Science.gov

Sample records for robust fuzzy control

  1. Robust Fuzzy Controllers Using FPGAs

    NASA Technical Reports Server (NTRS)

    Monroe, Author Gene S., Jr.

    2007-01-01

    Electro-mechanical device controllers typically come in one of three forms, proportional (P), Proportional Derivative (PD), and Proportional Integral Derivative (PID). Two methods of control are discussed in this paper; they are (1) the classical technique that requires an in-depth mathematical use of poles and zeros, and (2) the fuzzy logic (FL) technique that is similar to the way humans think and make decisions. FL controllers are used in multiple industries; examples include control engineering, computer vision, pattern recognition, statistics, and data analysis. Presented is a study on the development of a PD motor controller written in very high speed hardware description language (VHDL), and implemented in FL. Four distinct abstractions compose the FL controller, they are the fuzzifier, the rule-base, the fuzzy inference system (FIS), and the defuzzifier. FL is similar to, but different from, Boolean logic; where the output value may be equal to 0 or 1, but it could also be equal to any decimal value between them. This controller is unique because of its VHDL implementation, which uses integer mathematics. To compensate for VHDL's inability to synthesis floating point numbers, a scale factor equal to 10(sup (N/4) is utilized; where N is equal to data word size. The scaling factor shifts the decimal digits to the left of the decimal point for increased precision. PD controllers are ideal for use with servo motors, where position control is effective. This paper discusses control methods for motion-base platforms where a constant velocity equivalent to a spectral resolution of 0.25 cm(exp -1) is required; however, the control capability of this controller extends to various other platforms.

  2. Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator.

    PubMed

    Fei, Juntao; Zhou, Jian

    2012-12-01

    In this paper, a robust adaptive control strategy using a fuzzy compensator for MEMS triaxial gyroscope, which has system nonlinearities, including model uncertainties and external disturbances, is proposed. A fuzzy logic controller that could compensate for the model uncertainties and external disturbances is incorporated into the adaptive control scheme in the Lyapunov framework. The proposed adaptive fuzzy controller can guarantee the convergence and asymptotical stability of the closed-loop system. The proposed adaptive fuzzy control strategy does not depend on accurate mathematical models, which simplifies the design procedure. The innovative development of intelligent control methods incorporated with conventional control for the MEMS gyroscope is derived with the strict theoretical proof of the Lyapunov stability. Numerical simulations are investigated to verify the effectiveness of the proposed adaptive fuzzy control scheme and demonstrate the satisfactory tracking performance and robustness against model uncertainties and external disturbances compared with conventional adaptive control method.

  3. Robust observer-based adaptive fuzzy sliding mode controller

    NASA Astrophysics Data System (ADS)

    Oveisi, Atta; Nestorović, Tamara

    2016-08-01

    In this paper, a new observer-based adaptive fuzzy integral sliding mode controller is proposed based on the Lyapunov stability theorem. The plant is subjected to a square-integrable disturbance and is assumed to have mismatch uncertainties both in state- and input-matrices. Based on the classical sliding mode controller, the equivalent control effort is obtained to satisfy the sufficient requirement of sliding mode controller and then the control law is modified to guarantee the reachability of the system trajectory to the sliding manifold. In order to relax the norm-bounded constrains on the control law and solve the chattering problem of sliding mode controller, a fuzzy logic inference mechanism is combined with the controller. An adaptive law is then introduced to tune the parameters of the fuzzy system on-line. Finally, for evaluating the controller and the robust performance of the closed-loop system, the proposed regulator is implemented on a real-time mechanical vibrating system.

  4. How to control if even experts are not sure: Robust fuzzy control

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung T.; Kreinovich, Vladik YA.; Lea, Robert; Tolbert, Dana

    1992-01-01

    In real life, the degrees of certainty that correspond to one of the same expert can differ drastically, and fuzzy control algorithms translate these different degrees of uncertainty into different control strategies. In such situations, it is reasonable to choose a fuzzy control methodology that is the least vulnerable to this kind of uncertainty. It is shown that this 'robustness' demand leads to min and max for &- and V-operations, to 1-x for negation, and to centroid as a defuzzification procedure.

  5. Robust fuzzy output feedback controller for affine nonlinear systems via T-S fuzzy bilinear model: CSTR benchmark.

    PubMed

    Hamdy, M; Hamdan, I

    2015-07-01

    In this paper, a robust H∞ fuzzy output feedback controller is designed for a class of affine nonlinear systems with disturbance via Takagi-Sugeno (T-S) fuzzy bilinear model. The parallel distributed compensation (PDC) technique is utilized to design a fuzzy controller. The stability conditions of the overall closed loop T-S fuzzy bilinear model are formulated in terms of Lyapunov function via linear matrix inequality (LMI). The control law is robustified by H∞ sense to attenuate external disturbance. Moreover, the desired controller gains can be obtained by solving a set of LMI. A continuous stirred tank reactor (CSTR), which is a benchmark problem in nonlinear process control, is discussed in detail to verify the effectiveness of the proposed approach with a comparative study.

  6. A Design of Fuzzy Neural Network Based Robust Gain Scheduling Controllers

    NASA Astrophysics Data System (ADS)

    Sato, Yoshishige

    This paper propose robust gain scheduling control design by intelligent control which uses Fuzzy-Neural Network without model. Proposal methods are as follows, To constitute a robust and capable of automatically gain controlling against the conventional fixed PID control system. To build the Neural Network which learns inverse dynamics as feed forward compensation, and to build 2 degrees freedom control which is the feedback compensation. To propose the control system which adaptively adjusts the gain according to the changes of target errors, and to verified the effectiveness of the proposed method.

  7. Robust fuzzy neural network sliding mode control scheme for IPMSM drives

    NASA Astrophysics Data System (ADS)

    Leu, V. Q.; Mwasilu, F.; Choi, H. H.; Lee, J.; Jung, J. W.

    2014-07-01

    This article proposes a robust fuzzy neural network sliding mode control (FNNSMC) law for interior permanent magnet synchronous motor (IPMSM) drives. The proposed control strategy not only guarantees accurate and fast command speed tracking but also it ensures the robustness to system uncertainties and sudden speed and load changes. The proposed speed controller encompasses three control terms: a decoupling control term which compensates for nonlinear coupling factors using nominal parameters, a fuzzy neural network (FNN) control term which approximates the ideal control components and a sliding mode control (SMC) term which is proposed to compensate for the errors of that approximation. Next, an online FNN training methodology, which is developed using the Lyapunov stability theorem and the gradient descent method, is proposed to enhance the learning capability of the FNN. Moreover, the maximum torque per ampere (MTPA) control is incorporated to maximise the torque generation in the constant torque region and increase the efficiency of the IPMSM drives. To verify the effectiveness of the proposed robust FNNSMC, simulations and experiments are performed by using MATLAB/Simulink platform and a TI TMS320F28335 DSP on a prototype IPMSM drive setup, respectively. Finally, the simulated and experimental results indicate that the proposed design scheme can achieve much better control performances (e.g. more rapid transient response and smaller steady-state error) when compared to the conventional SMC method, especially in the case that there exist system uncertainties.

  8. Robust fuzzy control subject to state variance and passivity constraints for perturbed nonlinear systems with multiplicative noises.

    PubMed

    Chang, Wen-Jer; Huang, Bo-Jyun

    2014-11-01

    The multi-constrained robust fuzzy control problem is investigated in this paper for perturbed continuous-time nonlinear stochastic systems. The nonlinear system considered in this paper is represented by a Takagi-Sugeno fuzzy model with perturbations and state multiplicative noises. The multiple performance constraints considered in this paper include stability, passivity and individual state variance constraints. The Lyapunov stability theory is employed to derive sufficient conditions to achieve the above performance constraints. By solving these sufficient conditions, the contribution of this paper is to develop a parallel distributed compensation based robust fuzzy control approach to satisfy multiple performance constraints for perturbed nonlinear systems with multiplicative noises. At last, a numerical example for the control of perturbed inverted pendulum system is provided to illustrate the applicability and effectiveness of the proposed multi-constrained robust fuzzy control method.

  9. Fuzzy Sarsa with Focussed Replacing Eligibility Traces for Robust and Accurate Control

    NASA Astrophysics Data System (ADS)

    Kamdem, Sylvain; Ohki, Hidehiro; Sueda, Naomichi

    Several methods of reinforcement learning in continuous state and action spaces that utilize fuzzy logic have been proposed in recent years. This paper introduces Fuzzy Sarsa(λ), an on-policy algorithm for fuzzy learning that relies on a novel way of computing replacing eligibility traces to accelerate the policy evaluation. It is tested against several temporal difference learning algorithms: Sarsa(λ), Fuzzy Q(λ), an earlier fuzzy version of Sarsa and an actor-critic algorithm. We perform detailed evaluations on two benchmark problems : a maze domain and the cart pole. Results of various tests highlight the strengths and weaknesses of these algorithms and show that Fuzzy Sarsa(λ) outperforms all other algorithms tested for a larger granularity of design and under noisy conditions. It is a highly competitive method of learning in realistic noisy domains where a denser fuzzy design over the state space is needed for a more precise control.

  10. Robust fuzzy logic stabilization with disturbance elimination.

    PubMed

    Danapalasingam, Kumeresan A

    2014-01-01

    A robust fuzzy logic controller is proposed for stabilization and disturbance rejection in nonlinear control systems of a particular type. The dynamic feedback controller is designed as a combination of a control law that compensates for nonlinear terms in a control system and a dynamic fuzzy logic controller that addresses unknown model uncertainties and an unmeasured disturbance. Since it is challenging to derive a highly accurate mathematical model, the proposed controller requires only nominal functions of a control system. In this paper, a mathematical derivation is carried out to prove that the controller is able to achieve asymptotic stability by processing state measurements. Robustness here refers to the ability of the controller to asymptotically steer the state vector towards the origin in the presence of model uncertainties and a disturbance input. Simulation results of the robust fuzzy logic controller application in a magnetic levitation system demonstrate the feasibility of the control design. PMID:25177713

  11. Robust Fuzzy Logic Stabilization with Disturbance Elimination

    PubMed Central

    Danapalasingam, Kumeresan A.

    2014-01-01

    A robust fuzzy logic controller is proposed for stabilization and disturbance rejection in nonlinear control systems of a particular type. The dynamic feedback controller is designed as a combination of a control law that compensates for nonlinear terms in a control system and a dynamic fuzzy logic controller that addresses unknown model uncertainties and an unmeasured disturbance. Since it is challenging to derive a highly accurate mathematical model, the proposed controller requires only nominal functions of a control system. In this paper, a mathematical derivation is carried out to prove that the controller is able to achieve asymptotic stability by processing state measurements. Robustness here refers to the ability of the controller to asymptotically steer the state vector towards the origin in the presence of model uncertainties and a disturbance input. Simulation results of the robust fuzzy logic controller application in a magnetic levitation system demonstrate the feasibility of the control design. PMID:25177713

  12. Robust fuzzy logic stabilization with disturbance elimination.

    PubMed

    Danapalasingam, Kumeresan A

    2014-01-01

    A robust fuzzy logic controller is proposed for stabilization and disturbance rejection in nonlinear control systems of a particular type. The dynamic feedback controller is designed as a combination of a control law that compensates for nonlinear terms in a control system and a dynamic fuzzy logic controller that addresses unknown model uncertainties and an unmeasured disturbance. Since it is challenging to derive a highly accurate mathematical model, the proposed controller requires only nominal functions of a control system. In this paper, a mathematical derivation is carried out to prove that the controller is able to achieve asymptotic stability by processing state measurements. Robustness here refers to the ability of the controller to asymptotically steer the state vector towards the origin in the presence of model uncertainties and a disturbance input. Simulation results of the robust fuzzy logic controller application in a magnetic levitation system demonstrate the feasibility of the control design.

  13. Robust nonlinear PID-like fuzzy logic control of a planar parallel (2PRP-PPR) manipulator.

    PubMed

    Londhe, P S; Singh, Yogesh; Santhakumar, M; Patre, B M; Waghmare, L M

    2016-07-01

    In this paper, a robust nonlinear proportional-integral-derivative (PID)-like fuzzy control scheme is presented and applied to complex trajectory tracking control of a 2PRP-PPR (P-prismatic, R-revolute) planar parallel manipulator (motion platform) with three degrees-of-freedom (DOF) in the presence of parameter uncertainties and external disturbances. The proposed control law consists of mainly two parts: first part uses a feed forward term to enhance the control activity and estimated perturbed term to compensate for the unknown effects namely external disturbances and unmodeled dynamics, and the second part uses a PID-like fuzzy logic control as a feedback portion to enhance the overall closed-loop stability of the system. Experimental results are presented to show the effectiveness of the proposed control scheme. PMID:27012441

  14. Robust nonlinear PID-like fuzzy logic control of a planar parallel (2PRP-PPR) manipulator.

    PubMed

    Londhe, P S; Singh, Yogesh; Santhakumar, M; Patre, B M; Waghmare, L M

    2016-07-01

    In this paper, a robust nonlinear proportional-integral-derivative (PID)-like fuzzy control scheme is presented and applied to complex trajectory tracking control of a 2PRP-PPR (P-prismatic, R-revolute) planar parallel manipulator (motion platform) with three degrees-of-freedom (DOF) in the presence of parameter uncertainties and external disturbances. The proposed control law consists of mainly two parts: first part uses a feed forward term to enhance the control activity and estimated perturbed term to compensate for the unknown effects namely external disturbances and unmodeled dynamics, and the second part uses a PID-like fuzzy logic control as a feedback portion to enhance the overall closed-loop stability of the system. Experimental results are presented to show the effectiveness of the proposed control scheme.

  15. Robust fuzzy control for stochastic Markovian jumping systems via sliding mode method

    NASA Astrophysics Data System (ADS)

    Chen, Bei; Jia, Tinggang; Niu, Yugang

    2016-07-01

    This paper considers the problem of sliding mode control for stochastic Markovian jumping systems by means of fuzzy method. The Takagi-Sugeno (T-S) fuzzy stochastic model subject to state-dependent noise is presented. A key feature in this work is to remove the restricted condition that each local system model had to share the same input channel, which is usually assumed in some existing results. The integral sliding surface is constructed for every mode and the connections among various sliding surfaces are established via a set of coupled matrices. Moreover, the present sliding mode controller including the transition rates of modes can cope with the effect of Markovian switching. It is shown that both the reachability of sliding surfaces and the stability of sliding mode dynamics can be ensured. Finally, numerical simulation results are given.

  16. Towards autonomous fuzzy control

    NASA Technical Reports Server (NTRS)

    Shenoi, Sujeet; Ramer, Arthur

    1993-01-01

    The efficient implementation of on-line adaptation in real time is an important research problem in fuzzy control. The goal is to develop autonomous self-organizing controllers employing system-independent control meta-knowledge which enables them to adjust their control policies depending on the systems they control and the environments in which they operate. An autonomous fuzzy controller would continuously observe system behavior while implementing its control actions and would use the outcomes of these actions to refine its control policy. It could be designed to lie dormant when its control actions give rise to adequate performance characteristics but could rapidly and autonomously initiate real-time adaptation whenever its performance degrades. Such an autonomous fuzzy controller would have immense practical value. It could accommodate individual variations in system characteristics and also compensate for degradations in system characteristics caused by wear and tear. It could also potentially deal with black-box systems and control scenarios. On-going research in autonomous fuzzy control is reported. The ultimate research objective is to develop robust and relatively inexpensive autonomous fuzzy control hardware suitable for use in real time environments.

  17. Robust design of a 2-DOF GMV controller: a direct self-tuning and fuzzy scheduling approach.

    PubMed

    Silveira, Antonio S; Rodríguez, Jaime E N; Coelho, Antonio A R

    2012-01-01

    This paper presents a study on self-tuning control strategies with generalized minimum variance control in a fixed two degree of freedom structure-or simply GMV2DOF-within two adaptive perspectives. One, from the process model point of view, using a recursive least squares estimator algorithm for direct self-tuning design, and another, using a Mamdani fuzzy GMV2DOF parameters scheduling technique based on analytical and physical interpretations from robustness analysis of the system. Both strategies are assessed by simulation and real plants experimentation environments composed of a damped pendulum and an under development wind tunnel from the Department of Automation and Systems of the Federal University of Santa Catarina.

  18. Universal Approximation of Mamdani Fuzzy Controllers and Fuzzy Logical Controllers

    NASA Technical Reports Server (NTRS)

    Yuan, Bo; Klir, George J.

    1997-01-01

    In this paper, we first distinguish two types of fuzzy controllers, Mamdani fuzzy controllers and fuzzy logical controllers. Mamdani fuzzy controllers are based on the idea of interpolation while fuzzy logical controllers are based on fuzzy logic in its narrow sense, i.e., fuzzy propositional logic. The two types of fuzzy controllers treat IF-THEN rules differently. In Mamdani fuzzy controllers, rules are treated disjunctively. In fuzzy logic controllers, rules are treated conjunctively. Finally, we provide a unified proof of the property of universal approximation for both types of fuzzy controllers.

  19. Fuzzy logic controller optimization

    DOEpatents

    Sepe, Jr., Raymond B; Miller, John Michael

    2004-03-23

    A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.

  20. Robust fuzzy mappings for QSAR studies.

    PubMed

    Kumar, Mohit; Thurow, Kerstin; Stoll, Norbert; Stoll, Regina

    2007-05-01

    This study presents a new robust method of developing quantitative structure-activity relationship (QSAR) models based on fuzzy mappings. An important issue in QSAR modelling is of robustness, i.e., model should not undergo overtraining and model performance should be least sensitive to the modelling errors associated with the chosen descriptors and structure of the model. We establish robust input-output mappings for QSAR studies based on fuzzy "if-then" rules. The identification of these mappings (i.e. the construction of fuzzy rules) is based on a robust criterion that the maximum possible value of energy-gain from modelling errors to the identification errors is minimum. The robustness of proposed approach has been illustrated with simulation studies and QSAR modelling examples. The method of robust fuzzy mappings has been compared with Bayesian regularized neural networks through the QSAR modelling examples of (1) carboquinones' data set, (2) benzodiazepine data set, and (3) predicting the rate constant for hydroxyl radical tropospheric degradation of 460 heterogeneous organic compounds.

  1. Fuzzy and neural control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.

  2. A new design of robust H∞ sliding mode control for uncertain stochastic T-S fuzzy time-delay systems.

    PubMed

    Gao, Qing; Feng, Gang; Xi, Zhiyu; Wang, Yong; Qiu, Jianbin

    2014-09-01

    In this paper, a novel dynamic sliding mode control scheme is proposed for a class of uncertain stochastic nonlinear time-delay systems represented by Takagi-Sugeno fuzzy models. The key advantage of the proposed scheme is that two very restrictive assumptions in most existing sliding mode control approaches for stochastic fuzzy systems have been removed. It is shown that the closed-loop control system trajectories can be driven onto the sliding surface in finite time almost certainly. It is also shown that the stochastic stability of the resulting sliding motion can be guaranteed in terms of linear matrix inequalities; moreover, the sliding-mode controller can be obtained simultaneously. Simulation results illustrating the advantages and effectiveness of the proposed approaches are also provided.

  3. Robust Fault Detection Using Robust Z1 Estimation and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Curry, Tramone; Collins, Emmanuel G., Jr.; Selekwa, Majura; Guo, Ten-Huei (Technical Monitor)

    2001-01-01

    This research considers the application of robust Z(sub 1), estimation in conjunction with fuzzy logic to robust fault detection for an aircraft fight control system. It begins with the development of robust Z(sub 1) estimators based on multiplier theory and then develops a fixed threshold approach to fault detection (FD). It then considers the use of fuzzy logic for robust residual evaluation and FD. Due to modeling errors and unmeasurable disturbances, it is difficult to distinguish between the effects of an actual fault and those caused by uncertainty and disturbance. Hence, it is the aim of a robust FD system to be sensitive to faults while remaining insensitive to uncertainty and disturbances. While fixed thresholds only allow a decision on whether a fault has or has not occurred, it is more valuable to have the residual evaluation lead to a conclusion related to the degree of, or probability of, a fault. Fuzzy logic is a viable means of determining the degree of a fault and allows the introduction of human observations that may not be incorporated in the rigorous threshold theory. Hence, fuzzy logic can provide a more reliable and informative fault detection process. Using an aircraft flight control system, the results of FD using robust Z(sub 1) estimation with a fixed threshold are demonstrated. FD that combines robust Z(sub 1) estimation and fuzzy logic is also demonstrated. It is seen that combining the robust estimator with fuzzy logic proves to be advantageous in increasing the sensitivity to smaller faults while remaining insensitive to uncertainty and disturbances.

  4. Fuzzy neural order robust of the non-linear systems

    SciTech Connect

    Madour, F.; Benmahammed, K.

    2008-06-12

    This article introduces a controller at structure of a network multi-layer neurons specified by the fuzzy reasoning of Takagi-Sugeno (TS) order one, the weights of the network represent the standard deviations of the membership function. This controller is applied to the ordering of a reversed pendulum. Changes in the entries and the exit, as of the environment changes of operation are introduced in order to test the robustness of the designed controller.

  5. Robust DTC Based on Adaptive Fuzzy Control of Double Star Synchronous Machine Drive with Fixed Switching Frequency

    NASA Astrophysics Data System (ADS)

    Boudana, Djamel; Nezli, Lazhari; Tlemçani, Abdelhalim; Mahmoudi, Mohand Oulhadj; Tadjine, Mohamed

    2012-05-01

    The double star synchronous machine (DSSM) is widely used for high power traction drives. It possesses several advantages over the conventional three phase machine. To reduce the torque ripple the DSSM are supplied with source voltage inverter (VSI). The model of the system DSSM-VSI is high order, multivariable and nonlinear. Further, big harmonic currents are generated. The aim of this paper is to develop a new direct torque adaptive fuzzy logic control in order to control DSSM and minimize the harmonics currents. Simulations results are given to show the effectiveness of our approach.

  6. A robust hybrid fuzzy-simulated annealing-intelligent water drops approach for tuning a distribution static compensator nonlinear controller in a distribution system

    NASA Astrophysics Data System (ADS)

    Bagheri Tolabi, Hajar; Hosseini, Rahil; Shakarami, Mahmoud Reza

    2016-06-01

    This article presents a novel hybrid optimization approach for a nonlinear controller of a distribution static compensator (DSTATCOM). The DSTATCOM is connected to a distribution system with the distributed generation units. The nonlinear control is based on partial feedback linearization. Two proportional-integral-derivative (PID) controllers regulate the voltage and track the output in this control system. In the conventional scheme, the trial-and-error method is used to determine the PID controller coefficients. This article uses a combination of a fuzzy system, simulated annealing (SA) and intelligent water drops (IWD) algorithms to optimize the parameters of the controllers. The obtained results reveal that the response of the optimized controlled system is effectively improved by finding a high-quality solution. The results confirm that using the tuning method based on the fuzzy-SA-IWD can significantly decrease the settling and rising times, the maximum overshoot and the steady-state error of the voltage step response of the DSTATCOM. The proposed hybrid tuning method for the partial feedback linearizing (PFL) controller achieved better regulation of the direct current voltage for the capacitor within the DSTATCOM. Furthermore, in the event of a fault the proposed controller tuned by the fuzzy-SA-IWD method showed better performance than the conventional controller or the PFL controller without optimization by the fuzzy-SA-IWD method with regard to both fault duration and clearing times.

  7. Fuzzy logic in control systems: Fuzzy logic controller. I, II

    NASA Technical Reports Server (NTRS)

    Lee, Chuen Chien

    1990-01-01

    Recent advances in the theory and applications of fuzzy-logic controllers (FLCs) are examined in an analytical review. The fundamental principles of fuzzy sets and fuzzy logic are recalled; the basic FLC components (fuzzification and defuzzification interfaces, knowledge base, and decision-making logic) are described; and the advantages of FLCs for incorporating expert knowledge into a control system are indicated. Particular attention is given to fuzzy implication functions, the interpretation of sentence connectives (and, also), compositional operators, and inference mechanisms. Applications discussed include the FLC-guided automobile developed by Sugeno and Nishida (1985), FLC hardware systems, FLCs for subway trains and ship-loading cranes, fuzzy-logic chips, and fuzzy computers.

  8. Decentralized fuzzy control of multiple nonholonomic vehicles

    SciTech Connect

    Driessen, B.J.; Feddema, J.T.; Kwok, K.S.

    1997-09-01

    This work considers the problem of controlling multiple nonholonomic vehicles so that they converge to a scent source without colliding with each other. Since the control is to be implemented on simple 8-bit microcontrollers, fuzzy control rules are used to simplify a linear quadratic regulator control design. The inputs to the fuzzy controllers for each vehicle are the (noisy) direction to the source, the distance to the closest neighbor vehicle, and the direction to the closest vehicle. These directions are discretized into four values: Forward, Behind, Left, and Right, and the distance into three values: Near, Far, Gone. The values of the control at these discrete values are obtained based on the collision-avoidance repulsive forces and the change of variables that reduces the motion control problem of each nonholonomic vehicle to a nonsingular one with two degrees of freedom, instead of three. A fuzzy inference system is used to obtain control values for inputs between the small number of discrete input values. Simulation results are provided which demonstrate that the fuzzy control law performs well compared to the exact controller. In fact, the fuzzy controller demonstrates improved robustness to noise.

  9. An approximation of interval type-2 fuzzy controllers using fuzzy ratio switching type-1 fuzzy controllers.

    PubMed

    Tao, C W; Taur, Jinshiuh; Chuang, Chen-Chia; Chang, Chia-Wen; Chang, Yeong-Hwa

    2011-06-01

    In this paper, the interval type-2 fuzzy controllers (FC(IT2)s) are approximated using the fuzzy ratio switching type-1 FCs to avoid the complex type-reduction process required for the interval type-2 FCs. The fuzzy ratio switching type-1 FCs (FC(FRST1)s) are designed to be a fuzzy combination of the possible-leftmost and possible-rightmost type-1 FCs. The fuzzy ratio switching type-1 fuzzy control technique is applied with the sliding control technique to realize the hybrid fuzzy ratio switching type-1 fuzzy sliding controllers (HFSC(FRST1)s) for the double-pendulum-and-cart system. The simulation results and comparisons with other approaches are provided to demonstrate the effectiveness of the proposed HFSC(FRST1)s. PMID:21189244

  10. Robust human motion detection via fuzzy set based image understanding

    NASA Astrophysics Data System (ADS)

    Li, Qin; You, Jane

    2006-02-01

    This paper presents an image understanding approach to monitor human movement and identify the abnormal circumstance by robust motion detection for the care of the elderly in a home-based environment. In contrast to the conventional approaches which apply either a single feature extraction scheme or a fixed object model for motion detection and tracking, we introduce a multiple feature extraction scheme for robust motion detection. The proposed algorithms include 1) multiple image feature extraction including the fuzzy compactness based detection of interesting points and fuzzy blobs, 2) adaptive image segmentation via multiple features, 3) Hierarchical motion detection, 4) a flexible model of human motion adapted in both rigid and non-rigid conditions, and 5) Fuzzy decision making via multiple features.

  11. A neural fuzzy controller learning by fuzzy error propagation

    NASA Technical Reports Server (NTRS)

    Nauck, Detlef; Kruse, Rudolf

    1992-01-01

    In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.

  12. Genetic algorithms in adaptive fuzzy control

    NASA Technical Reports Server (NTRS)

    Karr, C. Lucas; Harper, Tony R.

    1992-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.

  13. Robust control of accelerators

    SciTech Connect

    Johnson, W.J.D. ); Abdallah, C.T. )

    1990-01-01

    The problem of controlling the variations in the rf power system can be effectively cast as an application of modern control theory. Two components of this theory are obtaining a model and a feedback structure. The model inaccuracies influence the choice of a particular controller structure. Because of the modeling uncertainty, one has to design either a variable, adaptive controller or a fixed, robust controller to achieve the desired objective. The adaptive control scheme usually results in very complex hardware; and, therefore, shall not be pursued in this research. In contrast, the robust control methods leads to simpler hardware. However, robust control requires a more accurate mathematical model of the physical process than is required by adaptive control. Our research at the Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) has led to the development and implementation of a new robust rf power feedback system. In this paper, we report on our research progress. In section one, the robust control problem for the rf power system and the philosophy adopted for the beginning phase of our research is presented. In section two, the results of our proof-of-principle experiments are presented. In section three, we describe the actual controller configuration that is used in LANL FEL physics experiments. The novelty of our approach is that the control hardware is implemented directly in rf without demodulating, compensating, and then remodulating.

  14. Self-learning fuzzy controllers based on temporal back propagation

    NASA Technical Reports Server (NTRS)

    Jang, Jyh-Shing R.

    1992-01-01

    This paper presents a generalized control strategy that enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near-optimal manner. This methodology, termed temporal back propagation, is model-insensitive in the sense that it can deal with plants that can be represented in a piecewise-differentiable format, such as difference equations, neural networks, GMDH structures, and fuzzy models. Regardless of the numbers of inputs and outputs of the plants under consideration, the proposed approach can either refine the fuzzy if-then rules if human experts, or automatically derive the fuzzy if-then rules obtained from human experts are not available. The inverted pendulum system is employed as a test-bed to demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired fuzzy controller.

  15. Fuzzy-entropy based robust optimization criteria for tuned mass dampers

    NASA Astrophysics Data System (ADS)

    Marano, Giuseppe Carlo; Quaranta, Giuseppe; Sgobba, Sara

    2010-06-01

    Tuned mass dampers (TMD) are well known as one of the most widely adopted devices in vibration control passive strategies. In the past few decades, many methods have been developed to find the optimal parameters of a TMD installed on a structure and subjected to a random base excitation process, but most of them are usually based on an implicit assumption that all of the structural parameters are deterministic. However, in many real cases this simplification is unacceptable, so robust optimal design criteria becomes a viable alternative to better support engineers in the design process. In Robust Design Optimization (RDO) approaches, indeed the solution must be able to not only minimize the performance but also to limit its variation induced by uncertainty. Most of the currently available RDO methods are based on a probabilistic description of the model uncertainty, even if in many cases they are not able to explicitly include the influence of all the possible sources of uncertainties. Therefore, in this study, a fuzzy version of the robust TMD design optimization problem is proposed. The consistency of the fuzzy approach is studied with respect to the available non-probabilistic formulations reported in the literature and an application to an example of a robust design of a linear TMD subjected to base random vibrations in the presence of fuzzy uncertainties. The results show that the proposed fuzzy-based approach is able to give a set of optimal solutions both in terms of structural efficiency and sensitivity to mechanical and environmental uncertainties.

  16. Learning fuzzy logic control system

    NASA Technical Reports Server (NTRS)

    Lung, Leung Kam

    1994-01-01

    The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the

  17. Fuzzy Adaptive Control System of a Non-Stationary Plant

    NASA Astrophysics Data System (ADS)

    Nadezhdin, Igor S.; Goryunov, Alexey G.; Manenti, Flavio

    2016-08-01

    This paper proposes a hybrid fuzzy PID control logic, whose tuning parameters are provided in real time. The fuzzy controller tuning is made on the basis of Mamdani controller. In addition, this paper compares a fuzzy logic based PID with PID regulators whose tuning is performed by standard and well-known methods. In some cases the proposed tuning methodology ensures a control performance that is comparable to that guaranteed by simpler and more common tuning methods. However, in case of dynamic changes in the parameters of the controlled system, conventionally tuned PID controllers do not show to be robust enough, thus suggesting that fuzzy logic based PIDs are definitively more reliable and effective.

  18. Fuzzy attitude control for a nanosatellite in leo orbit

    NASA Astrophysics Data System (ADS)

    Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria; Aviles, Taisir

    Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In this work, a tailored fuzzy controller is designed for a nanosatellite and is compared with a traditional Proportional Integrative Derivative (PID) controller. Both control methodologies are compared within the same specific mission. The orbit height varies along the mission from injection at around 380 km down to a 200 km height orbit, and the mission requires pointing accuracy over the whole time. Due to both the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, a robust and efficient ADCS is required. For these reasons a fuzzy logic controller is implemented as the brain of the ADCS and its performance and efficiency are compared to a traditional PID. The fuzzy controller is designed in three separated controllers, each one acting on one of the Euler angles of the satellite in an orbital frame. The fuzzy memberships are constructed taking into account the mission requirements, the physical properties of the satellite and the expected performances. Both methodologies, fuzzy and PID, are fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. Finally both methods are probed in different environments to test their characteristics. The simulations show that the fuzzy controller is much more efficient (up to 65% less power required) in single maneuvers, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. A brief mission description is depicted as well as the design process of both ADCS controllers. Finally the validation process and the results obtained during the simulations are described. Those results show that the fuzzy logic methodology is valid for small

  19. Fuzzy logic based robotic controller

    NASA Technical Reports Server (NTRS)

    Attia, F.; Upadhyaya, M.

    1994-01-01

    Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.

  20. Robustness of fuzzy logic power system stabilizers applied to multimachine power system

    SciTech Connect

    Hiyama, Takashi . Dept. of Electrical Engineering and Computer Science)

    1994-09-01

    This paper investigates the robustness of fuzzy logic stabilizers using the information of speed and acceleration states of a study unit. The input signals are the real power output and/or the speed of the study unit. Non-linear simulations show the robustness of the fuzzy logic power system stabilizers. Experiments are also performed by using a micro-machine system. The results show the feasibility of proposed fuzzy logic stabilizer.

  1. Fuzzy logic control and optimization system

    DOEpatents

    Lou, Xinsheng

    2012-04-17

    A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  2. Fuzzy control of small servo motors

    NASA Technical Reports Server (NTRS)

    Maor, Ron; Jani, Yashvant

    1993-01-01

    To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.

  3. Design and implementation of fuzzy logic controllers. Thesis Final Report, 27 Jul. 1992 - 1 Jan. 1993

    NASA Technical Reports Server (NTRS)

    Abihana, Osama A.; Gonzalez, Oscar R.

    1993-01-01

    The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.

  4. Fuzzy logic control for camera tracking system

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  5. Robust control for uncertain structures

    NASA Technical Reports Server (NTRS)

    Douglas, Joel; Athans, Michael

    1991-01-01

    Viewgraphs on robust control for uncertain structures are presented. Topics covered include: robust linear quadratic regulator (RLQR) formulas; mismatched LQR design; RLQR design; interpretations of RLQR design; disturbance rejection; and performance comparisons: RLQR vs. mismatched LQR.

  6. Composite fuzzy sliding mode control of nonlinear singularly perturbed systems.

    PubMed

    Nagarale, Ravindrakumar M; Patre, B M

    2014-05-01

    This paper deals with the robust asymptotic stabilization for a class of nonlinear singularly perturbed systems using the fuzzy sliding mode control technique. In the proposed approach the original system is decomposed into two subsystems as slow and fast models by the singularly perturbed method. The composite fuzzy sliding mode controller is designed for stabilizing the full order system by combining separately designed slow and fast fuzzy sliding mode controllers. The two-time scale design approach minimizes the effect of boundary layer system on the full order system. A stability analysis allows us to provide sufficient conditions for the asymptotic stability of the full order closed-loop system. The simulation results show improved system performance of the proposed controller as compared to existing methods. The experimentation results validate the effectiveness of the proposed controller.

  7. A fuzzy classifier system for process control

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Phillips, J. C.

    1994-01-01

    A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.

  8. Refining fuzzy logic controllers with machine learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1994-01-01

    In this paper, we describe the GARIC (Generalized Approximate Reasoning-Based Intelligent Control) architecture, which learns from its past performance and modifies the labels in the fuzzy rules to improve performance. It uses fuzzy reinforcement learning which is a hybrid method of fuzzy logic and reinforcement learning. This technology can simplify and automate the application of fuzzy logic control to a variety of systems. GARIC has been applied in simulation studies of the Space Shuttle rendezvous and docking experiments. It has the potential of being applied in other aerospace systems as well as in consumer products such as appliances, cameras, and cars.

  9. A fuzzy control design case: The fuzzy PLL

    NASA Technical Reports Server (NTRS)

    Teodorescu, H. N.; Bogdan, I.

    1992-01-01

    The aim of this paper is to present a typical fuzzy control design case. The analyzed controlled systems are the phase-locked loops (PLL's)--classic systems realized in both analogic and digital technology. The crisp PLL devices are well known.

  10. Design and performance comparison of fuzzy logic based tracking controllers

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1992-01-01

    Several camera tracking controllers based on fuzzy logic principles have been designed and tested in software simulation in the software technology branch at the Johnson Space Center. The fuzzy logic based controllers utilize range measurement and pixel positions from the image as input parameters and provide pan and tilt gimble rate commands as output. Two designs of the rulebase and tuning process applied to the membership functions are discussed in light of optimizing performance. Seven test cases have been designed to test the performance of the controllers for proximity operations where approaches like v-bar, fly-around and station keeping are performed. The controllers are compared in terms of responsiveness, and ability to maintain the object in the field-of-view of the camera. Advantages of the fuzzy logic approach with respect to the conventional approach have been discussed in terms of simplicity and robustness.

  11. Fuzzy-based adaptive bandwidth control for loss guarantees.

    PubMed

    Siripongwutikorn, Peerapon; Banerjee, Sujata; Tipper, David

    2005-09-01

    This paper presents the use of adaptive bandwidth control (ABC) for a quantitative packet loss rate guarantee to aggregate traffic in packet switched networks. ABC starts with some initial amount of bandwidth allocated to a queue and adjusts it over time based on online measurements of system states to ensure that the allocated bandwidth is just enough to attain the specified loss requirement. Consequently, no a priori detailed traffic information is required, making ABC more suitable for efficient aggregate quality of service (QoS) provisioning. We propose an ABC algorithm called augmented Fuzzy (A-Fuzzy) control, whereby fuzzy logic control is used to keep an average queue length at an appropriate target value, and the measured packet loss rate is used to augment the standard control to achieve better performance. An extensive simulation study based on both theoretical traffic models and real traffic traces under a wide range of system configurations demonstrates that the A-Fuzzy control itself is highly robust, yields high bandwidth utilization, and is indeed a viable alternative and improvement to static bandwidth allocation (SBA) and existing adaptive bandwidth allocation schemes. Additionally, we develop a simple and efficient measurement-based admission control procedure which limits the amount of input traffic in order to maintain the performance of the A-Fuzzy control at an acceptable level.

  12. Application of fuzzy logic in robot control

    NASA Astrophysics Data System (ADS)

    Kemppainen, Seppo; Roening, Juha

    1992-11-01

    During the past several years, fuzzy control has emerged as a suitable control strategy for many complex and nonlinear control problems. The control provided by fuzzy logic is both smooth and accurate. Also the 'if-then' rules of fuzzy control systems are easy to understand and relatively easy to develop. This paper presents a toolkit which is used in the implementation of fuzzy control system. The toolkit consists of C++ class library which computes inferences in fuzzy logic. The toolkit is used to implement a fuzzy control system which controls the movement of a simulated mobile robot. The proposed architecture consists of several rulesets. Each ruleset specializes in some control task, for example, there are rulesets for going around an obstacle, avoiding a moving obstacle, going through a door, etc. The multiple ruleset fuzzy control system is used to guide the simulated mobile robot to a given goal in an unknown environment. With the proposed multiple ruleset architecture complex control problems can be solved while single rulesets remain simple and efficient.

  13. Modeling and control of nonlinear systems using novel fuzzy wavelet networks: The output adaptive control approach

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyyed Hossein; Noroozi, Navid; Safavi, Ali Akbar; Ebadat, Afrooz

    2011-09-01

    This paper proposes an observer based self-structuring robust adaptive fuzzy wave-net (FWN) controller for a class of nonlinear uncertain multi-input multi-output systems. The control signal is comprised of two parts. The first part arises from an adaptive fuzzy wave-net based controller that approximates the system structural uncertainties. The second part comes from a robust H∞ based controller that is used to attenuate the effect of function approximation error and disturbance. Moreover, a new self structuring algorithm is proposed to determine the location of basis functions. Simulation results are provided for a two DOF robot to show the effectiveness of the proposed method.

  14. Applications of fuzzy logic to control and decision making

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    Long range space missions will require high operational efficiency as well as autonomy to enhance the effectivity of performance. Fuzzy logic technology has been shown to be powerful and robust in interpreting imprecise measurements and generating appropriate control decisions for many space operations. Several applications are underway, studying the fuzzy logic approach to solving control and decision making problems. Fuzzy logic algorithms for relative motion and attitude control have been developed and demonstrated for proximity operations. Based on this experience, motion control algorithms that include obstacle avoidance were developed for a Mars Rover prototype for maneuvering during the sample collection process. A concept of an intelligent sensor system that can identify objects and track them continuously and learn from its environment is under development to support traffic management and proximity operations around the Space Station Freedom. For safe and reliable operation of Lunar/Mars based crew quarters, high speed controllers with ability to combine imprecise measurements from several sensors is required. A fuzzy logic approach that uses high speed fuzzy hardware chips is being studied.

  15. Robust nonlinear variable selective control for networked systems

    NASA Astrophysics Data System (ADS)

    Rahmani, Behrooz

    2016-10-01

    This paper is concerned with the networked control of a class of uncertain nonlinear systems. In this way, Takagi-Sugeno (T-S) fuzzy modelling is used to extend the previously proposed variable selective control (VSC) methodology to nonlinear systems. This extension is based upon the decomposition of the nonlinear system to a set of fuzzy-blended locally linearised subsystems and further application of the VSC methodology to each subsystem. To increase the applicability of the T-S approach for uncertain nonlinear networked control systems, this study considers the asynchronous premise variables in the plant and the controller, and then introduces a robust stability analysis and control synthesis. The resulting optimal switching-fuzzy controller provides a minimum guaranteed cost on an H2 performance index. Simulation studies on three nonlinear benchmark problems demonstrate the effectiveness of the proposed method.

  16. Control of a flexible beam using fuzzy logic

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1991-01-01

    The goal of this project, funded under the NASA Summer Faculty Fellowship program, was to evaluate control methods utilizing fuzzy logic for applicability to control of flexible structures. This was done by applying these methods to control of the Control Structures Interaction Suitcase Demonstrator developed at Marshall Space Flight Center. The CSI Suitcase Demonstrator is a flexible beam, mounted at one end with springs and bearing, and with a single actuator capable of rotating the beam about a pin at the fixed end. The control objective is to return the tip of the free end to a zero error position (from a nonzero initial condition). It is neither completely controllable nor completely observable. Fuzzy logic control was demonstrated to successfully control the system and to exhibit desirable robustness properties compared to conventional control.

  17. Synthesis of nonlinear control strategies from fuzzy logic control algorithms

    NASA Technical Reports Server (NTRS)

    Langari, Reza

    1993-01-01

    Fuzzy control has been recognized as an alternative to conventional control techniques in situations where the plant model is not sufficiently well known to warrant the application of conventional control techniques. Precisely what fuzzy control does and how it does what it does is not quite clear, however. This important issue is discussed and in particular it is shown how a given fuzzy control scheme can resolve into a nonlinear control law and that in those situations the success of fuzzy control hinges on its ability to compensate for nonlinearities in plant dynamics.

  18. Fuzzy Modeling and Control of HIV Infection

    PubMed Central

    Zarei, Hassan; Kamyad, Ali Vahidian; Heydari, Ali Akbar

    2012-01-01

    The present study proposes a fuzzy mathematical model of HIV infection consisting of a linear fuzzy differential equations (FDEs) system describing the ambiguous immune cells level and the viral load which are due to the intrinsic fuzziness of the immune system's strength in HIV-infected patients. The immune cells in question are considered CD4+ T-cells and cytotoxic T-lymphocytes (CTLs). The dynamic behavior of the immune cells level and the viral load within the three groups of patients with weak, moderate, and strong immune systems are analyzed and compared. Moreover, the approximate explicit solutions of the proposed model are derived using a fitting-based method. In particular, a fuzzy control function indicating the drug dosage is incorporated into the proposed model and a fuzzy optimal control problem (FOCP) minimizing both the viral load and the drug costs is constructed. An optimality condition is achieved as a fuzzy boundary value problem (FBVP). In addition, the optimal fuzzy control function is completely characterized and a numerical solution for the optimality system is computed. PMID:22536298

  19. Microturbine control based on fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Yan, Shijie; Bian, Chunyuan; Wang, Zhiqiang

    2006-11-01

    As microturbine generator (MTG) is a clean, efficient, low cost and reliable energy supply system. From outside characteristics of MTG, it is multi-variable, time-varying and coupling system, so it is difficult to be identified on-line and conventional control law adopted before cannot achieve desirable result. A novel fuzzy-neural networks (FNN) control algorithm was proposed in combining with the conventional PID control. In the paper, IF-THEN rules for tuning were applied by a first-order Sugeno fuzzy model with seven fuzzy rules and the membership function was given as the continuous GAUSSIAN function. Some sample data were utilized to train FNN. Through adjusting shape of membership function and weight continually, objective of auto-tuning fuzzy-rules can be achieved. The FNN algorithm had been applied to "100kW Microturbine control and power converter system". The results of simulation and experiment are shown that the algorithm can work very well.

  20. Fuzzy controllers in nuclear material accounting

    SciTech Connect

    Zardecki, A.

    1994-10-01

    Fuzzy controllers are applied to predicting and modeling a time series, with particular emphasis on anomaly detection in nuclear material inventory differences. As compared to neural networks, the fuzzy controllers can operate in real time; their learning process does not require many iterations to converge. For this reason fuzzy controllers are potentially useful in time series forecasting, where the authors want to detect and identify trends in real time. They describe an object-oriented implementation of the algorithm advanced by Wang and Mendel. Numerical results are presented both for inventory data and time series corresponding to chaotic situations, such as encountered in the context of strange attractors. In the latter case, the effects of noise on the predictive power of the fuzzy controller are explored.

  1. Fuzzy logic based intelligent control of a variable speed cage machine wind generation system

    SciTech Connect

    Simoes, M.G.; Bose, B.K.; Spiegel, R.J.

    1997-01-01

    The paper describes a variable speed wind generation system where fuzzy logic principles are used for efficiency optimization and performance enhancement control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which pumps power to a utility grid or can supply to an autonomous system. The generation system has fuzzy logic control with vector control in the inner loops. A fuzzy controller tracks the generator speed with the wind velocity to extract the maximum power. A second fuzzy controller programs the machine flux for light load efficiency improvement, and a third fuzzy controller gives robust speed control against wind gust and turbine oscillatory torque. The complete control system has been developed, analyzed, and validated by simulation study. Performances have then been evaluated in detail.

  2. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  3. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  4. Industrial application of fuzzy control in bioprocesses.

    PubMed

    Honda, Hiroyuki; Kobayashi, Takeshi

    2004-01-01

    In a bioprocess, for example a fermentation process, many biological reactions are always working in intracellular space and the control of such a process is very complicated. Bioprocesses have therefore been controlled by the judgment of the experts who are the skilled operators and have much experience in the control of such processes. Such experience is normally described in terms of linguistic IF-THEN rules. Fuzzy inference is a powerful tool for incorporating linguistic rules into computer control of such processes. Fuzzy control is divided into two types--direct fuzzy control of process variables, for example sugar feed rate and fermentation temperature, and indirect control via phase recognition. In bioprocess control the experts decide the value of controllable process variables such as sugar feed rate or temperature as output data from several state variables as input data. Fuzzy control is regarded as a computational algorithm in which the causal relationship between input and output data are incorporated. In Japan fuzzy control has already been applied to practical industrial processes such as production of pravastatin precursor and vitamin B2 and to the Japanese sake mashing process; these examples are reviewed. In addition, an advanced control tool developed from a study on fuzzy control, fuzzy neural networks (FNN), are introduced. FNN can involve complicated causality between input and output data in a network model. FNN have been proven to be applicable to a research in biomedicine, for example modeling of the complicated causality between electroencephalogram or gene expression profiling data and prognostic prediction. Successful results on this research will be also explained.

  5. Convergent method of and apparatus for distributed control of robotic systems using fuzzy logic

    DOEpatents

    Feddema, John T.; Driessen, Brian J.; Kwok, Kwan S.

    2002-01-01

    A decentralized fuzzy logic control system for one vehicle or for multiple robotic vehicles provides a way to control each vehicle to converge on a goal without collisions between vehicles or collisions with other obstacles, in the presence of noisy input measurements and a limited amount of compute-power and memory on board each robotic vehicle. The fuzzy controller demonstrates improved robustness to noise relative to an exact controller.

  6. Universal fuzzy models and universal fuzzy controllers for discrete-time nonlinear systems.

    PubMed

    Gao, Qing; Feng, Gang; Dong, Daoyi; Liu, Lu

    2015-05-01

    This paper investigates the problems of universal fuzzy model and universal fuzzy controller for discrete-time nonaffine nonlinear systems (NNSs). It is shown that a kind of generalized T-S fuzzy model is the universal fuzzy model for discrete-time NNSs satisfying a sufficient condition. The results on universal fuzzy controllers are presented for two classes of discrete-time stabilizable NNSs. Constructive procedures are provided to construct the model reference fuzzy controllers. The simulation example of an inverted pendulum is presented to illustrate the effectiveness and advantages of the proposed method. These results significantly extend the approach for potential applications in solving complex engineering problems.

  7. Robust control of hypersonic aircraft

    NASA Astrophysics Data System (ADS)

    Fan, Yong-hua; Yang, Jun; Zhang, Yu-zhuo

    2007-11-01

    Design of a robust controller for the longitudinal dynamics of a hypersonic aircraft by using parameter space method is present. The desirable poles are mapped to the parameter space of the controller using pole placement approach in this method. The intersection of the parameter space is the common controller for the multiple mode system. This controller can meet the need of the different phases of aircraft. It has been proved by simulation that the controller has highly performance of precision and robustness for the disturbance caused by separation, cowl open, fuel on and fuel off and perturbation caused by unknown dynamics.

  8. Fuzzy control of bioprocess in Japan.

    PubMed

    Honda, H; Kobayashi, T

    2000-01-01

    Process control of bioprocess has been carried out by the judgment of the experts, who are the skilled operators and have lots of experiences for the control of the process. In almost all cases, those experiences are described linguistic IF-THEN rules. Fussy inference is one of the powerful tools to incorporate the linguistic rules to the computer for process control. Fuzzy control are divided into two types; one is the direct fuzzy control of process variables such as sugar feed rate in fed-batch culture and fermentation temperature in batch operation. The other is the indirect control of bioprocess, in which at first the phase recognition is carried out by fuzzy inference and the control strategies constructed in each phase are used for the control of process variables. In Japan, the fuzzy control has already been applied to practical industrial productions, such as pravastatin precursor, vitamin B2, and Japanese sake mashing process. In this review, these industrial approaches of fuzzy control are introduced.

  9. Fuzzy control of bioprocess in Japan.

    PubMed

    Honda, H; Kobayashi, T

    2000-01-01

    Process control of bioprocess has been carried out by the judgment of the experts, who are the skilled operators and have lots of experiences for the control of the process. In almost all cases, those experiences are described linguistic IF-THEN rules. Fussy inference is one of the powerful tools to incorporate the linguistic rules to the computer for process control. Fuzzy control are divided into two types; one is the direct fuzzy control of process variables such as sugar feed rate in fed-batch culture and fermentation temperature in batch operation. The other is the indirect control of bioprocess, in which at first the phase recognition is carried out by fuzzy inference and the control strategies constructed in each phase are used for the control of process variables. In Japan, the fuzzy control has already been applied to practical industrial productions, such as pravastatin precursor, vitamin B2, and Japanese sake mashing process. In this review, these industrial approaches of fuzzy control are introduced. PMID:10874995

  10. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

    2008-06-01

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.

  11. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    SciTech Connect

    Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

    2008-06-12

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.

  12. An application of fuzzy logic to power generation control

    SciTech Connect

    Tarabishy, M.N.; Grudzinski, J.J.

    1996-10-01

    The high demand for more energy at lower prices, coupled with tighter safety and environmental regulations made it necessary for utility companies to provide reliable power more efficiently, and for that purpose new control methods are being utilized to meet those challenges. Fuzzy Logic Control (FLC) technology produces controllers that are more robust at lower development cost and time. These qualities give FLC advantage over conventional control technologies particularly in dealing with increasingly complex nonlinear systems. In this paper the authors examine some of the main applications of FLC in power systems and demonstrate it`s usefulness in the control of a gas turbine.

  13. Study on Fuzzy Adaptive Fractional Order PIλDμ Control for Maglev Guiding System

    NASA Astrophysics Data System (ADS)

    Hu, Qing; Hu, Yuwei

    The mathematical model of the linear elevator maglev guiding system is analyzed in this paper. For the linear elevator needs strong stability and robustness to run, the integer order PID was expanded to the fractional order, in order to improve the steady state precision, rapidity and robustness of the system, enhance the accuracy of the parameter in fractional order PIλDμ controller, the fuzzy control is combined with the fractional order PIλDμ control, using the fuzzy logic achieves the parameters online adjustment. The simulations reveal that the system has faster response speed, higher tracking precision, and has stronger robustness to the disturbance.

  14. Terminology and concepts of control and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Aldridge, Jack; Lea, Robert; Jani, Yashvant; Weiss, Jonathan

    1990-01-01

    Viewgraphs on terminology and concepts of control and fuzzy logic are presented. Topics covered include: control systems; issues in the design of a control system; state space control for inverted pendulum; proportional-integral-derivative (PID) controller; fuzzy controller; and fuzzy rule processing.

  15. Robust controls with structured perturbations

    NASA Technical Reports Server (NTRS)

    Keel, Leehyun

    1993-01-01

    This final report summarizes the recent results obtained by the principal investigator and his coworkers on the robust stability and control of systems containing parametric uncertainty. The starting point is a generalization of Kharitonov's theorem obtained in 1989, and its generalization to the multilinear case, the singling out of extremal stability subsets, and other ramifications now constitutes an extensive and coherent theory of robust parametric stability that is summarized in the results contained here.

  16. Fault tolerant control based on interval type-2 fuzzy sliding mode controller for coaxial trirotor aircraft.

    PubMed

    Zeghlache, Samir; Kara, Kamel; Saigaa, Djamel

    2015-11-01

    In this paper, a robust controller for a Six Degrees of Freedom (6 DOF) coaxial trirotor helicopter control is proposed in presence of defects in the system. A control strategy based on the coupling of the interval type-2 fuzzy logic control and sliding mode control technique are used to design a controller. The main purpose of this work is to eliminate the chattering phenomenon and guaranteeing the stability and the robustness of the system. In order to achieve this goal, interval type-2 fuzzy logic control has been used to generate the discontinuous control signal. The simulation results have shown that the proposed control strategy can greatly alleviate the chattering effect, and perform good reference tracking in presence of defects in the system. PMID:26428878

  17. Fault tolerant control based on interval type-2 fuzzy sliding mode controller for coaxial trirotor aircraft.

    PubMed

    Zeghlache, Samir; Kara, Kamel; Saigaa, Djamel

    2015-11-01

    In this paper, a robust controller for a Six Degrees of Freedom (6 DOF) coaxial trirotor helicopter control is proposed in presence of defects in the system. A control strategy based on the coupling of the interval type-2 fuzzy logic control and sliding mode control technique are used to design a controller. The main purpose of this work is to eliminate the chattering phenomenon and guaranteeing the stability and the robustness of the system. In order to achieve this goal, interval type-2 fuzzy logic control has been used to generate the discontinuous control signal. The simulation results have shown that the proposed control strategy can greatly alleviate the chattering effect, and perform good reference tracking in presence of defects in the system.

  18. Comparison between the performance of two classes of fuzzy controllers

    NASA Technical Reports Server (NTRS)

    Janabi, T. H.; Sultan, L. H.

    1992-01-01

    This paper presents an application comparison between two classes of fuzzy controllers: the Clearness Transformation Fuzzy Controller (CTFC) and the CRI-based Fuzzy Controller. The comparison is performed by studying the application of the controllers to simulation examples of nonlinear systems. The CTFC is a new approach for the organization of fuzzy controllers based on a cognitive model of parameter driven control, the notion of fuzzy patterns to represent fuzzy knowledge and the Clearness Transformation Rule of Inference (CTRI) for approximate reasoning. The approach facilitates the implementation of the basic modules of the controller: the fuzzifier, defuzzifier, and the control protocol in a rule-based architecture. The CTRI scheme for approximate reasoning does not require the formation of fuzzy relation matrices yielding improved performance in comparison with the traditional organization of fuzzy controllers.

  19. Adapted Fuzzy Controller for Astronomical Telescope Tracking

    NASA Astrophysics Data System (ADS)

    Attia, Abdel-Fattah

    2004-04-01

    This paper presents a novel application of fuzzy logic (FL) controller driven by an adaptive fuzzy set (AFS) for position tracking of the telescope driven by electric motor. Also, the proposed FL controller, driven by AFS, is compared with a classical FL control, driven by a static fuzzy set (SFS). Both FL controllers algorithm use the position error and its rate of change as an input vector. The mathematical model of the telescope driven by electric motor is highly nonlinear differential equations. Therefore the use of the artificial intelligent controller, such as FL is much better than the conventional controller, to cover a wide range of operating conditions. So, the output of FL control is utilized to force the electric drives, of the telescope, to satisfy a perfect matching of the predefined desired position of the telescope arms. Both of FL controllers, using AFS and SFS, are simulated and tested when the system is subjected to a step change in reference value. In addition, these simulation results are compared with the conventional Proportional-Derivative (PD) controller, driven by fixed gain. The proposed FL, using an adaptive fuzzy set, improve the dynamic response of the overall system by improving the damping coefficient and decreasing the rise time and settling time compared with other two controllers.

  20. Fuzzy Control for the Swing-Up of the Inverted Pendulum System

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Zhu, Peiyi

    The nonlinear inverted-pendulum system is an unstable and non-minimum phase system. It is often used to be the controlled target to test the qualities of the controllers like PID, optimal LQR, Neural network, adaptive, and fuzzy logic controller, etc. This paper will describe a new fuzzy controller for an inverted pendulum system. In this case, a fuzzy controller followed with a state space controller was implemented for control. It is achieved to design a control condition for the pendulum to swing up in one direction only because that the movement of throwing a bowling ball can only from one side to the unstable equilibrium point. Simulation and experimental results show that the fuzzy control can swing up the single inverted pendulum in short time with well stability and strong robustness.

  1. Fuzzy logic control of telerobot manipulators

    NASA Technical Reports Server (NTRS)

    Franke, Ernest A.; Nedungadi, Ashok

    1992-01-01

    Telerobot systems for advanced applications will require manipulators with redundant 'degrees of freedom' (DOF) that are capable of adapting manipulator configurations to avoid obstacles while achieving the user specified goal. Conventional methods for control of manipulators (based on solution of the inverse kinematics) cannot be easily extended to these situations. Fuzzy logic control offers a possible solution to these needs. A current research program at SRI developed a fuzzy logic controller for a redundant, 4 DOF, planar manipulator. The manipulator end point trajectory can be specified by either a computer program (robot mode) or by manual input (teleoperator). The approach used expresses end-point error and the location of manipulator joints as fuzzy variables. Joint motions are determined by a fuzzy rule set without requiring solution of the inverse kinematics. Additional rules for sensor data, obstacle avoidance and preferred manipulator configuration, e.g., 'righty' or 'lefty', are easily accommodated. The procedure used to generate the fuzzy rules can be extended to higher DOF systems.

  2. Two-stage fuzzy-stochastic robust programming: a hybrid model for regional air quality management.

    PubMed

    Li, Yongping; Huang, Guo H; Veawab, Amornvadee; Nie, Xianghui; Liu, Lei

    2006-08-01

    In this study, a hybrid two-stage fuzzy-stochastic robust programming (TFSRP) model is developed and applied to the planning of an air-quality management system. As an extension of existing fuzzy-robust programming and two-stage stochastic programming methods, the TFSRP can explicitly address complexities and uncertainties of the study system without unrealistic simplifications. Uncertain parameters can be expressed as probability density and/or fuzzy membership functions, such that robustness of the optimization efforts can be enhanced. Moreover, economic penalties as corrective measures against any infeasibilities arising from the uncertainties are taken into account. This method can, thus, provide a linkage to predefined policies determined by authorities that have to be respected when a modeling effort is undertaken. In its solution algorithm, the fuzzy decision space can be delimited through specification of the uncertainties using dimensional enlargement of the original fuzzy constraints. The developed model is applied to a case study of regional air quality management. The results indicate that reasonable solutions have been obtained. The solutions can be used for further generating pollution-mitigation alternatives with minimized system costs and for providing a more solid support for sound environmental decisions. PMID:16933639

  3. Two-stage fuzzy-stochastic robust programming: a hybrid model for regional air quality management

    SciTech Connect

    Yongping Li; Guo H. Huang; Amornvadee Veawab; Xianghui Nie; Lei Liu

    2006-08-15

    In this study, a hybrid two-stage fuzzy-stochastic robust programming (TFSRP) model is developed and applied to the planning of an air-quality management system. As an extension of existing fuzzy-robust programming and two stage stochastic programming methods, the TFSRP can explicitly address complexities and uncertainties of the study system without unrealistic simplifications. Uncertain parameters can be expressed as probability density and/or fuzzy membership functions, such that robustness of the optimization efforts can be enhanced. Moreover, economic penalties as corrective measures against any infeasibilities arising from the uncertainties are taken into account. This method can, thus, provide a linkage to predefined policies determined by authorities that have to be respected when a modeling effort is undertaken. In its solution algorithm, the fuzzy decision space can be delimited through specification of the uncertainties using dimensional enlargement of the original fuzzy constraints. The developed model is applied to a case study of regional air quality management at two coal-fired power plants considered as major sulfur dioxide emission sources. The results indicate that reasonable solutions have been obtained. The solutions can be used for further generating pollution-mitigation alternatives with minimized system costs and for providing a more solid support for sound environmental decisions. 61 refs., 7 figs., 6 tabs.

  4. Two-stage fuzzy-stochastic robust programming: a hybrid model for regional air quality management.

    PubMed

    Li, Yongping; Huang, Guo H; Veawab, Amornvadee; Nie, Xianghui; Liu, Lei

    2006-08-01

    In this study, a hybrid two-stage fuzzy-stochastic robust programming (TFSRP) model is developed and applied to the planning of an air-quality management system. As an extension of existing fuzzy-robust programming and two-stage stochastic programming methods, the TFSRP can explicitly address complexities and uncertainties of the study system without unrealistic simplifications. Uncertain parameters can be expressed as probability density and/or fuzzy membership functions, such that robustness of the optimization efforts can be enhanced. Moreover, economic penalties as corrective measures against any infeasibilities arising from the uncertainties are taken into account. This method can, thus, provide a linkage to predefined policies determined by authorities that have to be respected when a modeling effort is undertaken. In its solution algorithm, the fuzzy decision space can be delimited through specification of the uncertainties using dimensional enlargement of the original fuzzy constraints. The developed model is applied to a case study of regional air quality management. The results indicate that reasonable solutions have been obtained. The solutions can be used for further generating pollution-mitigation alternatives with minimized system costs and for providing a more solid support for sound environmental decisions.

  5. Designing robust control laws using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Marrison, Chris

    1994-01-01

    The purpose of this research is to create a method of finding practical, robust control laws. The robustness of a controller is judged by Stochastic Robustness metrics and the level of robustness is optimized by searching for design parameters that minimize a robustness cost function.

  6. New fuzzy wavelet network for modeling and control: The modeling approach

    NASA Astrophysics Data System (ADS)

    Ebadat, Afrooz; Noroozi, Navid; Safavi, Ali Akbar; Mousavi, Seyyed Hossein

    2011-08-01

    In this paper, a fuzzy wavelet network is proposed to approximate arbitrary nonlinear functions based on the theory of multiresolution analysis (MRA) of wavelet transform and fuzzy concepts. The presented network combines TSK fuzzy models with wavelet transform and ROLS learning algorithm while still preserve the property of linearity in parameters. In order to reduce the number of fuzzy rules, fuzzy clustering is invoked. In the clustering algorithm, those wavelets that are closer to each other in the sense of the Euclidean norm are placed in a group and are used in the consequent part of a fuzzy rule. Antecedent parts of the rules are Gaussian membership functions. Determination of the deviation parameter is performed with the help of gold partition method. Here, mean of each function is derived by averaging center of all wavelets that are related to that particular rule. The overall developed fuzzy wavelet network is called fuzzy wave-net and simulation results show superior performance over previous networks. The present work is complemented by a second part which focuses on the control aspects and to be published in this journal( [17]). This paper proposes an observer based self-structuring robust adaptive fuzzy wave-net (FWN) controller for a class of nonlinear uncertain multi-input multi-output systems.

  7. Capacity planning for waste management systems: an interval fuzzy robust dynamic programming approach.

    PubMed

    Nie, Xianghui; Huang, Guo H; Li, Yongping

    2009-11-01

    This study integrates the concepts of interval numbers and fuzzy sets into optimization analysis by dynamic programming as a means of accounting for system uncertainty. The developed interval fuzzy robust dynamic programming (IFRDP) model improves upon previous interval dynamic programming methods. It allows highly uncertain information to be effectively communicated into the optimization process through introducing the concept of fuzzy boundary interval and providing an interval-parameter fuzzy robust programming method for an embedded linear programming problem. Consequently, robustness of the optimization process and solution can be enhanced. The modeling approach is applied to a hypothetical problem for the planning of waste-flow allocation and treatment/disposal facility expansion within a municipal solid waste (MSW) management system. Interval solutions for capacity expansion of waste management facilities and relevant waste-flow allocation are generated and interpreted to provide useful decision alternatives. The results indicate that robust and useful solutions can be obtained, and the proposed IFRDP approach is applicable to practical problems that are associated with highly complex and uncertain information.

  8. Robust flight control of rotorcraft

    NASA Astrophysics Data System (ADS)

    Pechner, Adam Daniel

    With recent design improvement in fixed wing aircraft, there has been a considerable interest in the design of robust flight control systems to compensate for the inherent instability necessary to achieve desired performance. Such systems are designed for maximum available retention of stability and performance in the presence of significant vehicle damage or system failure. The rotorcraft industry has shown similar interest in adopting these reconfigurable flight control schemes specifically because of their ability to reject disturbance inputs and provide a significant amount of robustness for all but the most catastrophic of situations. The research summarized herein focuses on the extension of the pseudo-sliding mode control design procedure interpreted in the frequency domain. Application of the technique is employed and simulated on two well known helicopters, a simplified model of a hovering Sikorsky S-61 and the military's Black Hawk UH-60A also produced by Sikorsky. The Sikorsky helicopter model details are readily available and was chosen because it can be limited to pitch and roll motion reducing the number of degrees of freedom and yet contains two degrees of freedom, which is the minimum requirement in proving the validity of the pseudo-sliding control technique. The full order model of a hovering Black Hawk system was included both as a comparison to the S-61 helicopter design system and as a means to demonstrate the scaleability and effectiveness of the control technique on sophisticated systems where design robustness is of critical concern.

  9. Genetic algorithm based fuzzy control of spacecraft autonomous rendezvous

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Freeman, L. M.; Meredith, D. L.

    1990-01-01

    The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the uncertainty inherent in most control problems to be incorporated into conventional expert systems. Although fuzzy logic based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective decision. High performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the authors for the rendezvous problem. Thus, genetic algorithms are potentially an effective and structured approach for learning fuzzy membership functions.

  10. A Laboratory Testbed for Embedded Fuzzy Control

    ERIC Educational Resources Information Center

    Srivastava, S.; Sukumar, V.; Bhasin, P. S.; Arun Kumar, D.

    2011-01-01

    This paper presents a novel scheme called "Laboratory Testbed for Embedded Fuzzy Control of a Real Time Nonlinear System." The idea is based upon the fact that project-based learning motivates students to learn actively and to use their engineering skills acquired in their previous years of study. It also fosters initiative and focuses students'…

  11. Fuzzy Control/Space Station automation

    NASA Technical Reports Server (NTRS)

    Gersh, Mark

    1990-01-01

    Viewgraphs on fuzzy control/space station automation are presented. Topics covered include: Space Station Freedom (SSF); SSF evolution; factors pointing to automation & robotics (A&R); astronaut office inputs concerning A&R; flight system automation and ground operations applications; transition definition program; and advanced automation software tools.

  12. Compound intelligent control system combining fuzzy control with neural networks in a permanent magnetic synchronous motor

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyuan; Li, Weili; Li, Taifu

    2005-12-01

    An AC motor belongs to the category of a controlled object that is multi-variable, nonlinear and strong correlation, complex to mathematical model, and whose control performance is affected by a time-changing parameter. Therefore, it is very difficult to obtain the desired static and dynamic characteristic through a general fixed regulator. In this paper, the authors present a compound intelligent control strategy, combined with a neural network and fuzzy control. Considering that a neural network is good at self-learning, and a single fuzzy control algorithm is rapid in its response characteristics, the compound control strategy can compensate for a disadvantage of fuzzy control, which is associated with poor stability and precision and also requires solving a puzzle in the time-changing parameters in the controlled object. On the basis of a dynamic model of the permanent magnetic synchronous motor and its working principle, the authors designed the block diagram of a control system, combined a neural PID control and fuzzy control, and studied the corresponding control algorithm in detail. The simulation results show that the compound intelligent control system is good in dynamic performance and robustness.

  13. IFRP: a hybrid interval-parameter fuzzy robust programming approach for waste management planning under uncertainty.

    PubMed

    Nie, X H; Huang, G H; Li, Y P; Liu, L

    2007-07-01

    In this study, an interval-parameter fuzzy-robust programming (IFRP) model is developed and applied to the planning of solid waste management systems under uncertainty. As an extension of the existing fuzzy-robust programming and interval-parameter linear programming methods, the IFRP can explicitly address system uncertainties with complex presentations. Parameters in the IFRP model can be represented as interval numbers and/or fuzzy membership functions, such that the uncertainties can be directly communicated into the optimization process and resulting solution. Furthermore, highly uncertain information for the lower and upper bounds of interval parameters that exist due to the complexity of the real world can be effectively handled through introducing the concept of fuzzy boundary interval. Consequently, robustness of the optimization process and solution can be enhanced. Results of the case study indicate that useful solutions for planning municipal solid waste management practices can be generated. They reflect a compromise between optimality and stability of the study system. Willingness to pay higher costs will guarantee the system stability; however, a desire to reduce the costs will run the risk of potential instability of the system. The results also suggest that the proposed hybrid methodology is applicable to practical problems that are associated with highly complex and uncertain information. PMID:16854517

  14. IFRP: a hybrid interval-parameter fuzzy robust programming approach for waste management planning under uncertainty.

    PubMed

    Nie, X H; Huang, G H; Li, Y P; Liu, L

    2007-07-01

    In this study, an interval-parameter fuzzy-robust programming (IFRP) model is developed and applied to the planning of solid waste management systems under uncertainty. As an extension of the existing fuzzy-robust programming and interval-parameter linear programming methods, the IFRP can explicitly address system uncertainties with complex presentations. Parameters in the IFRP model can be represented as interval numbers and/or fuzzy membership functions, such that the uncertainties can be directly communicated into the optimization process and resulting solution. Furthermore, highly uncertain information for the lower and upper bounds of interval parameters that exist due to the complexity of the real world can be effectively handled through introducing the concept of fuzzy boundary interval. Consequently, robustness of the optimization process and solution can be enhanced. Results of the case study indicate that useful solutions for planning municipal solid waste management practices can be generated. They reflect a compromise between optimality and stability of the study system. Willingness to pay higher costs will guarantee the system stability; however, a desire to reduce the costs will run the risk of potential instability of the system. The results also suggest that the proposed hybrid methodology is applicable to practical problems that are associated with highly complex and uncertain information.

  15. Fuzzy robust credibility-constrained programming for environmental management and planning.

    PubMed

    Zhang, Yimei; Hang, Guohe

    2010-06-01

    In this study, a fuzzy robust credibility-constrained programming (FRCCP) is developed and applied to the planning for waste management systems. It incorporates the concepts of credibility-based chance-constrained programming and robust programming within an optimization framework. The developed method can reflect uncertainties presented as possibility-density by fuzzy-membership functions. Fuzzy credibility constraints are transformed to the crisp equivalents with different credibility levels, and ordinary fuzzy inclusion constraints are determined by their robust deterministic constraints by setting a-cut levels. The FRCCP method can provide different system costs under different credibility levels (lambda). From the results of sensitivity analyses, the operation cost of the landfill is a critical parameter. For the management, any factors that would induce cost fluctuation during landfilling operation would deserve serious observation and analysis. By FRCCP, useful solutions can be obtained to provide decision-making support for long-term planning of solid waste management systems. It could be further enhanced through incorporating methods of inexact analysis into its framework. It can also be applied to other environmental management problems.

  16. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis. PMID:26915095

  17. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.

  18. The cognitive bases for the design of a new class of fuzzy logic controllers: The clearness transformation fuzzy logic controller

    NASA Technical Reports Server (NTRS)

    Sultan, Labib; Janabi, Talib

    1992-01-01

    This paper analyses the internal operation of fuzzy logic controllers as referenced to the human cognitive tasks of control and decision making. Two goals are targeted. The first goal focuses on the cognitive interpretation of the mechanisms employed in the current design of fuzzy logic controllers. This analysis helps to create a ground to explore the potential of enhancing the functional intelligence of fuzzy controllers. The second goal is to outline the features of a new class of fuzzy controllers, the Clearness Transformation Fuzzy Logic Controller (CT-FLC), whereby some new concepts are advanced to qualify fuzzy controllers as 'cognitive devices' rather than 'expert system devices'. The operation of the CT-FLC, as a fuzzy pattern processing controller, is explored, simulated, and evaluated.

  19. Fuzzy logic control of an AGV

    NASA Astrophysics Data System (ADS)

    Kelkar, Nikhal; Samu, Tayib; Hall, Ernest L.

    1997-09-01

    Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of a modular autonomous mobile robot controller. The controller incorporates a fuzzy logic approach for steering and speed control, a neuro-fuzzy approach for ultrasound sensing (not discussed in this paper) and an overall expert system. The advantages of a modular system are related to portability and transportability, i.e. any vehicle can become autonomous with minimal modifications. A mobile robot test-bed has been constructed using a golf cart base. This cart has full speed control with guidance provided by a vision system and obstacle avoidance using ultrasonic sensors. The speed and steering fuzzy logic controller is supervised by a 486 computer through a multi-axis motion controller. The obstacle avoidance system is based on a micro-controller interfaced with six ultrasonic transducers. This micro- controller independently handles all timing and distance calculations and sends a steering angle correction back to the computer via the serial line. This design yields a portable independent system in which high speed computer communication is not necessary. Vision guidance is accomplished with a CCD camera with a zoom lens. The data is collected by a vision tracking device that transmits the X, Y coordinates of the lane marker to the control computer. Simulation and testing of these systems yielded promising results. This design, in its modularity, creates a portable autonomous fuzzy logic controller applicable to any mobile vehicle with only minor adaptations.

  20. The simplification of fuzzy control algorithm and hardware implementation

    NASA Technical Reports Server (NTRS)

    Wu, Z. Q.; Wang, P. Z.; Teh, H. H.

    1991-01-01

    The conventional interface composition algorithm of a fuzzy controller is very time and memory consuming. As a result, it is difficult to do real time fuzzy inference, and most fuzzy controllers are realized by look-up tables. Here, researchers derive a simplified algorithm using the defuzzification mean of maximum. This algorithm takes shorter computation time and needs less memory usage, thus making it possible to compute the fuzzy inference on real time and easy to tune the control rules on line. A hardware implementation based on a simplified fuzzy inference algorithm is described.

  1. Stable adaptive fuzzy controllers with application to inverted pendulum tracking.

    PubMed

    Wang, L X

    1996-01-01

    An adaptive fuzzy controller is constructed from a set of fuzzy IF-THEN rules whose parameters are adjusted on-line according to some adaptation law for the purpose of controlling the plant to track a given-trajectory. In this paper, two adaptive fuzzy controllers are designed based on the Lyapunov synthesis approach. We require that the final closed-loop system must be globally stable in the sense that all signals involved (states, controls, parameters, etc.) must be uniformly bounded. Roughly speaking, the adaptive fuzzy controllers are designed through the following steps: first, construct an initial controller based on linguistic descriptions (in the form of fuzzy IF-THEN rules) about the unknown plant from human experts; then, develop an adaptation law to adjust the parameters of the fuzzy controller on-line. We prove, for both adaptive fuzzy controllers, that: (1) all signals in the closed-loop systems are uniformly bounded; and (2) the tracking errors converge to zero under mild conditions. We provide the specific formulas of the bounds so that controller designers can determine the bounds based on their requirements. Finally, the adaptive fuzzy controllers are used to control the inverted pendulum to track a given trajectory, and the simulation results show that: (1) the adaptive fuzzy controllers can perform successful tracking without using any linguistic information; and (2) after incorporating some linguistic fuzzy rules into the controllers, the adaptation speed becomes faster and the tracking error becomes smaller.

  2. Robust stochastic fuzzy possibilistic programming for environmental decision making under uncertainty.

    PubMed

    Zhang, Xiaodong; Huang, Guo H; Nie, Xianghui

    2009-12-20

    Nonpoint source (NPS) water pollution is one of serious environmental issues, especially within an agricultural system. This study aims to propose a robust chance-constrained fuzzy possibilistic programming (RCFPP) model for water quality management within an agricultural system, where solutions for farming area, manure/fertilizer application amount, and livestock husbandry size under different scenarios are obtained and interpreted. Through improving upon the existing fuzzy possibilistic programming, fuzzy robust programming and chance-constrained programming approaches, the RCFPP can effectively reflect the complex system features under uncertainty, where implications of water quality/quantity restrictions for achieving regional economic development objectives are studied. By delimiting the uncertain decision space through dimensional enlargement of the original fuzzy constraints, the RCFPP enhances the robustness of the optimization processes and resulting solutions. The results of the case study indicate that useful information can be obtained through the proposed RCFPP model for providing feasible decision schemes for different agricultural activities under different scenarios (combinations of different p-necessity and p(i) levels). A p-necessity level represents the certainty or necessity degree of the imprecise objective function, while a p(i) level means the probabilities at which the constraints will be violated. A desire to acquire high agricultural income would decrease the certainty degree of the event that maximization of the objective be satisfied, and potentially violate water management standards; willingness to accept low agricultural income will run into the risk of potential system failure. The decision variables under combined p-necessity and p(i) levels were useful for the decision makers to justify and/or adjust the decision schemes for the agricultural activities through incorporation of their implicit knowledge. The results also suggest that

  3. Robust control with structured perturbations

    NASA Technical Reports Server (NTRS)

    Keel, Leehyun

    1988-01-01

    Two important problems in the area of control systems design and analysis are discussed. The first is the robust stability using characteristic polynomial, which is treated first in characteristic polynomial coefficient space with respect to perturbations in the coefficients of the characteristic polynomial, and then for a control system containing perturbed parameters in the transfer function description of the plant. In coefficient space, a simple expression is first given for the l(sup 2) stability margin for both monic and non-monic cases. Following this, a method is extended to reveal much larger stability region. This result has been extended to the parameter space so that one can determine the stability margin, in terms of ranges of parameter variations, of the closed loop system when the nominal stabilizing controller is given. The stability margin can be enlarged by a choice of better stabilizing controller. The second problem describes the lower order stabilization problem, the motivation of the problem is as follows. Even though the wide range of stabilizing controller design methodologies is available in both the state space and transfer function domains, all of these methods produce unnecessarily high order controllers. In practice, the stabilization is only one of many requirements to be satisfied. Therefore, if the order of a stabilizing controller is excessively high, one can normally expect to have a even higher order controller on the completion of design such as inclusion of dynamic response requirements, etc. Therefore, it is reasonable to have a lowest possible order stabilizing controller first and then adjust the controller to meet additional requirements. The algorithm for designing a lower order stabilizing controller is given. The algorithm does not necessarily produce the minimum order controller; however, the algorithm is theoretically logical and some simulation results show that the algorithm works in general.

  4. A framework of fuzzy hybrid systems for modelling and control

    NASA Astrophysics Data System (ADS)

    Cheng, Shu; Dong, Ruijun; Pedrycz, Witold

    2010-02-01

    This paper presents a new approach to modelling and control of hybrid systems with both continuous variables and discrete events. Applying the fuzzy set theory, a hierarchical fuzzy hybrid structure consisting of a fuzzy discrete event dynamic system and a continuous variable dynamic system is constructed, which not only captures the hybrid continuous/discrete dynamics but also handles the uncertainties in states and state transitions. The identification of continuous and discrete components is developed, and the hybrid control is then synthesised by fuzzy IF-THEN rules embedded in the fuzzy interface. An example of the optimisation of a production line in manufacturing shows the efficacy of the proposed approach.

  5. A robust H∞-tracking design for uncertain Takagi-Sugeno fuzzy systems with unknown premise variables using descriptor redundancy approach

    NASA Astrophysics Data System (ADS)

    Hassan Asemani, Mohammad; Johari Majd, Vahid

    2015-12-01

    This paper addresses a robust H∞ fuzzy observer-based tracking design problem for uncertain Takagi-Sugeno fuzzy systems with external disturbances. To have a practical observer-based controller, the premise variables of the system are assumed to be not measurable in general, which leads to a more complex design process. The tracker is synthesised based on a fuzzy Lyapunov function approach and non-parallel distributed compensation (non-PDC) scheme. Using the descriptor redundancy approach, the robust stability conditions are derived in the form of strict linear matrix inequalities (LMIs) even in the presence of uncertainties in the system, input, and output matrices simultaneously. Numerical simulations are provided to show the effectiveness of the proposed method.

  6. Maximum entropy approach to fuzzy control

    NASA Technical Reports Server (NTRS)

    Ramer, Arthur; Kreinovich, Vladik YA.

    1992-01-01

    For the same expert knowledge, if one uses different &- and V-operations in a fuzzy control methodology, one ends up with different control strategies. Each choice of these operations restricts the set of possible control strategies. Since a wrong choice can lead to a low quality control, it is reasonable to try to loose as few possibilities as possible. This idea is formalized and it is shown that it leads to the choice of min(a + b,1) for V and min(a,b) for &. This choice was tried on NASA Shuttle simulator; it leads to a maximally stable control.

  7. Adaptive Process Control with Fuzzy Logic and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  8. Adaptive process control using fuzzy logic and genetic algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  9. Robust control with structured perturbations

    NASA Technical Reports Server (NTRS)

    Keel, Leehyun

    1991-01-01

    This semi-annual report describes continued progress on the research. Among several approaches in this area of research, our approach to the parametric uncertainties are being matured everyday. This approach deals with real parameter uncertainties which other techniques such as H (sup infinity) optimal control, micron analysis and synthesis, and l(sub 1) optimal control cannot deal. The primary assumption of this approach is that the mathematical models are well obtained so that the most of system uncertainties can be translated into parameter uncertainties of their linear system representations. These uncertainties may be due to modeling, nonlinearity of the physical system, some time-varying parameters, etc. In this report period of research, we are concentrating on implementing a computer aided analysis and design tool based on new results on parametric robust stability. This implementation will help us to reveal further details in this approach.

  10. Traction Slip Ratio Control Based on Fuzzy DSMC for Independent AWD EV

    NASA Astrophysics Data System (ADS)

    Zou, Guangcai; Luo, Yugong; Li, Keqiang

    A traction slip ratio control method using fuzzy dynamical sliding mode strategy (Fuzzy DSMC) is proposed to reduce the slip ratio oscillations in the independent AWD EV traction control. The slip ratios are also accurately estimated in a new way to support this control process. Firstly in this control method, the fuzzy logic method is applied respectively to regulate the switching surface and the reaching law of DSMC with the estimated slip ratios, which are used to weaken the chattering and improve the convergence rate to some extent. Furthermore the control structure of DSMC is designed to obtain the smooth torque outputs from all independent traction motors, which are implemented in the anti-skid control for EV in the end. The mathematics analysis for the controller parameters choosing and simulation experiments show that the method can greatly avoid the drawback of control chattering occurred in the classical sliding mode control. Moreover, the robustness of systems for parameter uncertainties is also guaranteed.

  11. Fuzzy controllers and fuzzy expert systems: industrial applications of fuzzy technology

    NASA Astrophysics Data System (ADS)

    Bonissone, Piero P.

    1995-06-01

    We will provide a brief description of the field of approximate reasoning systems, with a particular emphasis on the development of fuzzy logic control (FLC). FLC technology has drastically reduced the development time and deployment cost for the synthesis of nonlinear controllers for dynamic systems. As a result we have experienced an increased number of FLC applications. In a recently published paper we have illustrated some of our efforts in FLC technology transfer, covering projects in turboshaft aircraft engine control, stream turbine startup, steam turbine cycling optimization, resonant converter power supply control, and data-induced modeling of the nonlinear relationship between process variable in a rolling mill stand. These applications will be illustrated in the oral presentation. In this paper, we will compare these applications in a cost/complexity framework, and examine the driving factors that led to the use of FLCs in each application. We will emphasize the role of fuzzy logic in developing supervisory controllers and in maintaining explicit the tradeoff criteria used to manage multiple control strategies. Finally, we will describe some of our FLC technology research efforts in automatic rule base tuning and generation, leading to a suite of programs for reinforcement learning, supervised learning, genetic algorithms, steepest descent algorithms, and rule clustering.

  12. Fuzzy Current-Mode Control and Stability Analysis

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2000-01-01

    In this paper a current-mode control (CMC) methodology is developed for a buck converter by using a fuzzy logic controller. Conventional CMC methodologies are based on lead-lag compensation with voltage and inductor current feedback. In this paper the converter lead-lag compensation will be substituted with a fuzzy controller. A small-signal model of the fuzzy controller will also be developed in order to examine the stability properties of this buck converter control system. The paper develops an analytical approach, introducing fuzzy control into the area of CMC.

  13. Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference system

    SciTech Connect

    Djukanovic, M.B.; Calovic, M.S.; Vesovic, B.V.; Sobajic, D.J.

    1997-12-01

    This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.

  14. Robust stability analysis of delayed Takagi-Sugeno fuzzy Hopfield neural networks with discontinuous activation functions

    PubMed Central

    Huang, Lihong; Zuo, Yi

    2010-01-01

    In this paper, the global robust stability problem of delayed Takagi–Sugeno fuzzy Hopfield neural networks with discontinuous activation functions (TSFHNNs) is considered. Based on Lyapunov stability theory and M-matrices theory, we derive a stability criterion to guarantee the global robust stability of TSFHNNs. Compared with the existing literature, we remove the assumptions on the neuron activations such as Lipschitz conditions, bounded, monotonic increasing property or the assumption that the right-limit value is bigger than the left one at the discontinuous point. Finally, two numerical examples are given to show the effectiveness of the proposed stability results. PMID:22132043

  15. Fuzzy-neural control of an aircraft tracking camera platform

    NASA Technical Reports Server (NTRS)

    Mcgrath, Dennis

    1994-01-01

    A fuzzy-neural control system simulation was developed for the control of a camera platform used to observe aircraft on final approach to an aircraft carrier. The fuzzy-neural approach to control combines the structure of a fuzzy knowledge base with a supervised neural network's ability to adapt and improve. The performance characteristics of this hybrid system were compared to those of a fuzzy system and a neural network system developed independently to determine if the fusion of these two technologies offers any advantage over the use of one or the other. The results of this study indicate that the fuzzy-neural approach to control offers some advantages over either fuzzy or neural control alone.

  16. Wastewater neutralization control based on fuzzy logic: Experimental results

    SciTech Connect

    Adroer, M.; Alsina, A.; Aumatell, J.; Poch, M.

    1999-07-01

    Many industrial wastes contain acidic or alkaline materials that require neutralization of previous discharge into receiving waters or to chemical and biological treatment plants. The control of the wastewater neutralization process is subjected to several difficulties, such as the highly nonlinear titration curve (with special sensitivity around neutrality), the unknown water composition, the variable buffering capacity of the system, and the changes in input loading. To deal with these problems, this study proposes a fixed fuzzy logic controller (FLC) structure coupled with a tuning factor. The versatility and robustness of this controller has been proved when faced with solutions of variable buffering capacity, with acids that cover a wide pK range and with switches between acids throughout the course of a test. Laboratory experiments and simulation runs using the proposed controller were successful in a wide operational range.

  17. Robust Fixed-Structure Controller Synthesis

    NASA Technical Reports Server (NTRS)

    Corrado, Joseph R.; Haddad, Wassim M.; Gupta, Kajal (Technical Monitor)

    2000-01-01

    The ability to develop an integrated control system design methodology for robust high performance controllers satisfying multiple design criteria and real world hardware constraints constitutes a challenging task. The increasingly stringent performance specifications required for controlling such systems necessitates a trade-off between controller complexity and robustness. The principle challenge of the minimal complexity robust control design is to arrive at a tractable control design formulation in spite of the extreme complexity of such systems. Hence, design of minimal complexitY robust controllers for systems in the face of modeling errors has been a major preoccupation of system and control theorists and practitioners for the past several decades.

  18. Application of a compound controller based on fuzzy control and support vector machine to ship's boiler-turbine coordinated control system

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Li, Yan-Yan

    2009-03-01

    Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy based on a support vector machine (SVM) with inverse identification was proposed and applied to research simulating coordinated control systems. This method combines SVM inverse control and fuzzy control, taking advantage of the merits of SVM inverse controls which can be designed easily and have high reliability, and those of fuzzy controls, which respond rapidly and have good anti-jamming capability and robustness. It ensures the controller can be controlled with near instantaneous adjustments to maintain a steady state, even if the SVM is not trained well. The simulation results show that the control quality of this fuzzy-SVM compound control algorithm is high, with good performance in dynamic response speed, static stability, restraint of overshoot, and robustness.

  19. Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.

    PubMed

    Pan, Indranil; Das, Saptarshi

    2016-05-01

    This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. PMID:25816968

  20. Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.

    PubMed

    Pan, Indranil; Das, Saptarshi

    2016-05-01

    This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants.

  1. Fuzzy logic anti-skid control for commercial trucks

    NASA Astrophysics Data System (ADS)

    Akey, Mark L.

    1995-06-01

    A fuzzy logic (FL) anti-skid brake controller (ABS) is proposed as the next generation ABS replacing current generation finite state (FS) control. The FL controller is part of a commercial truck braking system, encompassing reverse front-back braking proportions on an articulated vehicle as compared to that found on fixed, passenger car systems. In this early research, the FL controller must satisfy three goals. The first goal is to produce superior braking distances over that of the finite state controller, specifically under low (mu) conditions. The second goal is to provide superior braking under varying system conditions (road surface conditions, physical brake parameters, wheel velocity sensor parameters). The third goal is to provide a convenient, flexible, and tractable ABS solution which is amenable to redevelopemnt to different vehicular platforms. Monte Carlo simulation results illustrate stopping distance improvements of 5 to 10 % averaged over all (mu) surfaces for varying wheel loads. On low (mu) surfaces, the improvement increases to 15% (up to a full tractor-trailer length). These results are obtained while varying other system parameters demonstrating robustness. Finally, the fuzzy logic rule sets and the overall configuration illustrate a straight-forward design and maturation process for the rule sets.

  2. Road curvature estimation for vehicle lane departure detection using a robust Takagi-Sugeno fuzzy observer

    NASA Astrophysics Data System (ADS)

    Dahmani, H.; Chadli, M.; Rabhi, A.; El Hajjaji, A.

    2013-05-01

    In this paper, a lane departure detection method is studied and evaluated via a professional vehicle dynamics software. Based on a robust fuzzy observer designed with unmeasurable premise variables with unknown inputs, the road curvature is estimated and compared with the vehicle trajectory curvature. The difference between the two curvatures is used by the proposed algorithm as the first driving risk indicator. To reduce false alarms and take into account the driver corrections, a second driving risk indicator is considered, which is based on the steering dynamics, and it gives the time to the lane keeping. The used nonlinear model deduced from the vehicle lateral dynamics and a vision system is represented by an uncertain Takagi-Sugeno fuzzy model. Taking into account the unmeasured variables, an unknown input fuzzy observer is then proposed. Synthesis conditions of the proposed fuzzy observer are formulated in terms of linear matrix inequalities using Lyapunov method. The proposed approach is evaluated under different driving scenarios using a software simulator. Simulation results show good efficiency of the proposed method.

  3. Intelligent fuzzy controller for event-driven real time systems

    NASA Technical Reports Server (NTRS)

    Grantner, Janos; Patyra, Marek; Stachowicz, Marian S.

    1992-01-01

    Most of the known linguistic models are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show a model for synchronous finite state machines based on fuzzy logic. Such finite state machines can be used to build both event-driven, time-varying, rule-based systems and the control unit section of a fuzzy logic computer. The architecture of a pipelined intelligent fuzzy controller is presented, and the linguistic model is represented by an overall fuzzy relation stored in a single rule memory. A VLSI integrated circuit implementation of the fuzzy controller is suggested. At a clock rate of 30 MHz, the controller can perform 3 MFLIPS on multi-dimensional fuzzy data.

  4. Active structural control by fuzzy logic rules: An introduction

    SciTech Connect

    Tang, Yu; Wu, Kung C.

    1996-12-31

    A zeroth level introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single- degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.

  5. Active structural control by fuzzy logic rules: An introduction

    SciTech Connect

    Tang, Y.

    1995-07-01

    An introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single-degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.

  6. Design of sewage treatment system by applying fuzzy adaptive PID controller

    NASA Astrophysics Data System (ADS)

    Jin, Liang-Ping; Li, Hong-Chan

    2013-03-01

    In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.

  7. Adaptive fuzzy sliding mode control scheme for uncertain systems

    NASA Astrophysics Data System (ADS)

    Noroozi, Navid; Roopaei, Mehdi; Jahromi, M. Zolghadri

    2009-11-01

    Most physical systems inherently contain nonlinearities which are commonly unknown to the system designer. Therefore, in modeling and analysis of such dynamic systems, one needs to handle unknown nonlinearities and/or uncertain parameters. This paper proposes a new adaptive tracking fuzzy sliding mode controller for a class of nonlinear systems in the presence of uncertainties and external disturbances. The main contribution of the proposed method is that the structure of the controlled system is partially unknown and does not require the bounds of uncertainty and disturbance of the system to be known; meanwhile, the chattering phenomenon that frequently appears in the conventional variable structure systems is also eliminated without deteriorating the system robustness. The performance of the proposed approach is evaluated for two well-known benchmark problems. The simulation results illustrate the effectiveness of our proposed controller.

  8. What procedure to choose while designing a fuzzy control? Towards mathematical foundations of fuzzy control

    NASA Technical Reports Server (NTRS)

    Kreinovich, Vladik YA.; Quintana, Chris; Lea, Robert

    1991-01-01

    Fuzzy control has been successfully applied in industrial systems. However, there is some caution in using it. The reason is that it is based on quite reasonable ideas, but each of these ideas can be implemented in several different ways, and depending on which of the implementations chosen different results are achieved. Some implementations lead to a high quality control, some of them not. And since there are no theoretical methods for choosing the implementation, the basic way to choose it now is experimental. But if one chooses a method that is good for several examples, there is no guarantee that it will work fine in all of them. Hence the caution. A theoretical basis for choosing the fuzzy control procedures is provided. In order to choose a procedure that transforms a fuzzy knowledge into a control, one needs, first, to choose a membership function for each of the fuzzy terms that the experts use, second, to choose operations of uncertainty values that corresponds to 'and' and 'or', and third, when a membership function for control is obtained, one must defuzzy it, that is, somehow generate a value of the control u that will be actually used. A general approach that will help to make all these choices is described: namely, it is proved that under reasonable assumptions membership functions should be linear or fractionally linear, defuzzification must be described by a centroid rule and describe all possible 'and' and 'or' operations. Thus, a theoretical explanation of the existing semi-heuristic choices is given and the basis for the further research on optimal fuzzy control is formulated.

  9. Fuzzy Logic Controller for Low Temperature Application

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Gonzalez, A.; Barmatz, M.

    1996-01-01

    The most common temperature controller used in low temperature experiments is the proportional-integral-derivative (PID) controller due to its simplicity and robustness. However, the performance of temperature regulation using the PID controller depends on initial parameter setup, which often requires operator's expert knowledge on the system. In this paper, we present a computer-assisted temperature controller based on the well known.

  10. Coordinated signal control for arterial intersections using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Kermanian, Davood; Zare, Assef; Balochian, Saeed

    2013-09-01

    Every day growth of the vehicles has become one of the biggest problems of urbanism especially in major cities. This can waste people's time, increase the fuel consumption, air pollution, and increase the density of cars and vehicles. Fuzzy controllers have been widely used in many consumer products and industrial applications with success over the past two decades. This article proposes a comprehensive model of urban traffic network using state space equations and then using Fuzzy Logic Tool Box and SIMULINK Program MATLAB a fuzzy controller in order to optimize and coordinate signal control at two intersections at an arterial road. The fuzzy controller decides to extend, early cut or terminate a signal phase and phase sequence to ensure smooth flow of traffic with minimal waiting time and length of queue. Results show that the performance of the proposed traffic controller at novel fuzzy model is better that of conventional controllers under normal and abnormal traffic conditions.

  11. Predictive neuro-fuzzy controller for multilink robot manipulator

    NASA Astrophysics Data System (ADS)

    Kaymaz, Emre; Mitra, Sunanda

    1995-10-01

    A generalized controller based on fuzzy clustering and fuzzy generalized predictive control has been developed for nonlinear systems including multilink robot manipulators. The proposed controller is particularly useful when the dynamics of the nonlinear system to be controlled are difficult to yield exact solutions and the system specification can be obtained in terms of crisp input-output pairs. It inherits the advantages of both fuzzy logic and predictive control. The identification of the nonlinear mapping of the system to be controlled is realized by a three- layer feed-forward neural network model employing the input-output data obtained from the system. The speed of convergence of the neural network is improved by the introduction of a fuzzy logic controlled backpropagation learning algorithm. The neural network model is then used as a simulation tool to generate the input-output data for developing the predictive fuzzy logic controller for the chosen nonlinear system. The use of fuzzy clustering facilitates automatic generation of membership relations of the input-output data. Unlike the linguistic fuzzy logic controller which requires approximate knowledge of the shape and the numbers of the membership functions in the input and output universes of the discourse, this integrated neuro-fuzzy approach allows one to find the fuzzy relations and the membership functions more accurately. Furthermore, it is not necessary to tune the controller. For a two-link robot manipulator, the performance of this predictive fuzzy controller is shown to be superior to that of a conventional controller employing an ARMA model of the system in terms of accuracy and consumption of energy.

  12. Fuzzy control for linear plants with uncertain output backlashes.

    PubMed

    Tao, C W

    2002-01-01

    In this correspondence, a new approach to design a fuzzy controller for systems with uncertain output backlash to have good tracking performance is presented. Without using a compensation mechanism or a backlash inverse, the fuzzy control mechanism is designed to implicitly compensate the delay effect arising from an uncertain output backlash and to make the output backlash system stable without limit cycles. Also, the proposed fuzzy controller is presented to be insensitive to the variations of the backlash and system plant parameters. Moreover, the proposed approach is extended to design a fuzzy controller for a two-input two-output (TITO) linear plant with output backlash. The effectiveness of the designed fuzzy controller is illustrated by the simulation results on linear, low-order, nonlinear plants and the experimental results on an amplifier-motor system with a gear train.

  13. Fuzzy crane control with sensorless payload deflection feedback for vibration reduction

    NASA Astrophysics Data System (ADS)

    Smoczek, Jaroslaw

    2014-05-01

    Different types of cranes are widely used for shifting cargoes in building sites, shipping yards, container terminals and many manufacturing segments where the problem of fast and precise transferring a payload suspended on the ropes with oscillations reduction is frequently important to enhance the productivity, efficiency and safety. The paper presents the fuzzy logic-based robust feedback anti-sway control system which can be applicable either with or without a sensor of sway angle of a payload. The discrete-time control approach is based on the fuzzy interpolation of the controllers and crane dynamic model's parameters with respect to the varying rope length and mass of a payload. The iterative procedure combining a pole placement method and interval analysis of closed-loop characteristic polynomial coefficients is proposed to design the robust control scheme. The sensorless anti-sway control application developed with using PAC system with RX3i controller was verified on the laboratory scaled overhead crane.

  14. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller

    ERIC Educational Resources Information Center

    Mamdani, E. H.; Assilian, S.

    1975-01-01

    This paper describes an experiment on the "linguistic" synthesis of a controller for a model industrial plant (a steam engine). Fuzzy logic is used to convert heuristic control rules stated by a human operator into an automatic control strategy. (Author)

  15. Hierarchical fuzzy control of low-energy building systems

    SciTech Connect

    Yu, Zhen; Dexter, Arthur

    2010-04-15

    A hierarchical fuzzy supervisory controller is described that is capable of optimizing the operation of a low-energy building, which uses solar energy to heat and cool its interior spaces. The highest level fuzzy rules choose the most appropriate set of lower level rules according to the weather and occupancy information; the second level fuzzy rules determine an optimal energy profile and the overall modes of operation of the heating, ventilating and air-conditioning system (HVAC); the third level fuzzy rules select the mode of operation of specific equipment, and assign schedules to the local controllers so that the optimal energy profile can be achieved in the most efficient way. Computer simulation is used to compare the hierarchical fuzzy control scheme with a supervisory control scheme based on expert rules. The performance is evaluated by comparing the energy consumption and thermal comfort. (author)

  16. Fire control system for mobile vehicles using fuzzy controllers

    NASA Astrophysics Data System (ADS)

    Krishna Moorty, J. A. R.; Marathe, Rajeev; Srivastava, Hari Babu

    2005-12-01

    Inertial stabilization of electro-optical sighting systems and weapon slaving control loops are essential constituents of modern fire control systems for mobile combat vehicles. These systems are used for surveillance, target tracking and engaging the targets under dynamic conditions. Firing accuracy of such systems largely depends on stabilization and weapon slaving accuracies. Accuracy requirements become stringent as the operating range increases. Several other issues such as bore sighting offsets, ballistic offsets and mounting error compensation etc. are also to be considered. Fuzzy knowledge based controller (FKBC) offers an alternative method to the conventional control synthesis methodologies using root locus, Bode plots or pole placement. Fuzzy control loops are particularly useful when the plant consists of substantial non-linearity due to actuator saturation, stiction, Coulomb friction, digitization etc. Since, the control surface obtained through this method is non-linear, generally it provides greater flexibility to designer to achieve better damping, lesser control energy even in presence of various constraints. This work presents the design of weapon slaving loop using a fuzzy controller. The weapon is slaved to a gimbaled electro-optical sight, which has a stabilized line of sight along two axes. The system under consideration is designed for naval platforms. A two-input (error and rate of change of error) and single output (incremental control) fuzzy controller has been designed to position the weapon at desired position. Implementation of controller has been done using digitized inputs. Simulations have been carried out to evaluate the performance of the integrated fire control system under the presence of various non-linearities, sensor inaccuracies and other exogenous inputs like host platform generated disturbances and measurement noise. Stringent requirements of disturbance attenuation, tracking and command following have been met.

  17. The Fuzzy Logic of MicroRNA Regulation: A Key to Control Cell Complexity.

    PubMed

    Ripoli, Andrea; Rainaldi, Giuseppe; Rizzo, Milena; Mercatanti, Alberto; Pitto, Letizia

    2010-08-01

    Genomic and clinical evidence suggest a major role of microRNAs (miRNAs) in the regulatory mechanisms of gene expression, with a clear impact on development and physiology; miRNAs are a class of endogenous 22-25 nt single-stranded RNA molecules, that negatively regulate gene expression post-transcriptionally, by imperfect base pairing with the 3' UTR of the corresponding mRNA target. Because of this imperfection, each miRNA can bind multiple targets, and multiple miRNAs can bind the same mRNA target; although digital, the miRNAs control mechanism is characterized by an imprecise action, naturally understandable in the theoretical framework of fuzzy logic.A major practical application of fuzzy logic is represented by the design and the realization of efficient and robust control systems, even when the processes to be controlled show chaotic, deterministic as well unpredictable, behaviours. The vagueness of miRNA action, when considered together with the controlled and chaotic gene expression, is a hint of a cellular fuzzy control system. As a demonstration of the possibility and the effectiveness of miRNA based fuzzy mechanism, a fuzzy cognitive map -a mathematical formalism combining neural network and fuzzy logic- has been developed to study the apoptosis/proliferation control performed by the miRNA-17-92 cluster/E2F1/cMYC circuitry.When experimentally demonstrated, the concept of fuzzy control could modify the way we analyse and model gene expression, with a possible impact on the way we imagine and design therapeutic intervention based on miRNA silencing.

  18. Coordination of Distributed Fuzzy Behaviors in Mobile Robot Control

    NASA Technical Reports Server (NTRS)

    Tunstel, E.

    1995-01-01

    This presentation describes an approach to behavior coordination and conflict resolution within the context of a hierarchical architecture of fuzzy behaviors. Coordination is achieved using weighted decision-making based on behavioral degrees of applicability. This strategy is appropriate for fuzzy control of systems that can be represented by hierarchical or decentralized structures.

  19. Distributed traffic signal control using fuzzy logic

    NASA Technical Reports Server (NTRS)

    Chiu, Stephen

    1992-01-01

    We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.

  20. Robust stochastic stability of discrete-time fuzzy Markovian jump neural networks.

    PubMed

    Arunkumar, A; Sakthivel, R; Mathiyalagan, K; Park, Ju H

    2014-07-01

    This paper focuses the issue of robust stochastic stability for a class of uncertain fuzzy Markovian jumping discrete-time neural networks (FMJDNNs) with various activation functions and mixed time delay. By employing the Lyapunov technique and linear matrix inequality (LMI) approach, a new set of delay-dependent sufficient conditions are established for the robust stochastic stability of uncertain FMJDNNs. More precisely, the parameter uncertainties are assumed to be time varying, unknown and norm bounded. The obtained stability conditions are established in terms of LMIs, which can be easily checked by using the efficient MATLAB-LMI toolbox. Finally, numerical examples with simulation result are provided to illustrate the effectiveness and less conservativeness of the obtained results.

  1. Type-2 fuzzy model based controller design for neutralization processes.

    PubMed

    Kumbasar, Tufan; Eksin, Ibrahim; Guzelkaya, Mujde; Yesil, Engin

    2012-03-01

    In this study, an inverse controller based on a type-2 fuzzy model control design strategy is introduced and this main controller is embedded within an internal model control structure. Then, the overall proposed control structure is implemented in a pH neutralization experimental setup. The inverse fuzzy control signal generation is handled as an optimization problem and solved at each sampling time in an online manner. Although, inverse fuzzy model controllers may produce perfect control in perfect model match case and/or non-existence of disturbances, this open loop control would not be sufficient in the case of modeling mismatches or disturbances. Therefore, an internal model control structure is proposed to compensate these errors in order to overcome this deficiency where the basic controller is an inverse type-2 fuzzy model. This feature improves the closed-loop performance to disturbance rejection as shown through the real-time control of the pH neutralization process. Experimental results demonstrate the superiority of the inverse type-2 fuzzy model controller structure compared to the inverse type-1 fuzzy model controller and conventional control structures. PMID:22036014

  2. A Stochastic Framework for Robust Fuzzy Filtering and Analysis of Signals-Part I.

    PubMed

    Kumar, Mohit; Stoll, Norbert; Stoll, Regina; Thurow, Kerstin

    2016-05-01

    There are numerous applications across all the spectrum of scientific areas that demand the mathematical study of signals/data. The two typical study areas of theoretical research on signal/data processing are of modeling (i.e., understanding of signal's behavior) and of analysis (i.e., evaluation of given signal for finding its association to existing signal models). The objective of this paper is to provide a stochastic framework to design both fuzzy filtering and analysis algorithms in a unified manner. The signals are modeled via linear-in-parameters models (e.g., a type of Takagi-Sugeno fuzzy model) based on variational Bayes (VB) methodology. This gives rise to the "negative free energy maximizing" filtering algorithm. The issue of intractability was handled first by carefully choosing the priors as conjugate to the likelihood and then by using Stirling approximation for the Gamma function. This paper highlighted that it was analytically possible to maximize the information theoretic quantity, "mutual information," exactly in the same manner as maximizing "negative free energy" in VB methodology. This gives rise to the "variational information maximizing" analysis algorithm. The robustness of the methodology against data outliers is achieved by modeling the noises with Student- t distributions. The framework takes into account the inputs noises as well apart from the usually considered output noise. The robustness of the adaptive filtering algorithm against noise is shown by a deterministic analysis where an upper bound on the magnitude of estimation errors is derived.

  3. Design of PID Fuzzy Controller for Electric Vehicle Brake Control System Based on Parallel Structure of PI Fuzzy and PD Fuzzy

    NASA Astrophysics Data System (ADS)

    Sugisaka, Masanori; Mbaïtiga, Zacharie

    There exist several problems in the control of vehicle brake including the development of control logic for anti-lock braking system (ABS), base-braking and intelligent braking. Here we study the intelligent braking control where we seek to develop a controller that can ensure that the braking torque commended by the driver will be achieved. In particular, we develop, a new PID Fuzzy controller (PIDFC) based on parallel operation of PI Fuzzy and PD Fuzzy control. Two fuzzy rule bases are constructed by separating the linguistic control rule for PID Fuzzy control into two parts: The first part is e-Δe and the second part is Δ2e-Δe respectively. Then two Fuzzy controls employing these rules bases individually are synthesized and run in parallel. The incremental control input is determined by taking weighted mean of the outputs of two Fuzzy controls. The result, which proves the merit of the proposed method are compared to those found in the previous research.

  4. Robust Multiobjective Controllability of Complex Neuronal Networks.

    PubMed

    Tang, Yang; Gao, Huijun; Du, Wei; Lu, Jianquan; Vasilakos, Athanasios V; Kurths, Jurgen

    2016-01-01

    This paper addresses robust multiobjective identification of driver nodes in the neuronal network of a cat's brain, in which uncertainties in determination of driver nodes and control gains are considered. A framework for robust multiobjective controllability is proposed by introducing interval uncertainties and optimization algorithms. By appropriate definitions of robust multiobjective controllability, a robust nondominated sorting adaptive differential evolution (NSJaDE) is presented by means of the nondominated sorting mechanism and the adaptive differential evolution (JaDE). The simulation experimental results illustrate the satisfactory performance of NSJaDE for robust multiobjective controllability, in comparison with six statistical methods and two multiobjective evolutionary algorithms (MOEAs): nondominated sorting genetic algorithms II (NSGA-II) and nondominated sorting composite differential evolution. It is revealed that the existence of uncertainties in choosing driver nodes and designing control gains heavily affects the controllability of neuronal networks. We also unveil that driver nodes play a more drastic role than control gains in robust controllability. The developed NSJaDE and obtained results will shed light on the understanding of robustness in controlling realistic complex networks such as transportation networks, power grid networks, biological networks, etc.

  5. An adaptive fuzzy controller for permanent-magnet AC servo drives

    SciTech Connect

    Le-Huy, H.

    1995-12-31

    This paper presents a theoretical study on a model-reference adaptive fuzzy logic controller for vector-controlled permanent-magnet ac servo drives. In the proposed system, fuzzy logic is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The results are compared with that provided by a non-adaptive fuzzy controller. The implementation of proposed adaptive fuzzy controller is discussed.

  6. Robust control design for aerospace applications

    NASA Technical Reports Server (NTRS)

    Yedavalli, Rama K.

    1989-01-01

    Time-domain control design for stability robustness of linear systems with structured uncertainty is addressed. Upper bounds on the linear perturbation of an asymptotically stable linear system are obtained, making it possible to maintain stability by using the structural information of the uncertainty. A quantitative measure called the stability robustness index is introduced and used to design controllers for robust stability. The proposed state feedback control design algorithm can be used, for a given set of perturbations, to select the range of control effort for which the system is stability-robust. Conversely it can be used, for a given control effort, to determine the size of the tolerable perturbation. The algorithm is illustrated with examples from aircraft control and large-space-structure control problems.

  7. Robust nonlinear control of vectored thrust aircraft

    NASA Technical Reports Server (NTRS)

    Doyle, John C.; Murray, Richard; Morris, John

    1993-01-01

    An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations.

  8. Dynamic output feedback control of a flexible air-breathing hypersonic vehicle via T-S fuzzy approach

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoxiang; Wu, Ligang; Hu, Changhua; Wang, Zhaoqiang; Gao, Huijun

    2014-08-01

    By utilising Takagi-Sugeno (T-S) fuzzy set approach, this paper addresses the robust H∞ dynamic output feedback control for the non-linear longitudinal model of flexible air-breathing hypersonic vehicles (FAHVs). The flight control of FAHVs is highly challenging due to the unique dynamic characteristics, and the intricate couplings between the engine and fight dynamics and external disturbance. Because of the dynamics' enormous complexity, currently, only the longitudinal dynamics models of FAHVs have been used for controller design. In this work, T-S fuzzy modelling technique is utilised to approach the non-linear dynamics of FAHVs, then a fuzzy model is developed for the output tracking problem of FAHVs. The fuzzy model contains parameter uncertainties and disturbance, which can approach the non-linear dynamics of FAHVs more exactly. The flexible models of FAHVs are difficult to measure because of the complex dynamics and the strong couplings, thus a full-order dynamic output feedback controller is designed for the fuzzy model. A robust H∞ controller is designed for the obtained closed-loop system. By utilising the Lyapunov functional approach, sufficient solvability conditions for such controllers are established in terms of linear matrix inequalities. Finally, the effectiveness of the proposed T-S fuzzy dynamic output feedback control method is demonstrated by numerical simulations.

  9. Fuzzy logic controllers: A knowledge-based system perspective

    NASA Technical Reports Server (NTRS)

    Bonissone, Piero P.

    1993-01-01

    Over the last few years we have seen an increasing number of applications of Fuzzy Logic Controllers. These applications range from the development of auto-focus cameras, to the control of subway trains, cranes, automobile subsystems (automatic transmissions), domestic appliances, and various consumer electronic products. In summary, we consider a Fuzzy Logic Controller to be a high level language with its local semantics, interpreter, and compiler, which enables us to quickly synthesize non-linear controllers for dynamic systems.

  10. Optical implementation of fuzzy-logic-based controllers

    NASA Astrophysics Data System (ADS)

    Mendlovic, David; Zalevsky, Zeev; Gur, Eran

    2000-10-01

    State of the art fuzzy-logic based control is mainly implemented using electronic hardware or computer software. This requires interpretation of fuzzy logic concepts such as membership functions and fuzzy based rules, all of which have been thoroughly studied. However, the 2-D light-speed abilities of optical processing enables direct implementation of dual-input fuzzy logic inference engines. The optical equivalent of the membership function is generated in a straightforward manner and the same applies to rule tables and combination rules. Diffractive optical elements allow these optical inference engines to be compact in size and high on efficiency. This is done by binary optics and phase-only elements. Using the 2-D work-plane of optics, the ability of simple control over the wavelength and the polarization of light and the properties of diffractive elements, such an engine can deal with higher order data and lead the way to fast and dynamic fuzzy inferencing.

  11. Design of an iterative auto-tuning algorithm for a fuzzy PID controller

    NASA Astrophysics Data System (ADS)

    Saeed, Bakhtiar I.; Mehrdadi, B.

    2012-05-01

    Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.

  12. Fuzzy logic applications to expert systems and control

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    A considerable amount of work on the development of fuzzy logic algorithms and application to space related control problems has been done at the Johnson Space Center (JSC) over the past few years. Particularly, guidance control systems for space vehicles during proximity operations, learning systems utilizing neural networks, control of data processing during rendezvous navigation, collision avoidance algorithms, camera tracking controllers, and tether controllers have been developed utilizing fuzzy logic technology. Several other areas in which fuzzy sets and related concepts are being considered at JSC are diagnostic systems, control of robot arms, pattern recognition, and image processing. It has become evident, based on the commercial applications of fuzzy technology in Japan and China during the last few years, that this technology should be exploited by the government as well as private industry for energy savings.

  13. Approach to Synchronization Control of Magnetic Bearings Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Yang, Li-Farn

    1996-01-01

    This paper presents a fuzzy-logic approach to the synthesis of synchronization control for magnetically suspended rotor system. The synchronization control enables a whirling rotor to undergo synchronous motion along the magnetic bearing axes; thereby avoiding the gyroscopic effect that degrade the stability of rotor systems when spinning at high speed. The control system features a fuzzy controller acting on the magnetic bearing device, in which the fuzzy inference system trained through fuzzy rules to minimize the differential errors between four bearing axes so that an error along one bearing axis can affect the overall control loop for the motion synchronization. Numerical simulations of synchronization control for the magnetically suspended rotor system are presented to show the effectiveness of the present approach.

  14. Research in robust control for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.

    1993-01-01

    The research during the second reporting period has focused on robust control design for hypersonic vehicles. An already existing design for the Hypersonic Winged-Cone Configuration has been enhanced. Uncertainty models for the effects of propulsion system perturbations due to angle of attack variations, structural vibrations, and uncertainty in control effectiveness were developed. Using H(sub infinity) and mu-synthesis techniques, various control designs were performed in order to investigate the impact of these effects on achievable robust performance.

  15. Robust lateral control of highway vehicles

    SciTech Connect

    Byrne, R.H.; Abdallah, C.

    1994-08-01

    Vehicle lateral dynamics are affected by vehicle mass, longitudinal velocity, vehicle inertia, and the cornering stiffness of the tires. All of these parameters are subject to variation, even over the course of a single trip. Therefore, a practical lateral control system must guarantee stability, and hopefully ride comfort, over a wide range of parameter changes. This paper describes a robust controller which theoretically guarantees stability over a wide range of parameter changes. The robust controller is designed using a frequency domain transfer function approach. An uncertainty band in the frequency domain is determined using simulations over the range of expected parameter variations. Based on this bound, a robust controller is designed by solving the Nevanlinna-Pick interpolation problem. The performance of the robust controller is then evaluated over the range of parameter variations through simulations.

  16. Experimental Robust Control of Structural Acoustic Radiation

    NASA Technical Reports Server (NTRS)

    Cox, David E.; Gibbs, Gary P.; Clark, Robert L.; Vipperman, Jeffrey S.

    1998-01-01

    This work addresses the design and application of robust controllers for structural acoustic control. Both simulation and experimental results are presented. H(infinity) and mu-synthesis design methods were used to design feedback controllers which minimize power radiated from a panel while avoiding instability due to unmodeled dynamics. Specifically, high order structural modes which couple strongly to the actuator-sensor path were poorly modeled. This model error was analytically bounded with an uncertainty model, which allowed controllers to be designed without artificial limits on control effort. It is found that robust control methods provide the control designer with physically meaningful parameters with which to tune control designs and can be very useful in determining limits of performance. Experimental results also showed, however, poor robustness properties for control designs with ad-hoc uncertainty models. The importance of quantifying and bounding model errors is discussed.

  17. Applications of robust control theory - Educational implications

    NASA Technical Reports Server (NTRS)

    Dorato, P.; Yedavalli, R. K.

    1992-01-01

    A survey is made of applications of robust control theory to problems of flight control, control of flexible space structures, and engine control which have appeared in recent conferences and journals. An analysis is made of which theoretical techniques are most commonly used and what implications this has for graduate and undergraduate education in aerospace engineering.

  18. Output feedback adaptive fuzzy control of uncertain MIMO nonlinear systems with unknown input nonlinearities.

    PubMed

    Shahnazi, Reza

    2015-01-01

    An adaptive fuzzy output feedback controller is proposed for a class of uncertain MIMO nonlinear systems with unknown input nonlinearities. The input nonlinearities can be backlash-like hysteresis or dead-zone. Besides, the gains of unknown input nonlinearities are unknown nonlinear functions. Based on universal approximation theorem, the unknown nonlinear functions are approximated by fuzzy systems. The proposed method does not need the availability of the states and an observer based on strictly positive real (SPR) theory is designed to estimate the states. An adaptive robust structure is used to cope with fuzzy approximation error and external disturbances. The semi-global asymptotic stability of the closed-loop system is guaranteed via Lyapunov approach. The applicability of the proposed method is also shown via simulations.

  19. Output feedback adaptive fuzzy control of uncertain MIMO nonlinear systems with unknown input nonlinearities.

    PubMed

    Shahnazi, Reza

    2015-01-01

    An adaptive fuzzy output feedback controller is proposed for a class of uncertain MIMO nonlinear systems with unknown input nonlinearities. The input nonlinearities can be backlash-like hysteresis or dead-zone. Besides, the gains of unknown input nonlinearities are unknown nonlinear functions. Based on universal approximation theorem, the unknown nonlinear functions are approximated by fuzzy systems. The proposed method does not need the availability of the states and an observer based on strictly positive real (SPR) theory is designed to estimate the states. An adaptive robust structure is used to cope with fuzzy approximation error and external disturbances. The semi-global asymptotic stability of the closed-loop system is guaranteed via Lyapunov approach. The applicability of the proposed method is also shown via simulations. PMID:25104646

  20. Fuzzy control for head positioning of disk drives

    NASA Astrophysics Data System (ADS)

    Hsu, Han-Wen; Chen, Fu-Rong

    1992-10-01

    This paper investigates the validity of fuzzy algorithms applied to the control of head- positioning of hard disk drives, which require faster response and higher accuracy compared with other industrial products.

  1. Nonlinear rescaling of control values simplifies fuzzy control

    NASA Technical Reports Server (NTRS)

    Vanlangingham, H.; Tsoukkas, A.; Kreinovich, V.; Quintana, C.

    1993-01-01

    Traditional control theory is well-developed mainly for linear control situations. In non-linear cases there is no general method of generating a good control, so we have to rely on the ability of the experts (operators) to control them. If we want to automate their control, we must acquire their knowledge and translate it into a precise control strategy. The experts' knowledge is usually represented in non-numeric terms, namely, in terms of uncertain statements of the type 'if the obstacle is straight ahead, the distance to it is small, and the velocity of the car is medium, press the brakes hard'. Fuzzy control is a methodology that translates such statements into precise formulas for control. The necessary first step of this strategy consists of assigning membership functions to all the terms that the expert uses in his rules (in our sample phrase these words are 'small', 'medium', and 'hard'). The appropriate choice of a membership function can drastically improve the quality of a fuzzy control. In the simplest cases, we can take the functions whose domains have equally spaced endpoints. Because of that, many software packages for fuzzy control are based on this choice of membership functions. This choice is not very efficient in more complicated cases. Therefore, methods have been developed that use neural networks or generic algorithms to 'tune' membership functions. But this tuning takes lots of time (for example, several thousands iterations are typical for neural networks). In some cases there are evident physical reasons why equally space domains do not work: e.g., if the control variable u is always positive (i.e., if we control temperature in a reactor), then negative values (that are generated by equal spacing) simply make no sense. In this case it sounds reasonable to choose another scale u' = f(u) to represent u, so that equal spacing will work fine for u'. In the present paper we formulate the problem of finding the best rescaling function, solve

  2. A robust elicitation algorithm for discovering DNA motifs using fuzzy self-organizing maps.

    PubMed

    Wang, Dianhui; Tapan, Sarwar

    2013-10-01

    It is important to identify DNA motifs in promoter regions to understand the mechanism of gene regulation. Computational approaches for finding DNA motifs are well recognized as useful tools to biologists, which greatly help in saving experimental time and cost in wet laboratories. Self-organizing maps (SOMs), as a powerful clustering tool, have demonstrated good potential for problem solving. However, the current SOM-based motif discovery algorithms unfairly treat data samples lying around the cluster boundaries by assigning them to one of the nodes, which may result in unreliable system performance. This paper aims to develop a robust framework for discovering DNA motifs, where fuzzy SOMs, with an integration of fuzzy c-means membership functions and a standard batch-learning scheme, are employed to extract putative motifs with varying length in a recursive manner. Experimental results on eight real datasets show that our proposed algorithm outperforms the other searching tools such as SOMBRERO, SOMEA, MEME, AlignACE, and WEEDER in terms of the F-measure and algorithm reliability. It is observed that a remarkable 24.6% improvement can be achieved compared to the state-of-the-art SOMBRERO. Furthermore, our algorithm can produce a 20% and 6.6% improvement over SOMBRERO and SOMEA, respectively, in finding multiple motifs on five artificial datasets. PMID:24808603

  3. A Fuzzy Robust Optimization Model for Waste Allocation Planning Under Uncertainty.

    PubMed

    Xu, Ye; Huang, Guohe; Xu, Ling

    2014-10-01

    In this study, a fuzzy robust optimization (FRO) model was developed for supporting municipal solid waste management under uncertainty. The Development Zone of the City of Dalian, China, was used as a study case for demonstration. Comparing with traditional fuzzy models, the FRO model made improvement by considering the minimization of the weighted summation among the expected objective values, the differences between two extreme possible objective values, and the penalty of the constraints violation as the objective function, instead of relying purely on the minimization of expected value. Such an improvement leads to enhanced system reliability and the model becomes especially useful when multiple types of uncertainties and complexities are involved in the management system. Through a case study, the applicability of the FRO model was successfully demonstrated. Solutions under three future planning scenarios were provided by the FRO model, including (1) priority on economic development, (2) priority on environmental protection, and (3) balanced consideration for both. The balanced scenario solution was recommended for decision makers, since it respected both system economy and reliability. The model proved valuable in providing a comprehensive profile about the studied system and helping decision makers gain an in-depth insight into system complexity and select cost-effective management strategies. PMID:25317037

  4. A Fuzzy Robust Optimization Model for Waste Allocation Planning Under Uncertainty

    PubMed Central

    Xu, Ye; Huang, Guohe; Xu, Ling

    2014-01-01

    Abstract In this study, a fuzzy robust optimization (FRO) model was developed for supporting municipal solid waste management under uncertainty. The Development Zone of the City of Dalian, China, was used as a study case for demonstration. Comparing with traditional fuzzy models, the FRO model made improvement by considering the minimization of the weighted summation among the expected objective values, the differences between two extreme possible objective values, and the penalty of the constraints violation as the objective function, instead of relying purely on the minimization of expected value. Such an improvement leads to enhanced system reliability and the model becomes especially useful when multiple types of uncertainties and complexities are involved in the management system. Through a case study, the applicability of the FRO model was successfully demonstrated. Solutions under three future planning scenarios were provided by the FRO model, including (1) priority on economic development, (2) priority on environmental protection, and (3) balanced consideration for both. The balanced scenario solution was recommended for decision makers, since it respected both system economy and reliability. The model proved valuable in providing a comprehensive profile about the studied system and helping decision makers gain an in-depth insight into system complexity and select cost-effective management strategies. PMID:25317037

  5. Robust control synthesis for uncertain dynamical systems

    NASA Technical Reports Server (NTRS)

    Byun, Kuk-Whan; Wie, Bong; Sunkel, John

    1989-01-01

    This paper presents robust control synthesis techniques for uncertain dynamical systems subject to structured parameter perturbation. Both QFT (quantitative feedback theory) and H-infinity control synthesis techniques are investigated. Although most H-infinity-related control techniques are not concerned with the structured parameter perturbation, a new way of incorporating the parameter uncertainty in the robust H-infinity control design is presented. A generic model of uncertain dynamical systems is used to illustrate the design methodologies investigated in this paper. It is shown that, for a certain noncolocated structural control problem, use of both techniques results in nonminimum phase compensation.

  6. Fuzzy-information-based robustness of interconnected networks against attacks and failures

    NASA Astrophysics Data System (ADS)

    Zhu, Qian; Zhu, Zhiliang; Wang, Yifan; Yu, Hai

    2016-09-01

    Cascading failure is fatal in applications and its investigation is essential and therefore became a focal topic in the field of complex networks in the last decade. In this paper, a cascading failure model is established for interconnected networks and the associated data-packet transport problem is discussed. A distinguished feature of the new model is its utilization of fuzzy information in resisting uncertain failures and malicious attacks. We numerically find that the giant component of the network after failures increases with tolerance parameter for any coupling preference and attacking ambiguity. Moreover, considering the effect of the coupling probability on the robustness of the networks, we find that the robustness of the assortative coupling and random coupling of the network model increases with the coupling probability. However, for disassortative coupling, there exists a critical phenomenon for coupling probability. In addition, a critical value that attacking information accuracy affects the network robustness is observed. Finally, as a practical example, the interconnected AS-level Internet in South Korea and Japan is analyzed. The actual data validates the theoretical model and analytic results. This paper thus provides some guidelines for preventing cascading failures in the design of architecture and optimization of real-world interconnected networks.

  7. Robust and Adaptive OMR System Including Fuzzy Modeling, Fusion of Musical Rules, and Possible Error Detection

    NASA Astrophysics Data System (ADS)

    Rossant, Florence; Bloch, Isabelle

    2006-12-01

    This paper describes a system for optical music recognition (OMR) in case of monophonic typeset scores. After clarifying the difficulties specific to this domain, we propose appropriate solutions at both image analysis level and high-level interpretation. Thus, a recognition and segmentation method is designed, that allows dealing with common printing defects and numerous symbol interconnections. Then, musical rules are modeled and integrated, in order to make a consistent decision. This high-level interpretation step relies on the fuzzy sets and possibility framework, since it allows dealing with symbol variability, flexibility, and imprecision of music rules, and merging all these heterogeneous pieces of information. Other innovative features are the indication of potential errors and the possibility of applying learning procedures, in order to gain in robustness. Experiments conducted on a large data base show that the proposed method constitutes an interesting contribution to OMR.

  8. Neuro-fuzzy controller to navigate an unmanned vehicle.

    PubMed

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).

  9. Neuro-fuzzy controller to navigate an unmanned vehicle.

    PubMed

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN). PMID:23705105

  10. Station-keeping control for a stratospheric airship platform via fuzzy adaptive backstepping approach

    NASA Astrophysics Data System (ADS)

    Yang, Yueneng; Wu, Jie; Zheng, Wei

    2013-04-01

    This paper presents a novel approach for station-keeping control of a stratospheric airship platform in the presence of parametric uncertainty and external disturbance. First, conceptual design of the stratospheric airship platform is introduced, including the target mission, configuration, energy sources, propeller and payload. Second, the dynamics model of the airship platform is presented, and the mathematical model of its horizontal motion is derived. Third, a fuzzy adaptive backstepping control approach is proposed to develop the station-keeping control system for the simplified horizontal motion. The backstepping controller is designed assuming that the airship model is accurately known, and a fuzzy adaptive algorithm is used to approximate the uncertainty of the airship model. The stability of the closed-loop control system is proven via the Lyapunov theorem. Finally, simulation results illustrate the effectiveness and robustness of the proposed control approach.

  11. Adaptive Fuzzy Control of a Direct Drive Motor

    NASA Technical Reports Server (NTRS)

    Medina, E.; Kim, Y. T.; Akbaradeh-T., M. -R.

    1997-01-01

    This paper presents a state feedback adaptive control method for position and velocity control of a direct drive motor. The proposed control scheme allows for integrating heuristic knowledge with mathematical knowledge of a system. It performs well even when mathematical model of the system is poorly understood. The controller consists of an adaptive fuzzy controller and a supervisory controller. The supervisory controller requires only knowledge of the upper bound and lower bound of the system parameters. The fuzzy controller is based on fuzzy basis functions and states of the system. The adaptation law is derived based on the Lyapunov function which ensures that the state of the system asymptotically approaches zero. The proposed controller is applied to a direct drive motor with payload and parameter uncertainty, and the effectiveness is verified by simulation results.

  12. Adaptive Fuzzy Control of a Direct Drive Motor: Experimental Aspects

    NASA Technical Reports Server (NTRS)

    Medina, E.; Akbarzadeh-T, M.-R.; Kim, Y. T.

    1998-01-01

    This paper presents a state feedback adaptive control method for position and velocity control of a direct drive motor. The proposed control scheme allows for integrating heuristic knowledge with mathematical knowledge of a system. It performs well even when mathematical model of the system is poorly understood. The controller consists of an adaptive fuzzy controller and a supervisory controller. The supervisory controller requires only knowledge of the upper bound and lower bound of the system parameters. The fuzzy controller is based on fuzzy basis functions and states of the system. The adaptation law is derived based on the Lyapunov function which ensures that the state of the system asymptotically approaches zero. The proposed controller is applied to a direct drive motor with payload and parameter uncertainty, and the effectiveness is experimentally verified. The real-time performance is compared with simulation results.

  13. Using fuzzy numbers for construction projects monitoring and control

    NASA Astrophysics Data System (ADS)

    Skorupka, Dariusz; Kuchta, Dorota

    2016-06-01

    Fuzzy numbers will be used to estimate project activities duration times possible increases, both in the planning phase and - for non-completed activities - in consecutive control points during project realisation. The fuzzy estimates will allow to estimate and continuously update the predicted project completion time and the risk of not keeping to the deadline. The fuzzy estimates of non-completed activities will be updated in each control point, on the basis of the information on the actual adequacy of the fuzzy estimates of already completed activities with similar risk factors. A new method for this updating process will be proposed. The method will focus on construction projects and will be applied to a real world construction project.

  14. Analysis and Synthesis of Memory-Based Fuzzy Sliding Mode Controllers.

    PubMed

    Zhang, Jinhui; Lin, Yujuan; Feng, Gang

    2015-12-01

    This paper addresses the sliding mode control problem for a class of Takagi-Sugeno fuzzy systems with matched uncertainties. Different from the conventional memoryless sliding surface, a memory-based sliding surface is proposed which consists of not only the current state but also the delayed state. Both robust and adaptive fuzzy sliding mode controllers are designed based on the proposed memory-based sliding surface. It is shown that the sliding surface can be reached and the closed-loop control system is asymptotically stable. Furthermore, to reduce the chattering, some continuous sliding mode controllers are also presented. Finally, the ball and beam system is used to illustrate the advantages and effectiveness of the proposed approaches. It can be seen that, with the proposed control approaches, not only can the stability be guaranteed, but also its transient performance can be improved significantly.

  15. Implementation of a new fuzzy vector control of induction motor.

    PubMed

    Rafa, Souad; Larabi, Abdelkader; Barazane, Linda; Manceur, Malik; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2014-05-01

    The aim of this paper is to present a new approach to control an induction motor using type-1 fuzzy logic. The induction motor has a nonlinear model, uncertain and strongly coupled. The vector control technique, which is based on the inverse model of the induction motors, solves the coupling problem. Unfortunately, in practice this is not checked because of model uncertainties. Indeed, the presence of the uncertainties led us to use human expertise such as the fuzzy logic techniques. In order to maintain the decoupling and to overcome the problem of the sensitivity to the parametric variations, the field-oriented control is replaced by a new block control. The simulation results show that the both control schemes provide in their basic configuration, comparable performances regarding the decoupling. However, the fuzzy vector control provides the insensitivity to the parametric variations compared to the classical one. The fuzzy vector control scheme is successfully implemented in real-time using a digital signal processor board dSPACE 1104. The efficiency of this technique is verified as well as experimentally at different dynamic operating conditions such as sudden loads change, parameter variations, speed changes, etc. The fuzzy vector control is found to be a best control for application in an induction motor.

  16. Intelligent control of a multi-degree-of freedom reaction compensating platform system using fuzzy logic

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Lawrence, Charles; Lin, Yueh-Jaw

    1994-01-01

    This paper presents the development of a general-purpose fuzzy logic (FL) control methodology for isolating the external vibratory disturbances of space-based devices. According to the desired performance specifications, a full investigation regarding the development of an FL controller was done using different scenarios, such as variances of passive reaction-compensating components and external disturbance load. It was shown that the proposed FL controller is robust in that the FL-controlled system closely follows the prespecified ideal reference model. The comparative study also reveals that the FL-controlled system achieves significant improvement in reducing vibrations over passive systems.

  17. Fuzzy logic control of the building structure with CLEMR dampers

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang-Cheng; Xu, Zhao-Dong; Huang, Xing-Huai; Zhu, Jun-Tao

    2013-04-01

    The semi-active control technology has been paid more attention in the field of structural vibration control due to its high controllability, excellent control effect and low power requirement. When semi-active control device are used for vibration control, some challenges must be taken into account, such as the reliability and the control strategy of the device. This study presents a new large tonnage compound lead extrusion magnetorheological (CLEMR) damper, whose mathematical model is introduced to describe the variation of damping force with current and velocity. Then a current controller based on the fuzzy logic control strategy is designed to determine control currents of the CLEMR dampers rapidly. A ten-floor frame structure with CLEMR dampers using the fuzzy logic control strategy is built and calculated by using MATLAB. Calculation results show that CLEMR dampers can reduce the seismic responses of structures effectively. Calculation results of the fuzzy logic control strategy are compared with those of the semi-active limit Hrovat control structure, the passive-off control structure, and the uncontrolled structure. Comparison results show that the fuzzy logic control strategy can determine control currents of CLEMR dampers quickly and can reduce seismic responses of the structures more effectively than the passive-off control strategy and the uncontrolled structure.

  18. Robust Control for the Segway with Unknown Control Coefficient and Model Uncertainties.

    PubMed

    Kim, Byung Woo; Park, Bong Seok

    2016-06-29

    The Segway, which is a popular vehicle nowadays, is an uncertain nonlinear system and has an unknown time-varying control coefficient. Thus, we should consider the unknown time-varying control coefficient and model uncertainties to design the controller. Motivated by this observation, we propose a robust control for the Segway with unknown control coefficient and model uncertainties. To deal with the time-varying unknown control coefficient, we employ the Nussbaum gain technique. We introduce an auxiliary variable to solve the underactuated problem. Due to the prescribed performance control technique, the proposed controller does not require the adaptive technique, neural network, and fuzzy logic to compensate the uncertainties. Therefore, it can be simple. From the Lyapunov stability theory, we prove that all signals in the closed-loop system are bounded. Finally, we provide the simulation results to demonstrate the effectiveness of the proposed control scheme.

  19. Robust Control for the Segway with Unknown Control Coefficient and Model Uncertainties.

    PubMed

    Kim, Byung Woo; Park, Bong Seok

    2016-01-01

    The Segway, which is a popular vehicle nowadays, is an uncertain nonlinear system and has an unknown time-varying control coefficient. Thus, we should consider the unknown time-varying control coefficient and model uncertainties to design the controller. Motivated by this observation, we propose a robust control for the Segway with unknown control coefficient and model uncertainties. To deal with the time-varying unknown control coefficient, we employ the Nussbaum gain technique. We introduce an auxiliary variable to solve the underactuated problem. Due to the prescribed performance control technique, the proposed controller does not require the adaptive technique, neural network, and fuzzy logic to compensate the uncertainties. Therefore, it can be simple. From the Lyapunov stability theory, we prove that all signals in the closed-loop system are bounded. Finally, we provide the simulation results to demonstrate the effectiveness of the proposed control scheme. PMID:27367696

  20. Robust Control for the Segway with Unknown Control Coefficient and Model Uncertainties

    PubMed Central

    Kim, Byung Woo; Park, Bong Seok

    2016-01-01

    The Segway, which is a popular vehicle nowadays, is an uncertain nonlinear system and has an unknown time-varying control coefficient. Thus, we should consider the unknown time-varying control coefficient and model uncertainties to design the controller. Motivated by this observation, we propose a robust control for the Segway with unknown control coefficient and model uncertainties. To deal with the time-varying unknown control coefficient, we employ the Nussbaum gain technique. We introduce an auxiliary variable to solve the underactuated problem. Due to the prescribed performance control technique, the proposed controller does not require the adaptive technique, neural network, and fuzzy logic to compensate the uncertainties. Therefore, it can be simple. From the Lyapunov stability theory, we prove that all signals in the closed-loop system are bounded. Finally, we provide the simulation results to demonstrate the effectiveness of the proposed control scheme. PMID:27367696

  1. Robust algebraic image enhancement for intelligent control systems

    NASA Technical Reports Server (NTRS)

    Lerner, Bao-Ting; Morrelli, Michael

    1993-01-01

    Robust vision capability for intelligent control systems has been an elusive goal in image processing. The computationally intensive techniques a necessary for conventional image processing make real-time applications, such as object tracking and collision avoidance difficult. In order to endow an intelligent control system with the needed vision robustness, an adequate image enhancement subsystem capable of compensating for the wide variety of real-world degradations, must exist between the image capturing and the object recognition subsystems. This enhancement stage must be adaptive and must operate with consistency in the presence of both statistical and shape-based noise. To deal with this problem, we have developed an innovative algebraic approach which provides a sound mathematical framework for image representation and manipulation. Our image model provides a natural platform from which to pursue dynamic scene analysis, and its incorporation into a vision system would serve as the front-end to an intelligent control system. We have developed a unique polynomial representation of gray level imagery and applied this representation to develop polynomial operators on complex gray level scenes. This approach is highly advantageous since polynomials can be manipulated very easily, and are readily understood, thus providing a very convenient environment for image processing. Our model presents a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets.

  2. Robust kernelized local information fuzzy C-means clustering for brain magnetic resonance image segmentation.

    PubMed

    Elazab, Ahmed; AbdulAzeem, Yousry M; Wu, Shiqian; Hu, Qingmao

    2016-03-17

    Brain tissue segmentation from magnetic resonance (MR) images is an importance task for clinical use. The segmentation process becomes more challenging in the presence of noise, grayscale inhomogeneity, and other image artifacts. In this paper, we propose a robust kernelized local information fuzzy C-means clustering algorithm (RKLIFCM). It incorporates local information into the segmentation process (both grayscale and spatial) for more homogeneous segmentation. In addition, the Gaussian radial basis kernel function is adopted as a distance metric to replace the standard Euclidean distance. The main advantages of the new algorithm are: efficient utilization of local grayscale and spatial information, robustness to noise, ability to preserve image details, free from any parameter initialization, and with high speed as it runs on image histogram. We compared the proposed algorithm with 7 soft clustering algorithms that run on both image histogram and image pixels to segment brain MR images. Experimental results demonstrate that the proposed RKLIFCM algorithm is able to overcome the influence of noise and achieve higher segmentation accuracy with low computational complexity. PMID:27257884

  3. Robust Fault Detection for Aircraft Using Mixed Structured Singular Value Theory and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G.

    2000-01-01

    The purpose of fault detection is to identify when a fault or failure has occurred in a system such as an aircraft or expendable launch vehicle. The faults may occur in sensors, actuators, structural components, etc. One of the primary approaches to model-based fault detection relies on analytical redundancy. That is the output of a computer-based model (actually a state estimator) is compared with the sensor measurements of the actual system to determine when a fault has occurred. Unfortunately, the state estimator is based on an idealized mathematical description of the underlying plant that is never totally accurate. As a result of these modeling errors, false alarms can occur. This research uses mixed structured singular value theory, a relatively recent and powerful robustness analysis tool, to develop robust estimators and demonstrates the use of these estimators in fault detection. To allow qualitative human experience to be effectively incorporated into the detection process fuzzy logic is used to predict the seriousness of the fault that has occurred.

  4. Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models.

    PubMed

    Dong, Jiuxiang; Wang, Youyi; Yang, Guang-Hong

    2009-10-01

    This paper is concerned with the problem of designing fuzzy controllers for a class of nonlinear dynamic systems. The considered nonlinear systems are described by T-S fuzzy models with nonlinear local models, and the fuzzy models have fewer fuzzy rules than conventional T-S fuzzy models with local linear models. A new fuzzy control scheme with local nonlinear feedbacks is proposed, and the corresponding control synthesis conditions are given in terms of solutions to a set of linear matrix inequalities (LMIs). In contrast to the existing methods for fuzzy control synthesis, the new proposed control design method is based on fewer fuzzy rules and less computational burden. Moreover, the local nonlinear feedback laws in the new fuzzy controllers are also helpful in achieving good control effects. Numerical examples are given to illustrate the effectiveness of the proposed method.

  5. Neuro-Fuzzy Control of a Robotic Manipulator

    NASA Astrophysics Data System (ADS)

    Gierlak, P.; Muszyńska, M.; Żylski, W.

    2014-08-01

    In this paper, to solve the problem of control of a robotic manipulator's movement with holonomical constraints, an intelligent control system was used. This system is understood as a hybrid controller, being a combination of fuzzy logic and an artificial neural network. The purpose of the neuro-fuzzy system is the approximation of the nonlinearity of the robotic manipulator's dynamic to generate a compensatory control. The control system is designed in such a way as to permit modification of its properties under different operating conditions of the two-link manipulator

  6. A Numerical Optimization Approach for Tuning Fuzzy Logic Controllers

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Garg, Devendra P.

    1998-01-01

    This paper develops a method to tune fuzzy controllers using numerical optimization. The main attribute of this approach is that it allows fuzzy logic controllers to be tuned to achieve global performance requirements. Furthermore, this approach allows design constraints to be implemented during the tuning process. The method tunes the controller by parameterizing the membership functions for error, change-in-error and control output. The resulting parameters form a design vector which is iteratively changed to minimize an objective function. The minimal objective function results in an optimal performance of the system. A spacecraft mounted science instrument line-of-sight pointing control is used to demonstrate results.

  7. Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes

    NASA Technical Reports Server (NTRS)

    Duerksen, Noel

    1997-01-01

    It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control different airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control aileron or roll spoiler position. This controller was used to control bank angle for both a piston powered single engine aileron equipped airplane simulation and a business jet simulation which used spoilers for primary roll control. Overspeed, stall and overbank protection were incorporated in the form of expert systems supervisors and weighted fuzzy rules. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic lateral controller could be successfully used on two general aviation aircraft types that have very different characteristics. These controllers worked for both airplanes over their entire flight envelopes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle ]ever travel, etc.). This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

  8. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain

    SciTech Connect

    Luo, Shaohua

    2014-09-01

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.

  9. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain.

    PubMed

    Luo, Shaohua

    2014-09-01

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.

  10. Structurally robust control of complex networks

    NASA Astrophysics Data System (ADS)

    Nacher, Jose C.; Akutsu, Tatsuya

    2015-01-01

    Robust control theory has been successfully applied to numerous real-world problems using a small set of devices called controllers. However, the real systems represented by networks contain unreliable components and modern robust control engineering has not addressed the problem of structural changes on complex networks including scale-free topologies. Here, we introduce the concept of structurally robust control of complex networks and provide a concrete example using an algorithmic framework that is widely applied in engineering. The developed analytical tools, computer simulations, and real network analyses lead herein to the discovery that robust control can be achieved in scale-free networks with exactly the same order of controllers required in a standard nonrobust configuration by adjusting only the minimum degree. The presented methodology also addresses the probabilistic failure of links in real systems, such as neural synaptic unreliability in Caenorhabditis elegans, and suggests a new direction to pursue in studies of complex networks in which control theory has a role.

  11. Average-cost based robust structural control

    NASA Technical Reports Server (NTRS)

    Hagood, Nesbitt W.

    1993-01-01

    A method is presented for the synthesis of robust controllers for linear time invariant structural systems with parameterized uncertainty. The method involves minimizing quantities related to the quadratic cost (H2-norm) averaged over a set of systems described by real parameters such as natural frequencies and modal residues. Bounded average cost is shown to imply stability over the set of systems. Approximations for the exact average are derived and proposed as cost functionals. The properties of these approximate average cost functionals are established. The exact average and approximate average cost functionals are used to derive dynamic controllers which can provide stability robustness. The robustness properties of these controllers are demonstrated in illustrative numerical examples and tested in a simple SISO experiment on the MIT multi-point alignment testbed.

  12. A Fuzzy Permutation Method for False Discovery Rate Control.

    PubMed

    Yang, Ya-Hui; Lin, Wan-Yu; Lee, Wen-Chung

    2016-01-01

    Biomedical researchers often encounter the large-p-small-n situations-a great number of variables are measured/recorded for only a few subjects. The authors propose a fuzzy permutation method to address the multiple testing problem for small sample size studies. The method introduces fuzziness into standard permutation analysis to produce randomized p-values, which are then converted into q-values for false discovery rate controls. Simple algebra shows that the fuzzy permutation method is at least as powerful as the standard permutation method under any alternative. Monte-Carlo simulations show that the proposed method has desirable statistical properties whether the study variables are normally or non-normally distributed. A real dataset is analyzed to illustrate its use. The proposed fuzzy permutation method is recommended for use in the large-p-small-n settings. PMID:27328860

  13. A Fuzzy Permutation Method for False Discovery Rate Control.

    PubMed

    Yang, Ya-Hui; Lin, Wan-Yu; Lee, Wen-Chung

    2016-06-22

    Biomedical researchers often encounter the large-p-small-n situations-a great number of variables are measured/recorded for only a few subjects. The authors propose a fuzzy permutation method to address the multiple testing problem for small sample size studies. The method introduces fuzziness into standard permutation analysis to produce randomized p-values, which are then converted into q-values for false discovery rate controls. Simple algebra shows that the fuzzy permutation method is at least as powerful as the standard permutation method under any alternative. Monte-Carlo simulations show that the proposed method has desirable statistical properties whether the study variables are normally or non-normally distributed. A real dataset is analyzed to illustrate its use. The proposed fuzzy permutation method is recommended for use in the large-p-small-n settings.

  14. A Fuzzy Permutation Method for False Discovery Rate Control

    NASA Astrophysics Data System (ADS)

    Yang, Ya-Hui; Lin, Wan-Yu; Lee, Wen-Chung

    2016-06-01

    Biomedical researchers often encounter the large-p-small-n situations—a great number of variables are measured/recorded for only a few subjects. The authors propose a fuzzy permutation method to address the multiple testing problem for small sample size studies. The method introduces fuzziness into standard permutation analysis to produce randomized p-values, which are then converted into q-values for false discovery rate controls. Simple algebra shows that the fuzzy permutation method is at least as powerful as the standard permutation method under any alternative. Monte-Carlo simulations show that the proposed method has desirable statistical properties whether the study variables are normally or non-normally distributed. A real dataset is analyzed to illustrate its use. The proposed fuzzy permutation method is recommended for use in the large-p-small-n settings.

  15. A Fuzzy Permutation Method for False Discovery Rate Control

    PubMed Central

    Yang, Ya-Hui; Lin, Wan-Yu; Lee, Wen-Chung

    2016-01-01

    Biomedical researchers often encounter the large-p-small-n situations—a great number of variables are measured/recorded for only a few subjects. The authors propose a fuzzy permutation method to address the multiple testing problem for small sample size studies. The method introduces fuzziness into standard permutation analysis to produce randomized p-values, which are then converted into q-values for false discovery rate controls. Simple algebra shows that the fuzzy permutation method is at least as powerful as the standard permutation method under any alternative. Monte-Carlo simulations show that the proposed method has desirable statistical properties whether the study variables are normally or non-normally distributed. A real dataset is analyzed to illustrate its use. The proposed fuzzy permutation method is recommended for use in the large-p-small-n settings. PMID:27328860

  16. The Middeck Active Control Experiment (MACE): Identification for robust control

    NASA Technical Reports Server (NTRS)

    Karlov, Valery I.

    1992-01-01

    Viewgraphs on identification for robust control for the Middeck Active Control Experiment (MACE) are presented. Topics covered include: identification for robust control; three levels of identification; basic elements of the approach; advantages of 'post-ID' model of uncertainty; advantages of optimization; and practical realization.

  17. Application of genetic algorithms to tuning fuzzy control systems

    NASA Technical Reports Server (NTRS)

    Espy, Todd; Vombrack, Endre; Aldridge, Jack

    1993-01-01

    Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.

  18. An architecture for designing fuzzy logic controllers using neural networks

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1991-01-01

    Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.

  19. Autonomous vehicle motion control, approximate maps, and fuzzy logic

    NASA Technical Reports Server (NTRS)

    Ruspini, Enrique H.

    1993-01-01

    Progress on research on the control of actions of autonomous mobile agents using fuzzy logic is presented. The innovations described encompass theoretical and applied developments. At the theoretical level, results of research leading to the combined utilization of conventional artificial planning techniques with fuzzy logic approaches for the control of local motion and perception actions are presented. Also formulations of dynamic programming approaches to optimal control in the context of the analysis of approximate models of the real world are examined. Also a new approach to goal conflict resolution that does not require specification of numerical values representing relative goal importance is reviewed. Applied developments include the introduction of the notion of approximate map. A fuzzy relational database structure for the representation of vague and imprecise information about the robot's environment is proposed. Also the central notions of control point and control structure are discussed.

  20. Fuzzy regulator design for wind turbine yaw control.

    PubMed

    Theodoropoulos, Stefanos; Kandris, Dionisis; Samarakou, Maria; Koulouras, Grigorios

    2014-01-01

    This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness.

  1. Fuzzy regulator design for wind turbine yaw control.

    PubMed

    Theodoropoulos, Stefanos; Kandris, Dionisis; Samarakou, Maria; Koulouras, Grigorios

    2014-01-01

    This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness. PMID:24693237

  2. Fuzzy Regulator Design for Wind Turbine Yaw Control

    PubMed Central

    Koulouras, Grigorios

    2014-01-01

    This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness. PMID:24693237

  3. Matlab as a robust control design tool

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.

    1994-01-01

    This presentation introduces Matlab as a tool used in flight control research. The example used to illustrate some of the capabilities of this software is a robust controller designed for a single stage to orbit air breathing vehicles's ascent to orbit. The global requirements of the controller are to stabilize the vehicle and follow a trajectory in the presence of atmospheric disturbances and strong dynamic coupling between airframe and propulsion.

  4. Robust control algorithms for Mars aerobraking

    NASA Technical Reports Server (NTRS)

    Shipley, Buford W., Jr.; Ward, Donald T.

    1992-01-01

    Four atmospheric guidance concepts have been adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. The first two offer improvements to the Analytic Predictor Corrector (APC) to increase its robustness to density variations. The second two are variations of a new Liapunov tracking exit phase algorithm, developed to guide the vehicle along a reference trajectory. These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. MARSGRAM is used to develop realistic atmospheres for the study. When square wave density pulses perturb the atmosphere all four controllers are successful. The algorithms are tested against atmospheres where the inbound and outbound density functions are different. Square wave density pulses are again used, but only for the outbound leg of the trajectory. Additionally, sine waves are used to perturb the density function. The new algorithms are found to be more robust than any previously tested and a Liapunov controller is selected as the most robust control algorithm overall examined.

  5. A new fuzzy self-tuning PD load frequency controller for micro-hydropower system

    NASA Astrophysics Data System (ADS)

    Reyasudin Basir Khan, M.; Jidin, Razali; Pasupuleti, Jagadeesh

    2016-03-01

    This paper presents a new approach for controlling the secondary load bank of a micro-hydropower system using a fuzzy self-tuning proportional-derivative (PD) controller. This technology is designed in order to optimize the micro-hydropower system in a resort island located in the South China Sea. Thus, this technology will be able to mitigate the diesel fuel consumption and cost of electricity supply on the island. The optimal hydropower generation for this system depends on the available stream flow at the potential sites. At low stream flow, both the micro-hydropower system and the currently installed diesel generators are required to feed the load. However, when the hydropower generation exceeds the load demand, the diesel generator is shut down. Meanwhile, the system frequency is controlled by a secondary load bank that absorbs the hydropower which exceeds the consumer demand. The fuzzy rules were designed to automatically tune the PD gains under dynamic frequency variations. Performances of the fuzzy self-tuning PD controller were compared with the conventional PD controller. The result of the controller implementation shows the viability of the proposed new controller in achieving a higher performance and more robust load frequency control than the conventional PD controller.

  6. Flight test results of the fuzzy logic adaptive controller-helicopter (FLAC-H)

    NASA Astrophysics Data System (ADS)

    Wade, Robert L.; Walker, Gregory W.

    1996-05-01

    The fuzzy logic adaptive controller for helicopters (FLAC-H) demonstration is a cooperative effort between the US Army Simulation, Training, and Instrumentation Command (STRICOM), the US Army Aviation and Troop Command, and the US Army Missile Command to demonstrate a low-cost drone control system for both full-scale and sub-scale helicopters. FLAC-H was demonstrated on one of STRICOM's fleet of full-scale rotary-winged target drones. FLAC-H exploits fuzzy logic in its flight control system to provide a robust solution to the control of the helicopter's dynamic, nonlinear system. Straight forward, common sense fuzzy rules governing helicopter flight are processed instead of complex mathematical models. This has resulted in a simplified solution to the complexities of helicopter flight. Incorporation of fuzzy logic reduced the cost of development and should also reduce the cost of maintenance of the system. An adaptive algorithm allows the FLAC-H to 'learn' how to fly the helicopter, enabling the control system to adjust to varying helicopter configurations. The adaptive algorithm, based on genetic algorithms, alters the fuzzy rules and their related sets to improve the performance characteristics of the system. This learning allows FLAC-H to automatically be integrated into a new airframe, reducing the development costs associated with altering a control system for a new or heavily modified aircraft. Successful flight tests of the FLAC-H on a UH-1H target drone were completed in September 1994 at the White Sands Missile Range in New Mexico. This paper discuses the objective of the system, its design, and performance.

  7. Full design of fuzzy controllers using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Homaifar, Abdollah; Mccormick, ED

    1992-01-01

    This paper examines the applicability of genetic algorithms (GA) in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.

  8. Full design of fuzzy controllers using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Homaifar, Abdollah; Mccormick, ED

    1992-01-01

    This paper examines the applicability of genetic algorithms in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.

  9. Research in robust control for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.

    1994-01-01

    The research during the third reporting period focused on fixed order robust control design for hypersonic vehicles. A new technique was developed to synthesize fixed order H(sub infinity) controllers. A controller canonical form is imposed on the compensator structure and a homotopy algorithm is employed to perform the controller design. Various reduced order controllers are designed for a simplified version of the hypersonic vehicle model used in our previous studies to demonstrate the capabilities of the code. However, further work is needed to investigate the issue of numerical ill-conditioning for large order systems and to make the numerical approach more reliable.

  10. A robust adaptive nonlinear fault-tolerant controller via norm estimation for reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Hu, Chaofang; Gao, Zhifei; Ren, Yanli; Liu, Yunbing

    2016-11-01

    In this paper, a reusable launch vehicle (RLV) attitude control problem with actuator faults is addressed via the robust adaptive nonlinear fault-tolerant control (FTC) with norm estimation. Firstly, the accurate tracking task of attitude angles in the presence of parameter uncertainties and external disturbances is considered. A fault-free controller is proposed using dynamic surface control (DSC) combined with fuzzy adaptive approach. Furthermore, the minimal learning parameter strategy via norm estimation technique is introduced to reduce the multi-parameter adaptive computation burden of fuzzy approximation of the lump uncertainties. Secondly, a compensation controller is designed to handle the partial loss fault of actuator effectiveness. The unknown maximum eigenvalue of actuator efficiency loss factors is estimated online. Moreover, stability analysis guarantees that all signals of the closed-loop control system are semi-global uniformly ultimately bounded. Finally, illustrative simulations show the effectiveness of the proposed method.

  11. Optimized Reactive Power Compensation Using Fuzzy Logic Controller

    NASA Astrophysics Data System (ADS)

    George, S.; Mini, K. N.; Supriya, K.

    2015-03-01

    Reactive power flow in a long transmission line plays a vital role in power transfer capability and voltage stability in power system. Traditionally, shunt connected compensators are used to control reactive power in long transmission line. Thyristor controlled reactor is used to control reactive power under lightly loaded condition. By controlling firing angle of thyristor, it is possible to control reactive power in the transmission lines. However, thyristor controlled reactor will inject harmonic current into the system. An attempt to reduce reactive power injection will increase harmonic distortion in the line current and vice versa. Thus, there is a trade-off between reactive power injection and harmonics in current. By optimally controlling the reactive power injection, harmonics in current can be brought within the specified limit. In this paper, a Fuzzy Logic Controller is implemented to obtain optimal control of reactive power of the compensator to maintain voltage and harmonic in current within the limits. An algorithm which optimizes the firing angle in each fuzzy subset by calculating the rank of feasible firing angles is proposed for the construction of rules in Fuzzy Logic Controller. The novelty of the algorithm is that it uses a simple error formula for the calculation of the rank of the feasible firing angles in each fuzzy subset.

  12. A multi-granular-based fuzzy adaptive controller

    NASA Astrophysics Data System (ADS)

    Lu, Bin

    2006-11-01

    The accuracy and complexity of fuzzy control systems are problems worthy of study deeply. The high accuracy of control means that the controlled variables will have to be represented at fine granularity which increases the complexity of controller. To attain the prescribed accuracy in reducing control complexity, a multi-granular fuzzy adaptive controller is proposed which represents the process of reaching goal at different spaces of the information granularity. When the prescribed accuracy is low, a coarse fuzzy controller can be used. As the process moves from high level to low level, the prescribed accuracy becomes higher and the information granularity to fuzzy controller becomes finer. In this controller, a rough plan is generated to reach the final goal firstly. Then, the plan is decomposed to many sub-goals which are submitted to the next lower level of hierarchy. And the more refined plans to reach these sub-goals are determined. If needed, this process of successive refinement continues until the final prescribed accuracy is obtained. In addition, the methods are presented to determine the depth of levels and the number of granules in each level. Finally, the simulation results of double inverted pendulum indicate the effectiveness of the proposed controller.

  13. Hybrid supervisory control using recurrent fuzzy neural network for tracking periodic inputs.

    PubMed

    Lin, F J; Wai, R J; Hong, C M

    2001-01-01

    A hybrid supervisory control system using a recurrent fuzzy neural network (RFNN) is proposed to control the mover of a permanent magnet linear synchronous motor (PMLSM) servo drive for the tracking of periodic reference inputs. First, the field-oriented mechanism is applied to formulate the dynamic equation of the PMLSM. Then, a hybrid supervisory control system, which combines a supervisory control system and an intelligent control system, is proposed to control the mover of the PMLSM for periodic motion. The supervisory control law is designed based on the uncertainty bounds of the controlled system to stabilize the system states around a predefined bound region. Since the supervisory control law will induce excessive and chattering control effort, the intelligent control system is introduced to smooth and reduce the control effort when the system states are inside the predefined bound region. In the intelligent control system, the RFNN control is the main tracking controller which is used to mimic a idea control law and a compensated control is proposed to compensate the difference between the idea control law and the RFNN control. The RFNN has the merits of fuzzy inference, dynamic mapping and fast convergence speed, In addition, an online parameter training methodology, which is derived using the Lyapunov stability theorem and the gradient descent method, is proposed to increase the learning capability of the RFNN. The proposed hybrid supervisory control system using RFNN can track various periodic reference inputs effectively with robust control performance.

  14. A queuing-theory-based interval-fuzzy robust two-stage programming model for environmental management under uncertainty

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Li, Y. P.; Huang, G. H.

    2012-06-01

    In this study, a queuing-theory-based interval-fuzzy robust two-stage programming (QB-IRTP) model is developed through introducing queuing theory into an interval-fuzzy robust two-stage (IRTP) optimization framework. The developed QB-IRTP model can not only address highly uncertain information for the lower and upper bounds of interval parameters but also be used for analysing a variety of policy scenarios that are associated with different levels of economic penalties when the promised targets are violated. Moreover, it can reflect uncertainties in queuing theory problems. The developed method has been applied to a case of long-term municipal solid waste (MSW) management planning. Interval solutions associated with different waste-generation rates, different waiting costs and different arriving rates have been obtained. They can be used for generating decision alternatives and thus help managers to identify desired MSW management policies under various economic objectives and system reliability constraints.

  15. Robust adaptive control of HVDC systems

    SciTech Connect

    Reeve, J.; Sultan, M. )

    1994-07-01

    The transient performance of an HVDC power system is highly dependent on the parameters of the current/voltage regulators of the converter controls. In order to better accommodate changes in system structure or dc operating conditions, this paper introduces a new adaptive control strategy. The advantages of automatic tuning for continuous fine tuning are combined with predetermined gain scheduling in order to achieve robustness for large disturbances. Examples are provided for a digitally simulated back-to-back dc system.

  16. Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems

    NASA Technical Reports Server (NTRS)

    Esogbue, Augustine O.

    1998-01-01

    The principal objective of the research reported here is the re-design, analysis and optimization of our newly developed neural network fuzzy adaptive controller model for complex processes capable of learning fuzzy control rules using process data and improving its control through on-line adaption. The learned improvement is according to a performance objective function that provides evaluative feedback; this performance objective is broadly defined to meet long-range goals over time. Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for which standard models and controls are either inefficient, impractical or cannot be derived, the state of the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control and permit on-line adaption and in the process optimize control. The operation of neural networks integrates very naturally with fuzzy logic. The neural networks which were designed and tested using simulation software and simulated data, followed by realistic industrial data were reconfigured for application on several platforms as well as for the employment of improved algorithms. The statistical procedures of the learning process were investigated and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals, etc.). The computational advantage of dynamic programming-like methods of optimal control was used to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the control rules were applied. Comparisons to other methods and controllers were made so as to identify the major advantages of the resulting controller model. Several specific modifications and extensions were made to the original controller. Additional modifications and explorations have been proposed for further study. Some of

  17. Robust control technique for nuclear power plants

    SciTech Connect

    Murphy, G.V.; Bailey, J.M.

    1989-03-01

    This report summarizes the linear quadratic Guassian (LQG) design technique with loop transfer recovery (LQG/LTR) for design of control systems. The concepts of return ratio, return difference, inverse return difference, and singular values are summarized. The LQG/LTR design technique allows the synthesis of a robust control system. To illustrate the LQG/LTR technique, a linearized model of a simple process has been chosen. The process has three state variables, one input, and one output. Three control system design methods are compared: LQG, LQG/LTR, and a proportional plus integral controller (PI). 7 refs., 20 figs., 6 tabs.

  18. Reliable Sampled-Data Control of Fuzzy Markovian Systems with Partly Known Transition Probabilities

    NASA Astrophysics Data System (ADS)

    Sakthivel, R.; Kaviarasan, B.; Kwon, O. M.; Rathika, M.

    2016-08-01

    This article presents a fuzzy dynamic reliable sampled-data control design for nonlinear Markovian jump systems, where the nonlinear plant is represented by a Takagi-Sugeno fuzzy model and the transition probability matrix for Markov process is permitted to be partially known. In addition, a generalised as well as more practical consideration of the real-world actuator fault model which consists of both linear and nonlinear fault terms is proposed to the above-addressed system. Then, based on the construction of an appropriate Lyapunov-Krasovskii functional and the employment of convex combination technique together with free-weighting matrices method, some sufficient conditions that promising the robust stochastic stability of system under consideration and the existence of the proposed controller are derived in terms of linear matrix inequalities, which can be easily solved by any of the available standard numerical softwares. Finally, a numerical example is provided to illustrate the validity of the proposed methodology.

  19. Tuning a fuzzy controller using quadratic response surfaces

    NASA Technical Reports Server (NTRS)

    Schott, Brian; Whalen, Thomas

    1992-01-01

    Response surface methodology, an alternative method to traditional tuning of a fuzzy controller, is described. An example based on a simulated inverted pendulum 'plant' shows that with (only) 15 trial runs, the controller can be calibrated using a quadratic form to approximate the response surface.

  20. Interval Analysis Approach to Prototype the Robust Control of the Laboratory Overhead Crane

    NASA Astrophysics Data System (ADS)

    Smoczek, J.; Szpytko, J.; Hyla, P.

    2014-07-01

    The paper describes the software-hardware equipment and control-measurement solutions elaborated to prototype the laboratory scaled overhead crane control system. The novelty approach to crane dynamic system modelling and fuzzy robust control scheme design is presented. The iterative procedure for designing a fuzzy scheduling control scheme is developed based on the interval analysis of discrete-time closed-loop system characteristic polynomial coefficients in the presence of rope length and mass of a payload variation to select the minimum set of operating points corresponding to the midpoints of membership functions at which the linear controllers are determined through desired poles assignment. The experimental results obtained on the laboratory stand are presented.

  1. Fuzzy self-learning control for magnetic servo system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

  2. Fuzzy Logic Decoupled Longitudinal Control for General Aviation Airplanes

    NASA Technical Reports Server (NTRS)

    Duerksen, Noel

    1996-01-01

    It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control difference airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control throttle position and another to control elevator position. These two controllers were used to control flight path angle and airspeed for both a piston powered single engine airplane simulation and a business jet simulation. Overspeed protection and stall protection were incorporated in the form of expert systems supervisors. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic longitudinal controller could be successfully used on two general aviation aircraft types that have very difference characteristics. These controllers worked for both airplanes over their entire flight envelopes including configuration changes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle lever travel, etc.). The controllers also handled configuration changes without mode switching or knowledge of the current configuration. This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

  3. Fuzzy logic controller to improve powerline communication

    NASA Astrophysics Data System (ADS)

    Tirrito, Salvatore

    2015-12-01

    The Power Line Communications (PLC) technology allows the use of the power grid in order to ensure the exchange of data information among devices. This work proposes an approach, based on Fuzzy Logic, that dynamically manages the amplitude of the signal, with which each node transmits, by processing the master-slave link quality measured and the master-slave distance. The main objective of this is to reduce both the impact of communication interferences induced and power consumption.

  4. A fuzzy behaviorist approach to sensor-based robot control

    SciTech Connect

    Pin, F.G.

    1996-05-01

    Sensor-based operation of autonomous robots in unstructured and/or outdoor environments has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. An approach. which we have named the {open_quotes}Fuzzy Behaviorist Approach{close_quotes} (FBA) is proposed in an attempt to remedy some of these difficulties. This approach is based on the representation of the system`s uncertainties using Fuzzy Set Theory-based approximations and on the representation of the reasoning and control schemes as sets of elemental behaviors. Using the FBA, a formalism for rule base development and an automated generator of fuzzy rules have been developed. This automated system can automatically construct the set of membership functions corresponding to fuzzy behaviors. Once these have been expressed in qualitative terms by the user. The system also checks for completeness of the rule base and for non-redundancy of the rules (which has traditionally been a major hurdle in rule base development). Two major conceptual features, the suppression and inhibition mechanisms which allow to express a dominance between behaviors are discussed in detail. Some experimental results obtained with the automated fuzzy, rule generator applied to the domain of sensor-based navigation in aprion unknown environments. using one of our autonomous test-bed robots as well as a real car in outdoor environments, are then reviewed and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using the {open_quotes}Fuzzy Behaviorist{close_quotes} concepts.

  5. Robust H infinity-stabilization design in gene networks under stochastic molecular noises: fuzzy-interpolation approach.

    PubMed

    Chen, Bor-Sen; Chang, Yu-Te; Wang, Yu-Chao

    2008-02-01

    Molecular noises in gene networks come from intrinsic fluctuations, transmitted noise from upstream genes, and the global noise affecting all genes. Knowledge of molecular noise filtering in gene networks is crucial to understand the signal processing in gene networks and to design noise-tolerant gene circuits for synthetic biology. A nonlinear stochastic dynamic model is proposed in describing a gene network under intrinsic molecular fluctuations and extrinsic molecular noises. The stochastic molecular-noise-processing scheme of gene regulatory networks for attenuating these molecular noises is investigated from the nonlinear robust stabilization and filtering perspective. In order to improve the robust stability and noise filtering, a robust gene circuit design for gene networks is proposed based on the nonlinear robust H infinity stochastic stabilization and filtering scheme, which needs to solve a nonlinear Hamilton-Jacobi inequality. However, in order to avoid solving these complicated nonlinear stabilization and filtering problems, a fuzzy approximation method is employed to interpolate several linear stochastic gene networks at different operation points via fuzzy bases to approximate the nonlinear stochastic gene network. In this situation, the method of linear matrix inequality technique could be employed to simplify the gene circuit design problems to improve robust stability and molecular-noise-filtering ability of gene networks to overcome intrinsic molecular fluctuations and extrinsic molecular noises. PMID:18270080

  6. Optimal and robust control of transition

    NASA Technical Reports Server (NTRS)

    Bewley, T. R.; Agarwal, R.

    1996-01-01

    Optimal and robust control theories are used to determine feedback control rules that effectively stabilize a linearly unstable flow in a plane channel. Wall transpiration (unsteady blowing/suction) with zero net mass flux is used as the control. Control algorithms are considered that depend both on full flowfield information and on estimates of that flowfield based on wall skin-friction measurements only. The development of these control algorithms accounts for modeling errors and measurement noise in a rigorous fashion; these disturbances are considered in both a structured (Gaussian) and unstructured ('worst case') sense. The performance of these algorithms is analyzed in terms of the eigenmodes of the resulting controlled systems, and the sensitivity of individual eigenmodes to both control and observation is quantified.

  7. Robustness

    NASA Technical Reports Server (NTRS)

    Ryan, R.

    1993-01-01

    Robustness is a buzz word common to all newly proposed space systems design as well as many new commercial products. The image that one conjures up when the word appears is a 'Paul Bunyon' (lumberjack design), strong and hearty; healthy with margins in all aspects of the design. In actuality, robustness is much broader in scope than margins, including such factors as simplicity, redundancy, desensitization to parameter variations, control of parameter variations (environments flucation), and operational approaches. These must be traded with concepts, materials, and fabrication approaches against the criteria of performance, cost, and reliability. This includes manufacturing, assembly, processing, checkout, and operations. The design engineer or project chief is faced with finding ways and means to inculcate robustness into an operational design. First, however, be sure he understands the definition and goals of robustness. This paper will deal with these issues as well as the need for the requirement for robustness.

  8. Hardware implementation of fuzzy Petri net as a controller.

    PubMed

    Gniewek, Lesław; Kluska, Jacek

    2004-06-01

    The paper presents a new approach to fuzzy Petri net (FPN) and its hardware implementation. The authors' motivation is as follows. Complex industrial processes can be often decomposed into many parallelly working subprocesses, which can, in turn, be modeled using Petri nets. If all the process variables (or events) are assumed to be two-valued signals, then it is possible to obtain a hardware or software control device, which works according to the algorithm described by conventional Petri net. However, the values of real signals are contained in some bounded interval and can be interpreted as events which are not only true or false, but rather true in some degree from the interval [0, 1]. Such a natural interpretation from multivalued logic (fuzzy logic) point of view, concerns sensor outputs, control signals, time expiration, etc. It leads to the idea of FPN as a controller, which one can rather simply obtain, and which would be able to process both analog, and binary signals. In the paper both graphical, and algebraic representations of the proposed FPN are given. The conditions under which transitions can be fired are described. The algebraic description of the net and a theorem which enables computation of new marking in the net, based on current marking, are formulated. Hardware implementation of the FPN, which uses fuzzy JK flip-flops and fuzzy gates, are proposed. An example illustrating usefulness of the proposed FPN for control algorithm description and its synthesis as a controller device for the concrete production process are presented.

  9. Design of a new adaptive fuzzy controller and its application to vibration control of a vehicle seat installed with an MR damper

    NASA Astrophysics Data System (ADS)

    Phu, Do Xuan; Shin, Do Kyun; Choi, Seung-Bok

    2015-08-01

    This paper presents a new adaptive fuzzy controller featuring a combination of two different control methodologies: H infinity control technique and sliding mode control. It is known that both controllers are powerful in terms of high performance and robust stability. However, both control methods require an accurate dynamic model to design a state variable based controller in order to maintain their advantages. Thus, in this work a fuzzy control method which does not require an accurate dynamic model is adopted and two control methodologies are integrated to maintain the advantages even in an uncertain environment of the dynamic system. After a brief explanation of the interval type 2 fuzzy logic, a new adaptive fuzzy controller associated with the H infinity control and sliding mode control is formulated on the basis of Lyapunov stability theory. Subsequently, the formulated controller is applied to vibration control of a vehicle seat equipped with magnetorheological fluid damper (MR damper in short). An experimental setup for realization of the proposed controller is established and vibration control performances such as acceleration at the driver’s seat are evaluated. In addition, in order to demonstrate the effectiveness of the proposed controller, a comparative work with two existing controllers is undertaken. It is shown through simulation and experiment that the proposed controller can provide much better vibration control performance than the two existing controllers.

  10. Fuzzy control of hydraulic servo system based on DSP

    NASA Astrophysics Data System (ADS)

    He, Juan; Yuan, Song-Yue

    2011-10-01

    On the basis of high-speed switching valve of hydraulic servo system, the complex mathematical model of nonlinear hydraulic servo system was analyzed and constructed. A intelligent Fuzzy control method using TMS320LF2407A DSP chip as primary processor was put forward. The simulation results show that the control strategy has a better effect than the conventional PID control has. And the non-differential control of the system has been basically achieved.

  11. Vehicle dynamics and road curvature estimation for lane departure warning system using robust fuzzy observers: experimental validation

    NASA Astrophysics Data System (ADS)

    Dahmani, H.; Chadli, M.; Rabhi, A.; El Hajjaji, A.

    2015-08-01

    This paper describes a new approach to estimate vehicle dynamics and the road curvature in order to detect vehicle lane departures. This method has been evaluated through an experimental set-up using a real test vehicle equipped with the RT2500 inertial measurement unit. Based on a robust unknown input fuzzy observer, the road curvature is estimated and compared to the vehicle trajectory curvature. The difference between the two curvatures is used by the proposed lane departure detection algorithm as the first driving risk indicator. To reduce false alarms and take into account driver corrections, a second driving risk indicator based on the steering dynamics is considered. The vehicle nonlinear model is deduced from the vehicle lateral dynamics and road geometry and then represented by an uncertain Takagi-Sugeno fuzzy model. Taking into account the unmeasured variables, an unknown input fuzzy observer is proposed. Synthesis conditions of the proposed fuzzy observer are formulated in terms of linear matrix inequalities using the Lyapunov method.

  12. Workshop on Fuzzy Control Systems and Space Station Applications

    NASA Technical Reports Server (NTRS)

    Aisawa, E. K. (Compiler); Faltisco, R. M. (Compiler)

    1990-01-01

    The Workshop on Fuzzy Control Systems and Space Station Applications was held on 14-15 Nov. 1990. The workshop was co-sponsored by McDonnell Douglas Space Systems Company and NASA Ames Research Center. Proceedings of the workshop are presented.

  13. Fuzzy control of the production environment process parameters

    NASA Astrophysics Data System (ADS)

    Izvekov, V. N.

    2015-04-01

    The fuzzy control process for support of given microclimatic production environment process parameters with loss of one from values, regulating regime of process was shown. The structural schematic decisions with algorithm of functioning and oriented to existing apparatus (means of realization) was presented.

  14. Fuzzy logic controller versus classical logic controller for residential hybrid solar-wind-storage energy system

    NASA Astrophysics Data System (ADS)

    Derrouazin, A.; Aillerie, M.; Mekkakia-Maaza, N.; Charles, J. P.

    2016-07-01

    Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.

  15. Hybrid Takagi-Sugeno Fuzzy FED PID Control of Nonlinear Systems

    NASA Astrophysics Data System (ADS)

    Hamed, Basil; El Khateb, Ahmad

    2008-06-01

    The new method of proportional-integral-derivative (PID) controller is proposed in this paper for a hybrid fuzzy PID controller for nonlinear system. The important feature of the proposed approach is that it combines the fuzzy gain scheduling method and a fuzzy fed PID controller to solve the nonlinear control problem. The resultant fuzzy rule base of the proposed controller contains one part. This single part of the rules uses the Takagi-Sugeno method for solving the nonlinear problem. The simulation results of a nonlinear system show that the performance of a fed PID Hybrid Takagi-Sugeno fuzzy controller is better than that of the conventional fuzzy PID controller or Hybrid Mamdani fuzzy FED PID controller.

  16. An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream.

    PubMed

    Yusupbekov, N R; Marakhimov, A R; Igamberdiev, H Z; Umarov, Sh X

    2016-01-01

    This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081

  17. An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream

    PubMed Central

    Marakhimov, A. R.; Igamberdiev, H. Z.; Umarov, Sh. X.

    2016-01-01

    This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081

  18. An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream.

    PubMed

    Yusupbekov, N R; Marakhimov, A R; Igamberdiev, H Z; Umarov, Sh X

    2016-01-01

    This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach.

  19. Fuzzy logic sliding mode control for command guidance law design.

    PubMed

    Elhalwagy, Y Z; Tarbouchi, M

    2004-04-01

    Recently, the combination of sliding mode and fuzzy logic techniques has emerged as a promising methodology for dealing with nonlinear, uncertain, dynamical systems. In this paper, a sliding mode control algorithm combined with a fuzzy control scheme is developed for the trajectory control of a command guidance system. The acceleration command input is mathematically derived. The proposed controller is used to compensate for the influence of unmodeled dynamics and to alleviate chattering. Simulation results show that the proposed controller gives good system performance in the face of system parameters variation and external disturbances. In addition, they show the effectiveness of the proposed missile guidance law against different engagement scenarios where the results demonstrate better performance over the conventional sliding mode control.

  20. Combustion control of municipal incinerators by fuzzy neural network logic

    SciTech Connect

    Chang, N.B.; Chang, Y.H.

    1996-12-31

    The successful operation of mass burn waterwall incinerators involves many uncertain factors. Not only the physical composition and chemical properties of the refuse but also the complexity of combustion mechanism would significantly influence the performance of waste treatment. Due to the rising concerns of dioxin/furan emissions from municipal incinerators, improved combustion control algorithms, such as fuzzy and its fusion control technologies, have gradually received attention in the scientific community. This paper describes a fuzzy and neural network control logic for the refuse combustion process in a mass burn waterwall incinerator. It is anticipated that this system can also be easily applied to several other types of municipal incinerators, such as modular, rotary kiln, RDF and fluidized bed incinerators, by slightly modified steps. Partial performance of this designed controller is tested by computer simulation using identified process model in this analysis. Process control could be sensitive especially for the control of toxic substance emissions, such as dioxin and furans.

  1. Intelligent neural network and fuzzy logic control of industrial and power systems

    NASA Astrophysics Data System (ADS)

    Kuljaca, Ognjen

    The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of

  2. Trends and Issues in Fuzzy Control and Neuro-Fuzzy Modeling

    NASA Technical Reports Server (NTRS)

    Chiu, Stephen

    1996-01-01

    Everyday experience in building and repairing things around the home have taught us the importance of using the right tool for the right job. Although we tend to think of a 'job' in broad terms, such as 'build a bookcase,' we understand well that the 'right job' associated with each 'right tool' is typically a narrowly bounded subtask, such as 'tighten the screws.' Unfortunately, we often lose sight of this principle when solving engineering problems; we treat a broadly defined problem, such as controlling or modeling a system, as a narrow one that has a single 'right tool' (e.g., linear analysis, fuzzy logic, neural network). We need to recognize that a typical real-world problem contains a number of different sub-problems, and that a truly optimal solution (the best combination of cost, performance and feature) is obtained by applying the right tool to the right sub-problem. Here I share some of my perspectives on what constitutes the 'right job' for fuzzy control and describe recent advances in neuro-fuzzy modeling to illustrate and to motivate the synergistic use of different tools.

  3. Robust Control Design via Linear Programming

    NASA Technical Reports Server (NTRS)

    Keel, L. H.; Bhattacharyya, S. P.

    1998-01-01

    This paper deals with the problem of synthesizing or designing a feedback controller of fixed dynamic order. The closed loop specifications considered here are given in terms of a target performance vector representing a desired set of closed loop transfer functions connecting various signals. In general these point targets are unattainable with a fixed order controller. By enlarging the target from a fixed point set to an interval set the solvability conditions with a fixed order controller are relaxed and a solution is more easily enabled. Results from the parametric robust control literature can be used to design the interval target family so that the performance deterioration is acceptable, even when plant uncertainty is present. It is shown that it is possible to devise a computationally simple linear programming approach that attempts to meet the desired closed loop specifications.

  4. A modular robust control framework for control of movement elicited by multi-electrode intraspinal microstimulation

    NASA Astrophysics Data System (ADS)

    Roshani, Amir; Erfanian, Abbas

    2016-08-01

    Objective. An important issue in restoring motor function through intraspinal microstimulation (ISMS) is the motor control. To provide a physiologically plausible motor control using ISMS, it should be able to control the individual motor unit which is the lowest functional unit of motor control. By focal stimulation only a small group of motor neurons (MNs) within a motor pool can be activated. Different groups of MNs within a motor pool can potentially be activated without involving adjacent motor pools by local stimulation of different parts of a motor pool via microelectrode array implanted into a motor pool. However, since the system has multiple inputs with single output during multi-electrode ISMS, it poses a challenge to movement control. In this paper, we proposed a modular robust control strategy for movement control, whereas multi-electrode array is implanted into each motor activation pool of a muscle. Approach. The controller was based on the combination of proportional-integral-derivative and adaptive fuzzy sliding mode control. The global stability of the controller was guaranteed. Main results. The results of the experiments on rat models showed that the multi-electrode control can provide a more robust control and accurate tracking performance than a single-electrode control. The control output can be pulse amplitude (pulse amplitude modulation, PAM) or pulse width (pulse width modulation, PWM) of the stimulation signal. The results demonstrated that the controller with PAM provided faster convergence rate and better tracking performance than the controller with PWM. Significance. This work represents a promising control approach to the restoring motor functions using ISMS. The proposed controller requires no prior knowledge about the dynamics of the system to be controlled and no offline learning phase. The proposed control design is modular in the sense that each motor pool has an independent controller and each controller is able to control ISMS

  5. Design issues of a reinforcement-based self-learning fuzzy controller for petrochemical process control

    NASA Technical Reports Server (NTRS)

    Yen, John; Wang, Haojin; Daugherity, Walter C.

    1992-01-01

    Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.

  6. Fuzzy logic controls pressure in Fracturing Fluid Characterization Facility

    SciTech Connect

    Rivera, V.P.; Farabee, L.M.

    1994-12-31

    A fuzzy logic pressure control system has been designed and implemented to deal with the demanding requirements of the Fracturing Fluid Characterization Facility (FFCF), a test bed that simulates downhole conditions for investigating fluid behavior during fracturing stimulation. Pressure control in the fracture simulator was difficult because of the wide range of fluid types and pumping conditions used and by the compliant structure of the simulator, which uses servo-controlled actuators to maintain a constant gap width under varying pressure conditions. The FFCF pressure control system must handle fluids that vary from water to high-viscosity gel slurries at flow rates ranging from 1/2 to 3 bbl/min. Conventional control approaches were successful only under very limited conditions. To solve this problem, a fuzzy logic controller (FLC) was developed to be a user function in the FFCF supervisory control and data acquisition system. Using several fuzzy logic rules, the FLC generates a position set point for a slurry throttling valve. An electro-hydraulic directional control valve uses the set point supplied by the FLC to position the active control element of the slurry throttling valve.

  7. Neuro-fuzzy control of structures using acceleration feedback

    NASA Astrophysics Data System (ADS)

    Schurter, Kyle C.; Roschke, Paul N.

    2001-08-01

    This paper described a new approach for the reduction of environmentally induced vibration in constructed facilities by way of a neuro-fuzzy technique. The new control technique is presented and tested in a numerical study that involves two types of building models. The energy of each building is dissipated through magnetorheological (MR) dampers whose damping properties are continuously updated by a fuzzy controller. This semi-active control scheme relies on the development of a correlation between the accelerations of the building (controller input) and the voltage applied to the MR damper (controller output). This correlation forms the basis for the development of an intelligent neuro-fuzzy control strategy. To establish a context for assessing the effectiveness of the semi-active control scheme, responses to earthquake excitation are compared with passive strategies that have similar authority for control. According to numerical simulation, MR dampers are less effective control mechanisms than passive dampers with respect to a single degree of freedom (DOF) building model. On the other hand, MR dampers are predicted to be superior when used with multiple DOF structures for reduction of lateral acceleration.

  8. Precision positioning system based on intelligent Fuzzy-PID control

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Zhang, Liqiong; Li, Yan

    2010-08-01

    To break through the limitations of static and dynamic characteristics of conventional step motor driven open-loop positioning devices, a two-dimensional precision positioning system with a travel range of 100mm×100mm has been developed. This paper presents its structure, control principle and performance experiments. This system, equipped with cross roller guides working as linear guiding elements, is driven by step motors through ball screw transmission. A threeaxis dual-frequency laser interferometric measurement system is established for real-time measurement and feedback of system's movements in three degrees of freedom (DOF) and an intelligent Fuzzy-PID controller is implemented for this system's motion control. In the controller, the PID module calculates the output from motor drivers and its initial parameters are tuned through expansion of critical proportioning method; the Fuzzy module optimizes PID parameters to fulfill specific requirements of different movement stages. A dead zone control mechanism is developed in this controller to minimize the oscillations around target position. Experimental results indicate that system with Fuzzy-PID controller shows faster response than that with ordinary PID controller. Moreover, with this controller implemented, the developed precision positioning system achieves better repeatability (+/-2μm) and accuracy (+/-2.5μm) within the full range than open-loop system using step motor.

  9. Intelligent control based on fuzzy logic and neural net theory

    NASA Technical Reports Server (NTRS)

    Lee, Chuen-Chien

    1991-01-01

    In the conception and design of intelligent systems, one promising direction involves the use of fuzzy logic and neural network theory to enhance such systems' capability to learn from experience and adapt to changes in an environment of uncertainty and imprecision. Here, an intelligent control scheme is explored by integrating these multidisciplinary techniques. A self-learning system is proposed as an intelligent controller for dynamical processes, employing a control policy which evolves and improves automatically. One key component of the intelligent system is a fuzzy logic-based system which emulates human decision making behavior. It is shown that the system can solve a fairly difficult control learning problem. Simulation results demonstrate that improved learning performance can be achieved in relation to previously described systems employing bang-bang control. The proposed system is relatively insensitive to variations in the parameters of the system environment.

  10. A reinforcement learning-based architecture for fuzzy logic control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.

  11. Study on rule-based adaptive fuzzy excitation control technology

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Wang, Hong-jun; Liu, Lu-yuan; Yue, You-jun

    2008-10-01

    Power system is a kind of typical non-linear system, it is hard to achieve excellent control performance with conventional PID controller under different operating conditions. Fuzzy parameter adaptive PID exciting controller is very efficient to overcome the influence of tiny disturbances, but the performance of the control system will be worsened when operating conditions of the system change greatly or larger disturbances occur. To solve this problem, this article presents a rule adaptive fuzzy control scheme for synchronous generator exciting system. In this scheme the control rule adaptation is implemented by regulating the value of parameter di under the given proportional divisors K1, K2 and K3 of fuzzy sets Ai and Bi. This rule adaptive mechanism is constituted by two groups of original rules about the self-generation and self-correction of the control rule. Using two groups of rules, the control rule activated by status 1 and 2 in figure 2 system can be regulated automatically and simultaneously at the time instant k. The results from both theoretical analysis and simulation show that the presented scheme is effective and feasible and possesses good performance.

  12. Adaptive control: Stability, convergence, and robustness

    NASA Technical Reports Server (NTRS)

    Sastry, Shankar; Bodson, Marc

    1989-01-01

    The deterministic theory of adaptive control (AC) is presented in an introduction for graduate students and practicing engineers. Chapters are devoted to basic AC approaches, notation and fundamental theorems, the identification problem, model-reference AC, parameter convergence using averaging techniques, and AC robustness. Consideration is given to the use of prior information, the global stability of indirect AC schemes, multivariable AC, linearizing AC for a class of nonlinear systems, AC of linearizable minimum-phase systems, and MIMO systems decouplable by static state feedback.

  13. System identification for robust control design

    SciTech Connect

    Dohner, J.L.

    1995-04-01

    System identification for the purpose of robust control design involves estimating a nominal model of a physical system and the uncertainty bounds of that nominal model via the use of experimentally measured input/output data. Although many algorithms have been developed to identify nominal models, little effort has been directed towards identifying uncertainty bounds. Therefore, in this document, a discussion of both nominal model identification and bounded output multiplicative uncertainty identification will be presented. This document is divided into several sections. Background information relevant to system identification and control design will be presented. A derivation of eigensystem realization type algorithms will be presented. An algorithm will be developed for calculating the maximum singular value of output multiplicative uncertainty from measured data. An application will be given involving the identification of a complex system with aliased dynamics, feedback control, and exogenous noise disturbances. And, finally, a short discussion of results will be presented.

  14. Systematic methods for the design of a class of fuzzy logic controllers

    NASA Astrophysics Data System (ADS)

    Yasin, Saad Yaser

    2002-09-01

    Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental

  15. Feedforward Tracking Control of Flat Recurrent Fuzzy Systems

    NASA Astrophysics Data System (ADS)

    Gering, Stefan; Adamy, Jürgen

    2014-12-01

    Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis.

  16. Experiment Study on Fuzzy Vibration Control of Solar Panel

    NASA Astrophysics Data System (ADS)

    Li, Dongxu X.; Xu, Rui; Jiang, Jiangjian P.

    Some flexible appendages of spacecraft are cantilever plate structures, such as solar panels. These structures usually have very low damping ratios, high dimensional order, low modal frequencies and parameter uncertainties in dynamics. Their unwanted vibrations will be caused unavoidably, and harmful to the spacecraft. To solve this problem, the dynamic equations of the solar panel with piezoelectric patches are derived, and an accelerometer based fuzzy controller is designed. In order to verify the effectiveness of the vibration control algorithms, experiment research was conducted on a piezoelectric adaptive composite honeycomb cantilever panel. The experiment results demonstrate that the accelerometer-based fuzzy vibration control method can suppress the vibration of the solar panel effectively, the first bending mode damping ratio of the controlled system increase to 1.64%, and that is 3.56 times of the uncontrolled system.

  17. Motion Control of the Soccer Robot Based on Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Coman, Daniela; Ionescu, Adela

    2009-08-01

    Robot soccer is a challenging platform for multi-agent research, involving topics such as real-time image processing and control, robot path planning, obstacle avoidance and machine learning. The conventional robot control consists of methods for path generation and path following. When a robot moves away the estimated path, it must return immediately, and while doing so, the obstacle avoidance behavior and the effectiveness of such a path are not guaranteed. So, motion control is a difficult task, especially in real time and high speed control. This paper describes the use of fuzzy logic control for the low level motion of a soccer robot. Firstly, the modelling of the soccer robot is presented. The soccer robot based on MiroSoT Small Size league is a differential-drive mobile robot with non-slipping and pure-rolling. Then, the design of fuzzy controller is describes. Finally, the computer simulations in MATLAB Simulink show that proposed fuzzy logic controller works well.

  18. Observer-based H∞ controller for 2-D T-S fuzzy model

    NASA Astrophysics Data System (ADS)

    Li, Lizhen

    2016-10-01

    This paper develops a method of fuzzy observer-based H∞ controller design for two-dimensional (2-D) discrete Takagi-Sugeno (T-S) fuzzy systems. By reformulating the system, a linear matrix inequality (LMI)-based sufficient condition is derived. Then the fuzzy controller and the fuzzy observer can be independently designed, which guarantee an H∞ noise attenuation γ of the whole system. Owing to the introduction of free matrices, the presented design method has a wider range of application and can guarantee a better H∞ performance of the closed-loop fuzzy control system. Simulation results have demonstrated the effectiveness of the proposed method.

  19. Fuzzy logic particle tracking velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1993-01-01

    Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.

  20. Nonlinear robust control of integrated vehicle dynamics

    NASA Astrophysics Data System (ADS)

    He, Zhengyi; Ji, Xuewu

    2012-02-01

    A new methodology to design the vehicle GCC (global chassis control) nonlinear controller is developed in this paper. Firstly, to handle the nonlinear coupling between sprung and unsprung masses, the vehicle is treated as a mechanical system of two-rigid-bodies which has 6 DOF (degree of freedom), including longitudinal, lateral, yaw, vertical, roll and pitch dynamics. The system equation is built in the yaw frame based on Lagrange's method, and it has been proved that the derived system remains the important physical properties of the general mechanical system. Then the GCC design problem is formulated as the trajectory tracking problem for a cascade system, with a Lagrange's system interconnecting with a linear system. The nonlinear robust control design problem of this cascade interconnected system is divided into two H ∞ control problems with respect to the two sub-systems. The parameter uncertainties in the system are tackled by adaptive theory, while the external uncertainties and disturbances are dealt with the H ∞ control theory. And the passivity of the mechanical system is applied to construct the solution of nonlinear H ∞ control problem. Finally, the effectiveness of the proposed controller is validated by simulation results even during the emergency manoeuvre.

  1. Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation

    PubMed Central

    Masmoudi, Mohamed Slim; Masmoudi, Mohamed

    2016-01-01

    This paper describes the design and the implementation of a trajectory tracking controller using fuzzy logic for mobile robot to navigate in indoor environments. Most of the previous works used two independent controllers for navigation and avoiding obstacles. The main contribution of the paper can be summarized in the fact that we use only one fuzzy controller for navigation and obstacle avoidance. The used mobile robot is equipped with DC motor, nine infrared range (IR) sensors to measure the distance to obstacles, and two optical encoders to provide the actual position and speeds. To evaluate the performances of the intelligent navigation algorithms, different trajectories are used and simulated using MATLAB software and SIMIAM navigation platform. Simulation results show the performances of the intelligent navigation algorithms in terms of simulation times and travelled path.

  2. Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation

    PubMed Central

    Masmoudi, Mohamed Slim; Masmoudi, Mohamed

    2016-01-01

    This paper describes the design and the implementation of a trajectory tracking controller using fuzzy logic for mobile robot to navigate in indoor environments. Most of the previous works used two independent controllers for navigation and avoiding obstacles. The main contribution of the paper can be summarized in the fact that we use only one fuzzy controller for navigation and obstacle avoidance. The used mobile robot is equipped with DC motor, nine infrared range (IR) sensors to measure the distance to obstacles, and two optical encoders to provide the actual position and speeds. To evaluate the performances of the intelligent navigation algorithms, different trajectories are used and simulated using MATLAB software and SIMIAM navigation platform. Simulation results show the performances of the intelligent navigation algorithms in terms of simulation times and travelled path. PMID:27688748

  3. Robust, Practical Adaptive Control for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Orr, Jeb. S.; VanZwieten, Tannen S.

    2012-01-01

    A modern mechanization of a classical adaptive control concept is presented with an application to launch vehicle attitude control systems. Due to a rigorous flight certification environment, many adaptive control concepts are infeasible when applied to high-risk aerospace systems; methods of stability analysis are either intractable for high complexity models or cannot be reconciled in light of classical requirements. Furthermore, many adaptive techniques appearing in the literature are not suitable for application to conditionally stable systems with complex flexible-body dynamics, as is often the case with launch vehicles. The present technique is a multiplicative forward loop gain adaptive law similar to that used for the NASA X-15 flight research vehicle. In digital implementation with several novel features, it is well-suited to application on aerodynamically unstable launch vehicles with thrust vector control via augmentation of the baseline attitude/attitude-rate feedback control scheme. The approach is compatible with standard design features of autopilots for launch vehicles, including phase stabilization of lateral bending and slosh via linear filters. In addition, the method of assessing flight control stability via classical gain and phase margins is not affected under reasonable assumptions. The algorithm s ability to recover from certain unstable operating regimes can in fact be understood in terms of frequency-domain criteria. Finally, simulation results are presented that confirm the ability of the algorithm to improve performance and robustness in realistic failure scenarios.

  4. On designing of the driven system control of solar panels using type 2 fuzzy sliding mode control (T2FSMC)

    NASA Astrophysics Data System (ADS)

    Mardlijah, Subiono, S., Sentot D.; Efprianto, Yahya

    2016-02-01

    Collectors on the solar panel can work optimally when the collectors position perpendicular to the whole solar rays. Therefore we need a control system to control the position of the collectors always perpendicular to the sun rays. In this paper, control system T2FSMC is proposed, combined SMC, FLC and fuzzy type 2 which has a membership function more complex so as to provide an additional degree of freedom that allows uncertainty. the behavior of the control system based on T2FSMC for the driven system of solar panels was analyzed by comparing T2FSMC with FSMC and SMC methods. It can be concluded that the system controller of T2FSMC works better than the system controller of FSMC and SMC; i.e. faster response time, more robust to large and small disturbance and more robust to parameter uncertainty. However, the lacks in the system T2FSMC are taking quite a long time in computation and need fuzzy logic reasoning.

  5. A fuzzy logic based spacecraft controller for six degree of freedom control and performance results

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Hoblit, Jeffrey; Jani, Yashvant

    1991-01-01

    The development philosophy of the fuzzy logic controller is explained, details of the rules and membership functions used are given, and the early results of testing of the control system for a representative range of scenarios are reported. The fuzzy attitude controller was found capable of performing all rotational maneuvers, including rate hold and rate maneuvers. It handles all orbital perturbations very efficiently and is very responsive in correcting errors.

  6. Adaptive Performance Seeking Control Using Fuzzy Model Reference Learning Control and Positive Gradient Control

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    1997-01-01

    Performance Seeking Control attempts to find the operating condition that will generate optimal performance and control the plant at that operating condition. In this paper a nonlinear multivariable Adaptive Performance Seeking Control (APSC) methodology will be developed and it will be demonstrated on a nonlinear system. The APSC is comprised of the Positive Gradient Control (PGC) and the Fuzzy Model Reference Learning Control (FMRLC). The PGC computes the positive gradients of the desired performance function with respect to the control inputs in order to drive the plant set points to the operating point that will produce optimal performance. The PGC approach will be derived in this paper. The feedback control of the plant is performed by the FMRLC. For the FMRLC, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for the effective tuning of the FMRLC controller.

  7. A Robot Manipulator with Adaptive Fuzzy Controller in Obstacle Avoidance

    NASA Astrophysics Data System (ADS)

    Sreekumar, Muthuswamy

    2016-07-01

    Building robots and machines to act within a fuzzy environment is a problem featuring complexity and ambiguity. In order to avoid obstacles, or move away from it, the robot has to perform functions such as obstacle identification, finding the location of the obstacle, its velocity, direction of movement, size, shape, and so on. This paper presents about the design, and implementation of an adaptive fuzzy controller designed for a 3 degree of freedom spherical coordinate robotic manipulator interfaced with a microcontroller and an ultrasonic sensor. Distance between the obstacle and the sensor and its time rate are considered as inputs to the controller and how the manipulator to take diversion from its planned trajectory, in order to avoid collision with the obstacle, is treated as output from the controller. The obstacles are identified as stationary or moving objects and accordingly adaptive self tuning is accomplished with three set of linguistic rules. The prototype of the manipulator has been fabricated and tested for collision avoidance by placing stationary and moving obstacles in its planned trajectory. The performance of the adaptive control algorithm is analyzed in MATLAB by generating 3D fuzzy control surfaces.

  8. A MODEL AND CONTROLLER REDUCTION METHOD FOR ROBUST CONTROL DESIGN.

    SciTech Connect

    YUE,M.; SCHLUETER,R.

    2003-10-20

    A bifurcation subsystem based model and controller reduction approach is presented. Using this approach a robust {micro}-synthesis SVC control is designed for interarea oscillation and voltage control based on a small reduced order bifurcation subsystem model of the full system. The control synthesis problem is posed by structured uncertainty modeling and control configuration formulation using the bifurcation subsystem knowledge of the nature of the interarea oscillation caused by a specific uncertainty parameter. Bifurcation subsystem method plays a key role in this paper because it provides (1) a bifurcation parameter for uncertainty modeling; (2) a criterion to reduce the order of the resulting MSVC control; and (3) a low order model for a bifurcation subsystem based SVC (BMSVC) design. The use of the model of the bifurcation subsystem to produce a low order controller simplifies the control design and reduces the computation efforts so significantly that the robust {micro}-synthesis control can be applied to large system where the computation makes robust control design impractical. The RGA analysis and time simulation show that the reduced BMSVC control design captures the center manifold dynamics and uncertainty structure of the full system model and is capable of stabilizing the full system and achieving satisfactory control performance.

  9. Optimal and robust control of robot manipulators

    NASA Astrophysics Data System (ADS)

    Grabbe, Michael Thomas

    1992-01-01

    The problem of controlling a robot manipulator typically requires determining the actuating torques at each joint, in the form of a feedback control law, which force the manipulator joint angles to follow a prescribed trajectory. This problem is often referred to as the trajectory tracking problem, and is difficult to solve due to the highly nonlinear dynamics associated with the robot manipulator and the time variance of the system induced by the prescribed trajectory. The complexity of the problem is compounded in cases where the manipulator end effector is constrained by contact with a surface, there are modeling or parametric uncertainties in the manipulator dynamics, or there are disturbances to the system. The trajectory tracking problem is addressed in two distinct cases. The first case involves the ideal situation in which the manipulator is unconstrained in its motion and there are no uncertainties or disturbances in the system. Optimal control theory is used to develop a class of feedback control laws which produce a globally uniformly asymptotically stable (GUAS) system. The second case involves both constrained motion and the possibilities of uncertainties and disturbances in the system. Two feedback control laws are developed which are robust with respect to uncertainties and disturbances, provide globally exponentially stable (GES) position tracking error, and provide a means of regulating the force applied.

  10. Improved control configuration of PWM rectifiers based on neuro-fuzzy controller.

    PubMed

    Acikgoz, Hakan; Kececioglu, O Fatih; Gani, Ahmet; Yildiz, Ceyhun; Sekkeli, Mustafa

    2016-01-01

    It is well-known that rectifiers are used widely in many applications required AC/DC transformation. With technological advances, many studies are performed for AC/DC converters and many control methods are proposed in order to improve the performance of these rectifiers in recent years. Pulse width modulation (PWM) based rectifiers are one of the most popular rectifier types. PWM rectifiers have lower input current harmonics and higher power factor compared to classical diode and thyristor rectifiers. In this study, neuro-fuzzy controller (NFC) which has robust, nonlinear structure and do not require the mathematical model of the system to be controlled has been proposed for PWM rectifiers. Three NFCs are used in control scheme of proposed PWM rectifier in order to control the dq-axis currents and DC voltage of PWM rectifier. Moreover, simulation studies are carried out to demonstrate the performance of the proposed control scheme at MATLAB/Simulink environment in terms of rise time, settling time, overshoot, power factor, total harmonic distortion and power quality. PMID:27504240

  11. Multi-application controls: Robust nonlinear multivariable aerospace controls applications

    NASA Technical Reports Server (NTRS)

    Enns, Dale F.; Bugajski, Daniel J.; Carter, John; Antoniewicz, Bob

    1994-01-01

    This viewgraph presentation describes the general methodology used to apply Honywell's Multi-Application Control (MACH) and the specific application to the F-18 High Angle-of-Attack Research Vehicle (HARV) including piloted simulation handling qualities evaluation. The general steps include insertion of modeling data for geometry and mass properties, aerodynamics, propulsion data and assumptions, requirements and specifications, e.g. definition of control variables, handling qualities, stability margins and statements for bandwidth, control power, priorities, position and rate limits. The specific steps include choice of independent variables for least squares fits to aerodynamic and propulsion data, modifications to the management of the controls with regard to integrator windup and actuation limiting and priorities, e.g. pitch priority over roll, and command limiting to prevent departures and/or undesirable inertial coupling or inability to recover to a stable trim condition. The HARV control problem is characterized by significant nonlinearities and multivariable interactions in the low speed, high angle-of-attack, high angular rate flight regime. Systematic approaches to the control of vehicle motions modeled with coupled nonlinear equations of motion have been developed. This paper will discuss the dynamic inversion approach which explicity accounts for nonlinearities in the control design. Multiple control effectors (including aerodynamic control surfaces and thrust vectoring control) and sensors are used to control the motions of the vehicles in several degrees-of-freedom. Several maneuvers will be used to illustrate performance of MACH in the high angle-of-attack flight regime. Analytical methods for assessing the robust performance of the multivariable control system in the presence of math modeling uncertainty, disturbances, and commands have reached a high level of maturity. The structured singular value (mu) frequency response methodology is presented

  12. New robust passivity criteria for stochastic fuzzy BAM neural networks with time-varying delays

    NASA Astrophysics Data System (ADS)

    Mathiyalagan, Kalidass; Sakthivel, Rathinasamy; Marshal Anthoni, Selvaraj

    2012-03-01

    In this paper, we consider the problem of passivity analysis issue for a class of stochastic fuzzy BAM neural networks with time varying delays. By employing the idea of delay-fractioning technique and Lyapunov stability theory, a new set of sufficient conditions are derived in terms of linear matrix inequalities for obtaining the passivity condition of the considered neural network model. First, we derive the passivity condition for stochastic fuzzy BAM neural networks with time varying delays and then the result is extended to the case with uncertainties. Two numerical examples are given to illustrate the effectiveness and conservatism of the obtained results.

  13. Robust steering control of spacecraft carrier rockets

    NASA Astrophysics Data System (ADS)

    Correa, Adriana Elysa Alimandro; da Rosa, Alex; Ferreira, Henrique Cezar; Ishihara, Joao Yoshiyuki; Borges, Renato Alves; Sheptun, Yuri Dmitrievich

    In the year of 2003 it was established a cooperation agreement between Ukraine and Brazil for utilization of Cyclone-4 launch vehicle at Alcantara Launch Center. The company responsible for the marketing and operation of launch services is the company bi-national Alcantara Cyclone Space (ACS). The Cyclone-4 launch vehicle is the newest version of the Ukrainian Cyclone family launchers developed by Yuzhnoye State Design Office. This family has been used for many successful spacecrafts launches since 1969. This paper is concerned with the yaw stabilization problem around a nominal trajectory for the third stage of a satellite carrier rocket similar to the Cyclone-4. Only the steering machine of the main engine is considered as actuator. The dynamic behavior of the third stage around the nominal trajectory is modeled as a fourthorder time-varying linear system whereas the steering machine is modeled as a linear dynamical system up to third order. The values of the parameters of the steering machine model are unknown, however belonging to known intervals. As the main result, the stabilization problem is solved with a proportional derivative (PD) controller. The proposed tuning approach takes into account the robustness of the controller with respect to the steering machine model uncertainties. The performance of the PD controller is demonstrated by simulation results.

  14. Investigation of the robustness of adaptive neuro-fuzzy inference system for tracking moving tumors in external radiotherapy.

    PubMed

    Torshabi, Ahmad Esmaili

    2014-12-01

    In external radiotherapy of dynamic targets such as lung and breast cancers, accurate correlation models are utilized to extract real time tumor position by means of external surrogates in correlation with the internal motion of tumors. In this study, a correlation method based on the neuro-fuzzy model is proposed to correlate the input external motion data with internal tumor motion estimation in real-time mode, due to its robustness in motion tracking. An initial test of the performance of this model was reported in our previous studies. In this work by implementing some modifications it is resulted that ANFIS is still robust to track tumor motion more reliably by reducing the motion estimation error remarkably. After configuring new version of our ANFIS model, its performance was retrospectively tested over ten patients treated with Synchrony Cyberknife system. In order to assess the performance of our model, the predicted tumor motion as model output was compared with respect to the state of the art model. Final analyzed results show that our adaptive neuro-fuzzy model can reduce tumor tracking errors more significantly, as compared with ground truth database and even tumor tracking methods presented in our previous works. PMID:25412886

  15. Model-free fuzzy control of a magnetorheological elastomer vibration isolation system: analysis and experimental evaluation

    NASA Astrophysics Data System (ADS)

    Fu, Jie; Li, Peidong; Wang, Yuan; Liao, Guanyao; Yu, Miao

    2016-03-01

    This paper addresses the problem of micro-vibration control of a precision vibration isolation system with a magnetorheological elastomer (MRE) isolator and fuzzy control strategy. Firstly, a polyurethane matrix MRE isolator working in the shear-compression mixed mode is introduced. The dynamic characteristic is experimentally tested, and the range of the frequency shift and the model parameters of the MRE isolator are obtained from experimental results. Secondly, a new semi-active control law is proposed, which uses isolation structure displacement and relative displacement between the isolation structure and base as the inputs. Considering the nonlinearity of the MRE isolator and the excitation uncertainty of an isolation system, the designed semi-active fuzzy logic controller (FLC) is independent of a system model and is robust. Finally, the numerical simulations and experiments are conducted to evaluate the performance of the FLC with single-frequency and multiple-frequency excitation, respectively, and the experimental results show that the acceleration transmissibility is reduced by 54.04% at most, which verifies the effectiveness of the designed semi-active FLC. Moreover, the advantages of the approach are demonstrated in comparison to the passive control and ON-OFF control.

  16. Dynamic output feedback H ∞ control for affine fuzzy systems

    NASA Astrophysics Data System (ADS)

    Wang, Huimin; Yang, Guang-Hong

    2013-06-01

    This article investigates the problem of designing H ∞ dynamic output feedback controllers for nonlinear systems, which are described by affine fuzzy models. The system outputs have been chosen as premise variables, which can guarantee that the plant and the controller always switch to the same region. By using a piecewise Lyapunov function and adding slack matrix variables, a piecewise-affine dynamic output feedback controller design method is obtained in the formulation of linear matrix inequalities (LMIs), which can be efficiently solved numerically. In contrast to the existing work, the proposed approach needs less LMI constraints and leads to less conservatism. Finally, numerical examples illustrate the effectiveness of the new result.

  17. A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System

    PubMed Central

    Tang, Yongchuan; Zhou, Deyun

    2016-01-01

    In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method. PMID:27482707

  18. A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System.

    PubMed

    Tang, Yongchuan; Zhou, Deyun; Jiang, Wen

    2016-01-01

    In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method. PMID:27482707

  19. A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System.

    PubMed

    Tang, Yongchuan; Zhou, Deyun; Jiang, Wen

    2016-01-01

    In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method.

  20. A composite self tuning strategy for fuzzy control of dynamic systems

    NASA Technical Reports Server (NTRS)

    Shieh, C.-Y.; Nair, Satish S.

    1992-01-01

    The feature of self learning makes fuzzy logic controllers attractive in control applications. This paper proposes a strategy to tune the fuzzy logic controller on-line by tuning the data base as well as the rule base. The structure of the controller is outlined and preliminary results are presented using simulation studies.

  1. Fuzzy control for a nonlinear mimo-liquid level problem

    SciTech Connect

    Smith, R. E.; Mortensen, F. N.; Wantuck, P. J.; Parkinson, W. J. ,

    2001-01-01

    Nonlinear systems are very common in the chemical process industries. Control of these systems, particularly multivariable systems, is extremely difficult. In many chemical plants, because of this difficulty, control is seldom optimal. Quite often, the best control is obtained in the manual mode using experienced operators. Liquid level control is probably one of the most common control problems in a chemical plant. Liquid level is important in heat exchanger control where heat and mass transfer rates can be controlled by the amount of liquid covering the tubes. Distillation columns, mixing tanks, and surge tanks are other examples where liquid level control is very important. The problem discussed in this paper is based on the simultaneous level control of three tanks connected in series. Each tank holds slightly less than 0.01 m{sup 3} of liquid. All three tanks are connected, Liquid is pumped into the first and the third tanks to maintain their levels. The third tank in the series drains to the system exit. The levels in the first and third tank control the level in the middle tank. The level in the middle tank affects the levels in the two end tanks. Many other chemical plant systems can be controlled in a manner similar to this three-tank system. For example, in any distillation column liquid level control problems can be represented as a total condenser with liquid level control, a reboiler with liquid level control, with the interactive column in between. The solution to the three-tank-problem can provide insight into many of the nonlinear control problems in the chemical process industries. The system was tested using the fuzzy logic controller and a proportional-integral (PI) controller, in both the setpoint tracking mode and disturbance rejection mode. The experimental results are discussed and comparisons between fuzzy controller and the standard PI controller are made.

  2. Spacecraft attitude control using neuro-fuzzy approximation of the optimal controllers

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Woo; Park, Sang-Young; Park, Chandeok

    2016-01-01

    In this study, a neuro-fuzzy controller (NFC) was developed for spacecraft attitude control to mitigate large computational load of the state-dependent Riccati equation (SDRE) controller. The NFC was developed by training a neuro-fuzzy network to approximate the SDRE controller. The stability of the NFC was numerically verified using a Lyapunov-based method, and the performance of the controller was analyzed in terms of approximation ability, steady-state error, cost, and execution time. The simulations and test results indicate that the developed NFC efficiently approximates the SDRE controller, with asymptotic stability in a bounded region of angular velocity encompassing the operational range of rapid-attitude maneuvers. In addition, it was shown that an approximated optimal feedback controller can be designed successfully through neuro-fuzzy approximation of the optimal open-loop controller.

  3. Fully automatic control of paraplegic FES pedaling using higher-order sliding mode and fuzzy logic control.

    PubMed

    Farhoud, Aidin; Erfanian, Abbas

    2014-05-01

    In this paper, a fully automatic robust control strategy is proposed for control of paraplegic pedaling using functional electrical stimulation (FES). The method is based on higher-order sliding mode (HOSM) control and fuzzy logic control. In FES, the strength of muscle contraction can be altered either by varying the pulse width (PW) or by the pulse amplitude (PA) of the stimulation signal. The proposed control strategy regulates simultaneously both PA and PW (i.e., PA/PW modulation). A HOSM controller is designed for regulating the PW and a fuzzy logic controller for the PA. The proposed control scheme is free-model and does not require any offline training phase and subject-specific information. Simulation studies on a virtual patient and experiments on three paraplegic subjects demonstrate good tracking performance and robustness of the proposed control strategy against muscle fatigue and external disturbances during FES-induced pedaling. The results of simulation studies show that the power and cadence tracking errors are 5.4% and 4.8%, respectively. The experimental results indicate that the proposed controller can improve pedaling system efficacy and increase the endurance of FES pedaling. The average of power tracking error over three paraplegic subjects is 7.4±1.4% using PA/PW modulation, while the tracking error is 10.2±1.2% when PW modulation is used. The subjects could pedal for 15 min with about 4.1% power loss at the end of experiment using proposed control strategy, while the power loss is 14.3% using PW modulation. The controller could adjust the stimulation intensity to compensate the muscle fatigue during long period of FES pedaling. PMID:24760923

  4. Fully automatic control of paraplegic FES pedaling using higher-order sliding mode and fuzzy logic control.

    PubMed

    Farhoud, Aidin; Erfanian, Abbas

    2014-05-01

    In this paper, a fully automatic robust control strategy is proposed for control of paraplegic pedaling using functional electrical stimulation (FES). The method is based on higher-order sliding mode (HOSM) control and fuzzy logic control. In FES, the strength of muscle contraction can be altered either by varying the pulse width (PW) or by the pulse amplitude (PA) of the stimulation signal. The proposed control strategy regulates simultaneously both PA and PW (i.e., PA/PW modulation). A HOSM controller is designed for regulating the PW and a fuzzy logic controller for the PA. The proposed control scheme is free-model and does not require any offline training phase and subject-specific information. Simulation studies on a virtual patient and experiments on three paraplegic subjects demonstrate good tracking performance and robustness of the proposed control strategy against muscle fatigue and external disturbances during FES-induced pedaling. The results of simulation studies show that the power and cadence tracking errors are 5.4% and 4.8%, respectively. The experimental results indicate that the proposed controller can improve pedaling system efficacy and increase the endurance of FES pedaling. The average of power tracking error over three paraplegic subjects is 7.4±1.4% using PA/PW modulation, while the tracking error is 10.2±1.2% when PW modulation is used. The subjects could pedal for 15 min with about 4.1% power loss at the end of experiment using proposed control strategy, while the power loss is 14.3% using PW modulation. The controller could adjust the stimulation intensity to compensate the muscle fatigue during long period of FES pedaling.

  5. Design, modelling, implementation, and intelligent fuzzy control of a hovercraft

    NASA Astrophysics Data System (ADS)

    El-khatib, M. M.; Hussein, W. M.

    2011-05-01

    A Hovercraft is an amphibious vehicle that hovers just above the ground or water by air cushion. The concept of air cushion vehicle can be traced back to 1719. However, the practical form of hovercraft nowadays is traced back to 1955. The objective of the paper is to design, simulate and implement an autonomous model of a small hovercraft equipped with a mine detector that can travel over any terrains. A real time layered fuzzy navigator for a hovercraft in a dynamic environment is proposed. The system consists of a Takagi-Sugenotype fuzzy motion planner and a modified proportional navigation based fuzzy controller. The system philosophy is inspired by human routing when moving between obstacles based on visual information including the right and left views from which he makes his next step towards the goal in the free space. It intelligently combines two behaviours to cope with obstacle avoidance as well as approaching a goal using a proportional navigation path accounting for hovercraft kinematics. MATLAB/Simulink software tool is used to design and verify the proposed algorithm.

  6. Robust adaptive control for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Kahveci, Nazli E.

    anti-windup compensation. Our analysis on the indirect adaptive scheme reveals that the perturbation terms due to parameter errors do not cause any unbounded signals in the closed-loop. The stability of the adaptive system is established, and the properties of the proposed control scheme are demonstrated through simulations on a UAV model with input magnitude saturation constraints. The robust adaptive control design is further developed to extend our results to rate-saturated systems.

  7. Model Based Predictive Control of Multivariable Hammerstein Processes with Fuzzy Logic Hypercube Interpolated Models

    PubMed Central

    Coelho, Antonio Augusto Rodrigues

    2016-01-01

    This paper introduces the Fuzzy Logic Hypercube Interpolator (FLHI) and demonstrates applications in control of multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) processes with Hammerstein nonlinearities. FLHI consists of a Takagi-Sugeno fuzzy inference system where membership functions act as kernel functions of an interpolator. Conjunction of membership functions in an unitary hypercube space enables multivariable interpolation of N-dimensions. Membership functions act as interpolation kernels, such that choice of membership functions determines interpolation characteristics, allowing FLHI to behave as a nearest-neighbor, linear, cubic, spline or Lanczos interpolator, to name a few. The proposed interpolator is presented as a solution to the modeling problem of static nonlinearities since it is capable of modeling both a function and its inverse function. Three study cases from literature are presented, a single-input single-output (SISO) system, a MISO and a MIMO system. Good results are obtained regarding performance metrics such as set-point tracking, control variation and robustness. Results demonstrate applicability of the proposed method in modeling Hammerstein nonlinearities and their inverse functions for implementation of an output compensator with Model Based Predictive Control (MBPC), in particular Dynamic Matrix Control (DMC). PMID:27657723

  8. Fuzzy Predictive Control Strategy in the Application of the Industrial Furnace Temperature Control

    NASA Astrophysics Data System (ADS)

    Dai, Luping; Chen, Xingliang; Chen, Liu; Liu, Xia

    Ceramic kiln with large heat capacity, big lag and nonlinear characteristic, this paper proposes a combining fuzzy control and predictive control of the control algorithm, to enhance the tracking and anti-interference ability of the algorithm. The simulation results show, this method compared with the control of PID has the high steady precision and dynamic characteristic.

  9. Error Correction, Control Systems and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Smith, Earl B.

    2004-01-01

    This paper will be a discussion on dealing with errors. While error correction and communication is important when dealing with spacecraft vehicles, the issue of control system design is also important. There will be certain commands that one wants a motion device to execute. An adequate control system will be necessary to make sure that the instruments and devices will receive the necessary commands. As it will be discussed later, the actual value will not always be equal to the intended or desired value. Hence, an adequate controller will be necessary so that the gap between the two values will be closed.

  10. Design Genetic Algorithm Optimization Education Software Based Fuzzy Controller for a Tricopter Fly Path Planning

    ERIC Educational Resources Information Center

    Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao

    2016-01-01

    In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…

  11. FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY

    EPA Science Inventory

    The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...

  12. Research on Fuzzy I-PD Preview Control for Nonlinear System

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Aida, Kazuo

    In this paper, we propose a new approach on nonlinear preview control with fuzzy logic. Because preview control can decrease not only the overshoot but also the control energy, there have been many approaches on preview control. However, as these approaches are based on linearized models(18), they cannot get a good result when they are applied to nonlinear plants. So we propose a fuzzy preview control to compensate the nonlinear properties of plant. Here, first, a simple Fuzzy Logic Control (S-FLC) with single-input-single-output is introduced. This kind of Fuzzy Logic Control can decrease the number of rules and make the fuzzy reasoning be more quickly. Second, using the I-PD control system proposed by T. Kitamori, fuzzy I-PD control's scaling factors are designed with matching technique. Then to compensate nonlinear properties of plant, two parameters are injected and optimized with Genetic Algorithm (GA). Third, a new designing scheme of preview control element using fuzzy theory is proposed and the preview control element is optimized with GA under a performance criteria. Being designed on the nonlinear model, it will make the fuzzy preview control be more suitable to nonlinear plant. At last, some experiments with a two-cascaded tank system illustrate the efficiency of the proposed approach.

  13. Simulation and experimental control of a 3-RPR parallel robot using optimal fuzzy controller and fast on/off solenoid valves based on the PWM wave.

    PubMed

    Moezi, Seyed Alireza; Rafeeyan, Mansour; Zakeri, Ehsan; Zare, Amin

    2016-03-01

    In this paper, a robust optimal fuzzy controller based on the Pulse Width Modulation (PWM) technique is proposed to control a laboratory parallel robot using inexpensive on/off solenoid valves. The controller coefficients are determined using Modified Cuckoo Optimization Algorithm. The objective function of this method is considered such that the results show the position tracking by the robot with less force and more efficiency. Regarding the results of experimental tests, the control strategy with on/off valves indicates good performance such that the maximum value of RMS of error for a circular path with increasing force on the system is 3.1mm. Furthermore, the results show the superiority of the optimal fuzzy controller compared with optimal PID controller in tracking paths with different conditions and uncertainties. PMID:26794489

  14. Fuzzy logic control for an automated guided vehicle

    NASA Astrophysics Data System (ADS)

    Cao, Ming; Hall, Ernest L.

    1998-10-01

    This paper describes the use of fuzzy logic control for the high level control systems of a mobile robot. The advantages of the fuzzy logic system are that multiple types of input such as that from vision and sonar sensors as well as stored map information can be used to guide the robot. Sensor fusion can be accomplished between real time sensed information and stored information in a manner similar to a human decision maker. Vision guidance is accomplished with a CCD camera with a zoom lens. The data is collected through a commercial tracking device, communicating to the computer the X,Y coordinates of a lane marker. Testing of these systems yielded positive results by showing that at five miles per hour, the vehicle can follow a line and avoid obstacles. The obstacle detection uses information from Polaroid sonar detection system. The motor control system uses a programmable Galil motion control system. This design, in its modularity, creates a portable autonomous controller that could be used for any mobile vehicle with only minor adaptations.

  15. A transductive neuro-fuzzy controller: application to a drilling process.

    PubMed

    Gajate, Agustín; Haber, Rodolfo E; Vega, Pastora I; Alique, José R

    2010-07-01

    Recently, new neuro-fuzzy inference algorithms have been developed to deal with the time-varying behavior and uncertainty of many complex systems. This paper presents the design and application of a novel transductive neuro-fuzzy inference method to control force in a high-performance drilling process. The main goal is to study, analyze, and verify the behavior of a transductive neuro-fuzzy inference system for controlling this complex process, specifically addressing the dynamic modeling, computational efficiency, and viability of the real-time application of this algorithm as well as assessing the topology of the neuro-fuzzy system (e.g., number of clusters, number of rules). A transductive reasoning method is used to create local neuro-fuzzy models for each input/output data set in a case study. The direct and inverse dynamics of a complex process are modeled using this strategy. The synergies among fuzzy, neural, and transductive strategies are then exploited to deal with process complexity and uncertainty through the application of the neuro-fuzzy models within an internal model control (IMC) scheme. A comparative study is made of the adaptive neuro-fuzzy inference system (ANFIS) and the suggested method inspired in a transductive neuro-fuzzy inference strategy. The two neuro-fuzzy strategies are evaluated in a real drilling force control problem. The experimental results demonstrated that the transductive neuro-fuzzy control system provides a good transient response (without overshoot) and better error-based performance indices than the ANFIS-based control system. In particular, the IMC system based on a transductive neuro-fuzzy inference approach reduces the influence of the increase in cutting force that occurs as the drill depth increases, reducing the risk of rapid tool wear and catastrophic tool breakage.

  16. A transductive neuro-fuzzy controller: application to a drilling process.

    PubMed

    Gajate, Agustín; Haber, Rodolfo E; Vega, Pastora I; Alique, José R

    2010-07-01

    Recently, new neuro-fuzzy inference algorithms have been developed to deal with the time-varying behavior and uncertainty of many complex systems. This paper presents the design and application of a novel transductive neuro-fuzzy inference method to control force in a high-performance drilling process. The main goal is to study, analyze, and verify the behavior of a transductive neuro-fuzzy inference system for controlling this complex process, specifically addressing the dynamic modeling, computational efficiency, and viability of the real-time application of this algorithm as well as assessing the topology of the neuro-fuzzy system (e.g., number of clusters, number of rules). A transductive reasoning method is used to create local neuro-fuzzy models for each input/output data set in a case study. The direct and inverse dynamics of a complex process are modeled using this strategy. The synergies among fuzzy, neural, and transductive strategies are then exploited to deal with process complexity and uncertainty through the application of the neuro-fuzzy models within an internal model control (IMC) scheme. A comparative study is made of the adaptive neuro-fuzzy inference system (ANFIS) and the suggested method inspired in a transductive neuro-fuzzy inference strategy. The two neuro-fuzzy strategies are evaluated in a real drilling force control problem. The experimental results demonstrated that the transductive neuro-fuzzy control system provides a good transient response (without overshoot) and better error-based performance indices than the ANFIS-based control system. In particular, the IMC system based on a transductive neuro-fuzzy inference approach reduces the influence of the increase in cutting force that occurs as the drill depth increases, reducing the risk of rapid tool wear and catastrophic tool breakage. PMID:20659865

  17. Adaptive fuzzy output-feedback controller design for nonlinear time-delay systems with unknown control direction.

    PubMed

    Hua, Chang-Chun; Wang, Qing-Guo; Guan, Xin-Ping

    2009-04-01

    In this paper, the robust-control problem is investigated for a class of uncertain nonlinear time-delay systems via dynamic output-feedback approach. The considered system is in the strict-feedback form with unknown control direction. A full-order observer is constructed with the gains computed via linear matrix inequality at first. Then, with the bounds of uncertain functions known, we design the dynamic output-feedback controller such that the closed-loop system is asymptotically stable. Furthermore, when the bound functions of uncertainties are not available, the adaptive fuzzy-logic system is employed to approximate the uncertain function, and the corresponding output-feedback controller is designed. It is shown that the resulting closed-loop system is stable in the sense of semiglobal uniform ultimate boundedness. Finally, simulations are done to verify the feasibility and effectiveness of the obtained theoretical results.

  18. Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers

    NASA Astrophysics Data System (ADS)

    Yan, Gang; Zhou, Lily L.

    2006-09-01

    This study presents a design strategy based on genetic algorithms (GA) for semi-active fuzzy control of structures that have magnetorheological (MR) dampers installed to prevent damage from severe dynamic loads such as earthquakes. The control objective is to minimize both the maximum displacement and acceleration responses of the structure. Interactive relationships between structural responses and input voltages of MR dampers are established by using a fuzzy controller. GA is employed as an adaptive method for design of the fuzzy controller, which is here known as a genetic adaptive fuzzy (GAF) controller. The multi-objectives are first converted to a fitness function that is used in standard genetic operations, i.e. selection, crossover, and mutation. The proposed approach generates an effective and reliable fuzzy logic control system by powerful searching and self-learning adaptive capabilities of GA. Numerical simulations for single and multiple damper cases are given to show the effectiveness and efficiency of the proposed intelligent control strategy.

  19. Comparative Study of Adaptive Type-1 and Type-2 Fuzzy Controls for Nonlinear Systems under Uncertainty

    NASA Astrophysics Data System (ADS)

    Mokaddem, S.; Khaber, F.

    2008-06-01

    This work presents a development of adaptive type-1 and type-2 fuzzy controls for uncertain nonlinear systems. Using the adaptive type-1 fuzzy control, the dynamic of the nonlinear systems is approximated with type-1 fuzzy systems whose parameters are adjusted by appropriate law adaptation. For adaptive type-2 fuzzy control, the dynamic of the nonlinear systems is approximated with interval type-2 fuzzy systems. The use of this type-2 control requires an additional operation witch is the type reduction, in comparing with typ-1 control. The closed-loop system stability is guaranteed by the Lyaponov synthesis. To show the performance of the developed controls, a comparative study is realized through the application of these controls so that an inverted pendulum tracks a given trajectory in presence of disturbances.

  20. A fuzzy logic controller for an autonomous mobile robot

    NASA Technical Reports Server (NTRS)

    Yen, John; Pfluger, Nathan

    1993-01-01

    The ability of a mobile robot system to plan and move intelligently in a dynamic system is needed if robots are to be useful in areas other than controlled environments. An example of a use for this system is to control an autonomous mobile robot in a space station, or other isolated area where it is hard or impossible for human life to exist for long periods of time (e.g., Mars). The system would allow the robot to be programmed to carry out the duties normally accomplished by a human being. Some of the duties that could be accomplished include operating instruments, transporting objects, and maintenance of the environment. The main focus of our early work has been on developing a fuzzy controller that takes a path and adapts it to a given environment. The robot only uses information gathered from the sensors, but retains the ability to avoid dynamically placed obstacles near and along the path. Our fuzzy logic controller is based on the following algorithm: (1) determine the desired direction of travel; (2) determine the allowed direction of travel; and (3) combine the desired and allowed directions in order to determine a direciton that is both desired and allowed. The desired direction of travel is determined by projecting ahead to a point along the path that is closer to the goal. This gives a local direction of travel for the robot and helps to avoid obstacles.

  1. Robust dissipative filtering for a kind of T-S fuzzy descriptor system with immeasurable premise variables

    NASA Astrophysics Data System (ADS)

    Zhu, Baoyan; Zhang, Qingling; Zhao, Enliang

    2016-01-01

    The problem of delay-dependent robust dissipative filtering is investigated for a kind of Takagi-Sugeno (T-S) fuzzy descriptor system with immeasurable premise variables. By utilising the free-weighting matrix approach and combining them with the structural characteristics of the error system, we propose the solvable conditions of the dissipative filter that ensure an error system with immeasurable states is admissible and strictly dissipative. This implies that it is not necessary to assume that the error systems are regular and impulse-free prior to designing filters. The derived method can be applied broadly to nonlinear systems. Also, the solvable condition of the dissipative filter with measurable states is a special case of this study. We also elicit the design methods of the H∞ and passive filters, which could potentially reduce the cost and time spent on the filter design. Finally, we perform simulations to validate the derived methods for two kinds of nonlinear descriptor systems.

  2. Analysis of the relation between health statistics and eating habits in Japanese prefectures using fuzzy robust regression model.

    PubMed

    Yabuuchi, Yoshiyuki; Kawaura, Takayuki; Watada, Junzo

    2016-05-01

    In recent years, the Japanese Ministry of Health, Labour, and Welfare is working to improve citizen׳s lifestyle and social environment to improve their health. This is because of the following reasons. Diseases related to lifestyle such as malignant neoplasms, heart disease, and cerebrovascular disease account for about 60% of the deaths in 2013. In addition, 32% of all medical expenditures are made on lifestyle-related disease. Lifestyle-related diseases can be prevented by daily exercise, a well-balanced diet, and not smoking. This ministry is promoting measures such as dietary education, physical activity, and exercise. Improvement of diet is the easiest way to reduce the occurrence of lifestyle-related diseases. Thus, in this paper, we analyze the relation between health and diet using our fuzzy robust regression model. PMID:26868966

  3. Synthesis of nonlinear discrete control systems via time-delay affine Takagi-Sugeno fuzzy models.

    PubMed

    Chang, Wen-Jer; Chang, Wei

    2005-04-01

    The affine Takagi-Sugeno (TS) fuzzy model played a more important role in nonlinear control because it can be used to approximate the nonlinear systems more than the homogeneous TS fuzzy models. Besides, it is known that the time delays exist in physical systems and the previous works did not consider the time delay effects in the analysis of affine TS fuzzy models. Hence a parallel distributed compensation based fuzzy controller design issue for discrete time-delay affine TS fuzzy models is considered in this paper. The time-delay effect is considered in the discrete affine TS fuzzy models and the stabilization issue is developed for the nonlinear time-delay systems. Finally, a numerical simulation for a time-delayed nonlinear truck-trailer system is given to show the applications of the present approach.

  4. Wastewater neutralization control based in fuzzy logic: Simulation results

    SciTech Connect

    Garrido, R.; Adroer, M.; Poch, M.

    1997-05-01

    Neutralization is a technique widely used as a part of wastewater treatment processes. Due to the importance of this technique, extensive study has been devoted to its control. However, industrial wastewater neutralization control is a procedure with a lot of problems--nonlinearity of the titration curve, variable buffering, changes in loading--and despite the efforts devoted to this subject, the problem has not been totally solved. in this paper, the authors present the development of a controller based in fuzzy logic (FLC). In order to study its effectiveness, it has been compared, by simulation, with other advanced controllers (using identification techniques and adaptive control algorithms using reference models) when faced with various types of wastewater with different buffer capacity or when changes in the concentration of the acid present in the wastewater take place. Results obtained show that FLC could be considered as a powerful alternative for wastewater neutralization processes.

  5. Robust semi-active control for uncertain structures and smart dampers

    NASA Astrophysics Data System (ADS)

    Yeganeh Fallah, Arash; Taghikhany, Touraj

    2014-09-01

    Recent developments in semi-active control technology have led to its application in civil infrastructures as an efficient strategy to protect susceptible structures against seismic and wind induced vibration. The reliable and robust performance of semi-active systems depends on the level of uncertainties in the structural parameters as well as on the sensors’ measurement and on smart mechanical dampers. A common source of uncertainties in semi-active control devices is related to the inherent nonlinear nature of these devices, thermal variation, or their malfunctioning. This study deals with the robust H∞ control problem and aims to model different sources of uncertainty. The uncertainty of the structural model and damper force are assumed to be norm bounded random variables. By using linear fractional transformation (LFT), the uncertain part of the system is decoupled from the nominal parameters of the system. The robust H∞ controller is designed to achieve consistent performance in structures including nominal and perturbed dynamics. Additionally, to reduce the uncertainty of the damper force, an inverse model of the magnetorheological (MR) damper is developed based on an adaptive neuro-fuzzy inference system (ANFIS). The robustness of the proposed algorithm is validated by numerical simulations.

  6. Fuzzy logic and genetic algorithms for intelligent control of structures using MR dampers

    NASA Astrophysics Data System (ADS)

    Yan, Gang; Zhou, Lily L.

    2004-07-01

    Fuzzy logic control (FLC) and genetic algorithms (GA) are integrated into a new approach for the semi-active control of structures installed with MR dampers against severe dynamic loadings such as earthquakes. The interactive relationship between the structural response and the input voltage of MR dampers is established by using a fuzzy controller rather than the traditional way by introducing an ideal active control force. GA is employed as an adaptive method for optimization of parameters and for selection of fuzzy rules of the fuzzy control system, respectively. The maximum structural displacement is selected and used as the objective function to be minimized. The objective function is then converted to a fitness function to form the basis of genetic operations, i.e. selection, crossover, and mutation. The proposed integrated architecture is expected to generate an effective and reliable fuzzy control system by GA"s powerful searching and self-learning adaptive capability.

  7. Experimental evaluation of a piezoelectric vibration absorber using a simplified fuzzy controller in a cantilever beam

    NASA Astrophysics Data System (ADS)

    Lin, J.; Liu, Wei-Zheng

    2006-09-01

    This study presents a novel resonant fuzzy logic controller (FLC) to minimize structural vibration using collocated piezoelectric actuator/sensor pairs. The proposed fuzzy controller increases the damping of the structures to minimize certain resonant responses. The vibration absorber is first experimentally examined by a cantilever beam test bed for impulse and near-resonant excitation cases. Moreover, the effectiveness of the new fuzzy control design to a state-of-the-art control scheme is compared through the experimental studies. The experimental results indicate the proposed controller is highly promising for this application field. Our results further demonstrate that the fuzzy approach is much better than traditional control methods. In summary, a novel vibration absorption scheme using fuzzy logic has been demonstrated to significantly enhance the performance of a flexible structure with resonant response.

  8. Fuzzy control system for a remote focusing microscope

    NASA Technical Reports Server (NTRS)

    Weiss, Jonathan J.; Tran, Luc P.

    1992-01-01

    Space Station Crew Health Care System procedures require the use of an on-board microscope whose slide images will be transmitted for analysis by ground-based microbiologists. Focusing of microscope slides is low on the list of crew priorities, so NASA is investigating the option of telerobotic focusing controlled by the microbiologist on the ground, using continuous video feedback. However, even at Space Station distances, the transmission time lag may disrupt the focusing process, severely limiting the number of slides that can be analyzed within a given bandwidth allocation. Substantial time could be saved if on-board automation could pre-focus each slide before transmission. The authors demonstrate the feasibility of on-board automatic focusing using a fuzzy logic ruled-based system to bring the slide image into focus. The original prototype system was produced in under two months and at low cost. Slide images are captured by a video camera, then digitized by gray-scale value. A software function calculates an index of 'sharpness' based on gray-scale contrasts. The fuzzy logic rule-based system uses feedback to set the microscope's focusing control in an attempt to maximize sharpness. The systems as currently implemented performs satisfactorily in focusing a variety of slide types at magnification levels ranging from 10 to 1000x. Although feasibility has been demonstrated, the system's performance and usability could be improved substantially in four ways: by upgrading the quality and resolution of the video imaging system (including the use of full color); by empirically defining and calibrating the index of image sharpness; by letting the overall focusing strategy vary depending on user-specified parameters; and by fine-tuning the fuzzy rules, set definitions, and procedures used.

  9. Genetic Fuzzy Trees for Intelligent Control of Unmanned Combat Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Ernest, Nicholas D.

    Fuzzy Logic Control is a powerful tool that has found great success in a variety of applications. This technique relies less on complex mathematics and more "expert knowledge" of a system to bring about high-performance, resilient, and efficient control through linguistic classification of inputs and outputs and if-then rules. Genetic Fuzzy Systems (GFSs) remove the need of this expert knowledge and instead rely on a Genetic Algorithm (GA) and have similarly found great success. However, the combination of these methods suffer severely from scalability; the number of rules required to control the system increases exponentially with the number of states the inputs and outputs can take. Therefor GFSs have thus far not been applicable to complex, artificial intelligence type problems. The novel Genetic Fuzzy Tree (GFT) method breaks down complex problems hierarchically, makes sub-decisions when possible, and thus greatly reduces the burden on the GA. This development significantly changes the field of possible applications for GFSs. Within this study, this is demonstrated through applying this technique to a difficult air combat problem. Looking forward to an autonomous Unmanned Combat Aerial Vehicle (UCAV) in the 2030 time-frame, it becomes apparent that the mission, flight, and ground controls will utilize the emerging paradigm of Intelligent Systems (IS); namely, the ability to learn, adapt, exhibit robustness in uncertain situations, make sense of the data collected in real-time and extrapolate when faced with scenarios significantly different from those used in training. LETHA (Learning Enhanced Tactical Handling Algorithm) was created to develop intelligent controllers for these advanced unmanned craft as the first GFT. A simulation space referred to as HADES (Hoplological Autonomous Defend and Engage Simulation) was created in which LETHA can train the UCAVs. Equipped with advanced sensors, a limited supply of Self-Defense Missiles (SDMs), and a recharging

  10. Robust tracking control of a magnetically suspended rigid body

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Cox, David E.

    1994-01-01

    This study is an application of H-infinity and micro-synthesis for designing robust tracking controllers for the Large Angle Magnetic Suspension Test Facility. The modeling, design, analysis, simulation, and testing of a control law that guarantees tracking performance under external disturbances and model uncertainties is investigated. The type of uncertainties considered and the tracking performance metric used is discussed. This study demonstrates the tradeoff between tracking performance at low frequencies and robustness at high frequencies. Two sets of controllers were designed and tested. The first set emphasized performance over robustness, while the second set traded off performance for robustness. Comparisons of simulation and test results are also included. Current simulation and experimental results indicate that reasonably good robust tracking performance can be attained for this system using multivariable robust control approach.

  11. Experimental Robust Control Studies on an Unstable Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Cox, David E.

    1993-01-01

    This study is an experimental investigation of the robustness of various controllers designed for the Large Angle Magnetic Suspension Test Fixture (LAMSTF). Both analytical and identified nominal models are used for designing controllers along with two different types of uncertainty models. Robustness refers to maintain- ing tracking performance under analytical model errors and dynamically induced eddy currents, while external disturbances are not considered. Results show that incorporating robustness into analytical models gives significantly better results. However, incorporating incorrect uncertainty models may lead to poorer performance than not designing for robustness at all. Designing controllers based on accurate identified models gave the best performance. In fact, incorporating a significant level of robustness into an accurate nominal model resulted in reduced performance. This paper discusses an assortment of experimental results in a consistent manner using robust control theory.

  12. Robust tracking control of a magnetically suspended rigid body

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Cox, David E.

    1993-01-01

    This study is an application of H-infinity and microsynthesis for designing robust tracking controllers for the Large Angle Magnetic Suspension Test Facility. The modeling, design, analysis, simulation, and testing of a control law that guarantees tracking performance under external disturbances and model uncertainties is investigated. The type of uncertainties considered and the tracking performance metric used is discussed. This study demonstrates the tradeoff between tracking performance at low frequencies and robustness at high frequencies. Two sets of controllers were designed and tested. The first set emphasized performance over robustness, while the second set traded off performance for robustness. Comparisons of simulation and test results are also included. Current simulation and experimental results indicate that reasonably good robust tracking performance can be attained for this system, using multivariable robust control approach.

  13. Force control of a tri-layer conducting polymer actuator using optimized fuzzy logic control

    NASA Astrophysics Data System (ADS)

    Itik, Mehmet; Sabetghadam, Mohammadreza; Alici, Gursel

    2014-12-01

    Conducting polymers actuators (CPAs) are potential candidates for replacing conventional actuators in various fields, such as robotics and biomedical engineering, due to their advantageous properties, which includes their low cost, light weight, low actuation voltage and biocompatibility. As these actuators are very suitable for use in micro-nano manipulation and in injection devices in which the magnitude of the force applied to the target is of crucial importance, the force generated by CPAs needs to be accurately controlled. In this paper, a fuzzy logic (FL) controller with a Mamdani inference system is designed to control the blocking force of a trilayer CPA with polypyrrole electrodes, which operates in air. The particle swarm optimization (PSO) method is employed to optimize the controller’s membership function parameters and therefore enhance the performance of the FL controller. An adaptive neuro-fuzzy inference system model, which can capture the nonlinear dynamics of the actuator, is utilized in the optimization process. The optimized Mamdani FL controller is then implemented on the CPA experimentally, and its performance is compared with a non-optimized fuzzy controller as well as with those obtained from a conventional PID controller. The results presented indicate that the blocking force at the tip of the CPA can be effectively controlled by the optimized FL controller, which shows excellent transient and steady state characteristics but increases the control voltage compared to the non-optimized fuzzy controllers.

  14. A fuzzy controlled three-phase centrifuge for waste separation

    SciTech Connect

    Parkinson, W.J.; Smith, R.E.; Miller, N.

    1998-02-01

    The three-phase centrifuge technology discussed in this paper was developed by Neal Miller, president of Centech, Inc. The three-phase centrifuge is an excellent device for cleaning up oil field and refinery wastes which are typically composed of hydrocarbons, water, and solids. The technology is unique. It turns the waste into salable oil, reusable water, and landfill-able solids. No secondary waste is produced. The problem is that only the inventor can set up and run the equipment well enough to provide an optimal cleanup. Demand for this device has far exceeded a one man operation. There is now a need for several centrifuges to be operated at different locations at the same time. This has produced a demand for an intelligent control system, one that could replace a highly skilled operator, or at least supplement the skills of a less experienced operator. The control problem is ideally suited to fuzzy logic, since the centrifuge is a highly complicated machine operated entirely by the skill and experience of the operator. A fuzzy control system was designed for and used with the centrifuge.

  15. Development of a fuzzy logic controller for dc/dc converters: Design, computer simulation, and experimental evaluation

    SciTech Connect

    So, W.C.; Tse, C.K.; Lee, Y.S.

    1996-01-01

    The design of a fuzzy logic controller for dc/dc converters is described in this paper. A brief review of fuzzy logic and its application to control is first given. Then, the derivation of a fuzzy control algorithm for regulating dc/dc converters is described in detail. The proposed fuzzy control is evaluated by computer simulations as well as experimental measurements of the closed-loop performance of simple dc/dc converters in respect of load regulation and line regulation.

  16. New hybrid adaptive neuro-fuzzy algorithms for manipulator control with uncertainties- comparative study.

    PubMed

    Alavandar, Srinivasan; Nigam, M J

    2009-10-01

    Control of an industrial robot includes nonlinearities, uncertainties and external perturbations that should be considered in the design of control laws. In this paper, some new hybrid adaptive neuro-fuzzy control algorithms (ANFIS) have been proposed for manipulator control with uncertainties. These hybrid controllers consist of adaptive neuro-fuzzy controllers and conventional controllers. The outputs of these controllers are applied to produce the final actuation signal based on current position and velocity errors. Numerical simulation using the dynamic model of six DOF puma robot arm with uncertainties shows the effectiveness of the approach in trajectory tracking problems. Performance indices of RMS error, maximum error are used for comparison. It is observed that the hybrid adaptive neuro-fuzzy controllers perform better than only conventional/adaptive controllers and in particular hybrid controller structure consisting of adaptive neuro-fuzzy controller and critically damped inverse dynamics controller.

  17. Vector control of wind turbine on the basis of the fuzzy selective neural net*

    NASA Astrophysics Data System (ADS)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-04-01

    An article describes vector control of wind turbine based on fuzzy selective neural net. Based on the wind turbine system’s state, the fuzzy selective neural net tracks an maximum power point under random perturbations. Numerical simulations are accomplished to clarify the applicability and advantages of the proposed vector wind turbine’s control on the basis of the fuzzy selective neuronet. The simulation results show that the proposed intelligent control of wind turbine achieves real-time control speed and competitive performance, as compared to a classical control model with PID controllers based on traditional maximum torque control strategy.

  18. Integrated identification and robust control tuning for large space structures

    NASA Technical Reports Server (NTRS)

    Yam, Y.; Bayard, D. S.; Scheid, R. E.

    1990-01-01

    System identification is studied for the explicit purpose of supporting modern H-infinity robust control design objectives. In the analysis, the true plant is not assumed to be in the identification model set. An integrated identification/robust control problem is posed in which the optimal solution guarantees the best robust performance relative to the system information contained in a given experimental data set. A numerical example demonstrating an approximate solution to the problem indicates the usefulness of the approach.

  19. Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems

    PubMed Central

    Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S.; Agarwal, Dev P.

    2015-01-01

    Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data. PMID:26366169

  20. H∞ control for 2-D T-S fuzzy FMII model with stochastic perturbation

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Wang, Weiqun; Li, Lizhen

    2015-03-01

    This paper deals with the problem of H∞ control for 2-D non-linear system with stochastic perturbation. Based on spatial fuzzy set and inference mechanism, 2-D T-S fuzzy FMII model with stochastic perturbation is established first. Then the results for stability analysis and bounded real lemma are obtained. Moreover, an H∞ fuzzy controller is designed. In order to reduce the computational demand of the conditions for the existence of H∞ fuzzy controller, the control inputs are regarded as the variables independent of the states, and some free matrices are introduced to reduce the conservatism of this method. Then, a new H∞ fuzzy controller is derived. Two simulation examples are given to illustrate the effectiveness of the proposed approach.

  1. A criterion for joint optimization of identification and robust control

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.; Yam, Y.; Mettler, E.

    1992-01-01

    A criterion for system identification is developed that is consistent with the intended used of the fitted model for modern robust control synthesis. Specifically, a joint optimization problem is posed which simultaneously solves the plant model estimate and control design, so as to optimize robust performance over the set of plants consistent with a specified experimental data set.

  2. Robust adaptive vibration control of a flexible structure.

    PubMed

    Khoshnood, A M; Moradi, H M

    2014-07-01

    Different types of L1 adaptive control systems show that using robust theories with adaptive control approaches has produced high performance controllers. In this study, a model reference adaptive control scheme considering robust theories is used to propose a practical control system for vibration suppression of a flexible launch vehicle (FLV). In this method, control input of the system is shaped from the dynamic model of the vehicle and components of the control input are adaptively constructed by estimating the undesirable vibration frequencies. Robust stability of the adaptive vibration control system is guaranteed by using the L1 small gain theorem. Simulation results of the robust adaptive vibration control strategy confirm that the effects of vibration on the vehicle performance considerably decrease without the loss of the phase margin of the system.

  3. Virtual reality simulation of fuzzy-logic control during underwater dynamic positioning

    NASA Astrophysics Data System (ADS)

    Thekkedan, Midhin Das; Chin, Cheng Siong; Woo, Wai Lok

    2015-03-01

    In this paper, graphical-user-interface (GUI) software for simulation and fuzzy-logic control of a remotely operated vehicle (ROV) using MATLAB™ GUI Designing Environment is proposed. The proposed ROV's GUI platform allows the controller such as fuzzy-logic control systems design to be compared with other controllers such as proportional-integral-derivative (PID) and sliding-mode controller (SMC) systematically and interactively. External disturbance such as sea current can be added to improve the modelling in actual underwater environment. The simulated results showed the position responses of the fuzzy-logic control exhibit reasonable performance under the sea current disturbance.

  4. Fuzzy and Internal Model Control of an Active Suspension System for a 2-DOF Vehicle Model

    NASA Astrophysics Data System (ADS)

    Demir, Özgür; Karakurt, Derya; Alarçin, Fuat

    2007-09-01

    In this study, Fuzzy-Logic-Based (FL) controller and Internal Model Control (IMC) scheme are designed for active suspension system. An aim of active suspension systems for a vehicle model is to provide good road handling and high passenger comfort by shaping the output function. The simulated system was considered to be a two-degree-of-freedom (2-DOF) model. The effectiveness of this Fuzzy Control is verified by comparison with Internal Model Control simulation results. Simulation results show that the effectiveness of the fuzzy controller is better than Internal Model Control under the same conditions.

  5. Local navigation and fuzzy control realization for autonomous guided vehicle

    NASA Astrophysics Data System (ADS)

    El-Konyaly, El-Sayed H.; Saraya, Sabry F.; Shehata, Raef S.

    1996-10-01

    This paper addresses the problem of local navigation for an autonomous guided vehicle (AGV) in a structured environment that contains static and dynamic obstacles. Information about the environment is obtained via a CCD camera. The problem is formulated as a dynamic feedback control problem in which speed and steering decisions are made on the fly while the AGV is moving. A decision element (DE) that uses local information is proposed. The DE guides the vehicle in the environment by producing appropriate navigation decisions. Dynamic models of a three-wheeled vehicle for driving and steering mechanisms are derived. The interaction between them is performed via the local feedback DE. A controller, based on fuzzy logic, is designed to drive the vehicle safely in an intelligent and human-like manner. The effectiveness of the navigation and control strategies in driving the AGV is illustrated and evaluated.

  6. Stochastic robustness of linear control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.; Ryan, Laura E.

    1990-01-01

    A simple numerical procedure for estimating the stochastic robustness of a linear, time-invariant system is described. Monte Carlo evaluation of the system's eigenvalues allows the probability of instability and the related stochastic root locus to be estimated. This definition of robustness is an alternative to existing deterministic definitions that address both structured and unstructured parameter variations directly. This analysis approach treats not only Gaussian parameter uncertainties but non-Gaussian cases, including uncertain-but-bounded variations. Trivial extensions of the procedure admit alternate discriminants to be considered. Thus, the probabilities that stipulated degrees of instability will be exceeded or that closed-loop roots will leave desirable regions also can be estimated. Results are particularly amenable to graphical presentation.

  7. A genetic algorithms approach for altering the membership functions in fuzzy logic controllers

    NASA Technical Reports Server (NTRS)

    Shehadeh, Hana; Lea, Robert N.

    1992-01-01

    Through previous work, a fuzzy control system was developed to perform translational and rotational control of a space vehicle. This problem was then re-examined to determine the effectiveness of genetic algorithms on fine tuning the controller. This paper explains the problems associated with the design of this fuzzy controller and offers a technique for tuning fuzzy logic controllers. A fuzzy logic controller is a rule-based system that uses fuzzy linguistic variables to model human rule-of-thumb approaches to control actions within a given system. This 'fuzzy expert system' features rules that direct the decision process and membership functions that convert the linguistic variables into the precise numeric values used for system control. Defining the fuzzy membership functions is the most time consuming aspect of the controller design. One single change in the membership functions could significantly alter the performance of the controller. This membership function definition can be accomplished by using a trial and error technique to alter the membership functions creating a highly tuned controller. This approach can be time consuming and requires a great deal of knowledge from human experts. In order to shorten development time, an iterative procedure for altering the membership functions to create a tuned set that used a minimal amount of fuel for velocity vector approach and station-keep maneuvers was developed. Genetic algorithms, search techniques used for optimization, were utilized to solve this problem.

  8. Autonomous Control of a Quadrotor UAV Using Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Sureshkumar, Vijaykumar

    UAVs are being increasingly used today than ever before in both military and civil applications. They are heavily preferred in "dull, dirty or dangerous" mission scenarios. Increasingly, UAVs of all kinds are being used in policing, fire-fighting, inspection of structures, pipelines etc. Recently, the FAA gave its permission for UAVs to be used on film sets for motion capture and high definition video recording. The rapid development in MEMS and actuator technology has made possible a plethora of UAVs that are suited for commercial applications in an increasingly cost effective manner. An emerging popular rotary wing UAV platform is the Quadrotor A Quadrotor is a helicopter with four rotors, that make it more stable; but more complex to model and control. Characteristics that provide a clear advantage over other fixed wing UAVs are VTOL and hovering capabilities as well as a greater maneuverability. It is also simple in construction and design compared to a scaled single rotorcraft. Flying such UAVs using a traditional radio Transmitter-Receiver setup can be a daunting task especially in high stress situations. In order to make such platforms widely applicable, a certain level of autonomy is imperative to the future of such UAVs. This thesis paper presents a methodology for the autonomous control of a Quadrotor UAV using Fuzzy Logic. Fuzzy logic control has been chosen over conventional control methods as it can deal effectively with highly nonlinear systems, allows for imprecise data and is extremely modular. Modularity and adaptability are the key cornerstones of FLC. The objective of this thesis is to present the steps of designing, building and simulating an intelligent flight control module for a Quadrotor UAV. In the course of this research effort, a Quadrotor UAV is indigenously developed utilizing the resources of an online open source project called Aeroquad. System design is comprehensively dealt with. A math model for the Quadrotor is developed and a

  9. Robustness Analysis and Optimally Robust Control Design via Sum-of-Squares

    NASA Technical Reports Server (NTRS)

    Dorobantu, Andrei; Crespo, Luis G.; Seiler, Peter J.

    2012-01-01

    A control analysis and design framework is proposed for systems subject to parametric uncertainty. The underlying strategies are based on sum-of-squares (SOS) polynomial analysis and nonlinear optimization to design an optimally robust controller. The approach determines a maximum uncertainty range for which the closed-loop system satisfies a set of stability and performance requirements. These requirements, de ned as inequality constraints on several metrics, are restricted to polynomial functions of the uncertainty. To quantify robustness, SOS analysis is used to prove that the closed-loop system complies with the requirements for a given uncertainty range. The maximum uncertainty range, calculated by assessing a sequence of increasingly larger ranges, serves as a robustness metric for the closed-loop system. To optimize the control design, nonlinear optimization is used to enlarge the maximum uncertainty range by tuning the controller gains. Hence, the resulting controller is optimally robust to parametric uncertainty. This approach balances the robustness margins corresponding to each requirement in order to maximize the aggregate system robustness. The proposed framework is applied to a simple linear short-period aircraft model with uncertain aerodynamic coefficients.

  10. Robust attitude tracking control of small-scale unmanned helicopter

    NASA Astrophysics Data System (ADS)

    Wang, Xiafu; Chen, You; Lu, Geng; Zhong, Yisheng

    2015-06-01

    Robust attitude control problem for small-scale unmanned helicopters is investigated to improve attitude control performances of roll and pitch channels under both small and large amplitude manoeuvre flight conditions. The model of the roll or pitch angular dynamics is regarded as a nominal single-input single-output linear system with equivalent disturbances which contain nonlinear uncertainties, coupling-effects, parameter perturbations, and external disturbances. Based on the signal compensation method, a robust controller is designed with two parts: a proportional-derivative controller and a robust compensator. The designed controller is linear and time-invariant, so it can be easily realised. The robust properties of the closed-loop system are proven. According to the ADS-33E-PRF military rotorcraft standard, the controller can achieve top control performances. Experimental results demonstrate the effectiveness of the proposed control strategy.

  11. Cost averaging techniques for robust control of flexible structural systems

    NASA Technical Reports Server (NTRS)

    Hagood, Nesbitt W.; Crawley, Edward F.

    1991-01-01

    Viewgraphs on cost averaging techniques for robust control of flexible structural systems are presented. Topics covered include: modeling of parameterized systems; average cost analysis; reduction of parameterized systems; and static and dynamic controller synthesis.

  12. The Temperature Fuzzy Control System of Barleythe Malt Drying Based on Microcontroller

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoyang; Bi, Yang; Zhang, Lili; Chen, Jingjing; Yun, Jianmin

    The control strategy of temperature and humidity in the beer barley malt drying chamber based on fuzzy logic control was implemented.Expounded in this paper was the selection of parameters for the structure of the regulatory device, as well as the essential design from control rules based on the existing experience. A temperature fuzzy controller was thus constructed using relevantfuzzy logic, and humidity control was achieved by relay, ensured the situation of the humidity to control the temperature. The temperature's fuzzy control and the humidity real-time control were all processed by single chip microcomputer with assembly program. The experimental results showed that the temperature control performance of this fuzzy regulatory system,especially in the ways of working stability and responding speed and so on,was better than normal used PID control. The cost of real-time system was inquite competitive position. It was demonstrated that the system have a promising prospect of extensive application.

  13. [Research on the Application of Fuzzy Logic to Systems Analysis and Control

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Research conducted with the support of NASA Grant NCC2-275 has been focused in the main on the development of fuzzy logic and soft computing methodologies and their applications to systems analysis and control. with emphasis 011 problem areas which are of relevance to NASA's missions. One of the principal results of our research has been the development of a new methodology called Computing with Words (CW). Basically, in CW words drawn from a natural language are employed in place of numbers for computing and reasoning. There are two major imperatives for computing with words. First, computing with words is a necessity when the available information is too imprecise to justify the use of numbers, and second, when there is a tolerance for imprecision which can be exploited to achieve tractability, robustness, low solution cost, and better rapport with reality. Exploitation of the tolerance for imprecision is an issue of central importance in CW.

  14. Adaptive robust control of the EBR-II reactor

    SciTech Connect

    Power, M.A.; Edwards, R.M.

    1996-05-01

    Simulation results are presented for an adaptive H{sub {infinity}} controller, a fixed H{sub {infinity}} controller, and a classical controller. The controllers are applied to a simulation of the Experimental Breeder Reactor II primary system. The controllers are tested for the best robustness and performance by step-changing the demanded reactor power and by varying the combined uncertainty in initial reactor power and control rod worth. The adaptive H{sub {infinity}} controller shows the fastest settling time, fastest rise time and smallest peak overshoot when compared to the fixed H{sub {infinity}} and classical controllers. This makes for a superior and more robust controller.

  15. Inverting the Pendulum Using Fuzzy Control (Center Director's Discretionary Fund (Project 93-02)

    NASA Technical Reports Server (NTRS)

    Kissel, R. R.; Sutherland, W. T.

    1997-01-01

    A single pendulum was simulated in software and then built on a rotary base. A fuzzy controller was used to show its advantages as a nonlinear controller since bringing the pendulum inverted is extremely nonlinear. The controller was implemented in a Motorola 6811 microcontroller. A double pendulum was simulated and fuzzy control was used to hold it in a vertical position. The double pendulum was not built into hardware for lack of time. This project was for training and to show advantages of fuzzy control.

  16. Power control of SAFE reactor using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Irvine, Claude

    2002-01-01

    Controlling the 100 kW SAFE (Safe Affordable Fission Engine) reactor consists of design and implementation of a fuzzy logic process control system to regulate dynamic variables related to nuclear system power. The first phase of development concentrates primarily on system power startup and regulation, maintaining core temperature equilibrium, and power profile matching. This paper discusses the experimental work performed in those areas. Nuclear core power from the fuel elements is simulated using resistive heating elements while heat rejection is processed by a series of heat pipes. Both axial and radial nuclear power distributions are determined from neuronic modeling codes. The axial temperature profile of the simulated core is matched to the nuclear power profile by varying the resistance of the heating elements. The SAFE model establishes radial temperature profile equivalence by establishing 32 control zones as the nodal coordinates. Control features also allow for slow warm up, since complete shutoff can occur in the heat pipes if heat-source temperatures drop/rise below a certain minimum value, depending on the specific fluid and gas combination in the heat pipe. The entire system is expected to be self-adaptive, i.e., capable of responding to long-range changes in the space environment. Particular attention in the development of the fuzzy logic algorithm shall ensure that the system process remains at set point, virtually eliminating overshoot on start-up and during in-process disturbances. The controller design will withstand harsh environments and applications where it might come in contact with water, corrosive chemicals, radiation fields, etc. .

  17. Nonlinear Performance Seeking Control using Fuzzy Model Reference Learning Control and the Method of Steepest Descent

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    1997-01-01

    Performance Seeking Control (PSC) attempts to find and control the process at the operating condition that will generate maximum performance. In this paper a nonlinear multivariable PSC methodology will be developed, utilizing the Fuzzy Model Reference Learning Control (FMRLC) and the method of Steepest Descent or Gradient (SDG). This PSC control methodology employs the SDG method to find the operating condition that will generate maximum performance. This operating condition is in turn passed to the FMRLC controller as a set point for the control of the process. The conventional SDG algorithm is modified in this paper in order for convergence to occur monotonically. For the FMRLC control, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for effective tuning of the FMRLC controller.

  18. Simulation of the Predictive Control Algorithm for Container Crane Operation using Matlab Fuzzy Logic Tool Box

    NASA Technical Reports Server (NTRS)

    Richardson, Albert O.

    1997-01-01

    This research has investigated the use of fuzzy logic, via the Matlab Fuzzy Logic Tool Box, to design optimized controller systems. The engineering system for which the controller was designed and simulate was the container crane. The fuzzy logic algorithm that was investigated was the 'predictive control' algorithm. The plant dynamics of the container crane is representative of many important systems including robotic arm movements. The container crane that was investigated had a trolley motor and hoist motor. Total distance to be traveled by the trolley was 15 meters. The obstruction height was 5 meters. Crane height was 17.8 meters. Trolley mass was 7500 kilograms. Load mass was 6450 kilograms. Maximum trolley and rope velocities were 1.25 meters per sec. and 0.3 meters per sec., respectively. The fuzzy logic approach allowed the inclusion, in the controller model, of performance indices that are more effectively defined in linguistic terms. These include 'safety' and 'cargo swaying'. Two fuzzy inference systems were implemented using the Matlab simulation package, namely the Mamdani system (which relates fuzzy input variables to fuzzy output variables), and the Sugeno system (which relates fuzzy input variables to crisp output variable). It is found that the Sugeno FIS is better suited to including aspects of those plant dynamics whose mathematical relationships can be determined.

  19. Nozzle Fuzzy Controller of Agricultural Spraying Robot Aiming Toward Crop Rows

    NASA Astrophysics Data System (ADS)

    Ren, Jianqiang

    A novel nozzle controller of spraying robot aiming toward crop-rows based on fuzzy control theory was studied in this paper to solve the shortcomings of existing nozzle control system, such as the long regulation time, the higher overshoot and so on. The new fuzzy controller mainly consists of fuzzification interface, defuzzification interface, rule-base and inference mechanism. Considering the actual application, the fuzzy controller was designed as a 2-inputs&1-output closed-loop system. The inputs are the distance from nozzle to crop row and its change rate, the output is the control signal to the execution unit. Based on the design project, we selected the FMC chip NLX230, the EMCU chip AT89S52 and the EEPROM chip AT93C57 to make the fuzzy controller. Experimental results show that the project is workable and efficient, it can solve the shortcomings of existing controller perfectly and the control efficiency can be improved greatly.

  20. Controlling of grid connected photovoltaic lighting system with fuzzy logic

    SciTech Connect

    Saglam, Safak; Ekren, Nazmi; Erdal, Hasan

    2010-02-15

    In this study, DC electrical energy produced by photovoltaic panels is converted to AC electrical energy and an indoor area is illuminated using this energy. System is controlled by fuzzy logic algorithm controller designed with 16 rules. Energy is supplied from accumulator which is charged by photovoltaic panels if its energy would be sufficient otherwise it is supplied from grid. During the 1-week usage period at the semester time, 1.968 kWh energy is used from grid but designed system used 0.542 kWh energy from photovoltaic panels at the experiments. Energy saving is determined by calculations and measurements for one education year period (9 months) 70.848 kWh. (author)

  1. Robust Control Design for Systems With Probabilistic Uncertainty

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.

    2005-01-01

    This paper presents a reliability- and robustness-based formulation for robust control synthesis for systems with probabilistic uncertainty. In a reliability-based formulation, the probability of violating design requirements prescribed by inequality constraints is minimized. In a robustness-based formulation, a metric which measures the tendency of a random variable/process to cluster close to a target scalar/function is minimized. A multi-objective optimization procedure, which combines stability and performance requirements in time and frequency domains, is used to search for robustly optimal compensators. Some of the fundamental differences between the proposed strategy and conventional robust control methods are: (i) unnecessary conservatism is eliminated since there is not need for convex supports, (ii) the most likely plants are favored during synthesis allowing for probabilistic robust optimality, (iii) the tradeoff between robust stability and robust performance can be explored numerically, (iv) the uncertainty set is closely related to parameters with clear physical meaning, and (v) compensators with improved robust characteristics for a given control structure can be synthesized.

  2. M-matrix based robust stability and stabilization for uncertain discrete-time switched TS fuzzy systems with time-varying delays.

    PubMed

    Jaballi, Ahmed; Sakly, Anis; Hajjaji, Ahmed El

    2016-07-01

    This paper provides novel sufficient conditions on robust asymptotic stability and stabilization for a class of uncertain discrete-time switched fuzzy with time-varying delays. The attention is focused on developing new algebraic criteria to break with classical criteria in terms of Linear Matrix Inequalities (LMIs). Firstly, based on the M-matrix proprieties and through l1,∞ induced norms notion, new delay-dependent sufficient conditions are derived to ensure the asymptotic stability and stabilization for a class of uncertain discrete-time switched fuzzy systems with time-varying delay. Secondly, these results are extended for a class of uncertain discrete-time switched fuzzy systems with time delays, modeled by difference equations. Finally, two numerical examples and practical example (a robot arm) are provided to demonstrate the advantage and the effectiveness of our results. PMID:26996925

  3. Development of a GA-Fuzzy-Immune PID Controller with Incomplete Derivation for Robot Dexterous Hand

    PubMed Central

    Liu, Xin-hua; Chen, Xiao-hu; Zheng, Xian-hua; Li, Sheng-peng; Wang, Zhong-bin

    2014-01-01

    In order to improve the performance of robot dexterous hand, a controller based on GA-fuzzy-immune PID was designed. The control system of a robot dexterous hand and mathematical model of an index finger were presented. Moreover, immune mechanism was applied to the controller design and an improved approach through integration of GA and fuzzy inference was proposed to realize parameters' optimization. Finally, a simulation example was provided and the designed controller was proved ideal. PMID:25097881

  4. Robust on-off pulse control of flexible space vehicles

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Sinha, Ravi

    1993-01-01

    The on-off reaction jet control system is often used for attitude and orbital maneuvering of various spacecraft. Future space vehicles such as the orbital transfer vehicles, orbital maneuvering vehicles, and space station will extensively use reaction jets for orbital maneuvering and attitude stabilization. The proposed robust fuel- and time-optimal control algorithm is used for a three-mass spacing model of flexible spacecraft. A fuel-efficient on-off control logic is developed for robust rest-to-rest maneuver of a flexible vehicle with minimum excitation of structural modes. The first part of this report is concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated and solved. The second part of this report deals with obtaining parameter insensitive fuel- and time- optimal control inputs by solving a constrained optimization problem subject to robustness constraints. It is shown that sensitivity to modeling errors can be significantly reduced by the proposed, robustified open-loop control approach. The final part of this report deals with sliding mode control design for uncertain flexible structures. The benchmark problem of a flexible structure is used as an example for the feedback sliding mode controller design with bounded control inputs and robustness to parameter variations is investigated.

  5. Fuzzy logic control of water level in advanced boiling water reactor

    SciTech Connect

    Lin, Chaung; Lee, Chi-Szu; Raghavan, R.; Fahrner, D.M.

    1995-12-31

    The feedwater control system in the Advanced Boiling Water Reactor (ABWR) is more challenging to design compared to other control systems in the plant, due to the possible change in level from void collapses and swells during transient events. A basic fuzzy logic controller is developed using a simplified ABWR mathematical model to demonstrate and compare the performance of this controller with a simplified conventional controller. To reduce the design effort, methods are developed to automatically tune the scaling factors and control rules. As a first step in developing the fuzzy controller, a fuzzy controller with a limited number of rules is developed to respond to normal plant transients such as setpoint changes of plant parameters and load demand changes. Various simulations for setpoint and load demand changes of plant performances were conducted to evaluate the modeled fuzzy logic design against the simplified ABWR model control system. The simulation results show that the performance of the fuzzy logic controller is comparable to that of the Proportional-Integral (PI) controller, However, the fuzzy logic controller produced shorter settling time for step setpoint changes compared to the simplified conventional controller.

  6. Robust tuning of robot control systems

    NASA Technical Reports Server (NTRS)

    Minis, I.; Uebel, M.

    1992-01-01

    The computed torque control problem is examined for a robot arm with flexible, geared, joint drive systems which are typical in many industrial robots. The standard computed torque algorithm is not directly applicable to this class of manipulators because of the dynamics introduced by the joint drive system. The proposed approach to computed torque control combines a computed torque algorithm with torque controller at each joint. Three such control schemes are proposed. The first scheme uses the joint torque control system currently implemented on the robot arm and a novel form of the computed torque algorithm. The other two use the standard computed torque algorithm and a novel model following torque control system based on model following techniques. Standard tasks and performance indices are used to evaluate the performance of the controllers. Both numerical simulations and experiments are used in evaluation. The study shows that all three proposed systems lead to improved tracking performance over a conventional PD controller.

  7. Learning control of inverted pendulum system by neural network driven fuzzy reasoning: The learning function of NN-driven fuzzy reasoning under changes of reasoning environment

    NASA Technical Reports Server (NTRS)

    Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru

    1991-01-01

    Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.

  8. A Robustly Stabilizing Model Predictive Control Algorithm

    NASA Technical Reports Server (NTRS)

    Ackmece, A. Behcet; Carson, John M., III

    2007-01-01

    A model predictive control (MPC) algorithm that differs from prior MPC algorithms has been developed for controlling an uncertain nonlinear system. This algorithm guarantees the resolvability of an associated finite-horizon optimal-control problem in a receding-horizon implementation.

  9. Closed-loop and robust control of quantum systems.

    PubMed

    Chen, Chunlin; Wang, Lin-Cheng; Wang, Yuanlong

    2013-01-01

    For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H(∞) control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.

  10. Design and implementation of a new fuzzy PID controller for networked control systems.

    PubMed

    Fadaei, A; Salahshoor, K

    2008-10-01

    This paper presents a practical network platform to design and implement a networked-based cascade control system linking a Smar Foundation Fieldbus (FF) controller (DFI-302) and a Siemens programmable logic controller (PLC-S7-315-2DP) through Industrial Ethernet to a laboratory pilot plant. In the presented network configuration, the Smar OPC tag browser and Siemens WinCC OPC Channel provide the communicating interface between the two controllers. The paper investigates the performance of a PID controller implemented in two different possible configurations of FF function block (FB) and networked control system (NCS) via a remote Siemens PLC. In the FB control system implementation, the desired set-point is provided by the Siemens Human-Machine Interface (HMI) software (i.e, WinCC) via an Ethernet Modbus link. While, in the NCS implementation, the cascade loop is realized in remote Siemens PLC station and the final element set-point is sent to the Smar FF station via Ethernet bus. A new fuzzy PID control strategy is then proposed to improve the control performances of the networked-based control systems due to an induced transmission delay degradation effect. The proposed strategy utilizes an innovative idea based on sectionalizing the error signal of the step response into three different functional zones. The supporting philosophy behind these three functional zones is to decompose the desired control objectives in terms of rising time, settling time and steady-state error measures maintained by an appropriate PID-type controller in each zone. Then, fuzzy membership factors are defined to configure the control signal on the basis of the fuzzy weighted PID outputs of all three zones. The obtained results illustrate the effectiveness of the proposed fuzzy PID control scheme in improving the performances of the implemented NCS for different transportation delays. PMID:18692184

  11. Design and implementation of a new fuzzy PID controller for networked control systems.

    PubMed

    Fadaei, A; Salahshoor, K

    2008-10-01

    This paper presents a practical network platform to design and implement a networked-based cascade control system linking a Smar Foundation Fieldbus (FF) controller (DFI-302) and a Siemens programmable logic controller (PLC-S7-315-2DP) through Industrial Ethernet to a laboratory pilot plant. In the presented network configuration, the Smar OPC tag browser and Siemens WinCC OPC Channel provide the communicating interface between the two controllers. The paper investigates the performance of a PID controller implemented in two different possible configurations of FF function block (FB) and networked control system (NCS) via a remote Siemens PLC. In the FB control system implementation, the desired set-point is provided by the Siemens Human-Machine Interface (HMI) software (i.e, WinCC) via an Ethernet Modbus link. While, in the NCS implementation, the cascade loop is realized in remote Siemens PLC station and the final element set-point is sent to the Smar FF station via Ethernet bus. A new fuzzy PID control strategy is then proposed to improve the control performances of the networked-based control systems due to an induced transmission delay degradation effect. The proposed strategy utilizes an innovative idea based on sectionalizing the error signal of the step response into three different functional zones. The supporting philosophy behind these three functional zones is to decompose the desired control objectives in terms of rising time, settling time and steady-state error measures maintained by an appropriate PID-type controller in each zone. Then, fuzzy membership factors are defined to configure the control signal on the basis of the fuzzy weighted PID outputs of all three zones. The obtained results illustrate the effectiveness of the proposed fuzzy PID control scheme in improving the performances of the implemented NCS for different transportation delays.

  12. Performances of PID and Different Fuzzy Methods for Controlling a Ball on Beam

    NASA Astrophysics Data System (ADS)

    Minh, Vu Trieu; Mart, Tamre; Moezzi, Reza; Oliver, Mets; Martin, Jurise; Ahti, Polder; Leo, Teder; Mart, Juurma

    2016-05-01

    This paper develops and analyses the performances evaluation of different control strategies applied for a nonlinear motion of a ball on a beam system. Comparison results provide in-depth comprehension on the stable ability of different controllers for this real mechanical application. The three different controllers are a conventional PID method, a Mamdani-type fuzzy rule method and a Sugeno-type fuzzy rule method. In this study, the PID shows the fastest sinuous reference tracking while the Mamdani-type fuzzy method proves the highest stability performance for tracking square wave motions.

  13. Modern CACSD using the Robust-Control Toolbox

    NASA Technical Reports Server (NTRS)

    Chiang, Richard Y.; Safonov, Michael G.

    1989-01-01

    The Robust-Control Toolbox is a collection of 40 M-files which extend the capability of PC/PRO-MATLAB to do modern multivariable robust control system design. Included are robust analysis tools like singular values and structured singular values, robust synthesis tools like continuous/discrete H(exp 2)/H infinity synthesis and Linear Quadratic Gaussian Loop Transfer Recovery methods and a variety of robust model reduction tools such as Hankel approximation, balanced truncation and balanced stochastic truncation, etc. The capabilities of the toolbox are described and illustated with examples to show how easily they can be used in practice. Examples include structured singular value analysis, H infinity loop-shaping and large space structure model reduction.

  14. Design and Implementation of Takagi-Sugeno Fuzzy Logic Controller for Shunt Compensator

    NASA Astrophysics Data System (ADS)

    Singh, Alka; Badoni, Manoj

    2016-12-01

    This paper describes the application of Takagi-Sugeno (TS) type fuzzy logic controller to a three-phase shunt compensator in power distribution system. The shunt compensator is used for power quality improvement and has the ability to provide reactive power compensation, reduce the level of harmonics in supply currents, power factor correction and load balancing. Additionally, it can also be used to regulate voltage at the point of common coupling (PCC). The paper discusses the design of TS fuzzy logic controller and its implementation based on only four rules. The smaller number of rules makes it suitable for experimental verification as compared to Mamdani fuzzy controller. A small laboratory prototype of the system is developed and the control algorithm is verified experimentally. The TS fuzzy controller is compared with the proportional integral based industrial controller and their performance is compared under a wide variation of dynamic load changes.

  15. Vehicle active steering control research based on two-DOF robust internal model control

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Liu, Yahui; Wang, Fengbo; Bao, Chunjiang; Sun, Qun; Zhao, Youqun

    2016-07-01

    Because of vehicle's external disturbances and model uncertainties, robust control algorithms have obtained popularity in vehicle stability control. The robust control usually gives up performance in order to guarantee the robustness of the control algorithm, therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness. The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties. In order to separate the design process of model tracking from the robustness design process, the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization. Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm, on the basis of a nonlinear vehicle simulation model with a magic tyre model. Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance, which can enhance the vehicle stability and handling, regardless of variations of the vehicle model parameters and the external crosswind interferences. Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.

  16. Computation of robustly stabilizing PID controllers for interval systems.

    PubMed

    Matušů, Radek; Prokop, Roman

    2016-01-01

    The paper is focused on the computation of all possible robustly stabilizing Proportional-Integral-Derivative (PID) controllers for plants with interval uncertainty. The main idea of the proposed method is based on Tan's (et al.) technique for calculation of (nominally) stabilizing PI and PID controllers or robustly stabilizing PI controllers by means of plotting the stability boundary locus in either P-I plane or P-I-D space. Refinement of the existing method by consideration of 16 segment plants instead of 16 Kharitonov plants provides an elegant and efficient tool for finding all robustly stabilizing PID controllers for an interval system. The validity and relatively effortless application of presented theoretical concepts are demonstrated through a computation and simulation example in which the uncertain mathematical model of an experimental oblique wing aircraft is robustly stabilized. PMID:27350931

  17. Panaceas, uncertainty, and the robust control framework in sustainability science

    PubMed Central

    Anderies, John M.; Rodriguez, Armando A.; Janssen, Marco A.; Cifdaloz, Oguzhan

    2007-01-01

    A critical challenge faced by sustainability science is to develop strategies to cope with highly uncertain social and ecological dynamics. This article explores the use of the robust control framework toward this end. After briefly outlining the robust control framework, we apply it to the traditional Gordon–Schaefer fishery model to explore fundamental performance–robustness and robustness–vulnerability trade-offs in natural resource management. We find that the classic optimal control policy can be very sensitive to parametric uncertainty. By exploring a large class of alternative strategies, we show that there are no panaceas: even mild robustness properties are difficult to achieve, and increasing robustness to some parameters (e.g., biological parameters) results in decreased robustness with respect to others (e.g., economic parameters). On the basis of this example, we extract some broader themes for better management of resources under uncertainty and for sustainability science in general. Specifically, we focus attention on the importance of a continual learning process and the use of robust control to inform this process. PMID:17881574

  18. Fuzzy control structure for an anaerobic fluidised bed

    NASA Astrophysics Data System (ADS)

    Hernández, Salvador Carlos; Sanchez, Edgar N.; Béteau, Jean-François

    2012-12-01

    This article deals with the design of a fuzzy control strategy for a fluidised bed reactor, which is used for anaerobic wastewater treatment. This strategy is composed of a supervisor system and two PI L/A controllers. In addition, a biomass observer, designed on the basis of the Takagi-Sugeno approach considering a principal component analysis, is used with supervision proposals. The supervisor is also designed following the Takagi-Sugeno methodology; it detects the process state, selects and applies the most adequate control action in order to avoid the washout region. On the other side, two control actions are designed for bicarbonate regulation using the PI/LA technique: adding a base and dilution rate. These control actions, as well as the open loop operation, are selected by the supervisor in order to reject disturbances on the substrate influent allowing at the same time a high methane production. The applicability of the proposed structure in a fluidised bed reactor is illustrated via simulations.

  19. Adaptive Controller for T-S Fuzzy Model with Reconstruction Error

    NASA Astrophysics Data System (ADS)

    Han, Hugang

    In this paper, the reconstruction error between the real system to be controlled and its T-S fuzzy model is considered, and fuzzy approximator is employed to cope with the reconstruction error. As a result, it reaches an adaptive controller that has two parts: one is obtained by solving certain linear matrix inequalities (LMIs) (fixed part) and another one is acquired by the fuzzy approximator in which the related parameters are tuned by adaptive law (variable part). The proposed controller can guarantee the control state to converge and uniformly bounded while maintaining all the signals involved stable. Also, the convergence in terms of relaxing the LMIs conservatism is discussed. An inverted pendulum is provided to demonstrate the effectiveness of the proposed adaptive fuzzy controller.

  20. Robust Adaptive Control In Hilbert Space

    NASA Technical Reports Server (NTRS)

    Wen, John Ting-Yung; Balas, Mark J.

    1990-01-01

    Paper discusses generalization of scheme for adaptive control of finite-dimensional system to infinite-dimensional Hilbert space. Approach involves generalization of command-generator tracker (CGT) theory. Does not require reference model to be same order as that of plant, and knowledge of order of plant not needed. Suitable for application to high-order systems, main emphasis on adjustment of low-order feedback-gain matrix. Analysis particularly relevant to control of large, flexible structures.

  1. Controlled quantum dialogue robust against conspiring users

    NASA Astrophysics Data System (ADS)

    Kao, Shih-Hung; Hwang, Tzonelih

    2016-10-01

    This paper explores a new security problem in controlled quantum dialogue (CQD) protocols, where the communicants may try to conspire to communicate without the controller's permission. According to our survey, all the previous CQD protocols suffer from this attack. In order to resolve this problem, we also present an improvement protocol. The security analyses show that the improved scheme is secure under this and other well-known attacks.

  2. Controlled quantum dialogue robust against conspiring users

    NASA Astrophysics Data System (ADS)

    Kao, Shih-Hung; Hwang, Tzonelih

    2016-07-01

    This paper explores a new security problem in controlled quantum dialogue (CQD) protocols, where the communicants may try to conspire to communicate without the controller's permission. According to our survey, all the previous CQD protocols suffer from this attack. In order to resolve this problem, we also present an improvement protocol. The security analyses show that the improved scheme is secure under this and other well-known attacks.

  3. Robust predictive cruise control for commercial vehicles

    NASA Astrophysics Data System (ADS)

    Junell, Jaime; Tumer, Kagan

    2013-10-01

    In this paper we explore learning-based predictive cruise control and the impact of this technology on increasing fuel efficiency for commercial trucks. Traditional cruise control is wasteful when maintaining a constant velocity over rolling hills. Predictive cruise control (PCC) is able to look ahead at future road conditions and solve for a cost-effective course of action. Model- based controllers have been implemented in this field but cannot accommodate many complexities of a dynamic environment which includes changing road and vehicle conditions. In this work, we focus on incorporating a learner into an already successful model- based predictive cruise controller in order to improve its performance. We explore back propagating neural networks to predict future errors then take actions to prevent said errors from occurring. The results show that this approach improves the model based PCC by up to 60% under certain conditions. In addition, we explore the benefits of classifier ensembles to further improve the gains due to intelligent cruise control.

  4. A stochastic framework for robust fuzzy filtering and analysis of signals--part II.

    PubMed

    Kumar, Mohit; Stoll, Norbert; Stoll, Regina; Thurow, Kerstin

    2015-03-01

    This text provides several applications scenarios of introduced signals’ modeling and analysis framework to solve the practical problems. Some of the challenging practical problems related to signal/data processing have been formulated in a manner that the negative free energy maximizing filtering and variational information maximizing analysis algorithms of Kumar et al. could be directly applied to solve the problems. The studied application examples include robust comparison of objects’ geometries in images for child ear biometrics, biomedical signals classification, data smoothing for reflection-mode ultrasound imaging, and modeling related applications. The application examples support the mathematical theory of Kumar et al. by providing just the proof-of-concept.

  5. Robust H∞ Control for Spacecraft Rendezvous with a Noncooperative Target

    PubMed Central

    Wu, Shu-Nan; Zhou, Wen-Ya; Tan, Shu-Jun; Wu, Guo-Qiang

    2013-01-01

    The robust H∞ control for spacecraft rendezvous with a noncooperative target is addressed in this paper. The relative motion of chaser and noncooperative target is firstly modeled as the uncertain system, which contains uncertain orbit parameter and mass. Then the H∞ performance and finite time performance are proposed, and a robust H∞ controller is developed to drive the chaser to rendezvous with the non-cooperative target in the presence of control input saturation, measurement error, and thrust error. The linear matrix inequality technology is used to derive the sufficient condition of the proposed controller. An illustrative example is finally provided to demonstrate the effectiveness of the controller. PMID:24027446

  6. Adaptive Fuzzy Control for Uncertain Fractional-Order Financial Chaotic Systems Subjected to Input Saturation

    PubMed Central

    Wang, Chenhui

    2016-01-01

    In this paper, control of uncertain fractional-order financial chaotic system with input saturation and external disturbance is investigated. The unknown part of the input saturation as well as the system’s unknown nonlinear function is approximated by a fuzzy logic system. To handle the fuzzy approximation error and the estimation error of the unknown upper bound of the external disturbance, fractional-order adaptation laws are constructed. Based on fractional Lyapunov stability theorem, an adaptive fuzzy controller is designed, and the asymptotical stability can be guaranteed. Finally, simulation studies are given to indicate the effectiveness of the proposed method. PMID:27783648

  7. A new adaptive configuration of PID type fuzzy logic controller.

    PubMed

    Fereidouni, Alireza; Masoum, Mohammad A S; Moghbel, Moayed

    2015-05-01

    In this paper, an adaptive configuration for PID type fuzzy logic controller (FLC) is proposed to improve the performances of both conventional PID (C-PID) controller and conventional PID type FLC (C-PID-FLC). The proposed configuration is called adaptive because its output scaling factors (SFs) are dynamically tuned while the controller is functioning. The initial values of SFs are calculated based on its well-tuned counterpart while the proceeding values are generated using a proposed stochastic hybrid bacterial foraging particle swarm optimization (h-BF-PSO) algorithm. The performance of the proposed configuration is evaluated through extensive simulations for different operating conditions (changes in reference, load disturbance and noise signals). The results reveal that the proposed scheme performs significantly better over the C-PID controller and the C-PID-FLC in terms of several performance indices (integral absolute error (IAE), integral-of-time-multiplied absolute error (ITAE) and integral-of-time-multiplied squared error (ITSE)), overshoot and settling time for plants with and without dead time.

  8. Cascade direct adaptive fuzzy control design for a nonlinear two-axis inverted-pendulum servomechanism.

    PubMed

    Wai, Rong-Jong; Kuo, Meng-An; Lee, Jeng-Dao

    2008-04-01

    This paper presents and analyzes a cascade direct adaptive fuzzy control (DAFC) scheme for a two-axis inverted-pendulum servomechanism. Because the dynamic characteristic of the two-axis inverted-pendulum servomechanism is a nonlinear unstable nonminimum-phase underactuated system, it is difficult to design a suitable control scheme that simultaneously realizes real-time stabilization and accurate tracking control, and it is not easy to directly apply conventional computed torque strategies to this underactuated system. Therefore, the cascade DAFC scheme including inner and outer control loops is investigated for the stabilizing and tracking control of a nonlinear two-axis inverted-pendulum servomechanism. The goal of the inner control loop is to design a DAFC law so that the stick angle vector can fit the stick angle command vector derived from the stick angle reference model. In the outer loop, the reference signal vector is designed via an adaptive path planner so that the cart position vector tracks the cart position command vector. Moreover, all adaptive algorithms in the cascade DAFC system are derived using the Lyapunov stability analysis, so that system stability can be guaranteed in the entire closed-loop system. Relying on this cascade structure, the stick angle and cart position tracking-error vectors will simultaneously converge to zero. Numerical simulations and experimental results are given to verify that the proposed cascade DAFC system can achieve favorable stabilizing and tracking performance and is robust with regard to system uncertainties.

  9. Robust Control for the Mercury Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Rosenberg, Jacob S.

    2006-01-01

    Mercury Laser Altimeter Science Algorithms is a software system for controlling the laser altimeter aboard the Messenger spacecraft, which is to enter into orbit about Mercury in 2011. The software will control the altimeter by dynamically modifying hardware inputs for gain, threshold, channel-disable flags, range-window start location, and range-window width, by using ranging information provided by the spacecraft and noise counts from instrument hardware. In addition, because of severe bandwidth restrictions, the software also selects returns for downlink.

  10. Takagi-Sugeno fuzzy modeling and chaos control of partial differential systems.

    PubMed

    Vasegh, Nastaran; Khellat, Farhad

    2013-12-01

    In this paper a unified approach is presented for controlling chaos in nonlinear partial differential systems by a fuzzy control design. First almost all known chaotic partial differential equation systems are represented by Takagi-Sugeno fuzzy model. For investigating design procedure, Kuramoto-Sivashinsky (K-S) equation is selected. Then, all linear subsystems of K-S equation are transformed to ordinary differential equation (ODE) systems by truncated Fourier series of sine-cosine functions. By solving Riccati equation for each ODE systems, parallel stabilizing feedback controllers are determined. Finally, a distributed fuzzy feedback for K-S equation is designed. Numerical simulations are given to show that the distributed fuzzy controller is very easy to design, efficient, and capable to extend.

  11. Type-2 fuzzy logic control based MRAS speed estimator for speed sensorless direct torque and flux control of an induction motor drive.

    PubMed

    Ramesh, Tejavathu; Kumar Panda, Anup; Shiva Kumar, S

    2015-07-01

    In this research study, a model reference adaptive system (MRAS) speed estimator for speed sensorless direct torque and flux control (DTFC) of an induction motor drive (IMD) using two adaptation mechanism schemes are proposed to replace the conventional proportional integral controller (PIC). The first adaptation mechanism scheme is based on Type-1 fuzzy logic controller (T1FLC), which is used to achieve high performance sensorless drive in both transient as well as steady state conditions. However, the Type-1 fuzzy sets are certain and unable to work effectively when higher degree of uncertainties presents in the system which can be caused by sudden change in speed or different load disturbances, process noise etc. Therefore, a new Type-2 fuzzy logic controller (T2FLC) based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties and improves the performance and also robust to various load torque and sudden change in speed conditions, respectively. The detailed performances of various adaptation mechanism schemes are carried out in a MATLAB/Simulink environment with a speed sensor and speed sensorless modes of operation when an IMD is operating under different operating conditions, such as, no-load, load and sudden change in speed, respectively. To validate the different control approaches, the system also implemented on real-time system and adequate results are reported for its validation.

  12. Specificity and robustness in transcription control networks.

    PubMed

    Sengupta, Anirvan M; Djordjevic, Marko; Shraiman, Boris I

    2002-02-19

    Recognition by transcription factors of the regulatory DNA elements upstream of genes is the fundamental step in controlling gene expression. How does the necessity to provide stability with respect to mutation constrain the organization of transcription control networks? We examine the mutation load of a transcription factor interacting with a set of n regulatory response elements as a function of the factor/DNA binding specificity and conclude on theoretical grounds that the optimal specificity decreases with n. The predicted correlation between variability of binding sites (for a given transcription factor) and their number is supported by the genomic data for Escherichia coli. The analysis of E. coli genomic data was carried out using an algorithm suggested by the biophysical model of transcription factor/DNA binding. Complete results of the search for candidate transcription factor binding sites are available at http://www.physics.rockefeller.edu/~boris/public/search_ecoli. PMID:11854503

  13. A Robust Control Design Framework for Substructure Models

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.

    1994-01-01

    A framework for designing control systems directly from substructure models and uncertainties is proposed. The technique is based on combining a set of substructure robust control problems by an interface stiffness matrix which appears as a constant gain feedback. Variations of uncertainties in the interface stiffness are treated as a parametric uncertainty. It is shown that multivariable robust control can be applied to generate centralized or decentralized controllers that guarantee performance with respect to uncertainties in the interface stiffness, reduced component modes and external disturbances. The technique is particularly suited for large, complex, and weakly coupled flexible structures.

  14. MATLAB Simulation of UPQC for Power Quality Mitigation Using an Ant Colony Based Fuzzy Control Technique.

    PubMed

    Kumarasabapathy, N; Manoharan, P S

    2015-01-01

    This paper proposes a fuzzy logic based new control scheme for the Unified Power Quality Conditioner (UPQC) for minimizing the voltage sag and total harmonic distortion in the distribution system consequently to improve the power quality. UPQC is a recent power electronic module which guarantees better power quality mitigation as it has both series-active and shunt-active power filters (APFs). The fuzzy logic controller has recently attracted a great deal of attention and possesses conceptually the quality of the simplicity by tackling complex systems with vagueness and ambiguity. In this research, the fuzzy logic controller is utilized for the generation of reference signal controlling the UPQC. To enable this, a systematic approach for creating the fuzzy membership functions is carried out by using an ant colony optimization technique for optimal fuzzy logic control. An exhaustive simulation study using the MATLAB/Simulink is carried out to investigate and demonstrate the performance of the proposed fuzzy logic controller and the simulation results are compared with the PI controller in terms of its performance in improving the power quality by minimizing the voltage sag and total harmonic distortion.

  15. MATLAB Simulation of UPQC for Power Quality Mitigation Using an Ant Colony Based Fuzzy Control Technique

    PubMed Central

    Kumarasabapathy, N.; Manoharan, P. S.

    2015-01-01

    This paper proposes a fuzzy logic based new control scheme for the Unified Power Quality Conditioner (UPQC) for minimizing the voltage sag and total harmonic distortion in the distribution system consequently to improve the power quality. UPQC is a recent power electronic module which guarantees better power quality mitigation as it has both series-active and shunt-active power filters (APFs). The fuzzy logic controller has recently attracted a great deal of attention and possesses conceptually the quality of the simplicity by tackling complex systems with vagueness and ambiguity. In this research, the fuzzy logic controller is utilized for the generation of reference signal controlling the UPQC. To enable this, a systematic approach for creating the fuzzy membership functions is carried out by using an ant colony optimization technique for optimal fuzzy logic control. An exhaustive simulation study using the MATLAB/Simulink is carried out to investigate and demonstrate the performance of the proposed fuzzy logic controller and the simulation results are compared with the PI controller in terms of its performance in improving the power quality by minimizing the voltage sag and total harmonic distortion. PMID:26504895

  16. Design issues for a reinforcement-based self-learning fuzzy controller

    NASA Technical Reports Server (NTRS)

    Yen, John; Wang, Haojin; Dauherity, Walter

    1993-01-01

    Fuzzy logic controllers have some often cited advantages over conventional techniques such as PID control: easy implementation, its accommodation to natural language, the ability to cover wider range of operating conditions and others. One major obstacle that hinders its broader application is the lack of a systematic way to develop and modify its rules and as result the creation and modification of fuzzy rules often depends on try-error or pure experimentation. One of the proposed approaches to address this issue is self-learning fuzzy logic controllers (SFLC) that use reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of self-learning fuzzy controller is highly contingent on the design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for the application to chemical process are discussed and its performance is compared with that of PID and self-tuning fuzzy logic controller.

  17. Flatness-based adaptive fuzzy control of an autonomous submarine model

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Raffo, Guilherme

    2015-12-01

    The article presents a differential flatness theory-based method for adaptive control of autonomous submarines. A proof is provided about the differential flatness properties of the submarine's model (having as state variables the vessel's depth and its pitch angle). This also means that all its state variables and its control inputs can be written as differential functions of the flat output. Making use of its differential flatness features, the submarine's dynamic model is transformed into the multivariable linear canonical (Brunovsky) form. In the transformed model, the control inputs consist of unknown nonlinear parts, which are identified with the use of neurofuzzy approximators. The learning rate for these estimators is determined by the requirement the first derivative of the closed-loop's Lyapunov function to be a negative one. Furthermore, with the use of Lyapunov stability analysis it is proven that an H-infinity tracking performance is succeeded for the feedback control loop. This implies enhanced robustness to model uncertainty and to external perturbations. Simulation experiments are carried out to further confirm the efficiency of the proposed adaptive fuzzy control scheme.

  18. A Computational Framework to Control Verification and Robustness Analysis

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2010-01-01

    This paper presents a methodology for evaluating the robustness of a controller based on its ability to satisfy the design requirements. The framework proposed is generic since it allows for high-fidelity models, arbitrary control structures and arbitrary functional dependencies between the requirements and the uncertain parameters. The cornerstone of this contribution is the ability to bound the region of the uncertain parameter space where the degradation in closed-loop performance remains acceptable. The size of this bounding set, whose geometry can be prescribed according to deterministic or probabilistic uncertainty models, is a measure of robustness. The robustness metrics proposed herein are the parametric safety margin, the reliability index, the failure probability and upper bounds to this probability. The performance observed at the control verification setting, where the assumptions and approximations used for control design may no longer hold, will fully determine the proposed control assessment.

  19. AQM router design for TCP network via input constrained fuzzy control of time-delay affine Takagi-Sugeno fuzzy models

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Jer; Meng, Yu-Teh; Tsai, Kuo-Hui

    2012-12-01

    In this article, Takagi-Sugeno (T-S) fuzzy control theory is proposed as a key tool to design an effective active queue management (AQM) router for the transmission control protocol (TCP) networks. The probability control of packet marking in the TCP networks is characterised by an input constrained control problem in this article. By modelling the TCP network into a time-delay affine T-S fuzzy model, an input constrained fuzzy control methodology is developed in this article to serve the AQM router design. The proposed fuzzy control approach, which is developed based on the parallel distributed compensation technique, can provide smaller probability of dropping packets than previous AQM design schemes. Lastly, a numerical simulation is provided to illustrate the usefulness and effectiveness of the proposed design approach.

  20. Observed-Based Adaptive Fuzzy Tracking Control for Switched Nonlinear Systems With Dead-Zone.

    PubMed

    Tong, Shaocheng; Sui, Shuai; Li, Yongming

    2015-12-01

    In this paper, the problem of adaptive fuzzy output-feedback control is investigated for a class of uncertain switched nonlinear systems in strict-feedback form. The considered switched systems contain unknown nonlinearities, dead-zone, and immeasurable states. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, a switched fuzzy state observer is designed and thus the immeasurable states are obtained by it. By applying the adaptive backstepping design principle and the average dwell time method, an adaptive fuzzy output-feedback tracking control approach is developed. It is proved that the proposed control approach can guarantee that all the variables in the closed-loop system are bounded under a class of switching signals with average dwell time, and also that the system output can track a given reference signal as closely as possible. The simulation results are given to check the effectiveness of the proposed approach.

  1. Robust time and frequency domain estimation methods in adaptive control

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard Orville

    1987-01-01

    A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.

  2. Robust adaptive tracking control for nonholonomic mobile manipulator with uncertainties.

    PubMed

    Peng, Jinzhu; Yu, Jie; Wang, Jie

    2014-07-01

    In this paper, mobile manipulator is divided into two subsystems, that is, nonholonomic mobile platform subsystem and holonomic manipulator subsystem. First, the kinematic controller of the mobile platform is derived to obtain a desired velocity. Second, regarding the coupling between the two subsystems as disturbances, Lyapunov functions of the two subsystems are designed respectively. Third, a robust adaptive tracking controller is proposed to deal with the unknown upper bounds of parameter uncertainties and disturbances. According to the Lyapunov stability theory, the derived robust adaptive controller guarantees global stability of the closed-loop system, and the tracking errors and adaptive coefficient errors are all bounded. Finally, simulation results show that the proposed robust adaptive tracking controller for nonholonomic mobile manipulator is effective and has good tracking capacity. PMID:24917071

  3. Robust levitation control for maglev systems with guaranteed bounded airgap.

    PubMed

    Xu, Jinquan; Chen, Ye-Hwa; Guo, Hong

    2015-11-01

    The robust control design problem for the levitation control of a nonlinear uncertain maglev system is considered. The uncertainty is (possibly) fast time-varying. The system has magnitude limitation on the airgap between the suspended chassis and the guideway in order to prevent undesirable contact. Furthermore, the (global) matching condition is not satisfied. After a three-step state transformation, a robust control scheme for the maglev vehicle is proposed, which is able to guarantee the uniform boundedness and uniform ultimate boundedness of the system, regardless of the uncertainty. The magnitude limitation of the airgap is guaranteed, regardless of the uncertainty. PMID:26524957

  4. Robust vibration control of flexible linkage mechanisms using piezoelectric films

    NASA Astrophysics Data System (ADS)

    Liao, Wen-Hwei; Chou, Jyh-Horng; Horng, Ing-Rong

    1997-08-01

    Based on the state space model of the flexible linkage mechanism equipped with piezoelectric films, a robust control methodology for suppressing elastodynamic responses of the high-speed flexible linkage mechanism with linear time-varying parameter perturbations by employing an observer-based feedback controller is presented. The instability caused by the linear time-varying parameter perturbations and the instability caused by the combined effect of control and observation spillover are investigated and carefully prevented by two robust stability criteria proposed in this paper. Numerical simulation of a slider - crank mechanism example is performed to evaluate the improvement of the elastodynamic responses.

  5. Systematic design of membership functions for fuzzy-logic control: A case study on one-stage partial nitritation/anammox treatment systems.

    PubMed

    Boiocchi, Riccardo; Gernaey, Krist V; Sin, Gürkan

    2016-10-01

    A methodology is developed to systematically design the membership functions of fuzzy-logic controllers for multivariable systems. The methodology consists of a systematic derivation of the critical points of the membership functions as a function of predefined control objectives. Several constrained optimization problems corresponding to different qualitative operation states of the system are defined and solved to identify, in a consistent manner, the critical points of the membership functions for the input variables. The consistently identified critical points, together with the linguistic rules, determine the long term reachability of the control objectives by the fuzzy logic controller. The methodology is highlighted using a single-stage side-stream partial nitritation/Anammox reactor as a case study. As a result, a new fuzzy-logic controller for high and stable total nitrogen removal efficiency is designed. Rigorous simulations are carried out to evaluate and benchmark the performance of the controller. The results demonstrate that the novel control strategy is capable of rejecting the long-term influent disturbances, and can achieve a stable and high TN removal efficiency. Additionally, the controller was tested, and showed robustness, against measurement noise levels typical for wastewater sensors. A feedforward-feedback configuration using the present controller would give even better performance. In comparison, a previously developed fuzzy-logic controller using merely expert and intuitive knowledge performed worse. This proved the importance of using a systematic methodology for the derivation of the membership functions for multivariable systems. These results are promising for future applications of the controller in real full-scale plants. Furthermore, the methodology can be used as a tool to help systematically design fuzzy logic control applications for other biological processes.

  6. Systematic design of membership functions for fuzzy-logic control: A case study on one-stage partial nitritation/anammox treatment systems.

    PubMed

    Boiocchi, Riccardo; Gernaey, Krist V; Sin, Gürkan

    2016-10-01

    A methodology is developed to systematically design the membership functions of fuzzy-logic controllers for multivariable systems. The methodology consists of a systematic derivation of the critical points of the membership functions as a function of predefined control objectives. Several constrained optimization problems corresponding to different qualitative operation states of the system are defined and solved to identify, in a consistent manner, the critical points of the membership functions for the input variables. The consistently identified critical points, together with the linguistic rules, determine the long term reachability of the control objectives by the fuzzy logic controller. The methodology is highlighted using a single-stage side-stream partial nitritation/Anammox reactor as a case study. As a result, a new fuzzy-logic controller for high and stable total nitrogen removal efficiency is designed. Rigorous simulations are carried out to evaluate and benchmark the performance of the controller. The results demonstrate that the novel control strategy is capable of rejecting the long-term influent disturbances, and can achieve a stable and high TN removal efficiency. Additionally, the controller was tested, and showed robustness, against measurement noise levels typical for wastewater sensors. A feedforward-feedback configuration using the present controller would give even better performance. In comparison, a previously developed fuzzy-logic controller using merely expert and intuitive knowledge performed worse. This proved the importance of using a systematic methodology for the derivation of the membership functions for multivariable systems. These results are promising for future applications of the controller in real full-scale plants. Furthermore, the methodology can be used as a tool to help systematically design fuzzy logic control applications for other biological processes. PMID:27390035

  7. Robust high-performance control for robotic manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1989-01-01

    A robust control scheme to accomplish accurate trajectory tracking for an integrated system of manipulator-plus-actuators is proposed. The control scheme comprises a feedforward and a feedback controller. The feedforward controller contains any known part of the manipulator dynamics that can be used for online control. The feedback controller consists of adaptive position and velocity feedback gains and an auxiliary signal which is simply generated by a fixed-gain proportional/integral/derivative controller. The feedback controller is updated by very simple adaptation laws which contain both proportional and integral adaptation terms. By introduction of a simple sigma modification to the adaptation laws, robustness is guaranteed in the presence of unmodeled dynamics and disturbances.

  8. Supervisory control of wastewater treatment plants by combining principal component analysis and fuzzy c-means clustering.

    PubMed

    Rosen, C; Yuan, Z

    2001-01-01

    In this paper a methodology for integrated multivariate monitoring and control of biological wastewater treatment plants during extreme events is presented. To monitor the process, on-line dynamic principal component analysis (PCA) is performed on the process data to extract the principal components that represent the underlying mechanisms of the process. Fuzzy o-means (FCM) clustering is used to classify the operational state. Performing clustering on scores from PCA solves computational problems as well as increases robustness due to noise attenuation. The class-membership information from FCM is used to derive adequate control set points for the local control loops. The methodology is illustrated by a simulation study of a biological wastewater treatment plant, on which disturbances of various types are imposed. The results show that the methodology can be used to determine and co-ordinate control actions in order to shift the control objective and improve the effluent quality.

  9. Robust Control Design for Uncertain Nonlinear Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Kenny, Sean P.; Crespo, Luis G.; Andrews, Lindsey; Giesy, Daniel P.

    2012-01-01

    Robustness to parametric uncertainty is fundamental to successful control system design and as such it has been at the core of many design methods developed over the decades. Despite its prominence, most of the work on robust control design has focused on linear models and uncertainties that are non-probabilistic in nature. Recently, researchers have acknowledged this disparity and have been developing theory to address a broader class of uncertainties. This paper presents an experimental application of robust control design for a hybrid class of probabilistic and non-probabilistic parametric uncertainties. The experimental apparatus is based upon the classic inverted pendulum on a cart. The physical uncertainty is realized by a known additional lumped mass at an unknown location on the pendulum. This unknown location has the effect of substantially altering the nominal frequency and controllability of the nonlinear system, and in the limit has the capability to make the system neutrally stable and uncontrollable. Another uncertainty to be considered is a direct current motor parameter. The control design objective is to design a controller that satisfies stability, tracking error, control power, and transient behavior requirements for the largest range of parametric uncertainties. This paper presents an overview of the theory behind the robust control design methodology and the experimental results.

  10. Hybrid clustering based fuzzy structure for vibration control - Part 1: A novel algorithm for building neuro-fuzzy system

    NASA Astrophysics Data System (ADS)

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-01-01

    This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.

  11. Inexact fuzzy integer chance constraint programming approach for noise control within an urban environment

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Huang, Gordon; Dai, Liming; Fan, Yurui

    2016-08-01

    This article introduces an inexact fuzzy integer chance constraint programming (IFICCP) approach for identifying noise reduction strategy under uncertainty. The IFICCP method integrates the interval programming and fuzzy chance constraint programming approaches into a framework, which is able to deal with uncertainties expressed as intervals and fuzziness. The proposed IFICCP model can be converted into two deterministic submodels corresponding to the optimistic and pessimistic conditions. The modelling approach is applied to a hypothetical control measure selection problem for noise reduction. Results of the case study indicate that useful solutions for noise control practices can be acquired. Three acceptable noise levels for two communities are considered. For each acceptable noise level, several decision alternatives have been obtained and analysed under different fuzzy confidence levels, which reflect the trade-offs between environmental and economic considerations.

  12. Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung

    2016-07-01

    In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.

  13. Adaptive fuzzy switched swing-up and sliding control for the double-pendulum-and-cart system.

    PubMed

    Tao, Chin Wang; Taur, Jinshiuh; Chang, J H; Su, Shun-Feng

    2010-02-01

    In this paper, an adaptive fuzzy switched swing-up and sliding controller (AFSSSC) is proposed for the swing-up and position controls of a double-pendulum-and-cart system. The proposed AFSSSC consists of a fuzzy switching controller (FSC), an adaptive fuzzy swing-up controller (FSUC), and an adaptive hybrid fuzzy sliding controller (HFSC). To simplify the design of the adaptive HFSC, the double-pendulum-and-cart system is reformulated as a double-pendulum and a cart subsystem with matched time-varying uncertainties. In addition, an adaptive mechanism is provided to learn the parameters of the output fuzzy sets for the adaptive HFSC. The FSC is designed to smoothly switch between the adaptive FSUC and the adaptive HFSC. Moreover, the sliding mode and the stability of the fuzzy sliding control systems are guaranteed. Simulation results are included to illustrate the effectiveness of the proposed AFSSSC. PMID:19661002

  14. Summary report: A preliminary investigation into the use of fuzzy logic for the control of redundant manipulators

    NASA Technical Reports Server (NTRS)

    Cheatham, John B., Jr.; Magee, Kevin N.

    1991-01-01

    The Rice University Department of Mechanical Engineering and Materials Sciences' Robotics Group designed and built an eight degree of freedom redundant manipulator. Fuzzy logic was proposed as a control scheme for tasks not directly controlled by a human operator. In preliminary work, fuzzy logic control was implemented for a camera tracking system and a six degree of freedom manipulator. Both preliminary systems use real time vision data as input to fuzzy controllers. Related projects include integration of tactile sensing and fuzzy control of a redundant snake-like arm that is under construction.

  15. Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm

    PubMed Central

    Svečko, Rajko

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749

  16. Optimal robust motion controller design using multiobjective genetic algorithm.

    PubMed

    Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm-differential evolution. PMID:24987749

  17. Sliding mode control of wind-induced vibrations using fuzzy sliding surface and gain adaptation

    NASA Astrophysics Data System (ADS)

    Thenozhi, Suresh; Yu, Wen

    2016-04-01

    Although fuzzy/adaptive sliding mode control can reduce the chattering problem in structural vibration control applications, they require the equivalent control and the upper bounds of the system uncertainties. In this paper, we used fuzzy logic to approximate the standard sliding surface and designed a dead-zone adaptive law for tuning the switching gain of the sliding mode control. The stability of the proposed controller is established using Lyapunov stability theory. A six-storey building prototype equipped with an active mass damper has been used to demonstrate the effectiveness of the proposed controller towards the wind-induced vibrations.

  18. Observer-based H∞ fuzzy control for discrete-time Takagi-Sugeno fuzzy mixed delay systems with random packet losses and multiplicative noises

    NASA Astrophysics Data System (ADS)

    Wen, Shiping; Zeng, Zhigang; Huang, Tingwen

    2015-01-01

    This paper investigates the observer-based H∞ fuzzy control problem for a class of discrete-time fuzzy mixed delay systems with random communication packet losses and multiplicative noises, where the mixed delays comprise both discrete time-varying and distributed delays. The random packet losses are described by a Bernoulli distributed white sequence that obeys a conditional probability distribution, and the multiplicative disturbances are in the form of a scalar Gaussian white noise with unit variance. In the presence of mixed delays, random packet losses and multiplicative noises, sufficient conditions for the existence of an observer-based fuzzy feedback controller are derived, such that the closed-loop control system is asymptotically mean-square stable and preserves a guaranteed H∞ performance. Then a linear matrix inequality approach for designing such an observer-based H∞ fuzzy controller is presented. Finally, a numerical example is provided to illustrate the effectiveness of the developed theoretical results.

  19. Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV.

    PubMed

    Ali, Zain Anwar; Wang, Daobo; Aamir, Muhammad

    2016-05-09

    In this paper, a new and novel mathematical fuzzy hybrid scheme is proposed for the stabilization of a tri-rotor unmanned aerial vehicle (UAV). The fuzzy hybrid scheme consists of a fuzzy logic controller, regulation pole-placement tracking (RST) controller with model reference adaptive control (MRAC), in which adaptive gains of the RST controller are being fine-tuned by a fuzzy logic controller. Brushless direct current (BLDC) motors are installed in the triangular frame of the tri-rotor UAV, which helps maintain control on its motion and different altitude and attitude changes, similar to rotorcrafts. MRAC-based MIT rule is proposed for system stability. Moreover, the proposed hybrid controller with nonlinear flight dynamics is shown in the presence of translational and rotational velocity components. The performance of the proposed algorithm is demonstrated via MATLAB simulations, in which the proposed fuzzy hybrid controller is compared with the existing adaptive RST controller. It shows that our proposed algorithm has better transient performance with zero steady-state error, and fast convergence towards stability.

  20. Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV.

    PubMed

    Ali, Zain Anwar; Wang, Daobo; Aamir, Muhammad

    2016-01-01

    In this paper, a new and novel mathematical fuzzy hybrid scheme is proposed for the stabilization of a tri-rotor unmanned aerial vehicle (UAV). The fuzzy hybrid scheme consists of a fuzzy logic controller, regulation pole-placement tracking (RST) controller with model reference adaptive control (MRAC), in which adaptive gains of the RST controller are being fine-tuned by a fuzzy logic controller. Brushless direct current (BLDC) motors are installed in the triangular frame of the tri-rotor UAV, which helps maintain control on its motion and different altitude and attitude changes, similar to rotorcrafts. MRAC-based MIT rule is proposed for system stability. Moreover, the proposed hybrid controller with nonlinear flight dynamics is shown in the presence of translational and rotational velocity components. The performance of the proposed algorithm is demonstrated via MATLAB simulations, in which the proposed fuzzy hybrid controller is compared with the existing adaptive RST controller. It shows that our proposed algorithm has better transient performance with zero steady-state error, and fast convergence towards stability. PMID:27171084

  1. Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV

    PubMed Central

    Ali, Zain Anwar; Wang, Daobo; Aamir, Muhammad

    2016-01-01

    In this paper, a new and novel mathematical fuzzy hybrid scheme is proposed for the stabilization of a tri-rotor unmanned aerial vehicle (UAV). The fuzzy hybrid scheme consists of a fuzzy logic controller, regulation pole-placement tracking (RST) controller with model reference adaptive control (MRAC), in which adaptive gains of the RST controller are being fine-tuned by a fuzzy logic controller. Brushless direct current (BLDC) motors are installed in the triangular frame of the tri-rotor UAV, which helps maintain control on its motion and different altitude and attitude changes, similar to rotorcrafts. MRAC-based MIT rule is proposed for system stability. Moreover, the proposed hybrid controller with nonlinear flight dynamics is shown in the presence of translational and rotational velocity components. The performance of the proposed algorithm is demonstrated via MATLAB simulations, in which the proposed fuzzy hybrid controller is compared with the existing adaptive RST controller. It shows that our proposed algorithm has better transient performance with zero steady-state error, and fast convergence towards stability. PMID:27171084

  2. Robust controllers for the Middeck Active Control Experiment using Popov controller synthesis

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Hall, Steven R.

    1993-01-01

    Recent work in robust control with real parameter uncertainties has focused on absolute stability and its connections to real mu theory. In particular, the research has investigated the Popov stability criterion and its associated Lur'e-Postnikov Liapunov functions. State space representations of this Popov stability analysis tests are included in an H2 design formulation to provide a powerful technique for robust controller synthesis. This synthesis approach uses a state space optimization procedure to design controllers that minimize an overbound of an H2 cost functional and satisfy stability analysis tests based on the Popov multiplier. The controller and stability multiplier coefficients are optimized simultaneously, which avoids the iteration and curve-fitting procedures required by the D-K algorithm of mu synthesis. While previous work has demonstrated this synthesis approach on benchmark control problems, the purpose of this paper is to use Popov controller synthesis to design robust compensators for the Middeck Active Control Experiment (MACE).

  3. Robust hopping based on virtual pendulum posture control.

    PubMed

    Sharbafi, Maziar A; Maufroy, Christophe; Ahmadabadi, Majid Nili; Yazdanpanah, Mohammad J; Seyfarth, Andre

    2013-09-01

    A new control approach to achieve robust hopping against perturbations in the sagittal plane is presented in this paper. In perturbed hopping, vertical body alignment has a significant role for stability. Our approach is based on the virtual pendulum concept, recently proposed, based on experimental findings in human and animal locomotion. In this concept, the ground reaction forces are pointed to a virtual support point, named virtual pivot point (VPP), during motion. This concept is employed in designing the controller to balance the trunk during the stance phase. New strategies for leg angle and length adjustment besides the virtual pendulum posture control are proposed as a unified controller. This method is investigated by applying it on an extension of the spring loaded inverted pendulum (SLIP) model. Trunk, leg mass and damping are added to the SLIP model in order to make the model more realistic. The stability is analyzed by Poincaré map analysis. With fixed VPP position, stability, disturbance rejection and moderate robustness are achieved, but with a low convergence speed. To improve the performance and attain higher robustness, an event-based control of the VPP position is introduced, using feedback of the system states at apexes. Discrete linear quartic regulator is used to design the feedback controller. Considerable enhancements with respect to stability, convergence speed and robustness against perturbations and parameter changes are achieved.

  4. Analysis the robustness of control systems based on disturbance observer

    NASA Astrophysics Data System (ADS)

    Sariyildiz, Emre; Ohnishi, Kouhei

    2013-10-01

    Disturbance observer (DOB) estimates the system disturbances by using the inverse of the nominal plant model and a low pass filter (LPF). Although the LPF provides the properness in the inner-loop, it is the main design constraint of the control systems based on DOB. The bandwidth of the LPF is designed as high as possible so that the DOB can estimate the disturbances in a wider frequency range. However, its bandwidth is limited by noise and robustness of the system. The robustness limitation is directly related with the robustness analysis methods, and they significantly affect the performance of the DOB based control systems. In this paper, three different robustness analysis methods are implemented into the DOB based control systems, and the relation between the robustness of the system and bandwidth of DOB is clearly explained. The conservatism, which is the main drawback of the conventional analysis methods, on the bandwidth of DOB is removed by proposing a new real parametric uncertainty based analysis method. The proposed methods are compared in detail, and simulation results are given to show the validation.

  5. Design of a new adaptive fuzzy controller and its implementation for the damping force control of a magnetorheological damper

    NASA Astrophysics Data System (ADS)

    Phu, Do Xuan; Shah, Kruti; Choi, Seung-Bok

    2014-06-01

    This paper presents a new adaptive fuzzy controller and its implementation for the damping force control of a magnetorheological (MR) fluid damper in order to validate the effectiveness of the control performance. An interval type 2 fuzzy model is built, and then combined with modified adaptive control to achieve the desired damping force. In the formulation of the new adaptive controller, an enhanced iterative algorithm is integrated with the fuzzy model to decrease the time of calculation (D Wu 2013 IEEE Trans. Fuzzy Syst. 21 80-99) and the control algorithm is synthesized based on the {{H}^{\\infty }} tracking technique. In addition, for the verification of good control performance of the proposed controller, a cylindrical MR damper which can be applied to the vibration control of a washing machine is designed and manufactured. For the operating fluid, a recently developed plate-like particle-based MR fluid is used instead of a conventional MR fluid featuring spherical particles. To highlight the control performance of the proposed controller, two existing adaptive fuzzy control algorithms proposed by other researchers are adopted and altered for a comparative study. It is demonstrated from both simulation and experiment that the proposed new adaptive controller shows better performance of damping force control in terms of response time and tracking accuracy than the existing approaches.

  6. Intelligent control of PV system on the basis of the fuzzy recurrent neuronet*

    NASA Astrophysics Data System (ADS)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-04-01

    This paper presents the fuzzy recurrent neuronet for PV system’s control. Based on the PV system’s state, the fuzzy recurrent neural net tracks the maximum power point under random perturbations. The validity and advantages of the proposed intelligent control of PV system are demonstrated by numerical simulations. The simulation results show that the proposed intelligent control of PV system achieves real-time control speed and competitive performance, as compared to a classical control scheme on the basis of the perturbation & observation algorithm.

  7. Vibration suppression control of smart piezoelectric rotating truss structure by parallel neuro-fuzzy control with genetic algorithm tuning

    NASA Astrophysics Data System (ADS)

    Lin, J.; Zheng, Y. B.

    2012-07-01

    The main goal of this paper is to develop a novel approach for vibration control on a piezoelectric rotating truss structure. This study will analyze the dynamics and control of a flexible structure system with multiple degrees of freedom, represented in this research as a clamped-free-free-free truss type plate rotated by motors. The controller has two separate feedback loops for tracking and damping, and the vibration suppression controller is independent of position tracking control. In addition to stabilizing the actual system, the proposed proportional-derivative (PD) control, based on genetic algorithm (GA) to seek the primary optimal control gain, must supplement a fuzzy control law to ensure a stable nonlinear system. This is done by using an intelligent fuzzy controller based on adaptive neuro-fuzzy inference system (ANFIS) with GA tuning to increase the efficiency of fuzzy control. The PD controller, in its assisting role, easily stabilized the linear system. The fuzzy controller rule base was then constructed based on PD performance-related knowledge. Experimental validation for such a structure demonstrates the effectiveness of the proposed controller. The broad range of problems discussed in this research will be found useful in civil, mechanical, and aerospace engineering, for flexible structures with multiple degree-of-freedom motion.

  8. Robust Control of Non-Passive Systems via Passification

    NASA Technical Reports Server (NTRS)

    Kelkar, A. G.; Joshi, S. M.

    1997-01-01

    This paper presents methods which enable the use of passivity-based control design techniques to control non-passive systems. For inherently non-passive finite- dimensional linear time-invaraint systems, passification methods are presented to render such systems passive by suitable compensation. The passified system can then be controlled by a class of passive linear controllers. The idea is to exploit the robust stability properties of passivity-based control laws for uncertain systems. The proposed passification methods are demonstrated by application to the ACC benchmark problem and to pitch-axis control of an F-18 High Alpha Research Vehicle (HARV) model.

  9. Robust control systems design by H-infinity optimization theory

    NASA Technical Reports Server (NTRS)

    Chang, B. C.; Li, X. P.; Banda, S. S.; Yeh, H. H.

    1991-01-01

    In this paper, step-by-step procedures of applying the H-infinity theory to robust control systems design are given. The objective of the paper is to eliminate the possible difficulties a control engineer may encounter in applying H-infinity control theory and to clear up some misconceptions about H-infinity theory like high-gain controller and numerical obstacles, etc. An efficient algorithm is used to compute the optimal H-infinity norm. The Glover and Doyle (1988) controller formulas are slightly modified and used to construct an optimal controller without any numerical difficulties.

  10. Robust Optimal Adaptive Control Method with Large Adaptive Gain

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2009-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

  11. Fuzzy auto-tuning PID control of multiple joint robot driven by ultrasonic motors.

    PubMed

    Sun, Zhijun; Xing, Rentao; Zhao, Chunsheng; Huang, Weiqing

    2007-11-01

    A three-joint robot is directly driven by ultrasonic motors with advantage of high torque at low speed. The speed of the ultrasonic motors is actually controlled by regulating their operating frequencies. The kinematic and kinetic analyses of the robot have been carried out using Adams. Due to the lack of accurate control model of ultrasonic motors and the time-varying motor parameters, a fuzzy auto-tuning proportional integral derivative (PID) controller for the robot is experimented, in which a simple method to tune parameters of the PID type fuzzy controller on-line is developed and a new position-speed feedback strategy is proposed and implemented. The effectiveness of the proposed control strategy and fuzzy logic controller is verified by experimental investigation.

  12. An Analytical Study of Fuzzy Control of a Flexible Rod Mechanism

    NASA Astrophysics Data System (ADS)

    Beale, D.; Lee, S. W.; Boghiu, D.

    1998-02-01

    The non-linear nature of very high speed, flexible rod mechanisms has been previously confirmed, both experimentally and analytically in reference [1]. Therefore, effective control system design for flexible mechanisms operating at very high speeds must consider the non-linearities when designing a controller for very high speeds. Active control via fuzzy logic is assessed as means to suppress the elastic transverse bending vibration of a flexible rod of a slider crank mechanism. Several pairs of piezoelectric elements are used to provide the control action. Sensor output of deflection is fed to the fuzzy controller, which determines the voltage input to the actuators. A three mode approximation is used in the simulation study. Computer simulation shows that fuzzy control can be used to suppress bending vibrations at high speeds, and even at speeds where the uncontrolled response would be unstable.

  13. Adaptive fuzzy backstepping control for a class of switched nonlinear systems with actuator faults

    NASA Astrophysics Data System (ADS)

    Hou, Yingxue; Tong, Shaocheng; Li, Yongming

    2016-11-01

    This paper investigates the problem of fault-tolerant control (FTC) for a class of switched nonlinear systems. These systems are under arbitrary switchings and are subject to both lock-in-place and loss-of-effectiveness actuator faults. In the control design, fuzzy logic systems are used to identify the unknown switched nonlinear systems. Under the framework of the backstepping control design, FTC, fuzzy adaptive control and common Lyapunov function stability theory, an adaptive fuzzy control approach is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop switched system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error remains an adjustable neighbourhood of the origin. Two simulation examples are provided to illustrate the effectiveness of the proposed approach.

  14. A new robust control for minirotorcraft unmanned aerial vehicles.

    PubMed

    Mokhtari, M Rida; Cherki, Brahim

    2015-05-01

    This paper presents a new robust control based on finite-time Lyapunov stability controller and proved with backstepping method for the position and the attitude of a small rotorcraft unmanned aerial vehicle subjected to bounded uncertainties and disturbances. The dynamical motion equations are obtained by the Newton-Euler formalism. The proposed controller combines the advantage of the backstepping approach with finite-time convergence techniques to generate a control laws to guarantee the faster convergence of the state variables to their desired values in short time and compensate for the bounded disturbances. A formal proof of the closed-loop stability and finite-time convergence of tracking errors is derived using the Lyapunov function technique. Simulation results are presented to corroborate the effectiveness and the robustness of the proposed control method.

  15. Neuro-Fuzzy Computational Technique to Control Load Frequency in Hydro-Thermal Interconnected Power System

    NASA Astrophysics Data System (ADS)

    Prakash, S.; Sinha, S. K.

    2015-09-01

    In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.

  16. Robust Neural Sliding Mode Control of Robot Manipulators

    SciTech Connect

    Nguyen Tran Hiep; Pham Thuong Cat

    2009-03-05

    This paper proposes a robust neural sliding mode control method for robot tracking problem to overcome the noises and large uncertainties in robot dynamics. The Lyapunov direct method has been used to prove the stability of the overall system. Simulation results are given to illustrate the applicability of the proposed method.

  17. Adaptive fuzzy switched control design for uncertain nonholonomic systems with input nonsmooth constraint

    NASA Astrophysics Data System (ADS)

    Li, Yongming; Tong, Shaocheng

    2016-10-01

    In this paper, a fuzzy adaptive switched control approach is proposed for a class of uncertain nonholonomic chained systems with input nonsmooth constraint. In the control design, an auxiliary dynamic system is designed to address the input nonsmooth constraint, and an adaptive switched control strategy is constructed to overcome the uncontrollability problem associated with x0(t0) = 0. By using fuzzy logic systems to tackle unknown nonlinear functions, a fuzzy adaptive control approach is explored based on the adaptive backstepping technique. By constructing the combination approximation technique and using Young's inequality scaling technique, the number of the online learning parameters is reduced to n and the 'explosion of complexity' problem is avoid. It is proved that the proposed method can guarantee that all variables of the closed-loop system converge to a small neighbourhood of zero. Two simulation examples are provided to illustrate the effectiveness of the proposed control approach.

  18. Adaptive Fuzzy Tracking Control of Nonlinear Systems With Asymmetric Actuator Backlash Based on a New Smooth Inverse.

    PubMed

    Lai, Guanyu; Liu, Zhi; Zhang, Yun; Philip Chen, C L

    2016-06-01

    This paper is concentrated on the problem of adaptive fuzzy tracking control for an uncertain nonlinear system whose actuator is encountered by the asymmetric backlash behavior. First, we propose a new smooth inverse model which can approximate the asymmetric actuator backlash arbitrarily. By applying it, two adaptive fuzzy control scenarios, namely, the compensation-based control scheme and nonlinear decomposition-based control scheme, are then developed successively. It is worth noticing that the first fuzzy controller exhibits a better tracking control performance, although it recourses to a known slope ratio of backlash nonlinearity. The second one further removes the restriction, and also gets a desirable control performance. By the strict Lyapunov argument, both adaptive fuzzy controllers guarantee that the output tracking error is convergent to an adjustable region of zero asymptotically, while all the signals remain semiglobally uniformly ultimately bounded. Lastly, two comparative simulations are conducted to verify the effectiveness of the proposed fuzzy controllers. PMID:27187937

  19. Control performance evaluation of railway vehicle MR suspension using fuzzy sky-ground hook control algorithm

    NASA Astrophysics Data System (ADS)

    Ha, S. H.; Choi, S. B.; Lee, G. S.; Yoo, W. H.

    2013-02-01

    This paper presents control performance evaluation of railway vehicle featured by semi-active suspension system using magnetorheological (MR) fluid damper. In order to achieve this goal, a nine degree of freedom of railway vehicle model, which includes car body and bogie, is established. The wheel-set data is loaded from measured value of railway vehicle. The MR damper system is incorporated with the governing equation of motion of the railway vehicle model which includes secondary suspension. To illustrate the effectiveness of the controlled MR dampers on suspension system of railway vehicle, the control law using the sky-ground hook controller is adopted. This controller takes into account for both vibration control of car body and increasing stability of bogie by adopting a weighting parameter between two performance requirements. The parameters appropriately determined by employing a fuzzy algorithm associated with two fuzzy variables: the lateral speed of the car body and the lateral performance of the bogie. Computer simulation results of control performances such as vibration control and stability analysis are presented in time and frequency domains.

  20. Parameter estimation and interval type-2 fuzzy sliding mode control of a z-axis MEMS gyroscope.

    PubMed

    Fazlyab, Mahyar; Pedram, Maysam Zamani; Salarieh, Hassan; Alasty, Aria

    2013-11-01

    This paper reports a hybrid intelligent controller for application in single axis MEMS vibratory gyroscopes. First, unknown parameters of a micro gyroscope including unknown time varying angular velocity are estimated online via normalized continuous time least mean squares algorithm. Then, an additional interval type-2 fuzzy sliding mode control is incorporated in order to match the resonant frequencies and to compensate for undesired mechanical couplings. The main advantage of this control strategy is its robustness to parameters uncertainty, external disturbance and measurement noise. Consistent estimation of parameters is guaranteed and stability of the closed-loop system is proved via the Lyapunov stability theorem. Finally, numerical simulation is done in order to validate the effectiveness of the proposed method, both for a constant and time-varying angular rate.

  1. Adaptive fuzzy output-feedback controller design for nonlinear systems via backstepping and small-gain approach.

    PubMed

    Liu, Zhi; Wang, Fang; Zhang, Yun; Chen, Xin; Chen, C L Philip

    2014-10-01

    This paper focuses on an input-to-state practical stability (ISpS) problem of nonlinear systems which possess unmodeled dynamics in the presence of unstructured uncertainties and dynamic disturbances. The dynamic disturbances depend on the states and the measured output of the system, and its assumption conditions are relaxed compared with the common restrictions. Based on an input-driven filter, fuzzy logic systems are directly used to approximate the unknown and desired control signals instead of the unknown nonlinear functions, and an integrated backstepping technique is used to design an adaptive output-feedback controller that ensures robustness with respect to unknown parameters and uncertain nonlinearities. This paper, by applying the ISpS theory and the generalized small-gain approach, shows that the proposed adaptive fuzzy controller guarantees the closed-loop system being semi-globally uniformly ultimately bounded. A main advantage of the proposed controller is that it contains only three adaptive parameters that need to be updated online, no matter how many states there are in the systems. Finally, the effectiveness of the proposed approach is illustrated by two simulation examples. PMID:25222716

  2. Robust stability and control of linear and multilinear interval systems

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S. P.; Keel, L. H.

    1992-01-01

    This paper is a survey of recent results obtained by the authors and their coworkers on the robust stability and control of systems containing parametric uncertainty. The starting point is a generalization of Kharitonov's theorem obtained by Chapellat and Bhattacharyya in 1989. This theorem, called the Linear CB theorem, its generalization to the multilinear case, the singling out of extremal stability subsets, and other ramifications now constitute an extensive and coherent theory of robust parametric stability that is summarized in the results contained here.

  3. Computational methods of robust controller design for aerodynamic flutter suppression

    NASA Technical Reports Server (NTRS)

    Anderson, L. R.

    1981-01-01

    The development of Riccati iteration, a tool for the design and analysis of linear control systems is examined. First, Riccati iteration is applied to the problem of pole placement and order reduction in two-time scale control systems. Order reduction, yielding a good approximation to the original system, is demonstrated using a 16th order linear model of a turbofan engine. Next, a numerical method for solving the Riccati equation is presented and demonstrated for a set of eighth order random examples. A literature review of robust controller design methods follows which includes a number of methods for reducing the trajectory and performance index sensitivity in linear regulators. Lastly, robust controller design for large parameter variations is discussed.

  4. Mitigation of Remedial Action Schemes by Decentralized Robust Governor Control

    SciTech Connect

    Elizondo, Marcelo A.; Marinovici, Laurentiu D.; Lian, Jianming; Kalsi, Karanjit; Du, Pengwei

    2014-04-15

    This paper presents transient stability improvement by a new distributed hierarchical control architecture (DHC). The integration of remedial action schemes (RAS) to the distributed hierarchical control architecture is studied. RAS in power systems are designed to maintain stability and avoid undesired system conditions by rapidly switching equipment and/or changing operating points according to predetermined rules. The acceleration trend relay currently in use in the US western interconnection is an example of RAS that trips generators to maintain transient stability. The link between RAS and DHC is through fast acting robust turbine/governor control that can also improve transient stability. In this paper, the influence of the decentralized robust turbine/governor control on the design of RAS is studied. Benefits of combining these two schemes are increasing power transfer capability and mitigation of RAS generator tripping actions; the later benefit is shown through simulations.

  5. Variable Neural Adaptive Robust Control: A Switched System Approach

    SciTech Connect

    Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.

    2015-05-01

    Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewise quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.

  6. Control Synthesis of Discrete-Time T-S Fuzzy Systems via a Multi-Instant Homogenous Polynomial Approach.

    PubMed

    Xie, Xiangpeng; Yue, Dong; Zhang, Huaguang; Xue, Yusheng

    2016-03-01

    This paper deals with the problem of control synthesis of discrete-time Takagi-Sugeno fuzzy systems by employing a novel multiinstant homogenous polynomial approach. A new multiinstant fuzzy control scheme and a new class of fuzzy Lyapunov functions, which are homogenous polynomially parameter-dependent on both the current-time normalized fuzzy weighting functions and the past-time normalized fuzzy weighting functions, are proposed for implementing the object of relaxed control synthesis. Then, relaxed stabilization conditions are derived with less conservatism than existing ones. Furthermore, the relaxation quality of obtained stabilization conditions is further ameliorated by developing an efficient slack variable approach, which presents a multipolynomial dependence on the normalized fuzzy weighting functions at the current and past instants of time. Two simulation examples are given to demonstrate the effectiveness and benefits of the results developed in this paper.

  7. Robust control design techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Ozbay, Hitay; Bachmann, Glen R.

    1994-01-01

    In this paper, an active flutter suppression problem is studied for a thin airfoil in unsteady aerodynamics. The mathematical model of this system is infinite dimensional because of Theodorsen's function which is irrational. Several second order approximations of Theodorsen's function are compared. A finite dimensional model is obtained from such an approximation. We use H infinity control techniques to find a robustly stabilizing controller for active flutter suppression.

  8. A high-speed fuzzy controller with human simulated intelligent weight coefficient

    NASA Astrophysics Data System (ADS)

    Li, Taifu; Zhang, Rui; Chen, Hongyan; Luo, Song

    2005-12-01

    In order to develop a kind of universal controller that is very convenient in actual applications, it is necessary to utilize the universal approximation characteristic of an intelligent control algorithm. But it is very hard to implement control in real-time because of the large amount of computation needed. A fuzzy control, with human simulated intelligent weight coefficient, was selected as the control algorithm, since its computations are less than that of the other intelligent approaches. To improve the performance in real time, a high-speed memory address mapping approach was adopted as the hardware implementation. The entire ideas, including the algorithm and approach, are introduced in detail. Based on theoretical studies, corresponding hardware circuits were designed, and this kind of fuzzy controller was developed. In the experimental study, the experimental device of machine control was selected, and the fuzzy controller developed to manipulate the machine's speed was applied. Under the same experimental conditions, the control performance of the fuzzy controller was excellent with respect to its speed. The control quality was found to be better than that of PID hardware circuit control system.

  9. A Robust Cooperated Control Method with Reinforcement Learning and Adaptive H∞ Control

    NASA Astrophysics Data System (ADS)

    Obayashi, Masanao; Uchiyama, Shogo; Kuremoto, Takashi; Kobayashi, Kunikazu

    This study proposes a robust cooperated control method combining reinforcement learning with robust control to control the system. A remarkable characteristic of the reinforcement learning is that it doesn't require model formula, however, it doesn't guarantee the stability of the system. On the other hand, robust control system guarantees stability and robustness, however, it requires model formula. We employ both the actor-critic method which is a kind of reinforcement learning with minimal amount of computation to control continuous valued actions and the traditional robust control, that is, H∞ control. The proposed system was compared method with the conventional control method, that is, the actor-critic only used, through the computer simulation of controlling the angle and the position of a crane system, and the simulation result showed the effectiveness of the proposed method.

  10. PI and fuzzy logic controllers for shunt Active Power Filter--a report.

    PubMed

    P, Karuppanan; Mahapatra, Kamala Kanta

    2012-01-01

    This paper presents a shunt Active Power Filter (APF) for power quality improvements in terms of harmonics and reactive power compensation in the distribution network. The compensation process is based only on source current extraction that reduces the number of sensors as well as its complexity. A Proportional Integral (PI) or Fuzzy Logic Controller (FLC) is used to extract the required reference current from the distorted line-current, and this controls the DC-side capacitor voltage of the inverter. The shunt APF is implemented with PWM-current controlled Voltage Source Inverter (VSI) and the switching patterns are generated through a novel Adaptive-Fuzzy Hysteresis Current Controller (A-F-HCC). The proposed adaptive-fuzzy-HCC is compared with fixed-HCC and adaptive-HCC techniques and the superior features of this novel approach are established. The FLC based shunt APF system is validated through extensive simulation for diode-rectifier/R-L loads.

  11. Fuzzy Inference Based Obstacle Avoidance Control of Electric Powered Wheelchair Considering Driving Risk

    NASA Astrophysics Data System (ADS)

    Kiso, Atsushi; Murakami, Hiroki; Seki, Hirokazu

    This paper describes a novel obstacle avoidance control scheme of electric powered wheelchairs for realizing the safe driving in various environments. The “electric powered wheelchair” which generates the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people; however, the driving performance must be further improved because the number of driving accidents caused by elderly operator's narrow sight and joystick operation errors is increasing. This paper proposes a novel obstacle avoidance control scheme based on fuzzy algorithm to prevent driving accidents. The proposed control system determines the driving direction by fuzzy algorithm based on the information of the joystick operation and distance to obstacles measured by ultrasonic sensors. Fuzzy rules to determine the driving direction are designed surely to avoid passers-by and walls considering the human's intent and driving environments. Some driving experiments on the practical situations show the effectiveness of the proposed control system.

  12. Fuzzy Backstepping Torque Control Of Passive Torque Simulator With Algebraic Parameters Adaptation

    NASA Astrophysics Data System (ADS)

    Ullah, Nasim; Wang, Shaoping; Wang, Xingjian

    2015-07-01

    This work presents fuzzy backstepping control techniques applied to the load simulator for good tracking performance in presence of extra torque, and nonlinear friction effects. Assuming that the parameters of the system are uncertain and bounded, Algebraic parameters adaptation algorithm is used to adopt the unknown parameters. The effect of transient fuzzy estimation error on parameters adaptation algorithm is analyzed and the fuzzy estimation error is further compensated using saturation function based adaptive control law working in parallel with the actual system to improve the transient performance of closed loop system. The saturation function based adaptive control term is large in the transient time and settles to an optimal lower value in the steady state for which the closed loop system remains stable. The simulation results verify the validity of the proposed control method applied to the complex aerodynamics passive load simulator.

  13. Regulation of Blood Glucose Concentration in Type 1 Diabetics Using Single Order Sliding Mode Control Combined with Fuzzy On-line Tunable Gain, a Simulation Study.

    PubMed

    Dinani, Soudabeh Taghian; Zekri, Maryam; Kamali, Marzieh

    2015-01-01

    Diabetes is considered as a global affecting disease with an increasing contribution to both mortality rate and cost damage in the society. Therefore, tight control of blood glucose levels has gained significant attention over the decades. This paper proposes a method for blood glucose level regulation in type 1 diabetics. The control strategy is based on combining the fuzzy logic theory and single order sliding mode control (SOSMC) to improve the properties of sliding mode control method and to alleviate its drawbacks. The aim of the proposed controller that is called SOSMC combined with fuzzy on-line tunable gain is to tune the gain of the controller adaptively. This merit causes a less amount of control effort, which is the rate of insulin delivered to the patient body. As a result, this method can decline the risk of hypoglycemia, a lethal phenomenon in regulating blood glucose level in diabetics caused by a low blood glucose level. Moreover, it attenuates the chattering observed in SOSMC significantly. It is worth noting that in this approach, a mathematical model called minimal model is applied instead of the intravenously infused insulin-blood glucose dynamics. The simulation results demonstrate a good performance of the proposed controller in meal disturbance rejection and robustness against parameter changes. In addition, this method is compared to fuzzy high-order sliding mode control (FHOSMC) and the superiority of the new method compared to FHOSMC is shown in the results.

  14. Regulation of Blood Glucose Concentration in Type 1 Diabetics Using Single Order Sliding Mode Control Combined with Fuzzy On-line Tunable Gain, a Simulation Study

    PubMed Central

    Dinani, Soudabeh Taghian; Zekri, Maryam; Kamali, Marzieh

    2015-01-01

    Diabetes is considered as a global affecting disease with an increasing contribution to both mortality rate and cost damage in the society. Therefore, tight control of blood glucose levels has gained significant attention over the decades. This paper proposes a method for blood glucose level regulation in type 1 diabetics. The control strategy is based on combining the fuzzy logic theory and single order sliding mode control (SOSMC) to improve the properties of sliding mode control method and to alleviate its drawbacks. The aim of the proposed controller that is called SOSMC combined with fuzzy on-line tunable gain is to tune the gain of the controller adaptively. This merit causes a less amount of control effort, which is the rate of insulin delivered to the patient body. As a result, this method can decline the risk of hypoglycemia, a lethal phenomenon in regulating blood glucose level in diabetics caused by a low blood glucose level. Moreover, it attenuates the chattering observed in SOSMC significantly. It is worth noting that in this approach, a mathematical model called minimal model is applied instead of the intravenously infused insulin–blood glucose dynamics. The simulation results demonstrate a good performance of the proposed controller in meal disturbance rejection and robustness against parameter changes. In addition, this method is compared to fuzzy high-order sliding mode control (FHOSMC) and the superiority of the new method compared to FHOSMC is shown in the results. PMID:26284169

  15. A Comparative Study of Fuzzy Logic and Classical Control with EPICS[Experimental Physics and Industrial Control System

    SciTech Connect

    Johnny Tang; Hamid Shoaee

    1995-11-01

    The classical control theory which relies on the mathematical model of the underlying system has been successfully applied to the control of a large variety of simple, non-linear processes. However, it has not been as widely used with complicated, non-linear, time varying systems or with processes suffering from noisy measurements. The main idea of fuzzy control is to build a model of an expert operator who is capable of controlling the plant without thinking in terms of a mathematical model. This paper describes the application of fuzzy control to a feedback system within an EPICS environment. Comparison of the application of a modern controller and a fuzzy controller to an inverted pendulum problem is presented.

  16. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    NASA Astrophysics Data System (ADS)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  17. Analysis and design of robust decentralized controllers for nonlinear systems

    SciTech Connect

    Schoenwald, D.A.

    1993-07-01

    Decentralized control strategies for nonlinear systems are achieved via feedback linearization techniques. New results on optimization and parameter robustness of non-linear systems are also developed. In addition, parametric uncertainty in large-scale systems is handled by sensitivity analysis and optimal control methods in a completely decentralized framework. This idea is applied to alleviate uncertainty in friction parameters for the gimbal joints on Space Station Freedom. As an example of decentralized nonlinear control, singular perturbation methods and distributed vibration damping are merged into a control strategy for a two-link flexible manipulator.

  18. A Comprehensive Robust Adaptive Controller for Gust Load Alleviation

    PubMed Central

    Quagliotti, Fulvia

    2014-01-01

    The objective of this paper is the implementation and validation of an adaptive controller for aircraft gust load alleviation. The contribution of this paper is the design of a robust controller that guarantees the reduction of the gust loads, even when the nominal conditions change. Some preliminary results are presented, considering the symmetric aileron deflection as control device. The proposed approach is validated on subsonic transport aircraft for different mass and flight conditions. Moreover, if the controller parameters are tuned for a specific gust model, even if the gust frequency changes, no parameter retuning is required. PMID:24688411

  19. Robust control of a bimorph mirror for adaptive optics systems.

    PubMed

    Baudouin, Lucie; Prieur, Christophe; Guignard, Fabien; Arzelier, Denis

    2008-07-10

    We apply robust control techniques to an adaptive optics system including a dynamic model of the deformable mirror. The dynamic model of the mirror is a modification of the usual plate equation. We propose also a state-space approach to model the turbulent phase. A continuous time control of our model is suggested, taking into account the frequential behavior of the turbulent phase. An H(infinity) controller is designed in an infinite-dimensional setting. Because of the multivariable nature of the control problem involved in adaptive optics systems, a significant improvement is obtained with respect to traditional single input-single output methods.

  20. The application of variable universe fuzzy PID controller in computer-aided alignment of lithography projector

    NASA Astrophysics Data System (ADS)

    Zhang, Mei; Zheng, Meng; Li, Yanqiu

    2013-12-01

    A variable universe fuzzy PID algorithm is designed to control the misalignment of the lithography projection optics to meet the requirement of high image quality. This paper first simulates the alignment of Schwarzschild objective designed by us. Secondly, the variable universe fuzzy PID control is introduced to feed back the misalignment of Schwarzschild objective to the control system to drive the stage which holds the objective. So the position can be adjusted automatically. This feedback scheme can adjust the variables' universe self-adaptively by using fuzzy rules so that the concrete function and parameters of the contraction-expansion factor are not necessary. Finally, the proposed approach is demonstrated by simulations. The results show that, variable universe fuzzy PID method exhibits better performance in both improving response speed and decreasing overshoot compared to conventional PID and fuzzy PID control methods. In addition, the interference signal can be effectively restrained. It is concluded that this method can improve the dynamic and static properties of system and meet the requirement of fast response.

  1. Distributed Proportional-spatial Derivative control of nonlinear parabolic systems via fuzzy PDE modeling approach.

    PubMed

    Wang, Jun-Wei; Wu, Huai-Ning; Li, Han-Xiong

    2012-06-01

    In this paper, a distributed fuzzy control design based on Proportional-spatial Derivative (P-sD) is proposed for the exponential stabilization of a class of nonlinear spatially distributed systems described by parabolic partial differential equations (PDEs). Initially, a Takagi-Sugeno (T-S) fuzzy parabolic PDE model is proposed to accurately represent the nonlinear parabolic PDE system. Then, based on the T-S fuzzy PDE model, a novel distributed fuzzy P-sD state feedback controller is developed by combining the PDE theory and the Lyapunov technique, such that the closed-loop PDE system is exponentially stable with a given decay rate. The sufficient condition on the existence of an exponentially stabilizing fuzzy controller is given in terms of a set of spatial differential linear matrix inequalities (SDLMIs). A recursive algorithm based on the finite-difference approximation and the linear matrix inequality (LMI) techniques is also provided to solve these SDLMIs. Finally, the developed design methodology is successfully applied to the feedback control of the Fitz-Hugh-Nagumo equation.

  2. Robust H(infinity) tracking control of boiler-turbine systems.

    PubMed

    Wu, J; Nguang, S K; Shen, J; Liu, G; Li, Y G

    2010-07-01

    In this paper, the problem of designing a fuzzy H(infinity) state feedback tracking control of a boiler-turbine is solved. First, the Takagi and Sugeno fuzzy model is used to model a boiler-turbine system. Next, based on the Takagi and Sugeno fuzzy model, sufficient conditions for the existence of a fuzzy H(infinity) nonlinear state feedback tracking control are derived in terms of linear matrix inequalities. The advantage of the proposed tracking control design is that it does not involve feedback linearization technique and complicated adaptive scheme. An industrial boiler-turbine system is used to illustrate the effectiveness of the proposed design as compared with a linearized approach.

  3. Supervisory control design based on hybrid systems and fuzzy events detection. Application to an oxichlorination reactor.

    PubMed

    Altamiranda, Edmary; Torres, Horacio; Colina, Eliezer; Chacón, Edgar

    2002-10-01

    This paper presents a supervisory control scheme based on hybrid systems theory and fuzzy events detection. The fuzzy event detector is a linguistic model, which synthesizes complex relations between process variables and process events incorporating experts' knowledge about the process operation. This kind of detection allows the anticipation of appropriate control actions, which depend upon the selected membership functions used to characterize the process under scrutiny. The proposed supervisory control scheme was successfully implemented for an oxichlorination reactor in a vinyl monomer plant. This implementation has allowed improvement of reactor stability and reduction of raw material consumption. PMID:12398279

  4. Robust, Decoupled, Flight Control Design with Rate Saturating Actuators

    NASA Technical Reports Server (NTRS)

    Snell, S. A.; Hess, R. A.

    1997-01-01

    Techniques for the design of control systems for manually controlled, high-performance aircraft must provide the following: (1) multi-input, multi-output (MIMO) solutions, (2) acceptable handling qualities including no tendencies for pilot-induced oscillations, (3) a tractable approach for compensator design, (4) performance and stability robustness in the presence of significant plant uncertainty, and (5) performance and stability robustness in the presence actuator saturation (particularly rate saturation). A design technique built upon Quantitative Feedback Theory is offered as a candidate methodology which can provide flight control systems meeting these requirements, and do so over a considerable part of the flight envelope. An example utilizing a simplified model of a supermaneuverable fighter aircraft demonstrates the proposed design methodology.

  5. Robust control of hypersonic vehicles considering propulsive and aeroelastic effects

    NASA Technical Reports Server (NTRS)

    Buschek, Harald; Calise, Anthony J.

    1993-01-01

    The influence of propulsion system variations and elastic fuselage behavior on the flight control system of an airbreathing hypersonic vehicle is investigated. Thrust vector magnitude and direction changes due to angle of attack variations affect the pitching moment. Low structural vibration frequencies may occur close to the rigid body modes influencing the angle of attack and lead to possible cross coupling. These effects are modeled as uncertainties in the context of a robust control study of a hypersonic vehicle model accelerating through Mach 8 using H-infinity and mu synthesis techniques. Various levels of uncertainty are introduced into the system. Both individual and simultaneous appearance of uncertainty are considered. The results indicate that the chosen design technique is suitable for this kind of problem provided that a fairly good knowledge of the effects mentioned above is available. The order of the designed controller is reduced but robust performance is lost which shows the need for fixed order design techniques.

  6. Decentralized adaptive control of robot manipulators with robust stabilization design

    NASA Technical Reports Server (NTRS)

    Yuan, Bau-San; Book, Wayne J.

    1988-01-01

    Due to geometric nonlinearities and complex dynamics, a decentralized technique for adaptive control for multilink robot arms is attractive. Lyapunov-function theory for stability analysis provides an approach to robust stabilization. Each joint of the arm is treated as a component subsystem. The adaptive controller is made locally stable with servo signals including proportional and integral gains. This results in the bound on the dynamical interactions with other subsystems. A nonlinear controller which stabilizes the system with uniform boundedness is used to improve the robustness properties of the overall system. As a result, the robot tracks the reference trajectories with convergence. This strategy makes computation simple and therefore facilitates real-time implementation.

  7. Fuzzy logic

    NASA Technical Reports Server (NTRS)

    Zadeh, Lofti A.

    1988-01-01

    The author presents a condensed exposition of some basic ideas underlying fuzzy logic and describes some representative applications. The discussion covers basic principles; meaning representation and inference; basic rules of inference; and the linguistic variable and its application to fuzzy control.

  8. Robust stability and control for uncertain neutral time delay systems

    NASA Astrophysics Data System (ADS)

    Sakthivel, R.; Mathiyalagan, K.; Anthoni, S. Marshal

    2012-04-01

    In this article, the problem of robust stability and stabilisation for a class of uncertain neutral systems with discrete and distributed time delays is considered. By utilising a new Lyapunov functional based on the idea of delay partitioning approach, we employ the linear matrix inequality technique to derive delay-dependent criteria which ensures the robust stability of uncertain neutral systems. The obtained stability conditions are formulated in terms of linear matrix inequalities that can easily be solved by using standard software packages. Further, the result is extended to study the robust stabilisation for uncertain neutral systems with parameter uncertainties. A state feedback controller is proposed to guarantee the robust asymptotic stabilisation for uncertain systems and the controller is constructed in terms of the solution to a set of matrix inequalities. Finally, numerical examples are presented to illustrate the effectiveness and conservatism of the obtained results. It is shown that the results developed in this article can tolerate larger allowable delay than some existing works in the literature. Further, it is proved that the proposed criterion is also computationally less conservative when compared to some existing results.

  9. Robust control of burst suppression for medical coma

    NASA Astrophysics Data System (ADS)

    Westover, M. Brandon; Kim, Seong-Eun; Ching, ShiNung; Purdon, Patrick L.; Brown, Emery N.

    2015-08-01

    Objective. Medical coma is an anesthetic-induced state of brain inactivation, manifest in the electroencephalogram by burst suppression. Feedback control can be used to regulate burst suppression, however, previous designs have not been robust. Robust control design is critical under real-world operating conditions, subject to substantial pharmacokinetic and pharmacodynamic parameter uncertainty and unpredictable external disturbances. We sought to develop a robust closed-loop anesthesia delivery (CLAD) system to control medical coma. Approach. We developed a robust CLAD system to control the burst suppression probability (BSP). We developed a novel BSP tracking algorithm based on realistic models of propofol pharmacokinetics and pharmacodynamics. We also developed a practical method for estimating patient-specific pharmacodynamics parameters. Finally, we synthesized a robust proportional integral controller. Using a factorial design spanning patient age, mass, height, and gender, we tested whether the system performed within clinically acceptable limits. Throughout all experiments we subjected the system to disturbances, simulating treatment of refractory status epilepticus in a real-world intensive care unit environment. Main results. In 5400 simulations, CLAD behavior remained within specifications. Transient behavior after a step in target BSP from 0.2 to 0.8 exhibited a rise time (the median (min, max)) of 1.4 [1.1, 1.9] min; settling time, 7.8 [4.2, 9.0] min; and percent overshoot of 9.6 [2.3, 10.8]%. Under steady state conditions the CLAD system exhibited a median error of 0.1 [-0.5, 0.9]%; inaccuracy of 1.8 [0.9, 3.4]%; oscillation index of 1.8 [0.9, 3.4]%; and maximum instantaneous propofol dose of 4.3 [2.1, 10.5] mg kg-1. The maximum hourly propofol dose was 4.3 [2.1, 10.3] mg kg-1 h-1. Performance fell within clinically acceptable limits for all measures. Significance. A CLAD system designed using robust control theory achieves clinically acceptable

  10. Robust control of burst suppression for medical coma

    PubMed Central

    Westover, M Brandon; Kim, Seong-Eun; Ching, ShiNung; Purdon, Patrick L; Brown, Emery N

    2015-01-01

    Objective Medical coma is an anesthetic-induced state of brain inactivation, manifest in the electroencephalogram by burst suppression. Feedback control can be used to regulate burst suppression, however, previous designs have not been robust. Robust control design is critical under real-world operating conditions, subject to substantial pharmacokinetic and pharmacodynamic parameter uncertainty and unpredictable external disturbances. We sought to develop a robust closed-loop anesthesia delivery (CLAD) system to control medical coma. Approach We developed a robust CLAD system to control the burst suppression probability (BSP). We developed a novel BSP tracking algorithm based on realistic models of propofol pharmacokinetics and pharmacodynamics. We also developed a practical method for estimating patient-specific pharmacodynamics parameters. Finally, we synthesized a robust proportional integral controller. Using a factorial design spanning patient age, mass, height, and gender, we tested whether the system performed within clinically acceptable limits. Throughout all experiments we subjected the system to disturbances, simulating treatment of refractory status epilepticus in a real-world intensive care unit environment. Main results In 5400 simulations, CLAD behavior remained within specifications. Transient behavior after a step in target BSP from 0.2 to 0.8 exhibited a rise time (the median (min, max)) of 1.4 [1.1, 1.9] min; settling time, 7.8 [4.2, 9.0] min; and percent overshoot of 9.6 [2.3, 10.8]%. Under steady state conditions the CLAD system exhibited a median error of 0.1 [−0.5, 0.9]%; inaccuracy of 1.8 [0.9, 3.4]%; oscillation index of 1.8 [0.9, 3.4]%; and maximum instantaneous propofol dose of 4.3 [2.1, 10.5] mg kg−1. The maximum hourly propofol dose was 4.3 [2.1, 10.3] mg kg−1 h−1. Performance fell within clinically acceptable limits for all measures. Significance A CLAD system designed using robust control theory achieves clinically acceptable

  11. Robust sliding mode continuous control of an IM drive

    SciTech Connect

    Jezernik, K.; Hren, A.; Drevensek, D.

    1995-12-31

    A control approach for robust trajectory tracking of IM servodrive based on the variable structure systems (VSS) is described. A new discrete-time control algorithm has been developed by combining VSS and Lyapunov design. It possesses all the good properties of the sliding mode and avoids the unnecessary discontinuity of the control input, thus eliminating chattering which has been considering as serious obstacles for applications of VSS. A unified control approach for current, torque and motion control based on the discrete-time sliding mode for application in indirect vector control of an IM drive is developed. The sliding mode approach can be applied to the control of an Im drive due to the replacement of the hysteresis controller with widely used PWM technique. All the theoretical issues are verified by experiment. The experimental system consists of a transputer and a microcontroller, thus allowing parallel processing.

  12. Modeling, Robust Control, and Experimental Validation of a Supercavitating Vehicle

    NASA Astrophysics Data System (ADS)

    Escobar Sanabria, David

    This dissertation considers the mathematical modeling, control under uncertainty, and experimental validation of an underwater supercavitating vehicle. By traveling inside a gas cavity, a supercavitating vehicle reduces hydrodynamic drag, increases speed, and minimizes power consumption. The attainable speed and power efficiency make these vehicles attractive for undersea exploration, high-speed transportation, and defense. However, the benefits of traveling inside a cavity come with difficulties in controlling the vehicle dynamics. The main challenge is the nonlinear force that arises when the back-end of the vehicle pierces the cavity. This force, referred to as planing, leads to oscillatory motion and instability. Control technologies that are robust to planing and suited for practical implementation need to be developed. To enable these technologies, a low-order vehicle model that accounts for inaccuracy in the characterization of planing is required. Additionally, an experimental method to evaluate possible pitfalls in the models and controllers is necessary before undersea testing. The major contribution of this dissertation is a unified framework for mathematical modeling, robust control synthesis, and experimental validation of a supercavitating vehicle. First, we introduce affordable experimental methods for mathematical modeling and controller testing under planing and realistic flow conditions. Then, using experimental observations and physical principles, we create a low-order nonlinear model of the longitudinal vehicle motion. This model quantifies the planing uncertainty and is suitable for robust controller synthesis. Next, based on the vehicle model, we develop automated tools for synthesizing controllers that deliver a certificate of performance in the face of nonlinear and uncertain planing forces. We demonstrate theoretically and experimentally that the proposed controllers ensure higher performance when the uncertain planing dynamics are

  13. Robust Feedback Control of Flow Induced Structural Radiation of Sound

    NASA Technical Reports Server (NTRS)

    Heatwole, Craig M.; Bernhard, Robert J.; Franchek, Matthew A.

    1997-01-01

    A significant component of the interior noise of aircraft and automobiles is a result of turbulent boundary layer excitation of the vehicular structure. In this work, active robust feedback control of the noise due to this non-predictable excitation is investigated. Both an analytical model and experimental investigations are used to determine the characteristics of the flow induced structural sound radiation problem. The problem is shown to be broadband in nature with large system uncertainties associated with the various operating conditions. Furthermore the delay associated with sound propagation is shown to restrict the use of microphone feedback. The state of the art control methodologies, IL synthesis and adaptive feedback control, are evaluated and shown to have limited success for solving this problem. A robust frequency domain controller design methodology is developed for the problem of sound radiated from turbulent flow driven plates. The control design methodology uses frequency domain sequential loop shaping techniques. System uncertainty, sound pressure level reduction performance, and actuator constraints are included in the design process. Using this design method, phase lag was added using non-minimum phase zeros such that the beneficial plant dynamics could be used. This general control approach has application to lightly damped vibration and sound radiation problems where there are high bandwidth control objectives requiring a low controller DC gain and controller order.

  14. Expert system training and control based on the fuzzy relation matrix

    NASA Technical Reports Server (NTRS)

    Ren, Jie; Sheridan, T. B.

    1991-01-01

    Fuzzy knowledge, that for which the terms of reference are not crisp but overlapped, seems to characterize human expertise. This can be shown from the fact that an experienced human operator can control some complex plants better than a computer can. Proposed here is fuzzy theory to build a fuzzy expert relation matrix (FERM) from given rules or/and examples, either in linguistic terms or in numerical values to mimic human processes of perception and decision making. The knowledge base is codified in terms of many implicit fuzzy rules. Fuzzy knowledge thus codified may also be compared with explicit rules specified by a human expert. It can also provide a basis for modeling the human operator and allow comparison of what a human operator says to what he does in practice. Two experiments were performed. In the first, control of liquid in a tank, demonstrates how the FERM knowledge base is elicited and trained. The other shows how to use a FERM, build up from linguistic rules, and to control an inverted pendulum without a dynamic model.

  15. Fuzzy logic control for intracranial pressure via continuous propofol sedation in a neurosurgical intensive care unit.

    PubMed

    Huang, Sheng-Jean; Shieh, Jiann-Shing; Fu, Mu; Kao, Ming-Chien

    2006-09-01

    The major goal of this paper is to provide automatically continuous propofol sedation for patients with severe head injury, unconsciousness, and mechanical ventilation in order to reduce the effect of agitation on intracranial pressure (ICP) using fuzzy logic control in a neurosurgical intensive care unit (NICU). Seventeen patients were divided into three groups in which control was provided with three different controllers. Experimental control periods were of 60min duration in all cases. Group A used a conventional rule-based controller (RBC), Group B a fuzzy logic controller (FLC), and Group C a self-organizing fuzzy logic controller (SOFLC). The performance of the controllers was analyzed by ICP pattern of sedation. The ICP pattern of errors was analyzed for mean and root mean square deviation (RMSD) for the entire duration of control (i.e., 1h). The results indicate that FLC can easily mimic the rule-base of human experts (i.e., neurosurgeons) to achieve stable sedation similar to the RBC group. Furthermore, the results also show that a SOFLC can provide more stable sedation of ICP pattern because it can modify the fuzzy rule-base to compensate for inter-patient variations.

  16. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  17. Robust Concentration and Frequency Control in Oscillatory Homeostats

    PubMed Central

    Thorsen, Kristian; Agafonov, Oleg; Selstø, Christina H.; Jolma, Ingunn W.; Ni, Xiao Y.; Drengstig, Tormod; Ruoff, Peter

    2014-01-01

    Homeostatic and adaptive control mechanisms are essential for keeping organisms structurally and functionally stable. Integral feedback is a control theoretic concept which has long been known to keep a controlled variable robustly (i.e. perturbation-independent) at a given set-point by feeding the integrated error back into the process that generates . The classical concept of homeostasis as robust regulation within narrow limits is often considered as unsatisfactory and even incompatible with many biological systems which show sustained oscillations, such as circadian rhythms and oscillatory calcium signaling. Nevertheless, there are many similarities between the biological processes which participate in oscillatory mechanisms and classical homeostatic (non-oscillatory) mechanisms. We have investigated whether biological oscillators can show robust homeostatic and adaptive behaviors, and this paper is an attempt to extend the homeostatic concept to include oscillatory conditions. Based on our previously published kinetic conditions on how to generate biochemical models with robust homeostasis we found two properties, which appear to be of general interest concerning oscillatory and homeostatic controlled biological systems. The first one is the ability of these oscillators (“oscillatory homeostats”) to keep the average level of a controlled variable at a defined set-point by involving compensatory changes in frequency and/or amplitude. The second property is the ability to keep the period/frequency of the oscillator tuned within a certain well-defined range. In this paper we highlight mechanisms that lead to these two properties. The biological applications of these findings are discussed using three examples, the homeostatic aspects during oscillatory calcium and p53 signaling, and the involvement of circadian rhythms in homeostatic regulation. PMID:25238410

  18. Adaptive robust control of longitudinal and transverse electron beam profiles

    NASA Astrophysics Data System (ADS)

    Rezaeizadeh, Amin; Schilcher, Thomas; Smith, Roy S.

    2016-05-01

    Feedback control of the longitudinal and transverse electron beam profiles are considered to be critical for beam control in accelerators. In the feedback scheme, the longitudinal or transverse beam profile is measured and compared to a desired profile to give an error estimate. The error is then used to act on the appropriate actuators to correct the profile. The role of the transverse feedback is to steer the beam in a particular trajectory, known as the "orbit." The common approach for orbit correction is based on approximately inverting the response matrix, and in the best case, involves regulating or filtering the singular values. In the current contribution, a more systematic and structured way of handling orbit correction is introduced giving robustness against uncertainties in the response matrix. Moreover, the input bounds are treated to avoid violating the limits of the corrector currents. The concept of the robust orbit correction has been successfully tested at the SwissFEL injector test facility. In the SwissFEL machine, a photo-injector laser system extracts electrons from a cathode and a similar robust control method is developed for the longitudinal feedback control of the current profile of the electron bunch. The method manipulates the angles of the crystals in the laser system to produce a desired charge distribution over the electron bunch length. This approach paves the way towards automation of laser pulse stacking.

  19. A Fuzzy Logic Based Controller for the Automated Alignment of a Laser-beam-smoothing Spatial Filter

    NASA Technical Reports Server (NTRS)

    Krasowski, M. J.; Dickens, D. E.

    1992-01-01

    A fuzzy logic based controller for a laser-beam-smoothing spatial filter is described. It is demonstrated that a human operator's alignment actions can easily be described by a system of fuzzy rules of inference. The final configuration uses inexpensive, off-the-shelf hardware and allows for a compact, readily implemented embedded control system.

  20. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOEpatents

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  1. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOEpatents

    Cikanek, Susan R.

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  2. Analysis and Design of Robust H∞ Fault Estimation Observer With Finite-Frequency Specifications for Discrete-Time Fuzzy Systems.

    PubMed

    Zhang, Ke; Jiang, Bin; Shi, Peng; Xu, Jinfa

    2015-07-01

    This paper addresses the problem of fault estimation observer design with finite-frequency specifications for discrete-time Takagi-Sugeno (T-S) fuzzy systems. First, for such T-S fuzzy models, an H∞ fault estimation observer with pole-placement constraint is proposed to achieve fault estimation. Based on the generalized Kalman-Yakubovich-Popov lemma, the given finite-frequency observer possesses less conservatism compared with the design of the entire-frequency domain. Furthermore, the performance of the presented fault estimation observer is further enhanced by adding the degree of freedom. Finally, two examples are presented to illustrate the effectiveness of the proposed strategy.

  3. Robust adaptive backstepping control for reentry reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Wu, Zhong; Du, Yijiang

    2016-09-01

    During the reentry process of reusable launch vehicles (RLVs), the large range of flight envelope will not only result in high nonlinearities, strong coupling and fast time-varying characteristics of the attitude dynamics, but also result in great uncertainties in the atmospheric density, aerodynamic coefficients and environmental disturbances, etc. In order to attenuate the effects of these problems on the control performance of the reentry process, a robust adaptive backstepping control (RABC) strategy is proposed for RLV in this paper. This strategy consists of two-loop controllers designed via backstepping method. Both the outer and the inner loop adopt a robust adaptive controller, which can deal with the disturbances and uncertainties by the variable-structure term with the estimation of their bounds. The outer loop can track the desired attitude by the design of virtual control-the desired angular velocity, while the inner one can track the desired angular velocity by the design of control torque. Theoretical analysis indicates that the closed-loop system under the proposed control strategy is globally asymptotically stable. Even if the boundaries of the disturbances and uncertainties are unknown, the attitude can track the desired value accurately. Simulation results of a certain RLV demonstrate the effectiveness of the control strategy.

  4. Neural network and fuzzy control in FES-assisted locomotion for the hemiplegic.

    PubMed

    Chen, Yu-Luen; Chen, Shih-Ching; Chen, Weoi-Luen; Hsiao, Chin-Chih; Kuo, Te-Son; Lai, Jin-Shin

    2004-01-01

    This study is aimed at establishing a neural network and fuzzy feedback control FES system used for adjusting the optimum electrical stimulating current to control the motion of an ankle joint. The proposed method further improves the drop-foot problem existing in hemiplegia patients. The proposed system includes both hardware and software. The hardware system determines the patient's ankle joint angle using a position sensor located in the patient's affected side. This sensor stimulates the tibialis anterior with an electrical stimulator that induces the dorsiflexion action and achieves the ideal ankle joint trace motion. The software system estimates the stimulating current using a neural network. The fuzzy controller solves the nonlinear problem by compensating the motion trace errors between the neural network control and actual system. The control qualities of various controllers for four subjects were compared in the clinical test. It was found that both the root mean square error and the mean error were minimal when using the neural network and fuzzy controller. The drop-foot problem in hemiplegic's locomotion was effectively improved by incorporating the neural network and fuzzy controller with the functional electrical simulator.

  5. Frequency domain identification for robust large space structure control design

    NASA Technical Reports Server (NTRS)

    Yam, Y.; Bayard, D. S.; Scheid, R. E.

    1991-01-01

    A methodology is demonstrated for frequency domain identification of large space structures which systematically transforms experimental raw data into a form required for synthesizing H(infinity) controllers using modern robust control design software (e.g., Matlab Toolboxes). A unique feature of this approach is that the additive uncertainty is characterized to a specified statistic confidence rather than with hard bounds. In this study, the difference in robust performance is minimal between the two levels of confidence. In general cases, the present methodology provides a tool for performance/confidence level tradeoff studies. For simplicity, the additive uncertainty on a frequency grid is considered and the interpolation error in between grid points is neglected.

  6. Parametric uncertainty modeling for application to robust control

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Chang, B.-C.; Fischl, Robert

    1993-01-01

    Viewgraphs and a paper on parametric uncertainty modeling for application to robust control are included. Advanced robust control system analysis and design is based on the availability of an uncertainty description which separates the uncertain system elements from the nominal system. Although this modeling structure is relatively straightforward to obtain for multiple unstructured uncertainties modeled throughout the system, it is difficult to formulate for many problems involving real parameter variations. Furthermore, it is difficult to ensure that the uncertainty model is formulated such that the dimension of the resulting model is minimal. A procedure for obtaining an uncertainty model for real uncertain parameter problems in which the uncertain parameters can be represented in a multilinear form is presented. Furthermore, the procedure is formulated such that the resulting uncertainty model is minimal (or near minimal) relative to a given state space realization of the system. The approach is demonstrated for a multivariable third-order example problem having four uncertain parameters.

  7. Design of a passification controller for uncertain fuzzy Hopfield neural networks with time-varying delays

    NASA Astrophysics Data System (ADS)

    Sakthivel, R.; Mathiyalagan, K.; Anthoni, S. Marshal

    2011-10-01

    This paper addresses the problem of controller design for passivity of uncertain fuzzy Hopfield neural networks with time-varying delays. The main purpose of this paper is to design a state feedback fuzzy controller such that the resulting closed-loop system is passive. A new set of sufficient conditions are derived for achieving the required result by employing the Lyapunov functional method and matrix analysis technique. The derived criteria are expressed in terms of linear matrix inequalities that can be easily checked using standard numerical software. Two numerical examples with simulation results are given to illustrate the effectiveness and conservatism of the obtained results.

  8. Robust control charts in industrial production of olive oil

    NASA Astrophysics Data System (ADS)

    Grilo, Luís M.; Mateus, Dina M. R.; Alves, Ana C.; Grilo, Helena L.

    2014-10-01

    Acidity is one of the most important variables in the quality analysis and characterization of olive oil. During the industrial production we use individuals and moving range charts to monitor this variable, which is not always normal distributed. After a brief exploratory data analysis, where we use the bootstrap method, we construct control charts, before and after a Box-Cox transformation, and compare their robustness and performance.

  9. Robust Nonlinear Feedback Control of Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.; Litt, Jonathan (Technical Monitor)

    2001-01-01

    This is the final report on the research performed under NASA Glen grant NASA/NAG-3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool, mixed flow, after burning turbofan engine. The research focussed on the design of linear and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using H-infinity and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine simulation was provided by PW within the NASA Rocket Engine Transient Simulator (ROCETS) simulation software environment. ROCETS was used to generate linearized models of the turbofan engine for control design and analysis as well as the simulation environment to evaluate the performance and robustness of the controllers. Comparison between the H-infinity, and LPV controllers are made with the baseline multivariable controller and developed by Pratt & Whitney engineers included in the ROCETS simulation. Simulation results indicate that H-infinity and LPV techniques effectively achieve desired response characteristics with minimal cross coupling between commanded values and are very robust to unmodeled dynamics and sensor noise.

  10. An adaptive robust controller for time delay maglev transportation systems

    NASA Astrophysics Data System (ADS)

    Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza

    2012-12-01

    For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.

  11. Fuzzy logic controller for hemodialysis machine based on human body model.

    PubMed

    Nafisi, Vahid Reza; Eghbal, Manouchehr; Motlagh, Mohammad Reza Jahed; Yavari, Fatemeh

    2011-01-01

    Fuzzy controllers are being used in various control schemes. The aim of this study is to adjust the hemodialysis machine parameters by utilizing a fuzzy logic controller (FLC) so that patient's hemodynamic condition remains stable during hemodialysis treatment. For this purpose, a comprehensive mathematical model of the arterial pressure response during hemodialysis, including hemodynamic, osmotic, and regulatory phenomena has been used. The multi-input multi-output (MIMO) fuzzy logic controller receives three parameters from the model (heart rate, arterial blood pressure, and relative blood volume) as input. According to the changes in the controller input values and its rule base, the outputs change so that the patient's hemodynamic condition remains stable. The results of the simulations illustrate that applying the controller can improve the stability of a patient's hemodynamic condition during hemodialysis treatment and it also decreases the treatment time. Furthermore, by using fuzzy logic, there is no need to have prior knowledge about the system under control and the FLC is compatible with different patients.

  12. Impulsive control for a Takagi-Sugeno fuzzy model with time-delay and its application to chaotic systems

    NASA Astrophysics Data System (ADS)

    Peng, Shi-Guo; Yu, Si-Min

    2009-09-01

    A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with delay of the Takagi-Sugeno (TS) fuzzy IF-THEN rules and then present a unified TS impulsive fuzzy model with delay for chaos control. Based on the new model, a simple and unified set of conditions for controlling chaotic systems is derived by the Lyapunov-Razumikhin method, and a design procedure for estimating bounds on control matrices is also given. Several numerical examples are presented to illustrate the effectiveness of this method.

  13. FPGA-based adaptive backstepping fuzzy control for a micro-positioning Scott-Russell mechanism

    NASA Astrophysics Data System (ADS)

    Fung, Rong-Fong; Weng, Ming-Hong; Kung, Ying-Shieh

    2009-11-01

    This paper utilizes the field programmable gate array (FPGA) and Nios II embedded processor technologies to design a controller IC for a micro-positioning Scott-Russell (SR) mechanism, which is driven by a piezoelectric actuator (PA) and its hysteresis phenomenon is described by Bouc-Wen hysteresis model. For the controller design, the adaptive backstepping fuzzy control (ABFC) method is developed to compensate the PA's hysteresis and achieve the motion tracking control. The fuzzy logic method (FLM) is utilized to find the best adaptation gain of the adaptation law and control gain of the stabilization controls. This ABFC controller method can improve the transient and asymptotic tracking performances, and make the SR mechanism keep good working performance when external disturbances is added in the control system. Finally, we successfully apply the system-on-a-programmable-chip (SoPC) technologies to develop the motion controller IC, and achieve the advantages of reduced space, high performance and low cost.

  14. Flatness-based embedded adaptive fuzzy control of turbocharged diesel engines

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    In this paper nonlinear embedded control for turbocharged Diesel engines is developed with the use of Differential flatness theory and adaptive fuzzy control. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances an adaptive fuzzy control scheme is implemanted making use of the transformed dynamical system of the diesel engine that is obtained through the application of differential flatness theory. Since only the system's output is measurable the complete state vector has to be reconstructed with the use of a state observer. It is shown that a suitable learning law can be defined for neuro-fuzzy approximators, which are part of the controller, so as to preserve the closed-loop system stability. With the use of Lyapunov stability analysis it is proven that the proposed observer-based adaptive fuzzy control scheme results in H∞ tracking performance.

  15. PID self tuning control based on Mamdani fuzzy logic control for quadrotor stabilization

    NASA Astrophysics Data System (ADS)

    Priyambodo, Tri Kuntoro; Dharmawan, Andi; Putra, Agfianto Eko

    2016-02-01

    Quadrotor as one type of UAV have the ability to perform Vertical Take Off and Landing (VTOL). It allows the Quadrotor to be stationary hovering in the air. PID (Proportional Integral Derivative) control system is one of the control methods that are commonly used. It is usually used to optimize the Quadrotor stabilization at least based on the three Eulerian angles (roll, pitch, and yaw) as input parameters for the control system. The three constants of PID can be obtained in various methods. The simplest method is tuning manually. This method has several weaknesses. For example if the three constants are not exact, the resulting response will deviate from the desired result. By combining the methods of PID with fuzzy logic systems where human expertise is implemented into the machine language is expected to further optimize the control system.

  16. An Attitude Control of Flexible Spacecraft Using Fuzzy-PID Controller

    NASA Astrophysics Data System (ADS)

    Park, Jong-Oh; Im, Young-Do

    This primary objective of this study is to demonstrate simulation and ground-based experiment for the attitude control of flexible spacecraft. A typical spacecraft structure consists of the rigid body and flexible appendages which are large flexible solar panels, parabolic antennas built from light materials in order to reduce their weight. Therefore the attitude control has a big problem because these appendages induce structural vibration under the excitation of external forces. A single-axis rotational simulator with a flexible arm is constructed with on-off air thrusters and reaction wheel as actuation. The simulator is also equipped with payload pointing capability by simultaneous thruster and DC servo motor actuation. The experiment of flexible spacecraft attitude control is performed using only the reaction wheel. Using the reaction wheel the performance of the fuzzy-PID controller is illustrated by simulation and experimental results for a single-axis rotational simulator.

  17. Composite Adaptive Fuzzy Output Feedback Control Design for Uncertain Nonlinear Strict-Feedback Systems With Input Saturation.

    PubMed

    Li, Yongming; Tong, Shaocheng; Li, Tieshan

    2015-10-01

    In this paper, a composite adaptive fuzzy output-feedback control approach is proposed for a class of single-input and single-output strict-feedback nonlinear systems with unmeasured states and input saturation. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, and a fuzzy state observer is designed to estimate the unmeasured states. By utilizing the designed fuzzy state observer, a serial-parallel estimation model is established. Based on adaptive backstepping dynamic surface control technique and utilizing the prediction error between the system states observer model and the serial-parallel estimation model, a new fuzzy controller with the composite parameters adaptive laws are developed. It is proved that all the signals of the closed-loop system are bounded and the system output can follow the given bounded reference signal. A numerical example and simulation comparisons with previous control methods are provided to show the effectiveness of the proposed approach.

  18. Parametric robust control and system identification: Unified approach

    NASA Technical Reports Server (NTRS)

    Keel, Leehyun

    1994-01-01

    Despite significant advancement in the area of robust parametric control, the problem of synthesizing such a controller is still a wide open problem. Thus, we attempt to give a solution to this important problem. Our approach captures the parametric uncertainty as an H(sub infinity) unstructured uncertainty so that H(sub infinity) synthesis techniques are applicable. Although the techniques cannot cope with the exact parametric uncertainty, they give a reasonable guideline to model the unstructured uncertainty that contains the parametric uncertainty. An additional loop shaping technique is also introduced to relax its conservatism.

  19. Model validation - A connection between robust control and identification

    NASA Technical Reports Server (NTRS)

    Smith, Roy S.; Doyle, John C.

    1992-01-01

    The gap between the models used in control synthesis and those obtained from identification experiments is considered by investigating the connection between uncertain models and data. The model validation problem addressed is: given experimental data and a model with both additive noise and norm-bounded perturbations, is it possible that the model could produce the observed input-output data? This problem is studied for the standard H-infinity/mu framework models. A necessary condition for such a model to describe an experimental datum is obtained. For a large class of models in the robust control framework, this condition is computable as the solution of a quadratic optimization problem.

  20. Linear, multivariable robust control with a mu perspective

    NASA Technical Reports Server (NTRS)

    Packard, Andy; Doyle, John; Balas, Gary

    1993-01-01

    The structured singular value is a linear algebra tool developed to study a particular class of matrix perturbation problems arising in robust feedback control of multivariable systems. These perturbations are called linear fractional, and are a natural way to model many types of uncertainty in linear systems, including state-space parameter uncertainty, multiplicative and additive unmodeled dynamics uncertainty, and coprime factor and gap metric uncertainty. The structured singular value theory provides a natural extension of classical SISO robustness measures and concepts to MIMO systems. The structured singular value analysis, coupled with approximate synthesis methods, make it possible to study the tradeoff between performance and uncertainty that occurs in all feedback systems. In MIMO systems, the complexity of the spatial interactions in the loop gains make it difficult to heuristically quantify the tradeoffs that must occur. This paper examines the role played by the structured singular value (and its computable bounds) in answering these questions, as well as its role in the general robust, multivariable control analysis and design problem.

  1. Object classification in images for Epo doping control based on fuzzy decision trees

    NASA Astrophysics Data System (ADS)

    Bajla, Ivan; Hollander, Igor; Heiss, Dorothea; Granec, Reinhard; Minichmayr, Markus

    2005-02-01

    Erythropoietin (Epo) is a hormone which can be misused as a doping substance. Its detection involves analysis of images containing specific objects (bands), whose position and intensity are critical for doping positivity. Within a research project of the World Anti-Doping Agency (WADA) we are implementing the GASepo software that should serve for Epo testing in doping control laboratories world-wide. For identification of the bands we have developed a segmentation procedure based on a sequence of filters and edge detectors. Whereas all true bands are properly segmented, the procedure generates a relatively high number of false positives (artefacts). To separate these artefacts we suggested a post-segmentation supervised classification using real-valued geometrical measures of objects. The method is based on the ID3 (Ross Quinlan's) rule generation method, where fuzzy representation is used for linking the linguistic terms to quantitative data. The fuzzy modification of the ID3 method provides a framework that generates fuzzy decision trees, as well as fuzzy sets for input data. Using the MLTTM software (Machine Learning Framework) we have generated a set of fuzzy rules explicitly describing bands and artefacts. The method eliminated most of the artefacts. The contribution includes a comparison of the obtained misclassification errors to the errors produced by some other statistical classification methods.

  2. A genetic-based neuro-fuzzy approach for modeling and control of dynamical systems.

    PubMed

    Farag, W A; Quintana, V H; Lambert-Torres, G

    1998-01-01

    Linguistic modeling of complex irregular systems constitutes the heart of many control and decision making systems, and fuzzy logic represents one of the most effective algorithms to build such linguistic models. In this paper, a linguistic (qualitative) modeling approach is proposed. The approach combines the merits of the fuzzy logic theory, neural networks, and genetic algorithms (GA's). The proposed model is presented in a fuzzy-neural network (FNN) form which can handle both quantitative (numerical) and qualitative (linguistic) knowledge. The learning algorithm of an FNN is composed of three phases. The first phase is used to find the initial membership functions of the fuzzy model. In the second phase, a new algorithm is developed and used to extract the linguistic-fuzzy rules. In the third phase, a multiresolutional dynamic genetic algorithm (MRD-GA) is proposed and used for optimized tuning of membership functions of the proposed model. Two well-known benchmarks are used to evaluate the performance of the proposed modeling approach, and compare it with other modeling approaches. PMID:18255764

  3. A robust decentralized load frequency controller for interconnected power systems.

    PubMed

    Dong, Lili; Zhang, Yao; Gao, Zhiqiang

    2012-05-01

    A novel design of a robust decentralized load frequency control (LFC) algorithm is proposed for an inter-connected three-area power system, for the purpose of regulating area control error (ACE) in the presence of system uncertainties and external disturbances. The design is based on the concept of active disturbance rejection control (ADRC). Estimating and mitigating the total effect of various uncertainties in real time, ADRC is particularly effective against a wide range of parameter variations, model uncertainties, and large disturbances. Furthermore, with only two tuning parameters, the controller provides a simple and easy-to-use solution to complex engineering problems in practice. Here, an ADRC-based LFC solution is developed for systems with turbines of various types, such as non-reheat, reheat, and hydraulic. The simulation results verified the effectiveness of the ADRC, in comparison with an existing PI-type controller tuned via genetic algorithm linear matrix inequalities (GALMIs). The comparison results show the superiority of the proposed solution. Moreover, the stability and robustness of the closed-loop system is studied using frequency-domain analysis. PMID:22424605

  4. Dc microgrid stabilization through fuzzy control of interleaved, heterogeneous storage elements

    NASA Astrophysics Data System (ADS)

    Smith, Robert David

    As microgrid power systems gain prevalence and renewable energy comprises greater and greater portions of distributed generation, energy storage becomes important to offset the higher variance of renewable energy sources and maximize their usefulness. One of the emerging techniques is to utilize a combination of lead-acid batteries and ultracapacitors to provide both short and long-term stabilization to microgrid systems. The different energy and power characteristics of batteries and ultracapacitors imply that they ought to be utilized in different ways. Traditional linear controls can use these energy storage systems to stabilize a power grid, but cannot effect more complex interactions. This research explores a fuzzy logic approach to microgrid stabilization. The ability of a fuzzy logic controller to regulate a dc bus in the presence of source and load fluctuations, in a manner comparable to traditional linear control systems, is explored and demonstrated. Furthermore, the expanded capabilities (such as storage balancing, self-protection, and battery optimization) of a fuzzy logic system over a traditional linear control system are shown. System simulation results are presented and validated through hardware-based experiments. These experiments confirm the capabilities of the fuzzy logic control system to regulate bus voltage, balance storage elements, optimize battery usage, and effect self-protection.

  5. Universal fuzzy integral sliding-mode controllers for stochastic nonlinear systems.

    PubMed

    Gao, Qing; Liu, Lu; Feng, Gang; Wang, Yong

    2014-12-01

    In this paper, the universal integral sliding-mode controller problem for the general stochastic nonlinear systems modeled by Itô type stochastic differential equations is investigated. One of the main contributions is that a novel dynamic integral sliding mode control (DISMC) scheme is developed for stochastic nonlinear systems based on their stochastic T-S fuzzy approximation models. The key advantage of the proposed DISMC scheme is that two very restrictive assumptions in most existing ISMC approaches to stochastic fuzzy systems have been removed. Based on the stochastic Lyapunov theory, it is shown that the closed-loop control system trajectories are kept on the integral sliding surface almost surely since the initial time, and moreover, the stochastic stability of the sliding motion can be guaranteed in terms of linear matrix inequalities. Another main contribution is that the results of universal fuzzy integral sliding-mode controllers for two classes of stochastic nonlinear systems, along with constructive procedures to obtain the universal fuzzy integral sliding-mode controllers, are provided, respectively. Simulation results from an inverted pendulum example are presented to illustrate the advantages and effectiveness of the proposed approaches.

  6. Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control.

    PubMed

    Yang, Shiju; Li, Chuandong; Huang, Tingwen

    2016-03-01

    The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results.

  7. Modeling, control, and simulation of grid connected intelligent hybrid battery/photovoltaic system using new hybrid fuzzy-neural method.

    PubMed

    Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid

    2016-07-01

    Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink. PMID:26961319

  8. Modeling, control, and simulation of grid connected intelligent hybrid battery/photovoltaic system using new hybrid fuzzy-neural method.

    PubMed

    Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid

    2016-07-01

    Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink.

  9. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    NASA Astrophysics Data System (ADS)

    Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y.-F.; Chang, F.-J.

    2011-01-01

    Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  10. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    NASA Astrophysics Data System (ADS)

    Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y.-F.; Chang, F.-J.

    2010-09-01

    Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagatiom fuzzy neural network (CFNN) for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  11. Adaptive backstepping sliding mode control with fuzzy monitoring strategy for a kind of mechanical system.

    PubMed

    Song, Zhankui; Sun, Kaibiao

    2014-01-01

    A novel adaptive backstepping sliding mode control (ABSMC) law with fuzzy monitoring strategy is proposed for the tracking-control of a kind of nonlinear mechanical system. The proposed ABSMC scheme combining the sliding mode control and backstepping technique ensure that the occurrence of the sliding motion in finite-time and the trajectory of tracking-error converge to equilibrium point. To obtain a better perturbation rejection property, an adaptive control law is employed to compensate the lumped perturbation. Furthermore, we introduce fuzzy monitoring strategy to improve adaptive capacity and soften the control signal. The convergence and stability of the proposed control scheme are proved by using Lyaponov's method. Finally, numerical simulations demonstrate the effectiveness of the proposed control scheme.

  12. H(infinity) output tracking control for nonlinear systems via T-S fuzzy model approach.

    PubMed

    Lin, Chong; Wang, Qing-Guo; Lee, Tong Heng

    2006-04-01

    This paper studies the problem of H(infinity) output tracking control for nonlinear time-delay systems using Takagi-Sugeno (T-S) fuzzy model approach. An LMI-based design method is proposed for achieving the output tracking purpose. Illustrative examples are given to show the effectiveness of the present results.

  13. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  14. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The report gives results of a demonstration of the successful application of fuzzy logic to enhance the performance and control of a variable-speed wind generation system. A squirrel cage induction generator feeds the power to either a double-sided pulse-width modulation converte...

  15. Fuzzy logic controllers for electric motors and wind turbines. Report for October 1996-April 1997

    SciTech Connect

    Spiegel, R.J.

    1997-04-01

    The paper discusses a precision laboratory test facility that has been assempbled to test the performance of two fuzzy-logic based controllers for electric motors and wind turbines. Commercial induction motors up to 10 hp (7.46 kWe) in motors and equipped with adjustable-speed drives (ASDs) were used to test the motor optimizers.

  16. Fuzzy Logic Controller Architecture for Water Level Control in Nuclear Power Plant Steam Generator (SG) Using ANFIS Training Method

    SciTech Connect

    Vosoughi, Naser; Naseri, Zahra

    2002-07-01

    Since suitable control of water level can greatly enhance the operation of a power station, a Fuzzy logic controller architecture is applied to show desired control of the water level in a Nuclear steam generator. with regard to the physics of the system, it is shown that two inputs, a single output and the least number of rules (9 rules) are considered for a controller, and the ANFIS training method is employed to model functions in a controlled system. By using ANFIS training method, initial member functions will be trained and appropriate functions are generated to control water level inside the steam generators while using the stated rules. The proposed architecture can construct an input output mapping based on both human knowledge (in from of Fuzzy if then rules) and stipulated input output data. In this paper with a simple test it has been shown that the architecture fuzzy logic controller has a reasonable response to one step input at a constant power. Through computer simulation, it is found that Fuzzy logic controller is suitable, especially for the water level deviation and abrupt steam flow disturbances that are typical in the existing power plant. (authors)

  17. Experimental design of a fuzzy controller for improving power factor of boost rectifier

    NASA Astrophysics Data System (ADS)

    Kessal, Abdelhalim; Rahmani, Lazhar; Gaubert, Jean-Paul; Mostefai, Mohammed

    2012-12-01

    This article presents the design and the implementation of dSPACE DS1104 controller board-based PI and fuzzy logic peak current-mode controllers in the voltage loop and two controllers in the current loop based first on a standard fixed hysteresis band control, followed by a variable hysteresis band control to achieve constant switching frequency for a single-phase active power factor corrector in the continuous conduction mode. All these controllers have been verified via simulation in Simulink and a real-time implementation is performed on an experimental test bench utilising a rapid prototyping tool. The controllers are experimentally compared for steady-state performance and transient response. It is shown that the PI and fuzzy logic controllers give a superior steady-state performance, whereas the fuzzy logic inference based controller can achieve better dynamic response than its PI counterpart under large load disturbance and plant uncertainties. Furthermore, the variable hysteresis band control in the current loop gives a low total harmonic distortion of the input current compared to a standard fixed hysteresis band control.

  18. Using LDR as Sensing Element for an External Fuzzy Controller Applied in Photovoltaic Pumping Systems with Variable-Speed Drives.

    PubMed

    Maranhão, Geraldo Neves De A; Brito, Alaan Ubaiara; Leal, Anderson Marques; Fonseca, Jéssica Kelly Silva; Macêdo, Wilson Negrão

    2015-01-01

    In the present paper, a fuzzy controller applied to a Variable-Speed Drive (VSD) for use in Photovoltaic Pumping Systems (PVPS) is proposed. The fuzzy logic system (FLS) used is embedded in a microcontroller and corresponds to a proportional-derivative controller. A Light-Dependent Resistor (LDR) is used to measure, approximately, the irradiance incident on the PV array. Experimental tests are executed using an Arduino board. The experimental results show that the fuzzy controller is capable of operating the system continuously throughout the day and controlling the direct current (DC) voltage level in the VSD with a good performance. PMID:26402688

  19. Using LDR as Sensing Element for an External Fuzzy Controller Applied in Photovoltaic Pumping Systems with Variable-Speed Drives.

    PubMed

    Maranhão, Geraldo Neves De A; Brito, Alaan Ubaiara; Leal, Anderson Marques; Fonseca, Jéssica Kelly Silva; Macêdo, Wilson Negrão

    2015-09-22

    In the present paper, a fuzzy controller applied to a Variable-Speed Drive (VSD) for use in Photovoltaic Pumping Systems (PVPS) is proposed. The fuzzy logic system (FLS) used is embedded in a microcontroller and corresponds to a proportional-derivative controller. A Light-Dependent Resistor (LDR) is used to measure, approximately, the irradiance incident on the PV array. Experimental tests are executed using an Arduino board. The experimental results show that the fuzzy controller is capable of operating the system continuously throughout the day and controlling the direct current (DC) voltage level in the VSD with a good performance.

  20. Using LDR as Sensing Element for an External Fuzzy Controller Applied in Photovoltaic Pumping Systems with Variable-Speed Drives

    PubMed Central

    Maranhão, Geraldo Neves De A.; Brito, Alaan Ubaiara; Leal, Anderson Marques; Fonseca, Jéssica Kelly Silva; Macêdo, Wilson Negrão

    2015-01-01

    In the present paper, a fuzzy controller applied to a Variable-Speed Drive (VSD) for use in Photovoltaic Pumping Systems (PVPS) is proposed. The fuzzy logic system (FLS) used is embedded in a microcontroller and corresponds to a proportional-derivative controller. A Light-Dependent Resistor (LDR) is used to measure, approximately, the irradiance incident on the PV array. Experimental tests are executed using an Arduino board. The experimental results show that the fuzzy controller is capable of operating the system continuously throughout the day and controlling the direct current (DC) voltage level in the VSD with a good performance. PMID:26402688