Sample records for robust fuzzy control

1. Robust Fuzzy Controllers Using FPGAs

NASA Technical Reports Server (NTRS)

Monroe, Author Gene S., Jr.

2007-01-01

Electro-mechanical device controllers typically come in one of three forms, proportional (P), Proportional Derivative (PD), and Proportional Integral Derivative (PID). Two methods of control are discussed in this paper; they are (1) the classical technique that requires an in-depth mathematical use of poles and zeros, and (2) the fuzzy logic (FL) technique that is similar to the way humans think and make decisions. FL controllers are used in multiple industries; examples include control engineering, computer vision, pattern recognition, statistics, and data analysis. Presented is a study on the development of a PD motor controller written in very high speed hardware description language (VHDL), and implemented in FL. Four distinct abstractions compose the FL controller, they are the fuzzifier, the rule-base, the fuzzy inference system (FIS), and the defuzzifier. FL is similar to, but different from, Boolean logic; where the output value may be equal to 0 or 1, but it could also be equal to any decimal value between them. This controller is unique because of its VHDL implementation, which uses integer mathematics. To compensate for VHDL's inability to synthesis floating point numbers, a scale factor equal to 10(sup (N/4) is utilized; where N is equal to data word size. The scaling factor shifts the decimal digits to the left of the decimal point for increased precision. PD controllers are ideal for use with servo motors, where position control is effective. This paper discusses control methods for motion-base platforms where a constant velocity equivalent to a spectral resolution of 0.25 cm(exp -1) is required; however, the control capability of this controller extends to various other platforms.

2. An improved robust fuzzy-PID controller with optimal fuzzy reasoning.

PubMed

Li, Han-Xiong; Zhang, Lei; Cai, Kai-Yuan; Chen, Guanrong

2005-12-01

Many fuzzy control schemes used in industrial practice today are based on some simplified fuzzy reasoning methods, which are simple but at the expense of losing robustness, missing fuzzy characteristics, and having inconsistent inference. The concept of optimal fuzzy reasoning is introduced in this paper to overcome these shortcomings. The main advantage is that an integration of the optimal fuzzy reasoning with a PID control structure will generate a new type of fuzzy-PID control schemes with inherent optimal-tuning features for both local optimal performance and global tracking robustness. This new fuzzy-PID controller is then analyzed quantitatively and compared with other existing fuzzy-PID control methods. Both analytical and numerical studies clearly show the improved robustness of the new fuzzy-PID controller.

3. Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator.

PubMed

Fei, Juntao; Zhou, Jian

2012-12-01

In this paper, a robust adaptive control strategy using a fuzzy compensator for MEMS triaxial gyroscope, which has system nonlinearities, including model uncertainties and external disturbances, is proposed. A fuzzy logic controller that could compensate for the model uncertainties and external disturbances is incorporated into the adaptive control scheme in the Lyapunov framework. The proposed adaptive fuzzy controller can guarantee the convergence and asymptotical stability of the closed-loop system. The proposed adaptive fuzzy control strategy does not depend on accurate mathematical models, which simplifies the design procedure. The innovative development of intelligent control methods incorporated with conventional control for the MEMS gyroscope is derived with the strict theoretical proof of the Lyapunov stability. Numerical simulations are investigated to verify the effectiveness of the proposed adaptive fuzzy control scheme and demonstrate the satisfactory tracking performance and robustness against model uncertainties and external disturbances compared with conventional adaptive control method.

4. Robust observer-based adaptive fuzzy sliding mode controller

Oveisi, Atta; Nestorović, Tamara

2016-08-01

In this paper, a new observer-based adaptive fuzzy integral sliding mode controller is proposed based on the Lyapunov stability theorem. The plant is subjected to a square-integrable disturbance and is assumed to have mismatch uncertainties both in state- and input-matrices. Based on the classical sliding mode controller, the equivalent control effort is obtained to satisfy the sufficient requirement of sliding mode controller and then the control law is modified to guarantee the reachability of the system trajectory to the sliding manifold. In order to relax the norm-bounded constrains on the control law and solve the chattering problem of sliding mode controller, a fuzzy logic inference mechanism is combined with the controller. An adaptive law is then introduced to tune the parameters of the fuzzy system on-line. Finally, for evaluating the controller and the robust performance of the closed-loop system, the proposed regulator is implemented on a real-time mechanical vibrating system.

5. Robust adaptive self-structuring fuzzy control design for nonaffine, nonlinear systems

Chen, Pin-Cheng; Wang, Chi-Hsu; Lee, Tsu-Tian

2011-01-01

In this article, a robust adaptive self-structuring fuzzy control (RASFC) scheme for the uncertain or ill-defined nonlinear, nonaffine systems is proposed. The RASFC scheme is composed of a robust adaptive controller and a self-structuring fuzzy controller. In the self-structuring fuzzy controller design, a novel self-structuring fuzzy system (SFS) is used to approximate the unknown plant nonlinearity, and the SFS can automatically grow and prune fuzzy rules to realise a compact fuzzy rule base. The robust adaptive controller is designed to achieve an L 2 tracking performance to stabilise the closed-loop system. This L 2 tracking performance can provide a clear expression of tracking error in terms of the sum of lumped uncertainty and external disturbance, which has not been shown in previous works. Finally, five examples are presented to show that the proposed RASFC scheme can achieve favourable tracking performance, yet heavy computational burden is relieved.

6. Robust Takagi-Sugeno fuzzy control for fractional order hydro-turbine governing system.

PubMed

Wang, Bin; Xue, Jianyi; Wu, Fengjiao; Zhu, Delan

2016-11-01

A robust fuzzy control method for fractional order hydro-turbine governing system (FOHGS) in the presence of random disturbances is investigated in this paper. Firstly, the mathematical model of FOHGS is introduced, and based on Takagi-Sugeno (T-S) fuzzy rules, the generalized T-S fuzzy model of FOHGS is presented. Secondly, based on fractional order Lyapunov stability theory, a novel T-S fuzzy control method is designed for the stability control of FOHGS. Thirdly, the relatively loose sufficient stability condition is acquired, which could be transformed into a group of linear matrix inequalities (LMIs) via Schur complement as well as the strict mathematical derivation is given. Furthermore, the control method could resist random disturbances, which shows the good robustness. Simulation results indicate the designed fractional order T-S fuzzy control scheme works well compared with the existing method.

7. Robust fuzzy output feedback controller for affine nonlinear systems via T-S fuzzy bilinear model: CSTR benchmark.

PubMed

Hamdy, M; Hamdan, I

2015-07-01

In this paper, a robust H∞ fuzzy output feedback controller is designed for a class of affine nonlinear systems with disturbance via Takagi-Sugeno (T-S) fuzzy bilinear model. The parallel distributed compensation (PDC) technique is utilized to design a fuzzy controller. The stability conditions of the overall closed loop T-S fuzzy bilinear model are formulated in terms of Lyapunov function via linear matrix inequality (LMI). The control law is robustified by H∞ sense to attenuate external disturbance. Moreover, the desired controller gains can be obtained by solving a set of LMI. A continuous stirred tank reactor (CSTR), which is a benchmark problem in nonlinear process control, is discussed in detail to verify the effectiveness of the proposed approach with a comparative study.

8. Adaptive Robust Online Constructive Fuzzy Control of a Complex Surface Vehicle System.

PubMed

Wang, Ning; Er, Meng Joo; Sun, Jing-Chao; Liu, Yan-Cheng

2016-07-01

In this paper, a novel adaptive robust online constructive fuzzy control (AR-OCFC) scheme, employing an online constructive fuzzy approximator (OCFA), to deal with tracking surface vehicles with uncertainties and unknown disturbances is proposed. Significant contributions of this paper are as follows: 1) unlike previous self-organizing fuzzy neural networks, the OCFA employs decoupled distance measure to dynamically allocate discriminable and sparse fuzzy sets in each dimension and is able to parsimoniously self-construct high interpretable T-S fuzzy rules; 2) an OCFA-based dominant adaptive controller (DAC) is designed by employing the improved projection-based adaptive laws derived from the Lyapunov synthesis which can guarantee reasonable fuzzy partitions; 3) closed-loop system stability and robustness are ensured by stable cancelation and decoupled adaptive compensation, respectively, thereby contributing to an auxiliary robust controller (ARC); and 4) global asymptotic closed-loop system can be guaranteed by AR-OCFC consisting of DAC and ARC and all signals are bounded. Simulation studies and comprehensive comparisons with state-of-the-arts fixed- and dynamic-structure adaptive control schemes demonstrate superior performance of the AR-OCFC in terms of tracking and approximation accuracy.

9. Robust fuzzy neural network sliding mode control scheme for IPMSM drives

Leu, V. Q.; Mwasilu, F.; Choi, H. H.; Lee, J.; Jung, J. W.

2014-07-01

This article proposes a robust fuzzy neural network sliding mode control (FNNSMC) law for interior permanent magnet synchronous motor (IPMSM) drives. The proposed control strategy not only guarantees accurate and fast command speed tracking but also it ensures the robustness to system uncertainties and sudden speed and load changes. The proposed speed controller encompasses three control terms: a decoupling control term which compensates for nonlinear coupling factors using nominal parameters, a fuzzy neural network (FNN) control term which approximates the ideal control components and a sliding mode control (SMC) term which is proposed to compensate for the errors of that approximation. Next, an online FNN training methodology, which is developed using the Lyapunov stability theorem and the gradient descent method, is proposed to enhance the learning capability of the FNN. Moreover, the maximum torque per ampere (MTPA) control is incorporated to maximise the torque generation in the constant torque region and increase the efficiency of the IPMSM drives. To verify the effectiveness of the proposed robust FNNSMC, simulations and experiments are performed by using MATLAB/Simulink platform and a TI TMS320F28335 DSP on a prototype IPMSM drive setup, respectively. Finally, the simulated and experimental results indicate that the proposed design scheme can achieve much better control performances (e.g. more rapid transient response and smaller steady-state error) when compared to the conventional SMC method, especially in the case that there exist system uncertainties.

10. A fuzzy robust control scheme for vibration suppression of a nonlinear electromagnetic-actuated flexible system

2017-03-01

In this paper, a novel robust vibration control scheme, namely, one degree-of-freedom fuzzy active force control (1DOF-FAFC) is applied to a nonlinear electromagnetic-actuated flexible plate system. First, the flexible plate with clamped-free-clamped-free (CFCF) boundary conditions is modeled and simulated. Then, the validity of the simulation platform is evaluated through experiment. A nonlinear electromagnetic actuator is developed and experimentally modeled through a parametric system identification scheme. Next, the obtained nonlinear model of the actuator is applied to the simulation platform and performance of the proposed control technique in suppressing unwanted vibrations is investigated via simulation. A fuzzy controller is applied to the robust 1DOF control scheme to tune the controller gain using acceleration feedback. Consequently, an intelligent self-tuning vibration control strategy based on an inexpensive acceleration sensor is proposed in the paper. Furthermore, it is demonstrated that the proposed acceleration-based control technique owns the benefits of the conventional velocity feedback controllers. Finally, an experimental rig is developed to investigate the effectiveness of the 1DOF-FAFC scheme. It is found that the first, second, and third resonant modes of the flexible system are attenuated up to 74%, 81%, and 90% respectively through which the effectiveness of the proposed control scheme is affirmed.

11. Non-monotonic robust H2 fuzzy observer-based control for discrete time nonlinear systems with parametric uncertainties

Fakhimi Derakhshan, Siavash; Fatehi, Alireza

2015-09-01

A non-monotonic Lyapunov function (NMLF) is deployed to design a robust H2 fuzzy observer-based control problem for discrete-time nonlinear systems in the presence of parametric uncertainties. The uncertain nonlinear system is presented as a Takagi and Sugeno (T-S) fuzzy model with norm-bounded uncertainties. The states of the fuzzy system are estimated by a fuzzy observer and the control design is established based on a parallel distributed compensation scheme. In order to derive a sufficient condition to establish the global asymptotic stability of the proposed closed-loop fuzzy system, an NMLF is adopted and an upper bound on the quadratic cost function is provided. The existence of a robust H2 fuzzy observer-based controller is expressed as a sufficient condition in the form of linear matrix inequalities (LMIs) and a sub-optimal fuzzy observer-based controller in the sense of cost bound minimization is obtained by utilising the aforementioned LMI optimisation techniques. Finally, the effectiveness of the proposed scheme is shown through an example.

12. Robust fuzzy logic stabilization with disturbance elimination.

PubMed

Danapalasingam, Kumeresan A

2014-01-01

A robust fuzzy logic controller is proposed for stabilization and disturbance rejection in nonlinear control systems of a particular type. The dynamic feedback controller is designed as a combination of a control law that compensates for nonlinear terms in a control system and a dynamic fuzzy logic controller that addresses unknown model uncertainties and an unmeasured disturbance. Since it is challenging to derive a highly accurate mathematical model, the proposed controller requires only nominal functions of a control system. In this paper, a mathematical derivation is carried out to prove that the controller is able to achieve asymptotic stability by processing state measurements. Robustness here refers to the ability of the controller to asymptotically steer the state vector towards the origin in the presence of model uncertainties and a disturbance input. Simulation results of the robust fuzzy logic controller application in a magnetic levitation system demonstrate the feasibility of the control design.

13. Robust Fuzzy Logic Stabilization with Disturbance Elimination

PubMed Central

Danapalasingam, Kumeresan A.

2014-01-01

A robust fuzzy logic controller is proposed for stabilization and disturbance rejection in nonlinear control systems of a particular type. The dynamic feedback controller is designed as a combination of a control law that compensates for nonlinear terms in a control system and a dynamic fuzzy logic controller that addresses unknown model uncertainties and an unmeasured disturbance. Since it is challenging to derive a highly accurate mathematical model, the proposed controller requires only nominal functions of a control system. In this paper, a mathematical derivation is carried out to prove that the controller is able to achieve asymptotic stability by processing state measurements. Robustness here refers to the ability of the controller to asymptotically steer the state vector towards the origin in the presence of model uncertainties and a disturbance input. Simulation results of the robust fuzzy logic controller application in a magnetic levitation system demonstrate the feasibility of the control design. PMID:25177713

14. Design of a robust fuzzy controller for the arc stability of CO(2) welding process using the Taguchi method.

PubMed

Kim, Dongcheol; Rhee, Sehun

2002-01-01

CO(2) welding is a complex process. Weld quality is dependent on arc stability and minimizing the effects of disturbances or changes in the operating condition commonly occurring during the welding process. In order to minimize these effects, a controller can be used. In this study, a fuzzy controller was used in order to stabilize the arc during CO(2) welding. The input variable of the controller was the Mita index. This index estimates quantitatively the arc stability that is influenced by many welding process parameters. Because the welding process is complex, a mathematical model of the Mita index was difficult to derive. Therefore, the parameter settings of the fuzzy controller were determined by performing actual control experiments without using a mathematical model of the controlled process. The solution, the Taguchi method was used to determine the optimal control parameter settings of the fuzzy controller to make the control performance robust and insensitive to the changes in the operating conditions.

15. Robust tracking control of a unicycle-type wheeled mobile manipulator using a hybrid sliding mode fuzzy neural network

Cheng, Meng-Bi; Su, Wu-Chung; Tsai, Ching-Chih

2012-03-01

This article presents a robust tracking controller for an uncertain mobile manipulator system. A rigid robotic arm is mounted on a wheeled mobile platform whose motion is subject to nonholonomic constraints. The sliding mode control (SMC) method is associated with the fuzzy neural network (FNN) to constitute a robust control scheme to cope with three types of system uncertainties; namely, external disturbances, modelling errors, and strong couplings in between the mobile platform and the onboard arm subsystems. All parameter adjustment rules for the proposed controller are derived from the Lyapunov theory such that the tracking error dynamics and the FNN weighting updates are ensured to be stable with uniform ultimate boundedness (UUB).

16. Fuzzy PID controller combines with closed-loop optimal fuzzy reasoning for pitch control system

Li, Yezi; Xiao, Cheng; Sun, Jinhao

2013-03-01

PID and fuzzy PID controller are applied into the pitch control system. PID control has simple principle and its parameters setting are rather easy. Fuzzy control need not to establish the mathematical of the control system and has strong robustness. The advantages of fuzzy PID control are simple, easy in setting parameters and strong robustness. Fuzzy PID controller combines with closed-loop optimal fuzzy reasoning (COFR), which can effectively improve the robustness, when the robustness is special requirement. MATLAB software is used for simulations, results display that fuzzy PID controller which combines with COFR has better performances than PID controller when errors exist.

17. Direct discrete-time design approach to robust ? sampled-data observer-based output-feedback fuzzy control

Kim, Do Wan; Lee, Ho Jae

2016-01-01

This paper addresses a direct discrete-time design methodology for a robust ? sampled-data observer-based output-feedback stabilisation problem for a class of non-linear systems suffering from parametric uncertainties and disturbances that is identically modelled as a Takagi-Sugeno (T-S) fuzzy model at least locally. The primary features in the current development are that (1) we are based on an exact (rather than approximate) discrete-time model in an integral (rather than closed) form while (2) the ? control performance is characterised with respect to an ? (rather than l2) norm. It is shown that the uncertain sampled-data non-linear control system is robustly asymptotically stable if the employed discrete-time model is so. Design conditions are investigated in the discrete-time Lyapunov sense and concretised in the format of linear matrix inequalities.

18. Robust design of a 2-DOF GMV controller: a direct self-tuning and fuzzy scheduling approach.

PubMed

Silveira, Antonio S; Rodríguez, Jaime E N; Coelho, Antonio A R

2012-01-01

This paper presents a study on self-tuning control strategies with generalized minimum variance control in a fixed two degree of freedom structure-or simply GMV2DOF-within two adaptive perspectives. One, from the process model point of view, using a recursive least squares estimator algorithm for direct self-tuning design, and another, using a Mamdani fuzzy GMV2DOF parameters scheduling technique based on analytical and physical interpretations from robustness analysis of the system. Both strategies are assessed by simulation and real plants experimentation environments composed of a damped pendulum and an under development wind tunnel from the Department of Automation and Systems of the Federal University of Santa Catarina.

19. A new robust control scheme using second order sliding mode and fuzzy logic of a DFIM supplied by two five-level SVPWM inverters

2017-02-01

Traditional filed oriented control strategy including proportional-integral (PI) regulator for the speed drive of the doubly fed induction motor (DFIM) have some drawbacks such as parameter tuning complications, mediocre dynamic performances and reduced robustness. Therefore, based on the analysis of the mathematical model of a DFIM supplied by two five-level SVPWM inverters, this paper proposes a new robust control scheme based on super twisting sliding mode and fuzzy logic. The conventional sliding mode control (SMC) has vast chattering effect on the electromagnetic torque developed by the DFIM. In order to resolve this problem, a second order sliding mode technique based on super twisting algorithm and fuzzy logic functions is employed. The validity of the employed approach was tested by using Matlab/Simulink software. Interesting simulation results were obtained and remarkable advantages of the proposed control scheme were exposed including simple design of the control system, reduced chattering as well as the other advantages.

20. Fuzzy logic controller optimization

DOEpatents

Sepe, Jr., Raymond B; Miller, John Michael

2004-03-23

A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.

1. Sensored Field Oriented Control of a Robust Induction Motor Drive Using a Novel Boundary Layer Fuzzy Controller

PubMed Central

Saghafinia, Ali; Ping, Hew Wooi; Uddin, Mohammad Nasir

2013-01-01

Physical sensors have a key role in implementation of real-time vector control for an induction motor (IM) drive. This paper presents a novel boundary layer fuzzy controller (NBLFC) based on the boundary layer approach for speed control of an indirect field-oriented control (IFOC) of an induction motor (IM) drive using physical sensors. The boundary layer approach leads to a trade-off between control performances and chattering elimination. For the NBLFC, a fuzzy system is used to adjust the boundary layer thickness to improve the tracking performance and eliminate the chattering problem under small uncertainties. Also, to eliminate the chattering under the possibility of large uncertainties, the integral filter is proposed inside the variable boundary layer. In addition, the stability of the system is analyzed through the Lyapunov stability theorem. The proposed NBLFC based IM drive is implemented in real-time using digital signal processor (DSP) board TI TMS320F28335. The experimental and simulation results show the effectiveness of the proposed NBLFC based IM drive at different operating conditions.

SciTech Connect

Raju, G.V.S.; Jun Zhou

1993-07-01

A methodology for designing adaptive hierarchical fuzzy controllers is presented. In order to evaluate this concept, several suitable performance indices were developed and converted to linguistic fuzzy variables. Based on those variables, a supervisory fuzzy rule set was constructed and used to change the parameters of a hierarchical fuzzy controller to accommodate the variations of system parameters. The proposed algorithm was used in feedwater flow control to a steam generator. Simulation studies are presented that illustrate the effectiveness of the approach

3. Fuzzy and neural control

NASA Technical Reports Server (NTRS)

Berenji, Hamid R.

1992-01-01

Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.

4. RKF-PCA: robust kernel fuzzy PCA.

PubMed

Heo, Gyeongyong; Gader, Paul; Frigui, Hichem

2009-01-01

Principal component analysis (PCA) is a mathematical method that reduces the dimensionality of the data while retaining most of the variation in the data. Although PCA has been applied in many areas successfully, it suffers from sensitivity to noise and is limited to linear principal components. The noise sensitivity problem comes from the least-squares measure used in PCA and the limitation to linear components originates from the fact that PCA uses an affine transform defined by eigenvectors of the covariance matrix and the mean of the data. In this paper, a robust kernel PCA method that extends the kernel PCA and uses fuzzy memberships is introduced to tackle the two problems simultaneously. We first introduce an iterative method to find robust principal components, called Robust Fuzzy PCA (RF-PCA), which has a connection with robust statistics and entropy regularization. The RF-PCA method is then extended to a non-linear one, Robust Kernel Fuzzy PCA (RKF-PCA), using kernels. The modified kernel used in the RKF-PCA satisfies the Mercer's condition, which means that the derivation of the K-PCA is also valid for the RKF-PCA. Formal analyses and experimental results suggest that the RKF-PCA is an efficient non-linear dimension reduction method and is more noise-robust than the original kernel PCA.

5. Robust Fault Detection Using Robust Z1 Estimation and Fuzzy Logic

NASA Technical Reports Server (NTRS)

Curry, Tramone; Collins, Emmanuel G., Jr.; Selekwa, Majura; Guo, Ten-Huei (Technical Monitor)

2001-01-01

This research considers the application of robust Z(sub 1), estimation in conjunction with fuzzy logic to robust fault detection for an aircraft fight control system. It begins with the development of robust Z(sub 1) estimators based on multiplier theory and then develops a fixed threshold approach to fault detection (FD). It then considers the use of fuzzy logic for robust residual evaluation and FD. Due to modeling errors and unmeasurable disturbances, it is difficult to distinguish between the effects of an actual fault and those caused by uncertainty and disturbance. Hence, it is the aim of a robust FD system to be sensitive to faults while remaining insensitive to uncertainty and disturbances. While fixed thresholds only allow a decision on whether a fault has or has not occurred, it is more valuable to have the residual evaluation lead to a conclusion related to the degree of, or probability of, a fault. Fuzzy logic is a viable means of determining the degree of a fault and allows the introduction of human observations that may not be incorporated in the rigorous threshold theory. Hence, fuzzy logic can provide a more reliable and informative fault detection process. Using an aircraft flight control system, the results of FD using robust Z(sub 1) estimation with a fixed threshold are demonstrated. FD that combines robust Z(sub 1) estimation and fuzzy logic is also demonstrated. It is seen that combining the robust estimator with fuzzy logic proves to be advantageous in increasing the sensitivity to smaller faults while remaining insensitive to uncertainty and disturbances.

6. Fuzzy neural order robust of the non-linear systems

2008-06-01

This article introduces a controller at structure of a network multi-layer neurons specified by the fuzzy reasoning of Takagi-Sugeno (TS) order one [1], the weights of the network represent the standard deviations of the membership function. This controller is applied to the ordering of a reversed pendulum. Changes in the entries and the exit, as of the environment changes of operation are introduced in order to test the robustness of the designed controller.

7. Fuzzy neural order robust of the non-linear systems

SciTech Connect

2008-06-12

This article introduces a controller at structure of a network multi-layer neurons specified by the fuzzy reasoning of Takagi-Sugeno (TS) order one, the weights of the network represent the standard deviations of the membership function. This controller is applied to the ordering of a reversed pendulum. Changes in the entries and the exit, as of the environment changes of operation are introduced in order to test the robustness of the designed controller.

8. Exponential stability and robust H∞ control of a class of discrete-time switched non-linear systems with time-varying delays via T-S fuzzy model

Mao, Yanbing; Zhang, Hongbin

2014-05-01

This paper deals with stability and robust H∞ control of discrete-time switched non-linear systems with time-varying delays. The T-S fuzzy models are utilised to represent each sub-non-linear system. Thus, with two level functions, namely, crisp switching functions and local fuzzy weighting functions, we introduce a discrete-time switched fuzzy systems, which inherently contain the features of the switched hybrid systems and T-S fuzzy systems. Piecewise fuzzy weighting-dependent Lyapunov-Krasovskii functionals (PFLKFs) and average dwell-time approach are utilised in this paper for the exponentially stability analysis and controller design, and with free fuzzy weighting matrix scheme, switching control laws are obtained such that H∞ performance is satisfied. The conditions of stability and the control laws are given in the form of linear matrix inequalities (LMIs) that are numerically feasible. The state decay estimate is explicitly given. A numerical example and the control of delayed single link robot arm with uncertain part are given to demonstrate the efficiency of the proposed method.

9. A robust fuzzy local information C-Means clustering algorithm.

PubMed

Krinidis, Stelios; Chatzis, Vassilios

2010-05-01

This paper presents a variation of fuzzy c-means (FCM) algorithm that provides image clustering. The proposed algorithm incorporates the local spatial information and gray level information in a novel fuzzy way. The new algorithm is called fuzzy local information C-Means (FLICM). FLICM can overcome the disadvantages of the known fuzzy c-means algorithms and at the same time enhances the clustering performance. The major characteristic of FLICM is the use of a fuzzy local (both spatial and gray level) similarity measure, aiming to guarantee noise insensitiveness and image detail preservation. Furthermore, the proposed algorithm is fully free of the empirically adjusted parameters (a, ¿(g), ¿(s), etc.) incorporated into all other fuzzy c-means algorithms proposed in the literature. Experiments performed on synthetic and real-world images show that FLICM algorithm is effective and efficient, providing robustness to noisy images.

10. Robust support vector machine-trained fuzzy system.

PubMed

2014-02-01

Because the SVM (support vector machine) classifies data with the widest symmetric margin to decrease the probability of the test error, modern fuzzy systems use SVM to tune the parameters of fuzzy if-then rules. But, solving the SVM model is time-consuming. To overcome this disadvantage, we propose a rapid method to solve the robust SVM model and use it to tune the parameters of fuzzy if-then rules. The robust SVM is an extension of SVM for interval-valued data classification. We compare our proposed method with SVM, robust SVM, ISVM-FC (incremental support vector machine-trained fuzzy classifier), BSVM-FC (batch support vector machine-trained fuzzy classifier), SOTFN-SV (a self-organizing TS-type fuzzy network with support vector learning) and SCLSE (a TS-type fuzzy system with subtractive clustering for antecedent parameter tuning and LSE for consequent parameter tuning) by using some real datasets. According to experimental results, the use of proposed approach leads to very low training and testing time with good misclassification rate.

11. Fuzzy logic-based flight control system design

Nho, Kyungmoon

The application of fuzzy logic to aircraft motion control is studied in this dissertation. The self-tuning fuzzy techniques are developed by changing input scaling factors to obtain a robust fuzzy controller over a wide range of operating conditions and nonlinearities for a nonlinear aircraft model. It is demonstrated that the properly adjusted input scaling factors can meet the required performance and robustness in a fuzzy controller. For a simple demonstration of the easy design and control capability of a fuzzy controller, a proportional-derivative (PD) fuzzy control system is compared to the conventional controller for a simple dynamical system. This thesis also describes the design principles and stability analysis of fuzzy control systems by considering the key features of a fuzzy control system including the fuzzification, rule-base and defuzzification. The wing-rock motion of slender delta wings, a linear aircraft model and the six degree of freedom nonlinear aircraft dynamics are considered to illustrate several self-tuning methods employing change in input scaling factors. Finally, this dissertation is concluded with numerical simulation of glide-slope capture in windshear demonstrating the robustness of the fuzzy logic based flight control system.

12. Robust decentralized hybrid adaptive output feedback fuzzy control for a class of large-scale MIMO nonlinear systems and its application to AHS.

PubMed

Huang, Yi-Shao; Liu, Wel-Ping; Wu, Min; Wang, Zheng-Wu

2014-09-01

This paper presents a novel observer-based decentralized hybrid adaptive fuzzy control scheme for a class of large-scale continuous-time multiple-input multiple-output (MIMO) uncertain nonlinear systems whose state variables are unmeasurable. The scheme integrates fuzzy logic systems, state observers, and strictly positive real conditions to deal with three issues in the control of a large-scale MIMO uncertain nonlinear system: algorithm design, controller singularity, and transient response. Then, the design of the hybrid adaptive fuzzy controller is extended to address a general large-scale uncertain nonlinear system. It is shown that the resultant closed-loop large-scale system keeps asymptotically stable and the tracking error converges to zero. The better characteristics of our scheme are demonstrated by simulations.

13. A robust hybrid fuzzy-simulated annealing-intelligent water drops approach for tuning a distribution static compensator nonlinear controller in a distribution system

Bagheri Tolabi, Hajar; Hosseini, Rahil; Shakarami, Mahmoud Reza

2016-06-01

This article presents a novel hybrid optimization approach for a nonlinear controller of a distribution static compensator (DSTATCOM). The DSTATCOM is connected to a distribution system with the distributed generation units. The nonlinear control is based on partial feedback linearization. Two proportional-integral-derivative (PID) controllers regulate the voltage and track the output in this control system. In the conventional scheme, the trial-and-error method is used to determine the PID controller coefficients. This article uses a combination of a fuzzy system, simulated annealing (SA) and intelligent water drops (IWD) algorithms to optimize the parameters of the controllers. The obtained results reveal that the response of the optimized controlled system is effectively improved by finding a high-quality solution. The results confirm that using the tuning method based on the fuzzy-SA-IWD can significantly decrease the settling and rising times, the maximum overshoot and the steady-state error of the voltage step response of the DSTATCOM. The proposed hybrid tuning method for the partial feedback linearizing (PFL) controller achieved better regulation of the direct current voltage for the capacitor within the DSTATCOM. Furthermore, in the event of a fault the proposed controller tuned by the fuzzy-SA-IWD method showed better performance than the conventional controller or the PFL controller without optimization by the fuzzy-SA-IWD method with regard to both fault duration and clearing times.

14. Decentralized fuzzy control of multiple nonholonomic vehicles

SciTech Connect

Driessen, B.J.; Feddema, J.T.; Kwok, K.S.

1997-09-01

This work considers the problem of controlling multiple nonholonomic vehicles so that they converge to a scent source without colliding with each other. Since the control is to be implemented on simple 8-bit microcontrollers, fuzzy control rules are used to simplify a linear quadratic regulator control design. The inputs to the fuzzy controllers for each vehicle are the (noisy) direction to the source, the distance to the closest neighbor vehicle, and the direction to the closest vehicle. These directions are discretized into four values: Forward, Behind, Left, and Right, and the distance into three values: Near, Far, Gone. The values of the control at these discrete values are obtained based on the collision-avoidance repulsive forces and the change of variables that reduces the motion control problem of each nonholonomic vehicle to a nonsingular one with two degrees of freedom, instead of three. A fuzzy inference system is used to obtain control values for inputs between the small number of discrete input values. Simulation results are provided which demonstrate that the fuzzy control law performs well compared to the exact controller. In fact, the fuzzy controller demonstrates improved robustness to noise.

15. Current projects in Fuzzy Control

NASA Technical Reports Server (NTRS)

Sugeno, Michio

1990-01-01

Viewgraphs on current projects in fuzzy control are presented. Three projects on helicopter flight control are discussed. The projects are (1) radio control by oral instructions; (2) automatic autorotation entry in engine failure; and (3) unmanned helicopter for sea rescue.

NASA Technical Reports Server (NTRS)

Narendra, K. S.; Annaswamy, A. M.

1985-01-01

Several concepts and results in robust adaptive control are are discussed and is organized in three parts. The first part surveys existing algorithms. Different formulations of the problem and theoretical solutions that have been suggested are reviewed here. The second part contains new results related to the role of persistent excitation in robust adaptive systems and the use of hybrid control to improve robustness. In the third part promising new areas for future research are suggested which combine different approaches currently known.

17. A neural fuzzy controller learning by fuzzy error propagation

NASA Technical Reports Server (NTRS)

Nauck, Detlef; Kruse, Rudolf

1992-01-01

In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.

18. Self-learning fuzzy controllers based on temporal back propagation

NASA Technical Reports Server (NTRS)

Jang, Jyh-Shing R.

1992-01-01

This paper presents a generalized control strategy that enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near-optimal manner. This methodology, termed temporal back propagation, is model-insensitive in the sense that it can deal with plants that can be represented in a piecewise-differentiable format, such as difference equations, neural networks, GMDH structures, and fuzzy models. Regardless of the numbers of inputs and outputs of the plants under consideration, the proposed approach can either refine the fuzzy if-then rules if human experts, or automatically derive the fuzzy if-then rules obtained from human experts are not available. The inverted pendulum system is employed as a test-bed to demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired fuzzy controller.

19. Fuzzy coordinator in control problems

NASA Technical Reports Server (NTRS)

Rueda, A.; Pedrycz, W.

1992-01-01

In this paper a hierarchical control structure using a fuzzy system for coordination of the control actions is studied. The architecture involves two levels of control: a coordination level and an execution level. Numerical experiments will be utilized to illustrate the behavior of the controller when it is applied to a nonlinear plant.

20. Learning fuzzy logic control system

NASA Technical Reports Server (NTRS)

Lung, Leung Kam

1994-01-01

The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the

1. Robust Control Systems.

DTIC Science & Technology

1981-12-01

106 A. 13 XSU ......................................... 108 A.14 DDTCON...................................... 108 A.15 DKFTR...operation is preserved. Although some papers (Refs 6 and 13 ) deal with robustness only in regard to parameter variations within the basic controlled...since these can ofter be neglected in actual implementation, a constant-gain time 13 ........................................ invariant solution with

2. Fuzzy Adaptive Control System of a Non-Stationary Plant

Nadezhdin, Igor S.; Goryunov, Alexey G.; Manenti, Flavio

2016-08-01

This paper proposes a hybrid fuzzy PID control logic, whose tuning parameters are provided in real time. The fuzzy controller tuning is made on the basis of Mamdani controller. In addition, this paper compares a fuzzy logic based PID with PID regulators whose tuning is performed by standard and well-known methods. In some cases the proposed tuning methodology ensures a control performance that is comparable to that guaranteed by simpler and more common tuning methods. However, in case of dynamic changes in the parameters of the controlled system, conventionally tuned PID controllers do not show to be robust enough, thus suggesting that fuzzy logic based PIDs are definitively more reliable and effective.

3. Fuzzy attitude control for a nanosatellite in leo orbit

Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria; Aviles, Taisir

Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In this work, a tailored fuzzy controller is designed for a nanosatellite and is compared with a traditional Proportional Integrative Derivative (PID) controller. Both control methodologies are compared within the same specific mission. The orbit height varies along the mission from injection at around 380 km down to a 200 km height orbit, and the mission requires pointing accuracy over the whole time. Due to both the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, a robust and efficient ADCS is required. For these reasons a fuzzy logic controller is implemented as the brain of the ADCS and its performance and efficiency are compared to a traditional PID. The fuzzy controller is designed in three separated controllers, each one acting on one of the Euler angles of the satellite in an orbital frame. The fuzzy memberships are constructed taking into account the mission requirements, the physical properties of the satellite and the expected performances. Both methodologies, fuzzy and PID, are fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. Finally both methods are probed in different environments to test their characteristics. The simulations show that the fuzzy controller is much more efficient (up to 65% less power required) in single maneuvers, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. A brief mission description is depicted as well as the design process of both ADCS controllers. Finally the validation process and the results obtained during the simulations are described. Those results show that the fuzzy logic methodology is valid for small

4. Fuzzy logic based robotic controller

NASA Technical Reports Server (NTRS)

1994-01-01

Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.

5. Fuzzy logic control and optimization system

DOEpatents

Lou, Xinsheng [West Hartford, CT

2012-04-17

A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

6. Design and implementation of fuzzy logic controllers. Thesis Final Report, 27 Jul. 1992 - 1 Jan. 1993

NASA Technical Reports Server (NTRS)

Abihana, Osama A.; Gonzalez, Oscar R.

1993-01-01

The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.

7. Analysis of inventory difference using fuzzy controllers

SciTech Connect

Zardecki, A.

1994-08-01

The principal objectives of an accounting system for safeguarding nuclear materials are as follows: (a) to provide assurance that all material quantities are present in the correct amount; (b) to provide timely detection of material loss; and (c) to estimate the amount of any loss and its location. In fuzzy control, expert knowledge is encoded in the form of fuzzy rules, which describe recommended actions for different classes of situations represented by fuzzy sets. The concept of a fuzzy controller is applied to the forecasting problem in a time series, specifically, to forecasting and detecting anomalies in inventory differences. This paper reviews the basic notion underlying the fuzzy control systems and provides examples of application. The well-known material-unaccounted-for diffusion plant data of Jaech are analyzed using both feedforward neural networks and fuzzy controllers. By forming a deference between the forecasted and observed signals, an efficient method to detect small signals in background noise is implemented.

8. Fuzzy logic control for camera tracking system

NASA Technical Reports Server (NTRS)

Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

1992-01-01

A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

9. A fuzzy classifier system for process control

NASA Technical Reports Server (NTRS)

Karr, C. L.; Phillips, J. C.

1994-01-01

A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.

10. Refining fuzzy logic controllers with machine learning

NASA Technical Reports Server (NTRS)

Berenji, Hamid R.

1994-01-01

In this paper, we describe the GARIC (Generalized Approximate Reasoning-Based Intelligent Control) architecture, which learns from its past performance and modifies the labels in the fuzzy rules to improve performance. It uses fuzzy reinforcement learning which is a hybrid method of fuzzy logic and reinforcement learning. This technology can simplify and automate the application of fuzzy logic control to a variety of systems. GARIC has been applied in simulation studies of the Space Shuttle rendezvous and docking experiments. It has the potential of being applied in other aerospace systems as well as in consumer products such as appliances, cameras, and cars.

11. A fuzzy control design case: The fuzzy PLL

NASA Technical Reports Server (NTRS)

Teodorescu, H. N.; Bogdan, I.

1992-01-01

The aim of this paper is to present a typical fuzzy control design case. The analyzed controlled systems are the phase-locked loops (PLL's)--classic systems realized in both analogic and digital technology. The crisp PLL devices are well known.

12. Applications of fuzzy logic to control and decision making

NASA Technical Reports Server (NTRS)

Lea, Robert N.; Jani, Yashvant

1991-01-01

Long range space missions will require high operational efficiency as well as autonomy to enhance the effectivity of performance. Fuzzy logic technology has been shown to be powerful and robust in interpreting imprecise measurements and generating appropriate control decisions for many space operations. Several applications are underway, studying the fuzzy logic approach to solving control and decision making problems. Fuzzy logic algorithms for relative motion and attitude control have been developed and demonstrated for proximity operations. Based on this experience, motion control algorithms that include obstacle avoidance were developed for a Mars Rover prototype for maneuvering during the sample collection process. A concept of an intelligent sensor system that can identify objects and track them continuously and learn from its environment is under development to support traffic management and proximity operations around the Space Station Freedom. For safe and reliable operation of Lunar/Mars based crew quarters, high speed controllers with ability to combine imprecise measurements from several sensors is required. A fuzzy logic approach that uses high speed fuzzy hardware chips is being studied.

13. Robust Control Feedback and Learning

DTIC Science & Technology

2002-11-30

98-1-0026 5b. GRANT NUMBER Robust Control, Feedback and Learning F49620-98-1-0026 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Michael G...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Final Report: ROBUST CONTROL FEEDBACK AND LEARNING AFOSR Grant F49620-98-1-0026 October 1...Philadelphia, PA, 2000. [16] M. G. Safonov. Recent advances in robust control, feedback and learning . In S. 0. R. Moheimani, editor, Perspectives in Robust

14. Robust nonlinear variable selective control for networked systems

Rahmani, Behrooz

2016-10-01

This paper is concerned with the networked control of a class of uncertain nonlinear systems. In this way, Takagi-Sugeno (T-S) fuzzy modelling is used to extend the previously proposed variable selective control (VSC) methodology to nonlinear systems. This extension is based upon the decomposition of the nonlinear system to a set of fuzzy-blended locally linearised subsystems and further application of the VSC methodology to each subsystem. To increase the applicability of the T-S approach for uncertain nonlinear networked control systems, this study considers the asynchronous premise variables in the plant and the controller, and then introduces a robust stability analysis and control synthesis. The resulting optimal switching-fuzzy controller provides a minimum guaranteed cost on an H2 performance index. Simulation studies on three nonlinear benchmark problems demonstrate the effectiveness of the proposed method.

15. Synthesis of nonlinear control strategies from fuzzy logic control algorithms

NASA Technical Reports Server (NTRS)

Langari, Reza

1993-01-01

Fuzzy control has been recognized as an alternative to conventional control techniques in situations where the plant model is not sufficiently well known to warrant the application of conventional control techniques. Precisely what fuzzy control does and how it does what it does is not quite clear, however. This important issue is discussed and in particular it is shown how a given fuzzy control scheme can resolve into a nonlinear control law and that in those situations the success of fuzzy control hinges on its ability to compensate for nonlinearities in plant dynamics.

16. Fuzzy adaptive synchronization of uncertain chaotic systems via delayed feedback control

Zhang, Lingling; Huang, Lihong; Zhang, Zhizhou; Wang, Zengyun

2008-09-01

Based on the T-S fuzzy model and the delayed feedback control (DFC) scheme, this Letter presents a robust synchronization strategy for a class of chaotic system with unknown parameters and disturbances. Being the response system, the designed robust observer can adaptively track the drive system globally. The T-S fuzzy model of the 4D chaotic system (Lorenz-Stenflo) is developed as an example for illustration. Numerical simulations are shown to verify the results.

17. Fuzzy Modeling and Control of HIV Infection

PubMed Central

Zarei, Hassan; Kamyad, Ali Vahidian; Heydari, Ali Akbar

2012-01-01

The present study proposes a fuzzy mathematical model of HIV infection consisting of a linear fuzzy differential equations (FDEs) system describing the ambiguous immune cells level and the viral load which are due to the intrinsic fuzziness of the immune system's strength in HIV-infected patients. The immune cells in question are considered CD4+ T-cells and cytotoxic T-lymphocytes (CTLs). The dynamic behavior of the immune cells level and the viral load within the three groups of patients with weak, moderate, and strong immune systems are analyzed and compared. Moreover, the approximate explicit solutions of the proposed model are derived using a fitting-based method. In particular, a fuzzy control function indicating the drug dosage is incorporated into the proposed model and a fuzzy optimal control problem (FOCP) minimizing both the viral load and the drug costs is constructed. An optimality condition is achieved as a fuzzy boundary value problem (FBVP). In addition, the optimal fuzzy control function is completely characterized and a numerical solution for the optimality system is computed. PMID:22536298

18. Learning and tuning fuzzy logic controllers through reinforcements

NASA Technical Reports Server (NTRS)

Berenji, Hamid R.; Khedkar, Pratap

1992-01-01

This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

19. Learning and tuning fuzzy logic controllers through reinforcements

NASA Technical Reports Server (NTRS)

Berenji, Hamid R.; Khedkar, Pratap

1992-01-01

A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

20. Industrial application of fuzzy control in bioprocesses.

PubMed

Honda, Hiroyuki; Kobayashi, Takeshi

2004-01-01

In a bioprocess, for example a fermentation process, many biological reactions are always working in intracellular space and the control of such a process is very complicated. Bioprocesses have therefore been controlled by the judgment of the experts who are the skilled operators and have much experience in the control of such processes. Such experience is normally described in terms of linguistic IF-THEN rules. Fuzzy inference is a powerful tool for incorporating linguistic rules into computer control of such processes. Fuzzy control is divided into two types--direct fuzzy control of process variables, for example sugar feed rate and fermentation temperature, and indirect control via phase recognition. In bioprocess control the experts decide the value of controllable process variables such as sugar feed rate or temperature as output data from several state variables as input data. Fuzzy control is regarded as a computational algorithm in which the causal relationship between input and output data are incorporated. In Japan fuzzy control has already been applied to practical industrial processes such as production of pravastatin precursor and vitamin B2 and to the Japanese sake mashing process; these examples are reviewed. In addition, an advanced control tool developed from a study on fuzzy control, fuzzy neural networks (FNN), are introduced. FNN can involve complicated causality between input and output data in a network model. FNN have been proven to be applicable to a research in biomedicine, for example modeling of the complicated causality between electroencephalogram or gene expression profiling data and prognostic prediction. Successful results on this research will be also explained.

1. Convergent method of and apparatus for distributed control of robotic systems using fuzzy logic

DOEpatents

Feddema, John T.; Driessen, Brian J.; Kwok, Kwan S.

2002-01-01

A decentralized fuzzy logic control system for one vehicle or for multiple robotic vehicles provides a way to control each vehicle to converge on a goal without collisions between vehicles or collisions with other obstacles, in the presence of noisy input measurements and a limited amount of compute-power and memory on board each robotic vehicle. The fuzzy controller demonstrates improved robustness to noise relative to an exact controller.

2. Universal fuzzy models and universal fuzzy controllers for discrete-time nonlinear systems.

PubMed

Gao, Qing; Feng, Gang; Dong, Daoyi; Liu, Lu

2015-05-01

This paper investigates the problems of universal fuzzy model and universal fuzzy controller for discrete-time nonaffine nonlinear systems (NNSs). It is shown that a kind of generalized T-S fuzzy model is the universal fuzzy model for discrete-time NNSs satisfying a sufficient condition. The results on universal fuzzy controllers are presented for two classes of discrete-time stabilizable NNSs. Constructive procedures are provided to construct the model reference fuzzy controllers. The simulation example of an inverted pendulum is presented to illustrate the effectiveness and advantages of the proposed method. These results significantly extend the approach for potential applications in solving complex engineering problems.

3. Decomposed fuzzy systems and their application in direct adaptive fuzzy control.

PubMed

Hsueh, Yao-Chu; Su, Shun-Feng; Chen, Ming-Chang

2014-10-01

In this paper, a novel fuzzy structure termed as the decomposed fuzzy system (DFS) is proposed to act as the fuzzy approximator for adaptive fuzzy control systems. The proposed structure is to decompose each fuzzy variable into layers of fuzzy systems, and each layer is to characterize one traditional fuzzy set. Similar to forming fuzzy rules in traditional fuzzy systems, layers from different variables form the so-called component fuzzy systems. DFS is proposed to provide more adjustable parameters to facilitate possible adaptation in fuzzy rules, but without introducing a learning burden. It is because those component fuzzy systems are independent so that it can facilitate minimum distribution learning effects among component fuzzy systems. It can be seen from our experiments that even when the rule number increases, the learning time in terms of cycles is still almost constant. It can also be found that the function approximation capability and learning efficiency of the DFS are much better than that of the traditional fuzzy systems when employed in adaptive fuzzy control systems. Besides, in order to further reduce the computational burden, a simplified DFS is proposed in this paper to satisfy possible real time constraints required in many applications. From our simulation results, it can be seen that the simplified DFS can perform fairly with a more concise decomposition structure.

4. Neural and Fuzzy Adaptive Control of Induction Motor Drives

SciTech Connect

Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

2008-06-12

This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.

5. Study on Fuzzy Adaptive Fractional Order PIλDμ Control for Maglev Guiding System

Hu, Qing; Hu, Yuwei

The mathematical model of the linear elevator maglev guiding system is analyzed in this paper. For the linear elevator needs strong stability and robustness to run, the integer order PID was expanded to the fractional order, in order to improve the steady state precision, rapidity and robustness of the system, enhance the accuracy of the parameter in fractional order PIλDμ controller, the fuzzy control is combined with the fractional order PIλDμ control, using the fuzzy logic achieves the parameters online adjustment. The simulations reveal that the system has faster response speed, higher tracking precision, and has stronger robustness to the disturbance.

6. A Fuzzy Control Irrigation System For Cottonfield

Zhang, Jun; Zhao, Yandong; Wang, Yiming; Li, Jinping

A fuzzy control irrigation system for cotton field is presented in this paper. The system is composed of host computer, slave computer controller, communication module, soil water sensors, valve controllers, and system software. A fuzzy control model is constructed to control the irrigation time and irrigation quantity for cotton filed. According to the water-required rules of different cotton growing periods, different irrigation strategies can be carried out automatically. This system had been used for precision irrigation of the cotton field in Langfang experimental farm of Soil and Fertilizer Institute, Chinese Academy of Agricultural Sciences in 2006. The results show that the fuzzy control irrigation system can improve cotton yield and save much water quantity than the irrigation system based on simple on-off control algorithm.

7. Variable-order fuzzy fractional PID controller.

PubMed

Liu, Lu; Pan, Feng; Xue, Dingyu

2015-03-01

In this paper, a new tuning method of variable-order fractional fuzzy PID controller (VOFFLC) is proposed for a class of fractional-order and integer-order control plants. Fuzzy logic control (FLC) could easily deal with parameter variations of control system, but the fractional-order parameters are unable to change through this way and it has confined the effectiveness of FLC. Therefore, an attempt is made in this paper to allow all the five parameters of fractional-order PID controller vary along with the transformation of system structure as the outputs of FLC, and the influence of fractional orders λ and μ on control systems has been investigated to make the fuzzy rules for VOFFLC. Four simulation results of different plants are shown to verify the availability of the proposed control strategy.

8. Terminology and concepts of control and Fuzzy Logic

NASA Technical Reports Server (NTRS)

Aldridge, Jack; Lea, Robert; Jani, Yashvant; Weiss, Jonathan

1990-01-01

Viewgraphs on terminology and concepts of control and fuzzy logic are presented. Topics covered include: control systems; issues in the design of a control system; state space control for inverted pendulum; proportional-integral-derivative (PID) controller; fuzzy controller; and fuzzy rule processing.

9. A fuzzy logic sliding mode controlled electronic differential for a direct wheel drive EV

Ozkop, Emre; Altas, Ismail H.; Okumus, H. Ibrahim; Sharaf, Adel M.

2015-11-01

In this study, a direct wheel drive electric vehicle based on an electronic differential system with a fuzzy logic sliding mode controller (FLSMC) is studied. The conventional sliding surface is modified using a fuzzy rule base to obtain fuzzy dynamic sliding surfaces by changing its slopes using the global error and its derivative in a fuzzy logic inference system. The controller is compared with proportional-integral-derivative (PID) and sliding mode controllers (SMCs), which are usually preferred to be used in industry. The proposed controller provides robustness and flexibility to direct wheel drive electric vehicles. The fuzzy logic sliding mode controller, electronic differential system and the overall electrical vehicle mechanism are modelled and digitally simulated by using the Matlab software. Simulation results show that the system with FLSMC has better efficiency and performance compared to those of PID and SMCs.

10. Robust controls with structured perturbations

NASA Technical Reports Server (NTRS)

Keel, Leehyun

1993-01-01

This final report summarizes the recent results obtained by the principal investigator and his coworkers on the robust stability and control of systems containing parametric uncertainty. The starting point is a generalization of Kharitonov's theorem obtained in 1989, and its generalization to the multilinear case, the singling out of extremal stability subsets, and other ramifications now constitutes an extensive and coherent theory of robust parametric stability that is summarized in the results contained here.

11. Maximum Energy Extraction Control for Wind Power Generation Systems Based on the Fuzzy Controller

Kamal, Elkhatib; Aitouche, Abdel; Mohammed, Walaa; Sobaih, Abdel Azim

2016-10-01

This paper presents a robust controller for a variable speed wind turbine with a squirrel cage induction generator (SCIG). For variable speed wind energy conversion system, the maximum power point tracking (MPPT) is a very important requirement in order to maximize the efficiency. The system is nonlinear with parametric uncertainty and subject to large disturbances. A Takagi-Sugeno (TS) fuzzy logic is used to model the system dynamics. Based on the TS fuzzy model, a controller is developed for MPPT in the presence of disturbances and parametric uncertainties. The proposed technique ensures that the maximum power point (MPP) is determined, the generator speed is controlled and the closed loop system is stable. Robustness of the controller is tested via the variation of model's parameters. Simulation studies clearly indicate the robustness and efficiency of the proposed control scheme compared to other techniques.

12. A decentralized adaptive robust method for chaos control.

PubMed

Kobravi, Hamid-Reza; Erfanian, Abbas

2009-09-01

This paper presents a control strategy, which is based on sliding mode control, adaptive control, and fuzzy logic system for controlling the chaotic dynamics. We consider this control paradigm in chaotic systems where the equations of motion are not known. The proposed control strategy is robust against the external noise disturbance and system parameter variations and can be used to convert the chaotic orbits not only to the desired periodic ones but also to any desired chaotic motions. Simulation results of controlling some typical higher order chaotic systems demonstrate the effectiveness of the proposed control method.

13. Fault tolerant control based on interval type-2 fuzzy sliding mode controller for coaxial trirotor aircraft.

PubMed

Zeghlache, Samir; Kara, Kamel; Saigaa, Djamel

2015-11-01

In this paper, a robust controller for a Six Degrees of Freedom (6 DOF) coaxial trirotor helicopter control is proposed in presence of defects in the system. A control strategy based on the coupling of the interval type-2 fuzzy logic control and sliding mode control technique are used to design a controller. The main purpose of this work is to eliminate the chattering phenomenon and guaranteeing the stability and the robustness of the system. In order to achieve this goal, interval type-2 fuzzy logic control has been used to generate the discontinuous control signal. The simulation results have shown that the proposed control strategy can greatly alleviate the chattering effect, and perform good reference tracking in presence of defects in the system.

14. Fuzzy control of a boiler steam drum

SciTech Connect

Mayer, K.; Crockett, W.K.

1995-10-01

The authors controlled the inlet water flow to a dynamic model of a steam drum using fuzzy logic. The drum level varied little with step inputs in steam flow. The fuzzy logic controller performed at least as well as a well-tuned traditional PI (which is notoriously difficult to tune). Using plant data in the model provided further evidence that fuzzy logic control gave excellent results. The drum level is a function of inlet water, steam production, and blowdown. To compensate for upsets caused by steam production, independent variables used in the fuzzy controller were drum level and change in drum level. The dependent variable was the change required in the inlet flow. By modeling a 175,000 lb/hr Riley-Stoker boiler, they determined the universe of discourse for each of the three variables. Three triangular and two trapezoidal membership functions characterize each of these universes. The knowledge of experts provided the fuzzy associative memory (FAM) for the variables. The authors modeled the complete dynamic system using Tutsim (Tutsim Products, 200 California Ave., Palo Alto, CA 94306).

15. Induction machine Direct Torque Control system based on fuzzy adaptive control

Li, Shi-ping; Yu, Yan; Jiao, Zhen-gang; Gu, Shu-sheng

2009-07-01

Direct Torque Control technology is a high-performance communication control method, it uses the space voltage vector method, and then to the inverter switch state control, to obtain high torque dynamic performance. But none of the switching states is able to generate the exact voltage vector to produce the desired changes in torque and flux in most of the switching instances. This causes a high ripple in torque. To solve this problem, a fuzzy implementation of Direct Torque Control of Induction machine is presented here. Error of stator flux, error of motor electromagnetic torque and position of angle of flux are taken as fuzzy variables. In order to further solve nonlinear problem of variation parameters in direct torque control system, the paper proposes a fuzzy parameter PID adaptive control method which is suitable for the direct torque control of an asynchronous motor. The generation of its fuzzy control is obtained by analyzing and optimizing PID control step response and combining expert's experience. For this reason, it carries out fuzzy work to PID regulator of motor speed to achieve to regulate PID parameters. Therefore the control system gets swifter response velocity, stronger robustness and higher precision of velocity control. The computer simulated results verify the validity of this novel method.

PubMed

Khooban, Mohammad-Hassan; Niknam, Taher; Blaabjerg, Frede; Davari, Pooya; Dragicevic, Tomislav

2016-11-01

The goal of this study is to introduce a novel robust load frequency control (LFC) strategy for micro-grid(s) (MG(s)) in islanded mode operation. Admittedly, power generators in MG(s) cannot supply steady electric power output and sometimes cause unbalance between supply and demand. Battery energy storage system (BESS) is one of the effective solutions to these problems. Due to the high cost of the BESS, a new idea of Vehicle-to-Grid (V2G) is that a battery of Electric-Vehicle (EV) can be applied as a tantamount large-scale BESS in MG(s). As a result, a new robust control strategy for an islanded micro-grid (MG) is introduced that can consider electric vehicles׳ (EV(s)) effect. Moreover, in this paper, a new combination of the General Type II Fuzzy Logic Sets (GT2FLS) and the Modified Harmony Search Algorithm (MHSA) technique is applied for adaptive tuning of proportional-integral (PI) controller. Implementing General Type II Fuzzy Systems is computationally expensive. However, using a recently introduced α-plane representation, GT2FLS can be seen as a composition of several Interval Type II Fuzzy Logic Systems (IT2FLS) with a corresponding level of α for each. Real-data from an offshore wind farm in Sweden and solar radiation data in Aberdeen (United Kingdom) was used in order to examine the performance of the proposed novel controller. A comparison is made between the achieved results of Optimal Fuzzy-PI (OFPI) controller and those of Optimal Interval Type II Fuzzy-PI (IT2FPI) controller, which are of most recent advances in the area at hand. The Simulation results prove the successfulness and effectiveness of the proposed controller.

17. Fuzzy logic control of telerobot manipulators

NASA Technical Reports Server (NTRS)

1992-01-01

Telerobot systems for advanced applications will require manipulators with redundant 'degrees of freedom' (DOF) that are capable of adapting manipulator configurations to avoid obstacles while achieving the user specified goal. Conventional methods for control of manipulators (based on solution of the inverse kinematics) cannot be easily extended to these situations. Fuzzy logic control offers a possible solution to these needs. A current research program at SRI developed a fuzzy logic controller for a redundant, 4 DOF, planar manipulator. The manipulator end point trajectory can be specified by either a computer program (robot mode) or by manual input (teleoperator). The approach used expresses end-point error and the location of manipulator joints as fuzzy variables. Joint motions are determined by a fuzzy rule set without requiring solution of the inverse kinematics. Additional rules for sensor data, obstacle avoidance and preferred manipulator configuration, e.g., 'righty' or 'lefty', are easily accommodated. The procedure used to generate the fuzzy rules can be extended to higher DOF systems.

18. Analysis of direct action fuzzy PID controller structures.

PubMed

Mann, G I; Hu, B G; Gosine, R G

1999-01-01

The majority of the research work on fuzzy PID controllers focuses on the conventional two-input PI or PD type controller proposed by Mamdani (1974). However, fuzzy PID controller design is still a complex task due to the involvement of a large number of parameters in defining the fuzzy rule base. This paper investigates different fuzzy PID controller structures, including the Mamdani-type controller. By expressing the fuzzy rules in different forms, each PLD structure is distinctly identified. For purpose of analysis, a linear-like fuzzy controller is defined. A simple analytical procedure is developed to deduce the closed form solution for a three-input fuzzy inference. This solution is used to identify the fuzzy PID action of each structure type in the dissociated form. The solution for single-input-single-output nonlinear fuzzy inferences illustrates the effect of nonlinearity tuning. The design of a fuzzy PID controller is then treated as a two-level tuning problem. The first level tunes the nonlinear PID gains and the second level tunes the linear gains, including scale factors of fuzzy variables. By assigning a minimum number of rules to each type, the linear and nonlinear gains are deduced and explicitly presented. The tuning characteristics of different fuzzy PID structures are evaluated with respect to their functional behaviors. The rule decoupled and one-input rule structures proposed in this paper provide greater flexibility and better functional properties than the conventional fuzzy PHD structures.

19. Capacity planning for waste management systems: an interval fuzzy robust dynamic programming approach.

PubMed

Nie, Xianghui; Huang, Guo H; Li, Yongping

2009-11-01

This study integrates the concepts of interval numbers and fuzzy sets into optimization analysis by dynamic programming as a means of accounting for system uncertainty. The developed interval fuzzy robust dynamic programming (IFRDP) model improves upon previous interval dynamic programming methods. It allows highly uncertain information to be effectively communicated into the optimization process through introducing the concept of fuzzy boundary interval and providing an interval-parameter fuzzy robust programming method for an embedded linear programming problem. Consequently, robustness of the optimization process and solution can be enhanced. The modeling approach is applied to a hypothetical problem for the planning of waste-flow allocation and treatment/disposal facility expansion within a municipal solid waste (MSW) management system. Interval solutions for capacity expansion of waste management facilities and relevant waste-flow allocation are generated and interpreted to provide useful decision alternatives. The results indicate that robust and useful solutions can be obtained, and the proposed IFRDP approach is applicable to practical problems that are associated with highly complex and uncertain information.

20. Genetic algorithm based fuzzy control of spacecraft autonomous rendezvous

NASA Technical Reports Server (NTRS)

Karr, C. L.; Freeman, L. M.; Meredith, D. L.

1990-01-01

The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the uncertainty inherent in most control problems to be incorporated into conventional expert systems. Although fuzzy logic based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective decision. High performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the authors for the rendezvous problem. Thus, genetic algorithms are potentially an effective and structured approach for learning fuzzy membership functions.

1. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.

PubMed

Wai, Rong-Jong; Yang, Zhi-Wei

2008-10-01

This paper focuses on the development of adaptive fuzzy neural network control (AFNNC), including indirect and direct frameworks for an n-link robot manipulator, to achieve high-precision position tracking. In general, it is difficult to adopt a model-based design to achieve this control objective due to the uncertainties in practical applications, such as friction forces, external disturbances, and parameter variations. In order to cope with this problem, an indirect AFNNC (IAFNNC) scheme and a direct AFNNC (DAFNNC) strategy are investigated without the requirement of prior system information. In these model-free control topologies, a continuous-time Takagi-Sugeno (T-S) dynamic fuzzy model with online learning ability is constructed to represent the system dynamics of an n-link robot manipulator. In the IAFNNC, an FNN estimator is designed to tune the nonlinear dynamic function vector in fuzzy local models, and then, the estimative vector is used to indirectly develop a stable IAFNNC law. In the DAFNNC, an FNN controller is directly designed to imitate a predetermined model-based stabilizing control law, and then, the stable control performance can be achieved by only using joint position information. All the IAFNNC and DAFNNC laws and the corresponding adaptive tuning algorithms for FNN weights are established in the sense of Lyapunov stability analyses to ensure the stable control performance. Numerical simulations and experimental results of a two-link robot manipulator actuated by dc servomotors are given to verify the effectiveness and robustness of the proposed methodologies. In addition, the superiority of the proposed control schemes is indicated in comparison with proportional-differential control, fuzzy-model-based control, T-S-type FNN control, and robust neural fuzzy network control systems.

2. Robust flight control of rotorcraft

With recent design improvement in fixed wing aircraft, there has been a considerable interest in the design of robust flight control systems to compensate for the inherent instability necessary to achieve desired performance. Such systems are designed for maximum available retention of stability and performance in the presence of significant vehicle damage or system failure. The rotorcraft industry has shown similar interest in adopting these reconfigurable flight control schemes specifically because of their ability to reject disturbance inputs and provide a significant amount of robustness for all but the most catastrophic of situations. The research summarized herein focuses on the extension of the pseudo-sliding mode control design procedure interpreted in the frequency domain. Application of the technique is employed and simulated on two well known helicopters, a simplified model of a hovering Sikorsky S-61 and the military's Black Hawk UH-60A also produced by Sikorsky. The Sikorsky helicopter model details are readily available and was chosen because it can be limited to pitch and roll motion reducing the number of degrees of freedom and yet contains two degrees of freedom, which is the minimum requirement in proving the validity of the pseudo-sliding control technique. The full order model of a hovering Black Hawk system was included both as a comparison to the S-61 helicopter design system and as a means to demonstrate the scaleability and effectiveness of the control technique on sophisticated systems where design robustness is of critical concern.

3. Fuzzy Control/Space Station automation

NASA Technical Reports Server (NTRS)

Gersh, Mark

1990-01-01

Viewgraphs on fuzzy control/space station automation are presented. Topics covered include: Space Station Freedom (SSF); SSF evolution; factors pointing to automation & robotics (A&R); astronaut office inputs concerning A&R; flight system automation and ground operations applications; transition definition program; and advanced automation software tools.

4. A Laboratory Testbed for Embedded Fuzzy Control

ERIC Educational Resources Information Center

Srivastava, S.; Sukumar, V.; Bhasin, P. S.; Arun Kumar, D.

2011-01-01

This paper presents a novel scheme called "Laboratory Testbed for Embedded Fuzzy Control of a Real Time Nonlinear System." The idea is based upon the fact that project-based learning motivates students to learn actively and to use their engineering skills acquired in their previous years of study. It also fosters initiative and focuses…

5. Fuzzy multinomial control chart and its application

2016-03-01

Control chart is a technique that has been used widely in industry and services. P chart is the simplest control chart. In this chart, item is classified into two categories as either conforming and non conforming. This chart based on binomial distribution. In practice, each item can classify in more than two categories such as very bad, bad, good and very good. Then to monitor the process we used multinomial p control chart. However, if the classification is an element of vagueness, the fuzzy multinomial control chart (FM) is more appropriately used. Control limit of FM chart obtained multinomial distribution and the degree of membership using fuzzy trianguler are 0, 0.25. 0.5 and 1. This chart will be applied to the data glass and will compare with multinomial p control chart.

6. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

PubMed

Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

2016-06-01

A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.

7. The cognitive bases for the design of a new class of fuzzy logic controllers: The clearness transformation fuzzy logic controller

NASA Technical Reports Server (NTRS)

Sultan, Labib; Janabi, Talib

1992-01-01

This paper analyses the internal operation of fuzzy logic controllers as referenced to the human cognitive tasks of control and decision making. Two goals are targeted. The first goal focuses on the cognitive interpretation of the mechanisms employed in the current design of fuzzy logic controllers. This analysis helps to create a ground to explore the potential of enhancing the functional intelligence of fuzzy controllers. The second goal is to outline the features of a new class of fuzzy controllers, the Clearness Transformation Fuzzy Logic Controller (CT-FLC), whereby some new concepts are advanced to qualify fuzzy controllers as 'cognitive devices' rather than 'expert system devices'. The operation of the CT-FLC, as a fuzzy pattern processing controller, is explored, simulated, and evaluated.

8. Generalizations of fuzzy linguistic control points in geometric design

Sallehuddin, M. H.; Wahab, A. F.; Gobithaasan, R. U.

2014-07-01

Control points are geometric primitives that play an important role in designing the geometry curve and surface. When these control points are blended with some basis functions, there are several geometric models such as Bezier, B-spline and NURBS(Non-Uniform Rational B-Spline) will be produced. If the control points are defined by the theory of fuzzy sets, then fuzzy geometric models are produced. But the fuzzy geometric models can only solve the problem of uncertainty complex. This paper proposes a new definition of fuzzy control points with linguistic terms. When the fuzzy control points with linguistic terms are blended with basis functions, then a fuzzy linguistic geometric model is produced. This paper ends with some numerical examples illustrating linguistic control attributes of fuzzy geometric models.

9. Robust Filtering for Nonlinear Nonhomogeneous Markov Jump Systems by Fuzzy Approximation Approach.

PubMed

Yin, Yanyan; Shi, Peng; Liu, Fei; Teo, Kok Lay; Lim, Cheng-Chew

2015-09-01

This paper addresses the problem of robust fuzzy L2-L∞ filtering for a class of uncertain nonlinear discrete-time Markov jump systems (MJSs) with nonhomogeneous jump processes. The Takagi-Sugeno fuzzy model is employed to represent such nonlinear nonhomogeneous MJS with norm-bounded parameter uncertainties. In order to decrease conservation, a polytope Lyapunov function which evolves as a convex function is employed, and then, under the designed mode-dependent and variation-dependent fuzzy filter which includes the membership functions, a sufficient condition is presented to ensure that the filtering error dynamic system is stochastically stable and that it has a prescribed L2-L∞ performance index. Two simulated examples are given to demonstrate the effectiveness and advantages of the proposed techniques.

10. Adaptive process control using fuzzy logic and genetic algorithms

NASA Technical Reports Server (NTRS)

Karr, C. L.

1993-01-01

Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

11. Adaptive Process Control with Fuzzy Logic and Genetic Algorithms

NASA Technical Reports Server (NTRS)

Karr, C. L.

1993-01-01

Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

12. Fuzzy compensated computed torque control of a manipulator

Ficici, Seniz; Sawan, Edwin M.; Bahr, Behnam

1996-12-01

A great deal of research has been done in fuzzy logic control (FLC) and its applications since Mamdani's pioneering papers in 1974 and 1977. FLC has also been applied to manipulator control which is a very challenging nonlinear control problem. Both classical and advanced robot controllers have problems because of high nonlinearity or uncertainties in robot dynamics. FLC, as an alternate, suffer from lack of analytical methods for design, tuning and stability analysis. A nonlinear controller which is robust in the presence of modeling errors and disturbances is presented in this paper. A computed torque controller can be designed based on an approximate model and FLC can be used to minimize the tracking error due to modeling errors and disturbance. Since the approximate model of the system reduces the overall nonlinearity, FLC works with very simple rules and it is easy to tune.

13. Robust control with structured perturbations

NASA Technical Reports Server (NTRS)

Keel, Leehyun

1988-01-01

Two important problems in the area of control systems design and analysis are discussed. The first is the robust stability using characteristic polynomial, which is treated first in characteristic polynomial coefficient space with respect to perturbations in the coefficients of the characteristic polynomial, and then for a control system containing perturbed parameters in the transfer function description of the plant. In coefficient space, a simple expression is first given for the l(sup 2) stability margin for both monic and non-monic cases. Following this, a method is extended to reveal much larger stability region. This result has been extended to the parameter space so that one can determine the stability margin, in terms of ranges of parameter variations, of the closed loop system when the nominal stabilizing controller is given. The stability margin can be enlarged by a choice of better stabilizing controller. The second problem describes the lower order stabilization problem, the motivation of the problem is as follows. Even though the wide range of stabilizing controller design methodologies is available in both the state space and transfer function domains, all of these methods produce unnecessarily high order controllers. In practice, the stabilization is only one of many requirements to be satisfied. Therefore, if the order of a stabilizing controller is excessively high, one can normally expect to have a even higher order controller on the completion of design such as inclusion of dynamic response requirements, etc. Therefore, it is reasonable to have a lowest possible order stabilizing controller first and then adjust the controller to meet additional requirements. The algorithm for designing a lower order stabilizing controller is given. The algorithm does not necessarily produce the minimum order controller; however, the algorithm is theoretically logical and some simulation results show that the algorithm works in general.

14. Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference system

SciTech Connect

Djukanovic, M.B.; Calovic, M.S.; Vesovic, B.V.; Sobajic, D.J.

1997-12-01

This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.

15. Fuzzy Current-Mode Control and Stability Analysis

NASA Technical Reports Server (NTRS)

Kopasakis, George

2000-01-01

In this paper a current-mode control (CMC) methodology is developed for a buck converter by using a fuzzy logic controller. Conventional CMC methodologies are based on lead-lag compensation with voltage and inductor current feedback. In this paper the converter lead-lag compensation will be substituted with a fuzzy controller. A small-signal model of the fuzzy controller will also be developed in order to examine the stability properties of this buck converter control system. The paper develops an analytical approach, introducing fuzzy control into the area of CMC.

16. Robust Power Management Control for Stand-Alone Hybrid Power Generation System

Kamal, Elkhatib; Adouane, Lounis; Aitouche, Abdel; Mohammed, Walaa

2017-01-01

This paper presents a new robust fuzzy control of energy management strategy for the stand-alone hybrid power systems. It consists of two levels named centralized fuzzy supervisory control which generates the power references for each decentralized robust fuzzy control. Hybrid power systems comprises: a photovoltaic panel and wind turbine as renewable sources, a micro turbine generator and a battery storage system. The proposed control strategy is able to satisfy the load requirements based on a fuzzy supervisor controller and manage power flows between the different energy sources and the storage unit by respecting the state of charge and the variation of wind speed and irradiance. Centralized controller is designed based on If-Then fuzzy rules to manage and optimize the hybrid power system production by generating the reference power for photovoltaic panel and wind turbine. Decentralized controller is based on the Takagi-Sugeno fuzzy model and permits us to stabilize each photovoltaic panel and wind turbine in presence of disturbances and parametric uncertainties and to optimize the tracking reference which is given by the centralized controller level. The sufficient conditions stability are formulated in the format of linear matrix inequalities using the Lyapunov stability theory. The effectiveness of the proposed Strategy is finally demonstrated through a SAHPS (stand-alone hybrid power systems) to illustrate the effectiveness of the overall proposed method.

17. Design and real time implementation of fuzzy switched controller for single phase active power filter.

PubMed

Afghoul, Hamza; Krim, Fateh; Chikouche, Djamel; Beddar, Antar

2015-09-01

This paper proposes a novel fuzzy switched controller (FSC) integrated in direct current control (DCC) algorithm for single phase active power filter (SPAPF). The controller under study consists of conventional PI controller, fractional order PI controller (FO-PI) and fuzzy decision maker (FDM) that switches between them using reduced fuzzy logic control. The proposed controller offers short response time with low damping and deals efficiently with the external disturbances while preserving the robustness properties. To fulfill the requirements of power quality, unity power factor and harmonics limitations in active power filtering an experimental test bench has been built using dSPACE 1104 to demonstrate the feasibility and effectiveness of the proposed controller. The obtained results present high performance in steady and transient states.

18. Fuzzy-neural control of an aircraft tracking camera platform

NASA Technical Reports Server (NTRS)

Mcgrath, Dennis

1994-01-01

A fuzzy-neural control system simulation was developed for the control of a camera platform used to observe aircraft on final approach to an aircraft carrier. The fuzzy-neural approach to control combines the structure of a fuzzy knowledge base with a supervised neural network's ability to adapt and improve. The performance characteristics of this hybrid system were compared to those of a fuzzy system and a neural network system developed independently to determine if the fusion of these two technologies offers any advantage over the use of one or the other. The results of this study indicate that the fuzzy-neural approach to control offers some advantages over either fuzzy or neural control alone.

19. Wastewater neutralization control based on fuzzy logic: Experimental results

SciTech Connect

Adroer, M.; Alsina, A.; Aumatell, J.; Poch, M.

1999-07-01

Many industrial wastes contain acidic or alkaline materials that require neutralization of previous discharge into receiving waters or to chemical and biological treatment plants. The control of the wastewater neutralization process is subjected to several difficulties, such as the highly nonlinear titration curve (with special sensitivity around neutrality), the unknown water composition, the variable buffering capacity of the system, and the changes in input loading. To deal with these problems, this study proposes a fixed fuzzy logic controller (FLC) structure coupled with a tuning factor. The versatility and robustness of this controller has been proved when faced with solutions of variable buffering capacity, with acids that cover a wide pK range and with switches between acids throughout the course of a test. Laboratory experiments and simulation runs using the proposed controller were successful in a wide operational range.

20. Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.

PubMed

Pan, Indranil; Das, Saptarshi

2016-05-01

This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants.

1. Computer control system based on fuzzy control for boilers

Zheng, Dezhong; Shang, Liping; Shi, Jinghao

2000-10-01

According tp the features of the combustion process of boiler the optimization of combustion is implemented by using fuzzy control principle. The paper states a control strategy implementing different control regulation in different phases (coarse, fine and precision tuning) for enhancing the thermal efficiency of combustion of boiler. The practice shows that the thermal efficiency increased 2.8%.

2. Steady-state error of a system with fuzzy controller.

PubMed

Butkiewicz, B S

1998-01-01

We consider the problem of control error of a fuzzy system with feedback. The system consists of a plant, linear or nonlinear, fuzzy controller, and feedback loop. As controller we use both PD and PI fuzzy type controllers. We apply different t-norm and co-norm: logic, algebraic, Yager, Hamacher, bounded, drastic, etc. in the process of fuzzy reasoning. Triangular shape of membership functions is supposed, but we generalize the results obtained. Steady-state error of a system is calculated. We have obtained very interesting results. The steady-state error is identical for pairs of triangular t- and co-norms.

3. Fuzzy logic anti-skid control for commercial trucks

Akey, Mark L.

1995-06-01

A fuzzy logic (FL) anti-skid brake controller (ABS) is proposed as the next generation ABS replacing current generation finite state (FS) control. The FL controller is part of a commercial truck braking system, encompassing reverse front-back braking proportions on an articulated vehicle as compared to that found on fixed, passenger car systems. In this early research, the FL controller must satisfy three goals. The first goal is to produce superior braking distances over that of the finite state controller, specifically under low (mu) conditions. The second goal is to provide superior braking under varying system conditions (road surface conditions, physical brake parameters, wheel velocity sensor parameters). The third goal is to provide a convenient, flexible, and tractable ABS solution which is amenable to redevelopemnt to different vehicular platforms. Monte Carlo simulation results illustrate stopping distance improvements of 5 to 10 % averaged over all (mu) surfaces for varying wheel loads. On low (mu) surfaces, the improvement increases to 15% (up to a full tractor-trailer length). These results are obtained while varying other system parameters demonstrating robustness. Finally, the fuzzy logic rule sets and the overall configuration illustrate a straight-forward design and maturation process for the rule sets.

4. Robust Fixed-Structure Controller Synthesis

NASA Technical Reports Server (NTRS)

2000-01-01

The ability to develop an integrated control system design methodology for robust high performance controllers satisfying multiple design criteria and real world hardware constraints constitutes a challenging task. The increasingly stringent performance specifications required for controlling such systems necessitates a trade-off between controller complexity and robustness. The principle challenge of the minimal complexity robust control design is to arrive at a tractable control design formulation in spite of the extreme complexity of such systems. Hence, design of minimal complexitY robust controllers for systems in the face of modeling errors has been a major preoccupation of system and control theorists and practitioners for the past several decades.

5. Intelligent fuzzy controller for event-driven real time systems

NASA Technical Reports Server (NTRS)

Grantner, Janos; Patyra, Marek; Stachowicz, Marian S.

1992-01-01

Most of the known linguistic models are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show a model for synchronous finite state machines based on fuzzy logic. Such finite state machines can be used to build both event-driven, time-varying, rule-based systems and the control unit section of a fuzzy logic computer. The architecture of a pipelined intelligent fuzzy controller is presented, and the linguistic model is represented by an overall fuzzy relation stored in a single rule memory. A VLSI integrated circuit implementation of the fuzzy controller is suggested. At a clock rate of 30 MHz, the controller can perform 3 MFLIPS on multi-dimensional fuzzy data.

6. Design of sewage treatment system by applying fuzzy adaptive PID controller

Jin, Liang-Ping; Li, Hong-Chan

2013-03-01

In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.

7. Extending Fuzzy System Concepts for Control of a Vitrification Melter

SciTech Connect

Whitehouse, J.C.; Sorgel, W.; Garrison, A.; Schalkoff, R.J.

1995-08-16

Fuzzy systems provide a mathematical framework to capture uncertainty. The complete description of real, complex systems or situations often requires far more detail and information than could ever be obtained (or understood). Fuzzy approaches are an alternative technology for both system control and information processing and management. In this paper, we present the design of a fuzzy control system for a melter used in the vitrification of hazardous waste. Design issues, especially those related to melter shutdown and obtaining smooth control surfaces, are addressed. Several extensions to commonly-applied fuzzy techniques, notably adaptive defuzzification and modified rule structures are developed.

8. Fuzzy control and multimedia with examples from law enforcement

Hackwood, Susan

1995-06-01

We present an extension of fuzzy controllers to include multimedia rules, i.e., rules which do not include verbal or numerical descriptors. We describe the structure and construction of such a multimedia fuzzy controller. In particular, we describe an empirical but unbiased methodology to measure, from human subjects, distances in feature space and hence determine fuzzy memberships. We also propose a practical multimedia fuzzy controller and describe its application examples are given from the law enforcement field where man-machine interactions are important and applications of the methodology described in this paper appear promising.

9. Robust synchronization of chaotic Lur'e systems via delayed feedback control

Chen, Cailian; Feng, Gang; Guan, Xinping

2004-02-01

This Letter presents a robust synchronization method for a class of chaotic Lur'e systems based on its T-S fuzzy model and the delayed feedback control (DFC) scheme. The controlled slave system can adaptively track the master system under the circumstances of system uncertainties and external disturbances.

10. What procedure to choose while designing a fuzzy control? Towards mathematical foundations of fuzzy control

NASA Technical Reports Server (NTRS)

Kreinovich, Vladik YA.; Quintana, Chris; Lea, Robert

1991-01-01

Fuzzy control has been successfully applied in industrial systems. However, there is some caution in using it. The reason is that it is based on quite reasonable ideas, but each of these ideas can be implemented in several different ways, and depending on which of the implementations chosen different results are achieved. Some implementations lead to a high quality control, some of them not. And since there are no theoretical methods for choosing the implementation, the basic way to choose it now is experimental. But if one chooses a method that is good for several examples, there is no guarantee that it will work fine in all of them. Hence the caution. A theoretical basis for choosing the fuzzy control procedures is provided. In order to choose a procedure that transforms a fuzzy knowledge into a control, one needs, first, to choose a membership function for each of the fuzzy terms that the experts use, second, to choose operations of uncertainty values that corresponds to 'and' and 'or', and third, when a membership function for control is obtained, one must defuzzy it, that is, somehow generate a value of the control u that will be actually used. A general approach that will help to make all these choices is described: namely, it is proved that under reasonable assumptions membership functions should be linear or fractionally linear, defuzzification must be described by a centroid rule and describe all possible 'and' and 'or' operations. Thus, a theoretical explanation of the existing semi-heuristic choices is given and the basis for the further research on optimal fuzzy control is formulated.

11. Fuzzy Logic Controller for Low Temperature Application

NASA Technical Reports Server (NTRS)

Hahn, Inseob; Gonzalez, A.; Barmatz, M.

1996-01-01

The most common temperature controller used in low temperature experiments is the proportional-integral-derivative (PID) controller due to its simplicity and robustness. However, the performance of temperature regulation using the PID controller depends on initial parameter setup, which often requires operator's expert knowledge on the system. In this paper, we present a computer-assisted temperature controller based on the well known.

12. Two-level tuning of fuzzy PID controllers.

PubMed

Mann, G I; Hu, B G; Gosine, R G

2001-01-01

Fuzzy PID tuning requires two stages of tuning; low level tuning followed by high level tuning. At the higher level, a nonlinear tuning is performed to determine the nonlinear characteristics of the fuzzy output. At the lower level, a linear tuning is performed to determine the linear characteristics of the fuzzy output for achieving overall performance of fuzzy control. First, different fuzzy systems are defined and then simplified for two-point control. Non-linearity tuning diagrams are constructed for fuzzy systems in order to perform high level tuning. The linear tuning parameters are deduced from the conventional PID tuning knowledge. Using the tuning diagrams, high level tuning heuristics are developed. Finally, different applications are demonstrated to show the validity of the proposed tuning method.

13. Coordinated signal control for arterial intersections using fuzzy logic

Kermanian, Davood; Zare, Assef; Balochian, Saeed

2013-09-01

Every day growth of the vehicles has become one of the biggest problems of urbanism especially in major cities. This can waste people's time, increase the fuel consumption, air pollution, and increase the density of cars and vehicles. Fuzzy controllers have been widely used in many consumer products and industrial applications with success over the past two decades. This article proposes a comprehensive model of urban traffic network using state space equations and then using Fuzzy Logic Tool Box and SIMULINK Program MATLAB a fuzzy controller in order to optimize and coordinate signal control at two intersections at an arterial road. The fuzzy controller decides to extend, early cut or terminate a signal phase and phase sequence to ensure smooth flow of traffic with minimal waiting time and length of queue. Results show that the performance of the proposed traffic controller at novel fuzzy model is better that of conventional controllers under normal and abnormal traffic conditions.

14. Fuzzy coordinator compensation for balancing control of cart-seesaw system

Lin, J.; Guo, S.-Y.; Chang, Julian

2011-12-01

In contrast with fully controllable systems, a super articulated mechanical system (SAMS) is a controlled underactuated mechanical system in which the dimensions of the configuration space exceed the dimensions of the control input space. The control of the cart-seesaw system is especially difficult since it is an underactuated mechanism (three degrees of freedom and only two inputs). This research develops a balancing approach for a novel SAMS model, called the cart-seesaw system, using fuzzy logic and fuzzy coordinator compensation to drive the sliding carts and keep the seesaw angle close to zero in the equilibrium state. Experimental results indicate that utilizing the proposed control methodology significantly enhances the performance. Moreover, the presentation of the fuzzy balancing controller is not considerably affected by changes in the environmental parameters, which demonstrates the effectiveness of the fuzzy controller in minimizing the seesaw tilt angle in the time domain, although the system is caused by unpredicted loading variation. Moreover, the experimental results indicate the usefulness and robustness of the proposed fuzzy control methodology. Furthermore, the proposed software/hardware platform can be beneficial for standardizing laboratory equipment and developing amusement apparatus.

15. Predictive neuro-fuzzy controller for multilink robot manipulator

Kaymaz, Emre; Mitra, Sunanda

1995-10-01

A generalized controller based on fuzzy clustering and fuzzy generalized predictive control has been developed for nonlinear systems including multilink robot manipulators. The proposed controller is particularly useful when the dynamics of the nonlinear system to be controlled are difficult to yield exact solutions and the system specification can be obtained in terms of crisp input-output pairs. It inherits the advantages of both fuzzy logic and predictive control. The identification of the nonlinear mapping of the system to be controlled is realized by a three- layer feed-forward neural network model employing the input-output data obtained from the system. The speed of convergence of the neural network is improved by the introduction of a fuzzy logic controlled backpropagation learning algorithm. The neural network model is then used as a simulation tool to generate the input-output data for developing the predictive fuzzy logic controller for the chosen nonlinear system. The use of fuzzy clustering facilitates automatic generation of membership relations of the input-output data. Unlike the linguistic fuzzy logic controller which requires approximate knowledge of the shape and the numbers of the membership functions in the input and output universes of the discourse, this integrated neuro-fuzzy approach allows one to find the fuzzy relations and the membership functions more accurately. Furthermore, it is not necessary to tune the controller. For a two-link robot manipulator, the performance of this predictive fuzzy controller is shown to be superior to that of a conventional controller employing an ARMA model of the system in terms of accuracy and consumption of energy.

16. Fuzzy crane control with sensorless payload deflection feedback for vibration reduction

Smoczek, Jaroslaw

2014-05-01

Different types of cranes are widely used for shifting cargoes in building sites, shipping yards, container terminals and many manufacturing segments where the problem of fast and precise transferring a payload suspended on the ropes with oscillations reduction is frequently important to enhance the productivity, efficiency and safety. The paper presents the fuzzy logic-based robust feedback anti-sway control system which can be applicable either with or without a sensor of sway angle of a payload. The discrete-time control approach is based on the fuzzy interpolation of the controllers and crane dynamic model's parameters with respect to the varying rope length and mass of a payload. The iterative procedure combining a pole placement method and interval analysis of closed-loop characteristic polynomial coefficients is proposed to design the robust control scheme. The sensorless anti-sway control application developed with using PAC system with RX3i controller was verified on the laboratory scaled overhead crane.

17. Fuzzy control for linear plants with uncertain output backlashes.

PubMed

Tao, C W

2002-01-01

In this correspondence, a new approach to design a fuzzy controller for systems with uncertain output backlash to have good tracking performance is presented. Without using a compensation mechanism or a backlash inverse, the fuzzy control mechanism is designed to implicitly compensate the delay effect arising from an uncertain output backlash and to make the output backlash system stable without limit cycles. Also, the proposed fuzzy controller is presented to be insensitive to the variations of the backlash and system plant parameters. Moreover, the proposed approach is extended to design a fuzzy controller for a two-input two-output (TITO) linear plant with output backlash. The effectiveness of the designed fuzzy controller is illustrated by the simulation results on linear, low-order, nonlinear plants and the experimental results on an amplifier-motor system with a gear train.

18. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller

ERIC Educational Resources Information Center

Mamdani, E. H.; Assilian, S.

1975-01-01

This paper describes an experiment on the "linguistic" synthesis of a controller for a model industrial plant (a steam engine). Fuzzy logic is used to convert heuristic control rules stated by a human operator into an automatic control strategy. (Author)

19. Control Law for Automatic Landing Using Fuzzy Logic Control

Kato, Akio; Inagaki, Yoshiki

The effectiveness of fuzzy logic control law for automatic landing of aircraft, which cover both of control to lead aircraft from level flight at an altitude of 500m to the flight on the glide-path course near the runway and control for the aircraft to land smoothly on a runway, was studied. The control law of the automatic landing was designed to match the design goals of leading from the horizontal flight to the flight on the glide-path course quickly and smoothly and of landing smoothly on a runway. Because there is the ground effect at landing, design of control law and evaluation of control performance were done in consideration of the ground effect. As a result, it was confirmed that the design objective was achieved. Even if the characteristics of the plant changes greatly, this control law was able to maintain the control performance. Moreover, it was confirmed to be able to land safely when there was air turbulence. This paper shows that fuzzy logic control is an effective and flexible method when applied to control law for automatic landing and the design method of control law using fuzzy logic control was obtained.

20. Application and classification of fuzzy dynamic system and fuzzy linguistic controller with examples illustrated

Wang, Paul P.; Tyan, Ching-Yu

1993-12-01

This paper presents the classification of fuzzy dynamic systems and fuzzy linguistic controllers (FLC) into standard types (TYPE 1 through TYPE 7). The need, utility value, and the logic behind this classification are given. The proposed classification is the result of studying many known examples of FLC applications. The impact of this classification to new designs and to the improved performance of classical and modern control systems is an important consideration.

1. Intelligent robust control for uncertain nonlinear time-varying systems and its application to robotic systems.

PubMed

Chang, Yeong-Chan

2005-12-01

This paper addresses the problem of designing adaptive fuzzy-based (or neural network-based) robust controls for a large class of uncertain nonlinear time-varying systems. This class of systems can be perturbed by plant uncertainties, unmodeled perturbations, and external disturbances. Nonlinear H(infinity) control technique incorporated with adaptive control technique and VSC technique is employed to construct the intelligent robust stabilization controller such that an H(infinity) control is achieved. The problem of the robust tracking control design for uncertain robotic systems is employed to demonstrate the effectiveness of the developed robust stabilization control scheme. Therefore, an intelligent robust tracking controller for uncertain robotic systems in the presence of high-degree uncertainties can easily be implemented. Its solution requires only to solve a linear algebraic matrix inequality and a satisfactorily transient and asymptotical tracking performance is guaranteed. A simulation example is made to confirm the performance of the developed control algorithms.

2. Development of a self-tuning fuzzy logic controller

SciTech Connect

Huang, S.H.; Nelson, R.M.

1999-07-01

To avoid the laborious task of modifying control rule sets for fuzzy logic controllers, a novel model-based self-tuning strategy has been developed. The performance of this advanced fuzzy logic controller is measured and analyzed in a linguistic plane. An optimal performance trajectory functions as the control model. The self-tuning strategy improves the performance automatically until it converges to a predetermined optimal global criterion. The experimental results indicate that the actual performance trajectory of the advanced fuzzy controller with the self-tuning strategy has reached the optimal criterion.

3. Adaptive fuzzy logic control of a static VAR system

SciTech Connect

Dash, P.K.; Routray, A.; Panda, P.C.; Panda, S.K.

1995-12-31

A fuzzy gain scheduling scheme for PID controller for transient and dynamic voltage stabilization of power transmission systems has been presented in this paper. Fuzzy rules and reasoning are utilized on-line to determine the controller parameters based on the error signal and its derivative. The static VAR controller is designed with the bus angle deviation and its rate as the input signal to a fuzzy PI or PID control loop. This control is tested for a power transmission system supplying dynamic loads and provides superior performance.

4. The Fuzzy Logic of MicroRNA Regulation: A Key to Control Cell Complexity

PubMed Central

Ripoli, Andrea; Rainaldi, Giuseppe; Rizzo, Milena; Mercatanti, Alberto; Pitto, Letizia

2010-01-01

Genomic and clinical evidence suggest a major role of microRNAs (miRNAs) in the regulatory mechanisms of gene expression, with a clear impact on development and physiology; miRNAs are a class of endogenous 22-25 nt single-stranded RNA molecules, that negatively regulate gene expression post-transcriptionally, by imperfect base pairing with the 3’ UTR of the corresponding mRNA target. Because of this imperfection, each miRNA can bind multiple targets, and multiple miRNAs can bind the same mRNA target; although digital, the miRNAs control mechanism is characterized by an imprecise action, naturally understandable in the theoretical framework of fuzzy logic. A major practical application of fuzzy logic is represented by the design and the realization of efficient and robust control systems, even when the processes to be controlled show chaotic, deterministic as well unpredictable, behaviours. The vagueness of miRNA action, when considered together with the controlled and chaotic gene expression, is a hint of a cellular fuzzy control system. As a demonstration of the possibility and the effectiveness of miRNA based fuzzy mechanism, a fuzzy cognitive map -a mathematical formalism combining neural network and fuzzy logic- has been developed to study the apoptosis/proliferation control performed by the miRNA-17-92 cluster/E2F1/cMYC circuitry. When experimentally demonstrated, the concept of fuzzy control could modify the way we analyse and model gene expression, with a possible impact on the way we imagine and design therapeutic intervention based on miRNA silencing. PMID:21286312

5. Robust Controller Design for Hemispherical Resonator Gyroscope

DTIC Science & Technology

2011-11-01

f v Figure 1. Operating principle of HRG Robust Controller Design for Hemispherical Resonator Gyroscope Chul Hyun1), Byung ...Petersburg, Russia.: 26-34 4) Chul Hyun. 2011. Design of Robust Digital Controller for Hemispherical Resonator Gyroscopes, Ph.D. dissertation, Seoul

6. Distributed traffic signal control using fuzzy logic

NASA Technical Reports Server (NTRS)

Chiu, Stephen

1992-01-01

We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.

7. A Stochastic Framework for Robust Fuzzy Filtering and Analysis of Signals-Part I.

PubMed

Kumar, Mohit; Stoll, Norbert; Stoll, Regina; Thurow, Kerstin

2016-05-01

There are numerous applications across all the spectrum of scientific areas that demand the mathematical study of signals/data. The two typical study areas of theoretical research on signal/data processing are of modeling (i.e., understanding of signal's behavior) and of analysis (i.e., evaluation of given signal for finding its association to existing signal models). The objective of this paper is to provide a stochastic framework to design both fuzzy filtering and analysis algorithms in a unified manner. The signals are modeled via linear-in-parameters models (e.g., a type of Takagi-Sugeno fuzzy model) based on variational Bayes (VB) methodology. This gives rise to the "negative free energy maximizing" filtering algorithm. The issue of intractability was handled first by carefully choosing the priors as conjugate to the likelihood and then by using Stirling approximation for the Gamma function. This paper highlighted that it was analytically possible to maximize the information theoretic quantity, "mutual information," exactly in the same manner as maximizing "negative free energy" in VB methodology. This gives rise to the "variational information maximizing" analysis algorithm. The robustness of the methodology against data outliers is achieved by modeling the noises with Student- t distributions. The framework takes into account the inputs noises as well apart from the usually considered output noise. The robustness of the adaptive filtering algorithm against noise is shown by a deterministic analysis where an upper bound on the magnitude of estimation errors is derived.

8. Aircraft nonlinear optimal control using fuzzy gain scheduling

Nusyirwan, I. F.; Kung, Z. Y.

2016-10-01

Fuzzy gain scheduling is a common solution for nonlinear flight control. The highly nonlinear region of flight dynamics is determined throughout the examination of eigenvalues and the irregular pattern of root locus plots that show the nonlinear characteristic. By using the optimal control for command tracking, the pitch rate stability augmented system is constructed and the longitudinal flight control system is established. The outputs of optimal control for 21 linear systems are fed into the fuzzy gain scheduler. This research explores the capability in using both optimal control and fuzzy gain scheduling to improve the efficiency in finding the optimal control gains and to achieve Level 1 flying qualities. The numerical simulation work is carried out to determine the effectiveness and performance of the entire flight control system. The simulation results show that the fuzzy gain scheduling technique is able to perform in real time to find near optimal control law in various flying conditions.

9. Robust Multiobjective Controllability of Complex Neuronal Networks.

PubMed

Tang, Yang; Gao, Huijun; Du, Wei; Lu, Jianquan; Vasilakos, Athanasios V; Kurths, Jurgen

2016-01-01

This paper addresses robust multiobjective identification of driver nodes in the neuronal network of a cat's brain, in which uncertainties in determination of driver nodes and control gains are considered. A framework for robust multiobjective controllability is proposed by introducing interval uncertainties and optimization algorithms. By appropriate definitions of robust multiobjective controllability, a robust nondominated sorting adaptive differential evolution (NSJaDE) is presented by means of the nondominated sorting mechanism and the adaptive differential evolution (JaDE). The simulation experimental results illustrate the satisfactory performance of NSJaDE for robust multiobjective controllability, in comparison with six statistical methods and two multiobjective evolutionary algorithms (MOEAs): nondominated sorting genetic algorithms II (NSGA-II) and nondominated sorting composite differential evolution. It is revealed that the existence of uncertainties in choosing driver nodes and designing control gains heavily affects the controllability of neuronal networks. We also unveil that driver nodes play a more drastic role than control gains in robust controllability. The developed NSJaDE and obtained results will shed light on the understanding of robustness in controlling realistic complex networks such as transportation networks, power grid networks, biological networks, etc.

10. Fuzzy logic controllers: A knowledge-based system perspective

NASA Technical Reports Server (NTRS)

Bonissone, Piero P.

1993-01-01

Over the last few years we have seen an increasing number of applications of Fuzzy Logic Controllers. These applications range from the development of auto-focus cameras, to the control of subway trains, cranes, automobile subsystems (automatic transmissions), domestic appliances, and various consumer electronic products. In summary, we consider a Fuzzy Logic Controller to be a high level language with its local semantics, interpreter, and compiler, which enables us to quickly synthesize non-linear controllers for dynamic systems.

11. Design of an iterative auto-tuning algorithm for a fuzzy PID controller

2012-05-01

Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.

12. Robust nonlinear control of vectored thrust aircraft

NASA Technical Reports Server (NTRS)

Doyle, John C.; Murray, Richard; Morris, John

1993-01-01

An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations.

13. Fuzzy logic applications to expert systems and control

NASA Technical Reports Server (NTRS)

Lea, Robert N.; Jani, Yashvant

1991-01-01

A considerable amount of work on the development of fuzzy logic algorithms and application to space related control problems has been done at the Johnson Space Center (JSC) over the past few years. Particularly, guidance control systems for space vehicles during proximity operations, learning systems utilizing neural networks, control of data processing during rendezvous navigation, collision avoidance algorithms, camera tracking controllers, and tether controllers have been developed utilizing fuzzy logic technology. Several other areas in which fuzzy sets and related concepts are being considered at JSC are diagnostic systems, control of robot arms, pattern recognition, and image processing. It has become evident, based on the commercial applications of fuzzy technology in Japan and China during the last few years, that this technology should be exploited by the government as well as private industry for energy savings.

14. Approach to Synchronization Control of Magnetic Bearings Using Fuzzy Logic

NASA Technical Reports Server (NTRS)

Yang, Li-Farn

1996-01-01

This paper presents a fuzzy-logic approach to the synthesis of synchronization control for magnetically suspended rotor system. The synchronization control enables a whirling rotor to undergo synchronous motion along the magnetic bearing axes; thereby avoiding the gyroscopic effect that degrade the stability of rotor systems when spinning at high speed. The control system features a fuzzy controller acting on the magnetic bearing device, in which the fuzzy inference system trained through fuzzy rules to minimize the differential errors between four bearing axes so that an error along one bearing axis can affect the overall control loop for the motion synchronization. Numerical simulations of synchronization control for the magnetically suspended rotor system are presented to show the effectiveness of the present approach.

15. Research in robust control for hypersonic aircraft

NASA Technical Reports Server (NTRS)

Calise, A. J.

1993-01-01

The research during the second reporting period has focused on robust control design for hypersonic vehicles. An already existing design for the Hypersonic Winged-Cone Configuration has been enhanced. Uncertainty models for the effects of propulsion system perturbations due to angle of attack variations, structural vibrations, and uncertainty in control effectiveness were developed. Using H(sub infinity) and mu-synthesis techniques, various control designs were performed in order to investigate the impact of these effects on achievable robust performance.

16. Modeling and robust control of wind turbine

Gilev, Bogdan

2016-12-01

In this paper a model of a wind turbine is evaluated, consisting of: wind speed model, mechanical and electrical model of generator and tower oscillation model. This model is linearized around of a nominal point. By using the linear model with uncertainties is synthesized a uncertain model. By using the uncertain model and robust control theory is developed a robust controller, which provide mode of stabilizing the rotor frequency and damping the tower oscillations. Finally is simulated work of nonlinear system and robust controller

17. Tuning fuzzy PD and PI controllers using reinforcement learning.

PubMed

Boubertakh, Hamid; Tadjine, Mohamed; Glorennec, Pierre-Yves; Labiod, Salim

2010-10-01

In this paper, we propose a new auto-tuning fuzzy PD and PI controllers using reinforcement Q-learning (QL) algorithm for SISO (single-input single-output) and TITO (two-input two-output) systems. We first, investigate the design parameters and settings of a typical class of Fuzzy PD (FPD) and Fuzzy PI (FPI) controllers: zero-order Takagi-Sugeno controllers with equidistant triangular membership functions for inputs, equidistant singleton membership functions for output, Larsen's implication method, and average sum defuzzification method. Secondly, the analytical structures of these typical fuzzy PD and PI controllers are compared to their classical counterpart PD and PI controllers. Finally, the effectiveness of the proposed method is proven through simulation examples.

18. Robust lateral control of highway vehicles

SciTech Connect

Byrne, R.H.; Abdallah, C.

1994-08-01

Vehicle lateral dynamics are affected by vehicle mass, longitudinal velocity, vehicle inertia, and the cornering stiffness of the tires. All of these parameters are subject to variation, even over the course of a single trip. Therefore, a practical lateral control system must guarantee stability, and hopefully ride comfort, over a wide range of parameter changes. This paper describes a robust controller which theoretically guarantees stability over a wide range of parameter changes. The robust controller is designed using a frequency domain transfer function approach. An uncertainty band in the frequency domain is determined using simulations over the range of expected parameter variations. Based on this bound, a robust controller is designed by solving the Nevanlinna-Pick interpolation problem. The performance of the robust controller is then evaluated over the range of parameter variations through simulations.

19. Experimental Robust Control of Structural Acoustic Radiation

NASA Technical Reports Server (NTRS)

Cox, David E.; Gibbs, Gary P.; Clark, Robert L.; Vipperman, Jeffrey S.

1998-01-01

This work addresses the design and application of robust controllers for structural acoustic control. Both simulation and experimental results are presented. H(infinity) and mu-synthesis design methods were used to design feedback controllers which minimize power radiated from a panel while avoiding instability due to unmodeled dynamics. Specifically, high order structural modes which couple strongly to the actuator-sensor path were poorly modeled. This model error was analytically bounded with an uncertainty model, which allowed controllers to be designed without artificial limits on control effort. It is found that robust control methods provide the control designer with physically meaningful parameters with which to tune control designs and can be very useful in determining limits of performance. Experimental results also showed, however, poor robustness properties for control designs with ad-hoc uncertainty models. The importance of quantifying and bounding model errors is discussed.

20. Fuzzy-polar control of wind-turbine generator

SciTech Connect

Idowu, P.

1995-12-31

This paper presents a wind-turbine blade pitch angle controller based on fuzzy polar technique. the technique takes advantage of fuzzy-linguistic modeling in expressing the natural non-linearity or imprecision of the wind-turbine system in determining pitch angles for speed and power regulation. The fuzzy-polar method presents wind-turbine state in the phase-plane in terms of its rotational speed deviation and acceleration. The state vectors thus derived serve as an indicator of the magnitude of departure from the nominal operating point. In order to shift operating state back to the phase plane origin, an acceleration or deceleration control is applied through the pitch-angle adjustment mechanism as defined by the fuzzy-linguistic control law. The performance of the pitch control design method is demonstrated on a simulated wind-turbine-driven synchronous generator.

1. Fuzzy Petri net-based programmable logic controller.

PubMed

Andreu, D; Pascal, J C; Valette, R

1997-01-01

Programmable logic controllers (PLCs) are able to directly implement control sequences specified by means of standard languages such as Grafcet or formal models such as Petri nets. In the case of simple regulation problems between two steps it could be of great interest to introduce a notion of "fuzzy events" in order to denote a continuous evolution from one state to another. This could result from a linear interpolation between the commands attached to two control steps represented by two Petri net (PN) places. This paper is an attempt to develop fuzzy PN-based PLCs in a similar way as fuzzy controllers (regulators). Our approach is based on a combination of Petri nets with possibility theory (Petri nets with fuzzy markings).

2. Applications of robust control theory - Educational implications

NASA Technical Reports Server (NTRS)

Dorato, P.; Yedavalli, R. K.

1992-01-01

A survey is made of applications of robust control theory to problems of flight control, control of flexible space structures, and engine control which have appeared in recent conferences and journals. An analysis is made of which theoretical techniques are most commonly used and what implications this has for graduate and undergraduate education in aerospace engineering.

3. Nonlinear rescaling of control values simplifies fuzzy control

NASA Technical Reports Server (NTRS)

Vanlangingham, H.; Tsoukkas, A.; Kreinovich, V.; Quintana, C.

1993-01-01

Traditional control theory is well-developed mainly for linear control situations. In non-linear cases there is no general method of generating a good control, so we have to rely on the ability of the experts (operators) to control them. If we want to automate their control, we must acquire their knowledge and translate it into a precise control strategy. The experts' knowledge is usually represented in non-numeric terms, namely, in terms of uncertain statements of the type 'if the obstacle is straight ahead, the distance to it is small, and the velocity of the car is medium, press the brakes hard'. Fuzzy control is a methodology that translates such statements into precise formulas for control. The necessary first step of this strategy consists of assigning membership functions to all the terms that the expert uses in his rules (in our sample phrase these words are 'small', 'medium', and 'hard'). The appropriate choice of a membership function can drastically improve the quality of a fuzzy control. In the simplest cases, we can take the functions whose domains have equally spaced endpoints. Because of that, many software packages for fuzzy control are based on this choice of membership functions. This choice is not very efficient in more complicated cases. Therefore, methods have been developed that use neural networks or generic algorithms to 'tune' membership functions. But this tuning takes lots of time (for example, several thousands iterations are typical for neural networks). In some cases there are evident physical reasons why equally space domains do not work: e.g., if the control variable u is always positive (i.e., if we control temperature in a reactor), then negative values (that are generated by equal spacing) simply make no sense. In this case it sounds reasonable to choose another scale u' = f(u) to represent u, so that equal spacing will work fine for u'. In the present paper we formulate the problem of finding the best rescaling function, solve

4. Fuzzy-information-based robustness of interconnected networks against attacks and failures

Zhu, Qian; Zhu, Zhiliang; Wang, Yifan; Yu, Hai

2016-09-01

Cascading failure is fatal in applications and its investigation is essential and therefore became a focal topic in the field of complex networks in the last decade. In this paper, a cascading failure model is established for interconnected networks and the associated data-packet transport problem is discussed. A distinguished feature of the new model is its utilization of fuzzy information in resisting uncertain failures and malicious attacks. We numerically find that the giant component of the network after failures increases with tolerance parameter for any coupling preference and attacking ambiguity. Moreover, considering the effect of the coupling probability on the robustness of the networks, we find that the robustness of the assortative coupling and random coupling of the network model increases with the coupling probability. However, for disassortative coupling, there exists a critical phenomenon for coupling probability. In addition, a critical value that attacking information accuracy affects the network robustness is observed. Finally, as a practical example, the interconnected AS-level Internet in South Korea and Japan is analyzed. The actual data validates the theoretical model and analytic results. This paper thus provides some guidelines for preventing cascading failures in the design of architecture and optimization of real-world interconnected networks.

5. Neuro-fuzzy controller to navigate an unmanned vehicle.

PubMed

Selma, Boumediene; Chouraqui, Samira

2013-12-01

A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).

6. Station-keeping control for a stratospheric airship platform via fuzzy adaptive backstepping approach

Yang, Yueneng; Wu, Jie; Zheng, Wei

2013-04-01

This paper presents a novel approach for station-keeping control of a stratospheric airship platform in the presence of parametric uncertainty and external disturbance. First, conceptual design of the stratospheric airship platform is introduced, including the target mission, configuration, energy sources, propeller and payload. Second, the dynamics model of the airship platform is presented, and the mathematical model of its horizontal motion is derived. Third, a fuzzy adaptive backstepping control approach is proposed to develop the station-keeping control system for the simplified horizontal motion. The backstepping controller is designed assuming that the airship model is accurately known, and a fuzzy adaptive algorithm is used to approximate the uncertainty of the airship model. The stability of the closed-loop control system is proven via the Lyapunov theorem. Finally, simulation results illustrate the effectiveness and robustness of the proposed control approach.

7. Adaptive Fuzzy Control of a Direct Drive Motor

NASA Technical Reports Server (NTRS)

Medina, E.; Kim, Y. T.; Akbaradeh-T., M. -R.

1997-01-01

This paper presents a state feedback adaptive control method for position and velocity control of a direct drive motor. The proposed control scheme allows for integrating heuristic knowledge with mathematical knowledge of a system. It performs well even when mathematical model of the system is poorly understood. The controller consists of an adaptive fuzzy controller and a supervisory controller. The supervisory controller requires only knowledge of the upper bound and lower bound of the system parameters. The fuzzy controller is based on fuzzy basis functions and states of the system. The adaptation law is derived based on the Lyapunov function which ensures that the state of the system asymptotically approaches zero. The proposed controller is applied to a direct drive motor with payload and parameter uncertainty, and the effectiveness is verified by simulation results.

8. Robust Reachability of Boolean Control Networks.

PubMed

Li, Fangfei; Tang, Yang

2016-04-20

Boolean networks serve a powerful tool in analysis of genetic regulatory networks since it emphasizes the fundamental principles and establishes a nature framework for capturing the dynamics of regulation of cellular states. In this paper, the robust reachability of Boolean control networks is investigated by means of semi-tensor product. Necessary and sufficient conditions for the robust reachability of Boolean control networks are provided, in which control inputs relying on disturbances or not are considered, respectively. Besides, the corresponding control algorithms are developed for these two cases. A reduced model of the lac operon in the Escherichia coli is presented to show the effectiveness of the presented results.

9. Analysis and Synthesis of Memory-Based Fuzzy Sliding Mode Controllers.

PubMed

Zhang, Jinhui; Lin, Yujuan; Feng, Gang

2015-12-01

This paper addresses the sliding mode control problem for a class of Takagi-Sugeno fuzzy systems with matched uncertainties. Different from the conventional memoryless sliding surface, a memory-based sliding surface is proposed which consists of not only the current state but also the delayed state. Both robust and adaptive fuzzy sliding mode controllers are designed based on the proposed memory-based sliding surface. It is shown that the sliding surface can be reached and the closed-loop control system is asymptotically stable. Furthermore, to reduce the chattering, some continuous sliding mode controllers are also presented. Finally, the ball and beam system is used to illustrate the advantages and effectiveness of the proposed approaches. It can be seen that, with the proposed control approaches, not only can the stability be guaranteed, but also its transient performance can be improved significantly.

10. Fuzzy control of parabolic antenna with backlash compensation

Ahmed, Mohammed; Noor, Samsul Bahari B. Mohd

2015-05-01

A fuzzy logic based controller (FLC) was proposed for position control of a parabolic dish antenna system with the major aim of eradicating the effect backlash disturbance which may be present in the system. The disturbance is nonlinear and is capable of generating steady state positional errors. Simulation results obtained using SIMULINK/MATLAB 2012a were compared with those obtained when the controller was proportional-derivative controller (PDC). The fuzzy controller portrays that it has the capability of reducing the noise due to backlash and possibly others more than the proportional-derivative controller.

11. Implementation of a new fuzzy vector control of induction motor.

PubMed

Rafa, Souad; Larabi, Abdelkader; Barazane, Linda; Manceur, Malik; Essounbouli, Najib; Hamzaoui, Abdelaziz

2014-05-01

The aim of this paper is to present a new approach to control an induction motor using type-1 fuzzy logic. The induction motor has a nonlinear model, uncertain and strongly coupled. The vector control technique, which is based on the inverse model of the induction motors, solves the coupling problem. Unfortunately, in practice this is not checked because of model uncertainties. Indeed, the presence of the uncertainties led us to use human expertise such as the fuzzy logic techniques. In order to maintain the decoupling and to overcome the problem of the sensitivity to the parametric variations, the field-oriented control is replaced by a new block control. The simulation results show that the both control schemes provide in their basic configuration, comparable performances regarding the decoupling. However, the fuzzy vector control provides the insensitivity to the parametric variations compared to the classical one. The fuzzy vector control scheme is successfully implemented in real-time using a digital signal processor board dSPACE 1104. The efficiency of this technique is verified as well as experimentally at different dynamic operating conditions such as sudden loads change, parameter variations, speed changes, etc. The fuzzy vector control is found to be a best control for application in an induction motor.

12. Robust control for large space antennas

NASA Technical Reports Server (NTRS)

Barrett, M. F.

1987-01-01

A brief description of program objectives and the space based radar application is given. General characteristics of the 100 m diameter reflector spacecraft are described along with the intended mission and associated requirements, and dynamic characteristics relevant to that mission. Preliminary control analyses are carried out for the critical rapid slew and settle maneuver to establish feedback control requirements and fundamental limitations in meeting those requirements with control hardware for a baseline reaction control system (RCS) jet placement assumed for the open loop bang-bang slew limitations. Control moment gyros (CMGs), angular position sensors, and linear translation sensors are placed for feedback control. Control laws are designed for the improved sensor and actuator placement and evaluated for performance and robustness to unstructured model uncertainty. The robustness of the control design is assessed with respect to modal parameter uncertainty. Results of the control designs analyses are summarized, conclusions are drawn, and recommendations made for future studies.

13. Intelligent control of a multi-degree-of freedom reaction compensating platform system using fuzzy logic

NASA Technical Reports Server (NTRS)

Choi, Benjamin B.; Lawrence, Charles; Lin, Yueh-Jaw

1994-01-01

This paper presents the development of a general-purpose fuzzy logic (FL) control methodology for isolating the external vibratory disturbances of space-based devices. According to the desired performance specifications, a full investigation regarding the development of an FL controller was done using different scenarios, such as variances of passive reaction-compensating components and external disturbance load. It was shown that the proposed FL controller is robust in that the FL-controlled system closely follows the prespecified ideal reference model. The comparative study also reveals that the FL-controlled system achieves significant improvement in reducing vibrations over passive systems.

14. Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models.

PubMed

Dong, Jiuxiang; Wang, Youyi; Yang, Guang-Hong

2009-10-01

This paper is concerned with the problem of designing fuzzy controllers for a class of nonlinear dynamic systems. The considered nonlinear systems are described by T-S fuzzy models with nonlinear local models, and the fuzzy models have fewer fuzzy rules than conventional T-S fuzzy models with local linear models. A new fuzzy control scheme with local nonlinear feedbacks is proposed, and the corresponding control synthesis conditions are given in terms of solutions to a set of linear matrix inequalities (LMIs). In contrast to the existing methods for fuzzy control synthesis, the new proposed control design method is based on fewer fuzzy rules and less computational burden. Moreover, the local nonlinear feedback laws in the new fuzzy controllers are also helpful in achieving good control effects. Numerical examples are given to illustrate the effectiveness of the proposed method.

15. Robust Fault Detection for Aircraft Using Mixed Structured Singular Value Theory and Fuzzy Logic

NASA Technical Reports Server (NTRS)

Collins, Emmanuel G.

2000-01-01

The purpose of fault detection is to identify when a fault or failure has occurred in a system such as an aircraft or expendable launch vehicle. The faults may occur in sensors, actuators, structural components, etc. One of the primary approaches to model-based fault detection relies on analytical redundancy. That is the output of a computer-based model (actually a state estimator) is compared with the sensor measurements of the actual system to determine when a fault has occurred. Unfortunately, the state estimator is based on an idealized mathematical description of the underlying plant that is never totally accurate. As a result of these modeling errors, false alarms can occur. This research uses mixed structured singular value theory, a relatively recent and powerful robustness analysis tool, to develop robust estimators and demonstrates the use of these estimators in fault detection. To allow qualitative human experience to be effectively incorporated into the detection process fuzzy logic is used to predict the seriousness of the fault that has occurred.

16. Robust kernelized local information fuzzy C-means clustering for brain magnetic resonance image segmentation.

PubMed

Elazab, Ahmed; AbdulAzeem, Yousry M; Wu, Shiqian; Hu, Qingmao

2016-03-17

Brain tissue segmentation from magnetic resonance (MR) images is an importance task for clinical use. The segmentation process becomes more challenging in the presence of noise, grayscale inhomogeneity, and other image artifacts. In this paper, we propose a robust kernelized local information fuzzy C-means clustering algorithm (RKLIFCM). It incorporates local information into the segmentation process (both grayscale and spatial) for more homogeneous segmentation. In addition, the Gaussian radial basis kernel function is adopted as a distance metric to replace the standard Euclidean distance. The main advantages of the new algorithm are: efficient utilization of local grayscale and spatial information, robustness to noise, ability to preserve image details, free from any parameter initialization, and with high speed as it runs on image histogram. We compared the proposed algorithm with 7 soft clustering algorithms that run on both image histogram and image pixels to segment brain MR images. Experimental results demonstrate that the proposed RKLIFCM algorithm is able to overcome the influence of noise and achieve higher segmentation accuracy with low computational complexity.

17. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain.

PubMed

Luo, Shaohua

2014-09-01

This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.

18. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain

SciTech Connect

Luo, Shaohua

2014-09-01

This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.

19. Neuro-Fuzzy Control of a Robotic Manipulator

Gierlak, P.; Muszyńska, M.; Żylski, W.

2014-08-01

In this paper, to solve the problem of control of a robotic manipulator's movement with holonomical constraints, an intelligent control system was used. This system is understood as a hybrid controller, being a combination of fuzzy logic and an artificial neural network. The purpose of the neuro-fuzzy system is the approximation of the nonlinearity of the robotic manipulator's dynamic to generate a compensatory control. The control system is designed in such a way as to permit modification of its properties under different operating conditions of the two-link manipulator

20. A Numerical Optimization Approach for Tuning Fuzzy Logic Controllers

NASA Technical Reports Server (NTRS)

Woodard, Stanley E.; Garg, Devendra P.

1998-01-01

This paper develops a method to tune fuzzy controllers using numerical optimization. The main attribute of this approach is that it allows fuzzy logic controllers to be tuned to achieve global performance requirements. Furthermore, this approach allows design constraints to be implemented during the tuning process. The method tunes the controller by parameterizing the membership functions for error, change-in-error and control output. The resulting parameters form a design vector which is iteratively changed to minimize an objective function. The minimal objective function results in an optimal performance of the system. A spacecraft mounted science instrument line-of-sight pointing control is used to demonstrate results.

1. Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes

NASA Technical Reports Server (NTRS)

Duerksen, Noel

1997-01-01

It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control different airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control aileron or roll spoiler position. This controller was used to control bank angle for both a piston powered single engine aileron equipped airplane simulation and a business jet simulation which used spoilers for primary roll control. Overspeed, stall and overbank protection were incorporated in the form of expert systems supervisors and weighted fuzzy rules. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic lateral controller could be successfully used on two general aviation aircraft types that have very different characteristics. These controllers worked for both airplanes over their entire flight envelopes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle ]ever travel, etc.). This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

2. Mathematical models of the simplest fuzzy PI/PD controllers with skewed input and output fuzzy sets.

PubMed

Mohan, B M; Sinha, Arpita

2008-07-01

This paper unveils mathematical models for fuzzy PI/PD controllers which employ two skewed fuzzy sets for each of the two-input variables and three skewed fuzzy sets for the output variable. The basic constituents of these models are Gamma-type and L-type membership functions for each input, trapezoidal/triangular membership functions for output, intersection/algebraic product triangular norm, maximum/drastic sum triangular conorm, Mamdani minimum/Larsen product/drastic product inference method, and center of sums defuzzification method. The existing simplest fuzzy PI/PD controller structures derived via symmetrical fuzzy sets become special cases of the mathematical models revealed in this paper. Finally, a numerical example along with its simulation results are included to demonstrate the effectiveness of the simplest fuzzy PI controllers.

3. Robustness of network controllability in cascading failure

Chen, Shi-Ming; Xu, Yun-Fei; Nie, Sen

2017-04-01

It is demonstrated that controlling complex networks in practice needs more inputs than that predicted by the structural controllability framework. Besides, considering the networks usually faces to the external or internal failure, we define parameters to evaluate the control cost and the variation of controllability after cascades, exploring the effect of number of control inputs on the controllability for random networks and scale-free networks in the process of cascading failure. For different topological networks, the results show that the robustness of controllability will be stronger through allocating different control inputs and edge capacity.

4. Robust Control for the Segway with Unknown Control Coefficient and Model Uncertainties

PubMed Central

Kim, Byung Woo; Park, Bong Seok

2016-01-01

The Segway, which is a popular vehicle nowadays, is an uncertain nonlinear system and has an unknown time-varying control coefficient. Thus, we should consider the unknown time-varying control coefficient and model uncertainties to design the controller. Motivated by this observation, we propose a robust control for the Segway with unknown control coefficient and model uncertainties. To deal with the time-varying unknown control coefficient, we employ the Nussbaum gain technique. We introduce an auxiliary variable to solve the underactuated problem. Due to the prescribed performance control technique, the proposed controller does not require the adaptive technique, neural network, and fuzzy logic to compensate the uncertainties. Therefore, it can be simple. From the Lyapunov stability theory, we prove that all signals in the closed-loop system are bounded. Finally, we provide the simulation results to demonstrate the effectiveness of the proposed control scheme. PMID:27367696

5. Robust Control for the Segway with Unknown Control Coefficient and Model Uncertainties.

PubMed

Kim, Byung Woo; Park, Bong Seok

2016-06-29

The Segway, which is a popular vehicle nowadays, is an uncertain nonlinear system and has an unknown time-varying control coefficient. Thus, we should consider the unknown time-varying control coefficient and model uncertainties to design the controller. Motivated by this observation, we propose a robust control for the Segway with unknown control coefficient and model uncertainties. To deal with the time-varying unknown control coefficient, we employ the Nussbaum gain technique. We introduce an auxiliary variable to solve the underactuated problem. Due to the prescribed performance control technique, the proposed controller does not require the adaptive technique, neural network, and fuzzy logic to compensate the uncertainties. Therefore, it can be simple. From the Lyapunov stability theory, we prove that all signals in the closed-loop system are bounded. Finally, we provide the simulation results to demonstrate the effectiveness of the proposed control scheme.

6. Robust algebraic image enhancement for intelligent control systems

NASA Technical Reports Server (NTRS)

Lerner, Bao-Ting; Morrelli, Michael

1993-01-01

Robust vision capability for intelligent control systems has been an elusive goal in image processing. The computationally intensive techniques a necessary for conventional image processing make real-time applications, such as object tracking and collision avoidance difficult. In order to endow an intelligent control system with the needed vision robustness, an adequate image enhancement subsystem capable of compensating for the wide variety of real-world degradations, must exist between the image capturing and the object recognition subsystems. This enhancement stage must be adaptive and must operate with consistency in the presence of both statistical and shape-based noise. To deal with this problem, we have developed an innovative algebraic approach which provides a sound mathematical framework for image representation and manipulation. Our image model provides a natural platform from which to pursue dynamic scene analysis, and its incorporation into a vision system would serve as the front-end to an intelligent control system. We have developed a unique polynomial representation of gray level imagery and applied this representation to develop polynomial operators on complex gray level scenes. This approach is highly advantageous since polynomials can be manipulated very easily, and are readily understood, thus providing a very convenient environment for image processing. Our model presents a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets.

7. A Fuzzy Permutation Method for False Discovery Rate Control.

PubMed

Yang, Ya-Hui; Lin, Wan-Yu; Lee, Wen-Chung

2016-06-22

Biomedical researchers often encounter the large-p-small-n situations-a great number of variables are measured/recorded for only a few subjects. The authors propose a fuzzy permutation method to address the multiple testing problem for small sample size studies. The method introduces fuzziness into standard permutation analysis to produce randomized p-values, which are then converted into q-values for false discovery rate controls. Simple algebra shows that the fuzzy permutation method is at least as powerful as the standard permutation method under any alternative. Monte-Carlo simulations show that the proposed method has desirable statistical properties whether the study variables are normally or non-normally distributed. A real dataset is analyzed to illustrate its use. The proposed fuzzy permutation method is recommended for use in the large-p-small-n settings.

8. Synthesis Methods for Robust Passification and Control

NASA Technical Reports Server (NTRS)

Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)

2000-01-01

The research effort under this cooperative agreement has been essentially the continuation of the work from previous grants. The ongoing work has primarily focused on developing passivity-based control techniques for Linear Time-Invariant (LTI) systems. During this period, there has been a significant progress made in the area of passivity-based control of LTI systems and some preliminary results have also been obtained for nonlinear systems, as well. The prior work has addressed optimal control design for inherently passive as well as non- passive linear systems. For exploiting the robustness characteristics of passivity-based controllers the passification methodology was developed for LTI systems that are not inherently passive. Various methods of passification were first proposed in and further developed. The robustness of passification was addressed for multi-input multi-output (MIMO) systems for certain classes of uncertainties using frequency-domain methods. For MIMO systems, a state-space approach using Linear Matrix Inequality (LMI)-based formulation was presented, for passification of non-passive LTI systems. An LMI-based robust passification technique was presented for systems with redundant actuators and sensors. The redundancy in actuators and sensors was used effectively for robust passification using the LMI formulation. The passification was designed to be robust to an interval-type uncertainties in system parameters. The passification techniques were used to design a robust controller for Benchmark Active Control Technology wing under parametric uncertainties. The results on passive nonlinear systems, however, are very limited to date. Our recent work in this area was presented, wherein some stability results were obtained for passive nonlinear systems that are affine in control.

9. Average-cost based robust structural control

NASA Technical Reports Server (NTRS)

Hagood, Nesbitt W.

1993-01-01

A method is presented for the synthesis of robust controllers for linear time invariant structural systems with parameterized uncertainty. The method involves minimizing quantities related to the quadratic cost (H2-norm) averaged over a set of systems described by real parameters such as natural frequencies and modal residues. Bounded average cost is shown to imply stability over the set of systems. Approximations for the exact average are derived and proposed as cost functionals. The properties of these approximate average cost functionals are established. The exact average and approximate average cost functionals are used to derive dynamic controllers which can provide stability robustness. The robustness properties of these controllers are demonstrated in illustrative numerical examples and tested in a simple SISO experiment on the MIT multi-point alignment testbed.

10. Structurally robust control of complex networks

Nacher, Jose C.; Akutsu, Tatsuya

2015-01-01

Robust control theory has been successfully applied to numerous real-world problems using a small set of devices called controllers. However, the real systems represented by networks contain unreliable components and modern robust control engineering has not addressed the problem of structural changes on complex networks including scale-free topologies. Here, we introduce the concept of structurally robust control of complex networks and provide a concrete example using an algorithmic framework that is widely applied in engineering. The developed analytical tools, computer simulations, and real network analyses lead herein to the discovery that robust control can be achieved in scale-free networks with exactly the same order of controllers required in a standard nonrobust configuration by adjusting only the minimum degree. The presented methodology also addresses the probabilistic failure of links in real systems, such as neural synaptic unreliability in Caenorhabditis elegans, and suggests a new direction to pursue in studies of complex networks in which control theory has a role.

11. A comparison of fuzzy logic-PID control strategies for PWR pressurizer control

SciTech Connect

Kavaklioglu, K.; Ikonomopoulos, A. )

1993-01-01

This paper describes the results obtained from a comparison performed between classical proportional-integral-derivative (PID) and fuzzy logic (FL) controlling the pressure in a pressurized water reactor (PWR). The two methodologies have been tested under various transient scenarios, and their performances are evaluated with respect to robustness and on-time response to external stimuli. One of the main concerns in the safe operation of PWR is the pressure control in the primary side of the system. In order to maintain the pressure in a PWR at the desired level, the pressurizer component equipped with sprayers, heaters, and safety relief valves is used. The control strategy in a Westinghouse PWR is implemented with a PID controller that initiates either the electric heaters or the sprayers, depending on the direction of the coolant pressure deviation from the setpoint.

12. Fuzzy Logic Controller Based on Observed Signals and a Genetic Algorithm Application with STATCOM for Power System Stabilization

Hongesombut, Komsan; Mitani, Yasunori; Tsuji, Kiichiro

Fuzzy logic control has been applied to various applications in power systems. Its control rules and membership functions are typically obtained by trial and error methods or experience knowledge. Proposed here is the application of a micro-genetic algorithm (micro-GA) to simultaneously design optimal membership functions and control rules for STATCOM. First, we propose a simple approach to extract membership functions and fuzzy logic control rules based on observed signals. Then a proposed GA will be applied to optimize membership functions and its control rules. To validate the effectiveness of the proposed approach, several simulation studies have been performed on a multimachine power system. Simulation results show that the proposed fuzzy logic controller with STATCOM can effectively and robustly enhance the damping of oscillations.

13. Application of genetic algorithms to tuning fuzzy control systems

NASA Technical Reports Server (NTRS)

Espy, Todd; Vombrack, Endre; Aldridge, Jack

1993-01-01

Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.

14. Autonomous vehicle motion control, approximate maps, and fuzzy logic

NASA Technical Reports Server (NTRS)

Ruspini, Enrique H.

1993-01-01

Progress on research on the control of actions of autonomous mobile agents using fuzzy logic is presented. The innovations described encompass theoretical and applied developments. At the theoretical level, results of research leading to the combined utilization of conventional artificial planning techniques with fuzzy logic approaches for the control of local motion and perception actions are presented. Also formulations of dynamic programming approaches to optimal control in the context of the analysis of approximate models of the real world are examined. Also a new approach to goal conflict resolution that does not require specification of numerical values representing relative goal importance is reviewed. Applied developments include the introduction of the notion of approximate map. A fuzzy relational database structure for the representation of vague and imprecise information about the robot's environment is proposed. Also the central notions of control point and control structure are discussed.

15. An architecture for designing fuzzy logic controllers using neural networks

NASA Technical Reports Server (NTRS)

Berenji, Hamid R.

1991-01-01

Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.

16. Fuzzy Regulator Design for Wind Turbine Yaw Control

PubMed Central

Koulouras, Grigorios

2014-01-01

This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness. PMID:24693237

17. Fuzzy regulator design for wind turbine yaw control.

PubMed

Theodoropoulos, Stefanos; Kandris, Dionisis; Samarakou, Maria; Koulouras, Grigorios

2014-01-01

This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness.

18. Fuzzy Control of Flexible-Link Manipulators: A Review

NASA Technical Reports Server (NTRS)

Akbarzadeh-T, M.-R.; Quintana, S.; Jamshidi, M.

1998-01-01

Several recent research efforts are reviewed here which have applied fuzzy logic in control of flexible-link manipulators. A flexible robot is a distributed parameter system represented by complex nonlinear dynamics, its actuator and the control parameters are non-colocated, and lastly, unstructured/unknown parameters play a significant role in model dynamics of a flexible robot operating in the real world. As a result, control of flexible robots is considered a promising area for application of intelligent control methodologies such as fuzzy logic, genetic algorithms, and neural networks.

19. Matlab as a robust control design tool

NASA Technical Reports Server (NTRS)

Gregory, Irene M.

1994-01-01

This presentation introduces Matlab as a tool used in flight control research. The example used to illustrate some of the capabilities of this software is a robust controller designed for a single stage to orbit air breathing vehicles's ascent to orbit. The global requirements of the controller are to stabilize the vehicle and follow a trajectory in the presence of atmospheric disturbances and strong dynamic coupling between airframe and propulsion.

20. Robust Adaptive Control of Hypnosis During Anesthesia

DTIC Science & Technology

2007-11-02

1 of 4 ROBUST ADAPTIVE CONTROL OF HYPNOSIS DURING ANESTHESIA Pascal Grieder1, Andrea Gentilini1, Manfred Morari1, Thomas W. Schnider2 1ETH Zentrum...A closed-loop controller for hypnosis was designed and validated on humans at our laboratory. The controller aims at regulat- ing the Bispectral Index...BIS) - a surro- gate measure of hypnosis derived from the electroencephalogram of the patient - with the volatile anesthetic isoflurane administered

1. Robust control algorithms for Mars aerobraking

Shipley, Buford W., Jr.; Ward, Donald T.

Four atmospheric guidance concepts have been adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. The first two offer improvements to the Analytic Predictor Corrector (APC) to increase its robustness to density variations. The second two are variations of a new Liapunov tracking exit phase algorithm, developed to guide the vehicle along a reference trajectory. These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. MARSGRAM is used to develop realistic atmospheres for the study. When square wave density pulses perturb the atmosphere all four controllers are successful. The algorithms are tested against atmospheres where the inbound and outbound density functions are different. Square wave density pulses are again used, but only for the outbound leg of the trajectory. Additionally, sine waves are used to perturb the density function. The new algorithms are found to be more robust than any previously tested and a Liapunov controller is selected as the most robust control algorithm overall examined.

2. A new fuzzy self-tuning PD load frequency controller for micro-hydropower system

Reyasudin Basir Khan, M.; Jidin, Razali; Pasupuleti, Jagadeesh

2016-03-01

This paper presents a new approach for controlling the secondary load bank of a micro-hydropower system using a fuzzy self-tuning proportional-derivative (PD) controller. This technology is designed in order to optimize the micro-hydropower system in a resort island located in the South China Sea. Thus, this technology will be able to mitigate the diesel fuel consumption and cost of electricity supply on the island. The optimal hydropower generation for this system depends on the available stream flow at the potential sites. At low stream flow, both the micro-hydropower system and the currently installed diesel generators are required to feed the load. However, when the hydropower generation exceeds the load demand, the diesel generator is shut down. Meanwhile, the system frequency is controlled by a secondary load bank that absorbs the hydropower which exceeds the consumer demand. The fuzzy rules were designed to automatically tune the PD gains under dynamic frequency variations. Performances of the fuzzy self-tuning PD controller were compared with the conventional PD controller. The result of the controller implementation shows the viability of the proposed new controller in achieving a higher performance and more robust load frequency control than the conventional PD controller.

3. Flight test results of the fuzzy logic adaptive controller-helicopter (FLAC-H)

Wade, Robert L.; Walker, Gregory W.

1996-05-01

The fuzzy logic adaptive controller for helicopters (FLAC-H) demonstration is a cooperative effort between the US Army Simulation, Training, and Instrumentation Command (STRICOM), the US Army Aviation and Troop Command, and the US Army Missile Command to demonstrate a low-cost drone control system for both full-scale and sub-scale helicopters. FLAC-H was demonstrated on one of STRICOM's fleet of full-scale rotary-winged target drones. FLAC-H exploits fuzzy logic in its flight control system to provide a robust solution to the control of the helicopter's dynamic, nonlinear system. Straight forward, common sense fuzzy rules governing helicopter flight are processed instead of complex mathematical models. This has resulted in a simplified solution to the complexities of helicopter flight. Incorporation of fuzzy logic reduced the cost of development and should also reduce the cost of maintenance of the system. An adaptive algorithm allows the FLAC-H to 'learn' how to fly the helicopter, enabling the control system to adjust to varying helicopter configurations. The adaptive algorithm, based on genetic algorithms, alters the fuzzy rules and their related sets to improve the performance characteristics of the system. This learning allows FLAC-H to automatically be integrated into a new airframe, reducing the development costs associated with altering a control system for a new or heavily modified aircraft. Successful flight tests of the FLAC-H on a UH-1H target drone were completed in September 1994 at the White Sands Missile Range in New Mexico. This paper discuses the objective of the system, its design, and performance.

4. A fault-tolerant attitude control system for a satellite based on fuzzy global sliding mode control algorithm

Liang, Jinjin; Dong, Chaoyang; Wang, Qing

2008-10-01

The structures and missions of modern satellites are very complicated, so the reliability of satellites is becoming increasingly important. This paper proposed a fault-tolerant attitude control system for a satellite based on Fuzzy Global Sliding Mode Control (FGSMC) algorithm. We designed a controller for the nonlinear model of a satellite. By designing a global sliding surface, this controller can ensure that the response of the system has global robustness against the uncertainties of system and external disturbances. In this paper attitude control is performed by four reaction flywheels. The attitude control system distributed the three control torques to the four reaction flywheels according to the distribution matrix. We deduced the formula to calculate the distribution matrix. Paper proved the stability of the designed control law, and simulated the attitude control system. The simulation results show that the attitude control law has high accuracy and robustness.

5. Sinusoidal rotatory chair system by an auto-tuning fuzzy PID controller

SciTech Connect

Park, H.A.; Cha, I.S.; Baek, H.L.

1995-12-31

This paper presents DC servo motor speed control characteristics by fuzzy logic controller and considers position following control response with controller. A sinusoidal rotatory chair system using an auto tuning fuzzy PID control was designed to evaluate the vestibular function. Then the system is investigated for the effects of change by the fuzziness of fuzzy variable. If this system is supported by a channel, it is considered for application in industry of multi joint robot and precision parallel driving.

6. Full design of fuzzy controllers using genetic algorithms

NASA Technical Reports Server (NTRS)

Homaifar, Abdollah; Mccormick, ED

1992-01-01

This paper examines the applicability of genetic algorithms (GA) in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.

7. Real Time & Power Efficient Adaptive - Robust Control

Ioan Gliga, Lavinius; Constantin Mihai, Cosmin; Lupu, Ciprian; Popescu, Dumitru

2017-01-01

A design procedure for a control system suited for dynamic variable processes is presented in this paper. The proposed adaptive - robust control strategy considers both adaptive control advantages and robust control benefits. It estimates the degradation of the system’s performances due to the dynamic variation in the process and it then utilizes it to determine when the system must be adapted with a redesign of the robust controller. A single integral criterion is used for the identification of the process, and for the design of the control algorithm, which is expressed in direct form, through a cost function defined in the space of the parameters of both the process and the controller. For the minimization of this nonlinear function, an adequate mathematical programming minimization method is used. The theoretical approach presented in this paper was validated for a closed loop control system, simulated in an application developed in C. Because of the reduced number of operations, this method is suitable for implementation on fast processes. Due to its effectiveness, it increases the idle time of the CPU, thereby saving electrical energy.

8. Hybrid supervisory control using recurrent fuzzy neural network for tracking periodic inputs.

PubMed

Lin, F J; Wai, R J; Hong, C M

2001-01-01

A hybrid supervisory control system using a recurrent fuzzy neural network (RFNN) is proposed to control the mover of a permanent magnet linear synchronous motor (PMLSM) servo drive for the tracking of periodic reference inputs. First, the field-oriented mechanism is applied to formulate the dynamic equation of the PMLSM. Then, a hybrid supervisory control system, which combines a supervisory control system and an intelligent control system, is proposed to control the mover of the PMLSM for periodic motion. The supervisory control law is designed based on the uncertainty bounds of the controlled system to stabilize the system states around a predefined bound region. Since the supervisory control law will induce excessive and chattering control effort, the intelligent control system is introduced to smooth and reduce the control effort when the system states are inside the predefined bound region. In the intelligent control system, the RFNN control is the main tracking controller which is used to mimic a idea control law and a compensated control is proposed to compensate the difference between the idea control law and the RFNN control. The RFNN has the merits of fuzzy inference, dynamic mapping and fast convergence speed, In addition, an online parameter training methodology, which is derived using the Lyapunov stability theorem and the gradient descent method, is proposed to increase the learning capability of the RFNN. The proposed hybrid supervisory control system using RFNN can track various periodic reference inputs effectively with robust control performance.

9. A robust adaptive nonlinear fault-tolerant controller via norm estimation for reusable launch vehicles

Hu, Chaofang; Gao, Zhifei; Ren, Yanli; Liu, Yunbing

2016-11-01

In this paper, a reusable launch vehicle (RLV) attitude control problem with actuator faults is addressed via the robust adaptive nonlinear fault-tolerant control (FTC) with norm estimation. Firstly, the accurate tracking task of attitude angles in the presence of parameter uncertainties and external disturbances is considered. A fault-free controller is proposed using dynamic surface control (DSC) combined with fuzzy adaptive approach. Furthermore, the minimal learning parameter strategy via norm estimation technique is introduced to reduce the multi-parameter adaptive computation burden of fuzzy approximation of the lump uncertainties. Secondly, a compensation controller is designed to handle the partial loss fault of actuator effectiveness. The unknown maximum eigenvalue of actuator efficiency loss factors is estimated online. Moreover, stability analysis guarantees that all signals of the closed-loop control system are semi-global uniformly ultimately bounded. Finally, illustrative simulations show the effectiveness of the proposed method.

10. A queuing-theory-based interval-fuzzy robust two-stage programming model for environmental management under uncertainty

Sun, Y.; Li, Y. P.; Huang, G. H.

2012-06-01

In this study, a queuing-theory-based interval-fuzzy robust two-stage programming (QB-IRTP) model is developed through introducing queuing theory into an interval-fuzzy robust two-stage (IRTP) optimization framework. The developed QB-IRTP model can not only address highly uncertain information for the lower and upper bounds of interval parameters but also be used for analysing a variety of policy scenarios that are associated with different levels of economic penalties when the promised targets are violated. Moreover, it can reflect uncertainties in queuing theory problems. The developed method has been applied to a case of long-term municipal solid waste (MSW) management planning. Interval solutions associated with different waste-generation rates, different waiting costs and different arriving rates have been obtained. They can be used for generating decision alternatives and thus help managers to identify desired MSW management policies under various economic objectives and system reliability constraints.

11. FEM Optimization of Spin Forming Using a Fuzzy Control Algorithm

Yoshihara, S.; Ray, P.; MacDonald, B. J.; Koyama, H.; Kawahara, M.

2004-06-01

Finite element (FE) simulation of the manufacturing of a conical nosing such as a pressure vessel from circular tubes, using the spin forming method, was performed on the commercially available software package, ANSYS/LS-DYNA3D. The finite element method (FEM) provides a powerful tool for evaluating the potential to form the pressure vessel with proposed modifications to the process. The use of fuzzy logic inference as a control system to achieve the designed shape of the pressure vessel was investigated using the FEM. The path of the roller as a process parameter was decided by the fuzzy inference control algorithm from information of the result of deformation of each element respectively. The fuzzy control algorithm investigated was validated from the results of the production process time and the deformed shape using FE simulation.

12. Robust blood-glucose control using Mathematica.

PubMed

Kovács, Levente; Paláncz, Béla; Benyó, Balázs; Török, László; Benyó, Zoltán

2006-01-01

A robust control design on frequency domain using Mathematica is presented for regularization of glucose level in type I diabetes persons under intensive care. The method originally proposed under Mathematica by Helton and Merino, --now with an improved disturbance rejection constraint inequality--is employed, using a three-state minimal patient model. The robustness of the resulted high-order linear controller is demonstrated by nonlinear closed loop simulation in state-space, in case of standard meal disturbances and is compared with H infinity design implemented with the mu-toolbox of Matlab. The controller designed with model parameters represented the most favorable plant dynamics from the point of view of control purposes, can operate properly even in case of parameter values of the worst-case scenario.

13. Robust Stabilization Control for an Electric Bicycle

Kawamura, Takuro; Murakami, Toshiyuki

Recently, bicycles have gained immense popularity because they have high mobility and are an environment-friendly means of transport. However, many people tend to avoid riding a bicycle because it is unstable. In order to solve this problem, stabilization control for a bicycle has been researched. The aim of this study is improvement of the robustness in stabilization control. To achieve this goal, control systems that use a camber angle disturbance observer (CADO) are proposed. Two kinds of CADOs are proposed in this paper, and the performances of these two observers are compared. The proposed control systems provide higher robustness than does the conventional method. The validity of the proposed methods is confirmed by the experimental results.

14. Robust dynamic inversion control laws for aircraft control

NASA Technical Reports Server (NTRS)

Balas, Gary J.; Garrard, William L.; Reiner, Jakob

1992-01-01

Dynamic inversion is a technique for control law design in which feedback is used to simultaneously cancel system dynamics and achieve desired dynamic response characteristics. However, dynamic inversion control laws lack robustness to modeling errors if improperly designed. This paper examines a simple linear example, control of roll rate about the body axis of high performance aircraft, to illustrate some robustness problems which may occur with a simple dynamic inversion control law. The paper demonstrates how structured singular value synthesis techniques can be used to enhance the robustness properties of the dynamic inversion controller.

15. Robust adaptive control of HVDC systems

SciTech Connect

Reeve, J.; Sultan, M. )

1994-07-01

The transient performance of an HVDC power system is highly dependent on the parameters of the current/voltage regulators of the converter controls. In order to better accommodate changes in system structure or dc operating conditions, this paper introduces a new adaptive control strategy. The advantages of automatic tuning for continuous fine tuning are combined with predetermined gain scheduling in order to achieve robustness for large disturbances. Examples are provided for a digitally simulated back-to-back dc system.

16. Reliable Sampled-Data Control of Fuzzy Markovian Systems with Partly Known Transition Probabilities

Sakthivel, R.; Kaviarasan, B.; Kwon, O. M.; Rathika, M.

2016-08-01

This article presents a fuzzy dynamic reliable sampled-data control design for nonlinear Markovian jump systems, where the nonlinear plant is represented by a Takagi-Sugeno fuzzy model and the transition probability matrix for Markov process is permitted to be partially known. In addition, a generalised as well as more practical consideration of the real-world actuator fault model which consists of both linear and nonlinear fault terms is proposed to the above-addressed system. Then, based on the construction of an appropriate Lyapunov-Krasovskii functional and the employment of convex combination technique together with free-weighting matrices method, some sufficient conditions that promising the robust stochastic stability of system under consideration and the existence of the proposed controller are derived in terms of linear matrix inequalities, which can be easily solved by any of the available standard numerical softwares. Finally, a numerical example is provided to illustrate the validity of the proposed methodology.

17. Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems

NASA Technical Reports Server (NTRS)

Esogbue, Augustine O.

1998-01-01

18. Tracking control of a leg rehabilitation machine driven by pneumatic artificial muscles using composite fuzzy theory.

PubMed

Chang, Ming-Kun

2014-01-01

It is difficult to achieve excellent tracking performance for a two-joint leg rehabilitation machine driven by pneumatic artificial muscles (PAMs) because the system has a coupling effect, highly nonlinear and time-varying behavior associated with gas compression, and the nonlinear elasticity of bladder containers. This paper therefore proposes a T-S fuzzy theory with supervisory control in order to overcome the above problems. The T-S fuzzy theory decomposes the model of a nonlinear system into a set of linear subsystems. In this manner, the controller in the T-S fuzzy model is able to use simple linear control techniques to provide a systematic framework for the design of a state feedback controller. Then the LMI Toolbox of MATLAB can be employed to solve linear matrix inequalities (LMIs) in order to determine controller gains based on the Lyapunov direct method. Moreover, the supervisory control can overcome the coupling effect for a leg rehabilitation machine. Experimental results show that the proposed controller can achieve excellent tracking performance, and guarantee robustness to system parameter uncertainties.

19. Tracking Control of a Leg Rehabilitation Machine Driven by Pneumatic Artificial Muscles Using Composite Fuzzy Theory

PubMed Central

2014-01-01

It is difficult to achieve excellent tracking performance for a two-joint leg rehabilitation machine driven by pneumatic artificial muscles (PAMs) because the system has a coupling effect, highly nonlinear and time-varying behavior associated with gas compression, and the nonlinear elasticity of bladder containers. This paper therefore proposes a T-S fuzzy theory with supervisory control in order to overcome the above problems. The T-S fuzzy theory decomposes the model of a nonlinear system into a set of linear subsystems. In this manner, the controller in the T-S fuzzy model is able to use simple linear control techniques to provide a systematic framework for the design of a state feedback controller. Then the LMI Toolbox of MATLAB can be employed to solve linear matrix inequalities (LMIs) in order to determine controller gains based on the Lyapunov direct method. Moreover, the supervisory control can overcome the coupling effect for a leg rehabilitation machine. Experimental results show that the proposed controller can achieve excellent tracking performance, and guarantee robustness to system parameter uncertainties. PMID:24778583

20. Tuning a fuzzy controller using quadratic response surfaces

NASA Technical Reports Server (NTRS)

Schott, Brian; Whalen, Thomas

1992-01-01

Response surface methodology, an alternative method to traditional tuning of a fuzzy controller, is described. An example based on a simulated inverted pendulum 'plant' shows that with (only) 15 trial runs, the controller can be calibrated using a quadratic form to approximate the response surface.

1. Identification of piecewise affine systems based on fuzzy PCA-guided robust clustering technique

Khanmirza, Esmaeel; Nazarahari, Milad; Mousavi, Alireza

2016-12-01

Hybrid systems are a class of dynamical systems whose behaviors are based on the interaction between discrete and continuous dynamical behaviors. Since a general method for the analysis of hybrid systems is not available, some researchers have focused on specific types of hybrid systems. Piecewise affine (PWA) systems are one of the subsets of hybrid systems. The identification of PWA systems includes the estimation of the parameters of affine subsystems and the coefficients of the hyperplanes defining the partition of the state-input domain. In this paper, we have proposed a PWA identification approach based on a modified clustering technique. By using a fuzzy PCA-guided robust k-means clustering algorithm along with neighborhood outlier detection, the two main drawbacks of the well-known clustering algorithms, i.e., the poor initialization and the presence of outliers, are eliminated. Furthermore, this modified clustering technique enables us to determine the number of subsystems without any prior knowledge about system. In addition, applying the structure of the state-input domain, that is, considering the time sequence of input-output pairs, provides a more efficient clustering algorithm, which is the other novelty of this work. Finally, the proposed algorithm has been evaluated by parameter identification of an IGV servo actuator. Simulation together with experiment analysis has proved the effectiveness of the proposed method.

2. Fuzzy self-learning control for magnetic servo system

NASA Technical Reports Server (NTRS)

Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

1994-01-01

It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

3. Low Bandwidth Robust Controllers for Flight

NASA Technical Reports Server (NTRS)

1993-01-01

Through throttle manipulations, engine thrust can be used for emergency flight control for multi-engine aircraft. Previous study by NASA Dryden has shown the use of throttles for emergency flight control to be very difficult. In general, manual fly-by-throttle is extremely difficult - with landing almost impossible, but control augmentation makes runway landings feasible. Flight path control using throttles-only to achieve safe emergency landing for a large jet transport airplane, Boeing 720, was investigated using Quantitative Feedback Theory (QFT). Results were compared to an augmented control developed in a previous simulation study. The control augmentation corrected the unsatisfactory open-loop characteristics by increasing system bandwidth and damping, but increasing the control bandwidth substantially proved very difficult. The augmented pitch control is robust under no or moderate turbulence. The augmented roll control is sensitive to configuration changes.

4. Low bandwidth robust controllers for flight

NASA Technical Reports Server (NTRS)

1993-01-01

Through throttle manipulations, engine thrust can be used for emergency flight control for multi-engine aircraft. Previous study by NASA Dryden has shown the use of throttles for emergency flight control to be very difficult. In general, manual fly-by-throttle is extremely difficult - with landing almost impossible, but control augmentation makes runway landings feasible. Flight path control using throttles-only to achieve safe emergency landing for a large jet transport airplane, Boeing 720, was investigated using Quantitative Feedback Theory (QFT). Results were compared to an augmented control developed in a previous simulation study. The control augmentation corrected the unsatisfactory open-loop characteristics by increasing system bandwidth and damping, but increasing the control bandwidth substantially proved very difficult. The augmented pitch control is robust under no or moderate turbulence. The augmented roll control is sensitive to configuration changes.

5. Robust control technique for nuclear power plants

SciTech Connect

Murphy, G.V.; Bailey, J.M.

1989-03-01

This report summarizes the linear quadratic Guassian (LQG) design technique with loop transfer recovery (LQG/LTR) for design of control systems. The concepts of return ratio, return difference, inverse return difference, and singular values are summarized. The LQG/LTR design technique allows the synthesis of a robust control system. To illustrate the LQG/LTR technique, a linearized model of a simple process has been chosen. The process has three state variables, one input, and one output. Three control system design methods are compared: LQG, LQG/LTR, and a proportional plus integral controller (PI). 7 refs., 20 figs., 6 tabs.

6. Fuzzy Logic Decoupled Longitudinal Control for General Aviation Airplanes

NASA Technical Reports Server (NTRS)

Duerksen, Noel

1996-01-01

It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control difference airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control throttle position and another to control elevator position. These two controllers were used to control flight path angle and airspeed for both a piston powered single engine airplane simulation and a business jet simulation. Overspeed protection and stall protection were incorporated in the form of expert systems supervisors. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic longitudinal controller could be successfully used on two general aviation aircraft types that have very difference characteristics. These controllers worked for both airplanes over their entire flight envelopes including configuration changes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle lever travel, etc.). The controllers also handled configuration changes without mode switching or knowledge of the current configuration. This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

7. Neuro-Fuzzy Control for Pneumatic Servo System

Shibata, Satoru; Jindai, Mitsuru; Yamamoto, Tomonori; Shimizu, Akira

A learning method for acquiring the appropriate fuzzy rules using error back propagation to improve the control performance of the pneumatic servo system is presented in this paper. In the proposed method, two criteria are defined and are adjusted so as to minimize them using error back propagation. These criteria are defined on the fuzzy rules, that is, shapes of membership functions of antecedent clause and real values of consequent clause in the fuzzy controller. Two differentiating coefficients of the plant, used in error back propagation with respect to those criteria, are estimated by the newly established neural network. Moreover, sigmoid function is introduced for the connection of the neural network to compensate for the effect of non-linearity of the system. The method was applied to an existent vertical type pneumatic servo system and proved its effectiveness for practical use.

8. Fuzzy control of nitrogen removal in predenitrification process using ORP.

PubMed

Peng, Y; Ma, Y; Wang, S; Wang, X

2005-01-01

In order to meet increasingly stringent discharge standards, new applications and control strategies for the sustainable removal of nitrogen from wastewater have to be implemented. In the past years, numerous studies have been carried out dealing with the application of fuzzy logic to improve the control of the activated sludge process. In this paper, fuzzy control strategies of predenitrification systems are presented that could lead to better effluent quality and, in parallel, to a reduction of chemicals consumption. Extensive experimental investigations on lab scale plant studies have shown that there was excellent correlation between nitrate concentration and ORP value at the end of the anoxic zone. Results indicated that ORP could be used as an on-line fuzzy control parameter of nitrate recirculation and external carbon addition. The optimal value of ORP to control nitrate recirculation and external carbon addition was - 86 +/- 2 mV and - 90 +/- 2 mV, respectively. The results obtained with real wastewater also showed the good performance and stability of the fuzzy controllers independently from external disturbances. The integrated control structure of nitrate recirculation and external carbon addition in the predenitrification system is also presented.

9. Fuzzy logic controller to improve powerline communication

Tirrito, Salvatore

2015-12-01

The Power Line Communications (PLC) technology allows the use of the power grid in order to ensure the exchange of data information among devices. This work proposes an approach, based on Fuzzy Logic, that dynamically manages the amplitude of the signal, with which each node transmits, by processing the master-slave link quality measured and the master-slave distance. The main objective of this is to reduce both the impact of communication interferences induced and power consumption.

10. A fuzzy behaviorist approach to sensor-based robot control

SciTech Connect

Pin, F.G.

1996-05-01

Sensor-based operation of autonomous robots in unstructured and/or outdoor environments has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. An approach. which we have named the {open_quotes}Fuzzy Behaviorist Approach{close_quotes} (FBA) is proposed in an attempt to remedy some of these difficulties. This approach is based on the representation of the system`s uncertainties using Fuzzy Set Theory-based approximations and on the representation of the reasoning and control schemes as sets of elemental behaviors. Using the FBA, a formalism for rule base development and an automated generator of fuzzy rules have been developed. This automated system can automatically construct the set of membership functions corresponding to fuzzy behaviors. Once these have been expressed in qualitative terms by the user. The system also checks for completeness of the rule base and for non-redundancy of the rules (which has traditionally been a major hurdle in rule base development). Two major conceptual features, the suppression and inhibition mechanisms which allow to express a dominance between behaviors are discussed in detail. Some experimental results obtained with the automated fuzzy, rule generator applied to the domain of sensor-based navigation in aprion unknown environments. using one of our autonomous test-bed robots as well as a real car in outdoor environments, are then reviewed and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using the {open_quotes}Fuzzy Behaviorist{close_quotes} concepts.

11. A hybrid robust fault tolerant control based on adaptive joint unscented Kalman filter.

PubMed

Shabbouei Hagh, Yashar; Mohammadi Asl, Reza; Cocquempot, Vincent

2017-01-01

In this paper, a new hybrid robust fault tolerant control scheme is proposed. A robust H∞ control law is used in non-faulty situation, while a Non-Singular Terminal Sliding Mode (NTSM) controller is activated as soon as an actuator fault is detected. Since a linear robust controller is designed, the system is first linearized through the feedback linearization method. To switch from one controller to the other, a fuzzy based switching system is used. An Adaptive Joint Unscented Kalman Filter (AJUKF) is used for fault detection and diagnosis. The proposed method is based on the simultaneous estimation of the system states and parameters. In order to show the efficiency of the proposed scheme, a simulated 3-DOF robotic manipulator is used.

12. Fuzzy virtual reference model sensorless tracking control for linear induction motors.

PubMed

Hung, Cheng-Yao; Liu, Peter; Lian, Kuang-Yow

2013-06-01

This paper introduces a fuzzy virtual reference model (FVRM) synthesis method for linear induction motor (LIM) speed sensorless tracking control. First, we represent the LIM as a Takagi-Sugeno fuzzy model. Second, we estimate the immeasurable mover speed and secondary flux by a fuzzy observer. Third, to convert the speed tracking control into a stabilization problem, we define the internal desired states for state tracking via an FVRM. Finally, by solving a set of linear matrix inequalities (LMIs), we obtain the observer gains and the control gains where exponential convergence is guaranteed. The contributions of the approach in this paper are threefold: 1) simplified approach--speed tracking problem converted into stabilization problem; 2) omit need of actual reference model--FVRM generates internal desired states; and 3) unification of controller and observer design--control objectives are formulated into an LMI problem where powerful numerical toolboxes solve controller and observer gains. Finally, experiments are carried out to verify the theoretical results and show satisfactory performance both in transient response and robustness.

13. Robust Control Design for Flight Control

DTIC Science & Technology

1989-07-01

to achieve desired performance over the full flight envelope when linear feedback is employed. Exact linearization methods [48] provide means for...designing nonlinear feedback laws which satisfy these requirements. However, exact linearization is not always compatible with control authority...specific situations. The most promising approaches appear to be those associated with methods of exact linearization . This procedure is based on some

14. Optimal and robust control of transition

NASA Technical Reports Server (NTRS)

Bewley, T. R.; Agarwal, R.

1996-01-01

Optimal and robust control theories are used to determine feedback control rules that effectively stabilize a linearly unstable flow in a plane channel. Wall transpiration (unsteady blowing/suction) with zero net mass flux is used as the control. Control algorithms are considered that depend both on full flowfield information and on estimates of that flowfield based on wall skin-friction measurements only. The development of these control algorithms accounts for modeling errors and measurement noise in a rigorous fashion; these disturbances are considered in both a structured (Gaussian) and unstructured ('worst case') sense. The performance of these algorithms is analyzed in terms of the eigenmodes of the resulting controlled systems, and the sensitivity of individual eigenmodes to both control and observation is quantified.

15. Novel Observer Scheme of Fuzzy-MRAS Sensorless Speed Control of Induction Motor Drive

Chekroun, S.; Zerikat, M.; Mechernene, A.; Benharir, N.

2017-01-01

This paper presents a novel approach Fuzzy-MRAS conception for robust accurate tracking of induction motor drive operating in a high-performance drives environment. Of the different methods for sensorless control of induction motor drive the model reference adaptive system (MRAS) finds lot of attention due to its good performance. The analysis of the sensorless vector control system using MRAS is presented and the resistance parameters variations and speed observer using new Fuzzy Self-Tuning adaptive IP Controller is proposed. In fact, fuzzy logic is reminiscent of human thinking processes and natural language enabling decisions to be made based on vague information. The present approach helps to achieve a good dynamic response, disturbance rejection and low to plant parameter variations of the induction motor. In order to verify the performances of the proposed observer and control algorithms and to test behaviour of the controlled system, numerical simulation is achieved. Simulation results are presented and discussed to shown the validity and the performance of the proposed observer.

16. Hardware implementation of fuzzy Petri net as a controller.

PubMed

Gniewek, Lesław; Kluska, Jacek

2004-06-01

The paper presents a new approach to fuzzy Petri net (FPN) and its hardware implementation. The authors' motivation is as follows. Complex industrial processes can be often decomposed into many parallelly working subprocesses, which can, in turn, be modeled using Petri nets. If all the process variables (or events) are assumed to be two-valued signals, then it is possible to obtain a hardware or software control device, which works according to the algorithm described by conventional Petri net. However, the values of real signals are contained in some bounded interval and can be interpreted as events which are not only true or false, but rather true in some degree from the interval [0, 1]. Such a natural interpretation from multivalued logic (fuzzy logic) point of view, concerns sensor outputs, control signals, time expiration, etc. It leads to the idea of FPN as a controller, which one can rather simply obtain, and which would be able to process both analog, and binary signals. In the paper both graphical, and algebraic representations of the proposed FPN are given. The conditions under which transitions can be fired are described. The algebraic description of the net and a theorem which enables computation of new marking in the net, based on current marking, are formulated. Hardware implementation of the FPN, which uses fuzzy JK flip-flops and fuzzy gates, are proposed. An example illustrating usefulness of the proposed FPN for control algorithm description and its synthesis as a controller device for the concrete production process are presented.

17. Robustness

NASA Technical Reports Server (NTRS)

Ryan, R.

1993-01-01

Robustness is a buzz word common to all newly proposed space systems design as well as many new commercial products. The image that one conjures up when the word appears is a 'Paul Bunyon' (lumberjack design), strong and hearty; healthy with margins in all aspects of the design. In actuality, robustness is much broader in scope than margins, including such factors as simplicity, redundancy, desensitization to parameter variations, control of parameter variations (environments flucation), and operational approaches. These must be traded with concepts, materials, and fabrication approaches against the criteria of performance, cost, and reliability. This includes manufacturing, assembly, processing, checkout, and operations. The design engineer or project chief is faced with finding ways and means to inculcate robustness into an operational design. First, however, be sure he understands the definition and goals of robustness. This paper will deal with these issues as well as the need for the requirement for robustness.

18. Design of a new adaptive fuzzy controller and its application to vibration control of a vehicle seat installed with an MR damper

Phu, Do Xuan; Shin, Do Kyun; Choi, Seung-Bok

2015-08-01

This paper presents a new adaptive fuzzy controller featuring a combination of two different control methodologies: H infinity control technique and sliding mode control. It is known that both controllers are powerful in terms of high performance and robust stability. However, both control methods require an accurate dynamic model to design a state variable based controller in order to maintain their advantages. Thus, in this work a fuzzy control method which does not require an accurate dynamic model is adopted and two control methodologies are integrated to maintain the advantages even in an uncertain environment of the dynamic system. After a brief explanation of the interval type 2 fuzzy logic, a new adaptive fuzzy controller associated with the H infinity control and sliding mode control is formulated on the basis of Lyapunov stability theory. Subsequently, the formulated controller is applied to vibration control of a vehicle seat equipped with magnetorheological fluid damper (MR damper in short). An experimental setup for realization of the proposed controller is established and vibration control performances such as acceleration at the driver’s seat are evaluated. In addition, in order to demonstrate the effectiveness of the proposed controller, a comparative work with two existing controllers is undertaken. It is shown through simulation and experiment that the proposed controller can provide much better vibration control performance than the two existing controllers.

19. Vehicle dynamics and road curvature estimation for lane departure warning system using robust fuzzy observers: experimental validation

Dahmani, H.; Chadli, M.; Rabhi, A.; El Hajjaji, A.

2015-08-01

This paper describes a new approach to estimate vehicle dynamics and the road curvature in order to detect vehicle lane departures. This method has been evaluated through an experimental set-up using a real test vehicle equipped with the RT2500 inertial measurement unit. Based on a robust unknown input fuzzy observer, the road curvature is estimated and compared to the vehicle trajectory curvature. The difference between the two curvatures is used by the proposed lane departure detection algorithm as the first driving risk indicator. To reduce false alarms and take into account driver corrections, a second driving risk indicator based on the steering dynamics is considered. The vehicle nonlinear model is deduced from the vehicle lateral dynamics and road geometry and then represented by an uncertain Takagi-Sugeno fuzzy model. Taking into account the unmeasured variables, an unknown input fuzzy observer is proposed. Synthesis conditions of the proposed fuzzy observer are formulated in terms of linear matrix inequalities using the Lyapunov method.

20. A new approach of active compliance control via fuzzy logic control for multifingered robot hand

Jamil, M. F. A.; Jalani, J.; Ahmad, A.

2016-07-01

Safety is a vital issue in Human-Robot Interaction (HRI). In order to guarantee safety in HRI, a model reference impedance control can be a very useful approach introducing a compliant control. In particular, this paper establishes a fuzzy logic compliance control (i.e. active compliance control) to reduce impact and forces during physical interaction between humans/objects and robots. Exploiting a virtual mass-spring-damper system allows us to determine a desired compliant level by understanding the behavior of the model reference impedance control. The performance of fuzzy logic compliant control is tested in simulation for a robotic hand known as the RED Hand. The results show that the fuzzy logic is a feasible control approach, particularly to control position and to provide compliant control. In addition, the fuzzy logic control allows us to simplify the controller design process (i.e. avoid complex computation) when dealing with nonlinearities and uncertainties.

1. Workshop on Fuzzy Control Systems and Space Station Applications

NASA Technical Reports Server (NTRS)

Aisawa, E. K. (Compiler); Faltisco, R. M. (Compiler)

1990-01-01

The Workshop on Fuzzy Control Systems and Space Station Applications was held on 14-15 Nov. 1990. The workshop was co-sponsored by McDonnell Douglas Space Systems Company and NASA Ames Research Center. Proceedings of the workshop are presented.

2. Robust control of ionic polymer metal composites

Kang, Sunhyuk; Shin, Jongho; Kim, Seong Jun; Kim, H. Jin; Hyup Kim, Yong

2007-12-01

Ionic polymer-metal composites (IPMCs) have been considered for various applications due to their light weight, large bending, and low actuation voltage requirements. However, their response can be slow and vary widely, depending on various factors such as fabrication processes, water content, and contact conditions with the electrodes. In order to utilize their capability in various high-performance microelectromechanical systems, controllers need to address this uncertainty and non-repeatability while improving the response speed. In this work, we identified an empirical model for the dynamic relationship between the applied voltage and the IPMC beam deflection, which includes the uncertainties and variations of the response. Then, four types of controller were designed, and their performances were compared: a proportional-integral-derivative (PID) controller with optimized gains using a co-evolutionary algorithm, and three types of robust controller based on H_\\infty , H_\\infty with loop shaping, and μ-synthesis, respectively. Our results show that the robust control techniques can significantly improve the IPMC performance against non-repeatability or parametric uncertainties, in terms of the faster response and lower overshoot than the PID control, using lower actuation voltage.

3. Fuzzy logic controller versus classical logic controller for residential hybrid solar-wind-storage energy system

Derrouazin, A.; Aillerie, M.; Mekkakia-Maaza, N.; Charles, J. P.

2016-07-01

Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.

4. An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream

PubMed Central

Marakhimov, A. R.; Igamberdiev, H. Z.; Umarov, Sh. X.

2016-01-01

This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081

5. A fuzzy controller with nonlinear control rules is the sum of a global nonlinear controller and a local nonlinear PI-like controller

NASA Technical Reports Server (NTRS)

Ying, Hao

1993-01-01

The fuzzy controllers studied in this paper are the ones that employ N trapezoidal-shaped members for input fuzzy sets, Zadeh fuzzy logic and a centroid defuzzification algorithm for output fuzzy set. The author analytically proves that the structure of the fuzzy controllers is the sum of a global nonlinear controller and a local nonlinear proportional-integral-like controller. If N approaches infinity, the global controller becomes a nonlinear controller while the local controller disappears. If linear control rules are used, the global controller becomes a global two-dimensional multilevel relay which approaches a global linear proportional-integral (PI) controller as N approaches infinity.

6. Robust model predictive control of Wiener systems

Biagiola, S. I.; Figueroa, J. L.

2011-03-01

Block-oriented models (BOMs) have shown to be appealing and efficient as nonlinear representations for many applications. They are at the same time valid and simple models in a more extensive region than time-invariant linear models. In this work, Wiener models are considered. They are one of the most diffused BOMs, and their structure consists in a linear dynamics in cascade with a nonlinear static block. Particularly, the problem of control of these systems in the presence of uncertainty is treated. The proposed methodology makes use of a robust identification procedure in order to obtain a robust model to represent the uncertain system. This model is then employed to design a model predictive controller. The mathematical problem involved in the controller design is formulated in the context of the existing linear matrix inequalities (LMI) theory. The main feature of this approach is that it takes advantage of the static nature of the nonlinearity, which allows to solve the control problem by focusing only in the linear dynamics. This formulation results in a simplified design procedure, because the original nonlinear model predictive control (MPC) problem turns into a linear one.

7. Trends and Issues in Fuzzy Control and Neuro-Fuzzy Modeling

NASA Technical Reports Server (NTRS)

Chiu, Stephen

1996-01-01

Everyday experience in building and repairing things around the home have taught us the importance of using the right tool for the right job. Although we tend to think of a 'job' in broad terms, such as 'build a bookcase,' we understand well that the 'right job' associated with each 'right tool' is typically a narrowly bounded subtask, such as 'tighten the screws.' Unfortunately, we often lose sight of this principle when solving engineering problems; we treat a broadly defined problem, such as controlling or modeling a system, as a narrow one that has a single 'right tool' (e.g., linear analysis, fuzzy logic, neural network). We need to recognize that a typical real-world problem contains a number of different sub-problems, and that a truly optimal solution (the best combination of cost, performance and feature) is obtained by applying the right tool to the right sub-problem. Here I share some of my perspectives on what constitutes the 'right job' for fuzzy control and describe recent advances in neuro-fuzzy modeling to illustrate and to motivate the synergistic use of different tools.

8. A fast and robust level set method for image segmentation using fuzzy clustering and lattice Boltzmann method.

PubMed

Balla-Arabé, Souleymane; Gao, Xinbo; Wang, Bin

2013-06-01

In the last decades, due to the development of the parallel programming, the lattice Boltzmann method (LBM) has attracted much attention as a fast alternative approach for solving partial differential equations. In this paper, we first designed an energy functional based on the fuzzy c-means objective function which incorporates the bias field that accounts for the intensity inhomogeneity of the real-world image. Using the gradient descent method, we obtained the corresponding level set equation from which we deduce a fuzzy external force for the LBM solver based on the model by Zhao. The method is fast, robust against noise, independent to the position of the initial contour, effective in the presence of intensity inhomogeneity, highly parallelizable and can detect objects with or without edges. Experiments on medical and real-world images demonstrate the performance of the proposed method in terms of speed and efficiency.

9. Design issues of a reinforcement-based self-learning fuzzy controller for petrochemical process control

NASA Technical Reports Server (NTRS)

Yen, John; Wang, Haojin; Daugherity, Walter C.

1992-01-01

Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.

10. A modular robust control framework for control of movement elicited by multi-electrode intraspinal microstimulation

Roshani, Amir; Erfanian, Abbas

2016-08-01

Objective. An important issue in restoring motor function through intraspinal microstimulation (ISMS) is the motor control. To provide a physiologically plausible motor control using ISMS, it should be able to control the individual motor unit which is the lowest functional unit of motor control. By focal stimulation only a small group of motor neurons (MNs) within a motor pool can be activated. Different groups of MNs within a motor pool can potentially be activated without involving adjacent motor pools by local stimulation of different parts of a motor pool via microelectrode array implanted into a motor pool. However, since the system has multiple inputs with single output during multi-electrode ISMS, it poses a challenge to movement control. In this paper, we proposed a modular robust control strategy for movement control, whereas multi-electrode array is implanted into each motor activation pool of a muscle. Approach. The controller was based on the combination of proportional-integral-derivative and adaptive fuzzy sliding mode control. The global stability of the controller was guaranteed. Main results. The results of the experiments on rat models showed that the multi-electrode control can provide a more robust control and accurate tracking performance than a single-electrode control. The control output can be pulse amplitude (pulse amplitude modulation, PAM) or pulse width (pulse width modulation, PWM) of the stimulation signal. The results demonstrated that the controller with PAM provided faster convergence rate and better tracking performance than the controller with PWM. Significance. This work represents a promising control approach to the restoring motor functions using ISMS. The proposed controller requires no prior knowledge about the dynamics of the system to be controlled and no offline learning phase. The proposed control design is modular in the sense that each motor pool has an independent controller and each controller is able to control ISMS

11. A reinforcement learning-based architecture for fuzzy logic control

NASA Technical Reports Server (NTRS)

Berenji, Hamid R.

1992-01-01

This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.

12. Intelligent control based on fuzzy logic and neural net theory

NASA Technical Reports Server (NTRS)

Lee, Chuen-Chien

1991-01-01

In the conception and design of intelligent systems, one promising direction involves the use of fuzzy logic and neural network theory to enhance such systems' capability to learn from experience and adapt to changes in an environment of uncertainty and imprecision. Here, an intelligent control scheme is explored by integrating these multidisciplinary techniques. A self-learning system is proposed as an intelligent controller for dynamical processes, employing a control policy which evolves and improves automatically. One key component of the intelligent system is a fuzzy logic-based system which emulates human decision making behavior. It is shown that the system can solve a fairly difficult control learning problem. Simulation results demonstrate that improved learning performance can be achieved in relation to previously described systems employing bang-bang control. The proposed system is relatively insensitive to variations in the parameters of the system environment.

13. Robust Control Design via Linear Programming

NASA Technical Reports Server (NTRS)

Keel, L. H.; Bhattacharyya, S. P.

1998-01-01

This paper deals with the problem of synthesizing or designing a feedback controller of fixed dynamic order. The closed loop specifications considered here are given in terms of a target performance vector representing a desired set of closed loop transfer functions connecting various signals. In general these point targets are unattainable with a fixed order controller. By enlarging the target from a fixed point set to an interval set the solvability conditions with a fixed order controller are relaxed and a solution is more easily enabled. Results from the parametric robust control literature can be used to design the interval target family so that the performance deterioration is acceptable, even when plant uncertainty is present. It is shown that it is possible to devise a computationally simple linear programming approach that attempts to meet the desired closed loop specifications.

14. Systematic methods for the design of a class of fuzzy logic controllers

2002-09-01

Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental

15. Fuzzy logic particle tracking velocimetry

NASA Technical Reports Server (NTRS)

Wernet, Mark P.

1993-01-01

Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.

16. Feedforward Tracking Control of Flat Recurrent Fuzzy Systems

2014-12-01

Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis.

17. Comparative study of a learning fuzzy PID controller and a self-tuning controller.

PubMed

Kazemian, H B

2001-01-01

The self-organising fuzzy controller is an extension of the rule-based fuzzy controller with an additional learning capability. The self-organising fuzzy (SOF) is used as a master controller to readjust conventional PID gains at the actuator level during the system operation, copying the experience of a human operator. The application of the self-organising fuzzy PID (SOF-PID) controller to a 2-link non-linear revolute-joint robot-arm is studied using path tracking trajectories at the setpoint. For the purpose of comparison, the same experiments are repeated by using the self-tuning controller subject to the same data supplied at the setpoint. For the path tracking experiments, the output trajectories of the SOF-PID controller followed the specified path closer and smoother than the self-tuning controller.

18. Nonlinear control of an activated sludge aeration process: use of fuzzy techniques for tuning PID controllers.

PubMed

Rodrigo, M A; Seco, A; Ferrer, J; Penya-roja, J M; Valverde, J L

1999-01-01

In this paper, several tuning algorithms, specifically ITAE, IMC and Cohen and Coon, were applied in order to tune an activated sludge aeration PID controller. Performance results of these controllers were compared by simulation with those obtained by using a nonlinear fuzzy PID controller. In order to design this controller, a trial and error procedure was used to determine, as a function of error at current time and at a previous time, sets of parameters (including controller gain, integral time and derivative time) which achieve satisfactory response of a PID controller actuating over the aeration process. Once these sets of data were obtained, neural networks were used to obtain fuzzy membership functions and fuzzy rules of the fuzzy PID controller.

19. Comments on "A robust fuzzy local information C-means clustering algorithm".

PubMed

Celik, Turgay; Lee, Hwee Kuan

2013-03-01

In a recent paper, Krinidis and Chatzis proposed a variation of fuzzy c-means algorithm for image clustering. The local spatial and gray-level information are incorporated in a fuzzy way through an energy function. The local minimizers of the designed energy function to obtain the fuzzy membership of each pixel and cluster centers are proposed. In this paper, it is shown that the local minimizers of Krinidis and Chatzis to obtain the fuzzy membership and the cluster centers in an iterative manner are not exclusively solutions for true local minimizers of their designed energy function. Thus, the local minimizers of Krinidis and Chatzis do not converge to the correct local minima of the designed energy function not because of tackling to the local minima, but because of the design of energy function.

20. Experiment Study on Fuzzy Vibration Control of Solar Panel

Li, Dongxu X.; Xu, Rui; Jiang, Jiangjian P.

Some flexible appendages of spacecraft are cantilever plate structures, such as solar panels. These structures usually have very low damping ratios, high dimensional order, low modal frequencies and parameter uncertainties in dynamics. Their unwanted vibrations will be caused unavoidably, and harmful to the spacecraft. To solve this problem, the dynamic equations of the solar panel with piezoelectric patches are derived, and an accelerometer based fuzzy controller is designed. In order to verify the effectiveness of the vibration control algorithms, experiment research was conducted on a piezoelectric adaptive composite honeycomb cantilever panel. The experiment results demonstrate that the accelerometer-based fuzzy vibration control method can suppress the vibration of the solar panel effectively, the first bending mode damping ratio of the controlled system increase to 1.64%, and that is 3.56 times of the uncontrolled system.

1. The fuzzy algorithm in the die casting mould for the application of multi-channel temperature control

Sun, Jin-gen; Chen, Yi; Zhang, Jia-nan

2017-01-01

Mould manufacturing is one of the most basic elements in the production chain of China. The mould manufacturing technology has become an important symbol to measure the level of a country's manufacturing industry. The die-casting mould multichannel intelligent temperature control method is studied by cooling water circulation, which uses fuzzy control to realize, aiming at solving the shortcomings of slow speed and big energy consumption during the cooling process of current die-casting mould. At present, the traditional PID control method is used to control the temperature, but it is difficult to ensure the control precision. While , the fuzzy algorithm is used to realize precise control of mould temperature in cooling process. The design is simple, fast response, strong anti-interference ability and good robustness. Simulation results show that the control method is completely feasible, which has higher control precision.

2. Fuzzy and conventional control of high-frequency ventilation.

PubMed

Noshiro, M; Matsunami, T; Takakuda, K; Ryumae, S; Kagawa, T; Shimizu, M; Fujino, T

1994-07-01

A high-frequency ventilator was developed, consisting of a single-phase induction motor, an unbalanced mass and a mechanical vibration system. Intermittent positive pressure respiration was combined with high-frequency ventilation to measure end-tidal pCO2. Hysteresis was observed between the rotational frequency of the high-frequency ventilator and end-tidal pCO2. A fuzzy proportional plus integral control system, designed on the basis of the static characteristics of the controlled system and a knowledge of respiratory physiology, successfully regulated end-tidal pCO2. The characteristics of gas exchange under high-frequency ventilation was approximated by a first-order linear model. A conventional PI control system, designed on the basis of the approximated model, regulated end-tidal pCO2 with a performance similar to that of the fuzzy PI control system. The design of the fuzzy control system required less knowledge about the controlled system than that of the conventional control system.

3. Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation.

PubMed

Omrane, Hajer; Masmoudi, Mohamed Slim; Masmoudi, Mohamed

This paper describes the design and the implementation of a trajectory tracking controller using fuzzy logic for mobile robot to navigate in indoor environments. Most of the previous works used two independent controllers for navigation and avoiding obstacles. The main contribution of the paper can be summarized in the fact that we use only one fuzzy controller for navigation and obstacle avoidance. The used mobile robot is equipped with DC motor, nine infrared range (IR) sensors to measure the distance to obstacles, and two optical encoders to provide the actual position and speeds. To evaluate the performances of the intelligent navigation algorithms, different trajectories are used and simulated using MATLAB software and SIMIAM navigation platform. Simulation results show the performances of the intelligent navigation algorithms in terms of simulation times and travelled path.

4. Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation

PubMed Central

Masmoudi, Mohamed Slim; Masmoudi, Mohamed

2016-01-01

This paper describes the design and the implementation of a trajectory tracking controller using fuzzy logic for mobile robot to navigate in indoor environments. Most of the previous works used two independent controllers for navigation and avoiding obstacles. The main contribution of the paper can be summarized in the fact that we use only one fuzzy controller for navigation and obstacle avoidance. The used mobile robot is equipped with DC motor, nine infrared range (IR) sensors to measure the distance to obstacles, and two optical encoders to provide the actual position and speeds. To evaluate the performances of the intelligent navigation algorithms, different trajectories are used and simulated using MATLAB software and SIMIAM navigation platform. Simulation results show the performances of the intelligent navigation algorithms in terms of simulation times and travelled path. PMID:27688748

5. On designing of the driven system control of solar panels using type 2 fuzzy sliding mode control (T2FSMC)

Mardlijah, Subiono, S., Sentot D.; Efprianto, Yahya

2016-02-01

Collectors on the solar panel can work optimally when the collectors position perpendicular to the whole solar rays. Therefore we need a control system to control the position of the collectors always perpendicular to the sun rays. In this paper, control system T2FSMC is proposed, combined SMC, FLC and fuzzy type 2 which has a membership function more complex so as to provide an additional degree of freedom that allows uncertainty. the behavior of the control system based on T2FSMC for the driven system of solar panels was analyzed by comparing T2FSMC with FSMC and SMC methods. It can be concluded that the system controller of T2FSMC works better than the system controller of FSMC and SMC; i.e. faster response time, more robust to large and small disturbance and more robust to parameter uncertainty. However, the lacks in the system T2FSMC are taking quite a long time in computation and need fuzzy logic reasoning.

6. A Robot Manipulator with Adaptive Fuzzy Controller in Obstacle Avoidance

Sreekumar, Muthuswamy

2016-07-01

Building robots and machines to act within a fuzzy environment is a problem featuring complexity and ambiguity. In order to avoid obstacles, or move away from it, the robot has to perform functions such as obstacle identification, finding the location of the obstacle, its velocity, direction of movement, size, shape, and so on. This paper presents about the design, and implementation of an adaptive fuzzy controller designed for a 3 degree of freedom spherical coordinate robotic manipulator interfaced with a microcontroller and an ultrasonic sensor. Distance between the obstacle and the sensor and its time rate are considered as inputs to the controller and how the manipulator to take diversion from its planned trajectory, in order to avoid collision with the obstacle, is treated as output from the controller. The obstacles are identified as stationary or moving objects and accordingly adaptive self tuning is accomplished with three set of linguistic rules. The prototype of the manipulator has been fabricated and tested for collision avoidance by placing stationary and moving obstacles in its planned trajectory. The performance of the adaptive control algorithm is analyzed in MATLAB by generating 3D fuzzy control surfaces.

7. Adaptive Performance Seeking Control Using Fuzzy Model Reference Learning Control and Positive Gradient Control

NASA Technical Reports Server (NTRS)

Kopasakis, George

1997-01-01

Performance Seeking Control attempts to find the operating condition that will generate optimal performance and control the plant at that operating condition. In this paper a nonlinear multivariable Adaptive Performance Seeking Control (APSC) methodology will be developed and it will be demonstrated on a nonlinear system. The APSC is comprised of the Positive Gradient Control (PGC) and the Fuzzy Model Reference Learning Control (FMRLC). The PGC computes the positive gradients of the desired performance function with respect to the control inputs in order to drive the plant set points to the operating point that will produce optimal performance. The PGC approach will be derived in this paper. The feedback control of the plant is performed by the FMRLC. For the FMRLC, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for the effective tuning of the FMRLC controller.

8. Satellite cascade attitude control via fuzzy PD controller with active force control under momentum dumping

Ismail, Z.; Varatharajoo, R.

2016-10-01

In this paper, fuzzy proportional-derivative (PD) controller with active force control (AFC) scheme is studied and employed in the satellite attitude control system equipped with reaction wheels. The momentum dumping is enabled via proportional integral (PI) controller as the system is impractical without momentum dumping control. The attitude controllers are developed together with their governing equations and evaluated through numerical treatment with respect to a reference satellite mission. From the results, it is evident that the three axis attitudes accuracies can be improved up to ±0.001 degree through the fuzzy PD controller with AFC scheme for the attitude control. In addition, the three-axis wheel angular momentums are well maintained during the attitude control tasks.

9. Application of stochastic robustness to aircraft control systems

NASA Technical Reports Server (NTRS)

Ryan, Laura E.

1990-01-01

Guaranteeing robustness has long been an important design objective of control system analysis. Stochastic robustness is a simple numerical procedure that can be used to measure and gain insight into robustness properties associated with linear control systems. In the realm of aircraft control systems, problems such as the effects of flight condition perturbations and model-order uncertainties on robustness are easily and effectively analyzed using stochastic robustness. The concept of stochastic robustness is reviewed and examples are presented demonstrating its use in flight control system analysis.

10. Robust, Practical Adaptive Control for Launch Vehicles

NASA Technical Reports Server (NTRS)

Orr, Jeb. S.; VanZwieten, Tannen S.

2012-01-01

A modern mechanization of a classical adaptive control concept is presented with an application to launch vehicle attitude control systems. Due to a rigorous flight certification environment, many adaptive control concepts are infeasible when applied to high-risk aerospace systems; methods of stability analysis are either intractable for high complexity models or cannot be reconciled in light of classical requirements. Furthermore, many adaptive techniques appearing in the literature are not suitable for application to conditionally stable systems with complex flexible-body dynamics, as is often the case with launch vehicles. The present technique is a multiplicative forward loop gain adaptive law similar to that used for the NASA X-15 flight research vehicle. In digital implementation with several novel features, it is well-suited to application on aerodynamically unstable launch vehicles with thrust vector control via augmentation of the baseline attitude/attitude-rate feedback control scheme. The approach is compatible with standard design features of autopilots for launch vehicles, including phase stabilization of lateral bending and slosh via linear filters. In addition, the method of assessing flight control stability via classical gain and phase margins is not affected under reasonable assumptions. The algorithm s ability to recover from certain unstable operating regimes can in fact be understood in terms of frequency-domain criteria. Finally, simulation results are presented that confirm the ability of the algorithm to improve performance and robustness in realistic failure scenarios.

11. Methodological development of fuzzy-logic controllers from multivariable linear control.

PubMed

Tso, S K; Fung, Y H

1997-01-01

It is the function of the design of a fuzzy-logic controller to determine the universes of discourse of the antecedents and the consequents, number of membership labels, distribution and shape of membership functions, rule formulation, etc. Much of the information is usually extracted from expert knowledge, operator experience, or heuristic thinking. It is hence difficult to mechanize the first-stage design of fuzzy-logic controllers using linguistic labels whose performance is no worse than that of conventional multivariable linear controllers such as state-feedback controllers, PID controllers, etc. In this paper, an original systematic seven-step linear-to-fuzzy (LIN2FUZ) algorithm is proposed for generating the labels, universes of discourse of the antecedents and the consequents, and fuzzy rules of ;basically linear' fuzzy-logic controllers, given the reference design of available conventional multivariable linear controllers. The functionally equivalent fuzzy-logic controllers can thus provide the sound basis for the further development to achieve performance beyond the capability or the conventional controllers. The validity and effectiveness of the proposed LIN2FUZ algorithm are demonstrated by a four-input one-output inverted pendulum system.

12. Improved control configuration of PWM rectifiers based on neuro-fuzzy controller.

PubMed

Acikgoz, Hakan; Kececioglu, O Fatih; Gani, Ahmet; Yildiz, Ceyhun; Sekkeli, Mustafa

2016-01-01

It is well-known that rectifiers are used widely in many applications required AC/DC transformation. With technological advances, many studies are performed for AC/DC converters and many control methods are proposed in order to improve the performance of these rectifiers in recent years. Pulse width modulation (PWM) based rectifiers are one of the most popular rectifier types. PWM rectifiers have lower input current harmonics and higher power factor compared to classical diode and thyristor rectifiers. In this study, neuro-fuzzy controller (NFC) which has robust, nonlinear structure and do not require the mathematical model of the system to be controlled has been proposed for PWM rectifiers. Three NFCs are used in control scheme of proposed PWM rectifier in order to control the dq-axis currents and DC voltage of PWM rectifier. Moreover, simulation studies are carried out to demonstrate the performance of the proposed control scheme at MATLAB/Simulink environment in terms of rise time, settling time, overshoot, power factor, total harmonic distortion and power quality.

13. On-line fuzzy logic control of tube bending

Lieh, Junghsen; Li, Wei Jie

2005-11-01

This paper describes the simulation and on-line fuzzy logic control of tube bending. By combining elasticity and plasticity theories, a conventional model was developed. The results from simulation were compared with those obtained from testing. The experimental data reveal that there exists certain level of uncertainty and nonlinearity in tube bending, and its variation could be significant. To overcome this, a on-line fuzzy logic controller with self-tuning capabilities was designed. The advantages of this on-line system are (1) its computational requirement is simple in comparison with more algorithmic-based controllers, and (2) the system does not need prior knowledge of material characteristics. The device includes an AC motor, a servo controller, a forming mechanism, a 3D optical sensor, and a microprocessor. This automated bending machine adopts primary and secondary errors between the actual response and desired output to conduct on-line rule reasoning. Results from testing show that the spring back angle can be effectively compensated by the self- tuning fuzzy system in a real-time fashion.

14. Combined scanning tunneling and force microscope with fuzzy controlled feedback

Battiston, F. M.; Bammerlin, M.; Loppacher, Ch.; Guggisberg, M.; Lüthi, R.; Meyer, E.; Eggimann, F.; Güntherodt, H.-J.

Decision-making logic based on fuzzy logic and an adaptive PI-controller was inserted into the feedback loop of a combined atomic force microscope/scanning tunneling microscope (AFM/STM), which is able to measure the frequency shift Δf of the cantilever-type spring and the mean tunneling current t simultanously. Depending on the conductivity of the surface the fuzzy logic controller decides whether it has to use the AFM feedback or the STM feedback. On conductive regions of the sample STM mode is used, whereas on poorly conducting regions the non-contact AFM mode is preferred. This allows one to scan over heterogenous surfaces avoiding a tip crash.

15. Multi-application controls: Robust nonlinear multivariable aerospace controls applications

NASA Technical Reports Server (NTRS)

Enns, Dale F.; Bugajski, Daniel J.; Carter, John; Antoniewicz, Bob

1994-01-01

This viewgraph presentation describes the general methodology used to apply Honywell's Multi-Application Control (MACH) and the specific application to the F-18 High Angle-of-Attack Research Vehicle (HARV) including piloted simulation handling qualities evaluation. The general steps include insertion of modeling data for geometry and mass properties, aerodynamics, propulsion data and assumptions, requirements and specifications, e.g. definition of control variables, handling qualities, stability margins and statements for bandwidth, control power, priorities, position and rate limits. The specific steps include choice of independent variables for least squares fits to aerodynamic and propulsion data, modifications to the management of the controls with regard to integrator windup and actuation limiting and priorities, e.g. pitch priority over roll, and command limiting to prevent departures and/or undesirable inertial coupling or inability to recover to a stable trim condition. The HARV control problem is characterized by significant nonlinearities and multivariable interactions in the low speed, high angle-of-attack, high angular rate flight regime. Systematic approaches to the control of vehicle motions modeled with coupled nonlinear equations of motion have been developed. This paper will discuss the dynamic inversion approach which explicity accounts for nonlinearities in the control design. Multiple control effectors (including aerodynamic control surfaces and thrust vectoring control) and sensors are used to control the motions of the vehicles in several degrees-of-freedom. Several maneuvers will be used to illustrate performance of MACH in the high angle-of-attack flight regime. Analytical methods for assessing the robust performance of the multivariable control system in the presence of math modeling uncertainty, disturbances, and commands have reached a high level of maturity. The structured singular value (mu) frequency response methodology is presented

16. Toward a fuzzy logic control of the infant incubator.

PubMed

Reddy, Narender P; Mathur, Garima; Hariharan, S I

2009-10-01

Premature birth is a world wide problem. Thermo regulation is a major problem in premature infants. Premature infants are often kept in infant incubators providing convective heating. Currently either the incubator air temperature is sensed and used to control the heat flow, or infant's skin temperature is sensed and used in the close loop control. Skin control often leads to large fluctuations in the incubator air temperature. Air control also leads to skin temperature fluctuations. The question remains if both the infant's skin temperature and the incubator air temperature can be simultaneously used in the control. The purpose of the present study was to address this question by developing a fuzzy logic control which incorporates both incubator air temperature and infant's skin temperature to control the heating. The control was evaluated using a lumped parameter mathematical model of infant-incubator system (Simon, B. N., N. P. Reddy, and A. Kantak, J. Biomech. Eng. 116:263-266, 1994). Simulation results confirmed previous experimental results that the on-off skin control could lead to fluctuations in the incubator air temperature, and the air control could lead to too slow rise time in the core temperature. The fuzzy logic provides a smooth control with the desired rise time.

17. Adaptive variable structure hierarchical fuzzy control for a class of high-order nonlinear dynamic systems.

PubMed

2015-05-01

In this paper, a novel adaptive hierarchical fuzzy control system based on the variable structure control is developed for a class of SISO canonical nonlinear systems in the presence of bounded disturbances. It is assumed that nonlinear functions of the systems be completely unknown. Switching surfaces are incorporated into the hierarchical fuzzy control scheme to ensure the system stability. A fuzzy soft switching system decides the operation area of the hierarchical fuzzy control and variable structure control systems. All the nonlinearly appeared parameters of conclusion parts of fuzzy blocks located in different layers of the hierarchical fuzzy control system are adjusted through adaptation laws deduced from the defined Lyapunov function. The proposed hierarchical fuzzy control system reduces the number of rules and consequently the number of tunable parameters with respect to the ordinary fuzzy control system. Global boundedness of the overall adaptive system and the desired precision are achieved using the proposed adaptive control system. In this study, an adaptive hierarchical fuzzy system is used for two objectives; it can be as a function approximator or a control system based on an intelligent-classic approach. Three theorems are proven to investigate the stability of the nonlinear dynamic systems. The important point about the proposed theorems is that they can be applied not only to hierarchical fuzzy controllers with different structures of hierarchical fuzzy controller, but also to ordinary fuzzy controllers. Therefore, the proposed algorithm is more general. To show the effectiveness of the proposed method four systems (two mechanical, one mathematical and one chaotic) are considered in simulations. Simulation results demonstrate the validity, efficiency and feasibility of the proposed approach to control of nonlinear dynamic systems.

18. ANFIS optimized semi-active fuzzy logic controller for magnetorheological dampers

César, Manuel Braz; Barros, Rui Carneiro

2016-11-01

In this paper, we report on the development of a neuro-fuzzy controller for magnetorheological dampers using an Adaptive Neuro-Fuzzy Inference System or ANFIS. Fuzzy logic based controllers are capable to deal with non-linear or uncertain systems, which make them particularly well suited for civil engineering applications. The main objective is to develop a semi-active control system with a MR damper to reduce the response of a three degrees-of-freedom (DOFs) building structure. The control system is designed using ANFIS to optimize the fuzzy inference rule of a simple fuzzy logic controller. The results show that the proposed semi-active neuro-fuzzy based controller is effective in reducing the response of structural system.

19. Robust control for snake maneuver design of missile

Kun, Ya; Chen, Xin; Li, Chuntao

2017-01-01

For the performance of missile with high Mach number and strongly nonlinear dynamics, this paper uses robust control to design maneuver controller. Robust servomechanism linear quadratic regulator (RSLQR) control is used to form the inner loop and proportional-plus-integral (PI) control is used to provide yawing tracking with no error. Contrast simulations under three types of deviation have been done to confirm robustness of the RSLQR-plus-PI control. Simulation results shows that RSLQR-plus-PI control would resist the disturbance and maintain the properties of the controller, guarantee the robustness and stability of missile more effectively than pure PI control.

20. Robust steering control of spacecraft carrier rockets

Correa, Adriana Elysa Alimandro; da Rosa, Alex; Ferreira, Henrique Cezar; Ishihara, Joao Yoshiyuki; Borges, Renato Alves; Sheptun, Yuri Dmitrievich

In the year of 2003 it was established a cooperation agreement between Ukraine and Brazil for utilization of Cyclone-4 launch vehicle at Alcantara Launch Center. The company responsible for the marketing and operation of launch services is the company bi-national Alcantara Cyclone Space (ACS). The Cyclone-4 launch vehicle is the newest version of the Ukrainian Cyclone family launchers developed by Yuzhnoye State Design Office. This family has been used for many successful spacecrafts launches since 1969. This paper is concerned with the yaw stabilization problem around a nominal trajectory for the third stage of a satellite carrier rocket similar to the Cyclone-4. Only the steering machine of the main engine is considered as actuator. The dynamic behavior of the third stage around the nominal trajectory is modeled as a fourthorder time-varying linear system whereas the steering machine is modeled as a linear dynamical system up to third order. The values of the parameters of the steering machine model are unknown, however belonging to known intervals. As the main result, the stabilization problem is solved with a proportional derivative (PD) controller. The proposed tuning approach takes into account the robustness of the controller with respect to the steering machine model uncertainties. The performance of the PD controller is demonstrated by simulation results.

1. A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System

PubMed Central

Tang, Yongchuan; Zhou, Deyun

2016-01-01

In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method. PMID:27482707

2. A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System.

PubMed

Tang, Yongchuan; Zhou, Deyun; Jiang, Wen

2016-01-01

In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method.

3. Combined Integral and Robust Control of the Segmented Mirror Telescope

DTIC Science & Technology

2009-12-01

60 Hz, Best Perf ............ 41 Figure 29. Zernike Control Model ........................................................................ 42 Figure...builds on previous robust control design by combining classical control with an H robust controller on a Singular Value Decomposition reduced model ...It also presents reduction using Zernike polynomials and applies it to the integral control model as an alternate to Singular Value Decomposition

4. A composite self tuning strategy for fuzzy control of dynamic systems

NASA Technical Reports Server (NTRS)

Shieh, C.-Y.; Nair, Satish S.

1992-01-01

The feature of self learning makes fuzzy logic controllers attractive in control applications. This paper proposes a strategy to tune the fuzzy logic controller on-line by tuning the data base as well as the rule base. The structure of the controller is outlined and preliminary results are presented using simulation studies.

5. Computer-aided-analysis of linear control system robustness

NASA Technical Reports Server (NTRS)

Stengel, Robert F.; Ray, Laura R.

1990-01-01

Stochastic robustness is a simple technique used to estimate the stability and performance robustness of linear, time-invariant systems. The use of high-speed graphics workstations and control system design software in stochastic robustness analysis is discussed and demonstrated. It is shown that stochastic robustness makes good use of modern computational and graphic tools, and it is easily implemented using commercial control system design and analysis software.

6. Neural-network-based fuzzy logic control system with applications on compliant robot control

Hor, MawKae; Lu, Hui L.

1994-10-01

In view of the success of neural network applications in inverted pendulum control, speech recognition, and other problem solving, we believe that one could inject the noise removing concepts and learning spirits into the algorithm in constructing the neural networks and apply it to the various tasks such as compliant coordinated motion using multiple robots. Based on the fuzzy logic, a fuzzy logical control system is a logical system which is much closer to human thinking than any other logical systems. During recent years, fuzzy logic control has emerged as a fruitful area in applications, especially the applications lacking quantitative data regarding the input-output relations. Whereas, the connectionist model injects the learning ability to the fuzzy logic system. This model, proposed by Lin and Lee, is a connected neural network that embedded the fuzzy rules in the architecture. Since this model is general enough and we expect the embedded fuzzy concepts can solve the problems caused by the defective training data, it is chosen as our base structure. Appropriate modifications have been made to this model to reflect the real situations encountered in the robot applications. Our goal is to control two different types of robots for coordinated motion using sensory feedback information.

7. Fully automatic control of paraplegic FES pedaling using higher-order sliding mode and fuzzy logic control.

PubMed

Farhoud, Aidin; Erfanian, Abbas

2014-05-01

In this paper, a fully automatic robust control strategy is proposed for control of paraplegic pedaling using functional electrical stimulation (FES). The method is based on higher-order sliding mode (HOSM) control and fuzzy logic control. In FES, the strength of muscle contraction can be altered either by varying the pulse width (PW) or by the pulse amplitude (PA) of the stimulation signal. The proposed control strategy regulates simultaneously both PA and PW (i.e., PA/PW modulation). A HOSM controller is designed for regulating the PW and a fuzzy logic controller for the PA. The proposed control scheme is free-model and does not require any offline training phase and subject-specific information. Simulation studies on a virtual patient and experiments on three paraplegic subjects demonstrate good tracking performance and robustness of the proposed control strategy against muscle fatigue and external disturbances during FES-induced pedaling. The results of simulation studies show that the power and cadence tracking errors are 5.4% and 4.8%, respectively. The experimental results indicate that the proposed controller can improve pedaling system efficacy and increase the endurance of FES pedaling. The average of power tracking error over three paraplegic subjects is 7.4±1.4% using PA/PW modulation, while the tracking error is 10.2±1.2% when PW modulation is used. The subjects could pedal for 15 min with about 4.1% power loss at the end of experiment using proposed control strategy, while the power loss is 14.3% using PW modulation. The controller could adjust the stimulation intensity to compensate the muscle fatigue during long period of FES pedaling.

8. Design, modelling, implementation, and intelligent fuzzy control of a hovercraft

El-khatib, M. M.; Hussein, W. M.

2011-05-01

A Hovercraft is an amphibious vehicle that hovers just above the ground or water by air cushion. The concept of air cushion vehicle can be traced back to 1719. However, the practical form of hovercraft nowadays is traced back to 1955. The objective of the paper is to design, simulate and implement an autonomous model of a small hovercraft equipped with a mine detector that can travel over any terrains. A real time layered fuzzy navigator for a hovercraft in a dynamic environment is proposed. The system consists of a Takagi-Sugenotype fuzzy motion planner and a modified proportional navigation based fuzzy controller. The system philosophy is inspired by human routing when moving between obstacles based on visual information including the right and left views from which he makes his next step towards the goal in the free space. It intelligently combines two behaviours to cope with obstacle avoidance as well as approaching a goal using a proportional navigation path accounting for hovercraft kinematics. MATLAB/Simulink software tool is used to design and verify the proposed algorithm.

9. Decentralized adaptive fuzzy output feedback control of nonlinear interconnected systems with time-varying delay

Wang, Qin; Chen, Zuwen; Song, Aiguo

2017-01-01

A robust adaptive output-feedback control scheme based on K-filters is proposed for a class of nonlinear interconnected time-varying delay systems with immeasurable states. It is difficult to design the controller due to the existence of the immeasurable states and the time-delay couplings among interconnected subsystems. This difficulty is overcome by use of the fuzzy system, the K-filters and the appropriate Lyapunov-Krasovskii functional. Based on Lyapunov theory, the closed-loop control system is proved to be semi-global uniformly ultimately bounded (SGUUB), and the output tracking error converges to a neighborhood of zero. Simulation results demonstrate the effectiveness of the approach.

10. Model Based Predictive Control of Multivariable Hammerstein Processes with Fuzzy Logic Hypercube Interpolated Models

PubMed Central

Coelho, Antonio Augusto Rodrigues

2016-01-01

This paper introduces the Fuzzy Logic Hypercube Interpolator (FLHI) and demonstrates applications in control of multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) processes with Hammerstein nonlinearities. FLHI consists of a Takagi-Sugeno fuzzy inference system where membership functions act as kernel functions of an interpolator. Conjunction of membership functions in an unitary hypercube space enables multivariable interpolation of N-dimensions. Membership functions act as interpolation kernels, such that choice of membership functions determines interpolation characteristics, allowing FLHI to behave as a nearest-neighbor, linear, cubic, spline or Lanczos interpolator, to name a few. The proposed interpolator is presented as a solution to the modeling problem of static nonlinearities since it is capable of modeling both a function and its inverse function. Three study cases from literature are presented, a single-input single-output (SISO) system, a MISO and a MIMO system. Good results are obtained regarding performance metrics such as set-point tracking, control variation and robustness. Results demonstrate applicability of the proposed method in modeling Hammerstein nonlinearities and their inverse functions for implementation of an output compensator with Model Based Predictive Control (MBPC), in particular Dynamic Matrix Control (DMC). PMID:27657723

11. Design of robust controllers and a nonlinear observer for the control of a single-link flexible robotic manipulator

Chalhoub, N. G.; Kfoury, G. A.; Bazzi, B. A.

2006-03-01

Two robust nonlinear controllers along with a nonlinear observer have been developed in this study to control the rigid and flexible motions of a single-link robotic manipulator. The controllers and the observer have been designed based on a simplified model of the arm, which only accounts for the first elastic mode of the beam. The controllers consist of a conventional sliding mode controller (CSMC) and a fuzzy-sliding mode controller (FSMC). Moreover, the robust nonlinear observer has been designed based on the sliding mode methodology. The dynamic model, used in assessing the performances of the controllers and the observer, considers the first two elastic modes of the beam. The inclusion of the second elastic mode has been done to investigate the effects of unstructured uncertainties on the overall performance of the closed-loop system. The digital simulations have demonstrated the capability of the observer in yielding accurate estimates of the state variables in the presence of modeling uncertainties. Moreover, they served to prove the viability of using the observer to provide on-line estimates of the state variables for the computation of the control signals. The results have illustrated robust performances of the controllers and the observer in controlling the rigid and flexible motions of the manipulator in the presence of both structured and unstructured uncertainties. This was achieved irrespective of the differences in the initial conditions between the plant and the observer. Furthermore, the structural deformations, incurred by the beam at the onset of its movement, have been shown to be significantly reduced by fuzzy-tuning the η-control parameter. The results have demonstrated the superiority of the FSMC over the CSMC in producing less oscillatory and more accurate response of the angular displacement at the base joint, in damping out the unwanted vibrations of the beam, and in requiring significantly smaller control torques.

12. Fuzzy Predictive Control Strategy in the Application of the Industrial Furnace Temperature Control

Dai, Luping; Chen, Xingliang; Chen, Liu; Liu, Xia

Ceramic kiln with large heat capacity, big lag and nonlinear characteristic, this paper proposes a combining fuzzy control and predictive control of the control algorithm, to enhance the tracking and anti-interference ability of the algorithm. The simulation results show, this method compared with the control of PID has the high steady precision and dynamic characteristic.

13. Design Genetic Algorithm Optimization Education Software Based Fuzzy Controller for a Tricopter Fly Path Planning

ERIC Educational Resources Information Center

Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao

2016-01-01

In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…

14. FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY

EPA Science Inventory

The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...

15. Error Correction, Control Systems and Fuzzy Logic

NASA Technical Reports Server (NTRS)

Smith, Earl B.

2004-01-01

This paper will be a discussion on dealing with errors. While error correction and communication is important when dealing with spacecraft vehicles, the issue of control system design is also important. There will be certain commands that one wants a motion device to execute. An adequate control system will be necessary to make sure that the instruments and devices will receive the necessary commands. As it will be discussed later, the actual value will not always be equal to the intended or desired value. Hence, an adequate controller will be necessary so that the gap between the two values will be closed.

16. PC based speed control of dc motor using fuzzy logic controller

SciTech Connect

Mandal, S.K.; Kanphade, R.D.; Lavekar, K.P.

1998-07-01

The dc motor is extensively used as constant speed drive in textile mills, paper mills, printing press, etc.. If the load and supply voltage are time varying, the speed will be changed. Since last few decades the conventional PID controllers are used to maintain the constant speed by controlling the duty ratio of Chopper. Generally, four quadrant chopper is used for regenerative braking and reverse motoring operation. Fuzzy Logic is newly introduced in control system. Fuzzy Control is based on Fuzzy Logic, a logical system which is too much closer in spirit to human thinking and natural language. The Fuzzy Logic Controller (FLC) provides a linguistic control strategy based on knowledge base of the system. Firstly, the machine is started very smoothly from zero to reference speed in the proposed scheme by increasing the duty ratio. Then change and rate of change of speed (dN, dN/dt), change and rate of change input voltage (dV, dV/dt) and load current are input to FLC. The new value of duty ratio is determined from the Fuzzy rule base and defuzzification method. The chopper will be 'ON' according to new duty ratio to maintain the constant speed. The dynamic and steady state performance of the proposed system is better than conventional control system. In this paper mathematical simulation and experimental implementation are carried out to investigate the drive performance.

17. Simulation and experimental control of a 3-RPR parallel robot using optimal fuzzy controller and fast on/off solenoid valves based on the PWM wave.

PubMed

Moezi, Seyed Alireza; Rafeeyan, Mansour; Zakeri, Ehsan; Zare, Amin

2016-03-01

In this paper, a robust optimal fuzzy controller based on the Pulse Width Modulation (PWM) technique is proposed to control a laboratory parallel robot using inexpensive on/off solenoid valves. The controller coefficients are determined using Modified Cuckoo Optimization Algorithm. The objective function of this method is considered such that the results show the position tracking by the robot with less force and more efficiency. Regarding the results of experimental tests, the control strategy with on/off valves indicates good performance such that the maximum value of RMS of error for a circular path with increasing force on the system is 3.1mm. Furthermore, the results show the superiority of the optimal fuzzy controller compared with optimal PID controller in tracking paths with different conditions and uncertainties.

18. Fuzzy-Logic Based Vibration Suppression Control Experiments on Active Structures

Kwak, M. K.; Sciulli, D.

1996-03-01

This paper is concerned with the fuzzy-logic based vibration suppression control of active structures equipped with piezoelectric sensors and actuators. The control methodology is based on the fuzzy logic control of the variable structures system type. The sufficient condition for the closed-loop stability of the decentralized fuzzy control for the system equipped with collocated sensors and actuators is derived from the sufficient condition of the decentralized collocated variable system control. Hence, it is concluded that the fuzzy control is in fact the variation of the variable structure system control in this case. Comparison of the variable structure system to the fuzzy control leads to a new fuzzy rule of the vibration suppression of the active structure equipped with collocated sensors and actuators. It is shown that the fuzzy-logic control can be designed for the collocated system without any knowledge of the system to be controlled. However, this may not be true in the case of multi-input and multi-output non-collocated systems. All the developments are demonstrated by means of a real-time fuzzy control experiment on the cantilever beam with surface-bonded piezoceramic sensors and actuators.

19. A transductive neuro-fuzzy controller: application to a drilling process.

PubMed

Gajate, Agustín; Haber, Rodolfo E; Vega, Pastora I; Alique, José R

2010-07-01

Recently, new neuro-fuzzy inference algorithms have been developed to deal with the time-varying behavior and uncertainty of many complex systems. This paper presents the design and application of a novel transductive neuro-fuzzy inference method to control force in a high-performance drilling process. The main goal is to study, analyze, and verify the behavior of a transductive neuro-fuzzy inference system for controlling this complex process, specifically addressing the dynamic modeling, computational efficiency, and viability of the real-time application of this algorithm as well as assessing the topology of the neuro-fuzzy system (e.g., number of clusters, number of rules). A transductive reasoning method is used to create local neuro-fuzzy models for each input/output data set in a case study. The direct and inverse dynamics of a complex process are modeled using this strategy. The synergies among fuzzy, neural, and transductive strategies are then exploited to deal with process complexity and uncertainty through the application of the neuro-fuzzy models within an internal model control (IMC) scheme. A comparative study is made of the adaptive neuro-fuzzy inference system (ANFIS) and the suggested method inspired in a transductive neuro-fuzzy inference strategy. The two neuro-fuzzy strategies are evaluated in a real drilling force control problem. The experimental results demonstrated that the transductive neuro-fuzzy control system provides a good transient response (without overshoot) and better error-based performance indices than the ANFIS-based control system. In particular, the IMC system based on a transductive neuro-fuzzy inference approach reduces the influence of the increase in cutting force that occurs as the drill depth increases, reducing the risk of rapid tool wear and catastrophic tool breakage.

20. Robust asymptotic stability of fuzzy Markovian jumping genetic regulatory networks with time-varying delays by delay decomposition approach

Balasubramaniam, P.; Sathy, R.

2011-02-01

In this paper, the robust asymptotic stability problem is considered for a class of fuzzy Markovian jumping genetic regulatory networks with uncertain parameters and switching probabilities by delay decomposition approach. The purpose of the addressed stability analysis problem is to establish an easy-to-verify condition under which the dynamics of the true concentrations of the messenger ribonucleic acid (mRNA) and protein is asymptotically stable irrespective of the norm-bounded modeling errors. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing the delay interval into multiple subinterval, and choosing proper functionals with different weighting matrices corresponding to different subintervals in the LKFs. Employing these new LKFs for the time-varying delays, a new delay-dependent stability criterion is established with Markovian jumping parameters by T-S fuzzy model. Note that the obtained results are formulated in terms of linear matrix inequality (LMI) that can efficiently solved by the LMI toolbox in Matlab. Numerical examples are exploited to illustrate the effectiveness of the proposed design procedures.

1. Reducing the Impact of Uncertainties in Networked Control Systems Using Type-2 Fuzzy Logic

Michal, Blaho; J´n, Murgaš; Eugen, Viszus; Peter, Fodrek

2015-01-01

The networked control systems (NCS) have grown in popularity in recent years. Despite their advantages over the traditional control schemes, some of their drawbacks emerged as well (time delays, packet losses). There are several ways of dealing with the time delays and packet losses in NCS, but only a few authors have ever used type-2 fuzzy controllers for this purpose to our knowledge. This paper is aimed at dealing with the negative effects that occur in NCS, by using type-2 fuzzy control systems. It is presented that this approach can be successfully used to decrease the effects of time delays and packet losses. A type-2 fuzzy controller has been designed and compared to a type-1 fuzzy controller. The intervals of type-2 fuzzy controller were optimized via genetic algorithm.

2. Adaptive Fuzzy Bounded Control for Consensus of Multiple Strict-Feedback Nonlinear Systems.

PubMed

Wang, Wei; Tong, Shaocheng

2017-01-10

This paper studies the adaptive fuzzy bounded control problem for leader-follower multiagent systems, where each follower is modeled by the uncertain nonlinear strict-feedback system. Combining the fuzzy approximation with the dynamic surface control, an adaptive fuzzy control scheme is developed to guarantee the output consensus of all agents under directed communication topologies. Different from the existing results, the bounds of the control inputs are known as a priori, and they can be determined by the feedback control gains. To realize smooth and fast learning, a predictor is introduced to estimate each error surface, and the corresponding predictor error is employed to learn the optimal fuzzy parameter vector. It is proved that the developed adaptive fuzzy control scheme guarantees the uniformly ultimate boundedness of the closed-loop systems, and the tracking error converges to a small neighborhood of the origin. The simulation results and comparisons are provided to show the validity of the control strategy presented in this paper.

3. A fuzzy logic controller for an autonomous mobile robot

NASA Technical Reports Server (NTRS)

Yen, John; Pfluger, Nathan

1993-01-01

The ability of a mobile robot system to plan and move intelligently in a dynamic system is needed if robots are to be useful in areas other than controlled environments. An example of a use for this system is to control an autonomous mobile robot in a space station, or other isolated area where it is hard or impossible for human life to exist for long periods of time (e.g., Mars). The system would allow the robot to be programmed to carry out the duties normally accomplished by a human being. Some of the duties that could be accomplished include operating instruments, transporting objects, and maintenance of the environment. The main focus of our early work has been on developing a fuzzy controller that takes a path and adapts it to a given environment. The robot only uses information gathered from the sensors, but retains the ability to avoid dynamically placed obstacles near and along the path. Our fuzzy logic controller is based on the following algorithm: (1) determine the desired direction of travel; (2) determine the allowed direction of travel; and (3) combine the desired and allowed directions in order to determine a direciton that is both desired and allowed. The desired direction of travel is determined by projecting ahead to a point along the path that is closer to the goal. This gives a local direction of travel for the robot and helps to avoid obstacles.

4. Robust dissipative filtering for a kind of T-S fuzzy descriptor system with immeasurable premise variables

Zhu, Baoyan; Zhang, Qingling; Zhao, Enliang

2016-01-01

The problem of delay-dependent robust dissipative filtering is investigated for a kind of Takagi-Sugeno (T-S) fuzzy descriptor system with immeasurable premise variables. By utilising the free-weighting matrix approach and combining them with the structural characteristics of the error system, we propose the solvable conditions of the dissipative filter that ensure an error system with immeasurable states is admissible and strictly dissipative. This implies that it is not necessary to assume that the error systems are regular and impulse-free prior to designing filters. The derived method can be applied broadly to nonlinear systems. Also, the solvable condition of the dissipative filter with measurable states is a special case of this study. We also elicit the design methods of the H∞ and passive filters, which could potentially reduce the cost and time spent on the filter design. Finally, we perform simulations to validate the derived methods for two kinds of nonlinear descriptor systems.

5. Adaptive fuzzy logic controller with direct action type structures for InnoSAT attitude control system

Bakri, F. A.; Mashor, M. Y.; Sharun, S. M.; Bibi Sarpinah, S. N.; Abu Bakar, Z.

2016-10-01

This study proposes an adaptive fuzzy controller for attitude control system (ACS) of Innovative Satellite (InnoSAT) based on direct action type structure. In order to study new methods used in satellite attitude control, this paper presents three structures of controllers: Fuzzy PI, Fuzzy PD and conventional Fuzzy PID. The objective of this work is to compare the time response and tracking performance among the three different structures of controllers. The parameters of controller were tuned on-line by adjustment mechanism, which was an approach similar to a PID error that could minimize errors between actual and model reference output. This paper also presents a Model References Adaptive Control (MRAC) as a control scheme to control time varying systems where the performance specifications were given in terms of the reference model. All the controllers were tested using InnoSAT system under some operating conditions such as disturbance, varying gain, measurement noise and time delay. In conclusion, among all considered DA-type structures, AFPID controller was observed as the best structure since it outperformed other controllers in most conditions.

6. Fuzzy control system for a remote focusing microscope

NASA Technical Reports Server (NTRS)

Weiss, Jonathan J.; Tran, Luc P.

1992-01-01

Space Station Crew Health Care System procedures require the use of an on-board microscope whose slide images will be transmitted for analysis by ground-based microbiologists. Focusing of microscope slides is low on the list of crew priorities, so NASA is investigating the option of telerobotic focusing controlled by the microbiologist on the ground, using continuous video feedback. However, even at Space Station distances, the transmission time lag may disrupt the focusing process, severely limiting the number of slides that can be analyzed within a given bandwidth allocation. Substantial time could be saved if on-board automation could pre-focus each slide before transmission. The authors demonstrate the feasibility of on-board automatic focusing using a fuzzy logic ruled-based system to bring the slide image into focus. The original prototype system was produced in under two months and at low cost. Slide images are captured by a video camera, then digitized by gray-scale value. A software function calculates an index of 'sharpness' based on gray-scale contrasts. The fuzzy logic rule-based system uses feedback to set the microscope's focusing control in an attempt to maximize sharpness. The systems as currently implemented performs satisfactorily in focusing a variety of slide types at magnification levels ranging from 10 to 1000x. Although feasibility has been demonstrated, the system's performance and usability could be improved substantially in four ways: by upgrading the quality and resolution of the video imaging system (including the use of full color); by empirically defining and calibrating the index of image sharpness; by letting the overall focusing strategy vary depending on user-specified parameters; and by fine-tuning the fuzzy rules, set definitions, and procedures used.

7. Genetic Fuzzy Trees for Intelligent Control of Unmanned Combat Aerial Vehicles

Ernest, Nicholas D.

Fuzzy Logic Control is a powerful tool that has found great success in a variety of applications. This technique relies less on complex mathematics and more "expert knowledge" of a system to bring about high-performance, resilient, and efficient control through linguistic classification of inputs and outputs and if-then rules. Genetic Fuzzy Systems (GFSs) remove the need of this expert knowledge and instead rely on a Genetic Algorithm (GA) and have similarly found great success. However, the combination of these methods suffer severely from scalability; the number of rules required to control the system increases exponentially with the number of states the inputs and outputs can take. Therefor GFSs have thus far not been applicable to complex, artificial intelligence type problems. The novel Genetic Fuzzy Tree (GFT) method breaks down complex problems hierarchically, makes sub-decisions when possible, and thus greatly reduces the burden on the GA. This development significantly changes the field of possible applications for GFSs. Within this study, this is demonstrated through applying this technique to a difficult air combat problem. Looking forward to an autonomous Unmanned Combat Aerial Vehicle (UCAV) in the 2030 time-frame, it becomes apparent that the mission, flight, and ground controls will utilize the emerging paradigm of Intelligent Systems (IS); namely, the ability to learn, adapt, exhibit robustness in uncertain situations, make sense of the data collected in real-time and extrapolate when faced with scenarios significantly different from those used in training. LETHA (Learning Enhanced Tactical Handling Algorithm) was created to develop intelligent controllers for these advanced unmanned craft as the first GFT. A simulation space referred to as HADES (Hoplological Autonomous Defend and Engage Simulation) was created in which LETHA can train the UCAVs. Equipped with advanced sensors, a limited supply of Self-Defense Missiles (SDMs), and a recharging

8. A fuzzy controlled three-phase centrifuge for waste separation

SciTech Connect

Parkinson, W.J.; Smith, R.E.; Miller, N.

1998-02-01

The three-phase centrifuge technology discussed in this paper was developed by Neal Miller, president of Centech, Inc. The three-phase centrifuge is an excellent device for cleaning up oil field and refinery wastes which are typically composed of hydrocarbons, water, and solids. The technology is unique. It turns the waste into salable oil, reusable water, and landfill-able solids. No secondary waste is produced. The problem is that only the inventor can set up and run the equipment well enough to provide an optimal cleanup. Demand for this device has far exceeded a one man operation. There is now a need for several centrifuges to be operated at different locations at the same time. This has produced a demand for an intelligent control system, one that could replace a highly skilled operator, or at least supplement the skills of a less experienced operator. The control problem is ideally suited to fuzzy logic, since the centrifuge is a highly complicated machine operated entirely by the skill and experience of the operator. A fuzzy control system was designed for and used with the centrifuge.

9. Force control of a tri-layer conducting polymer actuator using optimized fuzzy logic control

2014-12-01

Conducting polymers actuators (CPAs) are potential candidates for replacing conventional actuators in various fields, such as robotics and biomedical engineering, due to their advantageous properties, which includes their low cost, light weight, low actuation voltage and biocompatibility. As these actuators are very suitable for use in micro-nano manipulation and in injection devices in which the magnitude of the force applied to the target is of crucial importance, the force generated by CPAs needs to be accurately controlled. In this paper, a fuzzy logic (FL) controller with a Mamdani inference system is designed to control the blocking force of a trilayer CPA with polypyrrole electrodes, which operates in air. The particle swarm optimization (PSO) method is employed to optimize the controller’s membership function parameters and therefore enhance the performance of the FL controller. An adaptive neuro-fuzzy inference system model, which can capture the nonlinear dynamics of the actuator, is utilized in the optimization process. The optimized Mamdani FL controller is then implemented on the CPA experimentally, and its performance is compared with a non-optimized fuzzy controller as well as with those obtained from a conventional PID controller. The results presented indicate that the blocking force at the tip of the CPA can be effectively controlled by the optimized FL controller, which shows excellent transient and steady state characteristics but increases the control voltage compared to the non-optimized fuzzy controllers.

10. Robust tracking control of a magnetically suspended rigid body

NASA Technical Reports Server (NTRS)

Lim, Kyong B.; Cox, David E.

1994-01-01

This study is an application of H-infinity and micro-synthesis for designing robust tracking controllers for the Large Angle Magnetic Suspension Test Facility. The modeling, design, analysis, simulation, and testing of a control law that guarantees tracking performance under external disturbances and model uncertainties is investigated. The type of uncertainties considered and the tracking performance metric used is discussed. This study demonstrates the tradeoff between tracking performance at low frequencies and robustness at high frequencies. Two sets of controllers were designed and tested. The first set emphasized performance over robustness, while the second set traded off performance for robustness. Comparisons of simulation and test results are also included. Current simulation and experimental results indicate that reasonably good robust tracking performance can be attained for this system using multivariable robust control approach.

11. Vector control of wind turbine on the basis of the fuzzy selective neural net*

Engel, E. A.; Kovalev, I. V.; Engel, N. E.

2016-04-01

An article describes vector control of wind turbine based on fuzzy selective neural net. Based on the wind turbine system’s state, the fuzzy selective neural net tracks an maximum power point under random perturbations. Numerical simulations are accomplished to clarify the applicability and advantages of the proposed vector wind turbine’s control on the basis of the fuzzy selective neuronet. The simulation results show that the proposed intelligent control of wind turbine achieves real-time control speed and competitive performance, as compared to a classical control model with PID controllers based on traditional maximum torque control strategy.

12. A fuzzy self-tuning PI controller for HVDC links

SciTech Connect

Routray, A.; Dash, P.K.; Panda, S.K.

1996-09-01

This paper introduces a fuzzy logic-based tuning of the controller parameters for the rectifier side current regulator and inverter side gamma controller in a high voltage direct current (HVDC) system. A typical point-to-point system has been taken with the detailed representation of converters, transmission links transformers, and filters. The current error and its derivative and the gamma error and its derivative are used as the principal signals to adjust the proportional and integral gains of the rectifier pole controller and the inverter gamma controller, respectively, for the optimum system performance under various normal and abnormal conditions. Finally, a comparative study has been performed with and without tuning, to prove the superiority of the proposed scheme.

13. Integrated identification and robust control tuning for large space structures

NASA Technical Reports Server (NTRS)

Yam, Y.; Bayard, D. S.; Scheid, R. E.

1990-01-01

System identification is studied for the explicit purpose of supporting modern H-infinity robust control design objectives. In the analysis, the true plant is not assumed to be in the identification model set. An integrated identification/robust control problem is posed in which the optimal solution guarantees the best robust performance relative to the system information contained in a given experimental data set. A numerical example demonstrating an approximate solution to the problem indicates the usefulness of the approach.

14. Delay-dependent fuzzy static output feedback control for discrete-time fuzzy stochastic systems with distributed time-varying delays.

PubMed

Xia, ZhiLe; Li, JunMin; Li, JiangRong

2012-11-01

This paper is concerned with the delay-dependent H(∞) fuzzy static output feedback control scheme for discrete-time Takagi-Sugeno (T-S) fuzzy stochastic systems with distributed time-varying delays. To begin with, the T-S fuzzy stochastic system is transformed to an equivalent switching fuzzy stochastic system. Then, based on novel matrix decoupling technique, improved free-weighting matrix technique and piecewise Lyapunov-Krasovskii function (PLKF), a new delay-dependent H(∞) fuzzy static output feedback controller design approach is first derived for the switching fuzzy stochastic system. Some drawbacks existing in the previous papers such as matrix equalities constraint, coordinate transformation, the same output matrices, diagonal structure constraint on Lyapunov matrices and BMI problem have been eliminated. Since only a set of LMIs is involved, the controller parameters can be solved directly by the Matlab LMI toolbox. Finally, two examples are provided to illustrate the validity of the proposed method.

15. Initial Experiments on Fuzzy Control for Nuclear Reactor Operations at the Belgian Reactor 1

SciTech Connect

Da Ruan

2003-08-15

The application of fuzzy logic control (FLC) in the domain of the nuclear industry presents a tremendous challenge. The main reason for this is the public awareness of the risks of nuclear reactors and the very strict safety regulations in force for nuclear power plants. The very same regulations prevent a researcher from quickly introducing novel control methods into this field. On the other hand, the application of FLC has, despite the ominous sound of the word 'fuzzy' to nuclear engineers, a number of very desirable advantages over classical control, e.g., its robustness and the capability to include human experience into the controller. In this paper an FLC for controlling the power level of a nuclear reactor is described. The study is intended to assess the applicability of FLC in this domain. The final goal is to develop an optimized and intrinsically safe controller. After reviewing some available literature on FLC in nuclear reactors, an FLC is proposed and first tested by comparing it with the classical controller of the Belgian reactor 1 (BR1). In the next step the BR1 at the Belgian Nuclear Research Center (SCK-CEN) was used as a test bed to implement a programmable logic controller-based hardware controller. The BR1 reactor is internationally regarded as a nuclear calibration reference. It therefore provides an excellent environment for this type of experiment because over the years considerable knowledge of the static and dynamic properties of the reactor has been accumulated. The project (1995-1999) aimed at investigating the added value and technical limits of FLC for nuclear reactor operations. The progress made in these experiments including closed-loop experiments are presented and discussed in this paper.

16. A criterion for joint optimization of identification and robust control

NASA Technical Reports Server (NTRS)

Bayard, D. S.; Yam, Y.; Mettler, E.

1992-01-01

A criterion for system identification is developed that is consistent with the intended used of the fitted model for modern robust control synthesis. Specifically, a joint optimization problem is posed which simultaneously solves the plant model estimate and control design, so as to optimize robust performance over the set of plants consistent with a specified experimental data set.

17. A genetic algorithms approach for altering the membership functions in fuzzy logic controllers

NASA Technical Reports Server (NTRS)

1992-01-01

Through previous work, a fuzzy control system was developed to perform translational and rotational control of a space vehicle. This problem was then re-examined to determine the effectiveness of genetic algorithms on fine tuning the controller. This paper explains the problems associated with the design of this fuzzy controller and offers a technique for tuning fuzzy logic controllers. A fuzzy logic controller is a rule-based system that uses fuzzy linguistic variables to model human rule-of-thumb approaches to control actions within a given system. This 'fuzzy expert system' features rules that direct the decision process and membership functions that convert the linguistic variables into the precise numeric values used for system control. Defining the fuzzy membership functions is the most time consuming aspect of the controller design. One single change in the membership functions could significantly alter the performance of the controller. This membership function definition can be accomplished by using a trial and error technique to alter the membership functions creating a highly tuned controller. This approach can be time consuming and requires a great deal of knowledge from human experts. In order to shorten development time, an iterative procedure for altering the membership functions to create a tuned set that used a minimal amount of fuel for velocity vector approach and station-keep maneuvers was developed. Genetic algorithms, search techniques used for optimization, were utilized to solve this problem.

18. Application of fuzzy GA for optimal vibration control of smart cylindrical shells

Jin, Zhanli; Yang, Yaowen; Kiong Soh, Chee

2005-12-01

In this paper, a fuzzy-controlled genetic-based optimization technique for optimal vibration control of cylindrical shell structures incorporating piezoelectric sensor/actuators (S/As) is proposed. The geometric design variables of the piezoelectric patches, including the placement and sizing of the piezoelectric S/As, are processed using fuzzy set theory. The criterion based on the maximization of energy dissipation is adopted for the geometric optimization. A fuzzy-rule-based system (FRBS) representing expert knowledge and experience is incorporated in a modified genetic algorithm (GA) to control its search process. A fuzzy logic integrated GA is then developed and implemented. The results of three numerical examples, which include a simply supported plate, a simply supported cylindrical shell, and a clamped simply supported plate, provide some meaningful and heuristic conclusions for practical design. The results also show that the proposed fuzzy-controlled GA approach is more effective and efficient than the pure GA method.

19. Autonomous Control of a Quadrotor UAV Using Fuzzy Logic

Sureshkumar, Vijaykumar

20. Identification and robust control of an experimental servo motor.

PubMed

Adam, E J; Guestrin, E D

2002-04-01

In this work, the design of a robust controller for an experimental laboratory-scale position control system based on a dc motor drive as well as the corresponding identification and robust stability analysis are presented. In order to carry out the robust design procedure, first, a classic closed-loop identification technique is applied and then, the parametrization by internal model control is used. The model uncertainty is evaluated under both parametric and global representation. For the latter case, an interesting discussion about the conservativeness of this description is presented by means of a comparison between the uncertainty disk and the critical perturbation radius approaches. Finally, conclusions about the performance of the experimental system with the robust controller are discussed using comparative graphics of the controlled variable and the Nyquist stability margin as a robustness measurement.

1. Stochastic robustness of linear control systems

NASA Technical Reports Server (NTRS)

Stengel, Robert F.; Ryan, Laura E.

1990-01-01

A simple numerical procedure for estimating the stochastic robustness of a linear, time-invariant system is described. Monte Carlo evaluation of the system's eigenvalues allows the probability of instability and the related stochastic root locus to be estimated. This definition of robustness is an alternative to existing deterministic definitions that address both structured and unstructured parameter variations directly. This analysis approach treats not only Gaussian parameter uncertainties but non-Gaussian cases, including uncertain-but-bounded variations. Trivial extensions of the procedure admit alternate discriminants to be considered. Thus, the probabilities that stipulated degrees of instability will be exceeded or that closed-loop roots will leave desirable regions also can be estimated. Results are particularly amenable to graphical presentation.

2. [Research on the Application of Fuzzy Logic to Systems Analysis and Control

NASA Technical Reports Server (NTRS)

1998-01-01

Research conducted with the support of NASA Grant NCC2-275 has been focused in the main on the development of fuzzy logic and soft computing methodologies and their applications to systems analysis and control. with emphasis 011 problem areas which are of relevance to NASA's missions. One of the principal results of our research has been the development of a new methodology called Computing with Words (CW). Basically, in CW words drawn from a natural language are employed in place of numbers for computing and reasoning. There are two major imperatives for computing with words. First, computing with words is a necessity when the available information is too imprecise to justify the use of numbers, and second, when there is a tolerance for imprecision which can be exploited to achieve tractability, robustness, low solution cost, and better rapport with reality. Exploitation of the tolerance for imprecision is an issue of central importance in CW.

3. The Temperature Fuzzy Control System of Barleythe Malt Drying Based on Microcontroller

Gao, Xiaoyang; Bi, Yang; Zhang, Lili; Chen, Jingjing; Yun, Jianmin

The control strategy of temperature and humidity in the beer barley malt drying chamber based on fuzzy logic control was implemented.Expounded in this paper was the selection of parameters for the structure of the regulatory device, as well as the essential design from control rules based on the existing experience. A temperature fuzzy controller was thus constructed using relevantfuzzy logic, and humidity control was achieved by relay, ensured the situation of the humidity to control the temperature. The temperature's fuzzy control and the humidity real-time control were all processed by single chip microcomputer with assembly program. The experimental results showed that the temperature control performance of this fuzzy regulatory system,especially in the ways of working stability and responding speed and so on,was better than normal used PID control. The cost of real-time system was inquite competitive position. It was demonstrated that the system have a promising prospect of extensive application.

4. Robustness Analysis and Optimally Robust Control Design via Sum-of-Squares

NASA Technical Reports Server (NTRS)

Dorobantu, Andrei; Crespo, Luis G.; Seiler, Peter J.

2012-01-01

A control analysis and design framework is proposed for systems subject to parametric uncertainty. The underlying strategies are based on sum-of-squares (SOS) polynomial analysis and nonlinear optimization to design an optimally robust controller. The approach determines a maximum uncertainty range for which the closed-loop system satisfies a set of stability and performance requirements. These requirements, de ned as inequality constraints on several metrics, are restricted to polynomial functions of the uncertainty. To quantify robustness, SOS analysis is used to prove that the closed-loop system complies with the requirements for a given uncertainty range. The maximum uncertainty range, calculated by assessing a sequence of increasingly larger ranges, serves as a robustness metric for the closed-loop system. To optimize the control design, nonlinear optimization is used to enlarge the maximum uncertainty range by tuning the controller gains. Hence, the resulting controller is optimally robust to parametric uncertainty. This approach balances the robustness margins corresponding to each requirement in order to maximize the aggregate system robustness. The proposed framework is applied to a simple linear short-period aircraft model with uncertain aerodynamic coefficients.

5. Fuzzy control with amplitude/pulse-width modulation of nerve electrical stimulation for muscle force control.

PubMed

Lin, C-C K; Liu, W-C; Chan, C-C; Ju, M-S

2012-04-01

The main goal of this study was to study the performance of fuzzy logic controllers combined with simplified hybrid amplitude/pulse-width (AM/PW) modulation to regulate muscle force via nerve electrical stimulation. The recruitment curves with AM/PW and AM modulations were constructed for the calf muscles of rabbits. Integrated with the modulation methods, a proportional-integral-derivative (PID) and three fuzzy logic controllers were designed and applied for the electrical stimulation of tibial nerves to control the ankle torque under isometric conditions. The performance of the two modulation methods combined with the four controllers was compared when the ankle was fixed at three positions for both in vivo experiments and model simulations using a nonlinear muscle model. For the animal experiments, AM/PW modulation performed better than AM modulation alone. The fuzzy PI controller performed marginally better and was resistant to external noises, though it tended to have a larger overshoot. The performance of the controllers had a similar trend in the three different joint positions, and the simulation results with the nonlinear model matched the experimental results well. In conclusion, AM/PW modulation improved controller performance, while the contribution of fuzzy logic was only marginal.

6. Cost averaging techniques for robust control of flexible structural systems

NASA Technical Reports Server (NTRS)

Hagood, Nesbitt W.; Crawley, Edward F.

1991-01-01

Viewgraphs on cost averaging techniques for robust control of flexible structural systems are presented. Topics covered include: modeling of parameterized systems; average cost analysis; reduction of parameterized systems; and static and dynamic controller synthesis.

7. Robust attitude tracking control of small-scale unmanned helicopter

Wang, Xiafu; Chen, You; Lu, Geng; Zhong, Yisheng

2015-06-01

Robust attitude control problem for small-scale unmanned helicopters is investigated to improve attitude control performances of roll and pitch channels under both small and large amplitude manoeuvre flight conditions. The model of the roll or pitch angular dynamics is regarded as a nominal single-input single-output linear system with equivalent disturbances which contain nonlinear uncertainties, coupling-effects, parameter perturbations, and external disturbances. Based on the signal compensation method, a robust controller is designed with two parts: a proportional-derivative controller and a robust compensator. The designed controller is linear and time-invariant, so it can be easily realised. The robust properties of the closed-loop system are proven. According to the ADS-33E-PRF military rotorcraft standard, the controller can achieve top control performances. Experimental results demonstrate the effectiveness of the proposed control strategy.

8. Inverting the Pendulum Using Fuzzy Control (Center Director's Discretionary Fund (Project 93-02)

NASA Technical Reports Server (NTRS)

Kissel, R. R.; Sutherland, W. T.

1997-01-01

A single pendulum was simulated in software and then built on a rotary base. A fuzzy controller was used to show its advantages as a nonlinear controller since bringing the pendulum inverted is extremely nonlinear. The controller was implemented in a Motorola 6811 microcontroller. A double pendulum was simulated and fuzzy control was used to hold it in a vertical position. The double pendulum was not built into hardware for lack of time. This project was for training and to show advantages of fuzzy control.

9. Robust transition control of a Martian coaxial tiltrotor aerobot

Zhao, Wei; Underwood, Craig

2014-06-01

Hyperion is an autonomous solar-electric powered coaxial tiltrotor aerobot proposed to investigate the Isidis Planitia region on Mars. The objective of this paper is to propose a robust control strategy for transition flight between hover and cruise based on the supervisory control method and the linear robust control method. The proposed transition controller has two levels. The lower level is a series of candidate controllers for the subproblems, which are obtained by the operation of divide and conquer. The higher level uses the state variables to determine which lower level candidate controller should be used. The candidate controllers are solved using the μ synthesis and the conventional longitudinal and lateral control loops. The robustness of the candidate controllers is guaranteed by the robust control theory. The stability and robustness of the transition controller is determined by the switch logic in the higher level. The stability of the proposed control strategy is analyzed. A 6 Degree of Freedom simulation with uncertain aerodynamic model is used to show the robustness and the performance of the proposed controller.

10. Fuzzy logic, PSO based fuzzy logic algorithm and current controls comparative for grid-connected hybrid system

Borni, A.; Abdelkrim, T.; Zaghba, L.; Bouchakour, A.; Lakhdari, A.; Zarour, L.

2017-02-01

In this paper the model of a grid connected hybrid system is presented. The hybrid system includes a variable speed wind turbine controlled by aFuzzy MPPT control, and a photovoltaic generator controlled with PSO Fuzzy MPPT control to compensate the power fluctuations caused by the wind in a short and long term, the inverter currents injected to the grid is controlled by a decoupled PI current control. In the first phase, we start by modeling of the conversion system components; the wind system is consisted of a turbine coupled to a gearless permanent magnet generator (PMG), the AC/DC and DC-DC (Boost) converter are responsible to feed the electric energy produced by the PMG to the DC-link. The solar system consists of a photovoltaic generator (GPV) connected to a DC/DC boost converter controlled by a PSO fuzzy MPPT control to extract at any moment the maximum available power at the GPV terminals, the system is based on maximum utilization of both of sources because of their complementary. At the end. The active power reached to the DC-link is injected to the grid through a DC/AC inverter, this function is achieved by controlling the DC bus voltage to keep it constant and close to its reference value, The simulation studies have been performed using Matlab/Simulink. It can be concluded that a good control system performance can be achieved.

11. Simulation of the Predictive Control Algorithm for Container Crane Operation using Matlab Fuzzy Logic Tool Box

NASA Technical Reports Server (NTRS)

Richardson, Albert O.

1997-01-01

This research has investigated the use of fuzzy logic, via the Matlab Fuzzy Logic Tool Box, to design optimized controller systems. The engineering system for which the controller was designed and simulate was the container crane. The fuzzy logic algorithm that was investigated was the 'predictive control' algorithm. The plant dynamics of the container crane is representative of many important systems including robotic arm movements. The container crane that was investigated had a trolley motor and hoist motor. Total distance to be traveled by the trolley was 15 meters. The obstruction height was 5 meters. Crane height was 17.8 meters. Trolley mass was 7500 kilograms. Load mass was 6450 kilograms. Maximum trolley and rope velocities were 1.25 meters per sec. and 0.3 meters per sec., respectively. The fuzzy logic approach allowed the inclusion, in the controller model, of performance indices that are more effectively defined in linguistic terms. These include 'safety' and 'cargo swaying'. Two fuzzy inference systems were implemented using the Matlab simulation package, namely the Mamdani system (which relates fuzzy input variables to fuzzy output variables), and the Sugeno system (which relates fuzzy input variables to crisp output variable). It is found that the Sugeno FIS is better suited to including aspects of those plant dynamics whose mathematical relationships can be determined.

12. Nonlinear Performance Seeking Control using Fuzzy Model Reference Learning Control and the Method of Steepest Descent

NASA Technical Reports Server (NTRS)

Kopasakis, George

1997-01-01

Performance Seeking Control (PSC) attempts to find and control the process at the operating condition that will generate maximum performance. In this paper a nonlinear multivariable PSC methodology will be developed, utilizing the Fuzzy Model Reference Learning Control (FMRLC) and the method of Steepest Descent or Gradient (SDG). This PSC control methodology employs the SDG method to find the operating condition that will generate maximum performance. This operating condition is in turn passed to the FMRLC controller as a set point for the control of the process. The conventional SDG algorithm is modified in this paper in order for convergence to occur monotonically. For the FMRLC control, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for effective tuning of the FMRLC controller.

13. Controlling of grid connected photovoltaic lighting system with fuzzy logic

SciTech Connect

Saglam, Safak; Ekren, Nazmi; Erdal, Hasan

2010-02-15

In this study, DC electrical energy produced by photovoltaic panels is converted to AC electrical energy and an indoor area is illuminated using this energy. System is controlled by fuzzy logic algorithm controller designed with 16 rules. Energy is supplied from accumulator which is charged by photovoltaic panels if its energy would be sufficient otherwise it is supplied from grid. During the 1-week usage period at the semester time, 1.968 kWh energy is used from grid but designed system used 0.542 kWh energy from photovoltaic panels at the experiments. Energy saving is determined by calculations and measurements for one education year period (9 months) 70.848 kWh. (author)

14. Structured Robust Loop shaping control for HIMAT System Using PSO

Kaitwanidvilai, Somyot; Jangwanitlert, Anuwat; Parnichkun, Manukid

2009-01-01

Robust loop shaping control is a feasible method for designing a robust controller; however, the controller designed by this method is complicated and difficult to implement practically. To overcome this problem, in this paper, a new design technique of a fixed-structure robust loop shaping controller for a highly maneuverable airplane, HIMAT, is proposed. The performance and robust stability conditions of the designed system satisfying H∞ loop shaping control are formulated as the objective function in the optimization problem. Particle Swarm Optimization (PSO) technique is adopted to solve this problem and to achieve the control parameters of the proposed controller. Simulation results demonstrate that the proposed approach is numerically efficient and leads to performance comparable to that of the other method.

15. M-matrix based robust stability and stabilization for uncertain discrete-time switched TS fuzzy systems with time-varying delays.

PubMed

Jaballi, Ahmed; Sakly, Anis; Hajjaji, Ahmed El

2016-07-01

This paper provides novel sufficient conditions on robust asymptotic stability and stabilization for a class of uncertain discrete-time switched fuzzy with time-varying delays. The attention is focused on developing new algebraic criteria to break with classical criteria in terms of Linear Matrix Inequalities (LMIs). Firstly, based on the M-matrix proprieties and through l1,∞ induced norms notion, new delay-dependent sufficient conditions are derived to ensure the asymptotic stability and stabilization for a class of uncertain discrete-time switched fuzzy systems with time-varying delay. Secondly, these results are extended for a class of uncertain discrete-time switched fuzzy systems with time delays, modeled by difference equations. Finally, two numerical examples and practical example (a robot arm) are provided to demonstrate the advantage and the effectiveness of our results.

16. Switching fuzzy controller design based on switching Lyapunov function for a class of nonlinear systems.

PubMed

Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O

2006-02-01

This paper presents a switching fuzzy controller design for a class of nonlinear systems. A switching fuzzy model is employed to represent the dynamics of a nonlinear system. In our previous papers, we proposed the switching fuzzy model and a switching Lyapunov function and derived stability conditions for open-loop systems. In this paper, we design a switching fuzzy controller. We firstly show that switching fuzzy controller design conditions based on the switching Lyapunov function are given in terms of bilinear matrix inequalities, which is difficult to design the controller numerically. Then, we propose a new controller design approach utilizing an augmented system. By introducing the augmented system which consists of the switching fuzzy model and a stable linear system, the controller design conditions based on the switching Lyapunov function are given in terms of linear matrix inequalities (LMIs). Therefore, we can effectively design the switching fuzzy controller via LMI-based approach. A design example illustrates the utility of this approach. Moreover, we show that the approach proposed in this paper is available in the research area of piecewise linear control.

17. Application of Fuzzy-Logic Controller and Neural Networks Controller in Gas Turbine Speed Control and Overheating Control and Surge Control on Transient Performance

Torghabeh, A. A.; Tousi, A. M.

2007-08-01

This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.

18. A PI-fuzzy logic controller for the regulation of blood glucose level in diabetic patients.

PubMed

Ibbini, M

2006-01-01

This manuscript investigates different fuzzy logic controllers for the regulation of blood glucose level in diabetic patients. While fuzzy logic control is still intuitive and at a very early stage, it has already been implemented in many industrial plants and reported results are very promising. A fuzzy logic control (FLC) scheme was recently proposed for maintaining blood glucose level in diabetics within acceptable limits, and was shown to be more effective with better transient characteristics than conventional techniques. In fact, FLC is based on human expertise and on desired output characteristics, and hence does not require precise mathematical models. This observation makes fuzzy rule-based technique very suitable for biomedical systems where models are, in general, either very complicated or over-simplistic. Another attractive feature of fuzzy techniques is their insensitivity to system parameter variations, as numerical values of physiological parameters are often not precise and usually vary from patient to another. PI and PID controllers are very popular and are efficiently used in many industrial plants. Fuzzy PI and PID controllers behave in a similar fashion to those classical controllers with the obvious advantage that the controller parameters are time dependant on the range of the control variables and consequently, result in a better performance. In this manuscript, a fuzzy PI controller is designed using a simplified design scheme and then subjected to simulations of the two common diabetes disturbances--sudden glucose meal and system parameter variations. The performance of the proposed fuzzy PI controller is compared to that of the conventional PID and optimal techniques and is shown to be superior. Moreover, the proposed fuzzy PI controller is shown to be more effective than the previously proposed FLC, especially with respect to the overshoot and settling time.

19. Robust Control Design for Systems With Probabilistic Uncertainty

NASA Technical Reports Server (NTRS)

Crespo, Luis G.; Kenny, Sean P.

2005-01-01

This paper presents a reliability- and robustness-based formulation for robust control synthesis for systems with probabilistic uncertainty. In a reliability-based formulation, the probability of violating design requirements prescribed by inequality constraints is minimized. In a robustness-based formulation, a metric which measures the tendency of a random variable/process to cluster close to a target scalar/function is minimized. A multi-objective optimization procedure, which combines stability and performance requirements in time and frequency domains, is used to search for robustly optimal compensators. Some of the fundamental differences between the proposed strategy and conventional robust control methods are: (i) unnecessary conservatism is eliminated since there is not need for convex supports, (ii) the most likely plants are favored during synthesis allowing for probabilistic robust optimality, (iii) the tradeoff between robust stability and robust performance can be explored numerically, (iv) the uncertainty set is closely related to parameters with clear physical meaning, and (v) compensators with improved robust characteristics for a given control structure can be synthesized.

20. Controlling chaos in a defined trajectory using adaptive fuzzy logic algorithm

2012-09-01

Chaos is a nonlinear behavior of chaotic system with the extreme sensitivity to the initial conditions. Chaos control is so complicated that solutions never converge to a specific numbers and vary chaotically from one amount to the other next. A tiny perturbation in a chaotic system may result in chaotic, periodic, or stationary behavior. Modern controllers are introduced for controlling the chaotic behavior. In this research an adaptive Fuzzy Logic Controller (AFLC) is proposed to control the chaotic system with two equilibrium points. This method is introduced as an adaptive progressed fashion with the full ability to control the nonlinear systems even in the undertrained conditions. Using AFLC designers are released to determine the precise mathematical model of system and satisfy the vast adaption that is needed for a rapid variation which may be caused in the dynamic of nonlinear system. Rules and system parameters are generated through the AFLC and expert knowledge is downright only in the initialization stage. So if the knowledge was not assuring the dynamic of system it could be changed through the adaption procedure of parameters values. AFLC methodology is an advanced control fashion in control yielding to both robustness and smooth motion in nonlinear system control.

1. A fuzzy model based adaptive PID controller design for nonlinear and uncertain processes.

PubMed

Savran, Aydogan; Kahraman, Gokalp

2014-03-01

We develop a novel adaptive tuning method for classical proportional-integral-derivative (PID) controller to control nonlinear processes to adjust PID gains, a problem which is very difficult to overcome in the classical PID controllers. By incorporating classical PID control, which is well-known in industry, to the control of nonlinear processes, we introduce a method which can readily be used by the industry. In this method, controller design does not require a first principal model of the process which is usually very difficult to obtain. Instead, it depends on a fuzzy process model which is constructed from the measured input-output data of the process. A soft limiter is used to impose industrial limits on the control input. The performance of the system is successfully tested on the bioreactor, a highly nonlinear process involving instabilities. Several tests showed the method's success in tracking, robustness to noise, and adaptation properties. We as well compared our system's performance to those of a plant with altered parameters with measurement noise, and obtained less ringing and better tracking. To conclude, we present a novel adaptive control method that is built upon the well-known PID architecture that successfully controls highly nonlinear industrial processes, even under conditions such as strong parameter variations, noise, and instabilities.

2. Generalized internal model robust control for active front steering intervention

Wu, Jian; Zhao, Youqun; Ji, Xuewu; Liu, Yahui; Zhang, Lipeng

2015-03-01

Because of the tire nonlinearity and vehicle's parameters' uncertainties, robust control methods based on the worst cases, such as H ∞, µ synthesis, have been widely used in active front steering control, however, in order to guarantee the stability of active front steering system (AFS) controller, the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control. In this paper, a generalized internal model robust control (GIMC) that can overcome the contradiction between performance and stability is used in the AFS control. In GIMC, the Youla parameterization is used in an improved way. And GIMC controller includes two sections: a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters' uncertainties and some external disturbances. Simulations of double lane change (DLC) maneuver and that of braking on split- µ road are conducted to compare the performance and stability of the GIMC control, the nominal performance PID controller and the H ∞ controller. Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations, H ∞ controller is conservative so that the performance is a little low, and only the GIMC controller overcomes the contradiction between performance and robustness, which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller. Therefore, the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system, that is, can solve the instability of PID or LQP control methods and the low performance of the standard H ∞ controller.

3. Development of a GA-Fuzzy-Immune PID Controller with Incomplete Derivation for Robot Dexterous Hand

PubMed Central

Liu, Xin-hua; Chen, Xiao-hu; Zheng, Xian-hua; Li, Sheng-peng; Wang, Zhong-bin

2014-01-01

In order to improve the performance of robot dexterous hand, a controller based on GA-fuzzy-immune PID was designed. The control system of a robot dexterous hand and mathematical model of an index finger were presented. Moreover, immune mechanism was applied to the controller design and an improved approach through integration of GA and fuzzy inference was proposed to realize parameters' optimization. Finally, a simulation example was provided and the designed controller was proved ideal. PMID:25097881

4. Development of a GA-fuzzy-immune PID controller with incomplete derivation for robot dexterous hand.

PubMed

Liu, Xin-hua; Chen, Xiao-hu; Zheng, Xian-hua; Li, Sheng-peng; Wang, Zhong-bin

2014-01-01

In order to improve the performance of robot dexterous hand, a controller based on GA-fuzzy-immune PID was designed. The control system of a robot dexterous hand and mathematical model of an index finger were presented. Moreover, immune mechanism was applied to the controller design and an improved approach through integration of GA and fuzzy inference was proposed to realize parameters' optimization. Finally, a simulation example was provided and the designed controller was proved ideal.

5. A class of fuzzy sliding-mode control simulation for two-link robot manipulators

Zhong, ChunHua

2012-04-01

In this paper, I studied the theory of fuzzy logic control of 2R robot, analysed and introduced it detailedly, then applied it to robot tracking control. The validity of the control scheme is verified by end Linear trajectory tracking test of 2R robot robotic manipulator system of fuzzy logic control. It did not depend on the exact mathematical model and could solve effectively the influence of nonlinear and uncertainty.

6. Learning control of inverted pendulum system by neural network driven fuzzy reasoning: The learning function of NN-driven fuzzy reasoning under changes of reasoning environment

NASA Technical Reports Server (NTRS)

Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru

1991-01-01

Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.

7. Robustness results in LQG based multivariable control designs

NASA Technical Reports Server (NTRS)

Lehtomaki, N. A.; Sandell, N. R., Jr.; Athans, M.

1980-01-01

The robustness of control systems with respect to model uncertainty is considered using simple frequency domain criteria. Results are derived under a common framework in which the minimum singular value of the return difference transfer matrix is the key quantity. In particular, the LQ and LQG robustness results are discussed.

8. Delay-dependent H∞ robust control for large power systems based on two-level hierarchical decentralised coordinated control structure

Dou, Chun-Xia; Duan, Zhi-Sheng; Jia, Xing-Bei

2013-02-01

This article focuses on a novel two-level hierarchical decentralised coordinated control which consists of several local fuzzy power system stabilisers (LFPSSs) for each generator at the first level tuned by supervisory power system stabiliser (SPSS) at the secondary level for the transient stabilisation improvement of large power systems. First, in order to compensate the inherent nonlinear interconnections between subsystems in system dynamic model, a direct feedback linearisation compensator is proposed to act through the local excitation machine. Afterwards, the T-S fuzzy model-based decentralised LFPSS for each generator is designed. Then, for the purpose of improving dynamic performance, the SPSS is designed by using the remote signals from the wide area measurements system. However, there are unavoidable delays involved before the remote signals are received at the SPSS site or the control signals of SPSS are sent to the local systems. Taking consideration of the multiple delays, by using less conservative delay-dependent Lyapunov approach, the authors develop a delay-dependent H∞ robust control technique based on the decentralised coordinated control structure. Some sufficient conditions for the system stabilisation are presented in terms of linear matrix inequalities dependent only on the upper bounds of the time delays. Finally, the effectiveness of the proposed control scheme is demonstrated through simulation examples.

9. H(∞) constrained fuzzy control via state observer feedback for discrete-time Takagi-Sugeno fuzzy systems with multiplicative noises.

PubMed

Chang, Wen-Jer; Wu, Wen-Yuan; Ku, Cheung-Chieh

2011-01-01

The purpose of this paper is to study the H(∞) constrained fuzzy controller design problem for discrete-time Takagi-Sugeno (T-S) fuzzy systems with multiplicative noises by using the state observer feedback technique. The proposed fuzzy controller design approach is developed based on the Parallel Distributed Compensation (PDC) technique. Through the Lyapunov stability criterion, the stability analysis is completed to develop stability conditions for the closed-loop systems. Besides, the H(∞) performance constraints is also considered in the stability condition derivations for the worst case effect of disturbance on system states. Solving these stability conditions via the two-step Linear Matrix Inequality (LMI) algorithm, the observer-based fuzzy controller is obtained to achieve the stability and H(∞) performance constraints, simultaneously. Finally, a numerical example is provided to verify the applicability and effectiveness of the proposed fuzzy control approach.

10. Robust on-off pulse control of flexible space vehicles

NASA Technical Reports Server (NTRS)

Wie, Bong; Sinha, Ravi

1993-01-01

The on-off reaction jet control system is often used for attitude and orbital maneuvering of various spacecraft. Future space vehicles such as the orbital transfer vehicles, orbital maneuvering vehicles, and space station will extensively use reaction jets for orbital maneuvering and attitude stabilization. The proposed robust fuel- and time-optimal control algorithm is used for a three-mass spacing model of flexible spacecraft. A fuel-efficient on-off control logic is developed for robust rest-to-rest maneuver of a flexible vehicle with minimum excitation of structural modes. The first part of this report is concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated and solved. The second part of this report deals with obtaining parameter insensitive fuel- and time- optimal control inputs by solving a constrained optimization problem subject to robustness constraints. It is shown that sensitivity to modeling errors can be significantly reduced by the proposed, robustified open-loop control approach. The final part of this report deals with sliding mode control design for uncertain flexible structures. The benchmark problem of a flexible structure is used as an example for the feedback sliding mode controller design with bounded control inputs and robustness to parameter variations is investigated.

11. Probability-based stability robustness assessment of controlled structures

SciTech Connect

Field, R.V. Jr.; Voulgaris, P.G.; Bergman, L.A.

1996-01-01

Model uncertainty, if ignored, can seriously degrade the performance of an otherwise well-designed control system. If the level of this uncertainty is extreme, the system may even be driven to instability. In the context of structural control, performance degradation and instability imply excessive vibration or even structural failure. Robust control has typically been applied to the issue of model uncertainty through worst-case analyses. These traditional methods include the use of the structured singular value, as applied to the small gain condition, to provide estimates of controller robustness. However, this emphasis on the worst-case scenario has not allowed a probabilistic understanding of robust control. In this paper an attempt to view controller robustness as a probability measure is presented. The probability of failure due to parametric uncertainty is estimated using first-order reliability methods (FORM). It is demonstrated that this method can provide quite accurate results on the probability of failure of actively controlled structures. Moreover, a comparison of this method to a suitability modified structured singular value robustness analysis in a probabilistic framework is performed. It is shown that FORM is the superior analysis technique when applied to a controlled three degree-of-freedom structure. In addition, the robustness qualities of various active control design schemes such as LQR, H{sub 2}, H {sub oo}, and {mu}-synthesis is discussed in order to provide some design guidelines.

12. Design and implementation of a new fuzzy PID controller for networked control systems.

PubMed

2008-10-01

This paper presents a practical network platform to design and implement a networked-based cascade control system linking a Smar Foundation Fieldbus (FF) controller (DFI-302) and a Siemens programmable logic controller (PLC-S7-315-2DP) through Industrial Ethernet to a laboratory pilot plant. In the presented network configuration, the Smar OPC tag browser and Siemens WinCC OPC Channel provide the communicating interface between the two controllers. The paper investigates the performance of a PID controller implemented in two different possible configurations of FF function block (FB) and networked control system (NCS) via a remote Siemens PLC. In the FB control system implementation, the desired set-point is provided by the Siemens Human-Machine Interface (HMI) software (i.e, WinCC) via an Ethernet Modbus link. While, in the NCS implementation, the cascade loop is realized in remote Siemens PLC station and the final element set-point is sent to the Smar FF station via Ethernet bus. A new fuzzy PID control strategy is then proposed to improve the control performances of the networked-based control systems due to an induced transmission delay degradation effect. The proposed strategy utilizes an innovative idea based on sectionalizing the error signal of the step response into three different functional zones. The supporting philosophy behind these three functional zones is to decompose the desired control objectives in terms of rising time, settling time and steady-state error measures maintained by an appropriate PID-type controller in each zone. Then, fuzzy membership factors are defined to configure the control signal on the basis of the fuzzy weighted PID outputs of all three zones. The obtained results illustrate the effectiveness of the proposed fuzzy PID control scheme in improving the performances of the implemented NCS for different transportation delays.

13. High-performance quantitative robust switching control for optical telescopes

Lounsbury, William P.; Garcia-Sanz, Mario

2014-07-01

This paper introduces an innovative robust and nonlinear control design methodology for high-performance servosystems in optical telescopes. The dynamics of optical telescopes typically vary according to azimuth and altitude angles, temperature, friction, speed and acceleration, leading to nonlinearities and plant parameter uncertainty. The methodology proposed in this paper combines robust Quantitative Feedback Theory (QFT) techniques with nonlinear switching strategies that achieve simultaneously the best characteristics of a set of very active (fast) robust QFT controllers and very stable (slow) robust QFT controllers. A general dynamic model and a variety of specifications from several different commercially available amateur Newtonian telescopes are used for the controller design as well as the simulation and validation. It is also proven that the nonlinear/switching controller is stable for any switching strategy and switching velocity, according to described frequency conditions based on common quadratic Lyapunov functions (CQLF) and the circle criterion.

14. Closed-Loop and Robust Control of Quantum Systems

PubMed Central

Wang, Lin-Cheng

2013-01-01

For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H∞ control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention. PMID:23997680

15. Robust tuning of robot control systems

NASA Technical Reports Server (NTRS)

Minis, I.; Uebel, M.

1992-01-01

The computed torque control problem is examined for a robot arm with flexible, geared, joint drive systems which are typical in many industrial robots. The standard computed torque algorithm is not directly applicable to this class of manipulators because of the dynamics introduced by the joint drive system. The proposed approach to computed torque control combines a computed torque algorithm with torque controller at each joint. Three such control schemes are proposed. The first scheme uses the joint torque control system currently implemented on the robot arm and a novel form of the computed torque algorithm. The other two use the standard computed torque algorithm and a novel model following torque control system based on model following techniques. Standard tasks and performance indices are used to evaluate the performance of the controllers. Both numerical simulations and experiments are used in evaluation. The study shows that all three proposed systems lead to improved tracking performance over a conventional PD controller.

16. Performances of PID and Different Fuzzy Methods for Controlling a Ball on Beam

Minh, Vu Trieu; Mart, Tamre; Moezzi, Reza; Oliver, Mets; Martin, Jurise; Ahti, Polder; Leo, Teder; Mart, Juurma

2016-05-01

This paper develops and analyses the performances evaluation of different control strategies applied for a nonlinear motion of a ball on a beam system. Comparison results provide in-depth comprehension on the stable ability of different controllers for this real mechanical application. The three different controllers are a conventional PID method, a Mamdani-type fuzzy rule method and a Sugeno-type fuzzy rule method. In this study, the PID shows the fastest sinuous reference tracking while the Mamdani-type fuzzy method proves the highest stability performance for tracking square wave motions.

17. A Robustly Stabilizing Model Predictive Control Algorithm

NASA Technical Reports Server (NTRS)

Ackmece, A. Behcet; Carson, John M., III

2007-01-01

A model predictive control (MPC) algorithm that differs from prior MPC algorithms has been developed for controlling an uncertain nonlinear system. This algorithm guarantees the resolvability of an associated finite-horizon optimal-control problem in a receding-horizon implementation.

18. Robust Nonlinear Control of Tailless Fighter Aircraft

DTIC Science & Technology

1999-02-01

adaptive backstepping and nonlinear PI control , it is not very straightforward to establish this uniform asymptotic stability (in a set of error coordinates...tracking error coordinates for mechanical systems and ships controlled via adaptive back- stepping and nonlinear PI control algorithms. These results were

19. Design and Implementation of Takagi-Sugeno Fuzzy Logic Controller for Shunt Compensator

2016-12-01

This paper describes the application of Takagi-Sugeno (TS) type fuzzy logic controller to a three-phase shunt compensator in power distribution system. The shunt compensator is used for power quality improvement and has the ability to provide reactive power compensation, reduce the level of harmonics in supply currents, power factor correction and load balancing. Additionally, it can also be used to regulate voltage at the point of common coupling (PCC). The paper discusses the design of TS fuzzy logic controller and its implementation based on only four rules. The smaller number of rules makes it suitable for experimental verification as compared to Mamdani fuzzy controller. A small laboratory prototype of the system is developed and the control algorithm is verified experimentally. The TS fuzzy controller is compared with the proportional integral based industrial controller and their performance is compared under a wide variation of dynamic load changes.

20. Study on application of adaptive fuzzy control and neural network in the automatic leveling system

Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng

2015-04-01

This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.

1. Advanced Interval Type-2 Fuzzy Sliding Mode Control for Robot Manipulator

PubMed Central

Hwang, Ji-Hwan; Kang, Young-Chang

2017-01-01

In this paper, advanced interval type-2 fuzzy sliding mode control (AIT2FSMC) for robot manipulator is proposed. The proposed AIT2FSMC is a combination of interval type-2 fuzzy system and sliding mode control. For resembling a feedback linearization (FL) control law, interval type-2 fuzzy system is designed. For compensating the approximation error between the FL control law and interval type-2 fuzzy system, sliding mode controller is designed, respectively. The tuning algorithms are derived in the sense of Lyapunov stability theorem. Two-link rigid robot manipulator with nonlinearity is used to test and the simulation results are presented to show the effectiveness of the proposed method that can control unknown system well. PMID:28280505

2. Robust and reconfigurable flight control system design

Siwakosit, Wichai

2001-07-01

A reconfigurable flight control system is a control system which can automatically adapt itself to maintain the performance of a damaged aircraft to be as close as possible to that of the normal or undamaged one. This research focuses mainly on Multi-Input, Multi-Output (MIMO) reconfigurable flight control for an aircraft with damaged actuator(s) which may greatly affect the performance and control of the aircraft, and also pose a challenging flight control problem. The foundation of the control system is a baseline controller and an adaptive module which constitutes a reconfigurable part. The baseline controller ensures that the aircraft has acceptable performance and handling qualities throughout the flight envelope. The combination of a Quantitative Feedback Theory (QFT) Pre-Design Technique (PDT) and a Reduced-order, Linear, Dynamic Inversion (RLDI) control strategy yields a flight control system with good tracking performance and handling qualities with no Pilot Induced Oscillation (PIO) tendencies throughout the designated set of flight conditions. In addition, the system is highly immune to large uncertainties in the aircraft dynamics. The modified filtered-ɛ adaptive algorithm is developed and utilized in the adaptive module of the system. This adaptive algorithm performs well with MIMO system with the added advantage of not having to pre-identify the dynamics of the damaged aircraft, provided that the conditions of reconfigurability are met. An example of the proposed control system with the NASA F-18 HARV vehicle model and a damaged actuator demonstrates the effectiveness of the concept.

3. Modern CACSD using the Robust-Control Toolbox

NASA Technical Reports Server (NTRS)

Chiang, Richard Y.; Safonov, Michael G.

1989-01-01

The Robust-Control Toolbox is a collection of 40 M-files which extend the capability of PC/PRO-MATLAB to do modern multivariable robust control system design. Included are robust analysis tools like singular values and structured singular values, robust synthesis tools like continuous/discrete H(exp 2)/H infinity synthesis and Linear Quadratic Gaussian Loop Transfer Recovery methods and a variety of robust model reduction tools such as Hankel approximation, balanced truncation and balanced stochastic truncation, etc. The capabilities of the toolbox are described and illustated with examples to show how easily they can be used in practice. Examples include structured singular value analysis, H infinity loop-shaping and large space structure model reduction.

4. Vehicle active steering control research based on two-DOF robust internal model control

Wu, Jian; Liu, Yahui; Wang, Fengbo; Bao, Chunjiang; Sun, Qun; Zhao, Youqun

2016-07-01

Because of vehicle's external disturbances and model uncertainties, robust control algorithms have obtained popularity in vehicle stability control. The robust control usually gives up performance in order to guarantee the robustness of the control algorithm, therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness. The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties. In order to separate the design process of model tracking from the robustness design process, the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization. Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm, on the basis of a nonlinear vehicle simulation model with a magic tyre model. Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance, which can enhance the vehicle stability and handling, regardless of variations of the vehicle model parameters and the external crosswind interferences. Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.

5. Neural Network and Fuzzy Logic Technology for Naval Flight Control Systems

DTIC Science & Technology

1991-08-06

it is still uncertain what neural network and fuzzy logic functions are both technologically feasible and suitable for flight control system...this program is focused on the development of a neural network FCS design tool, a neural network flight control law emulator, a fuzzy logic automatic...carrier landing system and a neural network flight control configuration management system. For each project, some initial results are given. Also

6. Depth Control of Sevofluorane Anesthesia with Microcontroller Based Fuzzy Logic System

DTIC Science & Technology

2007-11-02

sevoflurane in humans”, Anesthesiology, 66:301-303, 1987 [10].YARDIMCI, A., ONURAL A.,”Fuzzy Logic Control of Child Blood Pressure During Anaesthesia...microcontroller-based fuzzy logic control system according to the blood pressure and heart rate taken from the patient. The potential benefits of the... blood pressure and hearth rate. The main reason for automating the control of depth anesthesia is to release the anesthesiologist so that he or

7. Robust control of photoassociation of slow O + H collision

Zhang, Wei; Dong, Daoyi; Petersen, Ian R.; Rabitz, Herschel A.

2017-02-01

We show that robust laser pulses can be obtained by a sampling-based method to achieve a desired photoassociation probability when uncertainties in potential curves and laser amplitudes are considered. Optimal control simulations are performed using a time-dependent wave packet method based on a single electronic state. We use a small number of samples to construct a robust field and test the performance of this field using additional samples. Excellent outcomes are obtained based on the proposed method for different uncertainties. The robust control field achieves higher average photoassociation probabilities over the tested samples, in comparison with the probabilities achieved by the optimal field designed without using the sampling-based method. The sampling-based method may also be promising in the robust control of other molecular control goals.

8. Computation of robustly stabilizing PID controllers for interval systems.

PubMed

2016-01-01

The paper is focused on the computation of all possible robustly stabilizing Proportional-Integral-Derivative (PID) controllers for plants with interval uncertainty. The main idea of the proposed method is based on Tan's (et al.) technique for calculation of (nominally) stabilizing PI and PID controllers or robustly stabilizing PI controllers by means of plotting the stability boundary locus in either P-I plane or P-I-D space. Refinement of the existing method by consideration of 16 segment plants instead of 16 Kharitonov plants provides an elegant and efficient tool for finding all robustly stabilizing PID controllers for an interval system. The validity and relatively effortless application of presented theoretical concepts are demonstrated through a computation and simulation example in which the uncertain mathematical model of an experimental oblique wing aircraft is robustly stabilized.

9. Pupil Control Behavior, Classroom Robustness, and Self-Control: Public and Military High Schools Compared.

ERIC Educational Resources Information Center

Sartori, Mary Ann; Bauske, Terri; Lunenburg, Fred C.

This study investigates students' perceptions of teachers' pupil control behavior, classroom robustness, and student self-control. Results reveal an association between humanistic pupil control behavior of teachers and high levels of classroom robustness, high levels of classroom robustness and high student self-control, and teacher humanism in…

10. Fuzzy control structure for an anaerobic fluidised bed

Hernández, Salvador Carlos; Sanchez, Edgar N.; Béteau, Jean-François

2012-12-01

This article deals with the design of a fuzzy control strategy for a fluidised bed reactor, which is used for anaerobic wastewater treatment. This strategy is composed of a supervisor system and two PI L/A controllers. In addition, a biomass observer, designed on the basis of the Takagi-Sugeno approach considering a principal component analysis, is used with supervision proposals. The supervisor is also designed following the Takagi-Sugeno methodology; it detects the process state, selects and applies the most adequate control action in order to avoid the washout region. On the other side, two control actions are designed for bicarbonate regulation using the PI/LA technique: adding a base and dilution rate. These control actions, as well as the open loop operation, are selected by the supervisor in order to reject disturbances on the substrate influent allowing at the same time a high methane production. The applicability of the proposed structure in a fluidised bed reactor is illustrated via simulations.

11. Practical Methods for Robust Multivariable Control

DTIC Science & Technology

1991-12-31

objectives in the face of both structured and unstructured uncertainty. Advances in the past two years have included relative-error methods for system ... identification , model reduction and control, better algorithms for H- and H2 control computations and new results on the analysis of stability

12. Robust Adaptive Control of Multivariable Nonlinear Systems

DTIC Science & Technology

2011-03-28

Systems: Challenge Problem Integration and NASA s Integrated Resilient Aircraft Control . We also revealed some similarities with the disturbance ... observer (DOB) controllers and identified the main features in the difference between them. The key feature of this difference is that the estimation loop

13. Panaceas, uncertainty, and the robust control framework in sustainability science

PubMed Central

Anderies, John M.; Rodriguez, Armando A.; Janssen, Marco A.; Cifdaloz, Oguzhan

2007-01-01

A critical challenge faced by sustainability science is to develop strategies to cope with highly uncertain social and ecological dynamics. This article explores the use of the robust control framework toward this end. After briefly outlining the robust control framework, we apply it to the traditional Gordon–Schaefer fishery model to explore fundamental performance–robustness and robustness–vulnerability trade-offs in natural resource management. We find that the classic optimal control policy can be very sensitive to parametric uncertainty. By exploring a large class of alternative strategies, we show that there are no panaceas: even mild robustness properties are difficult to achieve, and increasing robustness to some parameters (e.g., biological parameters) results in decreased robustness with respect to others (e.g., economic parameters). On the basis of this example, we extract some broader themes for better management of resources under uncertainty and for sustainability science in general. Specifically, we focus attention on the importance of a continual learning process and the use of robust control to inform this process. PMID:17881574

14. Adaptive fuzzy fault-tolerant output feedback control of uncertain nonlinear systems with actuator faults

Huo, Baoyu; Tong, Shaocheng; Li, Yongming

2013-12-01

This article develops an adaptive fuzzy control method for accommodating actuator faults in a class of unknown nonlinear systems with unmeasured states. The considered faults are modelled as both loss of effectiveness and lock-in-place (stuck at unknown place). With the help of fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy adaptive observer is developed for estimating the unmeasured states. Combining the backstepping technique with the nonlinear tolerant-fault control theory, a novel adaptive fuzzy faults-tolerant control approach is constructed. It is proved that the proposed control approach can guarantee that all the signals of the resulting closed-loop system are bounded and the tracking error between the system output and the reference signal converges to a small neighbourhood of zero by appropriate choice of the design parameters. Simulation results are provided to show the effectiveness of the control approach.

15. Adaptive fuzzy decentralized control for large-scale nonlinear systems with time-varying delays and unknown high-frequency gain sign.

PubMed

Tong, Shaocheng; Liu, Changliang; Li, Yongming; Zhang, Huaguang

2011-04-01

In this paper, an adaptive fuzzy decentralized robust output feedback control approach is proposed for a class of large-scale strict-feedback nonlinear systems without the measurements of the states. The nonlinear systems in this paper are assumed to possess unstructured uncertainties, time-varying delays, and unknown high-frequency gain sign. Fuzzy logic systems are used to approximate the unstructured uncertainties, K-filters are designed to estimate the unmeasured states, and a special Nussbaum gain function is introduced to solve the problem of unknown high-frequency gain sign. Combining the backstepping technique with adaptive fuzzy control theory, an adaptive fuzzy decentralized robust output feedback control scheme is developed. In order to obtain the stability of the closed-loop system, a new lemma is given and proved. Based on this lemma and Lyapunov-Krasovskii functions, it is proved that all the signals in the closed-loop system are uniformly ultimately bounded and that the tracking errors can converge to a small neighborhood of the origin. The effectiveness of the proposed approach is illustrated from simulation results.

16. Design and simulation of an image-based fuzzy tracking controller for a wheeled mobile robot

Shiao, Ying Shing; Wu, Ching Wei

2011-12-01

Image processing algorithms and fuzzy logic method are used to design a visual tracking controller for mobile robot navigation. In this paper, a wheeled mobile robot is equipped with a camera for detecting its task space. The grabbed environmental images are treated using image recognition processing to obtain target's size and position. The images are treated using input membership functions as the fuzzy logic controller input. The recognized target's size and position are input into a fuzzy logic controller in which fuzzy rules are used for inference. The inference results are output to the defuzzifier to obtain a physical control signal to control the mobile robot's movement. The velocity and direction of the mobile robot are the output of fuzzy logic controller. The differences in velocities for two wheels are used to control the robot's movement directions. The fuzzy logic controller outputs the control commands to drive the mobile robot to reach a position 50cm front of the target location. The simulation results verify that the proposed FLC is effective in navigating the mobile robot to track a moving target.

17. Adaptive Fuzzy Control for Uncertain Fractional-Order Financial Chaotic Systems Subjected to Input Saturation

PubMed Central

Wang, Chenhui

2016-01-01

In this paper, control of uncertain fractional-order financial chaotic system with input saturation and external disturbance is investigated. The unknown part of the input saturation as well as the system’s unknown nonlinear function is approximated by a fuzzy logic system. To handle the fuzzy approximation error and the estimation error of the unknown upper bound of the external disturbance, fractional-order adaptation laws are constructed. Based on fractional Lyapunov stability theorem, an adaptive fuzzy controller is designed, and the asymptotical stability can be guaranteed. Finally, simulation studies are given to indicate the effectiveness of the proposed method. PMID:27783648

18. Controlled quantum dialogue robust against conspiring users

Kao, Shih-Hung; Hwang, Tzonelih

2016-10-01

This paper explores a new security problem in controlled quantum dialogue (CQD) protocols, where the communicants may try to conspire to communicate without the controller's permission. According to our survey, all the previous CQD protocols suffer from this attack. In order to resolve this problem, we also present an improvement protocol. The security analyses show that the improved scheme is secure under this and other well-known attacks.

19. Networked Robust Predictive Control Systems Design with Packet Loss

Nguyen, Quang T.; Veselý, Vojtech; Kozáková, Alena; Pakshin, Pavel

2014-01-01

The paper addresses problem of designing a robust output feedback model predictive control for uncertain linear systems over networks with packet-loss. The packet-loss process is arbitrary and bounded by the control horizon of model predictive control. Networked predictive control systems with packet loss are modeled as switched linear systems. This enables us to apply the theory of switched systems to establish the stability condition. The stabilizing controller design is based on sufficient robust stability conditions formulated as a solution of bilinear matrix inequality. Finally, a benchmark numerical example-double integrator is given to illustrate the effectiveness of the proposed method.

20. Robust H∞ Control for Spacecraft Rendezvous with a Noncooperative Target

PubMed Central

Wu, Shu-Nan; Zhou, Wen-Ya; Tan, Shu-Jun; Wu, Guo-Qiang

2013-01-01

The robust H∞ control for spacecraft rendezvous with a noncooperative target is addressed in this paper. The relative motion of chaser and noncooperative target is firstly modeled as the uncertain system, which contains uncertain orbit parameter and mass. Then the H∞ performance and finite time performance are proposed, and a robust H∞ controller is developed to drive the chaser to rendezvous with the non-cooperative target in the presence of control input saturation, measurement error, and thrust error. The linear matrix inequality technology is used to derive the sufficient condition of the proposed controller. An illustrative example is finally provided to demonstrate the effectiveness of the controller. PMID:24027446

1. Robust predictive cruise control for commercial vehicles

Junell, Jaime; Tumer, Kagan

2013-10-01

In this paper we explore learning-based predictive cruise control and the impact of this technology on increasing fuel efficiency for commercial trucks. Traditional cruise control is wasteful when maintaining a constant velocity over rolling hills. Predictive cruise control (PCC) is able to look ahead at future road conditions and solve for a cost-effective course of action. Model- based controllers have been implemented in this field but cannot accommodate many complexities of a dynamic environment which includes changing road and vehicle conditions. In this work, we focus on incorporating a learner into an already successful model- based predictive cruise controller in order to improve its performance. We explore back propagating neural networks to predict future errors then take actions to prevent said errors from occurring. The results show that this approach improves the model based PCC by up to 60% under certain conditions. In addition, we explore the benefits of classifier ensembles to further improve the gains due to intelligent cruise control.

2. A new adaptive configuration of PID type fuzzy logic controller.

PubMed

Fereidouni, Alireza; Masoum, Mohammad A S; Moghbel, Moayed

2015-05-01

In this paper, an adaptive configuration for PID type fuzzy logic controller (FLC) is proposed to improve the performances of both conventional PID (C-PID) controller and conventional PID type FLC (C-PID-FLC). The proposed configuration is called adaptive because its output scaling factors (SFs) are dynamically tuned while the controller is functioning. The initial values of SFs are calculated based on its well-tuned counterpart while the proceeding values are generated using a proposed stochastic hybrid bacterial foraging particle swarm optimization (h-BF-PSO) algorithm. The performance of the proposed configuration is evaluated through extensive simulations for different operating conditions (changes in reference, load disturbance and noise signals). The results reveal that the proposed scheme performs significantly better over the C-PID controller and the C-PID-FLC in terms of several performance indices (integral absolute error (IAE), integral-of-time-multiplied absolute error (ITAE) and integral-of-time-multiplied squared error (ITSE)), overshoot and settling time for plants with and without dead time.

3. Data-glove-based fuzzy control of piezoelectric forceps actuator

Susanto, Ken; Yang, Bingen

2004-07-01

This paper discusses a novel concept idea of utilizing smart structure in biomedical, minimum invasive surgery (MIS), MEMS manufacturing assembly line and also as a miniature robotic gripper system. The proposed prototype of a miniature piezoelectric forceps actuator (PFA) is composed of two symmetric slightly curved composite beams which each bonded with piezoelectric ceramic layer. The PFA is an innovative forceps actuator that comes with a data glove. The data glove is simply a custom-made glove with two embedded resistance-bending sensors located on thumb and index fingers. Any users can control opening and closing of the PFA by just wearing the data glove. A thin curved beam theory bonded with piezoelectric ceramic will be derived based on Hamilton's principle and its deflection behavior will be simulated based on distributed transfer function method (DTFM). A feasibility study of simulation open loop data glove-based fuzzy logic controller allows the user to open and close the PFA remotely. The bending movement of the thumb and index finger will be formulated in a table of rules based to produce the necessary output controller gain to control the PFA.

4. Design and tuning of robust PID controller for HVAC systems

SciTech Connect

Kasahara, Masato; Matsuba, Tadahiko; Kuzuu, Yoshiaki; Yamazaki, Takanori; Hashimoto, Yukihiro; Kamimura, Kazuyuki; Kurosu, Shigeru

1999-07-01

This paper concerns the development of a new design and tuning method for use with robust proportional-plus-integral-plus-derivative (PID) controllers that are commonly used in the heating, ventilating, and air-conditioning (HVAC) fields. The robust PID controller is designed for temperature control of a single-zone environmental space. Although the dynamics of environmental space are described by higher-order transfer functions, most HVAC plants are approximated by first-order lag plus deadtime systems. Its control performance is examined for this commonly approximated controlled plant. Since most HVAC plants are complex with nonlinearity, distributed parameters, and multivariables, a single set of PID gains does not necessarily yield a satisfactory control performance. For this reason, the PID controller must be designed as a robust control system considering model uncertainty caused by changes in characteristics of the plant. The PID gains obtained by solving a two-disk type of mixed sensitivity problem can be modified by contrast to those tuned by the traditional Ziegler-Nichols rule. The results, which are surprisingly simple, are given as linear functions of ratio of deadtime to time constant for robustness. The numerical simulation and the experiments on a commercial-size test plant for air conditioning suggest that the robust PID controller proposed in this paper is effective enough for practical applications.

5. Adaptive fuzzy-neural-network control for maglev transportation system.

PubMed

Wai, Rong-Jong; Lee, Jeng-Dao

2008-01-01

A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.

6. Type-2 fuzzy logic control based MRAS speed estimator for speed sensorless direct torque and flux control of an induction motor drive.

PubMed

Ramesh, Tejavathu; Kumar Panda, Anup; Shiva Kumar, S

2015-07-01

7. Takagi-Sugeno fuzzy modeling and chaos control of partial differential systems

2013-12-01

In this paper a unified approach is presented for controlling chaos in nonlinear partial differential systems by a fuzzy control design. First almost all known chaotic partial differential equation systems are represented by Takagi-Sugeno fuzzy model. For investigating design procedure, Kuramoto-Sivashinsky (K-S) equation is selected. Then, all linear subsystems of K-S equation are transformed to ordinary differential equation (ODE) systems by truncated Fourier series of sine-cosine functions. By solving Riccati equation for each ODE systems, parallel stabilizing feedback controllers are determined. Finally, a distributed fuzzy feedback for K-S equation is designed. Numerical simulations are given to show that the distributed fuzzy controller is very easy to design, efficient, and capable to extend.

8. Takagi-Sugeno fuzzy modeling and chaos control of partial differential systems.

PubMed

2013-12-01

In this paper a unified approach is presented for controlling chaos in nonlinear partial differential systems by a fuzzy control design. First almost all known chaotic partial differential equation systems are represented by Takagi-Sugeno fuzzy model. For investigating design procedure, Kuramoto-Sivashinsky (K-S) equation is selected. Then, all linear subsystems of K-S equation are transformed to ordinary differential equation (ODE) systems by truncated Fourier series of sine-cosine functions. By solving Riccati equation for each ODE systems, parallel stabilizing feedback controllers are determined. Finally, a distributed fuzzy feedback for K-S equation is designed. Numerical simulations are given to show that the distributed fuzzy controller is very easy to design, efficient, and capable to extend.

9. Fuzzy logic controller for the electric motor driving the astronomical telescope

Soliman, Hussein F.; Attia, Abdel-Fattah A.; Badr, Mohammed A.; Osman, Anas M.; Gamaleldin, Abdul A.

1998-05-01

The paper presents an application of fuzzy logic controller to regulate the DC motor driver system of astronomical telescope. The mathematical model of such a telescope is highly nonlinear coupled equations. However, the accuracy requirement in telescope system exceed those of other industrial plants. Fuzzy logic controller provides means to deal with nonlinear functions. A fuzzy logic controller (FLC) was designed to enhance the performance of a two-link model of astronomical telescope. The proposed FLC utilizes the position deviation for the desired value, and its rate of change to regulate the armature voltage of the DC motor drive of each link. The final action of FLC is equivalent to PD controller with a variable gain by using an expert look- up table. This work presents the derivation of the mathematical model of 14 inch Celestron telescope and computer simulation of its motion. The FLC contains two groups of fuzzy sets.

10. Robust Control of Underactuated Manipulators: Analysis and Implementation

DTIC Science & Technology

1994-05-01

Y Control of mechanical systems with second-order nonholonomic constraints: underactuated manipulators. Proc. of the 30th Conference on Decision and...any of a series of controllers fully developed in the literature for mechanical manipulators. Because the control of such a system is fully dependent...robust controller for underactuated manipulators. The control of such systems can be extended to the control problem of fault-tolerant robots, space

11. A novel robust speed controller scheme for PMBLDC motor.

PubMed

Thirusakthimurugan, P; Dananjayan, P

2007-10-01

The design of speed and position controllers for permanent magnet brushless DC motor (PMBLDC) drive remains as an open problem in the field of motor drives. A precise speed control of PMBLDC motor is complex due to nonlinear coupling between winding currents and rotor speed. In addition, the nonlinearity present in the developed torque due to magnetic saturation of the rotor further complicates this issue. This paper presents a novel control scheme to the conventional PMBLDC motor drive, which aims at improving the robustness by complete decoupling of the design besides minimizing the mutual influence among the speed and current control loops. The interesting feature of this robust control scheme is its suitability for both static and dynamic aspects. The effectiveness of the proposed robust speed control scheme is verified through simulations.

12. Robust Control for the Mercury Laser Altimeter

NASA Technical Reports Server (NTRS)

Rosenberg, Jacob S.

2006-01-01

Mercury Laser Altimeter Science Algorithms is a software system for controlling the laser altimeter aboard the Messenger spacecraft, which is to enter into orbit about Mercury in 2011. The software will control the altimeter by dynamically modifying hardware inputs for gain, threshold, channel-disable flags, range-window start location, and range-window width, by using ranging information provided by the spacecraft and noise counts from instrument hardware. In addition, because of severe bandwidth restrictions, the software also selects returns for downlink.

13. Robust control-based object tracking.

PubMed

Qu, Wei; Schonfeld, Dan

2008-09-01

This correspondence presents a video tracking framework using control-based observer design. It unifies several kernel-based approaches into a consistent theoretical framework by modeling tracking as a recursive inverse problem. The framework relies on observability theory to handle the "singularity" problem and provides explicit criteria for kernel design and dynamics evaluation.

14. Stable, Robust Tracking by Sliding Mode Control,

DTIC Science & Technology

1987-05-01

Linear Systems , Prentice-Hall, 1980. 9. O.M.E. El-Ghesawi, S.A. Billings and A.S.I. Zinober, Variable structure systems and system zeros, Proc. IEE...82, January 1987. 7. G.C. Verghese and T. Kailath, Rational matrix structure, IEEE Trans. Auto. Control, AC-26, 434-438, April 1981. 8. T. Kailath

15. Quantitative Robust Control Engineering: Theory and Applications

DTIC Science & Technology

2006-09-01

1992). Discrete quantitative feedback technique, Capítulo 16 en el libro : Digital Control Systems: theory, hardware, software, 2ª edicion. McGraw...Rasmussen S.J., Garcia-Sanz, M. (2001, 2005), Software de diseño del libro Quantitative Feedback Theory: Fundamentals and Applications. Edición 2ª. CRCPress

16. MATLAB Simulation of UPQC for Power Quality Mitigation Using an Ant Colony Based Fuzzy Control Technique

PubMed Central

Kumarasabapathy, N.; Manoharan, P. S.

2015-01-01

This paper proposes a fuzzy logic based new control scheme for the Unified Power Quality Conditioner (UPQC) for minimizing the voltage sag and total harmonic distortion in the distribution system consequently to improve the power quality. UPQC is a recent power electronic module which guarantees better power quality mitigation as it has both series-active and shunt-active power filters (APFs). The fuzzy logic controller has recently attracted a great deal of attention and possesses conceptually the quality of the simplicity by tackling complex systems with vagueness and ambiguity. In this research, the fuzzy logic controller is utilized for the generation of reference signal controlling the UPQC. To enable this, a systematic approach for creating the fuzzy membership functions is carried out by using an ant colony optimization technique for optimal fuzzy logic control. An exhaustive simulation study using the MATLAB/Simulink is carried out to investigate and demonstrate the performance of the proposed fuzzy logic controller and the simulation results are compared with the PI controller in terms of its performance in improving the power quality by minimizing the voltage sag and total harmonic distortion. PMID:26504895

17. Design issues for a reinforcement-based self-learning fuzzy controller

NASA Technical Reports Server (NTRS)

Yen, John; Wang, Haojin; Dauherity, Walter

1993-01-01

Fuzzy logic controllers have some often cited advantages over conventional techniques such as PID control: easy implementation, its accommodation to natural language, the ability to cover wider range of operating conditions and others. One major obstacle that hinders its broader application is the lack of a systematic way to develop and modify its rules and as result the creation and modification of fuzzy rules often depends on try-error or pure experimentation. One of the proposed approaches to address this issue is self-learning fuzzy logic controllers (SFLC) that use reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of self-learning fuzzy controller is highly contingent on the design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for the application to chemical process are discussed and its performance is compared with that of PID and self-tuning fuzzy logic controller.

18. MATLAB Simulation of UPQC for Power Quality Mitigation Using an Ant Colony Based Fuzzy Control Technique.

PubMed

Kumarasabapathy, N; Manoharan, P S

2015-01-01

This paper proposes a fuzzy logic based new control scheme for the Unified Power Quality Conditioner (UPQC) for minimizing the voltage sag and total harmonic distortion in the distribution system consequently to improve the power quality. UPQC is a recent power electronic module which guarantees better power quality mitigation as it has both series-active and shunt-active power filters (APFs). The fuzzy logic controller has recently attracted a great deal of attention and possesses conceptually the quality of the simplicity by tackling complex systems with vagueness and ambiguity. In this research, the fuzzy logic controller is utilized for the generation of reference signal controlling the UPQC. To enable this, a systematic approach for creating the fuzzy membership functions is carried out by using an ant colony optimization technique for optimal fuzzy logic control. An exhaustive simulation study using the MATLAB/Simulink is carried out to investigate and demonstrate the performance of the proposed fuzzy logic controller and the simulation results are compared with the PI controller in terms of its performance in improving the power quality by minimizing the voltage sag and total harmonic distortion.

19. A fuzzy-logic antiswing controller for three-dimensional overhead cranes.

PubMed

Cho, Sung-Kun; Lee, Ho-Hoon

2002-04-01

In this paper, a new fuzzy antiswing control scheme is proposed for a three-dimensional overhead crane. The proposed control consists of a position servo control and a fuzzy-logic control. The position servo control is used to control crane position and rope length, and the fuzzy-logic control is used to suppress load swing. The proposed control guarantees not only prompt suppression of load swing but also accurate control of crane position and rope length for simultaneous travel, traverse, and hoisting motions of the crane. Furthermore, the proposed control provides practical gain tuning criteria for easy application. The effectiveness of the proposed control is shown by experiments with a three-dimensional prototype overhead crane.

20. Flatness-based adaptive fuzzy control of an autonomous submarine model

Rigatos, Gerasimos; Siano, Pierluigi; Raffo, Guilherme

2015-12-01

The article presents a differential flatness theory-based method for adaptive control of autonomous submarines. A proof is provided about the differential flatness properties of the submarine's model (having as state variables the vessel's depth and its pitch angle). This also means that all its state variables and its control inputs can be written as differential functions of the flat output. Making use of its differential flatness features, the submarine's dynamic model is transformed into the multivariable linear canonical (Brunovsky) form. In the transformed model, the control inputs consist of unknown nonlinear parts, which are identified with the use of neurofuzzy approximators. The learning rate for these estimators is determined by the requirement the first derivative of the closed-loop's Lyapunov function to be a negative one. Furthermore, with the use of Lyapunov stability analysis it is proven that an H-infinity tracking performance is succeeded for the feedback control loop. This implies enhanced robustness to model uncertainty and to external perturbations. Simulation experiments are carried out to further confirm the efficiency of the proposed adaptive fuzzy control scheme.

1. Modelling and Control of the Qball X4 Quadrotor System based on Pid and Fuzzy Logic Structure

Bodrumlu, Tolga; Turan Soylemez, Mehmet; Mutlu, Ilhan

2017-01-01

This work focuses on a quadrocopter model, which was developed by QuanserTM and named as Qball X4. First, mathematical model of the Qball X4 is obtained. Then, a conventional PID control technique is presented. This PID control parameters come from Qball user manual. After the presentation of conventional PID control, as an extension of the conventional PID control theory, a different fuzzy controller structure is given. The proposed fuzzy controller structure is based on fuzzy logic and its name is PID type fuzzy controller. All of the simulations are done in MATLABTM environment.

2. A Robust Control Design Framework for Substructure Models

NASA Technical Reports Server (NTRS)

Lim, Kyong B.

1994-01-01

A framework for designing control systems directly from substructure models and uncertainties is proposed. The technique is based on combining a set of substructure robust control problems by an interface stiffness matrix which appears as a constant gain feedback. Variations of uncertainties in the interface stiffness are treated as a parametric uncertainty. It is shown that multivariable robust control can be applied to generate centralized or decentralized controllers that guarantee performance with respect to uncertainties in the interface stiffness, reduced component modes and external disturbances. The technique is particularly suited for large, complex, and weakly coupled flexible structures.

3. Robust adaptive kinematic control of redundant robots

NASA Technical Reports Server (NTRS)

Tarokh, M.; Zuck, D. D.

1992-01-01

The paper presents a general method for the resolution of redundancy that combines the Jacobian pseudoinverse and augmentation approaches. A direct adaptive control scheme is developed to generate joint angle trajectories for achieving desired end-effector motion as well as additional user defined tasks. The scheme ensures arbitrarily small errors between the desired and the actual motion of the manipulator. Explicit bounds on the errors are established that are directly related to the mismatch between actual and estimated pseudoinverse Jacobian matrix, motion velocity and the controller gain. It is shown that the scheme is tolerant of the mismatch and consequently only infrequent pseudoinverse computations are needed during a typical robot motion. As a result, the scheme is computationally fast, and can be implemented for real-time control of redundant robots. A method is incorporated to cope with the robot singularities allowing the manipulator to get very close or even pass through a singularity while maintaining a good tracking performance and acceptable joint velocities. Computer simulations and experimental results are provided in support of the theoretical developments.

4. Low bandwidth robust controllers for flight

NASA Technical Reports Server (NTRS)

1992-01-01

During the final reporting period (Jun. - Dec. 1992), analyses of the longitudinal and lateral flying qualities were made for propulsive-only flight control (POFC) of a Boeing 720 aircraft model. Performance resulting from compensators developed using Quantitative Feedback Theory (QFT) is documented and analyzed. This report is a first draft of a thesis to be presented by graduate student Hwei-Lan Chou. The final thesis will be presented to NASA when it is completed later this year. The latest landing metrics related to bandwidth criteria and based on the Neal-Smith approach to flying qualities prediction were used in developing performance criteria for the controllers. The compensator designs were tested on the NASA simulator and exhibited adequate performance for piloted flight. There was no significant impact of QFT on performance of the propulsive-only flight controllers in either the longitudinal or lateral modes of flight. This was attributed to the physical limits of thrust available and the engine rate of response, both of whiih severely limited the available bandwidth of the closed-loop system.

5. AQM router design for TCP network via input constrained fuzzy control of time-delay affine Takagi-Sugeno fuzzy models

Chang, Wen-Jer; Meng, Yu-Teh; Tsai, Kuo-Hui

2012-12-01

In this article, Takagi-Sugeno (T-S) fuzzy control theory is proposed as a key tool to design an effective active queue management (AQM) router for the transmission control protocol (TCP) networks. The probability control of packet marking in the TCP networks is characterised by an input constrained control problem in this article. By modelling the TCP network into a time-delay affine T-S fuzzy model, an input constrained fuzzy control methodology is developed in this article to serve the AQM router design. The proposed fuzzy control approach, which is developed based on the parallel distributed compensation technique, can provide smaller probability of dropping packets than previous AQM design schemes. Lastly, a numerical simulation is provided to illustrate the usefulness and effectiveness of the proposed design approach.

6. A Computational Framework to Control Verification and Robustness Analysis

NASA Technical Reports Server (NTRS)

Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

2010-01-01

This paper presents a methodology for evaluating the robustness of a controller based on its ability to satisfy the design requirements. The framework proposed is generic since it allows for high-fidelity models, arbitrary control structures and arbitrary functional dependencies between the requirements and the uncertain parameters. The cornerstone of this contribution is the ability to bound the region of the uncertain parameter space where the degradation in closed-loop performance remains acceptable. The size of this bounding set, whose geometry can be prescribed according to deterministic or probabilistic uncertainty models, is a measure of robustness. The robustness metrics proposed herein are the parametric safety margin, the reliability index, the failure probability and upper bounds to this probability. The performance observed at the control verification setting, where the assumptions and approximations used for control design may no longer hold, will fully determine the proposed control assessment.

7. Adaptive integral robust control and application to electromechanical servo systems.

PubMed

Deng, Wenxiang; Yao, Jianyong

2017-03-01

This paper proposes a continuous adaptive integral robust control with robust integral of the sign of the error (RISE) feedback for a class of uncertain nonlinear systems, in which the RISE feedback gain is adapted online to ensure the robustness against disturbances without the prior bound knowledge of the additive disturbances. In addition, an adaptive compensation integrated with the proposed adaptive RISE feedback term is also constructed to further reduce design conservatism when the system also exists parametric uncertainties. Lyapunov analysis reveals the proposed controllers could guarantee the tracking errors are asymptotically converging to zero with continuous control efforts. To illustrate the high performance nature of the developed controllers, numerical simulations are provided. At the end, an application case of an actual electromechanical servo system driven by motor is also studied, with some specific design consideration, and comparative experimental results are obtained to verify the effectiveness of the proposed controllers.

8. Fuzzy Rule Suram for Control System of a Solar Energy Wood Drying Chamber

Situmorang, Zakarias; Wardoyo, Retantyo; Hartati, Sri; Eko Istiyanto, Jazi

2009-08-01

The paper reports used the fuzzy rule Suram for control system of a wood drying chamber with solar as source of energy. Rule suram based of fuzzy logic with variables of weather is temperature ambient and conditions of air is humidity ambient, it implemented for wood drying process. The membership function of variable of state represented in error value and change error with typical of triangle and trapezium map. Result of Analysis to reach 8 fuzzy rule to control the output system can be constructed in a number of way of weather and conditions of air. It used to minimum of the consumption of electric energy by heater. The rule suram used to stability and equilibrium of schedule of drying in chamber by control of temperature and humidity. The result of implemented of fuzzy rule suram with the modification of membership function in range [0.5, 1] represented approximate to he conditions riel.

9. Adaptive fuzzy decentralised control for stochastic nonlinear large-scale systems in pure-feedback form

Tong, Shaocheng; Xu, Yinyin; Li, Yongming

2015-06-01

This paper is concerned with the problem of adaptive fuzzy decentralised output-feedback control for a class of uncertain stochastic nonlinear pure-feedback large-scale systems with completely unknown functions, the mismatched interconnections and without requiring the states being available for controller design. With the help of fuzzy logic systems approximating the unknown nonlinear functions, a fuzzy state observer is designed estimating the unmeasured states. Therefore, the nonlinear filtered signals are incorporated into the backstepping recursive design, and an adaptive fuzzy decentralised output-feedback control scheme is developed. It is proved that the filter system converges to a small neighbourhood of the origin based on appropriate choice of the design parameters. Simulation studies are included illustrating the effectiveness of the proposed approach.

10. Analysis, control and design of a non-inverting buck-boost converter: A bump-less two-level T-S fuzzy PI control.

PubMed

Almasi, Omid Naghash; Fereshtehpoor, Vahid; Khooban, Mohammad Hassan; Blaabjerg, Frede

2017-03-01

In this paper, a new modified fuzzy Two-Level Control Scheme (TLCS) is proposed to control a non-inverting buck-boost converter. Each level of fuzzy TLCS consists of a tuned fuzzy PI controller. In addition, a Takagi-Sugeno-Kang (TSK) fuzzy switch proposed to transfer the fuzzy PI controllers to each other in the control system. The major difficulty in designing fuzzy TLCS which degrades its performance is emerging unwanted drastic oscillations in the converter output voltage during replacing the controllers. Thereby, the fuzzy PI controllers in each level of TLCS structure are modified to eliminate these oscillations and improve the system performance. Some simulations and digital signal processor based experiments are conducted on a non-inverting buck-boost converter to support the effectiveness of the proposed TLCS in controlling the converter output voltage.

11. Robust Control and Synchronization of Chaos

DTIC Science & Technology

2007-11-02

parameters. In addition, we have set up a two-axis acousto - optic laser beam deflector that will be used to deliver control perturbations to the system at...a) (c) (b) ( d ) Figure 5.4: Dynamical behavior of the new source of chaotic optical frequency flucations. For low amplifier gain, the frequency of...PROGRESS REPORTS; SEE PAGE 2 FOR INTERIM PROGRESS REPORT INSTRUCTIONS. MEMORANDUM OF TRANSMITTAL U.S. Army Research Office ATTN: AMSRL-RO-BI (TR) P.O

12. Systematic design of membership functions for fuzzy-logic control: A case study on one-stage partial nitritation/anammox treatment systems.

PubMed

Boiocchi, Riccardo; Gernaey, Krist V; Sin, Gürkan

2016-10-01

A methodology is developed to systematically design the membership functions of fuzzy-logic controllers for multivariable systems. The methodology consists of a systematic derivation of the critical points of the membership functions as a function of predefined control objectives. Several constrained optimization problems corresponding to different qualitative operation states of the system are defined and solved to identify, in a consistent manner, the critical points of the membership functions for the input variables. The consistently identified critical points, together with the linguistic rules, determine the long term reachability of the control objectives by the fuzzy logic controller. The methodology is highlighted using a single-stage side-stream partial nitritation/Anammox reactor as a case study. As a result, a new fuzzy-logic controller for high and stable total nitrogen removal efficiency is designed. Rigorous simulations are carried out to evaluate and benchmark the performance of the controller. The results demonstrate that the novel control strategy is capable of rejecting the long-term influent disturbances, and can achieve a stable and high TN removal efficiency. Additionally, the controller was tested, and showed robustness, against measurement noise levels typical for wastewater sensors. A feedforward-feedback configuration using the present controller would give even better performance. In comparison, a previously developed fuzzy-logic controller using merely expert and intuitive knowledge performed worse. This proved the importance of using a systematic methodology for the derivation of the membership functions for multivariable systems. These results are promising for future applications of the controller in real full-scale plants. Furthermore, the methodology can be used as a tool to help systematically design fuzzy logic control applications for other biological processes.

13. Finite-dimensional constrained fuzzy control for a class of nonlinear distributed process systems.

PubMed

Wu, Huai-Ning; Li, Han-Xiong

2007-10-01

This correspondence studies the problem of finite-dimensional constrained fuzzy control for a class of systems described by nonlinear parabolic partial differential equations (PDEs). Initially, Galerkin's method is applied to the PDE system to derive a nonlinear ordinary differential equation (ODE) system that accurately describes the dynamics of the dominant (slow) modes of the PDE system. Subsequently, a systematic modeling procedure is given to construct exactly a Takagi-Sugeno (T-S) fuzzy model for the finite-dimensional ODE system under state constraints. Then, based on the T-S fuzzy model, a sufficient condition for the existence of a stabilizing fuzzy controller is derived, which guarantees that the state constraints are satisfied and provides an upper bound on the quadratic performance function for the finite-dimensional slow system. The resulting fuzzy controllers can also guarantee the exponential stability of the closed-loop PDE system. Moreover, a local optimization algorithm based on the linear matrix inequalities is proposed to compute the feedback gain matrices of a suboptimal fuzzy controller in the sense of minimizing the quadratic performance bound. Finally, the proposed design method is applied to the control of the temperature profile of a catalytic rod.

14. Robust time and frequency domain estimation methods in adaptive control

NASA Technical Reports Server (NTRS)

Lamaire, Richard Orville

1987-01-01

A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.

15. Fuzzy Auto-adjust PID Controller Design of Brushless DC Motor

Yuanxi, Wang; Yali, Yu; Guosheng, Zhang; Xiaoliang, Sheng

Using conventional PID control method, to guarantee the rapidity and small overshoot dynamic and static performance of the BLDCM (brushless DC motor) system is out of the question. The control method to combine fuzzy control with PID control was fit the multivariable strong coupling nonlinear characteristic of BLDCM system. Matlab/Simulink simulation model had been built. The result of computer simulation shows that, compared with the conventional PID controller, the dynamic and static performance of fuzzy auto-adjust PID controller are put forward to optimize. The research work of this paper has profound significance for high precision controller design.

16. Lower Motor Control Modeled by Neuron With Fuzzy Synapses

DTIC Science & Technology

2007-11-02

seen in parkinsonism , chorea, cerebellar disorders, and spasticity. In most cases, muscles work in opposing pairs: one muscle opens or extends a joint...performances of predictor schemes based on neurons with fuzzy synapses of order P = 3 in tremor prediction applications. The rules of these particular...Chelaru, A. Kandel, I. Tofan, M. Irimia, “Fuzzy methods in tremor assessment, prediction, and rehabilitation”, Artificial Intelligence in Medicine

17. Robust Multivariable Controller Design via Implicit Model-Following Methods.

DTIC Science & Technology

1983-12-01

HD-Ri38 309 ROBUST MULTIVARIABLE CONTROLLER DESIGN VIA IMPLICIT 1/4 MODEL-FOLLOWING METHODS(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL...aaS. a%. 1 .111 I Q~ 18 0 ROBUST MULTIVARIABLE CONTROLLER DESIGN -~ :VIA IMPLICIT MODEL-FOLLOWING METHODS ’.% THESIS , AFIT/GE/EE/83D-48 William G... CONTROLLER DESIGN VIA IMPLICIT MODEL-FOLLOWING METHODS THESIS AFIT/GE/EE/83D-48 William G. Miller Capt USAF ,. Approved for pubi release; distribution

18. Robust levitation control for maglev systems with guaranteed bounded airgap.

PubMed

Xu, Jinquan; Chen, Ye-Hwa; Guo, Hong

2015-11-01

The robust control design problem for the levitation control of a nonlinear uncertain maglev system is considered. The uncertainty is (possibly) fast time-varying. The system has magnitude limitation on the airgap between the suspended chassis and the guideway in order to prevent undesirable contact. Furthermore, the (global) matching condition is not satisfied. After a three-step state transformation, a robust control scheme for the maglev vehicle is proposed, which is able to guarantee the uniform boundedness and uniform ultimate boundedness of the system, regardless of the uncertainty. The magnitude limitation of the airgap is guaranteed, regardless of the uncertainty.

19. Hybrid clustering based fuzzy structure for vibration control - Part 1: A novel algorithm for building neuro-fuzzy system

Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

2015-01-01

This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.

20. Robust decentralized controller design for UPFC using μ-synthesis

Taher, Seyed Abbas; Akbari, Shahabeddin; Abdolalipour, Ali; Hematti, Reza

2010-08-01

In this paper a new method based on structured singular value ( μ-synthesis) is proposed for the robust decentralized unified power flow controller (UPFC) design. To achieve decentralization, using the Schauder fixed point theorem the synthesis and analysis of multi-input multi-output (MIMO) control system is transformed into a set of equivalent multi-input single-output (MISO) control system. To cope with power system uncertainties μ-synthesis technique is being used for designing of UPFC controllers. The proposed μ-based controller has a decentralized scheme which has the advantage of reduction in the controller complexity and suitability for practical implementation. The effectiveness of the proposed control strategy on damping low frequency oscillations is evaluated under different operating conditions and compared with the conventional controller to demonstrate its robust performance through nonlinear simulation and some performance indices.

1. Inexact fuzzy integer chance constraint programming approach for noise control within an urban environment

Huang, Kai; Huang, Gordon; Dai, Liming; Fan, Yurui

2016-08-01

This article introduces an inexact fuzzy integer chance constraint programming (IFICCP) approach for identifying noise reduction strategy under uncertainty. The IFICCP method integrates the interval programming and fuzzy chance constraint programming approaches into a framework, which is able to deal with uncertainties expressed as intervals and fuzziness. The proposed IFICCP model can be converted into two deterministic submodels corresponding to the optimistic and pessimistic conditions. The modelling approach is applied to a hypothetical control measure selection problem for noise reduction. Results of the case study indicate that useful solutions for noise control practices can be acquired. Three acceptable noise levels for two communities are considered. For each acceptable noise level, several decision alternatives have been obtained and analysed under different fuzzy confidence levels, which reflect the trade-offs between environmental and economic considerations.

2. Robust Control Design for Uncertain Nonlinear Dynamic Systems

NASA Technical Reports Server (NTRS)

Kenny, Sean P.; Crespo, Luis G.; Andrews, Lindsey; Giesy, Daniel P.

2012-01-01

Robustness to parametric uncertainty is fundamental to successful control system design and as such it has been at the core of many design methods developed over the decades. Despite its prominence, most of the work on robust control design has focused on linear models and uncertainties that are non-probabilistic in nature. Recently, researchers have acknowledged this disparity and have been developing theory to address a broader class of uncertainties. This paper presents an experimental application of robust control design for a hybrid class of probabilistic and non-probabilistic parametric uncertainties. The experimental apparatus is based upon the classic inverted pendulum on a cart. The physical uncertainty is realized by a known additional lumped mass at an unknown location on the pendulum. This unknown location has the effect of substantially altering the nominal frequency and controllability of the nonlinear system, and in the limit has the capability to make the system neutrally stable and uncontrollable. Another uncertainty to be considered is a direct current motor parameter. The control design objective is to design a controller that satisfies stability, tracking error, control power, and transient behavior requirements for the largest range of parametric uncertainties. This paper presents an overview of the theory behind the robust control design methodology and the experimental results.

3. Robustness with observers. [linear optimal feedback control systems

NASA Technical Reports Server (NTRS)

Doyle, J. C.; Stein, G.

1979-01-01

The paper describes an adjustment procedure for observer-based linear control systems which asymptotically achieves the same loop transfer functions (and hence the same relative stability, robustness, and disturbance rejection properties) as full-state feedback control implementations. Full-state loop-transfer properties can be recovered asymptotically if the plant is minimum phase; this occurs at the expense of noise performance.

4. Summary report: A preliminary investigation into the use of fuzzy logic for the control of redundant manipulators

NASA Technical Reports Server (NTRS)

Cheatham, John B., Jr.; Magee, Kevin N.

1991-01-01

The Rice University Department of Mechanical Engineering and Materials Sciences' Robotics Group designed and built an eight degree of freedom redundant manipulator. Fuzzy logic was proposed as a control scheme for tasks not directly controlled by a human operator. In preliminary work, fuzzy logic control was implemented for a camera tracking system and a six degree of freedom manipulator. Both preliminary systems use real time vision data as input to fuzzy controllers. Related projects include integration of tactile sensing and fuzzy control of a redundant snake-like arm that is under construction.

5. Sliding mode control of wind-induced vibrations using fuzzy sliding surface and gain adaptation

Thenozhi, Suresh; Yu, Wen

2016-04-01

Although fuzzy/adaptive sliding mode control can reduce the chattering problem in structural vibration control applications, they require the equivalent control and the upper bounds of the system uncertainties. In this paper, we used fuzzy logic to approximate the standard sliding surface and designed a dead-zone adaptive law for tuning the switching gain of the sliding mode control. The stability of the proposed controller is established using Lyapunov stability theory. A six-storey building prototype equipped with an active mass damper has been used to demonstrate the effectiveness of the proposed controller towards the wind-induced vibrations.

6. Tracking Control of a 2-DOF Arm Actuated by Pneumatic Muscle Actuators Using Adaptive Fuzzy Sliding Mode Control

Chang, Ming-Kun; Wu, Jui-Chi

Pneumatic muscle actuators (PMAs) have the highest power/weight ratio and power/volume ratio of any actuator. Therefore, they can be used not only in the rehabilitation engineering, but also as an actuator in robots, including industrial robots and therapy robots. It is difficult to achieve excellent tracking performance using classical control methods because the compressibility of gas and the nonlinear elasticity of bladder container causes parameter variations. An adaptive fuzzy sliding mode control is developed in this study. The fuzzy sliding surface can be used to reduce fuzzy rule numbers, and the adaptive control law is used to modify fuzzy rules on-line. A model matching technique is then adopted to adjust scaling factors. The experimental results show that this control strategy can attain excellent tracking performance.

7. Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV.

PubMed

Ali, Zain Anwar; Wang, Daobo; Aamir, Muhammad

2016-05-09

In this paper, a new and novel mathematical fuzzy hybrid scheme is proposed for the stabilization of a tri-rotor unmanned aerial vehicle (UAV). The fuzzy hybrid scheme consists of a fuzzy logic controller, regulation pole-placement tracking (RST) controller with model reference adaptive control (MRAC), in which adaptive gains of the RST controller are being fine-tuned by a fuzzy logic controller. Brushless direct current (BLDC) motors are installed in the triangular frame of the tri-rotor UAV, which helps maintain control on its motion and different altitude and attitude changes, similar to rotorcrafts. MRAC-based MIT rule is proposed for system stability. Moreover, the proposed hybrid controller with nonlinear flight dynamics is shown in the presence of translational and rotational velocity components. The performance of the proposed algorithm is demonstrated via MATLAB simulations, in which the proposed fuzzy hybrid controller is compared with the existing adaptive RST controller. It shows that our proposed algorithm has better transient performance with zero steady-state error, and fast convergence towards stability.

8. Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV

PubMed Central

Ali, Zain Anwar; Wang, Daobo; Aamir, Muhammad

2016-01-01

In this paper, a new and novel mathematical fuzzy hybrid scheme is proposed for the stabilization of a tri-rotor unmanned aerial vehicle (UAV). The fuzzy hybrid scheme consists of a fuzzy logic controller, regulation pole-placement tracking (RST) controller with model reference adaptive control (MRAC), in which adaptive gains of the RST controller are being fine-tuned by a fuzzy logic controller. Brushless direct current (BLDC) motors are installed in the triangular frame of the tri-rotor UAV, which helps maintain control on its motion and different altitude and attitude changes, similar to rotorcrafts. MRAC-based MIT rule is proposed for system stability. Moreover, the proposed hybrid controller with nonlinear flight dynamics is shown in the presence of translational and rotational velocity components. The performance of the proposed algorithm is demonstrated via MATLAB simulations, in which the proposed fuzzy hybrid controller is compared with the existing adaptive RST controller. It shows that our proposed algorithm has better transient performance with zero steady-state error, and fast convergence towards stability. PMID:27171084

9. Optimal robust motion controller design using multiobjective genetic algorithm.

PubMed

Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor

2014-01-01

This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm-differential evolution.

10. Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm

PubMed Central

Svečko, Rajko

2014-01-01

This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749

11. Method study on fuzzy-PID adaptive control of electric-hydraulic hitch system

Li, Mingsheng; Wang, Liubu; Liu, Jian; Ye, Jin

2017-03-01

In this paper, fuzzy-PID adaptive control method is applied to the control of tractor electric-hydraulic hitch system. According to the characteristics of the system, a fuzzy-PID adaptive controller is designed and the electric-hydraulic hitch system model is established. Traction control and position control performance simulation are carried out with the common PID control method. A field test rig was set up to test the electric-hydraulic hitch system. The test results showed that, after the fuzzy-PID adaptive control is adopted, when the tillage depth steps from 0.1m to 0.3m, the system transition process time is 4s, without overshoot, and when the tractive force steps from 3000N to 7000N, the system transition process time is 5s, the system overshoot is 25%.

12. Design of a new adaptive fuzzy controller and its implementation for the damping force control of a magnetorheological damper

Phu, Do Xuan; Shah, Kruti; Choi, Seung-Bok

2014-06-01

This paper presents a new adaptive fuzzy controller and its implementation for the damping force control of a magnetorheological (MR) fluid damper in order to validate the effectiveness of the control performance. An interval type 2 fuzzy model is built, and then combined with modified adaptive control to achieve the desired damping force. In the formulation of the new adaptive controller, an enhanced iterative algorithm is integrated with the fuzzy model to decrease the time of calculation (D Wu 2013 IEEE Trans. Fuzzy Syst. 21 80-99) and the control algorithm is synthesized based on the {{H}^{\\infty }} tracking technique. In addition, for the verification of good control performance of the proposed controller, a cylindrical MR damper which can be applied to the vibration control of a washing machine is designed and manufactured. For the operating fluid, a recently developed plate-like particle-based MR fluid is used instead of a conventional MR fluid featuring spherical particles. To highlight the control performance of the proposed controller, two existing adaptive fuzzy control algorithms proposed by other researchers are adopted and altered for a comparative study. It is demonstrated from both simulation and experiment that the proposed new adaptive controller shows better performance of damping force control in terms of response time and tracking accuracy than the existing approaches.

13. Robust hopping based on virtual pendulum posture control.

PubMed

2013-09-01

A new control approach to achieve robust hopping against perturbations in the sagittal plane is presented in this paper. In perturbed hopping, vertical body alignment has a significant role for stability. Our approach is based on the virtual pendulum concept, recently proposed, based on experimental findings in human and animal locomotion. In this concept, the ground reaction forces are pointed to a virtual support point, named virtual pivot point (VPP), during motion. This concept is employed in designing the controller to balance the trunk during the stance phase. New strategies for leg angle and length adjustment besides the virtual pendulum posture control are proposed as a unified controller. This method is investigated by applying it on an extension of the spring loaded inverted pendulum (SLIP) model. Trunk, leg mass and damping are added to the SLIP model in order to make the model more realistic. The stability is analyzed by Poincaré map analysis. With fixed VPP position, stability, disturbance rejection and moderate robustness are achieved, but with a low convergence speed. To improve the performance and attain higher robustness, an event-based control of the VPP position is introduced, using feedback of the system states at apexes. Discrete linear quartic regulator is used to design the feedback controller. Considerable enhancements with respect to stability, convergence speed and robustness against perturbations and parameter changes are achieved.

14. Robust and reliable control via quadratic Lyapunov functions

Alt, Terry Robert

In this dissertation we present a new approach to design robust and reliable controllers. Our results are used to find control laws for systems that are subject to (1) real polytopic and norm bounded uncertainties, (2) actuator and sensor variations and (3) actuator and sensor failure. In addition, we present conditions that can be added to the control design problem to constrain the controller to be stable or strictly positive real, further strengthening the robustness and reliability of the control design. The basic framework relies on the use of quadratic Lyapunov functions to accommodate potentially time varying uncertainty. Conditions are derived that, when satisfied, allow a robust control design to be obtained by performing two convex optimizations. These controllers recover the performance robustness of either state feedback or full information controllers. Sufficient conditions are presented that remove the non-convexity in terms of the control design variables. This allows a robust control design to be obtained by solving a set of linear matrix inequalities. These general robustness results are then applied to the reliability problem. Actuator and sensor variations are modeled using real polytopic uncertainties. It is shown that under some simplifying assumptions the state feedback problem reduces to a single linear matrix inequality. It also shows that the Riccati equations for standard LQR and Hsb{infty} need only a slight modification to obtain a control law that is reliable with respect to actuator variability. For the output feedback case, convex conditions are presented that yield controllers which are reliable to actuator and sensor variations. Utilizing the simultaneous Lyapunov function approach, we further extend these results to include actuator or sensor failure. Additionally, when applicable, stronger reliability guaranties may be obtained by constraining the controller to be strictly positive real. This guarantees stability for positive real

15. Analysis the robustness of control systems based on disturbance observer

Sariyildiz, Emre; Ohnishi, Kouhei

2013-10-01

Disturbance observer (DOB) estimates the system disturbances by using the inverse of the nominal plant model and a low pass filter (LPF). Although the LPF provides the properness in the inner-loop, it is the main design constraint of the control systems based on DOB. The bandwidth of the LPF is designed as high as possible so that the DOB can estimate the disturbances in a wider frequency range. However, its bandwidth is limited by noise and robustness of the system. The robustness limitation is directly related with the robustness analysis methods, and they significantly affect the performance of the DOB based control systems. In this paper, three different robustness analysis methods are implemented into the DOB based control systems, and the relation between the robustness of the system and bandwidth of DOB is clearly explained. The conservatism, which is the main drawback of the conventional analysis methods, on the bandwidth of DOB is removed by proposing a new real parametric uncertainty based analysis method. The proposed methods are compared in detail, and simulation results are given to show the validation.

16. Global asymptotic stability of a tracking sectorial fuzzy controller for robot manipulators.

PubMed

Santibañez, Victor; Kelly, Rafael; Llama, Miguel A

2004-02-01

This paper shows that fuzzy control systems satisfying sectorial properties are effective for motion tracking control of robot manipulators. We propose a controller whose structure is composed by a sectorial fuzzy controller plus a full nonlinear robot dynamics compensation, in such a way that this structure leads to a very simple closed-loop system represented by an autonomous nonlinear differential equation. We demonstrate via Lyapunov theory, that the closed-loop system is globally asymptotically stable. Experimental results show the feasibility of the proposed controller.

17. A fuzzy-based shared controller for brain-actuated simulated robotic system.

PubMed

Liu, Rong; Xue, Kuang-Zheng; Wang, Yong-Xuan; Yang, Le

2011-01-01

The primary problems of brain-computer interface (BCI) are the low channel capacity and high error rate. Therefore, an assistive motion control method is important for the brain-actuated robot to realize real-time and reliable control. To make the brain-actuated robot respond to the external environments with more flexibility, a shared control method based on fuzzy logic is proposed. Experimental results obtained with ten healthy voluntary subjects show that the proposed fuzzy-based shared controller has improved performance compared with direct control approach.

18. Intelligent control of PV system on the basis of the fuzzy recurrent neuronet*

Engel, E. A.; Kovalev, I. V.; Engel, N. E.

2016-04-01

This paper presents the fuzzy recurrent neuronet for PV system’s control. Based on the PV system’s state, the fuzzy recurrent neural net tracks the maximum power point under random perturbations. The validity and advantages of the proposed intelligent control of PV system are demonstrated by numerical simulations. The simulation results show that the proposed intelligent control of PV system achieves real-time control speed and competitive performance, as compared to a classical control scheme on the basis of the perturbation & observation algorithm.

19. Vibration suppression control of smart piezoelectric rotating truss structure by parallel neuro-fuzzy control with genetic algorithm tuning

Lin, J.; Zheng, Y. B.

2012-07-01

The main goal of this paper is to develop a novel approach for vibration control on a piezoelectric rotating truss structure. This study will analyze the dynamics and control of a flexible structure system with multiple degrees of freedom, represented in this research as a clamped-free-free-free truss type plate rotated by motors. The controller has two separate feedback loops for tracking and damping, and the vibration suppression controller is independent of position tracking control. In addition to stabilizing the actual system, the proposed proportional-derivative (PD) control, based on genetic algorithm (GA) to seek the primary optimal control gain, must supplement a fuzzy control law to ensure a stable nonlinear system. This is done by using an intelligent fuzzy controller based on adaptive neuro-fuzzy inference system (ANFIS) with GA tuning to increase the efficiency of fuzzy control. The PD controller, in its assisting role, easily stabilized the linear system. The fuzzy controller rule base was then constructed based on PD performance-related knowledge. Experimental validation for such a structure demonstrates the effectiveness of the proposed controller. The broad range of problems discussed in this research will be found useful in civil, mechanical, and aerospace engineering, for flexible structures with multiple degree-of-freedom motion.

20. Observer-Based Output-Feedback Asynchronous Control for Switched Fuzzy Systems.

PubMed

Wang, Tiechao; Tong, Shaocheng

2016-05-10

This paper investigates an output-feedback control design problem for a class of switched continuous-time Takagi-Sugeno (T-S) fuzzy systems. The considered fuzzy systems consist of several switching modes and each switching mode is described by T-S fuzzy models. In addition, there exists the asynchronous switching between the system switching modes and the controller switching modes. By using parallel distributed compensation design method, the output-feedback control schemes are developed based on state observers for the measurable and immeasurable premise variables cases. The sufficient conditions of ensuring the switched control system stabilization are proposed based on the theory of Lyapunov stability and average-dwell time methods. The controller and observer gains are obtained via two-step method. An illustrated numerical example is provided to show the effectiveness of the proposed control approaches.

1. Fuzzy auto-tuning PID control of multiple joint robot driven by ultrasonic motors.

PubMed

Sun, Zhijun; Xing, Rentao; Zhao, Chunsheng; Huang, Weiqing

2007-11-01

A three-joint robot is directly driven by ultrasonic motors with advantage of high torque at low speed. The speed of the ultrasonic motors is actually controlled by regulating their operating frequencies. The kinematic and kinetic analyses of the robot have been carried out using Adams. Due to the lack of accurate control model of ultrasonic motors and the time-varying motor parameters, a fuzzy auto-tuning proportional integral derivative (PID) controller for the robot is experimented, in which a simple method to tune parameters of the PID type fuzzy controller on-line is developed and a new position-speed feedback strategy is proposed and implemented. The effectiveness of the proposed control strategy and fuzzy logic controller is verified by experimental investigation.

2. Adaptive fuzzy backstepping control for a class of switched nonlinear systems with actuator faults

Hou, Yingxue; Tong, Shaocheng; Li, Yongming

2016-11-01

This paper investigates the problem of fault-tolerant control (FTC) for a class of switched nonlinear systems. These systems are under arbitrary switchings and are subject to both lock-in-place and loss-of-effectiveness actuator faults. In the control design, fuzzy logic systems are used to identify the unknown switched nonlinear systems. Under the framework of the backstepping control design, FTC, fuzzy adaptive control and common Lyapunov function stability theory, an adaptive fuzzy control approach is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop switched system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error remains an adjustable neighbourhood of the origin. Two simulation examples are provided to illustrate the effectiveness of the proposed approach.

3. A Fuzzy Reasoning Design for Fault Detection and Diagnosis of a Computer-Controlled System.

PubMed

Ting, Y; Lu, W B; Chen, C H; Wang, G K

2008-03-01

A Fuzzy Reasoning and Verification Petri Nets (FRVPNs) model is established for an error detection and diagnosis mechanism (EDDM) applied to a complex fault-tolerant PC-controlled system. The inference accuracy can be improved through the hierarchical design of a two-level fuzzy rule decision tree (FRDT) and a Petri nets (PNs) technique to transform the fuzzy rule into the FRVPNs model. Several simulation examples of the assumed failure events were carried out by using the FRVPNs and the Mamdani fuzzy method with MATLAB tools. The reasoning performance of the developed FRVPNs was verified by comparing the inference outcome to that of the Mamdani method. Both methods result in the same conclusions. Thus, the present study demonstratrates that the proposed FRVPNs model is able to achieve the purpose of reasoning, and furthermore, determining of the failure event of the monitored application program.

NASA Technical Reports Server (NTRS)

Nguyen, Nhan T.

2009-01-01

5. Robust control systems design by H-infinity optimization theory

NASA Technical Reports Server (NTRS)

Chang, B. C.; Li, X. P.; Banda, S. S.; Yeh, H. H.

1991-01-01

In this paper, step-by-step procedures of applying the H-infinity theory to robust control systems design are given. The objective of the paper is to eliminate the possible difficulties a control engineer may encounter in applying H-infinity control theory and to clear up some misconceptions about H-infinity theory like high-gain controller and numerical obstacles, etc. An efficient algorithm is used to compute the optimal H-infinity norm. The Glover and Doyle (1988) controller formulas are slightly modified and used to construct an optimal controller without any numerical difficulties.

6. Neuro-Fuzzy Computational Technique to Control Load Frequency in Hydro-Thermal Interconnected Power System

Prakash, S.; Sinha, S. K.

2015-09-01

In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.

7. A new robust control for minirotorcraft unmanned aerial vehicles.

PubMed

Mokhtari, M Rida; Cherki, Brahim

2015-05-01

This paper presents a new robust control based on finite-time Lyapunov stability controller and proved with backstepping method for the position and the attitude of a small rotorcraft unmanned aerial vehicle subjected to bounded uncertainties and disturbances. The dynamical motion equations are obtained by the Newton-Euler formalism. The proposed controller combines the advantage of the backstepping approach with finite-time convergence techniques to generate a control laws to guarantee the faster convergence of the state variables to their desired values in short time and compensate for the bounded disturbances. A formal proof of the closed-loop stability and finite-time convergence of tracking errors is derived using the Lyapunov function technique. Simulation results are presented to corroborate the effectiveness and the robustness of the proposed control method.

8. A robust composite nonlinear control scheme for servomotor speed regulation

Huang, Yanwei; Cheng, Guoqing

2015-01-01

A parameterised design of robust composite nonlinear controller is proposed for typical second-order servo systems subject to unknown constant disturbance and control input saturation. The control law consists of a linear feedback part for achieving fast response, a nonlinear feedback part for suppressing the overshoot, and a disturbance-compensation mechanism for erasing the steady-state error. An extended state observer is adopted to estimate the unknown disturbance. The closed-loop stability is analysed theoretically. The control scheme is applied to the speed regulation of permanent magnet synchronous motor, and numerical simulations are carried out. The results confirm that the proposed control scheme can achieve fast, smooth, and accurate speed regulation, and has a certain degree of robustness with respect to the amplitude of disturbances and the perturbations of system parameters.

9. Adaptive fuzzy control of underactuated robotic systems with the use of differential flatness theory

Rigatos, Gerasimos G.

2013-10-01

An adaptive fuzzy controller is designed for a class of underactuated nonlinear robotic manipulators, under the constraint that the system's model is unknown. The control algorithm aims at satisfying the H∞ tracking performance criterion, which means that the influence of the modeling errors and the external disturbances on the tracking error is attenuated to an arbitrary desirable level. After transforming the robotic system into the canonical form, the resulting control inputs are shown to contain nonlinear elements which depend on the system's parameters. The nonlinear terms which appear in the control inputs are approximated with the use of neuro-fuzzy networks. It is shown that a suitable learning law can be defined for the aforementioned neuro-fuzzy approximators so as to preserve the closed-loop system stability. With the use of Lyapunov stability analysis it is proven that the proposed adaptive fuzzy control scheme results in H∞ tracking performance. The efficiency of the proposed adaptive fuzzy control scheme is checked in the case of a 2-DOF planar robotic manipulator that has the structure of a closed-chain mechanism.

10. Nonlinear dynamic analysis and robust controller design for Francis hydraulic turbine regulating system with a straight-tube surge tank

Liang, Ji; Yuan, Xiaohui; Yuan, Yanbin; Chen, Zhihuan; Li, Yuanzheng

2017-02-01

The safety and stability of hydraulic turbine regulating system (HTRS) in hydropower plants become increasingly important since the rapid development and the broad application of hydro energy technology. In this paper, a novel mathematical model of Francis hydraulic turbine regulating system with a straight-tube surge tank based on a few state-space equations is introduced to study the dynamic behaviors of the HTRS system, where the existence of possible unstable oscillations of this model is studied extensively and presented in the forms of the bifurcation diagram, time waveform plot, phase trajectories, and power spectrum. To eliminate these undesirable behaviors, a specified fuzzy sliding mode controller is designed. In this hybrid controller, the sliding mode control law makes full use of the proposed model to guarantee the robust control in the presence of system uncertainties, while the fuzzy system is applied to approximate the proper gains of the switching control in sliding mode technique to reduce the chattering effect, and particle swarm optimization is developed to search the optimal gains of the controller. Numerical simulations are presented to verify the effectiveness of the designed controller, and the results show that the performances of the nonlinear HTRS system assisted with the proposed controller is much better than that with the commonly used optimal PID controller.

11. Adaptive fuzzy switched control design for uncertain nonholonomic systems with input nonsmooth constraint

Li, Yongming; Tong, Shaocheng

2016-10-01

In this paper, a fuzzy adaptive switched control approach is proposed for a class of uncertain nonholonomic chained systems with input nonsmooth constraint. In the control design, an auxiliary dynamic system is designed to address the input nonsmooth constraint, and an adaptive switched control strategy is constructed to overcome the uncontrollability problem associated with x0(t0) = 0. By using fuzzy logic systems to tackle unknown nonlinear functions, a fuzzy adaptive control approach is explored based on the adaptive backstepping technique. By constructing the combination approximation technique and using Young's inequality scaling technique, the number of the online learning parameters is reduced to n and the 'explosion of complexity' problem is avoid. It is proved that the proposed method can guarantee that all variables of the closed-loop system converge to a small neighbourhood of zero. Two simulation examples are provided to illustrate the effectiveness of the proposed control approach.

12. Parameter estimation and interval type-2 fuzzy sliding mode control of a z-axis MEMS gyroscope.

PubMed

Fazlyab, Mahyar; Pedram, Maysam Zamani; Salarieh, Hassan; Alasty, Aria

2013-11-01

This paper reports a hybrid intelligent controller for application in single axis MEMS vibratory gyroscopes. First, unknown parameters of a micro gyroscope including unknown time varying angular velocity are estimated online via normalized continuous time least mean squares algorithm. Then, an additional interval type-2 fuzzy sliding mode control is incorporated in order to match the resonant frequencies and to compensate for undesired mechanical couplings. The main advantage of this control strategy is its robustness to parameters uncertainty, external disturbance and measurement noise. Consistent estimation of parameters is guaranteed and stability of the closed-loop system is proved via the Lyapunov stability theorem. Finally, numerical simulation is done in order to validate the effectiveness of the proposed method, both for a constant and time-varying angular rate.

13. Adaptive fuzzy output-feedback controller design for nonlinear systems via backstepping and small-gain approach.

PubMed

Liu, Zhi; Wang, Fang; Zhang, Yun; Chen, Xin; Chen, C L Philip

2014-10-01

This paper focuses on an input-to-state practical stability (ISpS) problem of nonlinear systems which possess unmodeled dynamics in the presence of unstructured uncertainties and dynamic disturbances. The dynamic disturbances depend on the states and the measured output of the system, and its assumption conditions are relaxed compared with the common restrictions. Based on an input-driven filter, fuzzy logic systems are directly used to approximate the unknown and desired control signals instead of the unknown nonlinear functions, and an integrated backstepping technique is used to design an adaptive output-feedback controller that ensures robustness with respect to unknown parameters and uncertain nonlinearities. This paper, by applying the ISpS theory and the generalized small-gain approach, shows that the proposed adaptive fuzzy controller guarantees the closed-loop system being semi-globally uniformly ultimately bounded. A main advantage of the proposed controller is that it contains only three adaptive parameters that need to be updated online, no matter how many states there are in the systems. Finally, the effectiveness of the proposed approach is illustrated by two simulation examples.

14. Robust Neural Sliding Mode Control of Robot Manipulators

Hiep, Nguyen Tran; cat, Pham Thuong

2009-03-01

This paper proposes a robust neural sliding mode control method for robot tracking problem to overcome the noises and large uncertainties in robot dynamics. The Lyapunov direct method has been used to prove the stability of the overall system. Simulation results are given to illustrate the applicability of the proposed method

15. Robust Neural Sliding Mode Control of Robot Manipulators

SciTech Connect

Nguyen Tran Hiep; Pham Thuong Cat

2009-03-05

This paper proposes a robust neural sliding mode control method for robot tracking problem to overcome the noises and large uncertainties in robot dynamics. The Lyapunov direct method has been used to prove the stability of the overall system. Simulation results are given to illustrate the applicability of the proposed method.

16. Nonlinear dynamics in coupled fuzzy control systems I. Coherence and chaos-frustration in triangle configuration

Takatsuka, Kazuo

Nonlinear dynamics and chaos are studied in a system for which a complete set of equations of motion such as equations of Newton, Navier-Stokes and Van der Pol, is not available. As a very general system as such, we consider coupled classical spins (pendulums), each of which is under control by a fuzzy system that is designed to align the spin to an unstable fixed point. The fuzzy system provides a deterministic procedure to control an object without use of a differential equation. The positions and velocities of the spins are monitored periodically and each fuzzy control gives a momentum to its associated spin in the reverse directions. If the monitoring is made with an interval short enough, the spin-spin interactions are overwhelmed by the fuzzy control and the system converges to a state as designed. However, a long-interval monitoring induces dynamics of “too-late response”, and thereby results in chaos. A great variety of dynamics are generated under very delicate balance between the fuzzy control and the spin-spin interaction, in which two independent mechanisms of creating negative and positive “Liapunov exponents” interact with each other.

17. Deriving and Analyzing Analytical Structures of a Class of Typical Interval Type-2 TS Fuzzy Controllers.

PubMed

Zhou, Haibo; Ying, Hao

2016-06-01

A conventional controller's explicit input-output mathematical relationship, also known as its analytical structure, is always available for analysis and design of a control system. In contrast, virtually all type-2 (T2) fuzzy controllers are treated as black-box controllers in the literature in that their analytical structures are unknown, which inhibits precise and comprehensive understanding and analysis. In this regard, a long-standing fundamental issue remains unresolved: how a T2 fuzzy set's footprint of uncertainty, a key element differentiating a T2 controller from a type-1 (T1) controller, affects a controller's analytical structure. In this paper, we describe an innovative technique for deriving analytical structures of a class of typical interval T2 (IT2) TS fuzzy controllers. This technique makes it possible to analyze the analytical structures of the controllers to reveal the role of footprints of uncertainty in shaping the structures. Specifically, we have mathematically proven that under certain conditions, the larger the footprints, the more the IT2 controllers resemble linear or piecewise linear controllers. When the footprints are at their maximum, the IT2 controllers actually become linear or piecewise linear controllers. That is to say the smaller the footprints, the more nonlinear the controllers. The most nonlinear IT2 controllers are attained at zero footprints, at which point they become T1 controllers. This finding implies that sometimes if strong nonlinearity is most important and desired, one should consider using a smaller footprint or even just a T1 fuzzy controller. This paper exemplifies the importance and value of the analytical structure approach for comprehensive analysis of T2 fuzzy controllers.

18. Robust model-based controller synthesis for the SCOLE configuration

NASA Technical Reports Server (NTRS)

Armstrong, E. S.; Joshi, S. M.; Stewart, E. J.

1988-01-01

The design of a robust compensator is considered for the SCOLE configuration using a frequency-response shaping technique based on the LQG/LTR algorithm. Results indicate that a tenth-order compensator can be used to meet stability-performance-robustness conditions for a 26th-order SCOLE model without destabilizing spillover effects. Since the SCOLE configuration is representative of many proposed spaceflight experiments, the results and design techniques employed potentially should be applicable to a wide range of large space structure control problems.

19. Geometric quantum gates that are robust against stochastic control errors

SciTech Connect

Zhu Shiliang; Zanardi, Paolo

2005-08-15

The realistic application of geometric quantum computation is crucially dependent on an unproved robustness conjecture, claiming that geometric quantum gates are more resilient against random noise than dynamic gates. We propose a suitable model that allows a direct and fair comparison between geometrical and dynamical operations. In the presence of stochastic control errors we find that the maximum of gate fidelity corresponds to quantum gates with a vanishing dynamical phase. This is a clear evidence for the robustness of nonadiabatic geometric quantum computation. The predictions here presented can be experimentally tested in almost all of the already existing quantum computer candidates.

20. Computational methods of robust controller design for aerodynamic flutter suppression

NASA Technical Reports Server (NTRS)

Anderson, L. R.

1981-01-01

The development of Riccati iteration, a tool for the design and analysis of linear control systems is examined. First, Riccati iteration is applied to the problem of pole placement and order reduction in two-time scale control systems. Order reduction, yielding a good approximation to the original system, is demonstrated using a 16th order linear model of a turbofan engine. Next, a numerical method for solving the Riccati equation is presented and demonstrated for a set of eighth order random examples. A literature review of robust controller design methods follows which includes a number of methods for reducing the trajectory and performance index sensitivity in linear regulators. Lastly, robust controller design for large parameter variations is discussed.

1. Variable Neural Adaptive Robust Control: A Switched System Approach

SciTech Connect

Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.

2015-05-01

Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewise quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.

2. Mitigation of Remedial Action Schemes by Decentralized Robust Governor Control

SciTech Connect

Elizondo, Marcelo A.; Marinovici, Laurentiu D.; Lian, Jianming; Kalsi, Karanjit; Du, Pengwei

2014-04-15

This paper presents transient stability improvement by a new distributed hierarchical control architecture (DHC). The integration of remedial action schemes (RAS) to the distributed hierarchical control architecture is studied. RAS in power systems are designed to maintain stability and avoid undesired system conditions by rapidly switching equipment and/or changing operating points according to predetermined rules. The acceleration trend relay currently in use in the US western interconnection is an example of RAS that trips generators to maintain transient stability. The link between RAS and DHC is through fast acting robust turbine/governor control that can also improve transient stability. In this paper, the influence of the decentralized robust turbine/governor control on the design of RAS is studied. Benefits of combining these two schemes are increasing power transfer capability and mitigation of RAS generator tripping actions; the later benefit is shown through simulations.

3. Fuzzy Backstepping Torque Control Of Passive Torque Simulator With Algebraic Parameters Adaptation

Ullah, Nasim; Wang, Shaoping; Wang, Xingjian

2015-07-01

This work presents fuzzy backstepping control techniques applied to the load simulator for good tracking performance in presence of extra torque, and nonlinear friction effects. Assuming that the parameters of the system are uncertain and bounded, Algebraic parameters adaptation algorithm is used to adopt the unknown parameters. The effect of transient fuzzy estimation error on parameters adaptation algorithm is analyzed and the fuzzy estimation error is further compensated using saturation function based adaptive control law working in parallel with the actual system to improve the transient performance of closed loop system. The saturation function based adaptive control term is large in the transient time and settles to an optimal lower value in the steady state for which the closed loop system remains stable. The simulation results verify the validity of the proposed control method applied to the complex aerodynamics passive load simulator.

4. Adaptive Fuzzy Tracking Control for a Class of MIMO Nonlinear Systems in Nonstrict-Feedback Form.

PubMed

Chen, Bing; Lin, Chong; Liu, Xiaoping; Liu, Kefu

2015-12-01

This paper focuses on the problem of fuzzy adaptive control for a class of multiinput and multioutput (MIMO) nonlinear systems in nonstrict-feedback form, which contains the strict-feedback form as a special case. By the condition of variable partition, a new fuzzy adaptive backstepping is proposed for such a class of nonlinear MIMO systems. The suggested fuzzy adaptive controller guarantees that the proposed control scheme can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking errors eventually converge to a small neighborhood around the origin. The main advantage of this paper is that a control approach is systematically derived for nonlinear systems with strong interconnected terms which are the functions of all states of the whole system. Simulation results further illustrate the effectiveness of the suggested approach.

5. Fuzzy Inference Based Obstacle Avoidance Control of Electric Powered Wheelchair Considering Driving Risk

Kiso, Atsushi; Murakami, Hiroki; Seki, Hirokazu

This paper describes a novel obstacle avoidance control scheme of electric powered wheelchairs for realizing the safe driving in various environments. The “electric powered wheelchair” which generates the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people; however, the driving performance must be further improved because the number of driving accidents caused by elderly operator's narrow sight and joystick operation errors is increasing. This paper proposes a novel obstacle avoidance control scheme based on fuzzy algorithm to prevent driving accidents. The proposed control system determines the driving direction by fuzzy algorithm based on the information of the joystick operation and distance to obstacles measured by ultrasonic sensors. Fuzzy rules to determine the driving direction are designed surely to avoid passers-by and walls considering the human's intent and driving environments. Some driving experiments on the practical situations show the effectiveness of the proposed control system.

6. PI and fuzzy logic controllers for shunt Active Power Filter--a report.

PubMed

P, Karuppanan; Mahapatra, Kamala Kanta

2012-01-01

This paper presents a shunt Active Power Filter (APF) for power quality improvements in terms of harmonics and reactive power compensation in the distribution network. The compensation process is based only on source current extraction that reduces the number of sensors as well as its complexity. A Proportional Integral (PI) or Fuzzy Logic Controller (FLC) is used to extract the required reference current from the distorted line-current, and this controls the DC-side capacitor voltage of the inverter. The shunt APF is implemented with PWM-current controlled Voltage Source Inverter (VSI) and the switching patterns are generated through a novel Adaptive-Fuzzy Hysteresis Current Controller (A-F-HCC). The proposed adaptive-fuzzy-HCC is compared with fixed-HCC and adaptive-HCC techniques and the superior features of this novel approach are established. The FLC based shunt APF system is validated through extensive simulation for diode-rectifier/R-L loads.

7. Regulation of Blood Glucose Concentration in Type 1 Diabetics Using Single Order Sliding Mode Control Combined with Fuzzy On-line Tunable Gain, a Simulation Study

PubMed Central

Dinani, Soudabeh Taghian; Zekri, Maryam; Kamali, Marzieh

2015-01-01

Diabetes is considered as a global affecting disease with an increasing contribution to both mortality rate and cost damage in the society. Therefore, tight control of blood glucose levels has gained significant attention over the decades. This paper proposes a method for blood glucose level regulation in type 1 diabetics. The control strategy is based on combining the fuzzy logic theory and single order sliding mode control (SOSMC) to improve the properties of sliding mode control method and to alleviate its drawbacks. The aim of the proposed controller that is called SOSMC combined with fuzzy on-line tunable gain is to tune the gain of the controller adaptively. This merit causes a less amount of control effort, which is the rate of insulin delivered to the patient body. As a result, this method can decline the risk of hypoglycemia, a lethal phenomenon in regulating blood glucose level in diabetics caused by a low blood glucose level. Moreover, it attenuates the chattering observed in SOSMC significantly. It is worth noting that in this approach, a mathematical model called minimal model is applied instead of the intravenously infused insulin–blood glucose dynamics. The simulation results demonstrate a good performance of the proposed controller in meal disturbance rejection and robustness against parameter changes. In addition, this method is compared to fuzzy high-order sliding mode control (FHOSMC) and the superiority of the new method compared to FHOSMC is shown in the results. PMID:26284169

8. Robust control design techniques for active flutter suppression

NASA Technical Reports Server (NTRS)

Ozbay, Hitay; Bachmann, Glen R.

1994-01-01

In this paper, an active flutter suppression problem is studied for a thin airfoil in unsteady aerodynamics. The mathematical model of this system is infinite dimensional because of Theodorsen's function which is irrational. Several second order approximations of Theodorsen's function are compared. A finite dimensional model is obtained from such an approximation. We use H infinity control techniques to find a robustly stabilizing controller for active flutter suppression.

9. Robust trajectory tracking: differential game/cheap control approach

Turetsky, Vladimir; Glizer, Valery Y.; Shinar, Josef

2014-11-01

A robust trajectory tracking problem is treated in the framework of a zero-sum linear-quadratic differential game of a general type. For the cheap control version of this game, a novel solvability condition is derived. The sufficient condition, guaranteeing that the tracking problem is solved by the optimal strategy of the minimiser in the cheap control game, is established. The boundedness of the time realisations of this strategy is analysed. An illustrative example is presented.

10. A Robust Cooperated Control Method with Reinforcement Learning and Adaptive H∞ Control

Obayashi, Masanao; Uchiyama, Shogo; Kuremoto, Takashi; Kobayashi, Kunikazu

This study proposes a robust cooperated control method combining reinforcement learning with robust control to control the system. A remarkable characteristic of the reinforcement learning is that it doesn't require model formula, however, it doesn't guarantee the stability of the system. On the other hand, robust control system guarantees stability and robustness, however, it requires model formula. We employ both the actor-critic method which is a kind of reinforcement learning with minimal amount of computation to control continuous valued actions and the traditional robust control, that is, H∞ control. The proposed system was compared method with the conventional control method, that is, the actor-critic only used, through the computer simulation of controlling the angle and the position of a crane system, and the simulation result showed the effectiveness of the proposed method.

11. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

2016-02-01

Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

12. Distributed Proportional-spatial Derivative control of nonlinear parabolic systems via fuzzy PDE modeling approach.

PubMed

Wang, Jun-Wei; Wu, Huai-Ning; Li, Han-Xiong

2012-06-01

In this paper, a distributed fuzzy control design based on Proportional-spatial Derivative (P-sD) is proposed for the exponential stabilization of a class of nonlinear spatially distributed systems described by parabolic partial differential equations (PDEs). Initially, a Takagi-Sugeno (T-S) fuzzy parabolic PDE model is proposed to accurately represent the nonlinear parabolic PDE system. Then, based on the T-S fuzzy PDE model, a novel distributed fuzzy P-sD state feedback controller is developed by combining the PDE theory and the Lyapunov technique, such that the closed-loop PDE system is exponentially stable with a given decay rate. The sufficient condition on the existence of an exponentially stabilizing fuzzy controller is given in terms of a set of spatial differential linear matrix inequalities (SDLMIs). A recursive algorithm based on the finite-difference approximation and the linear matrix inequality (LMI) techniques is also provided to solve these SDLMIs. Finally, the developed design methodology is successfully applied to the feedback control of the Fitz-Hugh-Nagumo equation.

13. Adaptive fuzzy PID temperature control system based on single-chip computer for the autoclave

Zhang, F.; Wang, J.; Fu, S. L.; He, Z. T.; Li, X. P.

2008-12-01

The autoclave is one of main preparation equipments of crystal preparation by hydrothermal method. The preparation temperature will seriously influence crystals quality and crystals size at high temperature, how to measure and control precisely the autoclave temperature can be of real significance. The characteristic of hysteresis, nonlinearity and difficulty to acquire the precise mathematical model existing in the temperature control of the autoclave was researched. The general PID controller adopted usually in the autoclave temperature control system is hard to improve temperature control performance. Based on the advantages of fuzzy controller that does not depend on the precise mathematical model and the stabilization of PID controller, single-chip computer integrated fuzzy PID control algorithm is adopted, and the temperature system is designed, the foundational working principle was discussed. The control system includes SCM (AT89C52), temperature sensor, A/D converter circuit and corresponding circuit and interface, can make the autoclave temperature measure and control accurately. The system hardware includes main circuit, thyristor drive circuit, audible and visual alarm circuit, watchdog circuit, clock circuit, keyboard and display circuit so on, which can achieve gathering, analyzing, comparing and controlling the autoclave temperature parameter. The program of control system includes the treatment and collection of temperature data, the dynamic display program, the fuzzy PID control system, the audible and visual alarm program, et al, and the system's main software, which includes initialization, key-press processing, input processing, display, and the fuzzy PID control program was analyzed. The results showed that the fuzzy PID control system makes the adjustment time of temperature decreased and the precision of temperature control improved, the quality and the crystals size of the preparation crystals can achieve the expect experiment results.

Nian, Yibei; Zheng, Yongai

In order to overcome typical drawbacks of the OGY control, i.e. the long waiting time for control to be applied and the accessible turning system parameter in advance, this paper presents a new chaos control method based on Takagi- Sugeno (T-S) fuzzy model and adaptive adjustment. This method represents a chaotic system by linear models in different state space regions based on T-S fuzzy model and then stabilize the linear models in different state space regions by the adaptive adjustment mechanism. An example for the Henon map is given to demonstrate the effectiveness of the proposed method.

15. Supervisory control design based on hybrid systems and fuzzy events detection. Application to an oxichlorination reactor.

PubMed

Altamiranda, Edmary; Torres, Horacio; Colina, Eliezer; Chacón, Edgar

2002-10-01

This paper presents a supervisory control scheme based on hybrid systems theory and fuzzy events detection. The fuzzy event detector is a linguistic model, which synthesizes complex relations between process variables and process events incorporating experts' knowledge about the process operation. This kind of detection allows the anticipation of appropriate control actions, which depend upon the selected membership functions used to characterize the process under scrutiny. The proposed supervisory control scheme was successfully implemented for an oxichlorination reactor in a vinyl monomer plant. This implementation has allowed improvement of reactor stability and reduction of raw material consumption.

16. Fuzzy logic

NASA Technical Reports Server (NTRS)

1988-01-01

The author presents a condensed exposition of some basic ideas underlying fuzzy logic and describes some representative applications. The discussion covers basic principles; meaning representation and inference; basic rules of inference; and the linguistic variable and its application to fuzzy control.

17. Robust H(infinity) tracking control of boiler-turbine systems.

PubMed

Wu, J; Nguang, S K; Shen, J; Liu, G; Li, Y G

2010-07-01

In this paper, the problem of designing a fuzzy H(infinity) state feedback tracking control of a boiler-turbine is solved. First, the Takagi and Sugeno fuzzy model is used to model a boiler-turbine system. Next, based on the Takagi and Sugeno fuzzy model, sufficient conditions for the existence of a fuzzy H(infinity) nonlinear state feedback tracking control are derived in terms of linear matrix inequalities. The advantage of the proposed tracking control design is that it does not involve feedback linearization technique and complicated adaptive scheme. An industrial boiler-turbine system is used to illustrate the effectiveness of the proposed design as compared with a linearized approach.

18. Analysis and design of robust decentralized controllers for nonlinear systems

SciTech Connect

Schoenwald, D.A.

1993-07-01

Decentralized control strategies for nonlinear systems are achieved via feedback linearization techniques. New results on optimization and parameter robustness of non-linear systems are also developed. In addition, parametric uncertainty in large-scale systems is handled by sensitivity analysis and optimal control methods in a completely decentralized framework. This idea is applied to alleviate uncertainty in friction parameters for the gimbal joints on Space Station Freedom. As an example of decentralized nonlinear control, singular perturbation methods and distributed vibration damping are merged into a control strategy for a two-link flexible manipulator.

19. Robust, Decoupled, Flight Control Design with Rate Saturating Actuators

NASA Technical Reports Server (NTRS)

Snell, S. A.; Hess, R. A.

1997-01-01

Techniques for the design of control systems for manually controlled, high-performance aircraft must provide the following: (1) multi-input, multi-output (MIMO) solutions, (2) acceptable handling qualities including no tendencies for pilot-induced oscillations, (3) a tractable approach for compensator design, (4) performance and stability robustness in the presence of significant plant uncertainty, and (5) performance and stability robustness in the presence actuator saturation (particularly rate saturation). A design technique built upon Quantitative Feedback Theory is offered as a candidate methodology which can provide flight control systems meeting these requirements, and do so over a considerable part of the flight envelope. An example utilizing a simplified model of a supermaneuverable fighter aircraft demonstrates the proposed design methodology.

20. Decentralized adaptive control of robot manipulators with robust stabilization design

NASA Technical Reports Server (NTRS)

Yuan, Bau-San; Book, Wayne J.

1988-01-01

Due to geometric nonlinearities and complex dynamics, a decentralized technique for adaptive control for multilink robot arms is attractive. Lyapunov-function theory for stability analysis provides an approach to robust stabilization. Each joint of the arm is treated as a component subsystem. The adaptive controller is made locally stable with servo signals including proportional and integral gains. This results in the bound on the dynamical interactions with other subsystems. A nonlinear controller which stabilizes the system with uniform boundedness is used to improve the robustness properties of the overall system. As a result, the robot tracks the reference trajectories with convergence. This strategy makes computation simple and therefore facilitates real-time implementation.

1. Robustness of Controllability for Networks Based on Edge-Attack

PubMed Central

Nie, Sen; Wang, Xuwen; Zhang, Haifeng; Li, Qilang; Wang, Binghong

2014-01-01

We study the controllability of networks in the process of cascading failures under two different attacking strategies, random and intentional attack, respectively. For the highest-load edge attack, it is found that the controllability of Erdős-Rényi network, that with moderate average degree, is less robust, whereas the Scale-free network with moderate power-law exponent shows strong robustness of controllability under the same attack strategy. The vulnerability of controllability under random and intentional attacks behave differently with the increasing of removal fraction, especially, we find that the robustness of control has important role in cascades for large removal fraction. The simulation results show that for Scale-free networks with various power-law exponents, the network has larger scale of cascades do not mean that there will be more increments of driver nodes. Meanwhile, the number of driver nodes in cascading failures is also related to the edges amount in strongly connected components. PMID:24586507

2. Expert system training and control based on the fuzzy relation matrix

NASA Technical Reports Server (NTRS)

Ren, Jie; Sheridan, T. B.

1991-01-01

Fuzzy knowledge, that for which the terms of reference are not crisp but overlapped, seems to characterize human expertise. This can be shown from the fact that an experienced human operator can control some complex plants better than a computer can. Proposed here is fuzzy theory to build a fuzzy expert relation matrix (FERM) from given rules or/and examples, either in linguistic terms or in numerical values to mimic human processes of perception and decision making. The knowledge base is codified in terms of many implicit fuzzy rules. Fuzzy knowledge thus codified may also be compared with explicit rules specified by a human expert. It can also provide a basis for modeling the human operator and allow comparison of what a human operator says to what he does in practice. Two experiments were performed. In the first, control of liquid in a tank, demonstrates how the FERM knowledge base is elicited and trained. The other shows how to use a FERM, build up from linguistic rules, and to control an inverted pendulum without a dynamic model.

3. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

4. Robust control of burst suppression for medical coma

Westover, M. Brandon; Kim, Seong-Eun; Ching, ShiNung; Purdon, Patrick L.; Brown, Emery N.

2015-08-01

Objective. Medical coma is an anesthetic-induced state of brain inactivation, manifest in the electroencephalogram by burst suppression. Feedback control can be used to regulate burst suppression, however, previous designs have not been robust. Robust control design is critical under real-world operating conditions, subject to substantial pharmacokinetic and pharmacodynamic parameter uncertainty and unpredictable external disturbances. We sought to develop a robust closed-loop anesthesia delivery (CLAD) system to control medical coma. Approach. We developed a robust CLAD system to control the burst suppression probability (BSP). We developed a novel BSP tracking algorithm based on realistic models of propofol pharmacokinetics and pharmacodynamics. We also developed a practical method for estimating patient-specific pharmacodynamics parameters. Finally, we synthesized a robust proportional integral controller. Using a factorial design spanning patient age, mass, height, and gender, we tested whether the system performed within clinically acceptable limits. Throughout all experiments we subjected the system to disturbances, simulating treatment of refractory status epilepticus in a real-world intensive care unit environment. Main results. In 5400 simulations, CLAD behavior remained within specifications. Transient behavior after a step in target BSP from 0.2 to 0.8 exhibited a rise time (the median (min, max)) of 1.4 [1.1, 1.9] min; settling time, 7.8 [4.2, 9.0] min; and percent overshoot of 9.6 [2.3, 10.8]%. Under steady state conditions the CLAD system exhibited a median error of 0.1 [-0.5, 0.9]%; inaccuracy of 1.8 [0.9, 3.4]%; oscillation index of 1.8 [0.9, 3.4]%; and maximum instantaneous propofol dose of 4.3 [2.1, 10.5] mg kg-1. The maximum hourly propofol dose was 4.3 [2.1, 10.3] mg kg-1 h-1. Performance fell within clinically acceptable limits for all measures. Significance. A CLAD system designed using robust control theory achieves clinically acceptable

5. Modeling, Robust Control, and Experimental Validation of a Supercavitating Vehicle

Escobar Sanabria, David

This dissertation considers the mathematical modeling, control under uncertainty, and experimental validation of an underwater supercavitating vehicle. By traveling inside a gas cavity, a supercavitating vehicle reduces hydrodynamic drag, increases speed, and minimizes power consumption. The attainable speed and power efficiency make these vehicles attractive for undersea exploration, high-speed transportation, and defense. However, the benefits of traveling inside a cavity come with difficulties in controlling the vehicle dynamics. The main challenge is the nonlinear force that arises when the back-end of the vehicle pierces the cavity. This force, referred to as planing, leads to oscillatory motion and instability. Control technologies that are robust to planing and suited for practical implementation need to be developed. To enable these technologies, a low-order vehicle model that accounts for inaccuracy in the characterization of planing is required. Additionally, an experimental method to evaluate possible pitfalls in the models and controllers is necessary before undersea testing. The major contribution of this dissertation is a unified framework for mathematical modeling, robust control synthesis, and experimental validation of a supercavitating vehicle. First, we introduce affordable experimental methods for mathematical modeling and controller testing under planing and realistic flow conditions. Then, using experimental observations and physical principles, we create a low-order nonlinear model of the longitudinal vehicle motion. This model quantifies the planing uncertainty and is suitable for robust controller synthesis. Next, based on the vehicle model, we develop automated tools for synthesizing controllers that deliver a certificate of performance in the face of nonlinear and uncertain planing forces. We demonstrate theoretically and experimentally that the proposed controllers ensure higher performance when the uncertain planing dynamics are

6. A general framework for robust control in fluid mechanics

Bewley, Thomas R.; Temam, Roger; Ziane, Mohammed

2000-04-01

The application of optimal control theory to complex problems in fluid mechanics has proven to be quite effective when complete state information from high-resolution numerical simulations is available [P. Moin, T.R. Bewley, Appl. Mech. Rev., Part 2 47 (6) (1994) S3-S13; T.R. Bewley, P. Moin, R. Temam, J. Fluid Mech. (1999), submitted for publication]. In this approach, an iterative optimization algorithm based on the repeated computation of an adjoint field is used to optimize the controls for finite-horizon nonlinear flow problems [F. Abergel, R. Temam, Theoret. Comput. Fluid Dyn. 1 (1990) 303-325]. In order to extend this infinite-dimensional optimization approach to control externally disturbed flows in which the controls must be determined based on limited noisy flow measurements alone, it is necessary that the controls computed be insensitive to both state disturbances and measurement noise. For this reason, robust control theory, a generalization of optimal control theory, has been examined as a technique by which effective control algorithms which are insensitive to a broad class of external disturbances may be developed for a wide variety of infinite-dimensional linear and nonlinear problems in fluid mechanics. An aim of the present paper is to put such algorithms into a rigorous mathematical framework, for it cannot be assumed at the outset that a solution to the infinite-dimensional robust control problem even exists. In this paper, conditions on the initial data, the parameters in the cost functional, and the regularity of the problem are established such that existence and uniqueness of the solution to the robust control problem can be proven. Both linear and nonlinear problems are treated, and the 2D and 3D nonlinear cases are treated separately in order to get the best possible estimates. Several generalizations are discussed and an appropriate numerical method is proposed.

7. Decentralized robust nonlinear model predictive controller for unmanned aerial systems

Garcia Garreton, Gonzalo A.

The nonlinear and unsteady nature of aircraft aerodynamics together with limited practical range of controls and state variables make the use of the linear control theory inadequate especially in the presence of external disturbances, such as wind. In the classical approach, aircraft are controlled by multiple inner and outer loops, designed separately and sequentially. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicles control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of internal and external perturbance. The Flight System developed in this work achieves the above performance by using: 1. A nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory shaped by moving points; 2. A formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling and control degradation; 3. An artificial neural network, designed to adaptively estimate and provide aerodynamic and propulsive forces in real-time; and 4. A mixed sensitivity approach that enhances the robustness for a nonlinear model predictive controller overcoming the effect of un-modeled dynamics, external disturbances such as wind, and measurement additive perturbations, such as noise and biases. These elements have been integrated and tested in simulation and with previously stored flight test data and shown to be feasible.

8. Robust sliding mode continuous control of an IM drive

SciTech Connect

Jezernik, K.; Hren, A.; Drevensek, D.

1995-12-31

A control approach for robust trajectory tracking of IM servodrive based on the variable structure systems (VSS) is described. A new discrete-time control algorithm has been developed by combining VSS and Lyapunov design. It possesses all the good properties of the sliding mode and avoids the unnecessary discontinuity of the control input, thus eliminating chattering which has been considering as serious obstacles for applications of VSS. A unified control approach for current, torque and motion control based on the discrete-time sliding mode for application in indirect vector control of an IM drive is developed. The sliding mode approach can be applied to the control of an Im drive due to the replacement of the hysteresis controller with widely used PWM technique. All the theoretical issues are verified by experiment. The experimental system consists of a transputer and a microcontroller, thus allowing parallel processing.

9. A Fuzzy Logic Based Controller for the Automated Alignment of a Laser-beam-smoothing Spatial Filter

NASA Technical Reports Server (NTRS)

Krasowski, M. J.; Dickens, D. E.

1992-01-01

A fuzzy logic based controller for a laser-beam-smoothing spatial filter is described. It is demonstrated that a human operator's alignment actions can easily be described by a system of fuzzy rules of inference. The final configuration uses inexpensive, off-the-shelf hardware and allows for a compact, readily implemented embedded control system.

10. Robust Feedback Control of Flow Induced Structural Radiation of Sound

NASA Technical Reports Server (NTRS)

Heatwole, Craig M.; Bernhard, Robert J.; Franchek, Matthew A.

1997-01-01

A significant component of the interior noise of aircraft and automobiles is a result of turbulent boundary layer excitation of the vehicular structure. In this work, active robust feedback control of the noise due to this non-predictable excitation is investigated. Both an analytical model and experimental investigations are used to determine the characteristics of the flow induced structural sound radiation problem. The problem is shown to be broadband in nature with large system uncertainties associated with the various operating conditions. Furthermore the delay associated with sound propagation is shown to restrict the use of microphone feedback. The state of the art control methodologies, IL synthesis and adaptive feedback control, are evaluated and shown to have limited success for solving this problem. A robust frequency domain controller design methodology is developed for the problem of sound radiated from turbulent flow driven plates. The control design methodology uses frequency domain sequential loop shaping techniques. System uncertainty, sound pressure level reduction performance, and actuator constraints are included in the design process. Using this design method, phase lag was added using non-minimum phase zeros such that the beneficial plant dynamics could be used. This general control approach has application to lightly damped vibration and sound radiation problems where there are high bandwidth control objectives requiring a low controller DC gain and controller order.

11. Performance Analysis of Fuzzy-PID Controller for Blood Glucose Regulation in Type-1 Diabetic Patients.

PubMed

Yadav, Jyoti; Rani, Asha; Singh, Vijander

2016-12-01

This paper presents Fuzzy-PID (FPID) control scheme for a blood glucose control of type 1 diabetic subjects. A new metaheuristic Cuckoo Search Algorithm (CSA) is utilized to optimize the gains of FPID controller. CSA provides fast convergence and is capable of handling global optimization of continuous nonlinear systems. The proposed controller is an amalgamation of fuzzy logic and optimization which may provide an efficient solution for complex problems like blood glucose control. The task is to maintain normal glucose levels in the shortest possible time with minimum insulin dose. The glucose control is achieved by tuning the PID (Proportional Integral Derivative) and FPID controller with the help of Genetic Algorithm and CSA for comparative analysis. The designed controllers are tested on Bergman minimal model to control the blood glucose level in the facets of parameter uncertainties, meal disturbances and sensor noise. The results reveal that the performance of CSA-FPID controller is superior as compared to other designed controllers.

12. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

SciTech Connect

Cikanek, Susan R.

1994-01-01

An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

13. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

SciTech Connect

Cikanek, S.R.

1994-10-25

An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

14. Robust Concentration and Frequency Control in Oscillatory Homeostats

PubMed Central

Thorsen, Kristian; Agafonov, Oleg; Selstø, Christina H.; Jolma, Ingunn W.; Ni, Xiao Y.; Drengstig, Tormod; Ruoff, Peter

2014-01-01

Homeostatic and adaptive control mechanisms are essential for keeping organisms structurally and functionally stable. Integral feedback is a control theoretic concept which has long been known to keep a controlled variable robustly (i.e. perturbation-independent) at a given set-point by feeding the integrated error back into the process that generates . The classical concept of homeostasis as robust regulation within narrow limits is often considered as unsatisfactory and even incompatible with many biological systems which show sustained oscillations, such as circadian rhythms and oscillatory calcium signaling. Nevertheless, there are many similarities between the biological processes which participate in oscillatory mechanisms and classical homeostatic (non-oscillatory) mechanisms. We have investigated whether biological oscillators can show robust homeostatic and adaptive behaviors, and this paper is an attempt to extend the homeostatic concept to include oscillatory conditions. Based on our previously published kinetic conditions on how to generate biochemical models with robust homeostasis we found two properties, which appear to be of general interest concerning oscillatory and homeostatic controlled biological systems. The first one is the ability of these oscillators (“oscillatory homeostats”) to keep the average level of a controlled variable at a defined set-point by involving compensatory changes in frequency and/or amplitude. The second property is the ability to keep the period/frequency of the oscillator tuned within a certain well-defined range. In this paper we highlight mechanisms that lead to these two properties. The biological applications of these findings are discussed using three examples, the homeostatic aspects during oscillatory calcium and p53 signaling, and the involvement of circadian rhythms in homeostatic regulation. PMID:25238410

15. Adaptive robust control of longitudinal and transverse electron beam profiles

Rezaeizadeh, Amin; Schilcher, Thomas; Smith, Roy S.

2016-05-01

Feedback control of the longitudinal and transverse electron beam profiles are considered to be critical for beam control in accelerators. In the feedback scheme, the longitudinal or transverse beam profile is measured and compared to a desired profile to give an error estimate. The error is then used to act on the appropriate actuators to correct the profile. The role of the transverse feedback is to steer the beam in a particular trajectory, known as the "orbit." The common approach for orbit correction is based on approximately inverting the response matrix, and in the best case, involves regulating or filtering the singular values. In the current contribution, a more systematic and structured way of handling orbit correction is introduced giving robustness against uncertainties in the response matrix. Moreover, the input bounds are treated to avoid violating the limits of the corrector currents. The concept of the robust orbit correction has been successfully tested at the SwissFEL injector test facility. In the SwissFEL machine, a photo-injector laser system extracts electrons from a cathode and a similar robust control method is developed for the longitudinal feedback control of the current profile of the electron bunch. The method manipulates the angles of the crystals in the laser system to produce a desired charge distribution over the electron bunch length. This approach paves the way towards automation of laser pulse stacking.

16. Analysis and Design of Robust H∞ Fault Estimation Observer With Finite-Frequency Specifications for Discrete-Time Fuzzy Systems.

PubMed

Zhang, Ke; Jiang, Bin; Shi, Peng; Xu, Jinfa

2015-07-01

This paper addresses the problem of fault estimation observer design with finite-frequency specifications for discrete-time Takagi-Sugeno (T-S) fuzzy systems. First, for such T-S fuzzy models, an H∞ fault estimation observer with pole-placement constraint is proposed to achieve fault estimation. Based on the generalized Kalman-Yakubovich-Popov lemma, the given finite-frequency observer possesses less conservatism compared with the design of the entire-frequency domain. Furthermore, the performance of the presented fault estimation observer is further enhanced by adding the degree of freedom. Finally, two examples are presented to illustrate the effectiveness of the proposed strategy.

17. Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay.

PubMed

Pan, Indranil; Das, Saptarshi; Gupta, Amitava

2011-01-01

An optimal PID and an optimal fuzzy PID have been tuned by minimizing the Integral of Time multiplied Absolute Error (ITAE) and squared controller output for a networked control system (NCS). The tuning is attempted for a higher order and a time delay system using two stochastic algorithms viz. the Genetic Algorithm (GA) and two variants of Particle Swarm Optimization (PSO) and the closed loop performances are compared. The paper shows that random variation in network delay can be handled efficiently with fuzzy logic based PID controllers over conventional PID controllers.

18. Design of Fuzzy Functional Observer-Controller via Higher Order Derivatives of Lyapunov Function for Nonlinear Systems.

PubMed

Liu, Chuang; Lam, Hak-Keung; Fernando, Tyrone; Iu, Herbert Ho-Ching

2016-05-02

In this paper, we investigate the stability of Takagi-Sugeno fuzzy-model-based (FMB) functional observer-control system. When system states are not measurable for state-feedback control, a fuzzy functional observer is designed to directly estimate the control input instead of the system states. Although the fuzzy functional observer can reduce the order of the observer, it leads to a number of observer gains to be determined. Therefore, a new form of fuzzy functional observer is proposed to facilitate the stability analysis such that the observer gains can be numerically obtained and the stability can be guaranteed simultaneously. The proposed form is also in favor of applying separation principle to separately design the fuzzy controller and the fuzzy functional observer. To design the fuzzy controller with the consideration of system stability, higher order derivatives of Lyapunov function (HODLF) are employed to reduce the conservativeness of stability conditions. The HODLF generalizes the commonly used first-order derivative. By exploiting the properties of membership functions and the dynamics of the FMB control system, convex and relaxed stability conditions can be derived. Simulation examples are provided to show the relaxation of the proposed stability conditions and the feasibility of designed fuzzy functional observer-controller.

19. Robust adaptive backstepping control for reentry reusable launch vehicles

Wang, Zhen; Wu, Zhong; Du, Yijiang

2016-09-01

During the reentry process of reusable launch vehicles (RLVs), the large range of flight envelope will not only result in high nonlinearities, strong coupling and fast time-varying characteristics of the attitude dynamics, but also result in great uncertainties in the atmospheric density, aerodynamic coefficients and environmental disturbances, etc. In order to attenuate the effects of these problems on the control performance of the reentry process, a robust adaptive backstepping control (RABC) strategy is proposed for RLV in this paper. This strategy consists of two-loop controllers designed via backstepping method. Both the outer and the inner loop adopt a robust adaptive controller, which can deal with the disturbances and uncertainties by the variable-structure term with the estimation of their bounds. The outer loop can track the desired attitude by the design of virtual control-the desired angular velocity, while the inner one can track the desired angular velocity by the design of control torque. Theoretical analysis indicates that the closed-loop system under the proposed control strategy is globally asymptotically stable. Even if the boundaries of the disturbances and uncertainties are unknown, the attitude can track the desired value accurately. Simulation results of a certain RLV demonstrate the effectiveness of the control strategy.

20. Parametric uncertainty modeling for application to robust control

NASA Technical Reports Server (NTRS)

Belcastro, Christine M.; Chang, B.-C.; Fischl, Robert

1993-01-01

Viewgraphs and a paper on parametric uncertainty modeling for application to robust control are included. Advanced robust control system analysis and design is based on the availability of an uncertainty description which separates the uncertain system elements from the nominal system. Although this modeling structure is relatively straightforward to obtain for multiple unstructured uncertainties modeled throughout the system, it is difficult to formulate for many problems involving real parameter variations. Furthermore, it is difficult to ensure that the uncertainty model is formulated such that the dimension of the resulting model is minimal. A procedure for obtaining an uncertainty model for real uncertain parameter problems in which the uncertain parameters can be represented in a multilinear form is presented. Furthermore, the procedure is formulated such that the resulting uncertainty model is minimal (or near minimal) relative to a given state space realization of the system. The approach is demonstrated for a multivariable third-order example problem having four uncertain parameters.

1. Frequency domain identification for robust large space structure control design

NASA Technical Reports Server (NTRS)

Yam, Y.; Bayard, D. S.; Scheid, R. E.

1991-01-01

A methodology is demonstrated for frequency domain identification of large space structures which systematically transforms experimental raw data into a form required for synthesizing H(infinity) controllers using modern robust control design software (e.g., Matlab Toolboxes). A unique feature of this approach is that the additive uncertainty is characterized to a specified statistic confidence rather than with hard bounds. In this study, the difference in robust performance is minimal between the two levels of confidence. In general cases, the present methodology provides a tool for performance/confidence level tradeoff studies. For simplicity, the additive uncertainty on a frequency grid is considered and the interpolation error in between grid points is neglected.

2. Parallel Control of Velocity Control and Energy-Saving Control for a Hydraulic Valve-Controlled Cylinder System Using Self-Organizing Fuzzy Sliding Mode Control

Chiang, Mao-Hsiung; Chien, Yu-Wei

Conventional hydraulic valve-controlled systems that incorporate positive displacement pumps and relief valves have a problem of low energy efficiency. The objective of the research is to implement parallel control of energy-saving control in an electro-hydraulic load-sensing system and velocity control in a hydraulic valve-controlled cylinder system to achieve both high velocity control accuracy and low input power simultaneously. The overall control system is a two-input two-output system. For that, the control strategy of self-organizing fuzzy sliding mode control (SOFSMC) is developed in this study to reduce the fuzzy rule number and to self-organize on-line the fuzzy rules. To compare the energy-saving performance, the velocity control is implemented under three different energy-saving control systems, such as load-sensing control system, constant supply pressure control system and conventional hydraulic system. The parallel control of the velocity control and energy-saving control by the SOFSMC is implemented experimentally.

3. Fuzzy control of ethanol concentration and its application to maximum glutathione production in yeast fed-batch culture

SciTech Connect

Alfafara, C.G.; Miura, Keigo; Shimizu, Hiroshi; Shioya, Suteaki; Suga, Kenichi ); Suzuki, Kazuyuki )

1993-02-20

A fuzzy logic controller (FLC) for the control of ethanol concentration was developed and utilized to realize the maximum production of glutathione (GSH) in yeast fed-batch culture. A conventional fuzzy controller, which uses the control error and its rate of change in the premise part of the linguistic rules, worked well when the initial error of ethanol concentration was small. However, when the initial error was large, controller overreaction resulted in an overshoot. An improved fuzzy controller was obtained to avoid controller overreaction by diagnostic determination of glucose emergency states', and then appropriate emergency control actions were implemented. The emergency control action was obtained by the use of weight coefficients and modification of linguistic rules to decrease the overreaction of the controller when the fermentation was in the emergency state. The improved fuzzy controller was able to control a constant ethanol concentration under conditions of large initial error.

4. Design and tuning of standard additive model based fuzzy PID controllers for multivariable process systems.

PubMed

Harinath, Eranda; Mann, George K I

2008-06-01

This paper describes a design and two-level tuning method for fuzzy proportional-integral derivative (FPID) controllers for a multivariable process where the fuzzy inference uses the inference of standard additive model. The proposed method can be used for any n x n multi-input-multi-output process and guarantees closed-loop stability. In the two-level tuning scheme, the tuning follows two steps: low-level tuning followed by high-level tuning. The low-level tuning adjusts apparent linear gains, whereas the high-level tuning changes the nonlinearity in the normalized fuzzy output. In this paper, two types of FPID configurations are considered, and their performances are evaluated by using a real-time multizone temperature control problem having a 3 x 3 process system.

5. Robust control charts in industrial production of olive oil

Grilo, Luís M.; Mateus, Dina M. R.; Alves, Ana C.; Grilo, Helena L.

2014-10-01

Acidity is one of the most important variables in the quality analysis and characterization of olive oil. During the industrial production we use individuals and moving range charts to monitor this variable, which is not always normal distributed. After a brief exploratory data analysis, where we use the bootstrap method, we construct control charts, before and after a Box-Cox transformation, and compare their robustness and performance.

6. Plasma position control in the STOR-M tokamak: A fuzzy logic approach

Morelli, Jordan Edwin

Adequate control of the position of the plasma column within the STOR-M tokamak is a chief requirement in order for experimental quality discharges to be obtained. Optimal control over tokamak discharge parameters, including the plasma position, is very difficult to achieve. This is due in large part to the difficulty in modelling the tokamak discharge parameters, as they are highly nonlinear and time varying in nature. The difficulty of modelling the tokamak discharge parameters suggests that a control system, such as a fuzzy logic based controller, which does not require a system model may be well suited to the control of fusion plasma. In order to improve the quality of control over the plasma position within the STOR-M tokamak, the existing analog PID controller was modified. These modifications facilitate the application of a digital controller by a personal computer via the Advantech PCL-711B data acquisition card. The performance of the modified plasma position controller and an Arbitrary Signal Generator developed by the author was evaluated. This modified plasma position controller was applied successfully to the STOR-M tokamak during both normal mode and A.C. mode operation. In both cases, the modified controller provided adequate control over the position of the plasma column within the discharge chamber. Furthermore, the modified controller was more convenient to optimize than the original, existing analog PID controller. By taking advantage of the modifications that were made to the plasma position controller, a fuzzy logic controller was developed by the author. The fuzzy logic based plasma position controller was also successfully applied to the STOR-M tokamak during both normal mode and A.C. operation. The fuzzy controller was demonstrated to reliably provide a higher degree of control over the position of the plasma column within the STOR-M tokamak than the modified PID controller.

7. Robust Nonlinear Feedback Control of Aircraft Propulsion Systems

NASA Technical Reports Server (NTRS)

Garrard, William L.; Balas, Gary J.; Litt, Jonathan (Technical Monitor)

2001-01-01

This is the final report on the research performed under NASA Glen grant NASA/NAG-3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool, mixed flow, after burning turbofan engine. The research focussed on the design of linear and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using H-infinity and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine simulation was provided by PW within the NASA Rocket Engine Transient Simulator (ROCETS) simulation software environment. ROCETS was used to generate linearized models of the turbofan engine for control design and analysis as well as the simulation environment to evaluate the performance and robustness of the controllers. Comparison between the H-infinity, and LPV controllers are made with the baseline multivariable controller and developed by Pratt & Whitney engineers included in the ROCETS simulation. Simulation results indicate that H-infinity and LPV techniques effectively achieve desired response characteristics with minimal cross coupling between commanded values and are very robust to unmodeled dynamics and sensor noise.

8. Pupil Control Behavior, Classroom Robustness, and Self-Control: Public and Military Secondary Schools.

ERIC Educational Resources Information Center

Sartori, Mary Ann; Bauske, Terri; Lunenburg, Fred C.

2000-01-01

Investigated students' perceptions of teachers pupil-control behavior, classroom robustness, and student self-control, highlighting possible differences between public and military secondary schools. Humanistic approaches had more positive, interrelated effects among these variables. Military (custodial) classrooms were perceived as less robust,…

9. Advanced intelligent coordinated control of coal fired power plant based on fuzzy reasoning and auto-tuning

SciTech Connect

Li, S.Y.; Liu, H.B.; Cai, W.J.; Soh, Y.C.; Xie, L.H.

2004-07-01

The load following operation of coal-fired boiler-turbine unit in power plants can lead to changes in operating points, and it results in nonlinear variations of the plant variables and parameters. As there exist strong couplings between the main steam pressure control loop and the power output control loop in the boiler-turbine unit with large time-delay and uncertainties, automatic coordinated control of the two loops is a very challenging problem. This paper presents a new coordinated control strategy (CCS) which is organized into two levels: a basic control level and a high supervision level. PID-type controllers are used in the basic level to perform basic control functions while the decoupling between two control loops can be realized in the high level. Moreover, PID-type controllers can be auto-tuned to achieve a better control performance in the whole operating range and to reject the unmeasurable disturbances. A special subclass of fuzzy inference systems, namely the Gaussian partition system with evenly spaced midpoints, is also proposed to auto-tune the PID controller in the main steam pressure loop based on the error signal and its first difference to overcome uncertainties caused by changing fuel calorific value, machine wear, contamination of the boiler heating surfaces and plant modeling errors, etc. The developed CCS has been implemented in a power plant in China, and satisfactory industrial operation results demonstrate that the proposed control strategy has enhanced the adaptability and robustness of the process.

10. The comparison of manual and LabVIEW-based fuzzy control on mechanical ventilation.

PubMed

Guler, Hasan; Ata, Fikret

2014-09-01

The aim of this article is to develop a knowledge-based therapy for management of rats with respiratory distress. A mechanical ventilator was designed to achieve this aim. The designed ventilator is called an intelligent mechanical ventilator since fuzzy logic was used to control the pneumatic equipment according to the rat's status. LabVIEW software was used to control all equipments in the ventilator prototype and to monitor respiratory variables in the experiment. The designed ventilator can be controlled both manually and by fuzzy logic. Eight female Wistar-Albino rats were used to test the designed ventilator and to show the effectiveness of fuzzy control over manual control on pressure control ventilation mode. The anesthetized rats were first ventilated for 20 min manually. After that time, they were ventilated for 20 min by fuzzy logic. Student's t-test for p < 0.05 was applied to the measured minimum, maximum and mean peak inspiration pressures to analyze the obtained results. The results show that there is no statistical difference in the rat's lung parameters before and after the experiments. It can be said that the designed ventilator and developed knowledge-based therapy support artificial respiration of living things successfully.

11. Flatness-based embedded adaptive fuzzy control of turbocharged diesel engines

Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

2014-10-01

In this paper nonlinear embedded control for turbocharged Diesel engines is developed with the use of Differential flatness theory and adaptive fuzzy control. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances an adaptive fuzzy control scheme is implemanted making use of the transformed dynamical system of the diesel engine that is obtained through the application of differential flatness theory. Since only the system's output is measurable the complete state vector has to be reconstructed with the use of a state observer. It is shown that a suitable learning law can be defined for neuro-fuzzy approximators, which are part of the controller, so as to preserve the closed-loop system stability. With the use of Lyapunov stability analysis it is proven that the proposed observer-based adaptive fuzzy control scheme results in H∞ tracking performance.

12. An Attitude Control of Flexible Spacecraft Using Fuzzy-PID Controller

Park, Jong-Oh; Im, Young-Do

This primary objective of this study is to demonstrate simulation and ground-based experiment for the attitude control of flexible spacecraft. A typical spacecraft structure consists of the rigid body and flexible appendages which are large flexible solar panels, parabolic antennas built from light materials in order to reduce their weight. Therefore the attitude control has a big problem because these appendages induce structural vibration under the excitation of external forces. A single-axis rotational simulator with a flexible arm is constructed with on-off air thrusters and reaction wheel as actuation. The simulator is also equipped with payload pointing capability by simultaneous thruster and DC servo motor actuation. The experiment of flexible spacecraft attitude control is performed using only the reaction wheel. Using the reaction wheel the performance of the fuzzy-PID controller is illustrated by simulation and experimental results for a single-axis rotational simulator.

13. PID self tuning control based on Mamdani fuzzy logic control for quadrotor stabilization

SciTech Connect

Priyambodo, Tri Kuntoro Putra, Agfianto Eko; Dharmawan, Andi

2016-02-01

Quadrotor as one type of UAV have the ability to perform Vertical Take Off and Landing (VTOL). It allows the Quadrotor to be stationary hovering in the air. PID (Proportional Integral Derivative) control system is one of the control methods that are commonly used. It is usually used to optimize the Quadrotor stabilization at least based on the three Eulerian angles (roll, pitch, and yaw) as input parameters for the control system. The three constants of PID can be obtained in various methods. The simplest method is tuning manually. This method has several weaknesses. For example if the three constants are not exact, the resulting response will deviate from the desired result. By combining the methods of PID with fuzzy logic systems where human expertise is implemented into the machine language is expected to further optimize the control system.

14. Lyapunov function gradient generated robust control in the absence of the nominal stabilizing control

NASA Technical Reports Server (NTRS)

Blackwell, C. C.

1987-01-01

A relevant facet of the application of Lyapunov gradient-generated robust control to unstable linear autonomous plants is explored. It is demonstrated that if the plant, the output, and the nominal stabilizing control satisfy certain conditions, then the robust component alone stabilizes the nominal plant. An example characterized by two zero eigenvalues and two negative real value poles is presented. These results assure that the robust component will fulfill the role of nominal stabilization successfully so long as the possible magnitude of the robust component can overcome the contribution of the instability to positiveness of the Lyapunov rate.

15. Parametric robust control and system identification: Unified approach

NASA Technical Reports Server (NTRS)

Keel, Leehyun

1994-01-01

Despite significant advancement in the area of robust parametric control, the problem of synthesizing such a controller is still a wide open problem. Thus, we attempt to give a solution to this important problem. Our approach captures the parametric uncertainty as an H(sub infinity) unstructured uncertainty so that H(sub infinity) synthesis techniques are applicable. Although the techniques cannot cope with the exact parametric uncertainty, they give a reasonable guideline to model the unstructured uncertainty that contains the parametric uncertainty. An additional loop shaping technique is also introduced to relax its conservatism.

16. Intelligent Fuzzy Optimal Active and Combinatorial Control System of Building Structures

Tani, Akinori; Tanaka, Kenji; Yamabe, Yuichiro; Kawamura, Hiroshi

The authors have already proposed an intelligent fuzzy optimal and active control system (IFOACS) and the effectiveness of IFOACS was proved using digital simulations and shaking table tests. However, the results show that the control effect of IFOACS becomes small in case of near-source region earthquakes. To improve control effects in case of near-source region earthquakes, a combinatorial control system (CCS), in which IFOACS is combined with a fuzzy active control system (FACS), is also proposed. In this paper, control rules in CCS are optimized using parameter-free genetic algorithms (PfGAs) considering limitations of an actuator such as maximal strokes and control forces. Effectiveness of proposed combinatorial control system (CCS) is verified and discussed based on results of digital simulations.

17. Linear, multivariable robust control with a mu perspective

NASA Technical Reports Server (NTRS)

Packard, Andy; Doyle, John; Balas, Gary

1993-01-01

The structured singular value is a linear algebra tool developed to study a particular class of matrix perturbation problems arising in robust feedback control of multivariable systems. These perturbations are called linear fractional, and are a natural way to model many types of uncertainty in linear systems, including state-space parameter uncertainty, multiplicative and additive unmodeled dynamics uncertainty, and coprime factor and gap metric uncertainty. The structured singular value theory provides a natural extension of classical SISO robustness measures and concepts to MIMO systems. The structured singular value analysis, coupled with approximate synthesis methods, make it possible to study the tradeoff between performance and uncertainty that occurs in all feedback systems. In MIMO systems, the complexity of the spatial interactions in the loop gains make it difficult to heuristically quantify the tradeoffs that must occur. This paper examines the role played by the structured singular value (and its computable bounds) in answering these questions, as well as its role in the general robust, multivariable control analysis and design problem.

18. Dc microgrid stabilization through fuzzy control of interleaved, heterogeneous storage elements

Smith, Robert David

As microgrid power systems gain prevalence and renewable energy comprises greater and greater portions of distributed generation, energy storage becomes important to offset the higher variance of renewable energy sources and maximize their usefulness. One of the emerging techniques is to utilize a combination of lead-acid batteries and ultracapacitors to provide both short and long-term stabilization to microgrid systems. The different energy and power characteristics of batteries and ultracapacitors imply that they ought to be utilized in different ways. Traditional linear controls can use these energy storage systems to stabilize a power grid, but cannot effect more complex interactions. This research explores a fuzzy logic approach to microgrid stabilization. The ability of a fuzzy logic controller to regulate a dc bus in the presence of source and load fluctuations, in a manner comparable to traditional linear control systems, is explored and demonstrated. Furthermore, the expanded capabilities (such as storage balancing, self-protection, and battery optimization) of a fuzzy logic system over a traditional linear control system are shown. System simulation results are presented and validated through hardware-based experiments. These experiments confirm the capabilities of the fuzzy logic control system to regulate bus voltage, balance storage elements, optimize battery usage, and effect self-protection.

19. Universal fuzzy integral sliding-mode controllers for stochastic nonlinear systems.

PubMed

Gao, Qing; Liu, Lu; Feng, Gang; Wang, Yong

2014-12-01

In this paper, the universal integral sliding-mode controller problem for the general stochastic nonlinear systems modeled by Itô type stochastic differential equations is investigated. One of the main contributions is that a novel dynamic integral sliding mode control (DISMC) scheme is developed for stochastic nonlinear systems based on their stochastic T-S fuzzy approximation models. The key advantage of the proposed DISMC scheme is that two very restrictive assumptions in most existing ISMC approaches to stochastic fuzzy systems have been removed. Based on the stochastic Lyapunov theory, it is shown that the closed-loop control system trajectories are kept on the integral sliding surface almost surely since the initial time, and moreover, the stochastic stability of the sliding motion can be guaranteed in terms of linear matrix inequalities. Another main contribution is that the results of universal fuzzy integral sliding-mode controllers for two classes of stochastic nonlinear systems, along with constructive procedures to obtain the universal fuzzy integral sliding-mode controllers, are provided, respectively. Simulation results from an inverted pendulum example are presented to illustrate the advantages and effectiveness of the proposed approaches.

20. The application of PID parameter self-tuning fuzzy controller in the constant-power speed control system of heading machine