision support is recognized as one potential remedy for the growing crisis in healthcare quality in the United States and other industrialized nations. While decision support systems have been shown to improve care quality and reduce errors, these systems are not widely available. This lack of availability arises in part because most decision support systems are not portable or scalable. The Health Level 7 international standard development organization recently adopted a draft standard known as the Decision Support Service standard to facilitate the implementation of clinical decision support systems using software services. In this paper, we report the first implementation of a clinical decision support system using this new standard. This system provides point-of-care chronic disease management for diabetes and other conditions and is deployed throughout a large regional health system. We also report process measures and usability data concerning the system. Use of the Decision Support Service standard provides a portable and scalable approach to clinical decision support that could facilitate the more extensive use of decision support systems.
Beyond evidence-based nursing: tools for practice.
Jutel, Annemarie
2008-05-01
This commentary shares my views of evidence-based nursing as a framework for practice, pointing out its limitations and identifying a wider base of appraisal tools required for making good clinical decisions. As the principles of evidence-based nursing take an increasingly greater hold on nursing education, policy and management, it is important to consider the range of other decision-making tools which are subordinated by this approach. This article summarizes nursing's simultaneous reliance on and critique of evidence-based practice (EBP) in a context of inadequate critical reasoning. It then provides an exemplar of the limitations of evidence-based practice and offers an alternative view of important precepts of decision-making. I identify means by which nurses can develop skills to engage in informed and robust critique of practices and their underpinning rationale. Nurses need to be able to locate and assess useful and reliable information for decision-making. This skill is based on a range of tools which include, but also go beyond EBP including: information literacy, humanities, social sciences, public health, statistics, marketing, ethics and much more. This essay prompts nursing managers to reflect upon whether a flurried enthusiasm to adopt EBP neglects other important decision-making skills which provide an even stronger foundation for robust nursing decisions.
Measuring and Modeling Behavioral Decision Dynamics in Collective Evacuation
Carlson, Jean M.; Alderson, David L.; Stromberg, Sean P.; Bassett, Danielle S.; Craparo, Emily M.; Guiterrez-Villarreal, Francisco; Otani, Thomas
2014-01-01
Identifying and quantifying factors influencing human decision making remains an outstanding challenge, impacting the performance and predictability of social and technological systems. In many cases, system failures are traced to human factors including congestion, overload, miscommunication, and delays. Here we report results of a behavioral network science experiment, targeting decision making in a natural disaster. In a controlled laboratory setting, our results quantify several key factors influencing individual evacuation decision making in a controlled laboratory setting. The experiment includes tensions between broadcast and peer-to-peer information, and contrasts the effects of temporal urgency associated with the imminence of the disaster and the effects of limited shelter capacity for evacuees. Based on empirical measurements of the cumulative rate of evacuations as a function of the instantaneous disaster likelihood, we develop a quantitative model for decision making that captures remarkably well the main features of observed collective behavior across many different scenarios. Moreover, this model captures the sensitivity of individual- and population-level decision behaviors to external pressures, and systematic deviations from the model provide meaningful estimates of variability in the collective response. Identification of robust methods for quantifying human decisions in the face of risk has implications for policy in disasters and other threat scenarios, specifically the development and testing of robust strategies for training and control of evacuations that account for human behavior and network topologies. PMID:24520331
How Decision Support Systems Can Benefit from a Theory of Change Approach.
Allen, Will; Cruz, Jennyffer; Warburton, Bruce
2017-06-01
Decision support systems are now mostly computer and internet-based information systems designed to support land managers with complex decision-making. However, there is concern that many environmental and agricultural decision support systems remain underutilized and ineffective. Recent efforts to improve decision support systems use have focused on enhancing stakeholder participation in their development, but a mismatch between stakeholders' expectations and the reality of decision support systems outputs continues to limit uptake. Additional challenges remain in problem-framing and evaluation. We propose using an outcomes-based approach called theory of change in conjunction with decision support systems development to support both wider problem-framing and outcomes-based monitoring and evaluation. The theory of change helps framing by placing the decision support systems within a wider context. It highlights how decision support systems use can "contribute" to long-term outcomes, and helps align decision support systems outputs with these larger goals. We illustrate the benefits of linking decision support systems development and application with a theory of change approach using an example of pest rabbit management in Australia. We develop a theory of change that outlines the activities required to achieve the outcomes desired from an effective rabbit management program, and two decision support systems that contribute to specific aspects of decision making in this wider problem context. Using a theory of change in this way should increase acceptance of the role of decision support systems by end-users, clarify their limitations and, importantly, increase effectiveness of rabbit management. The use of a theory of change should benefit those seeking to improve decision support systems design, use and, evaluation.
How Decision Support Systems Can Benefit from a Theory of Change Approach
NASA Astrophysics Data System (ADS)
Allen, Will; Cruz, Jennyffer; Warburton, Bruce
2017-06-01
Decision support systems are now mostly computer and internet-based information systems designed to support land managers with complex decision-making. However, there is concern that many environmental and agricultural decision support systems remain underutilized and ineffective. Recent efforts to improve decision support systems use have focused on enhancing stakeholder participation in their development, but a mismatch between stakeholders' expectations and the reality of decision support systems outputs continues to limit uptake. Additional challenges remain in problem-framing and evaluation. We propose using an outcomes-based approach called theory of change in conjunction with decision support systems development to support both wider problem-framing and outcomes-based monitoring and evaluation. The theory of change helps framing by placing the decision support systems within a wider context. It highlights how decision support systems use can "contribute" to long-term outcomes, and helps align decision support systems outputs with these larger goals. We illustrate the benefits of linking decision support systems development and application with a theory of change approach using an example of pest rabbit management in Australia. We develop a theory of change that outlines the activities required to achieve the outcomes desired from an effective rabbit management program, and two decision support systems that contribute to specific aspects of decision making in this wider problem context. Using a theory of change in this way should increase acceptance of the role of decision support systems by end-users, clarify their limitations and, importantly, increase effectiveness of rabbit management. The use of a theory of change should benefit those seeking to improve decision support systems design, use and, evaluation.
Brousset, Jean Marie; Abbal, Philippe; Guillemin, Hervé; Perret, Bruno; Goulet, Etienne; Guerin, Laurence; Barbeau, Gérard; Picque, Daniel
2015-01-01
Agri-food is one of the most important sectors of the industry and a major contributor to the global warming potential in Europe. Sustainability issues pose a huge challenge for this sector. In this context, a big issue is to be able to predict the multiscale dynamics of those systems using computing science. A robust predictive mathematical tool is implemented for this sector and applied to the wine industry being easily able to be generalized to other applications. Grape berry maturation relies on complex and coupled physicochemical and biochemical reactions which are climate dependent. Moreover one experiment represents one year and the climate variability could not be covered exclusively by the experiments. Consequently, harvest mostly relies on expert predictions. A big challenge for the wine industry is nevertheless to be able to anticipate the reactions for sustainability purposes. We propose to implement a decision support system so called FGRAPEDBN able to (1) capitalize the heterogeneous fragmented knowledge available including data and expertise and (2) predict the sugar (resp. the acidity) concentrations with a relevant RMSE of 7 g/l (resp. 0.44 g/l and 0.11 g/kg). FGRAPEDBN is based on a coupling between a probabilistic graphical approach and a fuzzy expert system. PMID:26230334
A robust optimization model for distribution and evacuation in the disaster response phase
NASA Astrophysics Data System (ADS)
Fereiduni, Meysam; Shahanaghi, Kamran
2017-03-01
Natural disasters, such as earthquakes, affect thousands of people and can cause enormous financial loss. Therefore, an efficient response immediately following a natural disaster is vital to minimize the aforementioned negative effects. This research paper presents a network design model for humanitarian logistics which will assist in location and allocation decisions for multiple disaster periods. At first, a single-objective optimization model is presented that addresses the response phase of disaster management. This model will help the decision makers to make the most optimal choices in regard to location, allocation, and evacuation simultaneously. The proposed model also considers emergency tents as temporary medical centers. To cope with the uncertainty and dynamic nature of disasters, and their consequences, our multi-period robust model considers the values of critical input data in a set of various scenarios. Second, because of probable disruption in the distribution infrastructure (such as bridges), the Monte Carlo simulation is used for generating related random numbers and different scenarios; the p-robust approach is utilized to formulate the new network. The p-robust approach can predict possible damages along pathways and among relief bases. We render a case study of our robust optimization approach for Tehran's plausible earthquake in region 1. Sensitivity analysis' experiments are proposed to explore the effects of various problem parameters. These experiments will give managerial insights and can guide DMs under a variety of conditions. Then, the performances of the "robust optimization" approach and the "p-robust optimization" approach are evaluated. Intriguing results and practical insights are demonstrated by our analysis on this comparison.
NASA Astrophysics Data System (ADS)
Ferguson, I. M.; McGuire, M.; Broman, D.; Gangopadhyay, S.
2017-12-01
The Bureau of Reclamation is a Federal agency tasked with developing and managing water supply and hydropower projects in the Western U.S. Climate and hydrologic variability and change significantly impact management actions and outcomes across Reclamation's programs and initiatives, including water resource planning and operations, infrastructure design and maintenance, hydropower generation, and ecosystem restoration, among others. Planning, design, and implementation of these programs therefore requires consideration of future climate and hydrologic conditions will impact program objectives. Over the past decade, Reclamation and other Federal agencies have adopted new guidelines, directives, and mandates that require consideration of climate change in water resources planning and decision making. Meanwhile, the scientific community has developed a large number of climate projections, along with an array of models, methods, and tools to facilitate consideration of climate projections in planning and decision making. However, water resources engineers, planners, and decision makers continue to face challenges regarding how best to use the available data and tools to support major decisions, including decisions regarding infrastructure investments and long-term operating criteria. This presentation will discuss recent and ongoing research towards understanding, improving, and expanding consideration of climate projections and related uncertainties in Federal water resources planning and decision making. These research efforts address a variety of challenges, including: How to choose between available climate projection datasets and related methods, models, and tools—many of which are considered experimental or research tools? How to select an appropriate decision framework when design or operating alternatives may differ between climate scenarios? How to effectively communicate results of a climate impacts analysis to decision makers? And, how to improve robustness and resilience of water resources systems in the face of significant uncertainty? Discussion will focus on the intersection between technical challenges and decision making paradigms and the need for improved scientist-decision maker engagement through the lens of this Federal water management agency.
Decision Support | Solar Research | NREL
informed solar decision making with credible, objective, accessible, and timely resources. Solar Energy Decision Support Decision Support NREL provides technical and analytical support to support provide unbiased information on solar policies and issues for state and local government decision makers
Boland, Laura; McIsaac, Daniel I; Lawson, Margaret L
2016-04-01
To explore multiple stakeholders' perceived barriers to and facilitators of implementing shared decision making and decision support in a tertiary paediatric hospital. An interpretive descriptive qualitative study was conducted using focus groups and interviews to examine senior hospital administrators', clinicians', parents' and youths' perceived barriers to and facilitators of shared decision making and decision support implementation. Data were analyzed using inductive thematic analysis. Fifty-seven stakeholders participated. Six barrier and facilitator themes emerged. The main barrier was gaps in stakeholders' knowledge of shared decision making and decision support. Facilitators included compatibility between shared decision making and the hospital's culture and ideal practices, perceptions of positive patient and family outcomes associated with shared decision making, and positive attitudes regarding shared decision making and decision support. However, youth attitudes regarding the necessity and usefulness of a decision support program were a barrier. Two themes were both a barrier and a facilitator. First, stakeholder groups were uncertain which clinical situations are suitable for shared decision making (eg, new diagnoses, chronic illnesses, complex decisions or urgent decisions). Second, the clinical process may be hindered if shared decision making and decision support decrease efficiency and workflow; however, shared decision making may reduce repeat visits and save time over the long term. Specific knowledge translation strategies that improve shared decision making knowledge and match specific barriers identified by each stakeholder group may be required to promote successful shared decision making and decision support implementation in the authors' paediatric hospital.
Implicit race attitudes predict trustworthiness judgments and economic trust decisions
Stanley, Damian A.; Sokol-Hessner, Peter; Banaji, Mahzarin R.; Phelps, Elizabeth A.
2011-01-01
Trust lies at the heart of every social interaction. Each day we face decisions in which we must accurately assess another individual's trustworthiness or risk suffering very real consequences. In a global marketplace of increasing heterogeneity with respect to nationality, race, and multiple other social categories, it is of great value to understand how implicitly held attitudes about group membership may support or undermine social trust and thereby implicitly shape the decisions we make. Recent behavioral and neuroimaging work suggests that a common mechanism may underlie the expression of implicit race bias and evaluations of trustworthiness, although no direct evidence of a connection exists. In two behavioral studies, we investigated the relationship between implicit race attitude (as measured by the Implicit Association Test) and social trust. We demonstrate that race disparity in both an individual's explicit evaluations of trustworthiness and, more crucially, his or her economic decisions to trust is predicted by that person's bias in implicit race attitude. Importantly, this relationship is robust and is independent of the individual's bias in explicit race attitude. These data demonstrate that the extent to which an individual invests in and trusts others with different racial backgrounds is related to the magnitude of that individual's implicit race bias. The core dimension of social trust can be shaped, to some degree, by attitudes that reside outside conscious awareness and intention. PMID:21518877
Yousefpour, Rasoul; Temperli, Christian; Bugmann, Harald; Elkin, Che; Hanewinkel, Marc; Meilby, Henrik; Jacobsen, Jette Bredahl; Thorsen, Bo Jellesmark
2013-06-15
We study climate uncertainty and how managers' beliefs about climate change develop and influence their decisions. We develop an approach for updating knowledge and beliefs based on the observation of forest and climate variables and illustrate its application for the adaptive management of an even-aged Norway spruce (Picea abies L. Karst) forest in the Black Forest, Germany. We simulated forest development under a range of climate change scenarios and forest management alternatives. Our analysis used Bayesian updating and Dempster's rule of combination to simulate how observations of climate and forest variables may influence a decision maker's beliefs about climate development and thereby management decisions. While forest managers may be inclined to rely on observed forest variables to infer climate change and impacts, we found that observation of climate state, e.g. temperature or precipitation is superior for updating beliefs and supporting decision-making. However, with little conflict among information sources, the strongest evidence would be offered by a combination of at least two informative variables, e.g., temperature and precipitation. The success of adaptive forest management depends on when managers switch to forward-looking management schemes. Thus, robust climate adaptation policies may depend crucially on a better understanding of what factors influence managers' belief in climate change. Copyright © 2013 Elsevier Ltd. All rights reserved.
Implicit race attitudes predict trustworthiness judgments and economic trust decisions.
Stanley, Damian A; Sokol-Hessner, Peter; Banaji, Mahzarin R; Phelps, Elizabeth A
2011-05-10
Trust lies at the heart of every social interaction. Each day we face decisions in which we must accurately assess another individual's trustworthiness or risk suffering very real consequences. In a global marketplace of increasing heterogeneity with respect to nationality, race, and multiple other social categories, it is of great value to understand how implicitly held attitudes about group membership may support or undermine social trust and thereby implicitly shape the decisions we make. Recent behavioral and neuroimaging work suggests that a common mechanism may underlie the expression of implicit race bias and evaluations of trustworthiness, although no direct evidence of a connection exists. In two behavioral studies, we investigated the relationship between implicit race attitude (as measured by the Implicit Association Test) and social trust. We demonstrate that race disparity in both an individual's explicit evaluations of trustworthiness and, more crucially, his or her economic decisions to trust is predicted by that person's bias in implicit race attitude. Importantly, this relationship is robust and is independent of the individual's bias in explicit race attitude. These data demonstrate that the extent to which an individual invests in and trusts others with different racial backgrounds is related to the magnitude of that individual's implicit race bias. The core dimension of social trust can be shaped, to some degree, by attitudes that reside outside conscious awareness and intention.
Bal, Mert; Amasyali, M Fatih; Sever, Hayri; Kose, Guven; Demirhan, Ayse
2014-01-01
The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth, Medical decision support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system is compared on various data sets.
Theoretical Developments in Decision Field Theory: Comment on Tsetsos, Usher, and Chater (2010)
ERIC Educational Resources Information Center
Hotaling, Jared M.; Busemeyer, Jerome R.; Li, Jiyun
2010-01-01
Tsetsos, Usher, and Chater (2010) presented several criticisms of decision field theory (DFT) involving its distance function, instability under externally controlled stopping times, and lack of robustness to various multialternative choice scenarios. Here, we counter those claims with a specification of a distance function based on the…
ERIC Educational Resources Information Center
Brady, Kathleen
2012-01-01
The Metropolitan Studies Institute (MSI) at the University of South Carolina Upstate (USC Upstate) demonstrates a robust and unique record of community impact through community indicators research and other translational research. The MSI's work drives programmatic priorities and funding decisions, generates revenue, and increases the community's…
Younger, Paul L; Coulton, Richard H; Froggatt, Eric C
2005-02-01
The use of risk-based decision-making in environmental management is often assumed to rely primarily on the availability of robust scientific data and insights, while in practice socio-economic criteria are often of considerable importance. However, the relative contributions to decision-making made by scientific and socio-economic inputs are rarely assessed, and even less commonly reported. Such an assessment has been made for a major remediation project in southwest England, in which some 300 l/s of highly acidic, metalliferous mine waters are now being treated using oxidation and chemical neutralisation. In the process of reaching the decision to commission the treatment plant, a wide range of scientific studies were undertaken, including: biological impact assessments, hydrogeological investigations of the effect of pumping on the flooded mine system, and hydrological and geochemical characterisation, together with integrated catchment modelling, of pollutant sources and pathways. These investigations revealed that, despite the spectacular nature of the original mine water outburst in 1992, the ecology of the Fal estuary remains remarkably robust. No scientific evidence emerged of any grounds for concern over the estuarine ecology, even if mine water were left to flow untreated. However, a rare ecological resource known as "maerl" (a form of calcified seaweed) is harvested annually in the estuary, providing significant revenue to the local economy and underpinning the 'clean' image of local sea water. Social and environmental benefit surveys revealed strong public perceptions that any visible discoloration in the estuary must indicate a diminution in quality of the maerl, to the detriment of both the public image and economy of the area. This factor proved sufficient to justify the continued pump-and-treat operations at the mine site. Although the decisive factor in the end was socio-economic in nature, robust assessment of this factor could not have been made without robust scientific evidence. It is concluded that investment in investigating and contributing to the formation of public perceptions is just as important as investing in scientific investigations per se.
Creating and sharing clinical decision support content with Web 2.0: Issues and examples.
Wright, Adam; Bates, David W; Middleton, Blackford; Hongsermeier, Tonya; Kashyap, Vipul; Thomas, Sean M; Sittig, Dean F
2009-04-01
Clinical decision support is a powerful tool for improving healthcare quality and patient safety. However, developing a comprehensive package of decision support interventions is costly and difficult. If used well, Web 2.0 methods may make it easier and less costly to develop decision support. Web 2.0 is characterized by online communities, open sharing, interactivity and collaboration. Although most previous attempts at sharing clinical decision support content have worked outside of the Web 2.0 framework, several initiatives are beginning to use Web 2.0 to share and collaborate on decision support content. We present case studies of three efforts: the Clinfowiki, a world-accessible wiki for developing decision support content; Partners Healthcare eRooms, web-based tools for developing decision support within a single organization; and Epic Systems Corporation's Community Library, a repository for sharing decision support content for customers of a single clinical system vendor. We evaluate the potential of Web 2.0 technologies to enable collaborative development and sharing of clinical decision support systems through the lens of three case studies; analyzing technical, legal and organizational issues for developers, consumers and organizers of clinical decision support content in Web 2.0. We believe the case for Web 2.0 as a tool for collaborating on clinical decision support content appears strong, particularly for collaborative content development within an organization.
Short-term Forecasting Tools for Agricultural Nutrient Management.
Easton, Zachary M; Kleinman, Peter J A; Buda, Anthony R; Goering, Dustin; Emberston, Nichole; Reed, Seann; Drohan, Patrick J; Walter, M Todd; Guinan, Pat; Lory, John A; Sommerlot, Andrew R; Sharpley, Andrew
2017-11-01
The advent of real-time, short-term farm management tools is motivated by the need to protect water quality above and beyond the general guidance offered by existing nutrient management plans. Advances in high-performance computing and hydrologic or climate modeling have enabled rapid dissemination of real-time information that can assist landowners and conservation personnel with short-term management planning. This paper reviews short-term decision support tools for agriculture that are under various stages of development and implementation in the United States: (i) Wisconsin's Runoff Risk Advisory Forecast (RRAF) System, (ii) New York's Hydrologically Sensitive Area Prediction Tool, (iii) Virginia's Saturated Area Forecast Model, (iv) Pennsylvania's Fertilizer Forecaster, (v) Washington's Application Risk Management (ARM) System, and (vi) Missouri's Design Storm Notification System. Although these decision support tools differ in their underlying model structure, the resolution at which they are applied, and the hydroclimates to which they are relevant, all provide forecasts (range 24-120 h) of runoff risk or soil moisture saturation derived from National Weather Service Forecast models. Although this review highlights the need for further development of robust and well-supported short-term nutrient management tools, their potential for adoption and ultimate utility requires an understanding of the appropriate context of application, the strategic and operational needs of managers, access to weather forecasts, scales of application (e.g., regional vs. field level), data requirements, and outreach communication structure. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Boland, Laura; McIsaac, Daniel I; Lawson, Margaret L
2016-01-01
OBJECTIVE: To explore multiple stakeholders’ perceived barriers to and facilitators of implementing shared decision making and decision support in a tertiary paediatric hospital. METHODS: An interpretive descriptive qualitative study was conducted using focus groups and interviews to examine senior hospital administrators’, clinicians’, parents’ and youths’ perceived barriers to and facilitators of shared decision making and decision support implementation. Data were analyzed using inductive thematic analysis. RESULTS: Fifty-seven stakeholders participated. Six barrier and facilitator themes emerged. The main barrier was gaps in stakeholders’ knowledge of shared decision making and decision support. Facilitators included compatibility between shared decision making and the hospital’s culture and ideal practices, perceptions of positive patient and family outcomes associated with shared decision making, and positive attitudes regarding shared decision making and decision support. However, youth attitudes regarding the necessity and usefulness of a decision support program were a barrier. Two themes were both a barrier and a facilitator. First, stakeholder groups were uncertain which clinical situations are suitable for shared decision making (eg, new diagnoses, chronic illnesses, complex decisions or urgent decisions). Second, the clinical process may be hindered if shared decision making and decision support decrease efficiency and workflow; however, shared decision making may reduce repeat visits and save time over the long term. CONCLUSIONS: Specific knowledge translation strategies that improve shared decision making knowledge and match specific barriers identified by each stakeholder group may be required to promote successful shared decision making and decision support implementation in the authors’ paediatric hospital. PMID:27398058
Diffusion pseudotime robustly reconstructs lineage branching.
Haghverdi, Laleh; Büttner, Maren; Wolf, F Alexander; Buettner, Florian; Theis, Fabian J
2016-10-01
The temporal order of differentiating cells is intrinsically encoded in their single-cell expression profiles. We describe an efficient way to robustly estimate this order according to diffusion pseudotime (DPT), which measures transitions between cells using diffusion-like random walks. Our DPT software implementations make it possible to reconstruct the developmental progression of cells and identify transient or metastable states, branching decisions and differentiation endpoints.
NASA Astrophysics Data System (ADS)
Chen, Wen-Yuan; Liu, Chen-Chung
2006-01-01
The problems with binary watermarking schemes are that they have only a small amount of embeddable space and are not robust enough. We develop a slice-based large-cluster algorithm (SBLCA) to construct a robust watermarking scheme for binary images. In SBLCA, a small-amount cluster selection (SACS) strategy is used to search for a feasible slice in a large-cluster flappable-pixel decision (LCFPD) method, which is used to search for the best location for concealing a secret bit from a selected slice. This method has four major advantages over the others: (a) SBLCA has a simple and effective decision function to select appropriate concealment locations, (b) SBLCA utilizes a blind watermarking scheme without the original image in the watermark extracting process, (c) SBLCA uses slice-based shuffling capability to transfer the regular image into a hash state without remembering the state before shuffling, and finally, (d) SBLCA has enough embeddable space that every 64 pixels could accommodate a secret bit of the binary image. Furthermore, empirical results on test images reveal that our approach is a robust watermarking scheme for binary images.
Applying rapid 'de-facto' HTA in resource-limited settings: experience from Romania.
Lopert, Ruth; Ruiz, Francis; Chalkidou, Kalipso
2013-10-01
In attempting to constrain healthcare expenditure growth, health technology assessment (HTA) can enable policy-makers to look beyond budget impact and facilitate more rational decision-making. However lack of technical capacity and poor governance can limit use in some countries. Undertaking de facto HTA by adapting decisions taken in countries with established processes is a method that may be applied while building domestic HTA capacity. We explored the potential for applying this approach in Romania. As part of a review of the basic health benefits available to insured Romanians we examined the listing process and content of the Romanian drug reimbursement formulary. We assessed value for money indirectly by drawing on appraisals by UK's NICE, and for products considered cost effective in the UK, adjusting prices by the ratio of Romanian per capita GDP to UK per capita GDP. We found more than 30 of the top 50 medicines on the Romanian formulary unlikely to be cost-effective, suggesting that existing external reference pricing mechanisms may not be delivering good value for money. While not taking into account local costs or treatment patterns, absent local considerations of value for money, this method offers a guide for both drug selection and pricing. Until robust local HTA processes are established this approach could support further analysis of existing prices and pricing mechanisms. Applied more generally, it is arguably preferable to external reference pricing, product delisting or arbitrary price cuts, and may support the future development of more rigorous, evidence-based decision-making. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Williams-Byrd, Julie; Arney, Dale C.; Hay, Jason; Reeves, John D.; Craig, Douglas
2016-01-01
NASA is transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities in low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. Through pioneering, NASA seeks to address national goals to develop the capacity for people to work, learn, operate, live, and thrive safely beyond Earth for extended periods of time. However, pioneering space involves daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. Prudent investments in capability and technology developments, based on mission need, are critical for enabling a campaign of human exploration missions. There are a wide variety of capabilities and technologies that could enable these missions, so it is a major challenge for NASA's Human Exploration and Operations Mission Directorate (HEOMD) to make knowledgeable portfolio decisions. It is critical for this pioneering initiative that these investment decisions are informed with a prioritization process that is robust and defensible. It is NASA's role to invest in targeted technologies and capabilities that would enable exploration missions even though specific requirements have not been identified. To inform these investments decisions, NASA's HEOMD has supported a variety of analysis activities that prioritize capabilities and technologies. These activities are often based on input from subject matter experts within the NASA community who understand the technical challenges of enabling human exploration missions. This paper will review a variety of processes and methods that NASA has used to prioritize and rank capabilities and technologies applicable to human space exploration. The paper will show the similarities in the various processes and showcase instances were customer specified priorities force modifications to the process. Specifically, this paper will describe the processes that the NASA Langley Research Center (LaRC) Technology Assessment and Integration Team (TAIT) has used for several years and how those processes have been customized to meet customer needs while staying robust and defensible. This paper will show how HEOMD uses these analyses results to assist with making informed portfolio investment decisions. The paper will also highlight which human exploration capabilities and technologies typically rank high regardless of the specific design reference mission. The paper will conclude by describing future capability and technology ranking activities that will continue o leverage subject matter experts (SME) input while also incorporating more model-based analysis.
Electronic decision support for diagnostic imaging in a primary care setting
Reed, Martin H
2011-01-01
Methods Clinical guideline adherence for diagnostic imaging (DI) and acceptance of electronic decision support in a rural community family practice clinic was assessed over 36 weeks. Physicians wrote 904 DI orders, 58% of which were addressed by the Canadian Association of Radiologists guidelines. Results Of those orders with guidelines, 76% were ordered correctly; 24% were inappropriate or unnecessary resulting in a prompt from clinical decision support. Physicians followed suggestions from decision support to improve their DI order on 25% of the initially inappropriate orders. The use of decision support was not mandatory, and there were significant variations in use rate. Initially, 40% reported decision support disruptive in their work flow, which dropped to 16% as physicians gained experience with the software. Conclusions Physicians supported the concept of clinical decision support but were reluctant to change clinical habits to incorporate decision support into routine work flow. PMID:21486884
Robust Speaker Authentication Based on Combined Speech and Voiceprint Recognition
NASA Astrophysics Data System (ADS)
Malcangi, Mario
2009-08-01
Personal authentication is becoming increasingly important in many applications that have to protect proprietary data. Passwords and personal identification numbers (PINs) prove not to be robust enough to ensure that unauthorized people do not use them. Biometric authentication technology may offer a secure, convenient, accurate solution but sometimes fails due to its intrinsically fuzzy nature. This research aims to demonstrate that combining two basic speech processing methods, voiceprint identification and speech recognition, can provide a very high degree of robustness, especially if fuzzy decision logic is used.
An improved robust buffer allocation method for the project scheduling problem
NASA Astrophysics Data System (ADS)
Ghoddousi, Parviz; Ansari, Ramin; Makui, Ahmad
2017-04-01
Unpredictable uncertainties cause delays and additional costs for projects. Often, when using traditional approaches, the optimizing procedure of the baseline project plan fails and leads to delays. In this study, a two-stage multi-objective buffer allocation approach is applied for robust project scheduling. In the first stage, some decisions are made on buffer sizes and allocation to the project activities. A set of Pareto-optimal robust schedules is designed using the meta-heuristic non-dominated sorting genetic algorithm (NSGA-II) based on the decisions made in the buffer allocation step. In the second stage, the Pareto solutions are evaluated in terms of the deviation from the initial start time and due dates. The proposed approach was implemented on a real dam construction project. The outcomes indicated that the obtained buffered schedule reduces the cost of disruptions by 17.7% compared with the baseline plan, with an increase of about 0.3% in the project completion time.
Watson, Joanne; Wilson, Erin; Hagiliassis, Nick
2017-11-01
The United Nations Convention on the Rights of Persons with Disabilities (UNCRPD) promotes the use of supported decision making in lieu of substitute decision making. To date, there has been a lack of focus on supported decision making for people with severe or profound intellectual disability, including for end of life decisions. Five people with severe or profound intellectual disability's experiences of supported decision making were examined. This article is particularly focused on one participant's experiences at the end of his life. All five case studies identified that supporters were most effective in providing decision-making support for participants when they were relationally close to the person and had knowledge of the person's life story, particularly in relation to events that demonstrated preference. Findings from this study provide new understandings of supported decision making for people with severe or profound intellectual disability and have particular relevance for supporting decision making at the end of life. © 2017 John Wiley & Sons Ltd.
Distributed environmental control
NASA Technical Reports Server (NTRS)
Cleveland, Gary A.
1992-01-01
We present an architecture of distributed, independent control agents designed to work with the Computer Aided System Engineering and Analysis (CASE/A) simulation tool. CASE/A simulates behavior of Environmental Control and Life Support Systems (ECLSS). We describe a lattice of agents capable of distributed sensing and overcoming certain sensor and effector failures. We address how the architecture can achieve the coordinating functions of a hierarchical command structure while maintaining the robustness and flexibility of independent agents. These agents work between the time steps of the CASE/A simulation tool to arrive at command decisions based on the state variables maintained by CASE/A. Control is evaluated according to both effectiveness (e.g., how well temperature was maintained) and resource utilization (the amount of power and materials used).
Neural Correlates of Decision Making on a Gambling Task
ERIC Educational Resources Information Center
Carlson, Stephanie M.; Zayas, Vivian; Guthormsen, Amy
2009-01-01
Individual differences in affective decision making were examined by recording event-related potentials (ERPs) while 74 typically developing 8-year-olds (38 boys, 36 girls) completed a 4-choice gambling task (Hungry Donkey Task; E. A. Crone & M. W. van der Molen, 2004). ERP results indicated: (a) a robust P300 component in response to feedback…
Designing Species Translocation Strategies When Populaton Growth and Future Funding Are Uncertain
Robert G. Haight; Katherine Ralls; Anthony M. Starfield
2000-01-01
When translocating individuals to found new populations, managers must allocate limited funds among release and monitoring activities that differ in method, cost, and probable result. In addition, managers are increasingly expected to justify the funding decisions they have made. Within the framework of decision analysis, we used robust optimization to formulate and...
Petroleum refinery operational planning using robust optimization
NASA Astrophysics Data System (ADS)
Leiras, A.; Hamacher, S.; Elkamel, A.
2010-12-01
In this article, the robust optimization methodology is applied to deal with uncertainties in the prices of saleable products, operating costs, product demand, and product yield in the context of refinery operational planning. A numerical study demonstrates the effectiveness of the proposed robust approach. The benefits of incorporating uncertainty in the different model parameters were evaluated in terms of the cost of ignoring uncertainty in the problem. The calculations suggest that this benefit is equivalent to 7.47% of the deterministic solution value, which indicates that the robust model may offer advantages to those involved with refinery operational planning. In addition, the probability bounds of constraint violation are calculated to help the decision-maker adopt a more appropriate parameter to control robustness and judge the tradeoff between conservatism and total profit.
Decision on risk-averse dual-channel supply chain under demand disruption
NASA Astrophysics Data System (ADS)
Yan, Bo; Jin, Zijie; Liu, Yanping; Yang, Jianbo
2018-02-01
We studied dual-channel supply chains using centralized and decentralized decision-making models. We also conducted a comparative analysis of the decisions before and after demand disruption. The study shows that the amount of change in decision-making is a linear function of the amount of demand disruption, and it is independent of the risk-averse coefficient. The optimal sales volume decision of the disturbing supply chain is related to market share and demand disruption in the decentralized decision-making model. The optimal decision is only influenced by demand disruption in the centralized decision-making model. The stability of the sales volume of the two models is related to market share and demand disruption. The optimal system production of the two models shows robustness, but their stable internals are different.
Richmond, Paul; Buesing, Lars; Giugliano, Michele; Vasilaki, Eleni
2011-01-01
High performance computing on the Graphics Processing Unit (GPU) is an emerging field driven by the promise of high computational power at a low cost. However, GPU programming is a non-trivial task and moreover architectural limitations raise the question of whether investing effort in this direction may be worthwhile. In this work, we use GPU programming to simulate a two-layer network of Integrate-and-Fire neurons with varying degrees of recurrent connectivity and investigate its ability to learn a simplified navigation task using a policy-gradient learning rule stemming from Reinforcement Learning. The purpose of this paper is twofold. First, we want to support the use of GPUs in the field of Computational Neuroscience. Second, using GPU computing power, we investigate the conditions under which the said architecture and learning rule demonstrate best performance. Our work indicates that networks featuring strong Mexican-Hat-shaped recurrent connections in the top layer, where decision making is governed by the formation of a stable activity bump in the neural population (a “non-democratic” mechanism), achieve mediocre learning results at best. In absence of recurrent connections, where all neurons “vote” independently (“democratic”) for a decision via population vector readout, the task is generally learned better and more robustly. Our study would have been extremely difficult on a desktop computer without the use of GPU programming. We present the routines developed for this purpose and show that a speed improvement of 5x up to 42x is provided versus optimised Python code. The higher speed is achieved when we exploit the parallelism of the GPU in the search of learning parameters. This suggests that efficient GPU programming can significantly reduce the time needed for simulating networks of spiking neurons, particularly when multiple parameter configurations are investigated. PMID:21572529
2015-02-01
Despite the fact that adverse effects are vastly under-reported, spontaneous reporting remains the foundation of pharmacovigilance. A small series of properly documented cases, when very specific, can suffice to constitute a signal. In France, reporting adverse effects to Regional Pharmacovigilance Centres (CRPVs) permits high-quality analysis of pharmacovigilance signals, so that they can be brought to the attention of the national agency responsible for making decisions about drugs, the French Health Products Agency (ANSM). The ANSM can use this information to protect patients by implementing the measures within its power or by initiating a European referral. When a decision taken at the national level concerns a drug marketed in several Member States of the European Union, a "harmonisation" procedure results in a decision taken at community level, applicable in all Member States. This means that a safety issue raised by a single Member State sometimes leads to a decision that protects the population of the entire European Union. But it also means that other European decisions can compel national agencies to allow back onto the market a drug that they sought to withdraw in order to protect their citizens. Negotiations with other Member States, the European Medicines Agency (EMA) and the European Commission must be supported by robust data: this is yet another reason for each country to have its own effective national pharmacovigilance database, the contents of which should be publicly accessible. This is unfortunately not yet the case in France in 2014. It also provides another good reason for healthcare professionals and patients to report adverse effects, so that the details can be recorded in national and European databases.
Estimating carnivore community structures
Jiménez, José; Nuñez-Arjona, Juan Carlos; Rueda, Carmen; González, Luis Mariano; García-Domínguez, Francisco; Muñoz-Igualada, Jaime; López-Bao, José Vicente
2017-01-01
Obtaining reliable estimates of the structure of carnivore communities is of paramount importance because of their ecological roles, ecosystem services and impact on biodiversity conservation, but they are still scarce. This information is key for carnivore management: to build support for and acceptance of management decisions and policies it is crucial that those decisions are based on robust and high quality information. Here, we combined camera and live-trapping surveys, as well as telemetry data, with spatially-explicit Bayesian models to show the usefulness of an integrated multi-method and multi-model approach to monitor carnivore community structures. Our methods account for imperfect detection and effectively deal with species with non-recognizable individuals. In our Mediterranean study system, the terrestrial carnivore community was dominated by red foxes (0.410 individuals/km2); Egyptian mongooses, feral cats and stone martens were similarly abundant (0.252, 0.249 and 0.240 individuals/km2, respectively), whereas badgers and common genets were the least common (0.130 and 0.087 individuals/km2, respectively). The precision of density estimates improved by incorporating multiple covariates, device operation, and accounting for the removal of individuals. The approach presented here has substantial implications for decision-making since it allows, for instance, the evaluation, in a standard and comparable way, of community responses to interventions. PMID:28120871
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis Smith; Diego Mandelli
Safety is central to the design, licensing, operation, and economics of nuclear power plants (NPPs). As the current light water reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of systems, structures, and components (SSC) degradations or failures that initiate safety significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very highmore » degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated primarily based on engineering judgment backed by a set of conservative engineering calculations. The ability to better characterize and quantify safety margin is important to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margin management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. In addition, as research and development (R&D) in the LWR Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. To support decision making related to economics, readability, and safety, the RISMC Pathway provides methods and tools that enable mitigation options known as margins management strategies. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. As the lead Department of Energy (DOE) Laboratory for this Pathway, the Idaho National Laboratory (INL) is tasked with developing and deploying methods and tools that support the quantification and management of safety margin and uncertainty.« less
The Virtual Habitat - A tool for dynamic life support system simulations
NASA Astrophysics Data System (ADS)
Czupalla, M.; Zhukov, A.; Schnaitmann, J.; Olthoff, C.; Deiml, M.; Plötner, P.; Walter, U.
2015-06-01
In this paper we present the Virtual Habitat (V-HAB) model, which simulates on a system level the dynamics of entire mission scenarios for any given life support system (LSS) including a dynamic representation of the crew. We first present the V-HAB architecture. Thereafter we validate in selected case studies the V-HAB submodules. Finally, we demonstrate the overall abilities of V-HAB by first simulating the LSS of the International Space Station (ISS) and showing how close this comes to real data. In a second case study we simulate the LSS dynamics of a Mars mission scenario. We thus show that V-HAB is able to support LSS design processes, giving LSS designers a set of dynamic decision parameters (e.g. stability, robustness, effective crew time) at hand that supplement or even substitute the common Equivalent System Mass (ESM) quantities as a proxy for LSS hardware costs. The work presented here builds on a LSS heritage by the exploration group at the Technical University at Munich (TUM) dating from even before 2006.
Challenges and strategies in applying performance measurement to federal public health programs.
DeGroff, Amy; Schooley, Michael; Chapel, Thomas; Poister, Theodore H
2010-11-01
Performance measurement is widely accepted in public health as an important management tool supporting program improvement and accountability. However, several challenges impede developing and implementing performance measurement systems at the federal level, including the complexity of public health problems that reflect multiple determinants and involve outcomes that may take years to achieve, the decentralized and networked nature of public health program implementation, and the lack of reliable and consistent data sources and other issues related to measurement. All three of these challenges hinder the ability to attribute program results to specific public health program efforts. The purpose of this paper is to explore these issues in detail and offer potential solutions that support the development of robust and practical performance measures to meet the needs for program improvement and accountability. Adapting performance measurement to public health programs is both an evolving science and art. Through the strategies presented here, appropriate systems can be developed and monitored to support the production of meaningful data that will inform effective decision making at multiple levels. Published by Elsevier Ltd.
A probabilistic approach to aircraft design emphasizing stability and control uncertainties
NASA Astrophysics Data System (ADS)
Delaurentis, Daniel Andrew
In order to address identified deficiencies in current approaches to aerospace systems design, a new method has been developed. This new method for design is based on the premise that design is a decision making activity, and that deterministic analysis and synthesis can lead to poor, or misguided decision making. This is due to a lack of disciplinary knowledge of sufficient fidelity about the product, to the presence of uncertainty at multiple levels of the aircraft design hierarchy, and to a failure to focus on overall affordability metrics as measures of goodness. Design solutions are desired which are robust to uncertainty and are based on the maximum knowledge possible. The new method represents advances in the two following general areas. 1. Design models and uncertainty. The research performed completes a transition from a deterministic design representation to a probabilistic one through a modeling of design uncertainty at multiple levels of the aircraft design hierarchy, including: (1) Consistent, traceable uncertainty classification and representation; (2) Concise mathematical statement of the Probabilistic Robust Design problem; (3) Variants of the Cumulative Distribution Functions (CDFs) as decision functions for Robust Design; (4) Probabilistic Sensitivities which identify the most influential sources of variability. 2. Multidisciplinary analysis and design. Imbedded in the probabilistic methodology is a new approach for multidisciplinary design analysis and optimization (MDA/O), employing disciplinary analysis approximations formed through statistical experimentation and regression. These approximation models are a function of design variables common to the system level as well as other disciplines. For aircraft, it is proposed that synthesis/sizing is the proper avenue for integrating multiple disciplines. Research hypotheses are translated into a structured method, which is subsequently tested for validity. Specifically, the implementation involves the study of the relaxed static stability technology for a supersonic commercial transport aircraft. The probabilistic robust design method is exercised resulting in a series of robust design solutions based on different interpretations of "robustness". Insightful results are obtained and the ability of the method to expose trends in the design space are noted as a key advantage.
Speizer, Ilene S; Story, William T; Singh, Kavita
2014-11-27
In Ghana, the site of this study, the maternal mortality ratio and under-five mortality rate remain high indicating the need to focus on maternal and child health programming. Ghana has high use of antenatal care (95%) but sub-optimum levels of institutional delivery (about 57%). Numerous barriers to institutional delivery exist including financial, physical, cognitive, organizational, and psychological and social. This study examines the psychological and social barriers to institutional delivery, namely women's decision-making autonomy and their perceptions about social support for institutional delivery in their community. This study uses cross-sectional data collected for the evaluation of the Maternal and Newborn Referrals Project of Project Fives Alive in Northern and Central districts of Ghana. In 2012 and 2013, a total of 2,527 women aged 15 to 49 were surveyed at baseline and midterm (half in 2012 and half in 2013). The analysis sample of 1,606 includes all women who had a birth three years prior to the survey date and who had no missing data. To determine the relationship between institutional delivery and the two key social barriers-women's decision-making autonomy and community perceptions of institutional delivery-we used multi-level logistic regression models, including cross-level interactions between community-level attitudes and individual-level autonomy. All analyses control for the clustered survey design by including robust standard errors in Stata 13 statistical software. The findings show that women who are more autonomous and who perceive positive attitudes toward facility delivery (among women, men and mothers-in-law) were more likely to deliver in a facility. Moreover, the interactions between autonomy and community-level perceptions of institutional delivery among men and mothers-in-law were significant, such that the effect of decision-making autonomy is more important for women who live in communities that are less supportive of institutional delivery compared to communities that are more supportive. This study builds upon prior work by using indicators that provide a more direct assessment of perceived community norms and women's decision-making autonomy. The findings lead to programmatic recommendations that go beyond individuals and engaging the broader network of people (husbands and mothers-in-law) that influence delivery behaviors.
NASA Astrophysics Data System (ADS)
Lajer Hojberg, Anker; Hinsby, Klaus; Jørgen Henriksen, Hans; Troldborg, Lars
2014-05-01
Integrated and sustainable water resources management and development of river basin management plans according to the Water Framework Directive is getting increasingly complex especially when taking projected climate change into account. Furthermore, uncertainty in future developments and incomplete knowledge of the physical system introduces a high degree of uncertainty in the decision making process. Knowledge based decision making is therefore vital for formulation of robust management plans and to allow assessment of the inherent uncertainties. The Department of Hydrology at the Geological Survey of Denmark and Greenland started in 1996 to develop a mechanistically, transient and spatially distributed groundwater-surface water model - the DK-model - for the assessment of groundwater quantitative status accounting for interactions with surface water and anthropogenic changes, such as extraction strategies and land use, as well as climate change. The model has been subject to continuous update building on hydrogeological knowledge established by the regional water authorities and other national research institutes. With the on-going improvement of the DK-model it is now increasingly applied both by research projects and for decision support e.g. in implementation of the Water Framework Directive or to support other decisions related to protection of water resources (quantitative and chemical status), ecosystems and the built environment. At present, the DK-model constitutes the backbone of a strategic modelling project funded by the Danish Environmental Protection Agency, with the aim of developing a modelling complex that will provide the foundation of the implementation of the Water Framework Directive. Since 2003 the DK-model has been used in more than 25 scientific papers and even more public reports. In the poster and the related review paper we describe the most important applications in both science and policy, where the DK-model has been used either directly or as an important starting point for assessing the impact of climate change on the quantity and quality of groundwater and surface water e.g. in relation to changes in water tables, runoff, nutrient loadings, flooding risks (coastal and hinterland), irrigation demands, sea level rise and seawater intrusion or to assess where geology or climate change create the largest uncertainty for evaluation of the development of water resources quantity and quality.
Less can be more: How to make operations more flexible and robust with fewer resources
NASA Astrophysics Data System (ADS)
Haksöz, ćaǧrı; Katsikopoulos, Konstantinos; Gigerenzer, Gerd
2018-06-01
We review empirical evidence from practice and general theoretical conditions, under which simple rules of thumb can help to make operations flexible and robust. An operation is flexible when it responds adaptively to adverse events such as natural disasters; an operation is robust when it is less affected by adverse events in the first place. We illustrate the relationship between flexibility and robustness in the context of supply chain risk. In addition to increasing flexibility and robustness, simple rules simultaneously reduce the need for resources such as time, money, information, and computation. We illustrate the simple-rules approach with an easy-to-use graphical aid for diagnosing and managing supply chain risk. More generally, we recommend a four-step process for determining the amount of resources that decision makers should invest in so as to increase flexibility and robustness.
Kohno, Milky; Nurmi, Erika L; Laughlin, Christopher P; Morales, Angelica M; Gail, Emma H; Hellemann, Gerhard S; London, Edythe D
2016-02-01
Brain imaging has revealed links between prefrontal activity during risky decision-making and striatal dopamine receptors. Specifically, striatal dopamine D2-like receptor availability is correlated with risk-taking behavior and sensitivity of prefrontal activation to risk in the Balloon Analogue Risk Task (BART). The extent to which these associations, involving a single neurochemical measure, reflect more general effects of dopaminergic functioning on risky decision making, however, is unknown. Here, 65 healthy participants provided genotypes and performed the BART during functional magnetic resonance imaging. For each participant, dopamine function was assessed using a gene composite score combining known functional variation across five genes involved in dopaminergic signaling: DRD2, DRD3, DRD4, DAT1, and COMT. The gene composite score was negatively related to dorsolateral prefrontal cortical function during risky decision making, and nonlinearly related to earnings on the task. Iterative permutations of all possible allelic variations (7777 allelic combinations) was tested on brain function in an independently defined region of the prefrontal cortex and confirmed empirical validity of the composite score, which yielded stronger association than 95% of all other possible combinations. The gene composite score also accounted for a greater proportion of variability in neural and behavioral measures than the independent effects of each gene variant, indicating that the combined effects of functional dopamine pathway genes can provide a robust assessment, presumably reflecting the cumulative and potentially interactive effects on brain function. Our findings support the view that the links between dopaminergic signaling, prefrontal function, and decision making vary as a function of dopamine signaling capacity.
Schönberg, Tom; Daw, Nathaniel D; Joel, Daphna; O'Doherty, John P
2007-11-21
The computational framework of reinforcement learning has been used to forward our understanding of the neural mechanisms underlying reward learning and decision-making behavior. It is known that humans vary widely in their performance in decision-making tasks. Here, we used a simple four-armed bandit task in which subjects are almost evenly split into two groups on the basis of their performance: those who do learn to favor choice of the optimal action and those who do not. Using models of reinforcement learning we sought to determine the neural basis of these intrinsic differences in performance by scanning both groups with functional magnetic resonance imaging. We scanned 29 subjects while they performed the reward-based decision-making task. Our results suggest that these two groups differ markedly in the degree to which reinforcement learning signals in the striatum are engaged during task performance. While the learners showed robust prediction error signals in both the ventral and dorsal striatum during learning, the nonlearner group showed a marked absence of such signals. Moreover, the magnitude of prediction error signals in a region of dorsal striatum correlated significantly with a measure of behavioral performance across all subjects. These findings support a crucial role of prediction error signals, likely originating from dopaminergic midbrain neurons, in enabling learning of action selection preferences on the basis of obtained rewards. Thus, spontaneously observed individual differences in decision making performance demonstrate the suggested dependence of this type of learning on the functional integrity of the dopaminergic striatal system in humans.
Making robust policy decisions using global biodiversity indicators.
Nicholson, Emily; Collen, Ben; Barausse, Alberto; Blanchard, Julia L; Costelloe, Brendan T; Sullivan, Kathryn M E; Underwood, Fiona M; Burn, Robert W; Fritz, Steffen; Jones, Julia P G; McRae, Louise; Possingham, Hugh P; Milner-Gulland, E J
2012-01-01
In order to influence global policy effectively, conservation scientists need to be able to provide robust predictions of the impact of alternative policies on biodiversity and measure progress towards goals using reliable indicators. We present a framework for using biodiversity indicators predictively to inform policy choices at a global level. The approach is illustrated with two case studies in which we project forwards the impacts of feasible policies on trends in biodiversity and in relevant indicators. The policies are based on targets agreed at the Convention on Biological Diversity (CBD) meeting in Nagoya in October 2010. The first case study compares protected area policies for African mammals, assessed using the Red List Index; the second example uses the Living Planet Index to assess the impact of a complete halt, versus a reduction, in bottom trawling. In the protected areas example, we find that the indicator can aid in decision-making because it is able to differentiate between the impacts of the different policies. In the bottom trawling example, the indicator exhibits some counter-intuitive behaviour, due to over-representation of some taxonomic and functional groups in the indicator, and contrasting impacts of the policies on different groups caused by trophic interactions. Our results support the need for further research on how to use predictive models and indicators to credibly track trends and inform policy. To be useful and relevant, scientists must make testable predictions about the impact of global policy on biodiversity to ensure that targets such as those set at Nagoya catalyse effective and measurable change.
Making Robust Policy Decisions Using Global Biodiversity Indicators
Nicholson, Emily; Collen, Ben; Barausse, Alberto; Blanchard, Julia L.; Costelloe, Brendan T.; Sullivan, Kathryn M. E.; Underwood, Fiona M.; Burn, Robert W.; Fritz, Steffen; Jones, Julia P. G.; McRae, Louise; Possingham, Hugh P.; Milner-Gulland, E. J.
2012-01-01
In order to influence global policy effectively, conservation scientists need to be able to provide robust predictions of the impact of alternative policies on biodiversity and measure progress towards goals using reliable indicators. We present a framework for using biodiversity indicators predictively to inform policy choices at a global level. The approach is illustrated with two case studies in which we project forwards the impacts of feasible policies on trends in biodiversity and in relevant indicators. The policies are based on targets agreed at the Convention on Biological Diversity (CBD) meeting in Nagoya in October 2010. The first case study compares protected area policies for African mammals, assessed using the Red List Index; the second example uses the Living Planet Index to assess the impact of a complete halt, versus a reduction, in bottom trawling. In the protected areas example, we find that the indicator can aid in decision-making because it is able to differentiate between the impacts of the different policies. In the bottom trawling example, the indicator exhibits some counter-intuitive behaviour, due to over-representation of some taxonomic and functional groups in the indicator, and contrasting impacts of the policies on different groups caused by trophic interactions. Our results support the need for further research on how to use predictive models and indicators to credibly track trends and inform policy. To be useful and relevant, scientists must make testable predictions about the impact of global policy on biodiversity to ensure that targets such as those set at Nagoya catalyse effective and measurable change. PMID:22815938
Development of the Supported Decision Making Inventory System.
Shogren, Karrie A; Wehmeyer, Michael L; Uyanik, Hatice; Heidrich, Megan
2017-12-01
Supported decision making has received increased attention as an alternative to guardianship and a means to enable people with intellectual and developmental disabilities to exercise their right to legal capacity. Assessments are needed that can used by people with disabilities and their systems of supports to identify and plan for needed supports to enable decision making. This article describes the steps taken to develop such an assessment tool, the Supported Decision Making Inventory System (SDMIS), and initial feedback received from self-advocates with intellectual disability. The three sections of the SDMIS (Supported Decision Making Personal Factors Inventory, Supported Decision Making Environmental Demands Inventory, and Decision Making Autonomy Inventory) are described and implications for future research, policy, and practice are discussed.
Infrastructure-Based Sensors Augmenting Efficient Autonomous Vehicle Operations: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun, Myungsoo; Markel, Anthony J
Autonomous vehicle technology development relies on an on-board network of fused sensor inputs for safe and efficient operation. The fused sensors offer multiple perspectives of similar information aiding in system decision robustness. The high cost of full systems on individual vehicles is seen as a potential barrier to broad adoption and achieving system energy efficiency gains. Since traffic in autonomous vehicle technology development relies on an on-board network of fused sensor inputs for safe and efficient operation. The fused sensors offer multiple perspectives of similar information aiding in system decision robustness. The high cost of full systems on individual vehiclesmore » is seen as a potential barrier to broad adoption and achieving system energy efficiency gains.« less
Larsen, Louise Pape; Biering, Karin; Johnsen, Soren Paaske; Riiskjær, Erik; Schougaard, Liv Marit
2014-01-01
Background Patient-reported outcome (PRO) measures may be used at a group level for research and quality improvement and at the individual patient level to support clinical decision making and ensure efficient use of resources. The challenges involved in implementing PRO measures are mostly the same regardless of aims and diagnostic groups and include logistic feasibility, high response rates, robustness, and ability to adapt to the needs of patient groups and settings. If generic PRO systems can adapt to specific needs, advanced technology can be shared between medical specialties and for different aims. Objective We describe methodological, organizational, and practical experiences with a generic PRO system, WestChronic, which is in use among a range of diagnostic groups and for a range of purposes. Methods The WestChronic system supports PRO data collection, with integration of Web and paper PRO questionnaires (mixed-mode) and automated procedures that enable adherence to implementation-specific schedules for the collection of PRO. For analysis, we divided functionalities into four elements: basic PRO data collection and logistics, PRO-based clinical decision support, PRO-based automated decision algorithms, and other forms of communication. While the first element is ubiquitous, the others are optional and only applicable at a patient level. Methodological and organizational experiences were described according to each element. Results WestChronic has, to date, been implemented in 22 PRO projects within 18 diagnostic groups, including cardiology, neurology, rheumatology, nephrology, orthopedic surgery, gynecology, oncology, and psychiatry. The aims of the individual projects included epidemiological research, quality improvement, hospital evaluation, clinical decision support, efficient use of outpatient clinic resources, and screening for side effects and comorbidity. In total 30,174 patients have been included, and 59,232 PRO assessments have been collected using 92 different PRO questionnaires. Response rates of up to 93% were achieved for first-round questionnaires and up to 99% during follow-up. For 6 diagnostic groups, PRO data were displayed graphically to the clinician to facilitate flagging of important symptoms and decision support, and in 5 diagnostic groups PRO data were used for automatic algorithm-based decisions. Conclusions WestChronic has allowed the implementation of all proposed protocol for data collection and processing. The system has achieved high response rates, and longitudinal attrition is limited. The relevance of the questions, the mixed-mode principle, and automated procedures has contributed to the high response rates. Furthermore, development and implementation of a number of approaches and methods for clinical use of PRO has been possible without challenging the generic property. Generic multipurpose PRO systems may enable sharing of automated and efficient logistics, optimal response rates, and other advanced options for PRO data collection and processing, while still allowing adaptation to specific aims and patient groups. PMID:24518281
ERIC Educational Resources Information Center
Watson, Joanne; Wilson, Erin; Hagiliassis, Nick
2017-01-01
Background: The United Nations Convention on the Rights of Persons with Disabilities (UNCRPD) promotes the use of supported decision making in lieu of substitute decision making. To date, there has been a lack of focus on supported decision making for people with severe or profound intellectual disability, including for end of life decisions.…
Erin K. Noonan-Wright; Tonja S. Opperman
2015-01-01
In response to federal wildfire policy changes, risk-informed decision-making by way of improved decision support, is increasingly becoming a component of managing wildfires. As fire incidents escalate in size and complexity, the Wildland Fire Decision Support System (WFDSS) provides support with different analytical tools as fire conditions change. We demonstrate the...
Decision support for clinical laboratory capacity planning.
van Merode, G G; Hasman, A; Derks, J; Goldschmidt, H M; Schoenmaker, B; Oosten, M
1995-01-01
The design of a decision support system for capacity planning in clinical laboratories is discussed. The DSS supports decisions concerning the following questions: how should the laboratory be divided into job shops (departments/sections), how should staff be assigned to workstations and how should samples be assigned to workstations for testing. The decision support system contains modules for supporting decisions at the overall laboratory level (concerning the division of the laboratory into job shops) and for supporting decisions at the job shop level (assignment of staff to workstations and sample scheduling). Experiments with these modules are described showing both the functionality and the validity.
Lee, Seonah
2013-10-01
This study aimed to organize the system features of decision support technologies targeted at nursing practice into assessment, problem identification, care plans, implementation, and outcome evaluation. It also aimed to identify the range of the five stage-related sequential decision supports that computerized clinical decision support systems provided. MEDLINE, CINAHL, and EMBASE were searched. A total of 27 studies were reviewed. The system features collected represented the characteristics of each category from patient assessment to outcome evaluation. Several features were common across the reviewed systems. For the sequential decision support, all of the reviewed systems provided decision support in sequence for patient assessment and care plans. Fewer than half of the systems included problem identification. There were only three systems operating in an implementation stage and four systems in outcome evaluation. Consequently, the key steps for sequential decision support functions were initial patient assessment, problem identification, care plan, and outcome evaluation. Providing decision support in such a full scope will effectively help nurses' clinical decision making. By organizing the system features, a comprehensive picture of nursing practice-oriented computerized decision support systems was obtained; however, the development of a guideline for better systems should go beyond the scope of a literature review.
Diagnostic decision-making and strategies to improve diagnosis.
Thammasitboon, Satid; Cutrer, William B
2013-10-01
A significant portion of diagnostic errors arises through cognitive errors resulting from inadequate knowledge, faulty data gathering, and/or faulty verification. Experts estimate that 75% of diagnostic failures can be attributed to clinician diagnostic thinking failure. The cognitive processes that underlie diagnostic thinking of clinicians are complex and intriguing, and it is imperative that clinicians acquire explicit appreciation and application of different cognitive approaches to make decisions better. A dual-process model that unifies many theories of decision-making has emerged as a promising template for understanding how clinicians think and judge efficiently in a diagnostic reasoning process. The identification and implementation of strategies for decreasing or preventing such diagnostic errors has become a growing area of interest and research. Suggested strategies to decrease diagnostic error incidence include increasing clinician's clinical expertise and avoiding inherent cognitive errors to make decisions better. Implementing Interventions focused solely on avoiding errors may work effectively for patient safety issues such as medication errors. Addressing cognitive errors, however, requires equal effort on expanding the individual clinician's expertise. Providing cognitive support to clinicians for robust diagnostic decision-making serves as the final strategic target for decreasing diagnostic errors. Clinical guidelines and algorithms offer another method for streamlining decision-making and decreasing likelihood of cognitive diagnostic errors. Addressing cognitive processing errors is undeniably the most challenging task in reducing diagnostic errors. While many suggested approaches exist, they are mostly based on theories and sciences in cognitive psychology, decision-making, and education. The proposed interventions are primarily suggestions and very few of them have been tested in the actual practice settings. Collaborative research effort is required to effectively address cognitive processing errors. Researchers in various areas, including patient safety/quality improvement, decision-making, and problem solving, must work together to make medical diagnosis more reliable. © 2013 Mosby, Inc. All rights reserved.
Chaisangmongkon, Warasinee; Swaminathan, Sruthi K.; Freedman, David J.; Wang, Xiao-Jing
2017-01-01
Summary Decision making involves dynamic interplay between internal judgements and external perception, which has been investigated in delayed match-to-category (DMC) experiments. Our analysis of neural recordings shows that, during DMC tasks, LIP and PFC neurons demonstrate mixed, time-varying, and heterogeneous selectivity, but previous theoretical work has not established the link between these neural characteristics and population-level computations. We trained a recurrent network model to perform DMC tasks and found that the model can remarkably reproduce key features of neuronal selectivity at the single-neuron and population levels. Analysis of the trained networks elucidates that robust transient trajectories of the neural population are the key driver of sequential categorical decisions. The directions of trajectories are governed by network self-organized connectivity, defining a ‘neural landscape’, consisting of a task-tailored arrangement of slow states and dynamical tunnels. With this model, we can identify functionally-relevant circuit motifs and generalize the framework to solve other categorization tasks. PMID:28334612
Alcohol use disorders in pregnancy.
DeVido, Jeffrey; Bogunovic, Olivera; Weiss, Roger D
2015-01-01
Alcohol use disorders (AUDs) are less prevalent in pregnant women than in nonpregnant women, but these disorders can create a host of clinical challenges when encountered. Unfortunately, little evidence is available to guide clinical decision making in this population. Drinking alcohol during pregnancy can have negative consequences on both fetus and mother, but it remains controversial as to the volume of alcohol consumption that correlates with these consequences. Likewise, little evidence is available to support the use of particular pharmacologic interventions for AUDs during pregnancy or to guide the management of alcohol detoxification in pregnant women. The use of benzodiazepines (the mainstay of most alcohol detoxification protocols) in pregnant women is controversial. Nevertheless, despite the lack of robust data to guide management of AUDs in pregnancy, clinicians need to make management decisions when confronted with these challenging situations. In that context, this article reviews the epidemiology of AUDs in pregnancy and the pharmacologic management of both AUDs and alcohol withdrawal in pregnant women, with the goal of informing clinicians about what is known about managing these co-occurring conditions.
The multi-dimensional measure of informed choice: a validation study.
Michie, Susan; Dormandy, Elizabeth; Marteau, Theresa M
2002-09-01
The aim of this prospective study is to assess the reliability and validity of a multi-dimensional measure of informed choice (MMIC). Participants were 225 pregnant women in two general hospitals in the UK, women receiving low-risk results following serum screening for Down syndrome. The MMIC was administered before testing and the Ottawa Decisional Conflict Scale was administered 6 weeks later. The component scales of the MMIC, knowledge and attitude, were internally consistent (alpha values of 0.68 and 0.78, respectively). Those who made a choice categorised as informed using the MMIC rated their decision 6 weeks later as being more informed, better supported and of higher quality than women whose choice was categorised as uninformed. This provides evidence of predictive validity, whilst the lack of association between the MMIC and anxiety shows construct (discriminant) validity. Thus, the MMIC has been shown to be psychometrically robust in pregnant women offered the choice to undergo prenatal screening for Down syndrome and receiving a low-risk result. Replication of this finding in other groups, facing other decisions, with other outcomes, should be assessed in future research.
From the microscope to the macroscopic: changing from the bench to portfolio management.
Sachs, Michael
2017-11-01
A role in portfolio management is ideal for individuals who enjoy tackling challenges that have both technical and business components. Portfolio management provides objective insights and analytics to support research and development decision making and planning. Successful practitioners usually have strong analytical abilities developed from a background in either science or business. Portfolio managers often advise key decision makers at both the team and senior management level and thus require robust oral, written, and interpersonal communication skills. Day-to-day tasks are rarely the same, and comfort with change and the unknown is essential. Here I will discuss my experience as a portfolio manager in a larger biopharmaceutical company and the skills from academic research I leveraged to make the transition. © 2017 Sachs. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
A Common Mechanism Underlying Food Choice and Social Decisions.
Krajbich, Ian; Hare, Todd; Bartling, Björn; Morishima, Yosuke; Fehr, Ernst
2015-10-01
People make numerous decisions every day including perceptual decisions such as walking through a crowd, decisions over primary rewards such as what to eat, and social decisions that require balancing own and others' benefits. The unifying principles behind choices in various domains are, however, still not well understood. Mathematical models that describe choice behavior in specific contexts have provided important insights into the computations that may underlie decision making in the brain. However, a critical and largely unanswered question is whether these models generalize from one choice context to another. Here we show that a model adapted from the perceptual decision-making domain and estimated on choices over food rewards accurately predicts choices and reaction times in four independent sets of subjects making social decisions. The robustness of the model across domains provides behavioral evidence for a common decision-making process in perceptual, primary reward, and social decision making.
A Common Mechanism Underlying Food Choice and Social Decisions
Krajbich, Ian; Hare, Todd; Bartling, Björn; Morishima, Yosuke; Fehr, Ernst
2015-01-01
People make numerous decisions every day including perceptual decisions such as walking through a crowd, decisions over primary rewards such as what to eat, and social decisions that require balancing own and others’ benefits. The unifying principles behind choices in various domains are, however, still not well understood. Mathematical models that describe choice behavior in specific contexts have provided important insights into the computations that may underlie decision making in the brain. However, a critical and largely unanswered question is whether these models generalize from one choice context to another. Here we show that a model adapted from the perceptual decision-making domain and estimated on choices over food rewards accurately predicts choices and reaction times in four independent sets of subjects making social decisions. The robustness of the model across domains provides behavioral evidence for a common decision-making process in perceptual, primary reward, and social decision making. PMID:26460812
Expert system decision support for low-cost launch vehicle operations
NASA Technical Reports Server (NTRS)
Szatkowski, G. P.; Levin, Barry E.
1991-01-01
Progress in assessing the feasibility, benefits, and risks associated with AI expert systems applied to low cost expendable launch vehicle systems is described. Part one identified potential application areas in vehicle operations and on-board functions, assessed measures of cost benefit, and identified key technologies to aid in the implementation of decision support systems in this environment. Part two of the program began the development of prototypes to demonstrate real-time vehicle checkout with controller and diagnostic/analysis intelligent systems and to gather true measures of cost savings vs. conventional software, verification and validation requirements, and maintainability improvement. The main objective of the expert advanced development projects was to provide a robust intelligent system for control/analysis that must be performed within a specified real-time window in order to meet the demands of the given application. The efforts to develop the two prototypes are described. Prime emphasis was on a controller expert system to show real-time performance in a cryogenic propellant loading application and safety validation implementation of this system experimentally, using commercial-off-the-shelf software tools and object oriented programming techniques. This smart ground support equipment prototype is based in C with imbedded expert system rules written in the CLIPS protocol. The relational database, ORACLE, provides non-real-time data support. The second demonstration develops the vehicle/ground intelligent automation concept, from phase one, to show cooperation between multiple expert systems. This automated test conductor (ATC) prototype utilizes a knowledge-bus approach for intelligent information processing by use of virtual sensors and blackboards to solve complex problems. It incorporates distributed processing of real-time data and object-oriented techniques for command, configuration control, and auto-code generation.
Supporting UK adaptation: building services for the next set of UK climate projections
NASA Astrophysics Data System (ADS)
Fung, Fai; Lowe, Jason
2016-04-01
As part of the Climate Change Act 2008, the UK Government sets out a national adaptation programme to address the risks and opportunities identified in a national climate change risk assessment (CCRA) every five years. The last risk assessment in 2012 was based on the probabilistic projections for the UK published in 2009 (UKCP09). The second risk assessment will also use information from UKCP09 alongside other evidence on climate projections. However, developments in the science of climate projeciton, and evolving user needs (based partly on what has been learnt about the diverse user requirements of the UK adaptation community from the seven years of delivering and managing UKCP09 products, market research and the peer-reviewed literature) suggest now is an appropriate time to update the projections and how they are delivered. A new set of UK climate projections are now being produced to upgrade UKCP09 to reflect the latest developments in climate science, the first phase of which will be delivered in 2018 to support the third CCRA. A major component of the work is the building of a tailored service to support users of the new projections during their development and to involve users in key decisions so that the projections are of most use. We will set out the plan for the new climate projections that seek to address the evolving user need. We will also present a framework which aims to (i) facilitate the dialogue between users, boundary organisations and producers, reflecting their different decision-making roles (ii) produce scientifically robust, user-relevant climate information (iii) provide the building blocks for developing further climate services to support adaptation activities in the UK.
Dalyander, P Soupy; Meyers, Michelle; Mattsson, Brady; Steyer, Gregory; Godsey, Elizabeth; McDonald, Justin; Byrnes, Mark; Ford, Mark
2016-12-01
Coastal ecosystem management typically relies on subjective interpretation of scientific understanding, with limited methods for explicitly incorporating process knowledge into decisions that must meet multiple, potentially competing stakeholder objectives. Conversely, the scientific community lacks methods for identifying which advancements in system understanding would have the highest value to decision-makers. A case in point is barrier island restoration, where decision-makers lack tools to objectively use system understanding to determine how to optimally use limited contingency funds when project construction in this dynamic environment does not proceed as expected. In this study, collaborative structured decision-making (SDM) was evaluated as an approach to incorporate process understanding into mid-construction decisions and to identify priority gaps in knowledge from a management perspective. The focus was a barrier island restoration project at Ship Island, Mississippi, where sand will be used to close an extensive breach that currently divides the island. SDM was used to estimate damage that may occur during construction, and guide repair decisions within the confines of limited availability of sand and funding to minimize adverse impacts to project objectives. Sand was identified as more limiting than funds, and unrepaired major breaching would negatively impact objectives. Repairing minor damage immediately was determined to be generally more cost effective (depending on the longshore extent) than risking more damage to a weakened project. Key gaps in process-understanding relative to project management were identified as the relationship of island width to breach formation; the amounts of sand lost during breaching, lowering, or narrowing of the berm; the potential for minor breaches to self-heal versus developing into a major breach; and the relationship between upstream nourishment and resiliency of the berm to storms. This application is a prototype for using structured decision-making in support of engineering projects in dynamic environments where mid-construction decisions may arise; highlights uncertainty about barrier island physical processes that limit the ability to make robust decisions; and demonstrates the potential for direct incorporation of process-based models in a formal adaptive management decision framework. Published by Elsevier Ltd.
Dalyander, P. Soupy; Meyers, Michelle B.; Mattsson, Brady; Steyer, Gregory; Godsey, Elizabeth; McDonald, Justin; Byrnes, Mark R.; Ford, Mark
2016-01-01
Coastal ecosystem management typically relies on subjective interpretation of scientific understanding, with limited methods for explicitly incorporating process knowledge into decisions that must meet multiple, potentially competing stakeholder objectives. Conversely, the scientific community lacks methods for identifying which advancements in system understanding would have the highest value to decision-makers. A case in point is barrier island restoration, where decision-makers lack tools to objectively use system understanding to determine how to optimally use limited contingency funds when project construction in this dynamic environment does not proceed as expected. In this study, collaborative structured decision-making (SDM) was evaluated as an approach to incorporate process understanding into mid-construction decisions and to identify priority gaps in knowledge from a management perspective. The focus was a barrier island restoration project at Ship Island, Mississippi, where sand will be used to close an extensive breach that currently divides the island. SDM was used to estimate damage that may occur during construction, and guide repair decisions within the confines of limited availability of sand and funding to minimize adverse impacts to project objectives. Sand was identified as more limiting than funds, and unrepaired major breaching would negatively impact objectives. Repairing minor damage immediately was determined to be generally more cost effective (depending on the longshore extent) than risking more damage to a weakened project. Key gaps in process-understanding relative to project management were identified as the relationship of island width to breach formation; the amounts of sand lost during breaching, lowering, or narrowing of the berm; the potential for minor breaches to self-heal versus developing into a major breach; and the relationship between upstream nourishment and resiliency of the berm to storms. This application is a prototype for using structured decision-making in support of engineering projects in dynamic environments where mid-construction decisions may arise; highlights uncertainty about barrier island physical processes that limit the ability to make robust decisions; and demonstrates the potential for direct incorporation of process-based models in a formal adaptive management decision framework.
Urdahl, Hege; Manca, Andrea; Sculpher, Mark J
2008-01-01
Background To support decision making many countries have now introduced some formal assessment process to evaluate whether health technologies represent good ‘value for money’. These often take the form of decision models which can be used to explore elements of importance to generalisability of study results across clinical settings and jurisdictions. The objectives of the present review were to assess: (i) whether the published studies clearly defined the decision-making audience for the model; (ii) the transparency of the reporting in terms of study question, structure and data inputs; (iii) the relevance of the data inputs used in the model to the stated decision-maker or jurisdiction; and (iv) how fully the robustness of the model's results to variation in data inputs between locations was assessed. Methods Articles reporting decision-analytic models in the area of osteoporosis were assessed to establish the extent to which the information provided enabled decision makers in different countries/jurisdictions to fully appreciate the variability of results according to location, and the relevance to their own. Results Of the 18 articles included in the review, only three explicitly stated the decision-making audience. It was not possible to infer a decision-making audience in eight studies. Target population was well reported, as was resource and cost data, and clinical data used for estimates of relative risk reduction. However, baseline risk was rarely adapted to the relevant jurisdiction, and when no decision-maker was explicit it was difficult to assess whether the reported cost and resource use data was in fact relevant. A few studies used sensitivity analysis to explore elements of generalisability, such as compliance rates and baseline fracture risk rates, although such analyses were generally restricted to evaluating parameter uncertainty. Conclusion This review found that variability in cost-effectiveness across locations is addressed to a varying extent in modelling studies in the field of osteoporosis, limiting their use for decision-makers across different locations. Transparency of reporting is expected to increase as methodology develops, and decision-makers publish “reference case” type guidance. PMID:17129074
NRMRL-CIN-1351A Hofstetter**, P., and Hammitt, J. K. Human Health Metrics for Environmental Decision Support Tools: Lessons from Health Economics and Decision Analysis. EPA/600/R-01/104 (NTIS PB2002-102119). Decision makers using environmental decision support tools are often ...
The Role of Visual Area V4 in the Discrimination of Partially Occluded Shapes
Kosai, Yoshito; El-Shamayleh, Yasmine; Fyall, Amber M.
2014-01-01
The primate brain successfully recognizes objects, even when they are partially occluded. To begin to elucidate the neural substrates of this perceptual capacity, we measured the responses of shape-selective neurons in visual area V4 while monkeys discriminated pairs of shapes under varying degrees of occlusion. We found that neuronal shape selectivity always decreased with increasing occlusion level, with some neurons being notably more robust to occlusion than others. The responses of neurons that maintained their selectivity across a wider range of occlusion levels were often sufficiently sensitive to support behavioral performance. Many of these same neurons were distinctively selective for the curvature of local boundary features and their shape tuning was well fit by a model of boundary curvature (curvature-tuned neurons). A significant subset of V4 neurons also signaled the animal's upcoming behavioral choices; these decision signals had short onset latencies that emerged progressively later for higher occlusion levels. The time course of the decision signals in V4 paralleled that of shape selectivity in curvature-tuned neurons: shape selectivity in curvature-tuned neurons, but not others, emerged earlier than the decision signals. These findings provide evidence for the involvement of contour-based mechanisms in the segmentation and recognition of partially occluded objects, consistent with psychophysical theory. Furthermore, they suggest that area V4 participates in the representation of the relevant sensory signals and the generation of decision signals underlying discrimination. PMID:24948811
Adolescent neural response to reward is related to participant sex and task motivation
Alarcón, Gabriela; Cservenka, Anita; Nagel, Bonnie J.
2017-01-01
Risky decision making is prominent during adolescence, perhaps contributed to by heightened sensation seeking and ongoing maturation of reward and dopamine systems in the brain, which are, in part, modulated by sex hormones. In this study, we examined sex differences in the neural substrates of reward sensitivity during a risky decision-making task and hypothesized that compared with girls, boys would show heightened brain activation in reward-relevant regions, particularly the nucleus accumbens, during reward receipt. Further, we hypothesized that testosterone and estradiol levels would mediate this sex difference. Moreover, we predicted boys would make more risky choices on the task. While boys showed increased nucleus accumbens blood oxygen level-dependent (BOLD) response relative to girls, sex hormones did not mediate this effect. As predicted, boys made a higher percentage of risky decisions during the task. Interestingly, boys also self-reported more motivation to perform well and earn money on the task, while girls self-reported higher state anxiety prior to the scan session. Motivation to earn money partially mediated the effect of sex on nucleus accumbens activity during reward. Previous research shows that increased motivation and salience of reinforcers is linked with more robust striatal BOLD response, therefore psychosocial factors, in addition to sex, may play an important role in reward sensitivity. Elucidating neurobiological mechanisms that support adolescent sex differences in risky decision making has important implications for understanding individual differences that lead to advantageous and adverse behaviors that affect health outcomes. PMID:27816780
Restoration of contaminated ecosystems: adaptive management in a changing climate
Farag, Aida; Larson, Diane L.; Stauber, Jenny; Stahl, Ralph; Isanhart, John; McAbee, Kevin T.; Walsh, Christopher J.
2017-01-01
Three case studies illustrate how adaptive management (AM) has been used in ecological restorations that involve contaminants. Contaminants addressed include mercury, selenium, and contaminants and physical disturbances delivered to streams by urban stormwater runoff. All three cases emphasize the importance of broad stakeholder input early and consistently throughout decision analysis for AM. Risk of contaminant exposure provided input to the decision analyses (e.g. selenium exposure to endangered razorback suckers, Stewart Lake; multiple contaminants in urban stormwater runoff, Melbourne) and was balanced with the protection of resources critical for a desired future state (e.g. preservation old growth trees, South River). Monitoring also played a critical role in the ability to conduct the decision analyses necessary for AM plans. For example, newer technologies in the Melbourne case provided a testable situation where contaminant concentrations and flow disturbance were reduced to support a return to good ecological condition. In at least one case (Stewart Lake), long-term monitoring data are being used to document the potential effects of climate change on a restoration trajectory. Decision analysis formalized the process by which stakeholders arrived at the priorities for the sites, which together constituted the desired future condition towards which each restoration is aimed. Alternative models were developed that described in mechanistic terms how restoration can influence the system towards the desired future condition. Including known and anticipated effects of future climate scenarios in these models will make them robust to the long-term exposure and effects of contaminants in restored ecosystems.
Building a Framework in Improving Drought Monitoring and Early Warning Systems in Africa
NASA Astrophysics Data System (ADS)
Tadesse, T.; Wall, N.; Haigh, T.; Shiferaw, A. S.; Beyene, S.; Demisse, G. B.; Zaitchik, B.
2015-12-01
Decision makers need a basic understanding of the prediction models and products of hydro-climatic extremes and their suitability in time and space for strategic resource and development planning to develop mitigation and adaptation strategies. Advances in our ability to assess and predict climate extremes (e.g., droughts and floods) under evolving climate change suggest opportunity to improve management of climatic/hydrologic risk in agriculture and water resources. In the NASA funded project entitled, "Seasonal Prediction of Hydro-Climatic Extremes in the Greater Horn of Africa (GHA) under Evolving Climate Conditions to Support Adaptation Strategies," we are attempting to develop a framework that uses dialogue between managers and scientists on how to enhance the use of models' outputs and prediction products in the GHA as well as improve the delivery of this information in ways that can be easily utilized by managers. This process is expected to help our multidisciplinary research team obtain feedback on the models and forecast products. In addition, engaging decision makers is essential in evaluating the use of drought and flood prediction models and products for decision-making processes in drought and flood management. Through this study, we plan to assess information requirements to implement a robust Early Warning Systems (EWS) by engaging decision makers in the process. This participatory process could also help the existing EWSs in Africa and to develop new local and regional EWSs. In this presentation, we report the progress made in the past two years of the NASA project.
Healthcare decisions: a review of children's involvement.
Baston, Jenny
2008-04-01
Children's rights, their ability to consent to treatment and their involvement in healthcare decisions have received considerable attention in recent years. There is some evidence to suggest that when children are involved in the decision-making process, they retain a sense of control over their situation. However there are still unresolved issues related to a child's right to decide and nurses may be confused about the extent to which children can and should be involved in decision-making. A code of practice for involving children in decisions was first suggested in 2001 and there is still a need for a consistent, structured and robust method of ensuring that children are included in the decision-making process at all stages of their health care.
On multi-site damage identification using single-site training data
NASA Astrophysics Data System (ADS)
Barthorpe, R. J.; Manson, G.; Worden, K.
2017-11-01
This paper proposes a methodology for developing multi-site damage location systems for engineering structures that can be trained using single-site damaged state data only. The methodology involves training a sequence of binary classifiers based upon single-site damage data and combining the developed classifiers into a robust multi-class damage locator. In this way, the multi-site damage identification problem may be decomposed into a sequence of binary decisions. In this paper Support Vector Classifiers are adopted as the means of making these binary decisions. The proposed methodology represents an advancement on the state of the art in the field of multi-site damage identification which require either: (1) full damaged state data from single- and multi-site damage cases or (2) the development of a physics-based model to make multi-site model predictions. The potential benefit of the proposed methodology is that a significantly reduced number of recorded damage states may be required in order to train a multi-site damage locator without recourse to physics-based model predictions. In this paper it is first demonstrated that Support Vector Classification represents an appropriate approach to the multi-site damage location problem, with methods for combining binary classifiers discussed. Next, the proposed methodology is demonstrated and evaluated through application to a real engineering structure - a Piper Tomahawk trainer aircraft wing - with its performance compared to classifiers trained using the full damaged-state dataset.
Sustainable infrastructure system modeling under uncertainties and dynamics
NASA Astrophysics Data System (ADS)
Huang, Yongxi
Infrastructure systems support human activities in transportation, communication, water use, and energy supply. The dissertation research focuses on critical transportation infrastructure and renewable energy infrastructure systems. The goal of the research efforts is to improve the sustainability of the infrastructure systems, with an emphasis on economic viability, system reliability and robustness, and environmental impacts. The research efforts in critical transportation infrastructure concern the development of strategic robust resource allocation strategies in an uncertain decision-making environment, considering both uncertain service availability and accessibility. The study explores the performances of different modeling approaches (i.e., deterministic, stochastic programming, and robust optimization) to reflect various risk preferences. The models are evaluated in a case study of Singapore and results demonstrate that stochastic modeling methods in general offers more robust allocation strategies compared to deterministic approaches in achieving high coverage to critical infrastructures under risks. This general modeling framework can be applied to other emergency service applications, such as, locating medical emergency services. The development of renewable energy infrastructure system development aims to answer the following key research questions: (1) is the renewable energy an economically viable solution? (2) what are the energy distribution and infrastructure system requirements to support such energy supply systems in hedging against potential risks? (3) how does the energy system adapt the dynamics from evolving technology and societal needs in the transition into a renewable energy based society? The study of Renewable Energy System Planning with Risk Management incorporates risk management into its strategic planning of the supply chains. The physical design and operational management are integrated as a whole in seeking mitigations against the potential risks caused by feedstock seasonality and demand uncertainty. Facility spatiality, time variation of feedstock yields, and demand uncertainty are integrated into a two-stage stochastic programming (SP) framework. In the study of Transitional Energy System Modeling under Uncertainty, a multistage stochastic dynamic programming is established to optimize the process of building and operating fuel production facilities during the transition. Dynamics due to the evolving technologies and societal changes and uncertainty due to demand fluctuations are the major issues to be addressed.
Uncertainty, robustness, and the value of information in managing a population of northern bobwhites
Johnson, Fred A.; Hagan, Greg; Palmer, William E.; Kemmerer, Michael
2014-01-01
The abundance of northern bobwhites (Colinus virginianus) has decreased throughout their range. Managers often respond by considering improvements in harvest and habitat management practices, but this can be challenging if substantial uncertainty exists concerning the cause(s) of the decline. We were interested in how application of decision science could be used to help managers on a large, public management area in southwestern Florida where the bobwhite is a featured species and where abundance has severely declined. We conducted a workshop with managers and scientists to elicit management objectives, alternative hypotheses concerning population limitation in bobwhites, potential management actions, and predicted management outcomes. Using standard and robust approaches to decision making, we determined that improved water management and perhaps some changes in hunting practices would be expected to produce the best management outcomes in the face of uncertainty about what is limiting bobwhite abundance. We used a criterion called the expected value of perfect information to determine that a robust management strategy may perform nearly as well as an optimal management strategy (i.e., a strategy that is expected to perform best, given the relative importance of different management objectives) with all uncertainty resolved. We used the expected value of partial information to determine that management performance could be increased most by eliminating uncertainty over excessive-harvest and human-disturbance hypotheses. Beyond learning about the factors limiting bobwhites, adoption of a dynamic management strategy, which recognizes temporal changes in resource and environmental conditions, might produce the greatest management benefit. Our research demonstrates that robust approaches to decision making, combined with estimates of the value of information, can offer considerable insight into preferred management approaches when great uncertainty exists about system dynamics and the effects of management.
Using expert judgments to explore robust alternatives for forest management under climate change.
McDaniels, Timothy; Mills, Tamsin; Gregory, Robin; Ohlson, Dan
2012-12-01
We develop and apply a judgment-based approach to selecting robust alternatives, which are defined here as reasonably likely to achieve objectives, over a range of uncertainties. The intent is to develop an approach that is more practical in terms of data and analysis requirements than current approaches, informed by the literature and experience with probability elicitation and judgmental forecasting. The context involves decisions about managing forest lands that have been severely affected by mountain pine beetles in British Columbia, a pest infestation that is climate-exacerbated. A forest management decision was developed as the basis for the context, objectives, and alternatives for land management actions, to frame and condition the judgments. A wide range of climate forecasts, taken to represent the 10-90% levels on cumulative distributions for future climate, were developed to condition judgments. An elicitation instrument was developed, tested, and revised to serve as the basis for eliciting probabilistic three-point distributions regarding the performance of selected alternatives, over a set of relevant objectives, in the short and long term. The elicitations were conducted in a workshop comprising 14 regional forest management specialists. We employed the concept of stochastic dominance to help identify robust alternatives. We used extensive sensitivity analysis to explore the patterns in the judgments, and also considered the preferred alternatives for each individual expert. The results show that two alternatives that are more flexible than the current policies are judged more likely to perform better than the current alternatives on average in terms of stochastic dominance. The results suggest judgmental approaches to robust decision making deserve greater attention and testing. © 2012 Society for Risk Analysis.
Geometry-based ensembles: toward a structural characterization of the classification boundary.
Pujol, Oriol; Masip, David
2009-06-01
This paper introduces a novel binary discriminative learning technique based on the approximation of the nonlinear decision boundary by a piecewise linear smooth additive model. The decision border is geometrically defined by means of the characterizing boundary points-points that belong to the optimal boundary under a certain notion of robustness. Based on these points, a set of locally robust linear classifiers is defined and assembled by means of a Tikhonov regularized optimization procedure in an additive model to create a final lambda-smooth decision rule. As a result, a very simple and robust classifier with a strong geometrical meaning and nonlinear behavior is obtained. The simplicity of the method allows its extension to cope with some of today's machine learning challenges, such as online learning, large-scale learning or parallelization, with linear computational complexity. We validate our approach on the UCI database, comparing with several state-of-the-art classification techniques. Finally, we apply our technique in online and large-scale scenarios and in six real-life computer vision and pattern recognition problems: gender recognition based on face images, intravascular ultrasound tissue classification, speed traffic sign detection, Chagas' disease myocardial damage severity detection, old musical scores clef classification, and action recognition using 3D accelerometer data from a wearable device. The results are promising and this paper opens a line of research that deserves further attention.
Sarkar, Indra Neil; Chen, Elizabeth S.; Rosenau, Paul T.; Storer, Matthew B.; Anderson, Beth; Horbar, Jeffrey D.
2014-01-01
Condition-specific registries are essential resources for supporting epidemiological, quality improvement, and clinical trial studies. The identification of potentially eligible patients for a given registry often involves a manual process or use of ad hoc software tools. With the increased availability of electronic health data, such as within Electronic Health Record (EHR) systems, there is potential to develop healthcare standards based approaches for interacting with these data. Arden Syntax, which has traditionally been used to represent medical knowledge for clinical decision support, is one such standard that may be adapted for the purpose of registry eligibility determination. In this feasibility study, Arden Syntax was explored for its ability to represent eligibility criteria for a registry of very low birth weight neonates. The promising performance (100% recall; 97% precision) of the Arden Syntax approach at a single institution suggests that a standards-based methodology could be used to robustly identify registry-eligible patients from EHRs. PMID:25954412
Cao, Qi; Leung, K M
2014-09-22
Reliable computer models for the prediction of chemical biodegradability from molecular descriptors and fingerprints are very important for making health and environmental decisions. Coupling of the differential evolution (DE) algorithm with the support vector classifier (SVC) in order to optimize the main parameters of the classifier resulted in an improved classifier called the DE-SVC, which is introduced in this paper for use in chemical biodegradability studies. The DE-SVC was applied to predict the biodegradation of chemicals on the basis of extensive sample data sets and known structural features of molecules. Our optimization experiments showed that DE can efficiently find the proper parameters of the SVC. The resulting classifier possesses strong robustness and reliability compared with grid search, genetic algorithm, and particle swarm optimization methods. The classification experiments conducted here showed that the DE-SVC exhibits better classification performance than models previously used for such studies. It is a more effective and efficient prediction model for chemical biodegradability.
SANDS: an architecture for clinical decision support in a National Health Information Network.
Wright, Adam; Sittig, Dean F
2007-10-11
A new architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support) is introduced and its performance evaluated. The architecture provides a method for performing clinical decision support across a network, as in a health information exchange. Using the prototype we demonstrated that, first, a number of useful types of decision support can be carried out using our architecture; and, second, that the architecture exhibits desirable reliability and performance characteristics.
Towards an Effective Decision Support System for Merapi Volcano (Yogyakarta Region, Indonesia)
NASA Astrophysics Data System (ADS)
Setijadji, L. D.
2011-12-01
The 2010 explosive eruption of Merapi has raised questions on how to develop a near real-time decision support system of multi volcanic hazards (e.g., ash plumes, pyroclastic flow and lahar floods) in populated volcanic terrains such as Yogyakarta region in Indonesia. Despite Merapi has been the most monitored volcano in the nation for a long time, the 2010 eruption behaviors have told us how dynamic a volcano is, and we have to anticipate for any scenarios. The Centre of Volcanology and Geo-hazards Mitigation (PVMBG) has long learned from the well-known Merapi-style eruption (i.e. typically starts with formation of lava dome and is followed by dome-collapse pyroclastic flows) to produce a long-established robust monitoring and prediction system for Merapi. However, the complex magmatic-volcanic system within volcano has proven that Merapi erupted violently in 2010 without a lava dome phase. The existing monitoring instruments which were mainly ground-based geophysical tools were destroyed and in large extent there were times during the crisis that no monitoring system was available in producing near real-time data input. Satellite images data could probably support this mission, but they were not part of existing monitoring systems of PVMBG. Partly as results of this failure, the 2010 eruption took large number of victims (reported loss of life 324) and as much as 320,000 citizens were displaced. The 2010 experience told us that we have to be ready with different styles of eruptions and that the current monitoring system needs to be supported by a reliable decision support system that allow scientists and decision makers to evaluate different scenarios quickly during the crisis, utilizing huge data sets from different instrumentations and platforms. For that purpose we initiated a research which is aimed to study the use of multi data sources such as satellite images and their integration within a Geographic Information System as key elements for a monitoring system during a volcanic eruption crisis and the following events, especially lahar hazards, using the case study of Merapi volcano. Remote sensing is still one of the most cost-effective tools, however the presence of so many different types of Earth Observation (EO) platforms and data make it difficult to select the most appropriate one, especially when we face a limited budget. Data are probably available within several institutions, but so far there is no strong coordination among governmental organizations who deal with geo-hazards. We are still on the progress to evaluate all possible sources of data, their platforms and formats, and building a scenario to use them within an integrative decision support system. We will test and improve the system when we now deal with the lahar flood hazards of Merapi that will likely to be the main hazard threat for people living surrounding Merapi for the next several years.
NASA Astrophysics Data System (ADS)
Rosenberg, D. E.
2008-12-01
Designing and implementing a hydro-economic computer model to support or facilitate collaborative decision making among multiple stakeholders or users can be challenging and daunting. Collaborative modeling is distinguished and more difficult than non-collaborative efforts because of a large number of users with different backgrounds, disagreement or conflict among stakeholders regarding problem definitions, modeling roles, and analysis methods, plus evolving ideas of model scope and scale and needs for information and analysis as stakeholders interact, use the model, and learn about the underlying water system. This presentation reviews the lifecycle for collaborative model making and identifies some key design decisions that stakeholders and model developers must make to develop robust and trusted, verifiable and transparent, integrated and flexible, and ultimately useful models. It advances some best practices to implement and program these decisions. Among these best practices are 1) modular development of data- aware input, storage, manipulation, results recording and presentation components plus ways to couple and link to other models and tools, 2) explicitly structure both input data and the meta data that describes data sources, who acquired it, gaps, and modifications or translations made to put the data in a form usable by the model, 3) provide in-line documentation on model inputs, assumptions, calculations, and results plus ways for stakeholders to document their own model use and share results with others, and 4) flexibly program with graphical object-oriented properties and elements that allow users or the model maintainers to easily see and modify the spatial, temporal, or analysis scope as the collaborative process moves forward. We draw on examples of these best practices from the existing literature, the author's prior work, and some new applications just underway. The presentation concludes by identifying some future directions for collaborative modeling including geo-spatial display and analysis, real-time operations, and internet-based tools plus the design and programming needed to implement these capabilities.
Stacked Denoising Autoencoders Applied to Star/Galaxy Classification
NASA Astrophysics Data System (ADS)
Qin, Hao-ran; Lin, Ji-ming; Wang, Jun-yi
2017-04-01
In recent years, the deep learning algorithm, with the characteristics of strong adaptability, high accuracy, and structural complexity, has become more and more popular, but it has not yet been used in astronomy. In order to solve the problem that the star/galaxy classification accuracy is high for the bright source set, but low for the faint source set of the Sloan Digital Sky Survey (SDSS) data, we introduced the new deep learning algorithm, namely the SDA (stacked denoising autoencoder) neural network and the dropout fine-tuning technique, which can greatly improve the robustness and antinoise performance. We randomly selected respectively the bright source sets and faint source sets from the SDSS DR12 and DR7 data with spectroscopic measurements, and made preprocessing on them. Then, we randomly selected respectively the training sets and testing sets without replacement from the bright source sets and faint source sets. At last, using these training sets we made the training to obtain the SDA models of the bright sources and faint sources in the SDSS DR7 and DR12, respectively. We compared the test result of the SDA model on the DR12 testing set with the test results of the Library for Support Vector Machines (LibSVM), J48 decision tree, Logistic Model Tree (LMT), Support Vector Machine (SVM), Logistic Regression, and Decision Stump algorithm, and compared the test result of the SDA model on the DR7 testing set with the test results of six kinds of decision trees. The experiments show that the SDA has a better classification accuracy than other machine learning algorithms for the faint source sets of DR7 and DR12. Especially, when the completeness function is used as the evaluation index, compared with the decision tree algorithms, the correctness rate of SDA has improved about 15% for the faint source set of SDSS-DR7.
NASA Astrophysics Data System (ADS)
Purkey, D. R.; Escobar, M.; Mehta, V. K.; Forni, L.
2016-12-01
Two important trends currently shape the manner in which water resources planning and decision making occurs. The first relates to the increasing reliance on participatory stakeholder processes as a forum for evaluating water management options and selecting the appropriate course of action. The second relates to the growing recognition that earlier deterministic approaches to this evaluation of options may no longer be appropriate, nor required. The convergence of these two trends poses questions as to the proper role of data, information, analysis and expertise in the inherently social and political process of negotiating water resources management agreements and implementing water resources management interventions. The question of how to discover the best or optimal option in the face of deep uncertainty related to climate change, demography, economic development, and regulatory reform is compelling. More fundamentally the question of whether the "perfect" option even exits to be discovered is perhaps more critical. While this existential question may be new to the water resource management community, it is not new to western political theory. This paper explores early classical philosophical writing related to issues of knowledge and governance as captured in the work of Plato and Aristotle; and then attempts to place a new approach to analysis-supported, stakeholder-driven water resources planning and decision making within this philosophical discourse. Using examples from river systems in California and the Andes, where the theory of Robust Decision Making has been used as an organizing construct for stakeholder processes, it is argued that the expectation that analysis will lead to the discovery of the perfect option is not warranted when stakeholders are engaged in the process of discovering a consensus option. This argument will touch upon issue of the diversity of values, model uncertainty and creditability, and the visualization of model output required to explore the implications of various management options across a range of inherently unknowable future conditions.
Future of electronic health records: implications for decision support.
Rothman, Brian; Leonard, Joan C; Vigoda, Michael M
2012-01-01
The potential benefits of the electronic health record over traditional paper are many, including cost containment, reductions in errors, and improved compliance by utilizing real-time data. The highest functional level of the electronic health record (EHR) is clinical decision support (CDS) and process automation, which are expected to enhance patient health and healthcare. The authors provide an overview of the progress in using patient data more efficiently and effectively through clinical decision support to improve health care delivery, how decision support impacts anesthesia practice, and how some are leading the way using these systems to solve need-specific issues. Clinical decision support uses passive or active decision support to modify clinician behavior through recommendations of specific actions. Recommendations may reduce medication errors, which would result in considerable savings by avoiding adverse drug events. In selected studies, clinical decision support has been shown to decrease the time to follow-up actions, and prediction has proved useful in forecasting patient outcomes, avoiding costs, and correctly prompting treatment plan modifications by clinicians before engaging in decision-making. Clinical documentation accuracy and completeness is improved by an electronic health record and greater relevance of care data is delivered. Clinical decision support may increase clinician adherence to clinical guidelines, but educational workshops may be equally effective. Unintentional consequences of clinical decision support, such as alert desensitization, can decrease the effectiveness of a system. Current anesthesia clinical decision support use includes antibiotic administration timing, improved documentation, more timely billing, and postoperative nausea and vomiting prophylaxis. Electronic health record implementation offers data-mining opportunities to improve operational, financial, and clinical processes. Using electronic health record data in real-time for decision support and process automation has the potential to both reduce costs and improve the quality of patient care. © 2012 Mount Sinai School of Medicine.
Toward a Multilingual, Experiential Environment for Learning Decision Technology.
ERIC Educational Resources Information Center
Yeo, Gee Kin; Tan, Seng Teen
1999-01-01
Describes work at the National University of Singapore on the Internet in expanding a simulation game used in supporting a course in decision technology. Topics include decision support systems, multilingual support for cross-cultural decision studies, process support in a World Wide Web-enhanced multiuser domain (MUD) learning environment, and…
Maintenance and operations decision support tool : Clarus regional demonstrations.
DOT National Transportation Integrated Search
2011-01-01
Weather affects almost all maintenance activity decisions. The Federal Highway Administration (FHWA) tested a new decision support system for maintenance in Iowa, Indiana, and Illinois called the Maintenance and Operations Decision Support System (MO...
Palmer-Wackerly, Angela L; Krieger, Janice L; Rhodes, Nancy D
2017-01-01
Cancer patients rely on multiple sources of support when making treatment decisions; however, most research studies examine the influence of health care provider support while the influence of family member support is understudied. The current study fills this gap by examining the influence of health care providers and partners on decision-making satisfaction. In a cross-sectional study via an online Qualtrics panel, we surveyed cancer patients who reported that they had a spouse or romantic partner when making cancer treatment decisions (n = 479). Decisional support was measured using 5-point, single-item scales for emotional support, informational support, informational-advice support, and appraisal support. Decision-making satisfaction was measured using Holmes-Rovner and colleagues' (1996) Satisfaction With Decision Scale. We conducted a mediated regression analysis to examine treatment decision-making satisfaction for all participants and a moderated mediation analysis to examine treatment satisfaction among those patients offered a clinical trial. Results indicated that partner support significantly and partially mediated the relationship between health care provider support and patients' decision-making satisfaction but that results did not vary by enrollment in a clinical trial. This study shows how and why decisional support from partners affects communication between health care providers and cancer patients.
NASA Astrophysics Data System (ADS)
Olmstead, Alice; Turpen, Chandra
2016-12-01
Professional development workshops are one of the primary mechanisms used to help faculty improve their teaching, and draw in many STEM instructors every year. Although workshops serve a critical role in changing instructional practices within our community, we rarely assess workshops through careful consideration of how they engage faculty. Initial evidence suggests that workshop leaders often overlook central tenets of education research that are well established in classroom contexts, such as the role of interactivity in enabling student learning [S. Freeman et al., Proc. Natl. Acad. Sci. U.S.A. 111, 8410 (2014)]. As such, there is a need to develop more robust, evidence-based models of how best to support faculty learning in professional development contexts, and to actively support workshop leaders in relating their design decisions to familiar ideas from other educational contexts. In response to these needs, we have developed an observation tool, the real-time professional development observation tool (R-PDOT), to document the form and focus of faculty engagement during workshops. In this paper, we describe the motivation and methodological considerations behind the development of the R-PDOT, justify our decisions to highlight particular aspects of workshop sessions, and demonstrate how the R-PDOT can be used to analyze three sessions from the Physics and Astronomy New Faculty Workshop. We also justify the accessibility and potential utility of the R-PDOT output as a reflective tool using preliminary data from interviews with workshop leaders, and consider the roles the R-PDOT could play in supporting future research on faculty professional development.
Atkinson, Jo-An; O'Donnell, Eloise; Wiggers, John; McDonnell, Geoff; Mitchell, Jo; Freebairn, Louise; Indig, Devon; Rychetnik, Lucie
2017-02-15
Development of effective policy responses to address complex public health problems can be challenged by a lack of clarity about the interaction of risk factors driving the problem, differing views of stakeholders on the most appropriate and effective intervention approaches, a lack of evidence to support commonly implemented and acceptable intervention approaches, and a lack of acceptance of effective interventions. Consequently, political considerations, community advocacy and industry lobbying can contribute to a hotly contested debate about the most appropriate course of action; this can hinder consensus and give rise to policy resistance. The problem of alcohol misuse and its associated harms in New South Wales (NSW), Australia, provides a relevant example of such challenges. Dynamic simulation modelling is increasingly being valued by the health sector as a robust tool to support decision making to address complex problems. It allows policy makers to ask 'what-if' questions and test the potential impacts of different policy scenarios over time, before solutions are implemented in the real world. Participatory approaches to modelling enable researchers, policy makers, program planners, practitioners and consumer representatives to collaborate with expert modellers to ensure that models are transparent, incorporate diverse evidence and perspectives, are better aligned to the decision-support needs of policy makers, and can facilitate consensus building for action. This paper outlines a procedure for embedding stakeholder engagement and consensus building in the development of dynamic simulation models that can guide the development of effective, coordinated and acceptable policy responses to complex public health problems, such as alcohol-related harms in NSW.
Development of structure-activity relationship for metal oxide nanoparticles
NASA Astrophysics Data System (ADS)
Liu, Rong; Zhang, Hai Yuan; Ji, Zhao Xia; Rallo, Robert; Xia, Tian; Chang, Chong Hyun; Nel, Andre; Cohen, Yoram
2013-05-01
Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were evaluated, based on an initial pool of thirty NP descriptors. The conduction band energy and ionic index (often correlated with the hydration enthalpy) were identified as suitable NP descriptors that are consistent with suggested toxicity mechanisms for metal oxide NPs and metal ions. The best performing nano-SAR with the above two descriptors, built with support vector machine (SVM) model and of validated robustness, had a balanced classification accuracy of ~94%. An applicability domain for the present data was established with a reasonable confidence level of 80%. Given the potential role of nano-SARs in decision making, regarding the environmental impact of NPs, the class probabilities provided by the SVM nano-SAR enabled the construction of decision boundaries with respect to toxicity classification under different acceptance levels of false negative relative to false positive predictions.Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were evaluated, based on an initial pool of thirty NP descriptors. The conduction band energy and ionic index (often correlated with the hydration enthalpy) were identified as suitable NP descriptors that are consistent with suggested toxicity mechanisms for metal oxide NPs and metal ions. The best performing nano-SAR with the above two descriptors, built with support vector machine (SVM) model and of validated robustness, had a balanced classification accuracy of ~94%. An applicability domain for the present data was established with a reasonable confidence level of 80%. Given the potential role of nano-SARs in decision making, regarding the environmental impact of NPs, the class probabilities provided by the SVM nano-SAR enabled the construction of decision boundaries with respect to toxicity classification under different acceptance levels of false negative relative to false positive predictions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01533e
Matthew Thompson; David Calkin; Joe H. Scott; Michael Hand
2017-01-01
Wildfire risk assessment is increasingly being adopted to support federal wildfire management decisions in the United States. Existing decision support systems, specifically the Wildland Fire Decision Support System (WFDSS), provide a rich set of probabilistic and riskâbased information to support the management of active wildfire incidents. WFDSS offers a wide range...
Campbell, Susan; Stowe, Karen; Ozanne, Elissa M
2011-11-01
Decision support as a means to assist people in making healthcare decisions has been discussed extensively in the medical literature. However, the potential for use of decision support and decision aids with people with psychiatric disabilities in order to promote recovery has only begun to be researched and discussed in the mental health literature. Organizational factors that foster interprofessional practice within a decision support environment focused on mental health issues are examined in this paper.
Lajnef, Tarek; Chaibi, Sahbi; Ruby, Perrine; Aguera, Pierre-Emmanuel; Eichenlaub, Jean-Baptiste; Samet, Mounir; Kachouri, Abdennaceur; Jerbi, Karim
2015-07-30
Sleep staging is a critical step in a range of electrophysiological signal processing pipelines used in clinical routine as well as in sleep research. Although the results currently achievable with automatic sleep staging methods are promising, there is need for improvement, especially given the time-consuming and tedious nature of visual sleep scoring. Here we propose a sleep staging framework that consists of a multi-class support vector machine (SVM) classification based on a decision tree approach. The performance of the method was evaluated using polysomnographic data from 15 subjects (electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) recordings). The decision tree, or dendrogram, was obtained using a hierarchical clustering technique and a wide range of time and frequency-domain features were extracted. Feature selection was carried out using forward sequential selection and classification was evaluated using k-fold cross-validation. The dendrogram-based SVM (DSVM) achieved mean specificity, sensitivity and overall accuracy of 0.92, 0.74 and 0.88 respectively, compared to expert visual scoring. Restricting DSVM classification to data where both experts' scoring was consistent (76.73% of the data) led to a mean specificity, sensitivity and overall accuracy of 0.94, 0.82 and 0.92 respectively. The DSVM framework outperforms classification with more standard multi-class "one-against-all" SVM and linear-discriminant analysis. The promising results of the proposed methodology suggest that it may be a valuable alternative to existing automatic methods and that it could accelerate visual scoring by providing a robust starting hypnogram that can be further fine-tuned by expert inspection. Copyright © 2015 Elsevier B.V. All rights reserved.
McCulloh, Russell J; Fouquet, Sarah D; Herigon, Joshua; Biondi, Eric A; Kennedy, Brandan; Kerns, Ellen; DePorre, Adrienne; Markham, Jessica L; Chan, Y Raymond; Nelson, Krista; Newland, Jason G
2018-06-07
Implementing evidence-based practices requires a multi-faceted approach. Electronic clinical decision support (ECDS) tools may encourage evidence-based practice adoption. However, data regarding the role of mobile ECDS tools in pediatrics is scant. Our objective is to describe the development, distribution, and usage patterns of a smartphone-based ECDS tool within a national practice standardization project. We developed a smartphone-based ECDS tool for use in the American Academy of Pediatrics, Value in Inpatient Pediatrics Network project entitled "Reducing Excessive Variation in the Infant Sepsis Evaluation (REVISE)." The mobile application (app), PedsGuide, was developed using evidence-based recommendations created by an interdisciplinary panel. App workflow and content were aligned with clinical benchmarks; app interface was adjusted after usability heuristic review. Usage patterns were measured using Google Analytics. Overall, 3805 users across the United States downloaded PedsGuide from December 1, 2016, to July 31, 2017, leading to 14 256 use sessions (average 3.75 sessions per user). Users engaged in 60 442 screen views, including 37 424 (61.8%) screen views that displayed content related to the REVISE clinical practice benchmarks, including hospital admission appropriateness (26.8%), length of hospitalization (14.6%), and diagnostic testing recommendations (17.0%). Median user touch depth was 5 [IQR 5]. We observed rapid dissemination and in-depth engagement with PedsGuide, demonstrating feasibility for using smartphone-based ECDS tools within national practice improvement projects. ECDS tools may prove valuable in future national practice standardization initiatives. Work should next focus on developing robust analytics to determine ECDS tools' impact on medical decision making, clinical practice, and health outcomes.
Huser, Vojtech; Rasmussen, Luke V; Oberg, Ryan; Starren, Justin B
2011-04-10
Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. We describe an implementation of a free workflow technology software suite (available at http://code.google.com/p/healthflow) and its application in the domain of clinical decision support. Our implementation seamlessly supports clinical logic testing on retrospective data and offers a user-friendly knowledge representation paradigm. With the presented software implementation, we demonstrate that workflow engine technology can provide a decision support platform which evaluates well against an established clinical decision support architecture evaluation framework. Due to cross-industry usage of workflow engine technology, we can expect significant future functionality enhancements that will further improve the technology's capacity to serve as a clinical decision support platform.
de Brugerolle, Anne
2007-01-01
SkinEthic Laboratories is a France-based biotechnology company recognised as the world leader in tissue engineering. SkinEthic is devoted to develop and produce reliable and robust in vitro alternative methods to animal use in cosmetic, chemical and pharmaceutical industries. SkinEthic models provide relevant tools for efficacy and safety screening tests in order to support an integrated decision-making during research and development phases. Some screening tests are referenced and validated as alternatives to animal use (Episkin), others are in the process of validation under ECVAM and OECD guidelines. SkinEthic laboratories provide a unique and joined experience of more than 20 years from Episkin SNC and SkinEthic SA. Their unique cell culture process allows in vitro reconstructed human tissues with well characterized histology, functionality and ultrastructure features to be mass produced. Our product line includes skin models: a reconstructed human epidermis with a collagen layer, Episkin, reconstructed human epidermis without or with melanocytes (with a tanning degree from phototype II to VI) and a reconstructed human epithelium, i.e. cornea, and other mucosa, i.e. oral, gingival, oesophageal and vaginal. Our philosophy is based on 3 main commitments: to support our customers by providing robust and reliable models, to ensure training and education in using validated protocols, allowing a large array of raw materials, active ingredients and finished products in solid, liquid, powder, cream or gel form to be screened, and, to provide a dedicated service to our partners.
Aronsky, D.; Haug, P. J.
1999-01-01
Decision support systems that integrate guidelines have become popular applications to reduce variation and deliver cost-effective care. However, adverse characteristics of decision support systems, such as additional and time-consuming data entry or manually identifying eligible patients, result in a "behavioral bottleneck" that prevents decision support systems to become part of the clinical routine. This paper describes the design and the implementation of an integrated decision support system that explores a novel approach for bypassing the behavioral bottleneck. The real-time decision support system does not require health care providers to enter additional data and consists of a diagnostic and a management component. Images Fig. 1 Fig. 2 Fig. 3 PMID:10566348
NASA Astrophysics Data System (ADS)
Walton, P.; Yarker, M. B.; Mesquita, M. D. S.; Otto, F. E. L.
2014-12-01
There is a clear role for climate science in supporting decision making at a range of scales and in a range of contexts: from Global to local, from Policy to Industry. However, clear a role climate science can play, there is also a clear discrepancy in the understanding of how to use the science and associated tools (such as climate models). Despite there being a large body of literature on the science there is clearly a need to provide greater support in how to apply appropriately. However, access to high quality professional development courses can be problematic, due to geographic, financial and time constraints. In attempt to address this gap we independently developed two online professional courses that focused on helping participants use and apply two regional climate models, WRF and PRECIS. Both courses were designed to support participants' learning through tutor led programs that covered the basic climate scientific principles of regional climate modeling and how to apply model outputs. The fundamental differences between the two courses are: 1) the WRF modeling course expected participants to design their own research question that was then run on a version of the model, whereas 2) the PRECIS course concentrated on the principles of regional modeling and how the climate science informed the modeling process. The two courses were developed to utilise the cost and time management benefits associated with eLearning, with the recognition that this mode of teaching can also be accessed internationally, providing professional development courses in countries that may not be able to provide their own. The development teams saw it as critical that the courses reflected sound educational theory, to ensure that participants had the maximum opportunity to learn successfully. In particular, the role of reflection is central to both course structures to help participants make sense of the science in relation to their own situation. This paper details the different structures of both courses, evaluating the advantages and disadvantages of each, along with the educational approaches used. We conclude by proposing a framework for the develop of educationally robust online professional development programs that actively supports decision makers in understanding, developing and applying regional climate models.
Lynch, Abigail J.; Taylor, William W.; McCright, Aaron M.
2016-01-01
Decision support tools can aid decision making by systematically incorporating information, accounting for uncertainties, and facilitating evaluation between alternatives. Without user buy-in, however, decision support tools can fail to influence decision-making processes. We surveyed fishery researchers, managers, and fishers affiliated with the Lake Whitefish Coregonus clupeaformis fishery in the 1836 Treaty Waters of Lakes Huron, Michigan, and Superior to assess opinions of current and future management needs to identify barriers to, and opportunities for, developing a decision support tool based on Lake Whitefish recruitment projections with climate change. Approximately 64% of 39 respondents were satisfied with current management, and nearly 85% agreed that science was well integrated into management programs. Though decision support tools can facilitate science integration into management, respondents suggest that they face significant implementation barriers, including lack of political will to change management and perceived uncertainty in decision support outputs. Recommendations from this survey can inform development of decision support tools for fishery management in the Great Lakes and other regions.
Pope, Catherine; Halford, Susan; Turnbull, Joanne; Prichard, Jane
2014-06-01
This article draws on data collected during a 2-year project examining the deployment of a computerised decision support system. This computerised decision support system was designed to be used by non-clinical staff for dealing with calls to emergency (999) and urgent care (out-of-hours) services. One of the promises of computerised decisions support technologies is that they can 'hold' vast amounts of sophisticated clinical knowledge and combine it with decision algorithms to enable standardised decision-making by non-clinical (clerical) staff. This article draws on our ethnographic study of this computerised decision support system in use, and we use our analysis to question the 'automated' vision of decision-making in healthcare call-handling. We show that embodied and experiential (human) expertise remains central and highly salient in this work, and we propose that the deployment of the computerised decision support system creates something new, that this conjunction of computer and human creates a cyborg practice.
Halim, Isa; Arep, Hambali; Kamat, Seri Rahayu; Abdullah, Rohana; Omar, Abdul Rahman; Ismail, Ahmad Rasdan
2014-06-01
Prolonged standing has been hypothesized as a vital contributor to discomfort and muscle fatigue in the workplace. The objective of this study was to develop a decision support system that could provide systematic analysis and solutions to minimize the discomfort and muscle fatigue associated with prolonged standing. The integration of object-oriented programming and a Model Oriented Simultaneous Engineering System were used to design the architecture of the decision support system. Validation of the decision support system was carried out in two manufacturing companies. The validation process showed that the decision support system produced reliable results. The decision support system is a reliable advisory tool for providing analysis and solutions to problems related to the discomfort and muscle fatigue associated with prolonged standing. Further testing of the decision support system is suggested before it is used commercially.
Halim, Isa; Arep, Hambali; Kamat, Seri Rahayu; Abdullah, Rohana; Omar, Abdul Rahman; Ismail, Ahmad Rasdan
2014-01-01
Background Prolonged standing has been hypothesized as a vital contributor to discomfort and muscle fatigue in the workplace. The objective of this study was to develop a decision support system that could provide systematic analysis and solutions to minimize the discomfort and muscle fatigue associated with prolonged standing. Methods The integration of object-oriented programming and a Model Oriented Simultaneous Engineering System were used to design the architecture of the decision support system. Results Validation of the decision support system was carried out in two manufacturing companies. The validation process showed that the decision support system produced reliable results. Conclusion The decision support system is a reliable advisory tool for providing analysis and solutions to problems related to the discomfort and muscle fatigue associated with prolonged standing. Further testing of the decision support system is suggested before it is used commercially. PMID:25180141
Developing the U.S. Wildland Fire Decision Support System
Erin Noonan-Wright; Tonja S. Opperman; Mark A. Finney; Tom Zimmerman; Robert C. Seli; Lisa M. Elenz; David E. Calkin; John R. Fiedler
2011-01-01
A new decision support tool, the Wildland Fire Decision Support System (WFDSS) has been developed to support risk-informed decision-making for individual fires in the United States. WFDSS accesses national weather data and forecasts, fire behavior prediction, economic assessment, smoke management assessment, and landscape databases to efficiently formulate and apply...
Decision Support for Ecosystem Management (Chapter 28)
Keith Reynolds; Jennifer Bjork; Rachel Riemann Hershey; Dan Schmoldt; John Payne; Susan King; Lee DeCola; Mark J. Twery; Pat Cunningham
1999-01-01
This chapter presents a management perspective on decision support for ecosystem management.The Introduction provides a brief historical overview of decision support technology as it has been used in natural resource management, discusses the role of decision support in ecosystem management as we see it, and summarizes the current state of the technology.
Fiber feed for the CFHT Gecko spectrograph
NASA Astrophysics Data System (ADS)
Baudrand, Jacques; Vitry, Rene
2000-08-01
Motivated by a strong concern to keep maintenance work as low as possible the direction of the CFHT had for some times contemplated the possibility to replace the original mirror train f/20 focus feeding their Gecko High Resolution Coude Spectrograph by a more convenient fiber link coupled to the f/8 Cassegrain focus. A decision supporting that idea was ultimately taken two years ago and our group at the OPM was contacted to build such a system according to precise specifications. This telescope facility, baptized CAFÉ for Cassegrain Fiber Environment, has now arrived to near completion and we are able to present here its main characteristics and the technical solutions that were adopted to meet the CFHT requirements and to provide the system with the best performances in terms of robustness and efficiency.
Supervised learning with decision margins in pools of spiking neurons.
Le Mouel, Charlotte; Harris, Kenneth D; Yger, Pierre
2014-10-01
Learning to categorise sensory inputs by generalising from a few examples whose category is precisely known is a crucial step for the brain to produce appropriate behavioural responses. At the neuronal level, this may be performed by adaptation of synaptic weights under the influence of a training signal, in order to group spiking patterns impinging on the neuron. Here we describe a framework that allows spiking neurons to perform such "supervised learning", using principles similar to the Support Vector Machine, a well-established and robust classifier. Using a hinge-loss error function, we show that requesting a margin similar to that of the SVM improves performance on linearly non-separable problems. Moreover, we show that using pools of neurons to discriminate categories can also increase the performance by sharing the load among neurons.
Wright, Adam; Sittig, Dean F
2008-12-01
In this paper, we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. The SANDS architecture for decision support has several significant advantages over other architectures for clinical decision support. The most salient of these are:
Integrated Cognitive Architectures For Robust Decision Making
2010-09-20
groups differed significantly from the other three [W(5) > 5, p > 0.13, uncorrected]. Performance by Condition It is useful to look at the average...the research that pursues integrated theories of human cognition, two approaches have become particularly influencial : ACT-R and Leabra. ACT-R...a wide range of tasks involving attention, learning, memory, problem solving, decision making, and language processing. Under the pressure of
Cognitive Radio for Tactical Wireless Communication Networks
2011-10-09
Pursley. Demodulator Statistics for Enhanced Soft-Decision Decoding in CDMA Packet Radio Systems, ICC 2010 - 2010 IEEE International Conference on...likelihood ratio (LLR) metrics and distance metrics. In [BPR08], [BoP09], and [BPR11], we investigated direct-sequence spread-spectrum ( DS -SS...modulation formats, which are among the most robust formats for tactical cognitive radio networks. DS -SS modulation with adaptive soft-decision decoding is
ERIC Educational Resources Information Center
Yap, Melvin J.; Tse, Chi-Shing; Balota, David A.
2009-01-01
Word frequency and semantic priming effects are among the most robust effects in visual word recognition, and it has been generally assumed that these two variables produce interactive effects in lexical decision performance, with larger priming effects for low-frequency targets. The results from four lexical decision experiments indicate that the…
Knox, Lucy; Douglas, Jacinta M; Bigby, Christine
2013-01-01
To raise professional awareness of factors that may influence the support offered by clinicians to people with acquired brain injury (ABI), and to consider the potential implications of these factors in terms of post-injury rehabilitation and living. A review of the literature was conducted to identify factors that determine how clinicians provide support and influence opportunities for individuals with ABI to participate in decision making across the rehabilitation continuum. Clinical case studies are used to highlight two specific issues: (1) hidden assumptions on the part of the practitioner, and (2) perceptions of risk operating in clinical practice. There are a range of factors which may influence the decision-making support provided by clinicians and, ultimately, shape lifetime outcomes for individuals with ABI. A multidimensional framework may assist clinicians to identify relevant factors and consider their potential implications including those that influence how clinicians involved in supporting decision making approach this task. Participation in decision making is an undisputed human right and central to the provision of person-centred care. Further research is required to understand how clinical practice can maximise both opportunities and support for increased decision-making participation by individuals with ABI. There is an increasing focus on the rights of all individuals to be supported to participate in decision making about their life. A number of changes associated with ABI mean that individuals with ABI will require support with decision making. Clinicians have a critical role in providing this support over the course of the rehabilitation continuum. Clinicians need to be aware of the range of factors that may influence the decision-making support they provide. A multidimensional framework may be used by clinicians to identify influences on the decision-making support they provide.
Toward the Modularization of Decision Support Systems
NASA Astrophysics Data System (ADS)
Raskin, R. G.
2009-12-01
Decision support systems are typically developed entirely from scratch without the use of modular components. This “stovepiped” approach is inefficient and costly because it prevents a developer from leveraging the data, models, tools, and services of other developers. Even when a decision support component is made available, it is difficult to know what problem it solves, how it relates to other components, or even that the component exists, The Spatial Decision Support (SDS) Consortium was formed in 2008 to organize the body of knowledge in SDS within a common portal. The portal identifies the canonical steps in the decision process and enables decision support components to be registered, categorized, and searched. This presentation describes how a decision support system can be assembled from modular models, data, tools and services, based on the needs of the Earth science application.
A robust data scaling algorithm to improve classification accuracies in biomedical data.
Cao, Xi Hang; Stojkovic, Ivan; Obradovic, Zoran
2016-09-09
Machine learning models have been adapted in biomedical research and practice for knowledge discovery and decision support. While mainstream biomedical informatics research focuses on developing more accurate models, the importance of data preprocessing draws less attention. We propose the Generalized Logistic (GL) algorithm that scales data uniformly to an appropriate interval by learning a generalized logistic function to fit the empirical cumulative distribution function of the data. The GL algorithm is simple yet effective; it is intrinsically robust to outliers, so it is particularly suitable for diagnostic/classification models in clinical/medical applications where the number of samples is usually small; it scales the data in a nonlinear fashion, which leads to potential improvement in accuracy. To evaluate the effectiveness of the proposed algorithm, we conducted experiments on 16 binary classification tasks with different variable types and cover a wide range of applications. The resultant performance in terms of area under the receiver operation characteristic curve (AUROC) and percentage of correct classification showed that models learned using data scaled by the GL algorithm outperform the ones using data scaled by the Min-max and the Z-score algorithm, which are the most commonly used data scaling algorithms. The proposed GL algorithm is simple and effective. It is robust to outliers, so no additional denoising or outlier detection step is needed in data preprocessing. Empirical results also show models learned from data scaled by the GL algorithm have higher accuracy compared to the commonly used data scaling algorithms.
Systematic Review of Medical Informatics-Supported Medication Decision Making.
Melton, Brittany L
2017-01-01
This systematic review sought to assess the applications and implications of current medical informatics-based decision support systems related to medication prescribing and use. Studies published between January 2006 and July 2016 which were indexed in PubMed and written in English were reviewed, and 39 studies were ultimately included. Most of the studies looked at computerized provider order entry or clinical decision support systems. Most studies examined decision support systems as a means of reducing errors or risk, particularly associated with medication prescribing, whereas a few studies evaluated the impact medical informatics-based decision support systems have on workflow or operations efficiency. Most studies identified benefits associated with decision support systems, but some indicate there is room for improvement.
How to guide - transit operations decision support systems (TODSS).
DOT National Transportation Integrated Search
2014-12-01
Transit Operations Decision Support Systems (TODSS) are decision support systems designed to support dispatchers in real-time bus operations management in response to incidents, special events, and other changing conditions in order to restore servic...
What Do I Want and When Do I Want It: Brain Correlates of Decisions Made for Self and Other
Albrecht, Konstanze; Volz, Kirsten G.; Sutter, Matthias; von Cramon, D. Yves
2013-01-01
A number of recent functional Magnetic Resonance Imaging (fMRI) studies on intertemporal choice behavior have demonstrated that so-called emotion- and reward-related brain areas are preferentially activated by decisions involving immediately available (but smaller) rewards as compared to (larger) delayed rewards. This pattern of activation was not seen, however, when intertemporal choices were made for another (unknown) individual, which speaks to that activation having been triggered by self-relatedness. In the present fMRI study, we investigated the brain correlates of individuals who passively observed intertemporal choices being made either for themselves or for an unknown person. We found higher activation within the ventral striatum, medial prefrontal and orbitofrontal cortex, pregenual anterior cingulate cortex, and posterior cingulate cortex when an immediate reward was possible for the observer herself, which is in line with findings from studies in which individuals actively chose immediately available rewards. Additionally, activation in the dorsal anterior cingulate cortex, posterior cingulate cortex, and precuneus was higher for choices that included immediate options than for choices that offered only delayed options, irrespective of who was to be the beneficiary. These results indicate that (1) the activations found in active intertemporal decision making are also present when the same decisions are merely observed, thus supporting the assumption that a robust brain network is engaged in immediate gratification; and (2) with immediate rewards, certain brain areas are activated irrespective of whether the observer or another person is the beneficiary of a decision, suggesting that immediacy plays a more general role for neural activation. An explorative analysis of participants’ brain activation corresponding to chosen rewards, further indicates that activation in the aforementioned brain areas depends on the mere presence, availability, or actual reception of immediate rewards. PMID:23991196
Karakülah, G.; Dicle, O.; Sökmen, S.; Çelikoğlu, C.C.
2015-01-01
Summary Background The selection of appropriate rectal cancer treatment is a complex multi-criteria decision making process, in which clinical decision support systems might be used to assist and enrich physicians’ decision making. Objective The objective of the study was to develop a web-based clinical decision support tool for physicians in the selection of potentially beneficial treatment options for patients with rectal cancer. Methods The updated decision model contained 8 and 10 criteria in the first and second steps respectively. The decision support model, developed in our previous study by combining the Analytic Hierarchy Process (AHP) method which determines the priority of criteria and decision tree that formed using these priorities, was updated and applied to 388 patients data collected retrospectively. Later, a web-based decision support tool named corRECTreatment was developed. The compatibility of the treatment recommendations by the expert opinion and the decision support tool was examined for its consistency. Two surgeons were requested to recommend a treatment and an overall survival value for the treatment among 20 different cases that we selected and turned into a scenario among the most common and rare treatment options in the patient data set. Results In the AHP analyses of the criteria, it was found that the matrices, generated for both decision steps, were consistent (consistency ratio<0.1). Depending on the decisions of experts, the consistency value for the most frequent cases was found to be 80% for the first decision step and 100% for the second decision step. Similarly, for rare cases consistency was 50% for the first decision step and 80% for the second decision step. Conclusions The decision model and corRECTreatment, developed by applying these on real patient data, are expected to provide potential users with decision support in rectal cancer treatment processes and facilitate them in making projections about treatment options. PMID:25848413
Suner, A; Karakülah, G; Dicle, O; Sökmen, S; Çelikoğlu, C C
2015-01-01
The selection of appropriate rectal cancer treatment is a complex multi-criteria decision making process, in which clinical decision support systems might be used to assist and enrich physicians' decision making. The objective of the study was to develop a web-based clinical decision support tool for physicians in the selection of potentially beneficial treatment options for patients with rectal cancer. The updated decision model contained 8 and 10 criteria in the first and second steps respectively. The decision support model, developed in our previous study by combining the Analytic Hierarchy Process (AHP) method which determines the priority of criteria and decision tree that formed using these priorities, was updated and applied to 388 patients data collected retrospectively. Later, a web-based decision support tool named corRECTreatment was developed. The compatibility of the treatment recommendations by the expert opinion and the decision support tool was examined for its consistency. Two surgeons were requested to recommend a treatment and an overall survival value for the treatment among 20 different cases that we selected and turned into a scenario among the most common and rare treatment options in the patient data set. In the AHP analyses of the criteria, it was found that the matrices, generated for both decision steps, were consistent (consistency ratio<0.1). Depending on the decisions of experts, the consistency value for the most frequent cases was found to be 80% for the first decision step and 100% for the second decision step. Similarly, for rare cases consistency was 50% for the first decision step and 80% for the second decision step. The decision model and corRECTreatment, developed by applying these on real patient data, are expected to provide potential users with decision support in rectal cancer treatment processes and facilitate them in making projections about treatment options.
Energy Decision Science and Informatics | Integrated Energy Solutions |
Science Advanced decision science methods include multi-objective and multi-criteria decision support. Our decision science methods, including multi-objective and multi-criteria decision support. For example, we
Martinez, Kathryn A; Resnicow, Ken; Williams, Geoffrey C; Silva, Marlene; Abrahamse, Paul; Shumway, Dean A; Wallner, Lauren P; Katz, Steven J; Hawley, Sarah T
2016-12-01
Provider communication that supports patient autonomy has been associated with numerous positive patient outcomes. However, to date, no research has examined the relationship between perceived provider communication style and patient-assessed decision quality in breast cancer. Using a population-based sample of women with localized breast cancer, we assessed patient perceptions of autonomy-supportive communication from their surgeons and medical oncologists, as well as patient-reported decision quality. We used multivariable linear regression to examine the association between autonomy-supportive communication and subjective decision quality for surgery and chemotherapy decisions, controlling for sociodemographic and clinical factors, as well as patient-reported communication preference (non-directive or directive). Among the 1690 women included in the overall sample, patient-reported decision quality scores were positively associated with higher levels of perceived autonomy-supportive communication from surgeons (β=0.30; p<0.001) and medical oncologists (β=0.26; p<0.001). Patient communication style preference moderated the association between physician communication style received and perceived decision quality. Autonomy-supportive communication by physicians was associated with higher subjective decision quality among women with localized breast cancer. These results support future efforts to design interventions that enhance autonomy-supportive communication. Autonomy-supportive communication by cancer doctors can improve patients' perceived decision quality. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Resnicow, Ken; Williams, Geoffrey C.; Silva, Marlene; Abrahamse, Paul; Shumway, Dean; Wallner, Lauren; Katz, Steven; Hawley, Sarah
2016-01-01
Objective Provider communication that supports patient autonomy has been associated with numerous positive patient outcomes. However, to date, no research has examined the relationship between perceived provider communication style and patient-assessed decision quality in breast cancer. Methods Using a population-based sample of women with localized breast cancer, we assessed patient perceptions of autonomy-supportive communication from their surgeons and medical oncologists, as well as patient-reported decision quality. We used multivariable linear regression to examine the association between autonomy-supportive communication and subjective decision quality for surgery and chemotherapy decisions, controlling for sociodemographic and clinical factors, as well as patient-reported communication preference (non-directive or directive). Results Among the 1,690 women included in the overall sample, patient-reported decision quality scores were positively associated with higher levels of perceived autonomy-supportive communication from surgeons (β=0.30; p<0.001) and medical oncologists (β=0.26; p<0.001). Patient communication style preference moderated the association between physician communication style received and perceived decision quality. Conclusion Autonomy-supportive communication by physicians was associated with higher subjective decision quality among women with localized breast cancer. These results support future efforts to design interventions that enhance autonomy-supportive communication. Practice Implications Autonomy-supportive communication by cancer doctors can improve patients’ perceived decision quality. PMID:27395750
Towards ethical decision support and knowledge management in neonatal intensive care.
Yang, L; Frize, M; Eng, P; Walker, R; Catley, C
2004-01-01
Recent studies in neonatal medicine, clinical nursing, and cognitive psychology have indicated the need to augment current decision-making practice in neonatal intensive care units with computerized, intelligent decision support systems. Rapid progress in artificial intelligence and knowledge management facilitates the design of collaborative ethical decision-support tools that allow clinicians to provide better support for parents facing inherently difficult choices, such as when to withdraw aggressive treatment. The appropriateness of using computers to support ethical decision-making is critically analyzed through research and literature review. In ethical dilemmas, multiple diverse participants need to communicate and function as a team to select the best treatment plan. In order to do this, physicians require reliable estimations of prognosis, while parents need a highly useable tool to help them assimilate complex medical issues and address their own value system. Our goal is to improve and structuralize the ethical decision-making that has become an inevitable part of modern neonatal care units. The paper contributes to clinical decision support by outlining the needs and basis for ethical decision support and justifying the proposed development efforts.
2011-01-01
Background Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. Results We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. Conclusions We describe an implementation of a free workflow technology software suite (available at http://code.google.com/p/healthflow) and its application in the domain of clinical decision support. Our implementation seamlessly supports clinical logic testing on retrospective data and offers a user-friendly knowledge representation paradigm. With the presented software implementation, we demonstrate that workflow engine technology can provide a decision support platform which evaluates well against an established clinical decision support architecture evaluation framework. Due to cross-industry usage of workflow engine technology, we can expect significant future functionality enhancements that will further improve the technology's capacity to serve as a clinical decision support platform. PMID:21477364
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Kathleen M; Van Riemsdijk, Dr. Micheline
This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decision-making process. Asmore » the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.« less
Müller-Staub, Maria; de Graaf-Waar, Helen; Paans, Wolter
2016-11-01
Nurses are accountable to apply the nursing process, which is key for patient care: It is a problem-solving process providing the structure for care plans and documentation. The state-of-the art nursing process is based on classifications that contain standardized concepts, and therefore, it is named Advanced Nursing Process. It contains valid assessments, nursing diagnoses, interventions, and nursing-sensitive patient outcomes. Electronic decision support systems can assist nurses to apply the Advanced Nursing Process. However, nursing decision support systems are missing, and no "gold standard" is available. The study aim is to develop a valid Nursing Process-Clinical Decision Support System Standard to guide future developments of clinical decision support systems. In a multistep approach, a Nursing Process-Clinical Decision Support System Standard with 28 criteria was developed. After pilot testing (N = 29 nurses), the criteria were reduced to 25. The Nursing Process-Clinical Decision Support System Standard was then presented to eight internationally known experts, who performed qualitative interviews according to Mayring. Fourteen categories demonstrate expert consensus on the Nursing Process-Clinical Decision Support System Standard and its content validity. All experts agreed the Advanced Nursing Process should be the centerpiece for the Nursing Process-Clinical Decision Support System and should suggest research-based, predefined nursing diagnoses and correct linkages between diagnoses, evidence-based interventions, and patient outcomes.
Online Hydrologic Impact Assessment Decision Support System using Internet and Web-GIS Capability
NASA Astrophysics Data System (ADS)
Choi, J.; Engel, B. A.; Harbor, J.
2002-05-01
Urban sprawl and the corresponding land use change from lower intensity uses, such as agriculture and forests, to higher intensity uses including high density residential and commercial has various long- and short-term environment impacts on ground water recharge, water pollution, and storm water drainage. A web-based Spatial Decision Support System, SDSS, for Web-based operation of long-term hydrologic impact modeling and analysis was developed. The system combines a hydrologic model, databases, web-GIS capability and HTML user interfaces to create a comprehensive hydrologic analysis system. The hydrologic model estimates daily direct runoff using the NRCS Curve Number technique and annual nonpoint source pollution loading by an event mean concentration approach. This is supported by a rainfall database with over 30 years of daily rainfall for the continental US. A web-GIS interface and a robust Web-based watershed delineation capability were developed to simplify the spatial data preparation task that is often a barrier to hydrologic model operation. The web-GIS supports browsing of map layers including hydrologic soil groups, roads, counties, streams, lakes and railroads, as well as on-line watershed delineation for any geographic point the user selects with a simple mouse click. The watershed delineation results can also be used to generate data for the hydrologic and water quality models available in the DSS. This system is already being used by city and local government planners for hydrologic impact evaluation of land use change from urbanization, and can be found at http://pasture.ecn.purdue.edu/~watergen/hymaps. This system can assist local community, city and watershed planners, and even professionals when they are examining impacts of land use change on water resources. They can estimate the hydrologic impact of possible land use changes using this system with readily available data supported through the Internet. This system provides a cost effective approach to serve potential users who require easy-to-use tools.
Panahiazar, Maryam; Taslimitehrani, Vahid; Jadhav, Ashutosh; Pathak, Jyotishman
2014-10-01
In healthcare, big data tools and technologies have the potential to create significant value by improving outcomes while lowering costs for each individual patient. Diagnostic images, genetic test results and biometric information are increasingly generated and stored in electronic health records presenting us with challenges in data that is by nature high volume, variety and velocity, thereby necessitating novel ways to store, manage and process big data. This presents an urgent need to develop new, scalable and expandable big data infrastructure and analytical methods that can enable healthcare providers access knowledge for the individual patient, yielding better decisions and outcomes. In this paper, we briefly discuss the nature of big data and the role of semantic web and data analysis for generating "smart data" which offer actionable information that supports better decision for personalized medicine. In our view, the biggest challenge is to create a system that makes big data robust and smart for healthcare providers and patients that can lead to more effective clinical decision-making, improved health outcomes, and ultimately, managing the healthcare costs. We highlight some of the challenges in using big data and propose the need for a semantic data-driven environment to address them. We illustrate our vision with practical use cases, and discuss a path for empowering personalized medicine using big data and semantic web technology.
Military Medical Decision Support for Homeland Defense During Emergency
2004-12-01
abstraction hierarchy, three levels of information requirement for designing emergency training interface are recognized. These are epistemological ...support human decision making process is considered to be decision-centric. A typical decision-centric interface is supported by at least four design ... Designing Emergency Training Interface ......................................................................................... 5 Epistemological
Battling Arrow's Paradox to Discover Robust Water Management Alternatives
NASA Astrophysics Data System (ADS)
Kasprzyk, J. R.; Reed, P. M.; Hadka, D.
2013-12-01
This study explores whether or not Arrow's Impossibility Theorem, a theory of social choice, affects the formulation of water resources systems planning problems. The theorem discusses creating an aggregation function for voters choosing from more than three alternatives for society. The Impossibility Theorem is also called Arrow's Paradox, because when trying to add more voters, a single individual's preference will dictate the optimal group decision. In the context of water resources planning, our study is motivated by recent theoretical work that has generalized the insights for Arrow's Paradox to the design of complex engineered systems. In this framing of the paradox, states of society are equivalent to water planning or design alternatives, and the voters are equivalent to multiple planning objectives (e.g. minimizing cost or maximizing performance). Seen from this point of view, multi-objective water planning problems are functionally equivalent to the social choice problem described above. Traditional solutions to such multi-objective problems aggregate multiple performance measures into a single mathematical objective. The Theorem implies that a subset of performance concerns will inadvertently dictate the overall design evaluations in unpredictable ways using such an aggregation. We suggest that instead of aggregation, an explicit many-objective approach to water planning can help overcome the challenges posed by Arrow's Paradox. Many-objective planning explicitly disaggregates measures of performance while supporting the discovery of the planning tradeoffs, employing multiobjective evolutionary algorithms (MOEAs) to find solutions. Using MOEA-based search to address Arrow's Paradox requires that the MOEAs perform robustly with increasing problem complexity, such as adding additional objectives and/or decisions. This study uses comprehensive diagnostic evaluation of MOEA search performance across multiple problem formulations (both aggregated and many-objective) to show whether or not aggregating performance measures biases decision making. In this study, we explore this hypothesis using an urban water portfolio management case study in the Lower Rio Grande Valley. The diagnostic analysis shows that modern self-adaptive MOEA search is efficient, effective, and reliable for the more complex many-objective LRGV planning formulations. Results indicate that although many classical water systems planning frameworks seek to account for multiple objectives, the common practice of reducing the problem into one or more highly aggregated performance measures can severely and negatively bias planning decisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Silva, T; Uneri, A; Ketcha, M
Purpose: Accurate localization of target vertebrae is essential to safe, effective spine surgery, but wrong-level surgery occurs with surprisingly high frequency. Recent research yielded the “LevelCheck” method for 3D-2D registration of preoperative CT to intraoperative radiographs, providing decision support for level localization. We report a new method (MR-LevelCheck) to perform 3D-2D registration based on preoperative MRI, presenting a solution for the increasingly common scenario in which MRI (not CT) is used for preoperative planning. Methods: Direct extension of LevelCheck is confounded by large mismatch in image intensity between MRI and radiographs. The proposed method overcomes such challenges with a simplemore » vertebrae segmentation. Using seed points at centroids, vertebrae are segmented using continuous max-flow method and dilated by 1.8 mm to include surrounding cortical bone (inconspicuous in T2w-MRI). MRI projections are computed (analogous to DRR) using segmentation and registered to intraoperative radiographs. The method was tested in a retrospective IRB-approved study involving 11 patients undergoing cervical, thoracic, or lumbar spine surgery following preoperative MRI. Registration accuracy was evaluated in terms of projection-distance-error (PDE) between the true and estimated location of vertebrae in each radiograph. Results: The method successfully registered each preoperative MRI to intraoperative radiographs and maintained desirable properties of robustness against image content mismatch, and large capture range. Segmentation achieved Dice coefficient = 89.2 ± 2.3 and mean-absolute-distance (MAD) = 1.5 ± 0.3 mm. Registration demonstrated robust performance under realistic patient variations, with PDE = 4.0 ± 1.9 mm (median ± iqr) and converged with run-time = 23.3 ± 1.7 s. Conclusion: The MR-LevelCheck algorithm provides an important extension to a previously validated decision support tool in spine surgery by extending its utility to preoperative MRI. With initial studies demonstrating PDE <5 mm and 0% failure rate, the method is now in translation to larger scale prospective clinical studies. S. Vogt and G. Kleinszig are employees of Siemens Healthcare.« less
Cost-effectiveness of pneumococcal conjugate vaccination in Georgia.
Komakhidze, T; Hoestlandt, C; Dolakidze, T; Shakhnazarova, M; Chlikadze, R; Kopaleishvili, N; Goginashvili, K; Kherkheulidze, M; Clark, A D; Blau, J
2015-05-07
Financial support from the Global Alliance for Vaccines and Immunization (GAVI) to introduce the 10-valent pneumococcal conjugate vaccine (PCV10) into the routine childhood immunization schedule in Georgia is ending in 2015. As a result, the Interagency Coordination Committee (ICC) decided to carry out a cost-effectiveness analysis to gather additional evidence to advocate for an appropriate evidence-based decision after GAVI support is over. The study also aimed to strengthen national capacity to conduct cost-effectiveness studies, and to introduce economic evaluations into Georgia's decision-making process. A multidisciplinary team of national experts led by a member of the ICC carried out the analysis that compared two scenarios: introducing PCV10 vs no vaccination. The TRIVAC model was used to evaluate 10 cohorts of children over the period 2014-2023. National data was used to inform demographics, disease burden, vaccine coverage, health service utilization, and costs. Evidence from clinical trials and the scientific literature was used to estimate the impact of the vaccine. A 3+0 schedule and a vaccine price increasing to US$ 3.50 per dose was assumed for the base-case scenario. Alternative univariate and multivariate scenarios were evaluated. Over the 10-year period, PCV10 was estimated to prevent 7170 (8288 undiscounted) outpatient visits due to all-cause acute otitis media, 5325 (6154 undiscounted) admissions due to all-cause pneumonia, 87 (100 undiscounted) admissions due to pneumococcal meningitis, and 508 (588 undiscounted) admissions due to pneumococcal non-pneumonia and non-meningitis (NPNM). In addition, the vaccine was estimated to prevent 41 (48 undiscounted) deaths. This is equivalent to approximately 5 deaths and 700 admissions prevented each year in Georgia. Over the 10-year period, PCV10 would cost the government approximately US$ 4.4 million ($440,000 per year). However, about half of this would be offset by the treatment costs prevented. The discounted cost-effectiveness ratio was estimated to be US$ 1599 per DALY averted with scenarios ranging from US$ 286 to US$ 7787. This study led to better multi-sectoral collaboration and improved national capacity to perform economic evaluations. Routine infant vaccination against Streptococcus pneumoniae would be highly cost-effective in Georgia. The decision to introduce PCV10 was already made some time before the study was initiated but it provided important economic evidence in support of that decision. There are several uncertainties around many of the parameters used, but a multivariate scenario analysis with several conservative assumptions (including no herd effect in older individuals) shows that this recommendation is robust. This study supports the decision to introduce PCV10 in Georgia. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bakker, Alexander M R; Wong, Tony E; Ruckert, Kelsey L; Keller, Klaus
2017-06-20
There is a growing awareness that uncertainties surrounding future sea-level projections may be much larger than typically perceived. Recently published projections appear widely divergent and highly sensitive to non-trivial model choices . Moreover, the West Antarctic ice sheet (WAIS) may be much less stable than previous believed, enabling a rapid disintegration. Here, we present a set of probabilistic sea-level projections that approximates the deeply uncertain WAIS contributions. The projections aim to inform robust decisions by clarifying the sensitivity to non-trivial or controversial assumptions. We show that the deeply uncertain WAIS contribution can dominate other uncertainties within decades. These deep uncertainties call for the development of robust adaptive strategies. These decision-making needs, in turn, require mission-oriented basic science, for example about potential signposts and the maximum rate of WAIS-induced sea-level changes.
Doing our best: optimization and the management of risk.
Ben-Haim, Yakov
2012-08-01
Tools and concepts of optimization are widespread in decision-making, design, and planning. There is a moral imperative to "do our best." Optimization underlies theories in physics and biology, and economic theories often presume that economic agents are optimizers. We argue that in decisions under uncertainty, what should be optimized is robustness rather than performance. We discuss the equity premium puzzle from financial economics, and explain that the puzzle can be resolved by using the strategy of satisficing rather than optimizing. We discuss design of critical technological infrastructure, showing that satisficing of performance requirements--rather than optimizing them--is a preferable design concept. We explore the need for disaster recovery capability and its methodological dilemma. The disparate domains--economics and engineering--illuminate different aspects of the challenge of uncertainty and of the significance of robust-satisficing. © 2012 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Song, Tianyu; Kam, Pooi-Yuen
2016-02-01
Since atmospheric turbulence and pointing errors cause signal intensity fluctuations and the background radiation surrounding the free-space optical (FSO) receiver contributes an undesired noisy component, the receiver requires accurate channel state information (CSI) and background information to adjust the detection threshold. In most previous studies, for CSI acquisition, pilot symbols were employed, which leads to a reduction of spectral and energy efficiency; and an impractical assumption that the background radiation component is perfectly known was made. In this paper, we develop an efficient and robust sequence receiver, which acquires the CSI and the background information implicitly and requires no knowledge about the channel model information. It is robust since it can automatically estimate the CSI and background component and detect the data sequence accordingly. Its decision metric has a simple form and involves no integrals, and thus can be easily evaluated. A Viterbi-type trellis-search algorithm is adopted to improve the search efficiency, and a selective-store strategy is adopted to overcome a potential error floor problem as well as to increase the memory efficiency. To further simplify the receiver, a decision-feedback symbol-by-symbol receiver is proposed as an approximation of the sequence receiver. By simulations and theoretical analysis, we show that the performance of both the sequence receiver and the symbol-by-symbol receiver, approach that of detection with perfect knowledge of the CSI and background radiation, as the length of the window for forming the decision metric increases.
Nonlatching positive feedback enables robust bimodality by decoupling expression noise from the mean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razooky, Brandon S.; Cao, Youfang; Hansen, Maike M. K.
Fundamental to biological decision-making is the ability to generate bimodal expression patterns where two alternate expression states simultaneously exist. Here in this study, we use a combination of single-cell analysis and mathematical modeling to examine the sources of bimodality in the transcriptional program controlling HIV’s fate decision between active replication and viral latency. We find that the HIV Tat protein manipulates the intrinsic toggling of HIV’s promoter, the LTR, to generate bimodal ON-OFF expression, and that transcriptional positive feedback from Tat shifts and expands the regime of LTR bimodality. This result holds for both minimal synthetic viral circuits and full-lengthmore » virus. Strikingly, computational analysis indicates that the Tat circuit’s non-cooperative ‘non-latching’ feedback architecture is optimized to slow the promoter’s toggling and generate bimodality by stochastic extinction of Tat. In contrast to the standard Poisson model, theory and experiment show that non-latching positive feedback substantially dampens the inverse noise-mean relationship to maintain stochastic bimodality despite increasing mean-expression levels. Given the rapid evolution of HIV, the presence of a circuit optimized to robustly generate bimodal expression appears consistent with the hypothesis that HIV’s decision between active replication and latency provides a viral fitness advantage. More broadly, the results suggest that positive-feedback circuits may have evolved not only for signal amplification but also for robustly generating bimodality by decoupling expression fluctuations (noise) from mean expression levels.« less
Determinants of cell-to-cell variability in protein kinase signaling.
Jeschke, Matthias; Baumgärtner, Stephan; Legewie, Stefan
2013-01-01
Cells reliably sense environmental changes despite internal and external fluctuations, but the mechanisms underlying robustness remain unclear. We analyzed how fluctuations in signaling protein concentrations give rise to cell-to-cell variability in protein kinase signaling using analytical theory and numerical simulations. We characterized the dose-response behavior of signaling cascades by calculating the stimulus level at which a pathway responds ('pathway sensitivity') and the maximal activation level upon strong stimulation. Minimal kinase cascades with gradual dose-response behavior show strong variability, because the pathway sensitivity and the maximal activation level cannot be simultaneously invariant. Negative feedback regulation resolves this trade-off and coordinately reduces fluctuations in the pathway sensitivity and maximal activation. Feedbacks acting at different levels in the cascade control different aspects of the dose-response curve, thereby synergistically reducing the variability. We also investigated more complex, ultrasensitive signaling cascades capable of switch-like decision making, and found that these can be inherently robust to protein concentration fluctuations. We describe how the cell-to-cell variability of ultrasensitive signaling systems can be actively regulated, e.g., by altering the expression of phosphatase(s) or by feedback/feedforward loops. Our calculations reveal that slow transcriptional negative feedback loops allow for variability suppression while maintaining switch-like decision making. Taken together, we describe design principles of signaling cascades that promote robustness. Our results may explain why certain signaling cascades like the yeast pheromone pathway show switch-like decision making with little cell-to-cell variability.
Benefits and Limitations of Real Options Analysis for the Practice of River Flood Risk Management
NASA Astrophysics Data System (ADS)
Kind, Jarl M.; Baayen, Jorn H.; Botzen, W. J. Wouter
2018-04-01
Decisions on long-lived flood risk management (FRM) investments are complex because the future is uncertain. Flexibility and robustness can be used to deal with future uncertainty. Real options analysis (ROA) provides a welfare-economics framework to design and evaluate robust and flexible FRM strategies under risk or uncertainty. Although its potential benefits are large, ROA is hardly used in todays' FRM practice. In this paper, we investigate benefits and limitations of a ROA, by applying it to a realistic FRM case study for an entire river branch. We illustrate how ROA identifies optimal short-term investments and values future options. We develop robust dike investment strategies and value the flexibility offered by additional room for the river measures. We benchmark the results of ROA against those of a standard cost-benefit analysis and show ROA's potential policy implications. The ROA for a realistic case requires a high level of geographical detail, a large ensemble of scenarios, and the inclusion of stakeholders' preferences. We found several limitations of applying the ROA. It is complex. In particular, relevant sources of uncertainty need to be recognized, quantified, integrated, and discretized in scenarios, requiring subjective choices and expert judgment. Decision trees have to be generated and stakeholders' preferences have to be translated into decision rules. On basis of this study, we give general recommendations to use high discharge scenarios for the design of measures with high fixed costs and few alternatives. Lower scenarios may be used when alternatives offer future flexibility.
Robust evaluation of time series classification algorithms for structural health monitoring
NASA Astrophysics Data System (ADS)
Harvey, Dustin Y.; Worden, Keith; Todd, Michael D.
2014-03-01
Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and mechanical infrastructure through analysis of structural response measurements. The supervised learning methodology for data-driven SHM involves computation of low-dimensional, damage-sensitive features from raw measurement data that are then used in conjunction with machine learning algorithms to detect, classify, and quantify damage states. However, these systems often suffer from performance degradation in real-world applications due to varying operational and environmental conditions. Probabilistic approaches to robust SHM system design suffer from incomplete knowledge of all conditions a system will experience over its lifetime. Info-gap decision theory enables nonprobabilistic evaluation of the robustness of competing models and systems in a variety of decision making applications. Previous work employed info-gap models to handle feature uncertainty when selecting various components of a supervised learning system, namely features from a pre-selected family and classifiers. In this work, the info-gap framework is extended to robust feature design and classifier selection for general time series classification through an efficient, interval arithmetic implementation of an info-gap data model. Experimental results are presented for a damage type classification problem on a ball bearing in a rotating machine. The info-gap framework in conjunction with an evolutionary feature design system allows for fully automated design of a time series classifier to meet performance requirements under maximum allowable uncertainty.
Semantic Clinical Guideline Documents
Eriksson, Henrik; Tu, Samson W.; Musen, Mark
2005-01-01
Decision-support systems based on clinical practice guidelines can support physicians and other health-care personnel in the process of following best practice consistently. A knowledge-based approach to represent guidelines makes it possible to encode computer-interpretable guidelines in a formal manner, perform consistency checks, and use the guidelines directly in decision-support systems. Decision-support authors and guideline users require guidelines in human-readable formats in addition to computer-interpretable ones (e.g., for guideline review and quality assurance). We propose a new document-oriented information architecture that combines knowledge-representation models with electronic and paper documents. The approach integrates decision-support modes with standard document formats to create a combined clinical-guideline model that supports on-line viewing, printing, and decision support. PMID:16779037
DesAutels, Spencer J; Fox, Zachary E; Giuse, Dario A; Williams, Annette M; Kou, Qing-Hua; Weitkamp, Asli; Neal R, Patel; Bettinsoli Giuse, Nunzia
2016-01-01
Clinical decision support (CDS) knowledge, embedded over time in mature medical systems, presents an interesting and complex opportunity for information organization, maintenance, and reuse. To have a holistic view of all decision support requires an in-depth understanding of each clinical system as well as expert knowledge of the latest evidence. This approach to clinical decision support presents an opportunity to unify and externalize the knowledge within rules-based decision support. Driven by an institutional need to prioritize decision support content for migration to new clinical systems, the Center for Knowledge Management and Health Information Technology teams applied their unique expertise to extract content from individual systems, organize it through a single extensible schema, and present it for discovery and reuse through a newly created Clinical Support Knowledge Acquisition and Archival Tool (CS-KAAT). CS-KAAT can build and maintain the underlying knowledge infrastructure needed by clinical systems.
Medication-related clinical decision support in computerized provider order entry systems: a review.
Kuperman, Gilad J; Bobb, Anne; Payne, Thomas H; Avery, Anthony J; Gandhi, Tejal K; Burns, Gerard; Classen, David C; Bates, David W
2007-01-01
While medications can improve patients' health, the process of prescribing them is complex and error prone, and medication errors cause many preventable injuries. Computer provider order entry (CPOE) with clinical decision support (CDS), can improve patient safety and lower medication-related costs. To realize the medication-related benefits of CDS within CPOE, one must overcome significant challenges. Healthcare organizations implementing CPOE must understand what classes of CDS their CPOE systems can support, assure that clinical knowledge underlying their CDS systems is reasonable, and appropriately represent electronic patient data. These issues often influence to what extent an institution will succeed with its CPOE implementation and achieve its desired goals. Medication-related decision support is probably best introduced into healthcare organizations in two stages, basic and advanced. Basic decision support includes drug-allergy checking, basic dosing guidance, formulary decision support, duplicate therapy checking, and drug-drug interaction checking. Advanced decision support includes dosing support for renal insufficiency and geriatric patients, guidance for medication-related laboratory testing, drug-pregnancy checking, and drug-disease contraindication checking. In this paper, the authors outline some of the challenges associated with both basic and advanced decision support and discuss how those challenges might be addressed. The authors conclude with summary recommendations for delivering effective medication-related clinical decision support addressed to healthcare organizations, application and knowledge base vendors, policy makers, and researchers.
Research on web-based decision support system for sports competitions
NASA Astrophysics Data System (ADS)
Huo, Hanqiang
2010-07-01
This paper describes the system architecture and implementation technology of the decision support system for sports competitions, discusses the design of decision-making modules, management modules and security of the system, and proposes the development idea of building a web-based decision support system for sports competitions.
Model robustness as a confirmatory virtue: The case of climate science.
Lloyd, Elisabeth A
2015-02-01
I propose a distinct type of robustness, which I suggest can support a confirmatory role in scientific reasoning, contrary to the usual philosophical claims. In model robustness, repeated production of the empirically successful model prediction or retrodiction against a background of independently-supported and varying model constructions, within a group of models containing a shared causal factor, may suggest how confident we can be in the causal factor and predictions/retrodictions, especially once supported by a variety of evidence framework. I present climate models of greenhouse gas global warming of the 20th Century as an example, and emphasize climate scientists' discussions of robust models and causal aspects. The account is intended as applicable to a broad array of sciences that use complex modeling techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.
Optimization and resilience in natural resources management
Williams, Byron K.; Johnson, Fred A.
2015-01-01
We consider the putative tradeoff between optimization and resilience in the management of natural resources, using a framework that incorporates different sources of uncertainty that are common in natural resources management. We address one-time decisions, and then expand the decision context to the more complex problem of iterative decision making. For both cases we focus on two key sources of uncertainty: partial observability of system state and uncertainty as to system dynamics. Optimal management strategies will vary considerably depending on the timeframe being considered and the amount and quality of information that is available to characterize system features and project the consequences of potential decisions. But in all cases an optimal decision making framework, if properly identified and focused, can be useful in recognizing sound decisions. We argue that under the conditions of deep uncertainty that characterize many resource systems, an optimal decision process that focuses on robustness does not automatically induce a loss of resilience.
Integrating Climate and Risk-Informed Science to Support Critical Decisions
None
2018-01-16
The PNNL Environmental Health and Remediation Sector stewards several decision support capabilities to integrate climate- and risk-informed science to support critical decisions. Utilizing our expertise in risk and decision analysis, integrated Earth systems modeling, and remote sensing and geoinformatics, PNNL is influencing the way science informs high level decisions at national, regional and local scales to protect and preserve our most critical assets.
Integrating Climate and Risk-Informed Science to Support Critical Decisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-07-27
The PNNL Environmental Health and Remediation Sector stewards several decision support capabilities to integrate climate- and risk-informed science to support critical decisions. Utilizing our expertise in risk and decision analysis, integrated Earth systems modeling, and remote sensing and geoinformatics, PNNL is influencing the way science informs high level decisions at national, regional and local scales to protect and preserve our most critical assets.
Amland, Robert C; Lyons, Jason J; Greene, Tracy L; Haley, James M
2015-10-01
To examine the diagnostic accuracy of a two-stage clinical decision support system for early recognition and stratification of patients with sepsis. Observational cohort study employing a two-stage sepsis clinical decision support to recognise and stratify patients with sepsis. The stage one component was comprised of a cloud-based clinical decision support with 24/7 surveillance to detect patients at risk of sepsis. The cloud-based clinical decision support delivered notifications to the patients' designated nurse, who then electronically contacted a provider. The second stage component comprised a sepsis screening and stratification form integrated into the patient electronic health record, essentially an evidence-based decision aid, used by providers to assess patients at bedside. Urban, 284 acute bed community hospital in the USA; 16,000 hospitalisations annually. Data on 2620 adult patients were collected retrospectively in 2014 after the clinical decision support was implemented. 'Suspected infection' was the established gold standard to assess clinical decision support clinimetric performance. A sepsis alert activated on 417 (16%) of 2620 adult patients hospitalised. Applying 'suspected infection' as standard, the patient population characteristics showed 72% sensitivity and 73% positive predictive value. A postalert screening conducted by providers at bedside of 417 patients achieved 81% sensitivity and 94% positive predictive value. Providers documented against 89% patients with an alert activated by clinical decision support and completed 75% of bedside screening and stratification of patients with sepsis within one hour from notification. A clinical decision support binary alarm system with cross-checking functionality improves early recognition and facilitates stratification of patients with sepsis.
NASA Astrophysics Data System (ADS)
Hall, Justin R.; Hastrup, Rolf C.
The United States Space Exploration Initiative (SEI) calls for the charting of a new and evolving manned course to the Moon, Mars, and beyond. This paper discusses key challenges in providing effective deep space telecommunications, navigation, and information management (TNIM) architectures and designs for Mars exploration support. The fundamental objectives are to provide the mission with means to monitor and control mission elements, acquire engineering, science, and navigation data, compute state vectors and navigate, and move these data efficiently and automatically between mission nodes for timely analysis and decision-making. Although these objectives do not depart, fundamentally, from those evolved over the past 30 years in supporting deep space robotic exploration, there are several new issues. This paper focuses on summarizing new requirements, identifying related issues and challenges, responding with concepts and strategies which are enabling, and, finally, describing candidate architectures, and driving technologies. The design challenges include the attainment of: 1) manageable interfaces in a large distributed system, 2) highly unattended operations for in-situ Mars telecommunications and navigation functions, 3) robust connectivity for manned and robotic links, 4) information management for efficient and reliable interchange of data between mission nodes, and 5) an adequate Mars-Earth data rate.
Integrated Model-Based Decisions for Water, Energy and Food Nexus
NASA Astrophysics Data System (ADS)
Zhang, X.; Vesselinov, V. V.
2015-12-01
Energy, water and food are critical resources for sustaining social development and human lives; human beings cannot survive without any one of them. Energy crises, water shortages and food security are crucial worldwide problems. The nexus of energy, water and food has received more and more attention in the past decade. Energy, water and food are closely interrelated; water is required in energy development such as electricity generation; energy is indispensable for collecting, treating, and transporting water; both energy and water are crucial inputs for food production. Changes of either of them can lead to substantial impacts on other two resources, and vice versa. Effective decisions should be based on thorough research efforts for better understanding of their complex nexus. Rapid increase of population has significantly intensified the pressures on energy, water and food. Addressing and quantifying their interactive relationships are important for making robust and cost-effective strategies for managing the three resources simultaneously. In addition, greenhouse gases (GHGs) are emitted in energy, water, food production, consequently making contributions to growing climate change. Reflecting environmental impacts of GHGs is also desired (especially, on the quality and quantity of fresh water resources). Thus, a socio-economic model is developed in this study to quantitatively address the complex connections among energy, water and food production. A synthetic problem is proposed to demonstrate the model's applicability and feasibility. Preliminary results related to integrated decisions on energy supply management, water use planning, electricity generation planning, energy facility capacity expansion, food production, and associated GHG emission control are generated for providing cost-effective supports for decision makers.
Adolescent neural response to reward is related to participant sex and task motivation.
Alarcón, Gabriela; Cservenka, Anita; Nagel, Bonnie J
2017-02-01
Risky decision making is prominent during adolescence, perhaps contributed to by heightened sensation seeking and ongoing maturation of reward and dopamine systems in the brain, which are, in part, modulated by sex hormones. In this study, we examined sex differences in the neural substrates of reward sensitivity during a risky decision-making task and hypothesized that compared with girls, boys would show heightened brain activation in reward-relevant regions, particularly the nucleus accumbens, during reward receipt. Further, we hypothesized that testosterone and estradiol levels would mediate this sex difference. Moreover, we predicted boys would make more risky choices on the task. While boys showed increased nucleus accumbens blood oxygen level-dependent (BOLD) response relative to girls, sex hormones did not mediate this effect. As predicted, boys made a higher percentage of risky decisions during the task. Interestingly, boys also self-reported more motivation to perform well and earn money on the task, while girls self-reported higher state anxiety prior to the scan session. Motivation to earn money partially mediated the effect of sex on nucleus accumbens activity during reward. Previous research shows that increased motivation and salience of reinforcers is linked with more robust striatal BOLD response, therefore psychosocial factors, in addition to sex, may play an important role in reward sensitivity. Elucidating neurobiological mechanisms that support adolescent sex differences in risky decision making has important implications for understanding individual differences that lead to advantageous and adverse behaviors that affect health outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Kathleen M; Van Riemsdijk, Dr. Micheline
This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decisionmaking process. Asmore » the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.« less
Network-centric decision architecture for financial or 1/f data models
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Handley, James W.; Massey, Stoney; Case, Carl T.; Songy, Claude G.
2002-12-01
This paper presents a decision architecture algorithm for training neural equation based networks to make autonomous multi-goal oriented, multi-class decisions. These architectures make decisions based on their individual goals and draw from the same network centric feature set. Traditionally, these architectures are comprised of neural networks that offer marginal performance due to lack of convergence of the training set. We present an approach for autonomously extracting sample points as I/O exemplars for generation of multi-branch, multi-node decision architectures populated by adaptively derived neural equations. To test the robustness of this architecture, open source data sets in the form of financial time series were used, requiring a three-class decision space analogous to the lethal, non-lethal, and clutter discrimination problem. This algorithm and the results of its application are presented here.
MacDonald-Wilson, Kim L; Hutchison, Shari L; Karpov, Irina; Wittman, Paul; Deegan, Patricia E
2017-04-01
Individual involvement in treatment decisions with providers, often through the use of decision support aids, improves quality of care. This study investigates an implementation strategy to bring decision support to community mental health centers (CMHC). Fifty-two CMHCs implemented a decision support toolkit supported by a 12-month learning collaborative using the Breakthrough Series model. Participation in learning collaborative activities was high, indicating feasibility of the implementation model. Progress by staff in meeting process aims around utilization of components of the toolkit improved significantly over time (p < .0001). Survey responses by individuals in service corroborate successful implementation. Community-based providers were able to successfully implement decision support in mental health services as evidenced by improved process outcomes and sustained practices over 1 year through the structure of the learning collaborative model.
A method for scenario-based risk assessment for robust aerospace systems
NASA Astrophysics Data System (ADS)
Thomas, Victoria Katherine
In years past, aircraft conceptual design centered around creating a feasible aircraft that could be built and could fly the required missions. More recently, aircraft viability entered into conceptual design, allowing that the product's potential to be profitable should also be examined early in the design process. While examining an aerospace system's feasibility and viability early in the design process is extremely important, it is also important to examine system risk. In traditional aerospace systems risk analysis, risk is examined from the perspective of performance, schedule, and cost. Recently, safety and reliability analysis have been brought forward in the design process to also be examined during late conceptual and early preliminary design. While these analyses work as designed, existing risk analysis methods and techniques are not designed to examine an aerospace system's external operating environment and the risks present there. A new method has been developed here to examine, during the early part of concept design, the risk associated with not meeting assumptions about the system's external operating environment. The risks are examined in five categories: employment, culture, government and politics, economics, and technology. The risks are examined over a long time-period, up to the system's entire life cycle. The method consists of eight steps over three focus areas. The first focus area is Problem Setup. During problem setup, the problem is defined and understood to the best of the decision maker's ability. There are four steps in this area, in the following order: Establish the Need, Scenario Development, Identify Solution Alternatives, and Uncertainty and Risk Identification. There is significant iteration between steps two through four. Focus area two is Modeling and Simulation. In this area the solution alternatives and risks are modeled, and a numerical value for risk is calculated. A risk mitigation model is also created. The four steps involved in completing the modeling and simulation are: Alternative Solution Modeling, Uncertainty Quantification, Risk Assessment, and Risk Mitigation. Focus area three consists of Decision Support. In this area a decision support interface is created that allows for game playing between solution alternatives and risk mitigation. A multi-attribute decision making process is also implemented to aid in decision making. A demonstration problem inspired by Airbus' mid 1980s decision to break into the widebody long-range market was developed to illustrate the use of this method. The results showed that the method is able to capture additional types of risk than previous analysis methods, particularly at the early stages of aircraft design. It was also shown that the method can be used to help create a system that is robust to external environmental factors. The addition of an external environment risk analysis in the early stages of conceptual design can add another dimension to the analysis of feasibility and viability. The ability to take risk into account during the early stages of the design process can allow for the elimination of potentially feasible and viable but too-risky alternatives. The addition of a scenario-based analysis instead of a traditional probabilistic analysis enabled uncertainty to be effectively bound and examined over a variety of potential futures instead of only a single future. There is also potential for a product to be groomed for a specific future that one believes is likely to happen, or for a product to be steered during design as the future unfolds.
A workshop will be conducted to demonstrate and focus on two decision support tools developed at EPA/ORD: 1. Community-scale MARKAL model: an energy-water technology evaluation tool and 2. Municipal Solid Waste Decision Support Tool (MSW DST). The Workshop will be part of Southea...
DOT National Transportation Integrated Search
2000-07-14
This is a draft document for the Surface Transportation Weather Decision Support Requirements (STWDSR) project. The STWDSR project is being conducted for the FHWAs Office of Transportation Operations (HOTO) Road Weather Management Program by Mitre...
2005-04-01
RTO-MP-SAS-055 4 - 1 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Analytical Support Capabilities of Turkish General Staff Scientific...the end failed to achieve anything commensurate with the effort. The analytical support capabilities of Turkish Scientific Decision Support Center to...percent of the İpekkan, Z.; Özkil, A. (2005) Analytical Support Capabilities of Turkish General Staff Scientific Decision Support Centre (SDSC) to
Baudoin, D; Krebs, S
2013-04-01
This article describes how a mobile team of palliative care and a department of neurology learned to cope with many complex end-of-life situations. After a brief introduction to inter-team cooperation, clinical work of the mobile team with patients and families and its cooperation with the neurology team are presented. The specificity of supportive care in neurology is also analyzed. Two interdisciplinary and multi-professional tools - the Palliative Care Resource Group and the Ethics Consultation Group - are described, with their activities and their goals. The Palliative Care Resource Group is a specific entity whose identity lies at the crossroads between commonly recognized organizational units: clinic staff, clinical practice, ethical or organizational analysis groups (Balint, 1960), discussion groups (Rusznievski, 1999), training groups. It has several objectives: 1) create a robust conceptual environment enabling the pursuit of palliative care practices without relying on the empty paradigm of stereotypical actions; if suffering cannot be avoided, psychic development and transformation can be promoted; 2) attempt to prevent caregiver burnout; 3) help support and strengthen the collective dimension of the team, learning a mode of care which goes beyond the execution of coded actions; 4) enhance the primary dimension of care, i.e. taking care, especially in clinical situations where conventional wisdom declares that "nothing more can be done."; 5) promote group work so new ideas arising from the different teams influence the behavior of all caregivers. The Ethics Consultation Group organizes its work in several steps. The first step is discernment, clearly identifying the question at hand with the clinical staff. This is followed by a consultation between the clinical team, the patient, the family and the referring physician to arrive at a motivated decision, respecting the competent patient's opinion. The final step is an evaluation of the decision and its consequences. The Ethical Consultation Group, which meets at a scheduled time at a set place, unites the different members of the neurology and palliative care teams who come to a common decision. These specific moments have an important impact on team cohesion, creating a common culture and a convergence of individual representations about making difficult decisions. Specific clinical cases are described to illustrate some of the difficulties encountered in palliative care decision-making. These cases provide insight about the decision to create a palliative care gastrostomy for a man with progressive supranuclear palsy, the suffering experienced by a medical team caring for a young woman with Creutzfeldt-Jacob encephalopathy, or a woman's experience with the post-stroke life-and-death seesaw. Theoretical divisions, illustrated with clinical stories, can be useful touchstones for neurology teams. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Bi-Level Decision Making for Supporting Energy and Water Nexus
NASA Astrophysics Data System (ADS)
Zhang, X.; Vesselinov, V. V.
2016-12-01
The inseparable relationship between energy production and water resources has led to the emerging energy-water nexus concept, which provides a means for integrated management and decision making of these two critical resources. However, the energy-water nexus frequently involves decision makers with different and competing management objectives. Furthermore, there is a challenge that decision makers and stakeholders might be making decisions sequentially from a higher level to a lower level, instead of at the same decision level, whereby the objective of a decision maker at a higher level should be satisfied first. In this study, a bi-level decision model is advanced to handle such decision-making situations for managing the energy-water nexus. The work represents a unique contribution to developing an integrated decision-support framework/tool to quantify and analyze the tradeoffs between the two-level energy-water nexus decision makers. Here, plans for electricity generation, fuel supply, water supply, capacity expansion of the power plants and environmental impacts are optimized to provide effective decision support. The developed decision-support framework is implemented in Julia (a high-level, high-performance dynamic programming language for technical computing) and is a part of the MADS (Model Analyses & Decision Support) framework (http://mads.lanl.gov). To demonstrate the capabilities of the developed methodology, a series of analyses are performed for synthetic problems consistent with actual real-world energy-water nexus management problems.
Development of transportation asset management decision support tools : final report.
DOT National Transportation Integrated Search
2017-08-09
This study developed a web-based prototype decision support platform to demonstrate the benefits of transportation asset management in monitoring asset performance, supporting asset funding decisions, planning budget tradeoffs, and optimizing resourc...
Assessing land-use impacts on biodiversity using an expert systems tool
Crist, P.J.; Kohley, T.W.; Oakleaf, J.
2000-01-01
Habitat alteration, in the form of land-use development, is a leading cause of biodiversity loss in the U.S. and elsewhere. Although statutes in the U.S. may require consideration of biodiversity in local land-use planning and regulation, local governments lack the data, resources, and expertise to routinely consider biotic impacts that result from permitted land uses. We hypothesized that decision support systems could aid solution of this problem. We developed a pilot biodiversity expert systems tool (BEST) to test that hypothesis and learn what additional scientific and technological advancements are required for broad implementation of such a system. BEST uses data from the U.S. Geological Survey's Gap Analysis Program (GAP) and other data in a desktop GIS environment. The system provides predictions of conflict between proposed land uses and biotic elements and is intended for use at the start of the development review process. Key challenges were the development of categorization systems that relate named land-use types to ecological impacts, and relate sensitivities of biota to ecological impact levels. Although the advent of GAP and sophisticated desktop GIS make such a system feasible for broad implementation, considerable ongoing research is required to make the results of such a system scientifically sound, informative, and reliable for the regulatory process. We define a role for local government involvement in biodiversity impact assessment, the need for a biodiversity decision support system, the development of a prototype system, and scientific needs for broad implementation of a robust and reliable system.
A Decision Support Information System for Urban Landscape Management Using Thermal Infrared Data
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Luvall, Jeffrey C.; Rickman, Douglas L.; Estes, Maurice G., Jr.; Laymon, Charles A.; Howell, Burgess F.
2000-01-01
In this paper, we describe efforts to use remote sensing data within the purview of an information support system, to assess urban thermal landscape characteristics as a means for developing more robust models of the Urban Heat Island (UHI) effect. We also present a rationale on how we have successfully translated the results from the study of urban thermal heating and cooling regimes as identified from remote sensing data, to decision-makers, planners, government officials, and the public at large in several US cities to facilitate better understanding of how the UHI affects air quality. Additionally, through the assessment of the spatial distribution of urban thermal landscape characteristics using remote sensing data, it is possible to develop strategies to mitigate the UHI that hopefully will in turn, drive down ozone levels and improve overall urban air quality. Four US cities have been the foci for intensive analysis as part of our studies: Atlanta, GA, Baton Rouge, LA, Salt Lake City, UT, and Sacramento, CA. The remote sensing data for each of these cities has been used to generate a number of products for use by "stakeholder" working groups to convey information on what the effects are of the UHI and what measures can be taken to mitigate it. In turn, these data products are used to both educate and inform policy-makers, planners, and the general public about what kinds of UHI mitigation strategies are available.
NASA Astrophysics Data System (ADS)
Engelhardt, Sandy; Kolb, Silvio; De Simone, Raffaele; Karck, Matthias; Meinzer, Hans-Peter; Wolf, Ivo
2016-03-01
Mitral valve annuloplasty describes a surgical procedure where an artificial prosthesis is sutured onto the anatomical structure of the mitral annulus to re-establish the valve's functionality. Choosing an appropriate commercially available ring size and shape is a difficult decision the surgeon has to make intraoperatively according to his experience. In our augmented-reality framework, digitalized ring models are superimposed onto endoscopic image streams without using any additional hardware. To place the ring model on the proper position within the endoscopic image plane, a pose estimation is performed that depends on the localization of sutures placed by the surgeon around the leaflet origins and punctured through the stiffer structure of the annulus. In this work, the tissue penetration points are tracked by the real-time capable Lucas Kanade optical flow algorithm. The accuracy and robustness of this tracking algorithm is investigated with respect to the question whether outliers influence the subsequent pose estimation. Our results suggest that optical flow is very stable for a variety of different endoscopic scenes and tracking errors do not affect the position of the superimposed virtual objects in the scene, making this approach a viable candidate for annuloplasty augmented reality-enhanced decision support.
Wireless structural monitoring for homeland security applications
NASA Astrophysics Data System (ADS)
Kiremidjian, Garo K.; Kiremidjian, Anne S.; Lynch, Jerome P.
2004-07-01
This paper addresses the development of a robust, low-cost, low power, and high performance autonomous wireless monitoring system for civil assets such as large facilities, new construction, bridges, dams, commercial buildings, etc. The role of the system is to identify the onset, development, location and severity of structural vulnerability and damage. The proposed system represents an enabling infrastructure for addressing structural vulnerabilities specifically associated with homeland security. The system concept is based on dense networks of "intelligent" wireless sensing units. The fundamental properties of a wireless sensing unit include: (a) interfaces to multiple sensors for measuring structural and environmental data (such as acceleration, displacements, pressure, strain, material degradation, temperature, gas agents, biological agents, humidity, corrosion, etc.); (b) processing of sensor data with embedded algorithms for assessing damage and environmental conditions; (c) peer-to-peer wireless communications for information exchange among units(thus enabling joint "intelligent" processing coordination) and storage of data and processed information in servers for information fusion; (d) ultra low power operation; (e) cost-effectiveness and compact size through the use of low-cost small-size off-the-shelf components. An integral component of the overall system concept is a decision support environment for interpretation and dissemination of information to various decision makers.
A practical approach to programmatic assessment design.
Timmerman, A A; Dijkstra, J
2017-12-01
Assessment of complex tasks integrating several competencies calls for a programmatic design approach. As single instruments do not provide the information required to reach a robust judgment of integral performance, 73 guidelines for programmatic assessment design were developed. When simultaneously applying these interrelated guidelines, it is challenging to keep a clear overview of all assessment activities. The goal of this study was to provide practical support for applying a programmatic approach to assessment design, not bound to any specific educational paradigm. The guidelines were first applied in a postgraduate medical training setting, and a process analysis was conducted. This resulted in the identification of four steps for programmatic assessment design: evaluation, contextualisation, prioritisation and justification. Firstly, the (re)design process starts with sufficiently detailing the assessment environment and formulating the principal purpose. Key stakeholders with sufficient (assessment) expertise need to be involved in the analysis of strengths and weaknesses and identification of developmental needs. Central governance is essential to balance efforts and stakes with the principal purpose and decide on prioritisation of design decisions and selection of relevant guidelines. Finally, justification of assessment design decisions, quality assurance and external accountability close the loop, to ensure sound underpinning and continuous improvement of the assessment programme.
Nonlinear detection for a high rate extended binary phase shift keying system.
Chen, Xian-Qing; Wu, Le-Nan
2013-03-28
The algorithm and the results of a nonlinear detector using a machine learning technique called support vector machine (SVM) on an efficient modulation system with high data rate and low energy consumption is presented in this paper. Simulation results showed that the performance achieved by the SVM detector is comparable to that of a conventional threshold decision (TD) detector. The two detectors detect the received signals together with the special impacting filter (SIF) that can improve the energy utilization efficiency. However, unlike the TD detector, the SVM detector concentrates not only on reducing the BER of the detector, but also on providing accurate posterior probability estimates (PPEs), which can be used as soft-inputs of the LDPC decoder. The complexity of this detector is considered in this paper by using four features and simplifying the decision function. In addition, a bandwidth efficient transmission is analyzed with both SVM and TD detector. The SVM detector is more robust to sampling rate than TD detector. We find that the SVM is suitable for extended binary phase shift keying (EBPSK) signal detection and can provide accurate posterior probability for LDPC decoding.
Nonlinear Detection for a High Rate Extended Binary Phase Shift Keying System
Chen, Xian-Qing; Wu, Le-Nan
2013-01-01
The algorithm and the results of a nonlinear detector using a machine learning technique called support vector machine (SVM) on an efficient modulation system with high data rate and low energy consumption is presented in this paper. Simulation results showed that the performance achieved by the SVM detector is comparable to that of a conventional threshold decision (TD) detector. The two detectors detect the received signals together with the special impacting filter (SIF) that can improve the energy utilization efficiency. However, unlike the TD detector, the SVM detector concentrates not only on reducing the BER of the detector, but also on providing accurate posterior probability estimates (PPEs), which can be used as soft-inputs of the LDPC decoder. The complexity of this detector is considered in this paper by using four features and simplifying the decision function. In addition, a bandwidth efficient transmission is analyzed with both SVM and TD detector. The SVM detector is more robust to sampling rate than TD detector. We find that the SVM is suitable for extended binary phase shift keying (EBPSK) signal detection and can provide accurate posterior probability for LDPC decoding. PMID:23539034
Overview of the Smart Network Element Architecture and Recent Innovations
NASA Technical Reports Server (NTRS)
Perotti, Jose M.; Mata, Carlos T.; Oostdyk, Rebecca L.
2008-01-01
In industrial environments, system operators rely on the availability and accuracy of sensors to monitor processes and detect failures of components and/or processes. The sensors must be networked in such a way that their data is reported to a central human interface, where operators are tasked with making real-time decisions based on the state of the sensors and the components that are being monitored. Incorporating health management functions at this central location aids the operator by automating the decision-making process to suggest, and sometimes perform, the action required by current operating conditions. Integrated Systems Health Management (ISHM) aims to incorporate data from many sources, including real-time and historical data and user input, and extract information and knowledge from that data to diagnose failures and predict future failures of the system. By distributing health management processing to lower levels of the architecture, there is less bandwidth required for ISHM, enhanced data fusion, make systems and processes more robust, and improved resolution for the detection and isolation of failures in a system, subsystem, component, or process. The Smart Network Element (SNE) has been developed at NASA Kennedy Space Center to perform intelligent functions at sensors and actuators' level in support of ISHM.
Building clinical networks: a developmental evaluation framework.
Carswell, Peter; Manning, Benjamin; Long, Janet; Braithwaite, Jeffrey
2014-05-01
Clinical networks have been designed as a cross-organisational mechanism to plan and deliver health services. With recent concerns about the effectiveness of these structures, it is timely to consider an evidence-informed approach for how they can be developed and evaluated. To document an evaluation framework for clinical networks by drawing on the network evaluation literature and a 5-year study of clinical networks. We searched literature in three domains: network evaluation, factors that aid or inhibit network development, and on robust methods to measure network characteristics. This material was used to build a framework required for effective developmental evaluation. The framework's architecture identifies three stages of clinical network development; partner selection, network design and network management. Within each stage is evidence about factors that act as facilitators and barriers to network growth. These factors can be used to measure progress via appropriate methods and tools. The framework can provide for network growth and support informed decisions about progress. For the first time in one place a framework incorporating rigorous methods and tools can identify factors known to affect the development of clinical networks. The target user group is internal stakeholders who need to conduct developmental evaluation to inform key decisions along their network's developmental pathway.
Tompson, Steven; Chua, Hannah Faye; Kitayama, Shinobu
2016-11-01
Prior research shows that after making a choice, decision makers shift their attitudes in a choice-congruous direction. Although this post-choice attitude change effect is robust, the neural mechanisms underlying it are poorly understood. Here, we tested the hypothesis that decision makers elaborate on their choice in reference to self-knowledge to justify the choice they have made. This self-referential processing of the choice is thought to play a pivotal role in the post-choice attitude change. Twenty-four young American adults made a series of choices. They also rated their attitudes toward the choice options before and after the choices. In support of the current hypothesis, we found that changes in functional connectivity between two putative self-regions (medial prefrontal cortex and posterior cingulate cortex/precuneus]) during the post-choice (vs. pre-choice) rating of the chosen options predicted the post-choice shift of the attitudes toward the chosen options. This finding is the first to suggest that cognitive integration of various self-relevant cognitions is instrumental in fostering post-choice attitude change. Hum Brain Mapp 37:3810-3820, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Review of FEWS NET Biophysical Monitoring Requirements
NASA Technical Reports Server (NTRS)
Ross, K. W.; Brown, Molly E.; Verdin, J.; Underwood, L. W.
2009-01-01
The Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to famine and food insecurity. FEWS NET transforms satellite remote sensing data into rainfall and vegetation information that can be used by these decision makers. The National Aeronautics and Space Administration has recently funded activities to enhance remote sensing inputs to FEWS NET. To elicit Earth observation requirements, a professional review questionnaire was disseminated to FEWS NET expert end-users: it focused upon operational requirements to determine additional useful remote sensing data and; subsequently, beneficial FEWS NET biophysical supplementary inputs. The review was completed by over 40 experts from around the world, enabling a robust set of professional perspectives to be gathered and analyzed rapidly. Reviewers were asked to evaluate the relative importance of environmental variables and spatio-temporal requirements for Earth science data products, in particular for rainfall and vegetation products. The results showed that spatio-temporal resolution requirements are complex and need to vary according to place, time, and hazard: that high resolution remote sensing products continue to be in demand, and that rainfall and vegetation products were valued as data that provide actionable food security information.
Modifications and integration of the electronic tracking board in a pediatric emergency department.
Dexheimer, Judith W; Kennebeck, Stephanie
2013-07-01
Electronic health records (EHRs) are used for data storage; provider, laboratory, and patient communication; clinical decision support; procedure and medication orders; and decision support alerts. Clinical decision support is part of any EHR and is designed to help providers make better decisions. The emergency department (ED) poses a unique environment to the use of EHRs and clinical decision support. Used effectively, computerized tracking boards can help improve flow, communication, and the dissemination of pertinent visit information between providers and other departments in a busy ED. We discuss the unique modifications and decisions made in the implementation of an EHR and computerized tracking board in a pediatric ED. We discuss the changing views based on provider roles, customization to the user interface including the layout and colors, decision support, tracking board best practices collected from other institutions and colleagues, and a case study of using reminders on the electronic tracking board to drive pain reassessments.
Decision support systems for ecosystem management: An evaluation of existing systems
H. Todd Mowrer; Klaus Barber; Joe Campbell; Nick Crookston; Cathy Dahms; John Day; Jim Laacke; Jim Merzenich; Steve Mighton; Mike Rauscher; Rick Sojda; Joyce Thompson; Peter Trenchi; Mark Twery
1997-01-01
This report evaluated 24 computer-aided decision support systems (DSS) that can support management decision-making in forest ecosystems. It compares the scope of each system, spatial capabilities, computational methods, development status, input and output requirements, user support availability, and system performance. Questionnaire responses from the DSS developers (...
Wireless Sensor Networks for Ambient Assisted Living
Aquino-Santos, Raúl; Martinez-Castro, Diego; Edwards-Block, Arthur; Murillo-Piedrahita, Andrés Felipe
2013-01-01
This paper introduces wireless sensor networks for Ambient Assisted Living as a proof of concept. Our workgroup has developed an arrhythmia detection algorithm that we evaluate in a closed space using a wireless sensor network to relay the information collected to where the information can be registered, monitored and analyzed to support medical decisions by healthcare providers. The prototype we developed is then evaluated using the TelosB platform. The proposed architecture considers very specific restrictions regarding the use of wireless sensor networks in clinical situations. The seamless integration of the system architecture enables both mobile node and network configuration, thus providing the versatile and robust characteristics necessary for real-time applications in medical situations. Likewise, this system architecture efficiently permits the different components of our proposed platform to interact efficiently within the parameters of this study. PMID:24351665
Robust DEA under discrete uncertain data: a case study of Iranian electricity distribution companies
NASA Astrophysics Data System (ADS)
Hafezalkotob, Ashkan; Haji-Sami, Elham; Omrani, Hashem
2015-06-01
Crisp input and output data are fundamentally indispensable in traditional data envelopment analysis (DEA). However, the real-world problems often deal with imprecise or ambiguous data. In this paper, we propose a novel robust data envelopment model (RDEA) to investigate the efficiencies of decision-making units (DMU) when there are discrete uncertain input and output data. The method is based upon the discrete robust optimization approaches proposed by Mulvey et al. (1995) that utilizes probable scenarios to capture the effect of ambiguous data in the case study. Our primary concern in this research is evaluating electricity distribution companies under uncertainty about input/output data. To illustrate the ability of proposed model, a numerical example of 38 Iranian electricity distribution companies is investigated. There are a large amount ambiguous data about these companies. Some electricity distribution companies may not report clear and real statistics to the government. Thus, it is needed to utilize a prominent approach to deal with this uncertainty. The results reveal that the RDEA model is suitable and reliable for target setting based on decision makers (DM's) preferences when there are uncertain input/output data.
The design of patient decision support interventions: addressing the theory-practice gap.
Elwyn, Glyn; Stiel, Mareike; Durand, Marie-Anne; Boivin, Jacky
2011-08-01
Although an increasing number of decision support interventions for patients (including decision aids) are produced, few make explicit use of theory. We argue the importance of using theory to guide design. The aim of this work was to address this theory-practice gap and to examine how a range of selected decision-making theories could inform the design and evaluation of decision support interventions. We reviewed the decision-making literature and selected relevant theories. We assessed their key principles, theoretical pathways and predictions in order to determine how they could inform the design of two core components of decision support interventions, namely, information and deliberation components and to specify theory-based outcome measures. Eight theories were selected: (1) the expected utility theory; (2) the conflict model of decision making; (3) prospect theory; (4) fuzzy-trace theory; (5) the differentiation and consolidation theory; (6) the ecological rationality theory; (7) the rational-emotional model of decision avoidance; and finally, (8) the Attend, React, Explain, Adapt model of affective forecasting. Some theories have strong relevance to the information design (e.g. prospect theory); some are more relevant to deliberation processes (conflict theory, differentiation theory and ecological validity). None of the theories in isolation was sufficient to inform the design of all the necessary components of decision support interventions. It was also clear that most work in theory-building has focused on explaining or describing how humans think rather than on how tools could be designed to help humans make good decisions. It is not surprising therefore that a large theory-practice gap exists as we consider decision support for patients. There was no relevant theory that integrated all the necessary contributions to the task of making good decisions in collaborative interactions. Initiatives such as the International Patient Decision Aids Standards Collaboration influence standards for the design of decision support interventions. However, this analysis points to the need to undertake more work in providing theoretical foundations for these interventions. © 2010 Blackwell Publishing Ltd.
Advanced decision support for winter road maintenance
DOT National Transportation Integrated Search
2008-01-01
This document provides an overview of the Federal Highway Administration's winter Maintenance Decision Support System (MDSS). The MDSS is a decision support tool that has the ability to provide weather predictions focused toward the road surface. The...
Detroit deicing decision support tool : description, operation, and simulation results
DOT National Transportation Integrated Search
2006-01-01
The John A. Volpe National Transportation Systems Center, sponsored by the National Aeronautics and Space Administration, : developed a deicing decision support tool, for Detroit Metropolitan Wayne County Airport (DTW).1 The deicing decision support ...
Developing a Software for Fuzzy Group Decision Support System: A Case Study
ERIC Educational Resources Information Center
Baba, A. Fevzi; Kuscu, Dincer; Han, Kerem
2009-01-01
The complex nature and uncertain information in social problems required the emergence of fuzzy decision support systems in social areas. In this paper, we developed user-friendly Fuzzy Group Decision Support Systems (FGDSS) software. The software can be used for multi-purpose decision making processes. It helps the users determine the main and…
ERIC Educational Resources Information Center
Shogren, Karrie A.; Wehmeyer, Michael L.; Lassmann, Heather; Forber-Pratt, Anjali J.
2017-01-01
Supported decision making (SDM) has begun to receive significant attention as means to enable people to exercise autonomy and self-determination over decisions about their life. Practice frameworks that can be used to promote the provision of supports for decision making are needed. This paper integrates the literature across intellectual and…
DesAutels, Spencer J.; Fox, Zachary E.; Giuse, Dario A.; Williams, Annette M.; Kou, Qing-hua; Weitkamp, Asli; Neal R, Patel; Bettinsoli Giuse, Nunzia
2016-01-01
Clinical decision support (CDS) knowledge, embedded over time in mature medical systems, presents an interesting and complex opportunity for information organization, maintenance, and reuse. To have a holistic view of all decision support requires an in-depth understanding of each clinical system as well as expert knowledge of the latest evidence. This approach to clinical decision support presents an opportunity to unify and externalize the knowledge within rules-based decision support. Driven by an institutional need to prioritize decision support content for migration to new clinical systems, the Center for Knowledge Management and Health Information Technology teams applied their unique expertise to extract content from individual systems, organize it through a single extensible schema, and present it for discovery and reuse through a newly created Clinical Support Knowledge Acquisition and Archival Tool (CS-KAAT). CS-KAAT can build and maintain the underlying knowledge infrastructure needed by clinical systems. PMID:28269846
Awasthi, Bhuvanesh
2017-01-01
Abstract In this study, we investigated the effect of transcranial alternating current stimulation (tACS) on voluntary risky decision making and executive control in humans. Stimulation was delivered online at 5 Hz (θ), 10 Hz (α), 20 Hz (β), and 40 Hz (γ) on the left and right frontal area while participants performed a modified risky decision-making task. This task allowed participants to voluntarily select between risky and certain decisions associated with potential gains or losses, while simultaneously measuring the cognitive control component (voluntary switching) of decision making. The purpose of this experimental design was to test whether voluntary risky decision making and executive control can be modulated with tACS in a frequency-specific manner. Our results revealed a robust effect of a 20-Hz stimulation over the left prefrontal area that significantly increased voluntary risky decision making, which may suggest a possible link between risky decision making and reward processing, underlined by β-oscillatory activity. PMID:29379865
Yaple, Zachary; Martinez-Saito, Mario; Feurra, Matteo; Shestakova, Anna; Klucharev, Vasily
2017-01-01
In this study, we investigated the effect of transcranial alternating current stimulation (tACS) on voluntary risky decision making and executive control in humans. Stimulation was delivered online at 5 Hz (θ), 10 Hz (α), 20 Hz (β), and 40 Hz (γ) on the left and right frontal area while participants performed a modified risky decision-making task. This task allowed participants to voluntarily select between risky and certain decisions associated with potential gains or losses, while simultaneously measuring the cognitive control component (voluntary switching) of decision making. The purpose of this experimental design was to test whether voluntary risky decision making and executive control can be modulated with tACS in a frequency-specific manner. Our results revealed a robust effect of a 20-Hz stimulation over the left prefrontal area that significantly increased voluntary risky decision making, which may suggest a possible link between risky decision making and reward processing, underlined by β-oscillatory activity.
Fowler, G E; Baker, D M; Lee, M J; Brown, S R
2017-11-01
The internet is becoming an increasingly popular resource to support patient decision-making outside of the clinical encounter. The quality of online health information is variable and largely unregulated. The aim of this study was to assess the quality of online resources to support patient decision-making for full-thickness rectal prolapse surgery. This systematic review was registered on the PROSPERO database (CRD42017058319). Searches were performed on Google and specialist decision aid repositories using a pre-defined search strategy. Sources were analysed according to three measures: (1) their readability using the Flesch-Kincaid Reading Ease score, (2) DISCERN score and (3) International Patient Decision Aids Standards (IPDAS) minimum standards criteria score (IPDASi, v4.0). Overall, 95 sources were from Google and the specialist decision aid repositories. There were 53 duplicates removed, and 18 sources did not meet the pre-defined eligibility criteria, leaving 24 sources included in the full-text analysis. The mean Flesch-Kincaid Reading Ease score was higher than recommended for patient education materials (48.8 ± 15.6, range 25.2-85.3). Overall quality of sources supporting patient decision-making for full-thickness rectal prolapse surgery was poor (median DISCERN score 1/5 ± 1.18, range 1-5). No sources met minimum decision-making standards (median IPDASi score 5/12 ± 2.01, range 1-8). Currently, easily accessible online health information to support patient decision-making for rectal surgery is of poor quality, difficult to read and does not support shared decision-making. It is recommended that professional bodies and medical professionals seek to develop decision aids to support decision-making for full-thickness rectal prolapse surgery.
Gent, David H; De Wolf, Erick; Pethybridge, Sarah J
2011-06-01
Rational management of plant diseases, both economically and environmentally, involves assessing risks and the costs associated with both correct and incorrect tactical management decisions to determine when control measures are warranted. Decision support systems can help to inform users of plant disease risk and thus assist in accurately targeting events critical for management. However, in many instances adoption of these systems for use in routine disease management has been perceived as slow. The under-utilization of some decision support systems is likely due to both technical and perception constraints that have not been addressed adequately during development and implementation phases. Growers' perceptions of risk and their aversion to these perceived risks can be reasons for the "slow" uptake of decision support systems and, more broadly, integrated pest management (IPM). Decision theory provides some tools that may assist in quantifying and incorporating subjective and/or measured probabilities of disease occurrence or crop loss into decision support systems. Incorporation of subjective probabilities into IPM recommendations may be one means to reduce grower uncertainty and improve trust of these systems because management recommendations could be explicitly informed by growers' perceptions of risk and economic utility. Ultimately though, we suggest that an appropriate measure of the value and impact of decision support systems is grower education that enables more skillful and informed management decisions independent of consultation of the support tool outputs.
Efficient robust doubly adaptive regularized regression with applications.
Karunamuni, Rohana J; Kong, Linglong; Tu, Wei
2018-01-01
We consider the problem of estimation and variable selection for general linear regression models. Regularized regression procedures have been widely used for variable selection, but most existing methods perform poorly in the presence of outliers. We construct a new penalized procedure that simultaneously attains full efficiency and maximum robustness. Furthermore, the proposed procedure satisfies the oracle properties. The new procedure is designed to achieve sparse and robust solutions by imposing adaptive weights on both the decision loss and the penalty function. The proposed method of estimation and variable selection attains full efficiency when the model is correct and, at the same time, achieves maximum robustness when outliers are present. We examine the robustness properties using the finite-sample breakdown point and an influence function. We show that the proposed estimator attains the maximum breakdown point. Furthermore, there is no loss in efficiency when there are no outliers or the error distribution is normal. For practical implementation of the proposed method, we present a computational algorithm. We examine the finite-sample and robustness properties using Monte Carlo studies. Two datasets are also analyzed.
2014-01-01
Background Medication non-adherence is prevalent. We assessed the effect of electronic prescribing (e-prescribing) with formulary decision support on preferred formulary tier usage, copayment, and concomitant adherence. Methods We retrospectively analyzed 14,682 initial pharmaceutical claims for angiotensin receptor blocker and inhaled steroid medications among 14,410 patients of 2189 primary care physicians (PCPs) who were offered e-prescribing with formulary decision support, including 297 PCPs who adopted it. Formulary decision support was initially non-interruptive, such that formulary tier symbols were displayed adjacent to medication names. Subsequently, interruptive formulary decision support alerts also interrupted e-prescribing when preferred-tier alternatives were available. A difference in differences design was used to compare the pre-post differences in medication tier for each new prescription attributed to non-adopters, low user (<30% usage rate), and high user PCPs (>30% usage rate). Second, we modeled the effect of formulary tier on prescription copayment. Last, we modeled the effect of copayment on adherence (proportion of days covered) to each new medication. Results Compared with non-adopters, high users of e-prescribing were more likely to prescribe preferred-tier medications (vs. non-preferred tier) when both non-interruptive and interruptive formulary decision support were in place (OR 1.9 [95% CI 1.0-3.4], p = 0.04), but no more likely to prescribe preferred-tier when only non-interruptive formulary decision support was in place (p = 0.90). Preferred-tier claims had only slightly lower mean monthly copayments than non-preferred tier claims (angiotensin receptor blocker: $10.60 versus $11.81, inhaled steroid: $14.86 versus $16.42, p < 0.0001). Medication possession ratio was 8% lower for each $1.00 increase in monthly copayment to the one quarter power (p < 0.0001). However, we detected no significant direct association between formulary decision support usage and adherence. Conclusion Interruptive formulary decision support shifted prescribing toward preferred tiers, but these medications were only minimally less expensive in the studied patient population. In this context, formulary decision support did not significantly increase adherence. To impact cost-related non-adherence, formulary decision support will likely need to be paired with complementary drug benefit design. Formulary decision support should be studied further, with particular attention to its effect on adherence in the setting of different benefit designs. PMID:25167807
Pevnick, Joshua M; Li, Ning; Asch, Steven M; Jackevicius, Cynthia A; Bell, Douglas S
2014-08-28
Medication non-adherence is prevalent. We assessed the effect of electronic prescribing (e-prescribing) with formulary decision support on preferred formulary tier usage, copayment, and concomitant adherence. We retrospectively analyzed 14,682 initial pharmaceutical claims for angiotensin receptor blocker and inhaled steroid medications among 14,410 patients of 2189 primary care physicians (PCPs) who were offered e-prescribing with formulary decision support, including 297 PCPs who adopted it. Formulary decision support was initially non-interruptive, such that formulary tier symbols were displayed adjacent to medication names. Subsequently, interruptive formulary decision support alerts also interrupted e-prescribing when preferred-tier alternatives were available. A difference in differences design was used to compare the pre-post differences in medication tier for each new prescription attributed to non-adopters, low user (<30% usage rate), and high user PCPs (>30% usage rate). Second, we modeled the effect of formulary tier on prescription copayment. Last, we modeled the effect of copayment on adherence (proportion of days covered) to each new medication. Compared with non-adopters, high users of e-prescribing were more likely to prescribe preferred-tier medications (vs. non-preferred tier) when both non-interruptive and interruptive formulary decision support were in place (OR 1.9 [95% CI 1.0-3.4], p = 0.04), but no more likely to prescribe preferred-tier when only non-interruptive formulary decision support was in place (p = 0.90). Preferred-tier claims had only slightly lower mean monthly copayments than non-preferred tier claims (angiotensin receptor blocker: $10.60 versus $11.81, inhaled steroid: $14.86 versus $16.42, p < 0.0001). Medication possession ratio was 8% lower for each $1.00 increase in monthly copayment to the one quarter power (p < 0.0001). However, we detected no significant direct association between formulary decision support usage and adherence. Interruptive formulary decision support shifted prescribing toward preferred tiers, but these medications were only minimally less expensive in the studied patient population. In this context, formulary decision support did not significantly increase adherence. To impact cost-related non-adherence, formulary decision support will likely need to be paired with complementary drug benefit design. Formulary decision support should be studied further, with particular attention to its effect on adherence in the setting of different benefit designs.
Barken, Tina Lien; Thygesen, Elin; Söderhamn, Ulrika
2017-12-28
Telemedicine is changing traditional nursing care, and entails nurses performing advanced and complex care within a new clinical environment, and monitoring patients at a distance. Telemedicine practice requires complex disease management, advocating that the nurses' reasoning and decision-making processes are supported. Computerised decision support systems are being used increasingly to assist reasoning and decision-making in different situations. However, little research has focused on the clinical reasoning of nurses using a computerised decision support system in a telemedicine setting. Therefore, the objective of the study is to explore the process of telemedicine nurses' clinical reasoning when using a computerised decision support system for the management of patients with chronic obstructive pulmonary disease. The factors influencing the reasoning and decision-making processes were investigated. In this ethnographic study, a combination of data collection methods, including participatory observations, the think-aloud technique, and a focus group interview was employed. Collected data were analysed using qualitative content analysis. When telemedicine nurses used a computerised decision support system for the management of patients with complex, unstable chronic obstructive pulmonary disease, two categories emerged: "the process of telemedicine nurses' reasoning to assess health change" and "the influence of the telemedicine setting on nurses' reasoning and decision-making processes". An overall theme, termed "advancing beyond the system", represented the connection between the reasoning processes and the telemedicine work and setting, where being familiar with the patient functioned as a foundation for the nurses' clinical reasoning process. In the telemedicine setting, when supported by a computerised decision support system, nurses' reasoning was enabled by the continuous flow of digital clinical data, regular video-mediated contact and shared decision-making with the patient. These factors fostered an in-depth knowledge of the patients and acted as a foundation for the nurses' reasoning process. Nurses' reasoning frequently advanced beyond the computerised decision support system recommendations. Future studies are warranted to develop more accurate algorithms, increase system maturity, and improve the integration of the digital clinical information with clinical experiences, to support telemedicine nurses' reasoning process.
Tejedor, Alejandro; Longjas, Anthony; Zaliapin, Ilya; Ambroj, Samuel; Foufoula-Georgiou, Efi
2017-08-17
Network robustness against attacks has been widely studied in fields as diverse as the Internet, power grids and human societies. But current definition of robustness is only accounting for half of the story: the connectivity of the nodes unaffected by the attack. Here we propose a new framework to assess network robustness, wherein the connectivity of the affected nodes is also taken into consideration, acknowledging that it plays a crucial role in properly evaluating the overall network robustness in terms of its future recovery from the attack. Specifically, we propose a dual perspective approach wherein at any instant in the network evolution under attack, two distinct networks are defined: (i) the Active Network (AN) composed of the unaffected nodes and (ii) the Idle Network (IN) composed of the affected nodes. The proposed robustness metric considers both the efficiency of destroying the AN and that of building-up the IN. We show, via analysis of well-known prototype networks and real world data, that trade-offs between the efficiency of Active and Idle Network dynamics give rise to surprising robustness crossovers and re-rankings, which can have significant implications for decision making.
Decision Support Systems for Research and Management in Advanced Life Support
NASA Technical Reports Server (NTRS)
Rodriquez, Luis F.
2004-01-01
Decision support systems have been implemented in many applications including strategic planning for battlefield scenarios, corporate decision making for business planning, production planning and control systems, and recommendation generators like those on Amazon.com(Registered TradeMark). Such tools are reviewed for developing a similar tool for NASA's ALS Program. DSS are considered concurrently with the development of the OPIS system, a database designed for chronicling of research and development in ALS. By utilizing the OPIS database, it is anticipated that decision support can be provided to increase the quality of decisions by ALS managers and researchers.
Sinclair, Shane; Hagen, Neil A; Chambers, Carole; Manns, Braden; Simon, Anita; Browman, George P
2008-05-01
Drug decision-makers are involved in developing and implementing policy, procedure and processes to support health resource allocation regarding drug treatment formularies. A variety of approaches to decision-making, including formal decision-making frameworks, have been developed to support transparent and fair priority setting. Recently, a decision tool, 'The 6-STEPPPs Tool', was developed to assist in making decisions about new cancer drugs within the public health care system. We conducted a qualitative study, utilizing focus groups and participant observation, in order to investigate the internal frameworks that supported and challenged individual participants as they applied this decision tool within a multi-stakeholder decision process. We discovered that health care resource allocation engaged not only the minds of decision-makers but profoundly called on the often conflicting values of the heart. Objective decision-making frameworks for new drug therapies need to consider the subjective internal frameworks of decision-makers that affect decisions. Understanding the very human, internal turmoil experienced by individuals involved in health care resource allocation, sheds additional insight into how to account for reasonableness and how to better support difficult decisions through transparent, values-based resource allocation policy, procedures and processes.
ERIC Educational Resources Information Center
Ballantine, R. Malcolm
Decision Support Systems (DSSs) are computer-based decision aids to use when making decisions which are partially amenable to rational decision-making procedures but contain elements where intuitive judgment is an essential component. In such situations, DSSs are used to improve the quality of decision-making. The DSS approach is based on Simon's…
2013-12-01
RESPONSE AND RECOVERY FROM A FOOT-AND- MOUTH DISEASE ANIMAL HEALTH EMERGENCY: SUPPORTING DECISION MAKING IN A COMPLEX ENVIRONMENT WITH MULTIPLE...Thesis 4. TITLE AND SUBTITLE COLLABORATIVE RESPONSE AND RECOVERY FROM A FOOT-AND- MOUTH DISEASE ANIMAL HEALTH EMERGENCY: SUPPORTING DECISION MAKING...200 words ) This thesis recommends ways to support decision makers who must operate within the multi-stakeholder complex situation of response and
Wright, Adam; Sittig, Dean F.
2008-01-01
In this paper we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. PMID:18434256
Geneho Kim; Donald Nute; H. Michael Rauscher; David L. Loftis
2000-01-01
A programming environment for developing complex decision support systems (DSSs) should support rapid prototyping and modular design, feature a flexible knowledge representation scheme and sound inference mechanisms, provide project management, and be domain independent. We have previously developed DSSTools (Decision Support System Tools), a reusable, domain-...
Nie, Xianghui; Huang, Guo H; Li, Yongping
2009-11-01
This study integrates the concepts of interval numbers and fuzzy sets into optimization analysis by dynamic programming as a means of accounting for system uncertainty. The developed interval fuzzy robust dynamic programming (IFRDP) model improves upon previous interval dynamic programming methods. It allows highly uncertain information to be effectively communicated into the optimization process through introducing the concept of fuzzy boundary interval and providing an interval-parameter fuzzy robust programming method for an embedded linear programming problem. Consequently, robustness of the optimization process and solution can be enhanced. The modeling approach is applied to a hypothetical problem for the planning of waste-flow allocation and treatment/disposal facility expansion within a municipal solid waste (MSW) management system. Interval solutions for capacity expansion of waste management facilities and relevant waste-flow allocation are generated and interpreted to provide useful decision alternatives. The results indicate that robust and useful solutions can be obtained, and the proposed IFRDP approach is applicable to practical problems that are associated with highly complex and uncertain information.
Sillence, Elizabeth; Bussey, Lauren
2017-05-01
To investigate the ways in which people use online support groups (OSGs) in relation to their health decision-making and to identify the key features of the resource that support those activities. Eighteen participants who used OSGs for a range of health conditions participated in qualitative study in which they were interviewed about their experiences of using OSGs in relation to decision-making. Exploration of their experiences was supported by discussion of illustrative quotes. Across the health conditions OSGs supported two main decision-making activities: (i) prompting decision making and (ii) evaluating and confirming decisions already made. Depending on the activity, participants valued information about the process, the experience and the outcome of patient narratives. The importance of forum interactivity was highlighted in relation to advice-seeking and the selection of relevant personal experiences. People use OSGs in different ways to support their health related decision-making valuing the different content types of the narratives and the interactivity provided by the resource. Engaging with OSGs helps people in a number of different ways in relation to decision-making. However, it only forms one part of people's decision-making strategies and appropriate resources should be signposted where possible. Copyright © 2017 Elsevier B.V. All rights reserved.
Polya's bees: A model of decentralized decision-making.
Golman, Russell; Hagmann, David; Miller, John H
2015-09-01
How do social systems make decisions with no single individual in control? We observe that a variety of natural systems, including colonies of ants and bees and perhaps even neurons in the human brain, make decentralized decisions using common processes involving information search with positive feedback and consensus choice through quorum sensing. We model this process with an urn scheme that runs until hitting a threshold, and we characterize an inherent tradeoff between the speed and the accuracy of a decision. The proposed common mechanism provides a robust and effective means by which a decentralized system can navigate the speed-accuracy tradeoff and make reasonably good, quick decisions in a variety of environments. Additionally, consensus choice exhibits systemic risk aversion even while individuals are idiosyncratically risk-neutral. This too is adaptive. The model illustrates how natural systems make decentralized decisions, illuminating a mechanism that engineers of social and artificial systems could imitate.
Polya’s bees: A model of decentralized decision-making
Golman, Russell; Hagmann, David; Miller, John H.
2015-01-01
How do social systems make decisions with no single individual in control? We observe that a variety of natural systems, including colonies of ants and bees and perhaps even neurons in the human brain, make decentralized decisions using common processes involving information search with positive feedback and consensus choice through quorum sensing. We model this process with an urn scheme that runs until hitting a threshold, and we characterize an inherent tradeoff between the speed and the accuracy of a decision. The proposed common mechanism provides a robust and effective means by which a decentralized system can navigate the speed-accuracy tradeoff and make reasonably good, quick decisions in a variety of environments. Additionally, consensus choice exhibits systemic risk aversion even while individuals are idiosyncratically risk-neutral. This too is adaptive. The model illustrates how natural systems make decentralized decisions, illuminating a mechanism that engineers of social and artificial systems could imitate. PMID:26601255
NASA Astrophysics Data System (ADS)
Trindade, B. C.; Reed, P. M.; Zeff, H. B.; Characklis, G. W.
2016-12-01
Water scarcity in historically water-rich regions such as the southeastern United States is becoming a more prevalent concern. It has been shown that cooperative short-term planning that relies on conservation and transfers of existing supplies amongst communities can be used by water utilities to mitigate the effects of water scarcity in the near future. However, in the longer term, infrastructure expansion is likely to be necessary to address imbalances between growing water demands and the available supply capacity. This study seeks to better diagnose and avoid candidate modes for system failure. Although it is becoming more common for water utilities to evaluate the robustness of their water supply, defined as the insensitivity of their systems to errors in deeply uncertain projections or assumptions, defining robustness is particularly challenging in multi-stakeholder regional contexts for decisions that encompass short management actions and long-term infrastructure planning. Planning and management decisions are highly interdependent and strongly shape how a region's infrastructure itself evolves. This research advances the concept of system robustness by making it evolve over time rather than static, so that it is applicable to an adaptive system and therefore more suited for use for combined short and long-term planning efforts. The test case for this research is the Research Triangle area of North Carolina, where the cities of Raleigh, Durham, Cary and Chapel Hill are experiencing rapid population growth and increasing concerns over drought. This study is facilitating their engagement in cooperative and robust regional water portfolio planning. The insights from this work have general merit for regions where adjacent municipalities can benefit from improving cooperative infrastructure investments and more efficient resource management strategies.
The Design and Use of Decision Support Systems by Academic Departments. AIR 1987 Annual Forum Paper.
ERIC Educational Resources Information Center
Johnson, F. Craig
The design and use of a departmental decision support system at Florida State University are described from the perspective of a department head. The decisions selected for study are ones of adequacy, equitability, quality, efficiency, and consistency. The complexity of the decision is related to the complexity of the support system. The major…
ERIC Educational Resources Information Center
Erskine, Michael A.
2013-01-01
As many consumer and business decision makers are utilizing Spatial Decision Support Systems (SDSS), a thorough understanding of how such decisions are made is crucial for the information systems domain. This dissertation presents six chapters encompassing a comprehensive analysis of the impact of geospatial reasoning ability on…
For Argument's Sake: the shadow side of argumentation and debate in the science classroom (Invited)
NASA Astrophysics Data System (ADS)
Berbeco, M.; McCaffrey, M.
2013-12-01
Though the science on climate change is clear, those dismissive of current findings and future projections continue to influence the public sphere. This is never more problematic than in an educational setting, where a concern for fairness has driven the push for unscientific material to be used to balance the science. The introduction of the Next Generation Science Standards in many states across the country, which emphasizes the use of argumentation as a theme for engaging students in critical thinking, and the appeal of having students 'debate' politically controversial concepts such as climate change could unintentionally undermine the science by casting doubt and manufacturing 'controversy' where scientifically there is none. How can scientists help support teachers to use appropriate material for educating about climate change? Where is the line between supporting good science and activism? How can teachers separate the science from the politics without undermining its value in informing policy decisions? In this presentation, we will address how teachers can manage these challenges to engage students about politically and socially controversial topics while maintaining a clear, current and robust scientific basis for instruction.
NASA Astrophysics Data System (ADS)
Bruyere, C. L.; Tye, M. R.; Holland, G. J.; Done, J.
2015-12-01
Graceful failure acknowledges that all systems will fail at some level and incorporates the potential for failure as a key component of engineering design, community planning, and the associated research and development. This is a fundamental component of the ECEP, an interdisciplinary partnership bringing together scientific, engineering, cultural, business and government expertise to develop robust, well-communicated predictions and advice on the impacts of weather and climate extremes in support of decision-making. A feature of the partnership is the manner in which basic and applied research and development is conducted in direct collaboration with the end user. A major ECEP focus is the Global Risk and Resilience Toolbox (GRRT) that is aimed at developing public-domain, risk-modeling and response data and planning system in support of engineering design, and community planning and adaptation activities. In this presentation I will outline the overall ECEP and GRIP activities, and expand on the 'graceful failure' concept. Specific examples for direct assessment and prediction of hurricane impacts and damage potential will be included.
Walsh, Seán; Roelofs, Erik; Kuess, Peter; van Wijk, Yvonka; Lambin, Philippe; Jones, Bleddyn; Verhaegen, Frank
2018-01-01
We present a methodology which can be utilized to select proton or photon radiotherapy in prostate cancer patients. Four state-of-the-art competing treatment modalities were compared (by way of an in silico trial) for a cohort of 25 prostate cancer patients, with and without correction strategies for prostate displacements. Metrics measured from clinical image guidance systems were used. Three correction strategies were investigated; no-correction, extended-no-action-limit, and online-correction. Clinical efficacy was estimated via radiobiological models incorporating robustness (how probable a given treatment plan was delivered) and stability (the consistency between the probable best and worst delivered treatments at the 95% confidence limit). The results obtained at the cohort level enabled the determination of a threshold for likely clinical benefit at the individual level. Depending on the imaging system and correction strategy; 24%, 32% and 44% of patients were identified as suitable candidates for proton therapy. For the constraints of this study: Intensity-modulated proton therapy with online-correction was on average the most effective modality. Irrespective of the imaging system, each treatment modality is similar in terms of robustness, with and without the correction strategies. Conversely, there is substantial variation in stability between the treatment modalities, which is greatly reduced by correction strategies. This study provides a ‘proof-of-concept’ methodology to enable the prospective identification of individual patients that will most likely (above a certain threshold) benefit from proton therapy. PMID:29463018
Fernandez-Leon, Jose A; Acosta, Gerardo G; Rozenfeld, Alejandro
2014-10-01
Researchers in diverse fields, such as in neuroscience, systems biology and autonomous robotics, have been intrigued by the origin and mechanisms for biological robustness. Darwinian evolution, in general, has suggested that adaptive mechanisms as a way of reaching robustness, could evolve by natural selection acting successively on numerous heritable variations. However, is this understanding enough for realizing how biological systems remain robust during their interactions with the surroundings? Here, we describe selected studies of bio-inspired systems that show behavioral robustness. From neurorobotics, cognitive, self-organizing and artificial immune system perspectives, our discussions focus mainly on how robust behaviors evolve or emerge in these systems, having the capacity of interacting with their surroundings. These descriptions are twofold. Initially, we introduce examples from autonomous robotics to illustrate how the process of designing robust control can be idealized in complex environments for autonomous navigation in terrain and underwater vehicles. We also include descriptions of bio-inspired self-organizing systems. Then, we introduce other studies that contextualize experimental evolution with simulated organisms and physical robots to exemplify how the process of natural selection can lead to the evolution of robustness by means of adaptive behaviors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
From guideline modeling to guideline execution: defining guideline-based decision-support services.
Tu, S. W.; Musen, M. A.
2000-01-01
We describe our task-based approach to defining the guideline-based decision-support services that the EON system provides. We categorize uses of guidelines in patient-specific decision support into a set of generic tasks--making of decisions, specification of work to be performed, interpretation of data, setting of goals, and issuance of alert and reminders--that can be solved using various techniques. Our model includes constructs required for representing the knowledge used by these techniques. These constructs form a toolkit from which developers can select modeling solutions for guideline task. Based on the tasks and the guideline model, we define a guideline-execution architecture and a model of interactions between a decision-support server and clients that invoke services provided by the server. These services use generic interfaces derived from guideline tasks and their associated modeling constructs. We describe two implementations of these decision-support services and discuss how this work can be generalized. We argue that a well-defined specification of guideline-based decision-support services will facilitate sharing of tools that implement computable clinical guidelines. PMID:11080007
Uchida-Nakakoji, Mayuko; Stone, Patricia W.; Schmitt, Susan K.; Phibbs, Ciaran S.
2015-01-01
Objective To examine effects of workforce characteristics on resident infections in Veterans Affairs (VA) Community Living Centers (CLCs). Data Sources A six-year panel of monthly, unit-specific data included workforce characteristics (from the VA Decision Support System and Payroll data) and characteristics of residents and outcome measures (from the Minimum Data Set). Study Design A resident infection composite was the dependent variable. Workforce characteristics of registered nurses (RN), licensed practical nurses (LPN), nurse aides (NA), and contract nurses included: staffing levels, skill mix and tenure. Descriptive statistics and unit-level fixed effects regressions were conducted. Robustness checks varying workforce and outcome parameters were examined. Principal Findings Average nursing hours per resident day was 4.59 hours (sd = 1.21). RN tenure averaged 4.7 years (sd = 1.64) and 4.2 years for both LPN (sd= 1.84) and NA (sd= 1.72). In multivariate analyses RN and LPN tenure were associated with decreased infections by 3.8% (IRR= 0.962 p<0.01) and 2% (IRR=0.98 p<0.01) respectively. Robustness checks consistently found RN and LPN tenure to be associated with decreased infections. Conclusions Increasing RN and LPN tenure are likely to reduce CLC resident infections. Administrators and policymakers need to focus on recruiting and retaining a skilled nursing workforce. PMID:25634087
Wireless Sensors and Networks for Advanced Energy Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, J.E.
Numerous national studies and working groups have identified low-cost, very low-power wireless sensors and networks as a critical enabling technology for increasing energy efficiency, reducing waste, and optimizing processes. Research areas for developing such sensor and network platforms include microsensor arrays, ultra-low power electronics and signal conditioning, data/control transceivers, and robust wireless networks. A review of some of the research in the following areas will be discussed: (1) Low-cost, flexible multi-sensor array platforms (CO{sub 2}, NO{sub x}, CO, humidity, NH{sub 3}, O{sub 2}, occupancy, etc.) that enable energy and emission reductions in applications such as buildings and manufacturing; (2) Modelingmore » investments (energy usage and savings to drive capital investment decisions) and estimated uptime improvements through pervasive gathering of equipment and process health data and its effects on energy; (3) Robust, self-configuring wireless sensor networks for energy management; and (4) Quality-of-service for secure and reliable data transmission from widely distributed sensors. Wireless communications is poised to support technical innovations in the industrial community, with widespread use of wireless sensors forecasted to improve manufacturing production and energy efficiency and reduce emissions. Progress being made in wireless system components, as described in this paper, is helping bring these projected improvements to reality.« less
Highly scalable and robust rule learner: performance evaluation and comparison.
Kurgan, Lukasz A; Cios, Krzysztof J; Dick, Scott
2006-02-01
Business intelligence and bioinformatics applications increasingly require the mining of datasets consisting of millions of data points, or crafting real-time enterprise-level decision support systems for large corporations and drug companies. In all cases, there needs to be an underlying data mining system, and this mining system must be highly scalable. To this end, we describe a new rule learner called DataSqueezer. The learner belongs to the family of inductive supervised rule extraction algorithms. DataSqueezer is a simple, greedy, rule builder that generates a set of production rules from labeled input data. In spite of its relative simplicity, DataSqueezer is a very effective learner. The rules generated by the algorithm are compact, comprehensible, and have accuracy comparable to rules generated by other state-of-the-art rule extraction algorithms. The main advantages of DataSqueezer are very high efficiency, and missing data resistance. DataSqueezer exhibits log-linear asymptotic complexity with the number of training examples, and it is faster than other state-of-the-art rule learners. The learner is also robust to large quantities of missing data, as verified by extensive experimental comparison with the other learners. DataSqueezer is thus well suited to modern data mining and business intelligence tasks, which commonly involve huge datasets with a large fraction of missing data.
A Robust and Device-Free System for the Recognition and Classification of Elderly Activities.
Li, Fangmin; Al-Qaness, Mohammed Abdulaziz Aide; Zhang, Yong; Zhao, Bihai; Luan, Xidao
2016-12-01
Human activity recognition, tracking and classification is an essential trend in assisted living systems that can help support elderly people with their daily activities. Traditional activity recognition approaches depend on vision-based or sensor-based techniques. Nowadays, a novel promising technique has obtained more attention, namely device-free human activity recognition that neither requires the target object to wear or carry a device nor install cameras in a perceived area. The device-free technique for activity recognition uses only the signals of common wireless local area network (WLAN) devices available everywhere. In this paper, we present a novel elderly activities recognition system by leveraging the fluctuation of the wireless signals caused by human motion. We present an efficient method to select the correct data from the Channel State Information (CSI) streams that were neglected in previous approaches. We apply a Principle Component Analysis method that exposes the useful information from raw CSI. Thereafter, Forest Decision (FD) is adopted to classify the proposed activities and has gained a high accuracy rate. Extensive experiments have been conducted in an indoor environment to test the feasibility of the proposed system with a total of five volunteer users. The evaluation shows that the proposed system is applicable and robust to electromagnetic noise.
Uchida-Nakakoji, Mayuko; Stone, Patricia W; Schmitt, Susan K; Phibbs, Ciaran S
2015-03-01
To examine effects of workforce characteristics on resident infections in Veterans Affairs (VA) Community Living Centers (CLCs). A 6-year panel of monthly, unit-specific data included workforce characteristics (from the VA Decision Support System and Payroll data) and characteristics of residents and outcome measures (from the Minimum Data Set). A resident infection composite was the dependent variable. Workforce characteristics of registered nurses (RN), licensed practical nurses (LPN), nurse aides (NA), and contract nurses included: staffing levels, skill mix, and tenure. Descriptive statistics and unit-level fixed effects regressions were conducted. Robustness checks varying workforce and outcome parameters were examined. Average nursing hours per resident day was 4.59 hours (SD=1.21). RN tenure averaged 4.7 years (SD=1.64) and 4.2 years for both LPN (SD=1.84) and NA (SD=1.72). In multivariate analyses RN and LPN tenure were associated with decreased infections by 3.8% (incident rate ratio [IRR]=0.962, P<0.01) and 2% (IRR=0.98, P<0.01) respectively. Robustness checks consistently found RN and LPN tenure to be associated with decreased infections. Increasing RN and LPN tenure are likely to reduce CLC resident infections. Administrators and policymakers need to focus on recruiting and retaining a skilled nursing workforce.
DOT National Transportation Integrated Search
2010-09-01
Tools are proposed for carbon footprint estimation of transportation construction projects and decision support : for construction firms that must make equipment choice and usage decisions that affect profits, project duration : and greenhouse gas em...
Decision Support Framework (DSF) (Formerly Decision Support Platform)
The Science Advisory Board (SAB) provided several comments on the draft Ecosystem Services Research Program's (ESRP's) Multi-Year Plan (MYP). This presentation provides a response to comments related to the decision support framework (DSF) part of Long-Term Goal 1. The comments...
NASA Astrophysics Data System (ADS)
Siade, Adam J.; Hall, Joel; Karelse, Robert N.
2017-11-01
Regional groundwater flow models play an important role in decision making regarding water resources; however, the uncertainty embedded in model parameters and model assumptions can significantly hinder the reliability of model predictions. One way to reduce this uncertainty is to collect new observation data from the field. However, determining where and when to obtain such data is not straightforward. There exist a number of data-worth and experimental design strategies developed for this purpose. However, these studies often ignore issues related to real-world groundwater models such as computational expense, existing observation data, high-parameter dimension, etc. In this study, we propose a methodology, based on existing methods and software, to efficiently conduct such analyses for large-scale, complex regional groundwater flow systems for which there is a wealth of available observation data. The method utilizes the well-established d-optimality criterion, and the minimax criterion for robust sampling strategies. The so-called Null-Space Monte Carlo method is used to reduce the computational burden associated with uncertainty quantification. And, a heuristic methodology, based on the concept of the greedy algorithm, is proposed for developing robust designs with subsets of the posterior parameter samples. The proposed methodology is tested on a synthetic regional groundwater model, and subsequently applied to an existing, complex, regional groundwater system in the Perth region of Western Australia. The results indicate that robust designs can be obtained efficiently, within reasonable computational resources, for making regional decisions regarding groundwater level sampling.
1984-09-01
is not only difficult and time consuming , but also crucial to the success of the project, the question is whether a decision support system designed...KtI I - uAujvhIMtf IENE In THE FEASIBILITY OF A DECISION SUPPORT SYSTEM FOR THE DETERMINATION OF SOURCE SELECTION EVALUATION ’CRITERIA THESIS .2...INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DZM=0N STATEMENT A ,’r !’ILMILSHIM S /8 4 THE FEASIBILITY OF A DECISION SUPPORT SYSTEM FOR
2013-03-25
commanders to make the best possible decisions in a given set of circumstances. Cognitive psychologists have conducted research and developed ...military professionals develop a more robust appreciation for the cognitive processes that preclude clear thinking and effective decision making...Additionally, she had the subjects sketch a bicycle , which was the most telling part of the study. More than 97% knew how to ride a bike, but the
2009-03-01
making process (Skinner, 2001, 9). According to Clemen , before we can begin to apply any methodology to a specific decision problem, the analyst...it is possible to work with them to determine the values and objectives that relate to the decision in question ( Clemen , 2001, 21). Clemen ...value hierarchy is constructed, Clemen and Reilly suggest that a trade off is made between varying objectives. They introduce weights to determine
Motion-guided attention promotes adaptive communications during social navigation.
Lemasson, B H; Anderson, J J; Goodwin, R A
2013-03-07
Animals are capable of enhanced decision making through cooperation, whereby accurate decisions can occur quickly through decentralized consensus. These interactions often depend upon reliable social cues, which can result in highly coordinated activities in uncertain environments. Yet information within a crowd may be lost in translation, generating confusion and enhancing individual risk. As quantitative data detailing animal social interactions accumulate, the mechanisms enabling individuals to rapidly and accurately process competing social cues remain unresolved. Here, we model how motion-guided attention influences the exchange of visual information during social navigation. We also compare the performance of this mechanism to the hypothesis that robust social coordination requires individuals to numerically limit their attention to a set of n-nearest neighbours. While we find that such numerically limited attention does not generate robust social navigation across ecological contexts, several notable qualities arise from selective attention to motion cues. First, individuals can instantly become a local information hub when startled into action, without requiring changes in neighbour attention level. Second, individuals can circumvent speed-accuracy trade-offs by tuning their motion thresholds. In turn, these properties enable groups to collectively dampen or amplify social information. Lastly, the minority required to sway a group's short-term directional decisions can change substantially with social context. Our findings suggest that motion-guided attention is a fundamental and efficient mechanism underlying collaborative decision making during social navigation.
Pandemic influenza preparedness: an ethical framework to guide decision-making.
Thompson, Alison K; Faith, Karen; Gibson, Jennifer L; Upshur, Ross E G
2006-12-04
Planning for the next pandemic influenza outbreak is underway in hospitals across the world. The global SARS experience has taught us that ethical frameworks to guide decision-making may help to reduce collateral damage and increase trust and solidarity within and between health care organisations. Good pandemic planning requires reflection on values because science alone cannot tell us how to prepare for a public health crisis. In this paper, we present an ethical framework for pandemic influenza planning. The ethical framework was developed with expertise from clinical, organisational and public health ethics and validated through a stakeholder engagement process. The ethical framework includes both substantive and procedural elements for ethical pandemic influenza planning. The incorporation of ethics into pandemic planning can be helped by senior hospital administrators sponsoring its use, by having stakeholders vet the framework, and by designing or identifying decision review processes. We discuss the merits and limits of an applied ethical framework for hospital decision-making, as well as the robustness of the framework. The need for reflection on the ethical issues raised by the spectre of a pandemic influenza outbreak is great. Our efforts to address the normative aspects of pandemic planning in hospitals have generated interest from other hospitals and from the governmental sector. The framework will require re-evaluation and refinement and we hope that this paper will generate feedback on how to make it even more robust.
Laramée, Philippe; Brodtkorb, Thor-Henrik; Rahhali, Nora; Knight, Chris; Barbosa, Carolina; François, Clément; Toumi, Mondher; Daeppen, Jean-Bernard; Rehm, Jürgen
2014-01-01
Objectives To determine whether nalmefene combined with psychosocial support is cost-effective compared with psychosocial support alone for reducing alcohol consumption in alcohol-dependent patients with high/very high drinking risk levels (DRLs) as defined by the WHO, and to evaluate the public health benefit of reducing harmful alcohol-attributable diseases, injuries and deaths. Design Decision modelling using Markov chains compared costs and effects over 5 years. Setting The analysis was from the perspective of the National Health Service (NHS) in England and Wales. Participants The model considered the licensed population for nalmefene, specifically adults with both alcohol dependence and high/very high DRLs, who do not require immediate detoxification and who continue to have high/very high DRLs after initial assessment. Data sources We modelled treatment effect using data from three clinical trials for nalmefene (ESENSE 1 (NCT00811720), ESENSE 2 (NCT00812461) and SENSE (NCT00811941)). Baseline characteristics of the model population, treatment resource utilisation and utilities were from these trials. We estimated the number of alcohol-attributable events occurring at different levels of alcohol consumption based on published epidemiological risk-relation studies. Health-related costs were from UK sources. Main outcome measures We measured incremental cost per quality-adjusted life year (QALY) gained and number of alcohol-attributable harmful events avoided. Results Nalmefene in combination with psychosocial support had an incremental cost-effectiveness ratio (ICER) of £5204 per QALY gained, and was therefore cost-effective at the £20 000 per QALY gained decision threshold. Sensitivity analyses showed that the conclusion was robust. Nalmefene plus psychosocial support led to the avoidance of 7179 alcohol-attributable diseases/injuries and 309 deaths per 100 000 patients compared to psychosocial support alone over the course of 5 years. Conclusions Nalmefene can be seen as a cost-effective treatment for alcohol dependence, with substantial public health benefits. Trial registration numbers This cost-effectiveness analysis was developed based on data from three randomised clinical trials: ESENSE 1 (NCT00811720), ESENSE 2 (NCT00812461) and SENSE (NCT00811941). PMID:25227627
A new decision sciences for complex systems.
Lempert, Robert J
2002-05-14
Models of complex systems can capture much useful information but can be difficult to apply to real-world decision-making because the type of information they contain is often inconsistent with that required for traditional decision analysis. New approaches, which use inductive reasoning over large ensembles of computational experiments, now make possible systematic comparison of alternative policy options using models of complex systems. This article describes Computer-Assisted Reasoning, an approach to decision-making under conditions of deep uncertainty that is ideally suited to applying complex systems to policy analysis. The article demonstrates the approach on the policy problem of global climate change, with a particular focus on the role of technology policies in a robust, adaptive strategy for greenhouse gas abatement.
Adaptation of a Knowledge-Based Decision-Support System in the Tactical Environment.
1981-12-01
002-04-6411S1CURITY CL All PICATION OF 1,416 PAGE (00HIR Onto ea0aOW .L10 *GU9WVC 4bGSI.CAYON S. Voss 10466lVka t... OftesoE ’ making decisons . The...noe..aaw Ad tdlalttt’ IV 680011 MMib) Artificial Intelligence; Decision-Support Systems; Tactical Decision- making ; Knowledge-based Decision-support...tactical information to assist tactical commanders in making decisions. The system, TAC*, for "Tactical Adaptable Consultant," incorporates a database
Web-services-based spatial decision support system to facilitate nuclear waste siting
NASA Astrophysics Data System (ADS)
Huang, L. Xinglai; Sheng, Grant
2006-10-01
The availability of spatial web services enables data sharing among managers, decision and policy makers and other stakeholders in much simpler ways than before and subsequently has created completely new opportunities in the process of spatial decision making. Though generally designed for a certain problem domain, web-services-based spatial decision support systems (WSDSS) can provide a flexible problem-solving environment to explore the decision problem, understand and refine problem definition, and generate and evaluate multiple alternatives for decision. This paper presents a new framework for the development of a web-services-based spatial decision support system. The WSDSS is comprised of distributed web services that either have their own functions or provide different geospatial data and may reside in different computers and locations. WSDSS includes six key components, namely: database management system, catalog, analysis functions and models, GIS viewers and editors, report generators, and graphical user interfaces. In this study, the architecture of a web-services-based spatial decision support system to facilitate nuclear waste siting is described as an example. The theoretical, conceptual and methodological challenges and issues associated with developing web services-based spatial decision support system are described.
Kwak, Jung; De Larwelle, Jessica A; Valuch, Katharine O'Connell; Kesler, Toni
2016-01-01
Health care proxies make important end-of-life decisions for individuals with dementia. A cross-sectional survey was conducted to examine the role of advance care planning in proxy decision making for 141 individuals with cognitive impairment, Alzheimer's disease, or other types of dementia. Proxies who did not know the preferences of individuals with dementia for life support treatments reported greater understanding of their values. Proxies of individuals with dementia who did not want life support treatments anticipated receiving less support and were more uncertain in decision making. The greater knowledge proxies had about dementia trajectory, family support, and trust of physicians, the more informed, clearer, and less uncertain they were in decision making. In addition to advance care planning, multiple factors influence proxy decision making, which should be considered in developing interventions and future research to support informed decision making for individuals with dementia and their families. Copyright 2016, SLACK Incorporated.
Fusion of spatio-temporal UAV and proximal sensing data for an agricultural decision support system
NASA Astrophysics Data System (ADS)
Katsigiannis, P.; Galanis, G.; Dimitrakos, A.; Tsakiridis, N.; Kalopesas, C.; Alexandridis, T.; Chouzouri, A.; Patakas, A.; Zalidis, G.
2016-08-01
Over the last few years, multispectral and thermal remote sensing imagery from unmanned aerial vehicles (UAVs) has found application in agriculture and has been regarded as a means of field data collection and crop condition monitoring source. The integration of information derived from the analysis of these remotely sensed data into agricultural management applications facilitates and aids the stakeholder's decision making. Whereas agricultural decision support systems (DSS) have long been utilised in farming applications, there are still critical gaps to be addressed; as the current approach often neglects the plant's level information and lacks the robustness to account for the spatial and temporal variability of environmental parameters within agricultural systems. In this paper, we demonstrate the use of a custom built autonomous UAV platform in providing critical information for an agricultural DSS. This hexacopter UAV bears two cameras which can be triggered simultaneously and can capture both the visible, near-infrared (VNIR) and the thermal infrared (TIR) wavelengths. The platform was employed for the rapid extraction of the normalized difference vegetation index (NDVI) and the crop water stress index (CWSI) of three different plantations, namely a kiwi, a pomegranate, and a vine field. The simultaneous recording of these two complementary indices and the creation of maps was advantageous for the accurate assessment of the plantation's status. Fusion of UAV and soil scanner system products pinpointed the necessity for adjustment of the irrigation management applied. It is concluded that timely CWSI and NDVI measures retrieved for different crop growing stages can provide additional information and can serve as a tool to support the existing irrigation DSS that had so far been exclusively based on telemetry data from soil and agrometeorological sensors. Additionally, the use of the multi-sensor UAV was found to be beneficial in collecting timely, spatio-temporal information for the fusion with ground-based proximal sensing data. This research work was designed and deployed in the frame of the project "AGRO_LESS: Joint reference strategies for rural activities of reduced inputs".
The CAULDRON game: Helping decision makers understand extreme weather event attribution
NASA Astrophysics Data System (ADS)
Walton, P.; Otto, F. E. L.
2014-12-01
There is a recognition from academics and stakeholders that climate science has a fundamental role to play in the decision making process, but too frequently there is still uncertainty about what, when, how and why to use it. Stakeholders suggest that it is because the science is presented in an inaccessible manner, while academics suggest it is because the stakeholders do not have the scientific knowledge to understand and apply the science appropriately. What is apparent is that stakeholders need support, and that there is an onus on academia to provide it. This support is even more important with recent developments in climate science, such as extreme weather event attribution. We are already seeing the impacts of extreme weather events around the world causing lost of life and damage to property and infrastructure with current research suggesting that these events could become more frequent and more intense. If this is to be the case then a better understanding of the science will be vital in developing robust adaptation and business planning. The use of games, role playing and simulations to aid learning has long been understood in education but less so as a tool to support stakeholder understanding of climate science. Providing a 'safe' space where participants can actively engage with concepts, ideas and often emotions, can lead to deep understanding that is not possible through more passive mechanisms such as papers and web sites. This paper reports on a game that was developed through a collaboration led by the Red Cross/Red Crescent, University of Oxford and University of Reading to help stakeholders understand the role of weather event attribution in the decision making process. The game has already been played successfully at a number of high profile events including COP 19 and the African Climate Conference. It has also been used with students as part of a postgraduate environmental management course. As well as describing the design principles of the game, the paper also evaluates the success of the game as well as future developments.
Towards a Decision Support System for Space Flight Operations
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Hogle, Charles; Ruszkowski, James
2013-01-01
The Mission Operations Directorate (MOD) at the Johnson Space Center (JSC) has put in place a Model Based Systems Engineering (MBSE) technological framework for the development and execution of the Flight Production Process (FPP). This framework has provided much added value and return on investment to date. This paper describes a vision for a model based Decision Support System (DSS) for the development and execution of the FPP and its design and development process. The envisioned system extends the existing MBSE methodology and technological framework which is currently in use. The MBSE technological framework currently in place enables the systematic collection and integration of data required for building an FPP model for a diverse set of missions. This framework includes the technology, people and processes required for rapid development of architectural artifacts. It is used to build a feasible FPP model for the first flight of spacecraft and for recurrent flights throughout the life of the program. This model greatly enhances our ability to effectively engage with a new customer. It provides a preliminary work breakdown structure, data flow information and a master schedule based on its existing knowledge base. These artifacts are then refined and iterated upon with the customer for the development of a robust end-to-end, high-level integrated master schedule and its associated dependencies. The vision is to enhance this framework to enable its application for uncertainty management, decision support and optimization of the design and execution of the FPP by the program. Furthermore, this enhanced framework will enable the agile response and redesign of the FPP based on observed system behavior. The discrepancy of the anticipated system behavior and the observed behavior may be due to the processing of tasks internally, or due to external factors such as changes in program requirements or conditions associated with other organizations that are outside of MOD. The paper provides a roadmap for the three increments of this vision. These increments include (1) hardware and software system components and interfaces with the NASA ground system, (2) uncertainty management and (3) re-planning and automated execution. Each of these increments provide value independently; but some may also enable building of a subsequent increment.
Matsuda, Eiko; Hubert, Julien; Ikegami, Takashi
2014-01-01
Vicarious trial-and-error (VTE) is a behavior observed in rat experiments that seems to suggest self-conflict. This behavior is seen mainly when the rats are uncertain about making a decision. The presence of VTE is regarded as an indicator of a deliberative decision-making process, that is, searching, predicting, and evaluating outcomes. This process is slower than automated decision-making processes, such as reflex or habituation, but it allows for flexible and ongoing control of behavior. In this study, we propose for the first time a robotic model of VTE to see if VTE can emerge just from a body-environment interaction and to show the underlying mechanism responsible for the observation of VTE and the advantages provided by it. We tried several robots with different parameters, and we have found that they showed three different types of VTE: high numbers of VTE at the beginning of learning, decreasing numbers afterward (similar VTE pattern to experiments with rats), low during the whole learning period, and high numbers all the time. Therefore, we were able to reproduce the phenomenon of VTE in a model robot using only a simple dynamical neural network with Hebbian learning, which suggests that VTE is an emergent property of a plastic and embodied neural network. From a comparison of the three types of VTE, we demonstrated that 1) VTE is associated with chaotic activity of neurons in our model and 2) VTE-showing robots were robust to environmental perturbations. We suggest that the instability of neuronal activity found in VTE allows ongoing learning to rebuild its strategy continuously, which creates robust behavior. Based on these results, we suggest that VTE is caused by a similar mechanism in biology and leads to robust decision making in an analogous way.
Testing the robustness of management decisions to uncertainty: Everglades restoration scenarios.
Fuller, Michael M; Gross, Louis J; Duke-Sylvester, Scott M; Palmer, Mark
2008-04-01
To effectively manage large natural reserves, resource managers must prepare for future contingencies while balancing the often conflicting priorities of different stakeholders. To deal with these issues, managers routinely employ models to project the response of ecosystems to different scenarios that represent alternative management plans or environmental forecasts. Scenario analysis is often used to rank such alternatives to aid the decision making process. However, model projections are subject to uncertainty in assumptions about model structure, parameter values, environmental inputs, and subcomponent interactions. We introduce an approach for testing the robustness of model-based management decisions to the uncertainty inherent in complex ecological models and their inputs. We use relative assessment to quantify the relative impacts of uncertainty on scenario ranking. To illustrate our approach we consider uncertainty in parameter values and uncertainty in input data, with specific examples drawn from the Florida Everglades restoration project. Our examples focus on two alternative 30-year hydrologic management plans that were ranked according to their overall impacts on wildlife habitat potential. We tested the assumption that varying the parameter settings and inputs of habitat index models does not change the rank order of the hydrologic plans. We compared the average projected index of habitat potential for four endemic species and two wading-bird guilds to rank the plans, accounting for variations in parameter settings and water level inputs associated with hypothetical future climates. Indices of habitat potential were based on projections from spatially explicit models that are closely tied to hydrology. For the American alligator, the rank order of the hydrologic plans was unaffected by substantial variation in model parameters. By contrast, simulated major shifts in water levels led to reversals in the ranks of the hydrologic plans in 24.1-30.6% of the projections for the wading bird guilds and several individual species. By exposing the differential effects of uncertainty, relative assessment can help resource managers assess the robustness of scenario choice in model-based policy decisions.