Sample records for robust joining technology

  1. Robust Joining and Assembly Technologies for Ceramic Matrix Composites: Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Mrityunjay, Singh; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Fiber reinforced ceramic matrix composites are under active consideration for use in a wide variety of high temperature applications within the aeronautics, energy, process, and nuclear industries. The engineering designs require fabrication and manufacturing of complex shaped parts. In many instances, it is more economical to build up complex shapes by Joining simple geometrical shapes. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in ceramic matrix composites will be presented. Various joint design philosophies and design issues in joining of composites will be discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of ceramic composites, in different shapes and sizes, have been joined using this technology. Microstructure and mechanical properties of joints will be reported. Current status of various ceramic joining technologies and future prospects for their applications will also be discussed.

  2. Affordable, Robust Ceramic Joining Technology (ARCJoint) Developed

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    2001-01-01

    Affordable, Robust Ceramic Joining Technology (ARCJoint) is a method for joining high temperature- resistant ceramic pieces together, establishing joints that are strong, and allowing joining to be done in the field. This new way of joining allows complex shapes to be formed by joining together geometrically simple shapes. The joining technology at NASA is one of the enabling technologies for the application of silicon-carbide-based ceramic and composite components in demanding and high-temperature applications. The technology is being developed and tested for high-temperature propulsion parts for aerospace use. Commercially, it can be used for joining ceramic pieces used for high temperature applications in the power-generating and chemical industries, as well as in the microelectronics industry. This innovation could yield big payoffs for not only the power-generating industry but also the Silicon Valley chipmakers. This technology, which was developed at the NASA Glenn Research Center by Dr. Mrityunjay Singh, is a two-step process involving first using a paste to join together ceramic pieces and bonding them by heating the joint to 110 to 120 C for between 10 and 20 min. This makes the joint strong enough to be handled for the final joining. Then, a silicon-based substance is applied to the joint and heated to 1400 C for 10 to 15 min. The resulting joint is as strong as the original ceramic material and can withstand the same high temperatures.

  3. High Temperature Joining and Characterization of Joint Properties in Silicon Carbide-Based Composite Materials

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    Advanced silicon carbide-based ceramics and composites are being developed for a wide variety of high temperature extreme environment applications. Robust high temperature joining and integration technologies are enabling for the fabrication and manufacturing of large and complex shaped components. The development of a new joining approach called SET (Single-step Elevated Temperature) joining will be described along with the overview of previously developed joining approaches including high temperature brazing, ARCJoinT (Affordable, Robust Ceramic Joining Technology), diffusion bonding, and REABOND (Refractory Eutectic Assisted Bonding). Unlike other approaches, SET joining does not have any lower temperature phases and will therefore have a use temperature above 1315C. Optimization of the composition for full conversion to silicon carbide will be discussed. The goal is to find a composition with no remaining carbon or free silicon. Green tape interlayers were developed for joining. Microstructural analysis and preliminary mechanical tests of the joints will be presented.

  4. Robust Joining and Integration Technologies for Advanced Metallic, Ceramic, and Composite Systems

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, Tarah; Morscher, Gregory N.; Halbig, Michael H.; Asthana, Rajiv

    2006-01-01

    Robust integration and assembly technologies are critical for the successful implementation of advanced metallic, ceramic, carbon-carbon, and ceramic matrix composite components in a wide variety of aerospace, space exploration, and ground based systems. Typically, the operating temperature of these components varies from few hundred to few thousand Kelvin with different working times (few minutes to years). The wide ranging system performance requirements necessitate the use of different integration technologies which includes adhesive bonding, low temperature soldering, active metal brazing, diffusion bonding, ARCJoinT, and ultra high temperature joining technologies. In this presentation, a number of joining examples and test results will be provided related to the adhesive bonding and active metal brazing of titanium to C/C composites, diffusion bonding of silicon carbide to silicon carbide using titanium interlayer, titanium and hastelloy brazing to silicon carbide matrix composites, and ARCJoinT joining of SiC ceramics and SiC matrix composites. Various issues in the joining of metal-ceramic systems including thermal expansion mismatch and resulting residual stresses generated during joining will be discussed. In addition, joint design and testing issues for a wide variety of joints will be presented.

  5. Affordable, Robust Ceramic Joining Technology (ARCJoinT) for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1998-01-01

    Ceramic joining is recognized as one of the enabling technologies for the successful utilization of silicon carbide-based monolithic ceramic and fiber reinforced composite components in a number of demanding and high temperature applications in aerospace and ground-based systems. An affordable, robust ceramic joining technology (ARCJoinT) for joining of silicon carbide-based ceramics and fiber reinforced composites has been developed. This technique is capable of producing joints with tailorable thickness and composition. A wide variety of silicon carbide-based ceramics and composites, in different shapes and sizes, have been joined using this technique. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. In monolithic silicon carbide ceramics, these joints maintain their mechanical strength up to 1350 C in air. There is no change in the mechanical strength of joints in silicon carbide matrix composites up to 1200 C in air. In composites, simple butt joints yield only about 20% of the ultimate strength of the parent materials. This technology is suitable for the joining of large and complex shaped ceramic and composite components, and with certain modifications, can be applied to repair of ceramic components damaged in service.

  6. Robust Joining and Integration of Advanced Ceramics and Composites: Challenges, Opportunities, and Realities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2006-01-01

    Advanced ceramics and fiber reinforced composites are under active consideration for use in a wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite components require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition, these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in advanced ceramics and ceramic matrix composites will be presented. Silicon carbide based advanced ceramics and fiber reinforced composites in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology. In addition, some examples of metal-ceramic brazing will also be presented. Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and composites will be reported. Various joint design philosophies and design issues in joining of ceramics and composites will be discussed.

  7. Design, Fabrication and Characterization of High Temperature Joints in Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1999-01-01

    Ceramic joining has been recognized as one of the enabling technologies for the successful utilization of ceramic components in a number of demanding, high temperature applications. Various joint design philosophies and design issues have been discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of silicon carbide-based composite materials, in different shapes and sizes, have been joined using this technology. This technique is capable of producing joints with tailorable thickness and composition. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. These joints maintain their mechanical strength up to 1200 C in air. This technology is suitable for the joining of large and complex shaped ceramic composite components and with certain modifications, can be applied to repair of ceramic components damaged in service.

  8. Design, Fabrication, and Characterization of High Temperature Joints in Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1999-01-01

    Ceramic joining has been recognized as one of the enabling technologies for the successful utilization of ceramic components in a number of demanding, high temperature applications. Various joint design philosophies and design issues have been discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of silicon carbide-based composite materials, in different shapes and sizes, have been joined using this technology. This technique is capable of producing joints with tailorable thickness and composition. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. These joints maintain their mechanical strength up to 1200C in air. This technology is suitable for the joining of large and complex shaped ceramic composite components and with certain modifications, can be applied to repair of ceramic components damaged in service.

  9. Joining and Integration of Silicon Carbide-Based Materials for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay

    2016-01-01

    Advanced joining and integration technologies of silicon carbide-based ceramics and ceramic matrix composites are enabling for their implementation into wide scale aerospace and ground-based applications. The robust joining and integration technologies allow for large and complex shapes to be fabricated and integrated with the larger system. Potential aerospace applications include lean-direct fuel injectors, thermal actuators, turbine vanes, blades, shrouds, combustor liners and other hot section components. Ground based applications include components for energy and environmental systems. Performance requirements and processing challenges are identified for the successful implementation different joining technologies. An overview will be provided of several joining approaches which have been developed for high temperature applications. In addition, various characterization approaches were pursued to provide an understanding of the processing-microstructure-property relationships. Microstructural analysis of the joint interfaces was conducted using optical, scanning electron, and transmission electron microscopy to identify phases and evaluate the bond quality. Mechanical testing results will be presented along with the need for new standardized test methods. The critical need for tailoring interlayer compositions for optimum joint properties will also be highlighted.

  10. Challenges and Opportunities in Design, Fabrication, and Testing of High Temperature Joints in Ceramics and Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Levine, S. R. (Technical Monitor)

    2001-01-01

    Ceramic joining has been recognized as an enabling technology for successful utilization of advanced ceramics and composite materials. A number of joint design and testing issues have been discussed for ceramic joints in silicon carbide-based ceramics and fiber-reinforced composites. These joints have been fabricated using an affordable, robust ceramic joining technology (ARCJoinT). The microstructure and good high temperature mechanical capability (compressive and flexural strengths) of ceramic joints in silicon carbide-based ceramics and composite materials are reported.

  11. Diffusion Bonding of Silicon Carbide for a Micro-Electro-Mechanical Systems Lean Direct Injector

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, James D.

    2006-01-01

    Robust approaches for joining silicon carbide (SiC) to silicon carbide sub-elements have been developed for a micro-electro-mechanical systems lean direct injector (MEMS LDI) application. The objective is to join SiC sub-elements to form a leak-free injector that has complex internal passages for the flow and mixing of fuel and air. Previous bonding technology relied upon silicate glass interlayers that were not uniform or leak free. In a newly developed joining approach, titanium foils and physically vapor deposited titanium coatings were used to form diffusion bonds between SiC materials during hot pressing. Microscopy results show the formation of well adhered diffusion bonds. Initial tests show that the bond strength is much higher than required for the component system. Benefits of the joining technology are fabrication of leak free joints with high temperature and mechanical capability.

  12. Critical Needs for Robust and Reliable Database for Design and Manufacturing of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1999-01-01

    Ceramic matrix composite (CMC) components are being designed, fabricated, and tested for a number of high temperature, high performance applications in aerospace and ground based systems. The critical need for and the role of reliable and robust databases for the design and manufacturing of ceramic matrix composites are presented. A number of issues related to engineering design, manufacturing technologies, joining, and attachment technologies, are also discussed. Examples of various ongoing activities in the area of composite databases. designing to codes and standards, and design for manufacturing are given.

  13. Joining and Assembly of Silicon Carbide-based Advanced Ceramics and Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2004-01-01

    Silicon carbide based advanced ceramics and fiber reinforced composites are under active consideration for use in wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite component require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing o high temperature joints in ceramic matrix composites will be presented. Silicon carbide based advanced ceramics (CVD and hot pressed), and C/SiC and SiC/SiC composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and CVI and melt infiltrated SiC matrix composites will,be reported. Various joint design philosophies and design issues in joining of ceramics and composites well be discussed.

  14. Fundamental studies on a novel die concept for round-point shear-clinching

    NASA Astrophysics Data System (ADS)

    Hörhold, Réjane; Müller, Martin; Merklein, Marion; Meschut, Gerson

    2016-10-01

    A newly-developed round-point shear-clinching technology could increase the use of different materials like well formable aluminium and hardly formable ultra-high-strength steels (UHSS). This innovative technology joins in a single-stage process without any pilot-hole, surface pre-treatment or auxiliary joining part. The combination of an inner and outer punch realises an indirect cutting operation of the die-sided material, whereas the punch-sided material remains unharmed. The current die-sided tool set acts as a cutting die and enables a radial extrusion of the punch-sided material after being drawn though the created hole in the UHSS. The die has a fixed die depth. After ejecting the joined components, the slug has to be removed from the top of the spring-loaded anvil. The novel die concept investigated in this paper offers the possibility to push the slug continuously through the die in the joining direction. The removed slugs remain inside the die, so manual removal is unnecessary. The one-parted tool is supposed to be more robust than the multi-parted one that is currently used. This paper represents the task to evaluate the geometry of a useful shear-clinching die concept. To reduce the experimental effort, FEM should assist the development of the most promising approach. To quantify the success, conventional shear-clinching with opening die acts as a reference. The results show the high potential and the raison d'être of shear-clinching technologies as a mechanical joining technology for future multimaterial applications especially for UHSS.

  15. JOINING DISSIMILAR MATERIALS USING FRICTION STIR SCRIBE TECHNIQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Hovanski, Yuri; Jana, Saumyadeep

    2016-09-01

    Development of robust and cost effective method of joining dissimilar materials can provide a critical pathway to enable widespread use of multi-material design and components in mainstream industrial applications. The use of multi-material components such as Steel-Aluminum, Aluminum-Polymer allows design engineers to optimize material utilization based on service requirements and often lead weight and cost reductions. However producing an effective joint between materials with vastly different thermal, microstructural and deformation response is highly problematic using conventional joining and /or fastening methods. This is especially challenging in cost sensitive high volume markets that largely rely on low–cost joining solutions. Friction Stirmore » Scribe technology was developed to meet the demands of joining materials with drastically different properties and melting regimes. The process enables joining of light metals like Magnesium and Aluminum to high temperature materials like Steels and Titanium. Additionally viable joints between polymer composites and metal can also be made using this method. This paper will present state of the art, progress made and challenges associated with this innovative derivative of Friction Stir welding in reference to joining dissimilar metals and polymer/metal combinations.« less

  16. Joining Dissimilar Materials Using Friction Stir Scribe Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Hovanski, Yuri; Jana, Saumyadeep

    2016-10-03

    Development of a robust and cost-effective method of joining dissimilar materials could provide a critical pathway to enable widespread use of multi-material designs and components in mainstream industrial applications. The use of multi-material components such as steel-aluminum and aluminum-polymer would allow design engineers to optimize material utilization based on service requirements and could often lead to weight and cost reductions. However, producing an effective joint between materials with vastly different thermal, microstructural, and deformation responses is highly problematic using conventional joining and/or fastening methods. This is especially challenging in cost sensitive, high volume markets that largely rely on low costmore » joining solutions. Friction stir scribe technology was developed to meet the demands of joining materials with drastically different properties and melting regimes. The process enables joining of light metals like magnesium and aluminum to high temperature materials like steel and titanium. Viable joints between polymer composites and metal can also be made using this method. This paper will present the state of the art, progress made, and challenges associated with this innovative derivative of friction stir welding in reference to joining dissimilar metals and polymer/metal combinations.« less

  17. Novel Approach for Positioning Sensor Lead Wires on SiC-Based Monolithic Ceramic and FRCMC Components/Subcomponents Having Flat and Curved Surfaces

    NASA Technical Reports Server (NTRS)

    Kiser, J. Douglas; Singh, Mrityunjay; Lei, Jin-Fen; Martin, Lisa C.

    1999-01-01

    A novel attachment approach for positioning sensor lead wires on silicon carbide-based monolithic ceramic and fiber reinforced ceramic matrix composite (FRCMC) components has been developed. This approach is based on an affordable, robust ceramic joining technology, named ARCJoinT, which was developed for the joining of silicon carbide-based ceramic and fiber reinforced composites. The ARCJoinT technique has previously been shown to produce joints with tailorable thickness and good high temperature strength. In this study, silicon carbide-based ceramic and FRCMC attachments of different shapes and sizes were joined onto silicon carbide fiber reinforced silicon carbide matrix (SiC/ SiC) composites having flat and curved surfaces. Based on results obtained in previous joining studies. the joined attachments should maintain their mechanical strength and integrity at temperatures up to 1350 C in air. Therefore they can be used to position and secure sensor lead wires on SiC/SiC components that are being tested in programs that are focused on developing FRCMCs for a number of demanding high temperature applications in aerospace and ground-based systems. This approach, which is suitable for installing attachments on large and complex shaped monolithic ceramic and composite components, should enhance the durability of minimally intrusive high temperature sensor systems. The technology could also be used to reinstall attachments on ceramic components that were damaged in service.

  18. Novel particle and radiation sources and advanced materials

    NASA Astrophysics Data System (ADS)

    Mako, Frederick

    2016-03-01

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and "green" klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  19. Novel particle and radiation sources and advanced materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mako, Frederick

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently,more » as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and “green” klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.« less

  20. Affordable, Robust Ceramic Joining Technology (ARCJoinT) Given 1999 R and D 100 Award

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2000-01-01

    Advanced ceramics and fiber-reinforced ceramic matrix composites with high strength and toughness, good thermal conductivity, thermal shock resistance, and oxidation resistance are needed for high-temperature structural applications in advanced high-efficiency and high-performance engines, space propulsion components, and land-based systems. The engineering designs of these systems require the manufacturing of large parts with complex shapes, which are either quite expensive or impossible to fabricate. In many instances, it is more economical to build complex shapes by joining together simple geometrical shapes. Thus, joining has been recognized as an enabling technology for the successful utilization of advanced ceramics and fiber-reinforced composite components in high-temperature applications. However, such joints must retain their structural integrity at high temperatures and must have mechanical strength and environmental stability comparable to those of the bulk materials. In addition, the joining technique should be robust, practical, and reliable. ARCJoinT, which is based on the reaction-forming approach, is unique in terms of producing joints with tailorable microstructures. The formation of joints by this approach is attractive since the thermomechanical properties of the joint interlayer can be tailored to be very close to those of the base materials. In addition, high-temperature fixturing is not needed to hold the parts at the infiltration temperature. The joining process begins with the application of a carbonaceous mixture in the joint area, holding the items to be joined in a fixture, and curing at 110 to 120 C for 10 to 20 min. This step fastens the pieces together. Then, silicon or a silicon alloy in tape, paste, or slurry form is applied around the joint region and heated to 1250 to 1425 C (depending on the type of infiltrant) for 10 to 15 min. The molten silicon or silicon-refractory metal alloy reacts with carbon to form silicon carbide with controllable amounts of silicon and other phases as determined by the alloy composition. Joint thickness can be readily controlled through adjustments of the properties of the carbonaceous paste and the applied fixturing force. The photograph shows various shapes of silicon-carbide-based ceramics and fiberreinforced composites that have been joined using ARCJoinT. Thermomechanical and thermochemical characterization of joints is underway for a wide variety of silicon-carbidebased advanced ceramics and fiber-reinforced composites under the hostile environments that will be encountered in engine applications. ARCJoinT, which was developed by researchers at the NASA Glenn Research Center at Lewis Field, received R&D Magazine's prestigious R&D 100 Award in 1999.

  1. Research on Robustness of Tree-based P2P Streaming

    NASA Astrophysics Data System (ADS)

    Chu, Chen; Yan, Jinyao; Ding, Kuangzheng; Wang, Xi

    Research on P2P streaming media is a hot topic in the area of Internet technology. It has emerged as a promising technique. This new paradigm brings a number of unique advantages such as scalability, resilience and also effectiveness in coping with dynamics and heterogeneity. However, There are also many problems in P2P streaming media systems using traditional tree-based topology such as the bandwidth limits between parents and child nodes; node's joining or leaving has a great effect on robustness of tree-based topology. This paper will introduce a method of measuring the robustness of tree-based topology: using network measurement, we observe and record the bandwidth between all the nodes, analyses the correlation between all the sibling flows, measure the robustness of tree-based topology. And the result shows that in the Tree-based topology, the different links which have similar routing paths would share the bandwidth bottleneck, reduce the robustness of the Tree-based topology.

  2. Development of a Robust and Cost-Effective Friction Stir Welding Process for Use in Advanced Military Vehicles

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Hariharan, A.; Yen, C.-F.; Cheeseman, B. A.

    2011-02-01

    To respond to the advent of more lethal threats, recently designed aluminum-armor-based military-vehicle systems have resorted to an increasing use of higher strength aluminum alloys (with superior ballistic resistance against armor piercing (AP) threats and with high vehicle-light weighing potential). Unfortunately, these alloys are not very amenable to conventional fusion-based welding technologies and in-order to obtain high-quality welds, solid-state joining technologies such as Friction stir welding (FSW) have to be employed. However, since FSW is a relatively new and fairly complex joining technology, its introduction into advanced military vehicle structures is not straight forward and entails a comprehensive multi-step approach. One such (three-step) approach is developed in the present work. Within the first step, experimental and computational techniques are utilized to determine the optimal tool design and the optimal FSW process parameters which result in maximal productivity of the joining process and the highest quality of the weld. Within the second step, techniques are developed for the identification and qualification of the optimal weld joint designs in different sections of a prototypical military vehicle structure. In the third step, problems associated with the fabrication of a sub-scale military vehicle test structure and the blast survivability of the structure are assessed. The results obtained and the lessons learned are used to judge the potential of the current approach in shortening the development time and in enhancing reliability and blast survivability of military vehicle structures.

  3. Prospects of joining multi-material structures

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, R.; Hynes, N. Rajesh Jesudoss

    2018-05-01

    Spring up trends and necessities make the pipelines for the brand new Technologies. The same way, Multimaterial structures emerging as fruitful alternatives for the conventional structures in the manufacturing sector. Especially manufacturing of transport vehicles is placing a perfect platform for these new structures. Bonding or joining technology plays a crucial role in the field of manufacturing for sustainability. These latest structures are purely depending on such joining technologies so that multi-material structuring can be possible practically. The real challenge lies on joining dissimilar materials of different properties and nature. Escalation of thermoplastic usage in large structural components also faces similar ambiguity for joining multi-material structures. Adhesive bonding, mechanical fastening and are the answering technologies for multi-material structures. This current paper analysis the prospects of these bonding technologies to meet the challenges of tomorrow.

  4. SSPF Operational Upgrades

    NASA Image and Video Library

    2016-11-15

    During a ribbon cutting ceremony in the high bay of the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, center director Bob Cabana, far left, is joined by Bill Dowdell, Kennedy's International Space Station technical director, Josephine Burnett, director of Exploration Research and Technology, Andy Allen, Jacobs vice president and general manager and Test and Operations Support Contract program manager, and Jeff McAlear, Jacobs director of Processing Services. The event celebrated completion of facility modifications to improve processing and free up zones tailored to a variety of needs supporting a robust assortment of space-bound hardware including NASA programs and commercial space companies.

  5. Get connected: New Fall Meeting technology

    NASA Astrophysics Data System (ADS)

    Moscovitch, Mirelle

    2012-11-01

    Kick off your 2012 Fall Meeting experience today by joining the Fall Meeting Community, an interactive Web-based community. Whether you are attending this year's Fall Meeting or are just interested in learning more, this site can help you connect with colleagues, learn about the groundbreaking research and amazing programming being presented in San Francisco, and plan your trip to the largest Earth and space science conference of the year. Available through the Fall Meeting Web site (http://fallmeeting.agu.org), the Community allows you to share your Fall Meeting experience like never before. You can join groups based on your interests, and each group includes a message board that allows you to ask questions, post comments, discuss presentations, and make plans with colleagues. You can also create your own groups and use the Community's robust search engine to find and connect with friends. And because the Fall Meeting Web site was improved for 2012 to allow for nearly seamless functionality on mobile devices, you can access much of the same Community functionality on the go.

  6. Dual CRISPR-Cas9 Cleavage Mediated Gene Excision and Targeted Integration in Yarrowia lipolytica.

    PubMed

    Gao, Difeng; Smith, Spencer; Spagnuolo, Michael; Rodriguez, Gabriel; Blenner, Mark

    2018-05-29

    CRISPR-Cas9 technology has been successfully applied in Yarrowia lipolytica for targeted genomic editing including gene disruption and integration; however, disruptions by existing methods typically result from small frameshift mutations caused by indels within the coding region, which usually resulted in unnatural protein. In this study, a dual cleavage strategy directed by paired sgRNAs is developed for gene knockout. This method allows fast and robust gene excision, demonstrated on six genes of interest. The targeted regions for excision vary in length from 0.3 kb up to 3.5 kb and contain both non-coding and coding regions. The majority of the gene excisions are repaired by perfect nonhomologous end-joining without indel. Based on this dual cleavage system, two targeted markerless integration methods are developed by providing repair templates. While both strategies are effective, homology mediated end joining (HMEJ) based method are twice as efficient as homology recombination (HR) based method. In both cases, dual cleavage leads to similar or improved gene integration efficiencies compared to gene excision without integration. This dual cleavage strategy will be useful for not only generating more predictable and robust gene knockout, but also for efficient targeted markerless integration, and simultaneous knockout and integration in Y. lipolytica. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Conjoint Forming - Technologies for Simultaneous Forming and Joining

    NASA Astrophysics Data System (ADS)

    Groche, P.; Wohletz, S.; Mann, A.; Krech, M.; Monnerjahn, V.

    2016-03-01

    The market demand for new products optimized for e. g. lightweight applications or smart components leads to new challenges in production engineering. Hybrid structures represent one promising approach. They aim at higher product performance by using a suitable combination of different materials. The developments of hybrid structures stimulate the research on joining of dissimilar materials. Since they allow for joining dissimilar materials without external heating technologies based on joining by plastic deformation seem to be of special attractiveness. The paper at hand discusses the conjoint forming approach. This approach combines forming and joining in one process. Two or more workpieces are joined while at least one workpiece is plastically deformed. After presenting the fundamental joining mechanisms, the conjoint forming approach is discussed comprehensively. Examples of conjoint processes demonstrate the effectiveness and reveal the underlying phenomena.

  8. Joining Pipe with the Hybrid Laser-GMAW Process: Weld Test Results and Cost Analysis

    DTIC Science & Technology

    2006-06-01

    Recent work investigating the poten- tial benefit of applying this technology to a shipyard pipe shop suggests that signifi- cant cost savings may be...arc-based joining processes. With recent advances in com- mercial laser technology , laser suppliers can now deliver dramatically higher power systems...reasons, shipyards in the U.S. are showing growing interest in hybrid laser-GMA welding technology . Hybrid Laser-GMA for Joining Pipe Welding of pipe

  9. Development of High Temperature Dissimilar Joint Technology for Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Bowman, Cheryl L.; Gabb, Timothy P.

    2009-01-01

    NASA is developing fission surface power (FSP) system technology as a potential option for use on the surface of the moon or Mars. The goal is to design a robust system that takes full advantage of existing materials data bases. One of the key components of the power conversion system is the hot-side Heat Exchanger (HX). One possible design for this heat exchanger requires a joint of the dissimilar metals 316L stainless steel and Inconel 718, which must sustain extended operation at high temperatures. This study compares two joining techniques, brazing and diffusion bonding, in the context of forming the requisite stainless steel to superalloy joint. The microstructures produced by brazing and diffusion bonding, the effect of brazing cycle on the mechanical tensile properties of the alloys, and the strength of several brazed joints will be discussed.

  10. Welding and joining: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation is presented of NASA-developed technology in welding and joining. Topics discussed include welding equipment, techniques in welding, general bonding, joining techniques, and clamps and holding fixtures.

  11. Innovative and Highly Productive Joining Technologies for Multi-Material Lightweight Car Body Structures

    NASA Astrophysics Data System (ADS)

    Meschut, G.; Janzen, V.; Olfermann, T.

    2014-05-01

    Driven by increasing costs for energy and raw material and especially by the European CO2-emission laws, automotive industry faces the challenge to develop more lightweight and at the same time still rigid and crash-stable car bodies, that are affordable for large-scale production. The implementation of weight-reduced constructions depends not only on the availability of lightweight materials and related forming technologies, but also on cost-efficient and reliable joining technologies suitable for multi-material design. This article discusses the challenges and requirements for these technologies, based on the example of joining aluminium with press-hardened boron steels, what is considered as a very important material combination for affordable future lightweight mobility. Besides a presentation of recent developments for extending the process limits of conventional mechanical joining methods, new promising technologies such as resistance element welding are introduced. In addition, the performance, advantages, and disadvantages of the presented technologies are compared and discussed.

  12. Research and Development Opportunities for Joining Technologies in HVAC&R

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetzler, William; Guernsey, Matt; Young, Jim

    The Building Technologies Office (BTO) works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. This opportunity assessment aims to advance BTO’s energy savings, GHG reduction, and other program goals by identifying research and development (R&D) initiatives for joining technologies in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) systems. Improving joining technologies for HVAC&R equipment has the potential to increase lifetime equipment operating efficiency, decrease equipment and project cost, and most importantly reduce hydroflourocarbon (HFC) refrigerant leakage to support HFC phasedown and GHG reductionmore » goals.« less

  13. Two-sided friction stir riveting by extrusion: A process for joining dissimilar materials

    DOE PAGES

    Evans, William T.; Cox, Chase D.; Strauss, Alvin M.; ...

    2016-06-25

    Two-sided friction stir riveting (FSR) by extrusion is an innovative process developed to rapidly, efficiently, and securely join dissimilar materials. This process extends a previously developed one sided friction stir extrusion process to create a strong and robust joint by producing a continuous, rivet-like structure through a preformed hole in one of the materials with a simultaneous, two-sided friction stir spot weld. The two-sided FSR by extrusion process securely joins the dissimilar materials together and effectively locks them in place without the use of any separate materials or fasteners. Lastly, in this paper we demonstrate the process by joining aluminummore » to steel and illustrate its potential application to automotive and aerospace manufacturing processes.« less

  14. Design, Fabrication, and Testing of Ceramic Joints for High Temperature SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Lara-Curzio, Edgar

    2000-01-01

    Various issues associated with the design and mechanical evaluation of joints of ceramic matrix composites are discussed. The specific case of an affordable, robust ceramic joining technology (ARCJoinT) to join silicon carbide (CG-Nicalon(sup TM)) fiber-reinforced-chemically vapor infiltrated (CVI) silicon carbide matrix composites is addressed. Experimental results are presented for the time and temperature dependence of the shear strength of these joints in air up to 1200 C. From compression testing of double-notched joint specimens with a notch separation of 4 mm, it was found that the apparent shear strength of the joints decreased from 92 MPa at room temperature to 71 MPa at 1200 C. From shear stress-rupture testing in air at 1200 C it was found that the shear strength of the joints decreased rapidly with time from an initial shear strength of 71 to 17.5 MPa after 14.3 hr. The implications of these results in relation to the expected long-term service life of these joints in applications at elevated temperatures are discussed.

  15. Laser beam joining of material combinations for automotive applications

    NASA Astrophysics Data System (ADS)

    Schubert, Emil; Zerner, Ingo; Sepold, Gerd

    1997-08-01

    An ideal material for automotive applications would combine the following properties: high corrosion resistance, high strength, high stiffness and not at least a low material price. Today a single material is not able to meet all these requirements. Therefore, in the future different materials will be placed where they meet the requirements best. The result of this consideration is a car body with many different alloys and metals, which have to be joined to one another. BIAS is working on the development of laser based joining technologies for different material combinations, especially for thin sheets used in automotive applications. One result of the research is a joining technology for an aluminum-steel-joint. Using a Nd:YAG laser the problem of brittle intermetallic phases between these materials was overcome. Using suitable temperature-time cycles, elected by a FEM-simulation, the thickness of intermetallic phases was kept below 10 micrometers . This technology was also applied to coated steels, which were joined with different aluminum alloys. Further it is demonstrated that titanium alloys, e.g. used for racing cars, can also be joined with aluminum alloys.

  16. Enabling Dissimilar Material Joining Using Friction Stir Scribe Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovanski, Yuri; Upadyay, Piyush; Kleinbaum, Sarah

    2017-04-05

    One challenge in adapting welding processes to dissimilar material joining is the diversity of melting temperatures of the different materials. Although the use of mechanical fasteners and adhesives have mostly paved the way for near-term implementation of dissimilar material systems, these processes only accentuate the need for low-cost welding processes capable of joining dissimilar material components regardless of alloy, properties, or melting temperature. Friction stir scribe technology was developed to overcome the challenges of joining dissimilar material components where melting temperatures vary greatly, and properties and/or chemistry are not compatible with more traditional welding processes. Although the friction stir scribemore » process is capable of joining dissimilar metals and metal/polymer systems, a more detailed evaluation of several aluminum/steel joints is presented herein to demonstrate the ability to both chemically and mechanically join dissimilar materials.« less

  17. Enabling Dissimilar Material Joining Using Friction Stir Scribe Technology

    DOE PAGES

    Hovanski, Yuri; Upadyay, Piyush; Kleinbaum, Sarah; ...

    2017-04-05

    One challenge in adapting welding processes to dissimilar material joining is the diversity of melting temperatures of the different materials. Although the use of mechanical fasteners and adhesives have mostly paved the way for near-term implementation of dissimilar material systems, these processes only accentuate the need for low-cost welding processes capable of impartially joining dissimilar material components regardless of alloy, properties, or melting temperature. Friction stir scribe technology was developed to overcome the challenges of joining dissimilar material components where melting temperatures vary greatly, and properties and/or chemistry are not compatible with more traditional welding processes. Finally, although the frictionmore » stir scribe process is capable of joining dissimilar metals and metal/polymer systems, a more detailed evaluation of several aluminum/steel joints is presented herein to demonstrate the ability to both chemically and mechanically join dissimilar materials.« less

  18. Chrysler Upset Protrusion Joining Techniques for Joining Dissimilar Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Stephen

    The project goal was to develop and demonstrate a robust, cost effective, and versatile joining technique, known as Upset Protrusion Joining (UPJ), for joining challenging dissimilar metal com-binations, especially those where one of the metals is a die cast magnesium (Mg) component. Since two of the key obstacles preventing more widespread use of light metals (especially in high volume automotive applications) are 1) a lack of robust joining techniques and 2) susceptibility to galvanic corrosion, and since the majority of the joint combinations evaluated in this project include die cast Mg (the lightest structural metal) as one of the twomore » materials being joined, and since die casting is the most common and cost effective process for producing Mg components, then successful project completion provides a key enabler to high volume application of lightweight materials, thus potentially leading to reduced costs, and encouraging implementation of lightweight multi-material vehicles for significant reductions in energy consumption and reduced greenhouse gas emissions. Eco-nomic benefits to end-use consumers are achieved primarily via the reduction in fuel consumption. Unlike currently available commercial processes, the UPJ process relies on a very robust mechanical joint rather than intermetallic bonding, so the more cathodic material can be coated prior to joining, thus creating a robust isolation against galvanic attack on the more anodic material. Additionally, since the UPJ protrusion is going through a hole that can be pre-drilled or pre-punched prior to coating, the UPJ process is less likely to damage the coating when the joint is being made. Further-more, since there is no additional cathodic material (such as a steel fastener) used to create the joint, there is no joining induced galvanic activity beyond that of the two parent materials. In accordance with its originally proposed plan, this project has successfully developed process variants of UPJ to enable joining of Mg die castings to aluminum (Al) and steel sheet components of various thicknesses, strengths and coating configurations. While most development focused on the simpler round boss version of the process, an additional phase of the work focused on devel-opment of an oval boss version to support applications with narrow flanges, while yet another vari-ant of the process, known as Upset Cast Riveting (UCR), was developed and evaluated for joining mixed metals that may not necessarily include Mg or Al die cast components. Although each varia-tion posed unique challenges described later in the report, all variations were successfully produced and evaluated, and each could be further developed for specific types of commercial applications. In this project, UPJ performed favorably against the benchmark self-pierce riveting (SPR) process in Mg AM60B to Al 6013 combinations although significant corrosion challenges were observed in both processes, especially for the bare Mg to bare Al configurations. Additional challenges were observed in joining Mg to steel with the UPJ process (SPR was not evaluated for this combination as it was not considered viable). To pass FCA’s specified corrosion tests with Mg/steel combina-tions, new steel treatments were evaluated, as well as adhesives and sealed edges. These showed significant improvement. In general, UPJ performed very well in Mg to Al 6016 combinations, even in corrosion evaluation of the bare Mg to bare Al configuration (again, SPR was not evaluated for this material combination as the 1.1 mm thick Al6016 sheet thickness was considered too thin for the SPR process). The improvement in corrosion performance of the Mg to Al 6016 combina-tion over the Mg to Al 6013 combination was thought to be a result of the lower copper content in the Al 6016 alloy. Oval boss joints showed substantial improvement in all joint strength criteria compared to 8.0-mm diameter round boss joints but were not evaluated for corrosion performance. The improved joint strength is likely a result of larger shear area. Cosmetic corrosion performance of all test assemblies (UPJ, UCR and SPR) was a challenge due to exposed edges and crevices al-lowing undercutting of the coatings. In real world component applications, the exposed edges, so prevalent on the joining test coupons, would be less prevalent and easier to protect.« less

  19. Ceramic Integration Technologies for Aerospace and Energy Systems: Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2007-01-01

    Ceramic integration technology has been recognized as an enabling technology for the implementation of advanced ceramic systems in a number of high-temperature applications in aerospace, power generation, nuclear, chemical, and electronic industries. Various ceramic integration technologies (joining, brazing, attachments, repair, etc.) play a role in fabrication and manufacturing of large and complex shaped parts of various functionalities. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Experimental results for bonding and integration of SiC based LDI fuel injector, high conductivity C/C composite based heat rejection system, solid oxide fuel cells system, ultra high temperature ceramics for leading edges, and ceramic composites for thermostructural applications will be presented. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be discussed.

  20. Joining Dental Ceramic Layers With Glass

    PubMed Central

    Saied, MA; Lloyd, IK; Haller, WK; Lawn, BR

    2011-01-01

    Objective Test the hypothesis that glass-bonding of free-form veneer and core ceramic layers can produce robust interfaces, chemically durable and aesthetic in appearance and, above all, resistant to delamination. Methods Layers of independently produced porcelains (NobelRondo™ Press porcelain, Nobel BioCare AB and Sagkura Interaction porcelain, Elephant Dental) and matching alumina or zirconia core ceramics (Procera alumina, Nobel BioCare AB, BioZyram yttria stabilized tetragonal zirconia polycrystal, Cyrtina Dental) were joined with designed glasses, tailored to match thermal expansion coefficients of the components and free of toxic elements. Scanning electron microprobe analysis was used to characterize the chemistry of the joined interfaces, specifically to confirm interdiffusion of ions. Vickers indentations were used to drive controlled corner cracks into the glass interlayers to evaluate the toughness of the interfaces. Results The glass-bonded interfaces were found to have robust integrity relative to interfaces fused without glass, or those fused with a resin-based adhesive. Significance The structural integrity of the interfaces between porcelain veneers and alumina or zirconia cores is a critical factor in the longevity of all-ceramic dental crowns and fixed dental prostheses. PMID:21802131

  1. Materials technology for Stirling space power converters

    NASA Technical Reports Server (NTRS)

    Baggenstoss, William; Mittendorf, Donald

    1992-01-01

    This program was conducted in support of the NASA LeRC development of the Stirling power converter (SPC) for space power applications. The objectives of this contract were: (1) to perform a technology review and analyses to support the evaluation of materials issues for the SPC; (2) to evaluate liquid metal compatibility issues of the SPC; (3) to evaluate and define a transient liquid phase diffusion bonding (TLPDB) process for the SPC joints to the Udimet 720 heater head; and (4) to evaluate alternative (to the TLPDB) joining techniques. In the technology review, several aspects of the current Stirling design were examined including the power converter assembly process, materials joining, gas bearings, and heat exchangers. The supporting analyses included GLIMPS power converter simulation in support of the materials studies, and system level analysis in support of the technology review. The liquid metal compatibility study evaluated process parameters for use in the Stirling power converter. The alternative joining techniques study looked at the applicability of various joining techniques to the Stirling power converter requirements.

  2. Enabling breakthroughs in Parkinson’s disease with wearable technologies and big data analytics

    PubMed Central

    Cohen, Shahar; Martig, Adria K.

    2016-01-01

    Parkinson’s disease (PD) is a progressive, degenerative disorder of the central nervous system that is diagnosed and measured clinically by the Unified Parkinson’s Disease Rating Scale (UPDRS). Tools for continuous and objective monitoring of PD motor symptoms are needed to complement clinical assessments of symptom severity to further inform PD therapeutic development across several arenas, from developing more robust clinical trial outcome measures to establishing biomarkers of disease progression. The Michael J. Fox Foundation for Parkinson’s Disease Research and Intel Corporation have joined forces to develop a mobile application and an Internet of Things (IoT) platform to support large-scale studies of objective, continuously sampled sensory data from people with PD. This platform provides both population and per-patient analyses, measuring gait, activity level, nighttime activity, tremor, as well as other structured assessments and tasks. All data collected will be available to researchers on an open-source platform. Development of the IoT platform raised a number of engineering considerations, including wearable sensor choice, data management and curation, and algorithm validation. This project has successfully demonstrated proof of concept that IoT platforms, wearable technologies and the data they generate offer exciting possibilities for more robust, reliable, and low-cost research methodologies and patient care strategies. PMID:28293596

  3. Enabling breakthroughs in Parkinson's disease with wearable technologies and big data analytics.

    PubMed

    Cohen, Shahar; Bataille, Lauren R; Martig, Adria K

    2016-01-01

    Parkinson's disease (PD) is a progressive, degenerative disorder of the central nervous system that is diagnosed and measured clinically by the Unified Parkinson's Disease Rating Scale (UPDRS). Tools for continuous and objective monitoring of PD motor symptoms are needed to complement clinical assessments of symptom severity to further inform PD therapeutic development across several arenas, from developing more robust clinical trial outcome measures to establishing biomarkers of disease progression. The Michael J. Fox Foundation for Parkinson's Disease Research and Intel Corporation have joined forces to develop a mobile application and an Internet of Things (IoT) platform to support large-scale studies of objective, continuously sampled sensory data from people with PD. This platform provides both population and per-patient analyses, measuring gait, activity level, nighttime activity, tremor, as well as other structured assessments and tasks. All data collected will be available to researchers on an open-source platform. Development of the IoT platform raised a number of engineering considerations, including wearable sensor choice, data management and curation, and algorithm validation. This project has successfully demonstrated proof of concept that IoT platforms, wearable technologies and the data they generate offer exciting possibilities for more robust, reliable, and low-cost research methodologies and patient care strategies.

  4. Ceramic-to-Metal Joining for High Temperature, High Pressure Heat Exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mako, Frederick; Mako III, Frederick

    2016-12-05

    Designed and tested silicon carbide to metal joining and silicon carbide joining technology under high temperature and high pressure conditions. Determined that the joints maintained integrity and remained helium gas tight. These joined parts have been tested for mechanical strength, fracture toughness and hermeticity. A component testing chamber was designed and built and used for testing the joint integrity.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian

    Joining carbon fiber composites and aluminum for lightweight cars and other multi-material high-end products could become less expensive and the joints more robust because of a new method that harnesses a laser’s power and precision.

  6. Integration Science and Technology of Silicon-Based Ceramics and Composites:Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2013-01-01

    Ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic and composite parts starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance for high temperature applications, detailed understanding of various thermochemical and thermomechanical factors is critical. Different technical approaches are required for the integration of ceramic to ceramic and ceramic to metal systems. Active metal brazing, in particular, is a simple and cost-effective method to integrate ceramic to metallic components. Active braze alloys usually contain a reactive filler metal (e.g., Ti, Cr, V, Hf etc) that promotes wettability and spreading by inducing chemical reactions with the ceramics and composites. In this presentation, various examples of brazing of silicon nitride to themselves and to metallic systems are presented. Other examples of joining of ceramic composites (C/SiC and SiC/SiC) using ceramic interlayers and the resulting microstructures are also presented. Thermomechanical characterization of joints is presented for both types of systems. In addition, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be presented.

  7. Fermilab Friends for Science Education | Join Us

    Science.gov Websites

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Join Us photo Fermilab Friends for Science Education (FFSE) needs you now! More than ever our society and improving science (science, technology, engineering and mathematics) education. Your donation allows us to

  8. Advances in Solid State Joining of High Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Ding, Jeff; Schneider, Judy

    2011-01-01

    Many of the metals used in the oil and gas industry are difficult to fusion weld including Titanium and its alloys. Solid state joining processes are being pursued as an alternative process to produce robust structures more amenable to high pressure applications. Various solid state joining processes include friction stir welding (FSW) and a patented modification termed thermal stir welding (TSW). The configuration of TSWing utilizes an induction coil to preheat the material minimizing the burden on the weld tool extending its life. This provides the ability to precisely select and control the temperature to avoid detrimental changes to the microstructure. The work presented in this presentation investigates the feasibility of joining various titanium alloys using the solid state welding processes of FSW and TSW. Process descriptions and attributes of each weld process will be presented. Weld process set ]up and welding techniques will be discussed leading to the challenges experienced. Mechanical property data will also be presented.

  9. iNJclust: Iterative Neighbor-Joining Tree Clustering Framework for Inferring Population Structure.

    PubMed

    Limpiti, Tulaya; Amornbunchornvej, Chainarong; Intarapanich, Apichart; Assawamakin, Anunchai; Tongsima, Sissades

    2014-01-01

    Understanding genetic differences among populations is one of the most important issues in population genetics. Genetic variations, e.g., single nucleotide polymorphisms, are used to characterize commonality and difference of individuals from various populations. This paper presents an efficient graph-based clustering framework which operates iteratively on the Neighbor-Joining (NJ) tree called the iNJclust algorithm. The framework uses well-known genetic measurements, namely the allele-sharing distance, the neighbor-joining tree, and the fixation index. The behavior of the fixation index is utilized in the algorithm's stopping criterion. The algorithm provides an estimated number of populations, individual assignments, and relationships between populations as outputs. The clustering result is reported in the form of a binary tree, whose terminal nodes represent the final inferred populations and the tree structure preserves the genetic relationships among them. The clustering performance and the robustness of the proposed algorithm are tested extensively using simulated and real data sets from bovine, sheep, and human populations. The result indicates that the number of populations within each data set is reasonably estimated, the individual assignment is robust, and the structure of the inferred population tree corresponds to the intrinsic relationships among populations within the data.

  10. Technology Assessment of Laser-Assisted Materials Processing in Space

    NASA Technical Reports Server (NTRS)

    Nagarathnam, Karthik; Taminger, Karen M. B.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, shock processing, and surface treatments. These attributes are attractive for the supportability of longer-term missions in space due to the multi-functionality of a single tool and the variety of materials that can be processed. However, current laser technology also has drawbacks for space-based applications, specifically size, power efficiency, lack of robustness, and problems processing highly reflective materials. A review of recent laser developments will be used to show how these issues may be reduced and indicate where further improvement is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. With the advent of recent breakthroughs in diode-pumped solid-state lasers and fiber optic technologies, the potential to perform multiple processing techniques is increasing significantly. Lasers with suitable wavelengths and beam properties have tremendous potential for supporting future space missions to the moon, Mars and beyond.

  11. Investigation of Flat Clinching Process Combined with Material Forming Technology for Aluminum Alloy.

    PubMed

    Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Wang, Yongfei; Zhao, Xuzhe

    2017-12-15

    In recent years, the use of aluminum alloy has tended to increase for building lightweight automobiles to reduce their automotive weight, which is helpful to save energy and protect the environment. In order to join aluminum alloy, a flat-clinching process combined with material forming technology was investigated to join aluminum alloy sheets using an experimental and a numerical method. Al1060 was chosen as the material of the sheet, and DEFORM-2D software was used to build the numerical model. After the numerical model was validated by the experimental results, the influences of punch diameter and holder force on the materials deforming behavior of the clinched joint were analyzed using the numerical model. Then, the material flow, joining ability, and joining quality were investigated to assess the clinched joint. The results showed that an increase in punch diameter could give rise to an increase in neck thickness and interlocking length, while an increase in blank holder force induced a decrease in interlocking length and an increase in neck thickness. The joining quality could be increased by increasing the forming force. It can be concluded that a clinched joint has better joining quality for joining light-weight sheets onto automotive structures.

  12. Flexible Friction Stir Joining Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhili; Lim, Yong Chae; Mahoney, Murray

    2015-07-23

    Reported herein is the final report on a U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) project with industry cost-share that was jointly carried out by Oak Ridge National Laboratory (ORNL), ExxonMobil Upstream Research Company (ExxonMobil), and MegaStir Technologies (MegaStir). The project was aimed to advance the state of the art of friction stir welding (FSW) technology, a highly energy-efficient solid-state joining process, for field deployable, on-site fabrications of large, complex and thick-sectioned structures of high-performance and high-temperature materials. The technology innovations developed herein attempted to address two fundamental shortcomings of FSW: 1) the inability for on-site welding andmore » 2) the inability to weld thick section steels, both of which have impeded widespread use of FSW in manufacturing. Through this work, major advance has been made toward transforming FSW technology from a “specialty” process to a mainstream materials joining technology to realize its pervasive energy, environmental, and economic benefits across industry.« less

  13. Advances in Solid State Joining of High Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeff; Schneider, Judy; Walker, Bryant

    2011-01-01

    Many of the metals used in the oil and gas industry are difficult to fusion weld including titanium and its alloys. Thus solid state joining processes, such as friction stir welding (FSWing) and a patented modification termed thermal stir welding (TSWing), are being pursued as alternatives to produce robust structures more amenable to high pressure applications. Unlike the FSWing process where the tool is used to heat the workpiece, TSWing utilizes an induction coil to preheat the material prior to stirring thus minimizing the burden on the weld tool and thereby extending its life. This study reports on the initial results of using a hybrid (H)-TSW process to join commercially pure, 1.3cm thick panels of titanium (CP Ti) Grade 2.

  14. Flexible ordering of antibody class switch and V(D)J joining during B-cell ontogeny

    PubMed Central

    Kumar, Satyendra; Wuerffel, Robert; Achour, Ikbel; Lajoie, Bryan; Sen, Ranjan; Dekker, Job; Feeney, Ann J.; Kenter, Amy L.

    2013-01-01

    V(D)J joining is mediated by RAG recombinase during early B-lymphocyte development in the bone marrow (BM). Activation-induced deaminase initiates isotype switching in mature B cells of secondary lymphoid structures. Previous studies questioned the strict ontological partitioning of these processes. We show that pro-B cells undergo robust switching to a subset of immunoglobulin H (IgH) isotypes. Chromatin studies reveal that in pro-B cells, the spatial organization of the Igh locus may restrict switching to this subset of isotypes. We demonstrate that in the BM, V(D)J joining and switching are interchangeably inducible, providing an explanation for the hyper-IgE phenotype of Omenn syndrome. PMID:24240234

  15. High-precision and high-speed laser microjoining for electronics and microsystems

    NASA Astrophysics Data System (ADS)

    Gillner, Arnold; Olowinsky, Alexander; Klages, Kilian; Gedicke, Jens; Sari, Fahri

    2006-02-01

    The joining processes in electronic device manufacturing are today still dominated by conventional joining techniques like press fitting, crimping and resistance welding. Laser beam joining techniques have been under intensive investigations and subsequently new processes for mass manufacturing and high accuracy assembling were established. With the newly developed SHADOW (R) welding technology technical aspects such as tensile strength, geometry and precision of the weld could be improved. This technology provides highest flexibility in weld geometry with a minimum welding time as well as new possibilities in using application adapted materials. Different parts and even different metals can be joined by a non-contact process. The application of a relative movement between the laser beam and the part to be joined at feed rates of up to 60 m/min produces weld seams with a length from 0.6 mm to 15.7 mm using a pulsed Nd:YAG laser with a pulse duration of up to 50 ms. Due to the low energy input, typically 1 J to 6 J, a weld width as small as 50 μm and a weld depth as small as 20 pm have been attained. This results in low distortion of the joined watch components. Within this paper this new welding process will be explained and several examples of joined components will be presented with respect to fundamentals and the sustainable implementation of the SHADOW (R) welding technique into watch manufacturing and electronic industry. For microsystem applications the laser joining technology is modified to join even silicon and glass parts without any melting based on the formation of a thermally induced oxygen bond. New fields of applications for joining different materials such as steel to brass or steel to copper for electrical interconnects will be discussed. Here the SHADOW (R) welding technique offers new possibilities for the combination of good electrical properties of copper with high mechanical stiffness of steel. The paper will give a closer look to microjoining applications especially using the SHADOW (R) welding technique. Basics of the process as well as its application on dedicated examples will be shown for small parts such as axis-wheel combinations and electrical connectors.

  16. Integration Science and Technology of Advanced Ceramics for Energy and Environmental Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2012-01-01

    The discovery of new and innovative materials has been known to culminate in major turning points in human history. The transformative impact and functional manifestation of new materials have been demonstrated in every historical era by their integration into new products, systems, assemblies, and devices. In modern times, the integration of new materials into usable products has a special relevance for the technological development and economic competitiveness of industrial societies. Advanced ceramic technologies dramatically impact the energy and environmental landscape due to potential wide scale applications in all aspects of energy production, storage, distribution, conservation, and efficiency. Examples include gas turbine propulsion systems, fuel cells, thermoelectrics, photovoltaics, distribution and transmission systems based on superconductors, nuclear power generation, and waste disposal. Robust ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic components starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance under different operating conditions, the detailed understanding of various thermochemical and thermomechanical factors is critical. Different approaches are required for the integration of ceramic-metal and ceramic-ceramic systems across length scales (macro to nano). In this presentation, a few examples of integration of ceramic to metals and ceramic to ceramic systems will be presented. Various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be presented.

  17. Laser beam soldering of micro-optical components

    NASA Astrophysics Data System (ADS)

    Eberhardt, R.

    2003-05-01

    MOTIVATION Ongoing miniaturisation and higher requirements within optical assemblies and the processing of temperature sensitive components demands for innovative selective joining techniques. So far adhesive bonding has primarily been used to assemble and adjust hybrid micro optical systems. However, the properties of the organic polymers used for the adhesives limit the application of these systems. In fields of telecommunication and lithography, an enhancement of existing joining techniques is necessary to improve properties like humidity resistance, laserstability, UV-stability, thermal cycle reliability and life time reliability. Against this background laser beam soldering of optical components is a reasonable joining technology alternative. Properties like: - time and area restricted energy input - energy input can be controlled by the process temperature - direct and indirect heating of the components is possible - no mechanical contact between joining tool and components give good conditions to meet the requirements on a joining technology for sensitive optical components. Additionally to the laser soldering head, for the assembly of optical components it is necessary to include positioning units to adjust the position of the components with high accuracy before joining. Furthermore, suitable measurement methods to characterize the soldered assemblies (for instance in terms of position tolerances) need to be developed.

  18. Advanced Metalworking Solutions For Naval Systems That Go In Harm’s Way

    DTIC Science & Technology

    2015-01-01

    destroyers USS Momsen (DDG 92) and USS Preble (DDG 88) are underway in formation. U.S. Navy photo Front cover: Ingalls Shipbuilding welding photo...applies a variety of innovative welding technologies to address the challenges associated with joining weapon system components. Joining Technologies...friction stir welding process to manufacture edge-cooled naval electronic cold plate assemblies. The modular, high- performance, and scalable

  19. Tomographical process monitoring of laser transmission welding with OCT

    NASA Astrophysics Data System (ADS)

    Ackermann, Philippe; Schmitt, Robert

    2017-06-01

    Process control of laser processes still encounters many obstacles. Although these processes are stable, a narrow process parameter window during the process or process deviations have led to an increase on the requirements for the process itself and on monitoring devices. Laser transmission welding as a contactless and locally limited joining technique is well-established in a variety of demanding production areas. For example, sensitive parts demand a particle-free joining technique which does not affect the inner components. Inline integrated non-destructive optical measurement systems capable of providing non-invasive tomographical images of the transparent material, the weld seam and its surrounding areas with micron resolution would improve the overall process. Obtained measurement data enable qualitative feedback into the system to adapt parameters for a more robust process. Within this paper we present the inline monitoring device based on Fourier-domain optical coherence tomography developed within the European-funded research project "Manunet Weldable". This device, after adaptation to the laser transmission welding process is optically and mechanically integrated into the existing laser system. The main target lies within the inline process control destined to extract tomographical geometrical measurement data from the weld seam forming process. Usage of this technology makes offline destructive testing of produced parts obsolete. 1,2,3,4

  20. Light-inducible genetic engineering and control of non-homologous end-joining in industrial eukaryotic microorganisms: LML 3.0 and OFN 1.0.

    PubMed

    Zhang, Lei; Zhao, Xihua; Zhang, Guoxiu; Zhang, Jiajia; Wang, Xuedong; Zhang, Suping; Wang, Wei; Wei, Dongzhi

    2016-02-09

    Filamentous fungi play important roles in the production of plant cell-wall degrading enzymes. In recent years, homologous recombinant technologies have contributed significantly to improved enzymes production and system design of genetically manipulated strains. When introducing multiple gene deletions, we need a robust and convenient way to control selectable marker genes, especially when only a limited number of markers are available in filamentous fungi. Integration after transformation is predominantly nonhomologous in most fungi other than yeast. Fungal strains deficient in the non-homologous end-joining (NHEJ) pathway have limitations associated with gene function analyses despite they are excellent recipient strains for gene targets. We describe strategies and methods to address these challenges above and leverage the power of resilient NHEJ deficiency strains. We have established a foolproof light-inducible platform for one-step unmarked genetic modification in industrial eukaryotic microorganisms designated as 'LML 3.0', and an on-off control protocol of NHEJ pathway called 'OFN 1.0', using a synthetic light-switchable transactivation to control Cre recombinase-based excision and inversion. The methods provide a one-step strategy to sequentially modify genes without introducing selectable markers and NHEJ-deficiency. The strategies can be used to manipulate many biological processes in a wide range of eukaryotic cells.

  1. Development and Characterization of the Bonding and Integration Technologies Needed for Fabricating Silicon Carbide Based Injector Components

    NASA Technical Reports Server (NTRS)

    Halbig,Michael C.; Singh, Mrityunjay

    2008-01-01

    Advanced ceramic bonding and integration technologies play a critical role in the fabrication and application of silicon carbide based components for a number of aerospace and ground based applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. Ceramic to ceramic diffusion bonding and ceramic to metal brazing technologies are being developed for this injector application. For the diffusion bonding technology, titanium interlayers (coatings and foils) were used to aid in the joining of silicon carbide (SiC) substrates. The influence of such variables as surface finish, interlayer thickness, and processing time were investigated. Electron microprobe analysis was used to identify the reaction formed phases. In the diffusion bonds, an intermediate phase, Ti5Si3Cx, formed that is thermally incompatible in its thermal expansion and caused thermal stresses and cracking during the processing cool-down. Thinner interlayers of pure titanium and/or longer processing times resulted in an optimized microstructure. Tensile tests on the joined materials resulted in strengths of 13-28 MPa depending on the SiC substrate material. Nondestructive evaluation using ultrasonic immersion showed well formed bonds. For the joining technology of brazing Kovar fuel tubes to silicon carbide, preliminary development of the joining approach has begun. Various technical issues and requirements for the injector application are addressed.

  2. Laser Treatment, Bonding Potential Road to Success for Carbon Fiber

    ScienceCinema

    Sabau, Adrian

    2018-01-16

    Joining carbon fiber composites and aluminum for lightweight cars and other multi-material high-end products could become less expensive and the joints more robust because of a new method that harnesses a laser’s power and precision.

  3. Proceedings of the Symposium on Welding, Bonding, and Fastening. [production engineering for aircraft and spacecraft structures

    NASA Technical Reports Server (NTRS)

    Stein, B. A. (Compiler); Buckley, J. D. (Compiler)

    1972-01-01

    Various technological processes to achieve lightweight reliable joining systems for structural elements of aircraft and spacecraft are considered. Joining methods, combinations of them, and nondestructive evaluation and quality assurance are emphasized.

  4. Holographic optical assembly and photopolymerized joining of planar microspheres

    DOE PAGES

    Shaw, L. A.; Chizari, S.; Panas, R. M.; ...

    2016-07-27

    The aim of this research is to demonstrate a holographically driven photopolymerization process for joining colloidal particles to create planar microstructures fixed to a substrate, which can be monitored with real-time measurement. Holographic optical tweezers (HOT) have been used to arrange arrays of microparticles prior to this work; here we introduce a new photopolymerization process for rapidly joining simultaneously handled microspheres in a plane. Additionally, we demonstrate a new process control technique for efficiently identifying when particles have been successfully joined by measuring a sufficient reduction in the particles’ Brownian motion. Furthermore, this technique and our demonstrated joining approach enablemore » HOT technology to take critical steps toward automated additive fabrication of microstructures.« less

  5. Welding technologies as applied to nuclear manufacturing

    NASA Astrophysics Data System (ADS)

    Roper, J. R.

    1992-10-01

    This is the trip report of John R. Roper, who traveled to England 25 Sep. through 8 Oct. 1992. Dr. Roper attended the US/UK JOWOG 22-D Joining Technical Exchange meeting and gave a presentation on Welding Finite Element Analysis and the Precision Joining Center at the Atomic Weapons Establishment in Aldermaston, United Kingdom. Dr. Roper also toured the Welding Institute in Abington, UK and discussed technology exchange of weld thermal and mechanical material responses.

  6. FRICTION STIR LAP WELDING OF ALUMINUM - POLYMER USING SCRIBE TECHNOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Hovanski, Yuri; Fifield, Leonard S.

    2015-02-16

    Friction Stir Scribe (FSS) technology is a relatively new variant of Friction Stir Welding (FSW) which enables lap joining of dissimilar material with very different melting points and different high temperature flow behaviors. The cutter scribe attached at the tip of FSW tool pin effectively cuts the high melting point material such that a mechanically interlocking feature is created between the dissimilar materials. The geometric shape of this interlocking feature determines the shear strength attained by the lap joint. This work presents first use of scribe technology in joining polymers to aluminum alloy. Details of the several runs of scribemore » welding performed in lap joining of ~3.175mm thick polymers including HDPE, filled and unfilled Nylon 66 to 2mm thick AA5182 are presented. The effect of scribe geometry and length on weld interlocking features is presented along with lap shear strength evaluations.« less

  7. Robustness surfaces of complex networks

    NASA Astrophysics Data System (ADS)

    Manzano, Marc; Sahneh, Faryad; Scoglio, Caterina; Calle, Eusebi; Marzo, Jose Luis

    2014-09-01

    Despite the robustness of complex networks has been extensively studied in the last decade, there still lacks a unifying framework able to embrace all the proposed metrics. In the literature there are two open issues related to this gap: (a) how to dimension several metrics to allow their summation and (b) how to weight each of the metrics. In this work we propose a solution for the two aforementioned problems by defining the R*-value and introducing the concept of robustness surface (Ω). The rationale of our proposal is to make use of Principal Component Analysis (PCA). We firstly adjust to 1 the initial robustness of a network. Secondly, we find the most informative robustness metric under a specific failure scenario. Then, we repeat the process for several percentage of failures and different realizations of the failure process. Lastly, we join these values to form the robustness surface, which allows the visual assessment of network robustness variability. Results show that a network presents different robustness surfaces (i.e., dissimilar shapes) depending on the failure scenario and the set of metrics. In addition, the robustness surface allows the robustness of different networks to be compared.

  8. Robustness surfaces of complex networks.

    PubMed

    Manzano, Marc; Sahneh, Faryad; Scoglio, Caterina; Calle, Eusebi; Marzo, Jose Luis

    2014-09-02

    Despite the robustness of complex networks has been extensively studied in the last decade, there still lacks a unifying framework able to embrace all the proposed metrics. In the literature there are two open issues related to this gap: (a) how to dimension several metrics to allow their summation and (b) how to weight each of the metrics. In this work we propose a solution for the two aforementioned problems by defining the R*-value and introducing the concept of robustness surface (Ω). The rationale of our proposal is to make use of Principal Component Analysis (PCA). We firstly adjust to 1 the initial robustness of a network. Secondly, we find the most informative robustness metric under a specific failure scenario. Then, we repeat the process for several percentage of failures and different realizations of the failure process. Lastly, we join these values to form the robustness surface, which allows the visual assessment of network robustness variability. Results show that a network presents different robustness surfaces (i.e., dissimilar shapes) depending on the failure scenario and the set of metrics. In addition, the robustness surface allows the robustness of different networks to be compared.

  9. State-of-technology for joining TD-NiCr sheet.

    NASA Technical Reports Server (NTRS)

    Holko, K. H.; Moore, T. J.; Gyorgak, C. A.

    1972-01-01

    At the current state-of-technology there are many joining processes that can be used to make sound welds in TD-NiCr sheet. Some of these that are described in this report are electron beam welding (EBW), gas-tungsten arc welding (GTAW), diffusion welding (DFW), resistance spot welding (RSW), resistance seam welding (RSEW), and brazing. Roll welding (RW) and explosion welding (EXW) have not been developed to the point where they can be used to make sound welds in TD-NiCr. Joining work that has previously been done on TD-NiCr by various organizations, both privately supported and under Air Force and NASA contracts, is described in this summary. Current work is also described that is being done at General Dynamics/Convair (under NASA contract) and at NASA/Lewis to develop and evaluate DFW, RSW, RSEW, and brazing. Preliminary comparisons of joining processes are made for typical applications. A brief description of the manufacture of TD-NiCr sheet by a recently standardized process (under NASA contract) also is given.

  10. Smells familiar: group-joining decisions of predatory mites are mediated by olfactory cues of social familiarity.

    PubMed

    Muleta, Muluken G; Schausberger, Peter

    2013-09-01

    Group-living animals frequently have to trade off the costs and benefits of leaving an established group and joining another group. Owing to their high fitness relevance, group-joining decisions are commonly nonrandom and may be based on traits of both individual members and the group such as life stage, body size, social status and group density or size, respectively. Many group-living animals are able to recognize and to associate preferentially with familiar individuals, i.e. those encountered before. Hence, after dispersing from established groups, animals commonly have to decide whether to join a new familiar or unfamiliar group. Using binary choice situations we assessed the effects of social familiarity on group-joining behaviour of the plant-inhabiting predatory mite Phytoseiulus persimilis . Group living in P. persimilis is brought about by the patchy distribution of its spider mite prey and mutual conspecific attraction. In the first experiment, gravid predator females given a choice between spider mite patches occupied by unfamiliar and familiar groups of females strongly preferred to join familiar groups and to deposit their eggs in these patches. Preference for socially familiar groups was robust across biases of spider mite prey densities between choice options. The second experiment revealed that the predatory mite females can smell social familiarity from a distance. Females subjected to odour choice situations in artificial cages were more strongly attracted to the odour of familiar than unfamiliar groups. We argue that P. persimilis females preferentially join socially familiar groups because a familiar social environment relaxes competition and optimizes foraging and reproduction.

  11. Smells familiar: group-joining decisions of predatory mites are mediated by olfactory cues of social familiarity☆

    PubMed Central

    Muleta, Muluken G.; Schausberger, Peter

    2013-01-01

    Group-living animals frequently have to trade off the costs and benefits of leaving an established group and joining another group. Owing to their high fitness relevance, group-joining decisions are commonly nonrandom and may be based on traits of both individual members and the group such as life stage, body size, social status and group density or size, respectively. Many group-living animals are able to recognize and to associate preferentially with familiar individuals, i.e. those encountered before. Hence, after dispersing from established groups, animals commonly have to decide whether to join a new familiar or unfamiliar group. Using binary choice situations we assessed the effects of social familiarity on group-joining behaviour of the plant-inhabiting predatory mite Phytoseiulus persimilis. Group living in P. persimilis is brought about by the patchy distribution of its spider mite prey and mutual conspecific attraction. In the first experiment, gravid predator females given a choice between spider mite patches occupied by unfamiliar and familiar groups of females strongly preferred to join familiar groups and to deposit their eggs in these patches. Preference for socially familiar groups was robust across biases of spider mite prey densities between choice options. The second experiment revealed that the predatory mite females can smell social familiarity from a distance. Females subjected to odour choice situations in artificial cages were more strongly attracted to the odour of familiar than unfamiliar groups. We argue that P. persimilis females preferentially join socially familiar groups because a familiar social environment relaxes competition and optimizes foraging and reproduction. PMID:24027341

  12. International Symposium on Interfacial Joining and Surface Technology (IJST2013)

    NASA Astrophysics Data System (ADS)

    Takahashi, Yasuo

    2014-08-01

    Interfacial joining (bonding) is a widely accepted welding process and one of the environmentally benign technologies used in industrial production. As the bonding temperature is lower than the melting point of the parent materials, melting of the latter is kept to a minimum. The process can be based on diffusion bonding, pressure welding, friction welding, ultrasonic bonding, or brazing-soldering, all of which offer many advantages over fusion welding. In addition, surface technologies such as surface modification, spraying, coating, plating, and thin-film formation are necessary for advanced manufacturing, fabrication, and electronics packaging. Together, interfacial joining and surface technology (IJST) will continue to be used in various industrial fields because IJST is a very significant form of environmentally conscious materials processing. The international symposium of IJST 2013 was held at Icho Kaikan, Osaka University, Japan from 27-29 November, 2013. A total of 138 participants came from around the world to attend 56 oral presentations and 36 posters presented at the symposium, and to discuss the latest research and developments on interfacial joining and surface technologies. This symposium was also held to commemorate the 30th anniversary of the Technical Commission on Interfacial Joining of the Japan Welding Society. On behalf of the chair of the symposium, it is my great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering (MSE). Among the presentations, 43 papers are published here, and I believe all of the papers have provided the welding community with much useful information. I would like to thank the authors for their enthusiastic and excellent contributions. Finally, I would like to thank all members of the committees, secretariats, participants, and everyone who contributed to this symposium through their support and invaluable effort for the success of IJST 2013. Yasuo Takahashi Chair of IJST 2013 Details of the committees are available in the PDF

  13. Two-Level Weld-Material Homogenization for Efficient Computational Analysis of Welded Structure Blast-Survivability

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Hariharan, A.; Pandurangan, B.

    2012-06-01

    The introduction of newer joining technologies like the so-called friction-stir welding (FSW) into automotive engineering entails the knowledge of the joint-material microstructure and properties. Since, the development of vehicles (including military vehicles capable of surviving blast and ballistic impacts) nowadays involves extensive use of the computational engineering analyses (CEA), robust high-fidelity material models are needed for the FSW joints. A two-level material-homogenization procedure is proposed and utilized in this study to help manage computational cost and computer storage requirements for such CEAs. The method utilizes experimental (microstructure, microhardness, tensile testing, and x-ray diffraction) data to construct: (a) the material model for each weld zone and (b) the material model for the entire weld. The procedure is validated by comparing its predictions with the predictions of more detailed but more costly computational analyses.

  14. Technology and the Future of Mental Health Treatment

    MedlinePlus

    ... Health Intervention Technology? Join a Study Learn More Technology and the Future of Mental Health Treatment Introduction ... What is NIMH’s Role in Mental Health Intervention Technology? Between FY2009 and FY2015, NIMH awarded 404 grants ...

  15. Light-inducible genetic engineering and control of non-homologous end-joining in industrial eukaryotic microorganisms: LML 3.0 and OFN 1.0

    PubMed Central

    Zhang, Lei; Zhao, Xihua; Zhang, Guoxiu; Zhang, Jiajia; Wang, Xuedong; Zhang, Suping; Wang, Wei; Wei, Dongzhi

    2016-01-01

    Filamentous fungi play important roles in the production of plant cell-wall degrading enzymes. In recent years, homologous recombinant technologies have contributed significantly to improved enzymes production and system design of genetically manipulated strains. When introducing multiple gene deletions, we need a robust and convenient way to control selectable marker genes, especially when only a limited number of markers are available in filamentous fungi. Integration after transformation is predominantly nonhomologous in most fungi other than yeast. Fungal strains deficient in the non-homologous end-joining (NHEJ) pathway have limitations associated with gene function analyses despite they are excellent recipient strains for gene targets. We describe strategies and methods to address these challenges above and leverage the power of resilient NHEJ deficiency strains. We have established a foolproof light-inducible platform for one-step unmarked genetic modification in industrial eukaryotic microorganisms designated as ‘LML 3.0’, and an on-off control protocol of NHEJ pathway called ‘OFN 1.0’, using a synthetic light-switchable transactivation to control Cre recombinase-based excision and inversion. The methods provide a one-step strategy to sequentially modify genes without introducing selectable markers and NHEJ-deficiency. The strategies can be used to manipulate many biological processes in a wide range of eukaryotic cells. PMID:26857594

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, L. A.; Chizari, S.; Panas, R. M.

    The aim of this research is to demonstrate a holographically driven photopolymerization process for joining colloidal particles to create planar microstructures fixed to a substrate, which can be monitored with real-time measurement. Holographic optical tweezers (HOT) have been used to arrange arrays of microparticles prior to this work; here we introduce a new photopolymerization process for rapidly joining simultaneously handled microspheres in a plane. Additionally, we demonstrate a new process control technique for efficiently identifying when particles have been successfully joined by measuring a sufficient reduction in the particles’ Brownian motion. Furthermore, this technique and our demonstrated joining approach enablemore » HOT technology to take critical steps toward automated additive fabrication of microstructures.« less

  17. IJA: an efficient algorithm for query processing in sensor networks.

    PubMed

    Lee, Hyun Chang; Lee, Young Jae; Lim, Ji Hyang; Kim, Dong Hwa

    2011-01-01

    One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA) in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm.

  18. IJA: An Efficient Algorithm for Query Processing in Sensor Networks

    PubMed Central

    Lee, Hyun Chang; Lee, Young Jae; Lim, Ji Hyang; Kim, Dong Hwa

    2011-01-01

    One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA) in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm. PMID:22319375

  19. Feasibility of remotely manipulated welding in space: A step in the development of novel joining technologies

    NASA Technical Reports Server (NTRS)

    Masubuchi, K.; Agapakis, J. E.; Debiccari, A.; Vonalt, C.

    1985-01-01

    A six month research program entitled Feasibility of Remotely Manipulated Welding in Space - A Step in the Development of Novel Joining Technologies is performed at the Massachusetts Institute of Technology for the Office of Space Science and Applications, NASA, under Contract No. NASW-3740. The work is performed as a part of the Innovative Utilization of the Space Station Program. The final report from M.I.T. was issued in September 1983. This paper presents a summary of the work performed under this contract. The objective of this research program is to initiate research for the development of packaged, remotely controlled welding systems for space construction and repair. The research effort includes the following tasks: (1) identification of probable joining tasks in space; (2) identification of required levels of automation in space welding tasks; (3) development of novel space welding concepts; (4) development of recommended future studies; and (5) preparation of the final report.

  20. Precision Joining Center

    NASA Astrophysics Data System (ADS)

    Powell, J. W.; Westphal, D. A.

    1991-08-01

    A workshop to obtain input from industry on the establishment of the Precision Joining Center (PJC) was held on July 10-12, 1991. The PJC is a center for training Joining Technologists in advanced joining techniques and concepts in order to promote the competitiveness of U.S. industry. The center will be established as part of the DOE Defense Programs Technology Commercialization Initiative, and operated by EG&G Rocky Flats in cooperation with the American Welding Society and the Colorado School of Mines Center for Welding and Joining Research. The overall objectives of the workshop were to validate the need for a Joining Technologists to fill the gap between the welding operator and the welding engineer, and to assure that the PJC will train individuals to satisfy that need. The consensus of the workshop participants was that the Joining Technologist is a necessary position in industry, and is currently used, with some variation, by many companies. It was agreed that the PJC core curriculum, as presented, would produce a Joining Technologist of value to industries that use precision joining techniques. The advantage of the PJC would be to train the Joining Technologist much more quickly and more completely. The proposed emphasis of the PJC curriculum on equipment intensive and hands-on training was judged to be essential.

  1. Joining the Video-Game Literacy Club: A Reluctant Mother Tries to Join the "Flow"

    ERIC Educational Resources Information Center

    Norton-Meier, Lori

    2005-01-01

    The author discusses the influence of video games and other technologies on modern family life, drawing on her own experiences. The implications of digital and other "new" and multiple literacies are described, with reference particularly to the work of Patrick Shannon and James Paul Gee.

  2. Disruption of diphthamide synthesis genes and resulting toxin resistance as a robust technology for quantifying and optimizing CRISPR/Cas9-mediated gene editing.

    PubMed

    Killian, Tobias; Dickopf, Steffen; Haas, Alexander K; Kirstenpfad, Claudia; Mayer, Klaus; Brinkmann, Ulrich

    2017-11-13

    We have devised an effective and robust method for the characterization of gene-editing events. The efficacy of editing-mediated mono- and bi-allelic gene inactivation and integration events is quantified based on colony counts. The combination of diphtheria toxin (DT) and puromycin (PM) selection enables analyses of 10,000-100,000 individual cells, assessing hundreds of clones with inactivated genes per experiment. Mono- and bi-allelic gene inactivation is differentiated by DT resistance, which occurs only upon bi-allelic inactivation. PM resistance indicates integration. The robustness and generalizability of the method were demonstrated by quantifying the frequency of gene inactivation and cassette integration under different editing approaches: CRISPR/Cas9-mediated complete inactivation was ~30-50-fold more frequent than cassette integration. Mono-allelic inactivation without integration occurred >100-fold more frequently than integration. Assessment of gRNA length confirmed 20mers to be most effective length for inactivation, while 16-18mers provided the highest overall integration efficacy. The overall efficacy was ~2-fold higher for CRISPR/Cas9 than for zinc-finger nuclease and was significantly increased upon modulation of non-homologous end joining or homology-directed repair. The frequencies and ratios of editing events were similar for two different DPH genes (independent of the target sequence or chromosomal location), which indicates that the optimization parameters identified with this method can be generalized.

  3. Robustness surfaces of complex networks

    PubMed Central

    Manzano, Marc; Sahneh, Faryad; Scoglio, Caterina; Calle, Eusebi; Marzo, Jose Luis

    2014-01-01

    Despite the robustness of complex networks has been extensively studied in the last decade, there still lacks a unifying framework able to embrace all the proposed metrics. In the literature there are two open issues related to this gap: (a) how to dimension several metrics to allow their summation and (b) how to weight each of the metrics. In this work we propose a solution for the two aforementioned problems by defining the R*-value and introducing the concept of robustness surface (Ω). The rationale of our proposal is to make use of Principal Component Analysis (PCA). We firstly adjust to 1 the initial robustness of a network. Secondly, we find the most informative robustness metric under a specific failure scenario. Then, we repeat the process for several percentage of failures and different realizations of the failure process. Lastly, we join these values to form the robustness surface, which allows the visual assessment of network robustness variability. Results show that a network presents different robustness surfaces (i.e., dissimilar shapes) depending on the failure scenario and the set of metrics. In addition, the robustness surface allows the robustness of different networks to be compared. PMID:25178402

  4. Bonding and Integration Technologies for Silicon Carbide Based Injector Components

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay

    2008-01-01

    Advanced ceramic bonding and integration technologies play a critical role in the fabrication and application of silicon carbide based components for a number of aerospace and ground based applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. Ceramic to ceramic diffusion bonding and ceramic to metal brazing technologies are being developed for this injector application. For the diffusion bonding, titanium interlayers (PVD and foils) were used to aid in the joining of silicon carbide (SiC) substrates. The influence of such variables as surface finish, interlayer thickness (10, 20, and 50 microns), processing time and temperature, and cooling rates were investigated. Microprobe analysis was used to identify the phases in the bonded region. For bonds that were not fully reacted an intermediate phase, Ti5Si3Cx, formed that is thermally incompatible in its thermal expansion and caused thermal stresses and cracking during the processing cool-down. Thinner titanium interlayers and/or longer processing times resulted in stable and compatible phases that did not contribute to microcracking and resulted in an optimized microstructure. Tensile tests on the joined materials resulted in strengths of 13-28 MPa depending on the SiC substrate material. Non-destructive evaluation using ultrasonic immersion showed well formed bonds. For the joining technology of brazing Kovar fuel tubes to silicon carbide, preliminary development of the joining approach has begun. Various technical issues and requirements for the injector application are addressed.

  5. ADP Regulates the Structure and Function of the Protein KaiC

    DTIC Science & Technology

    2016-08-11

    J. S., Lee, Y., Kang, S., Lee, D., Li, S., Britt, R. D., Rust , M., J., Golden, S., S., LiWang, A. (2015) A protein fold switch joins the circadian... Rust , M.J. (2013). Robust and tunable circadian rhythms from differentially sensitive catalytic domains. Proc. Natl. Acad. Sci. USA 110, 1124- 1129

  6. Cost-effective FITL technologies for small business and residential customers

    NASA Astrophysics Data System (ADS)

    Andersen, Niels E.; Woolnough, Peter; Seidenberg, Juergen; Ferreira, Mario F. S.

    1995-02-01

    FIRST is a RACE project where 5 main European telecoms operators, 4 equipment manufacturers and one university have joined up to define and test in a field trial in Portugal a cost effective Optical Access Network. The main design target has been a system which gives cost effective provision of wideband services for small and medium business customers. The system however, incorporates provision of telephone, ISDN and analog and digital video for residential customers as well. Technologies have been chosen with the objective of providing a simple, robust and flexible system where initial deployment costs are low and closely related to the service take up. The paper describes the main technical features of the system and network applications which shows how the system may be introduced in network planning. The system is based on Passive Optical Network technology where video is distributed in the 1550 nm window and telecoms services transmitted at 1300 nm in full duplex mode. The telecoms system provides high capacity, flexibility in loop length and robustness towards outside plant performance. The Subcarrier Multiple Access (SCMA) method is used for upstream transmission of bi-directional telecoms services. SCMA has advantages compared to the Time Division Multiple Access technology used in other systems. Bandwidth/cost tradeoff is better and the lower requirements to the outside plant increases the overall cost benefit. Optical beat noise due to overlapping of laser spectra which may be a problem for this technology has been addressed with success through the use of a suitable modulation and control technique. This technology is further validated in the field trial. The video system provides cost effective long distance transmission on standard fiber with externally modulated lasers and cascaded amplifiers. Coexistence of analog and digital video on one fiber with different modulation schemes i.e. BPSK, QPSK and 64 QAM have been validated. Total life cycle cost evaluations based on availability data, maintenance requirements and expectations for service development have been made. The field trial will be running for two years.

  7. Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70.

    PubMed

    Boboila, Cristian; Jankovic, Mila; Yan, Catherine T; Wang, Jing H; Wesemann, Duane R; Zhang, Tingting; Fazeli, Alex; Feldman, Lauren; Nussenzweig, Andre; Nussenzweig, Michel; Alt, Frederick W

    2010-02-16

    Class switch recombination (CSR) in B lymphocytes is initiated by introduction of multiple DNA double-strand breaks (DSBs) into switch (S) regions that flank immunoglobulin heavy chain (IgH) constant region exons. CSR is completed by joining a DSB in the donor S mu to a DSB in a downstream acceptor S region (e.g., S gamma1) by end-joining. In normal cells, many CSR junctions are mediated by classical nonhomologous end-joining (C-NHEJ), which employs the Ku70/80 complex for DSB recognition and XRCC4/DNA ligase 4 for ligation. Alternative end-joining (A-EJ) mediates CSR, at reduced levels, in the absence of C-NHEJ, even in combined absence of Ku70 and ligase 4, demonstrating an A-EJ pathway totally distinct from C-NHEJ. Multiple DSBs are introduced into S mu during CSR, with some being rejoined or joined to each other to generate internal switch deletions (ISDs). In addition, S-region DSBs can be joined to other chromosomes to generate translocations, the level of which is increased by absence of a single C-NHEJ component (e.g., XRCC4). We asked whether ISD and S-region translocations occur in the complete absence of C-NHEJ (e.g., in Ku70/ligase 4 double-deficient B cells). We found, unexpectedly, that B-cell activation for CSR generates substantial ISD in both S mu and S gamma1 and that ISD in both is greatly increased by the absence of C-NHEJ. IgH chromosomal translocations to the c-myc oncogene also are augmented in the combined absence of Ku70 and ligase 4. We discuss the implications of these findings for A-EJ in normal and abnormal DSB repair.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, L.; Hedman, B.; Knowles, D.

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications inmore » the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.« less

  9. Joining the On-Line Community. An Introduction for Adult Literacy. Practice Guide.

    ERIC Educational Resources Information Center

    Rethemeyer, R. Karl

    This technology guide is intended to introduce adult literacy providers to the concepts,hardware, and procedures of online communication. The six-part guide explains the following: (1) what electronic networks are; (2) why adult literacy practitioners may want to join the Internet; (3) how adult literacy practitioners are already using the…

  10. 0-6652 : spliced Texas girder bridges.

    DOT National Transportation Integrated Search

    2015-02-01

    Spliced girder technology continues to attract : attention due to its versatility over traditional : prestressed concrete highway bridge construction. : By joining multiple precast concrete girders using : post-tensioning, spliced girder technology :...

  11. Workflow technology: the new frontier. How to overcome the barriers and join the future.

    PubMed

    Shefter, Susan M

    2006-01-01

    Hospitals are catching up to the business world in the introduction of technology systems that support professional practice and workflow. The field of case management is highly complex and interrelates with diverse groups in diverse locations. The last few years have seen the introduction of Workflow Technology Tools, which can improve the quality and efficiency of discharge planning by the case manager. Despite the availability of these wonderful new programs, many case managers are hesitant to adopt the new technology and workflow. For a myriad of reasons, a computer-based workflow system can seem like a brick wall. This article discusses, from a practitioner's point of view, how professionals can gain confidence and skill to get around the brick wall and join the future.

  12. DNA double-strand break response factors influence end-joining features of IgH class switch and general translocation junctions.

    PubMed

    Panchakshari, Rohit A; Zhang, Xuefei; Kumar, Vipul; Du, Zhou; Wei, Pei-Chi; Kao, Jennifer; Dong, Junchao; Alt, Frederick W

    2018-01-23

    Ig heavy chain (IgH) class switch recombination (CSR) in B lymphocytes switches IgH constant regions to change antibody functions. CSR is initiated by DNA double-strand breaks (DSBs) within a donor IgH switch (S) region and a downstream acceptor S region. CSR is completed by fusing donor and acceptor S region DSB ends by classical nonhomologous end-joining (C-NHEJ) and, in its absence, by alternative end-joining that is more biased to use longer junctional microhomologies (MHs). Deficiency for DSB response (DSBR) factors, including ataxia telangiectasia-mutated (ATM) and 53BP1, variably impair CSR end-joining, with 53BP1 deficiency having the greatest impact. However, studies of potential impact of DSBR factor deficiencies on MH-mediated CSR end-joining have been technically limited. We now use a robust DSB joining assay to elucidate impacts of deficiencies for DSBR factors on CSR and chromosomal translocation junctions in primary mouse B cells and CH12F3 B-lymphoma cells. Compared with wild-type, CSR and c-myc to S region translocation junctions in the absence of 53BP1, and, to a lesser extent, other DSBR factors, have increased MH utilization; indeed, 53BP1-deficient MH profiles resemble those associated with C-NHEJ deficiency. However, translocation junctions between c-myc DSB and general DSBs genome-wide are not MH-biased in ATM-deficient versus wild-type CH12F3 cells and are less biased in 53BP1- and C-NHEJ-deficient cells than CSR junctions or c-myc to S region translocation junctions. We discuss potential roles of DSBR factors in suppressing increased MH-mediated DSB end-joining and features of S regions that may render their DSBs prone to MH-biased end-joining in the absence of DSBR factors.

  13. Suicide attempts before joining the military increase risk for suicide attempts and severity of suicidal ideation among military personnel and veterans.

    PubMed

    Bryan, Craig J; Bryan, AnnaBelle O; Ray-Sannerud, Bobbie N; Etienne, Neysa; Morrow, Chad E

    2014-04-01

    Past self-injurious thoughts and behaviors (SITB) are robust predictors of future suicide risk, but no studies have explored the prevalence of SITB occurring prior to military service among military personnel and veterans, or the association of premilitary SITB with suicidal ideation and suicide attempts during or after military service. The current study explores these issues in two separate samples. Self-report data were collected from 374 college student veterans via anonymous only survey (Study 1) and from 151 military personnel receiving outpatient mental health treatment (Study 2). Across both studies, premilitary suicide attempts were among the most prominent predictor of subsequent suicide attempts that occurred after joining the military, even when controlling for demographics and more recent emotional distress. Among military personnel who made a suicide attempt during or after military service, approximately 50% across both samples experienced suicidal ideation and up to 25% made a suicide attempt prior to joining the military. Military personnel and veterans who made suicide attempts prior to joining the military were over six times more likely to make a later suicide attempt after joining the military. In Study 2, significantly more severe current suicidal ideation was reported by participants with histories of premilitary suicide risk, even when controlling for SITB occurring while in the military. Military personnel and veterans who experienced SITB, especially suicide attempts, prior to joining the military are more likely to attempt suicide while in the military and/or as a veteran, and experience more severe suicidal crises. © 2014.

  14. Magnetically controlled ferromagnetic swimmers

    PubMed Central

    Hamilton, Joshua K.; Petrov, Peter G.; Winlove, C. Peter; Gilbert, Andrew D.; Bryan, Matthew T.; Ogrin, Feodor Y.

    2017-01-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control. PMID:28276490

  15. Magnetically controlled ferromagnetic swimmers

    NASA Astrophysics Data System (ADS)

    Hamilton, Joshua K.; Petrov, Peter G.; Winlove, C. Peter; Gilbert, Andrew D.; Bryan, Matthew T.; Ogrin, Feodor Y.

    2017-03-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control.

  16. A Concurrent Product-Development Approach for Friction-Stir Welded Vehicle-Underbody Structures

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Hariharan, A.; Pandurangan, B.

    2012-04-01

    High-strength aluminum and titanium alloys with superior blast/ballistic resistance against armor piercing (AP) threats and with high vehicle light-weighing potential are being increasingly used as military-vehicle armor. Due to the complex structure of these vehicles, they are commonly constructed through joining (mainly welding) of the individual components. Unfortunately, these alloys are not very amenable to conventional fusion-based welding technologies [e.g., gas metal arc welding (GMAW)] and to obtain high-quality welds, solid-state joining technologies such as friction-stir welding (FSW) have to be employed. However, since FSW is a relatively new and fairly complex joining technology, its introduction into advanced military-vehicle-underbody structures is not straight forward and entails a comprehensive multi-prong approach which addresses concurrently and interactively all the aspects associated with the components/vehicle-underbody design, fabrication, and testing. One such approach is developed and applied in this study. The approach consists of a number of well-defined steps taking place concurrently and relies on two-way interactions between various steps. The approach is critically assessed using a strengths, weaknesses, opportunities, and threats (SWOT) analysis.

  17. Joining Together for a Common Cause – Interagency Collaboration to Fight disease

    USDA-ARS?s Scientific Manuscript database

    In addition to the economic and technical benefits of technology transfer, there is the human element-how technology development and technology transfer can make a difference in people’s lives. We will share compelling stories of how individuals have directly benefited from technology development an...

  18. Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process.

    PubMed

    Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Zhao, Xuzhe; Ishida, Tohru

    2017-08-01

    Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a) localized deformation; (b) drawing; (c) backward extrusion; and (d) mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures.

  19. Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process

    PubMed Central

    Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Zhao, Xuzhe; Ishida, Tohru

    2017-01-01

    Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a) localized deformation; (b) drawing; (c) backward extrusion; and (d) mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures. PMID:28763027

  20. Fabrication technology: A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A compilation is presented which supplies technical information on the assembly of diverse components into functional assemblies and subassemblies, as well as information on several fasteners and fastening techniques that join components, subassemblies, and complete assemblies to achieve a functional unit. Quick-disconnect fasteners are described, along with several devices and methods for attaching thermal insulators, and for joining and separating objects in the absence of gravity.

  1. JPRS Report, Soviet Union, International Affairs.

    DTIC Science & Technology

    1987-07-08

    SDI, Japan evidently is counting on joining in the advertised technical and technological innovations that are supposedly anticipated in the course...specific results of this program are irreconcilably far from the illusory advantages advertised by the United States before they joined it: England...functioning of bourgeois democracy, alien in spirit to traditional ideological institutions and behavioral stereotypes ), we should come to the conclusion

  2. THE FEDERAL TECHNOLOGY TRANSFER ACT - ENVIRONMENTAL MONITORING TECHNOLOGIES OPPORTUNITIES

    EPA Science Inventory

    To enhance and maintain a clean environment while imporiving the nation's productivity, the U.S. EPA is joining with private industry and academia to seek new, cost-effective technologies to prevent and control environmental pollution. Both the U.S. government and the private sec...

  3. Collision Welding of Dissimilar Materials by Vaporizing Foil Actuator: A Breakthrough Technology for Dissimilar Metal Joining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daehn, Glenn S.; Vivek, Anupam; Liu, Bert C.

    This work demonstrated and further developed Vaporizing Foil Actuator Welding (VFAW) as a viable technique for dissimilar-metal joining for automotive lightweighting applications. VFAW is a novel impact welding technology, which uses the pressure developed from electrically-assisted rapid vaporization of a thin aluminum foil (the consumable) to launch and ultimately collide two of more pieces of metal to create a solid-state bond between them. 18 dissimilar combinations of automotive alloys from the steel, aluminum and magnesium alloy classes were screened for weldability and characterized by metallography of weld cross sections, corrosion testing, and mechanical testing. Most combinations, especially a good numbermore » of Al/Fe pairs, were welded successfully. VFAW was even able to weld combinations of very high strength materials such as 5000 and 6000 series aluminum alloys to boron and dual phase steels, which is difficult to impossible by other joining techniques such as resistance spot welding, friction stir welding, or riveting. When mechanically tested, the samples routinely failed in a base metal rather than along the weld interface, showing that the weld was stronger than either of the base metals. As for corrosion performance, a polymer-based protective coating was used to successfully combat galvanic corrosion of 5 Al/Fe pairs through a month-long exposure to warm salt fog. In addition to the technical capabilities, VFAW also consumes little energy compared to conventional welding techniques and requires relatively light, flexible tooling. Given the technical and economic advantages, VFAW can be a very competitive joining technology for automotive lightweighting. The success of this project and related activities has resulted in substantial interest not only within the research community but also various levels of automotive supply chain, which are collaborating to bring this technology to commercial use.« less

  4. Effect of Composite Substrates on the Mechanical Behavior of Brazed Joints in Metal-Composite System

    NASA Technical Reports Server (NTRS)

    Singh, M.; Morscher, Gregory N.; Shpargel, Tarah; Asthana, Rajiv

    2006-01-01

    Advanced composite components are being considered for a wide variety of demanding applications in aerospace, space exploration, and ground based systems. A number of these applications require robust integration technologies to join dissimilar materials (metalcomposites) into complex structural components. In this study, three types of composites (C-C, C-SiC, and SiC-SiC) were vacuum brazed to commercially pure Ti using the active metal braze alloy Cusil-ABA (63Ag-35.3Cu-1.75Ti). Composite substrates with as fabricated and polished surfaces were used for brazing. The microstructure and composition of the joint, examined using scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), showed sound metallurgical bonding in all systems. The butt strap tensile (BST) test was performed on bonded specimens at room and elevated temperatures. Effect of substrate composition, interlaminar properties, and surface roughness on the mechanical properties and failure behavior of joints will be discussed.

  5. 78 FR 22548 - Announcement of Requirements and Registration for “Apps4Tots Health Challenge”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... Health Information Technology, HHS. Award Approving Official: Farzad Mostashari, National Coordinator for Health Information Technology. ACTION: Notice. SUMMARY: As part of the Department of Health and Human... the National Coordinator for Health Information Technology (ONC), and Healthdata.gov are joining...

  6. Multiply Your Child's Success: Math and Science Can Make Dreams Come True. A Parent's Guide

    ERIC Educational Resources Information Center

    National Math and Science Initiative, 2012

    2012-01-01

    In today's high-tech world, math and science matter. Of the 10 fastest growing occupations, eight are science, math or technology-related. Whatever a child wants to do--join the military, join the workforce, or go on to college--math and science skills will be important. Become part of the equation to help one's child succeed now and in the…

  7. Technological Advances in Joining

    DTIC Science & Technology

    1981-08-01

    automotive industry, and similar robots are being equipped to perform many arc welding functions in areas where high production rates must be...nonvacuum electron-beam welding favor the use of this process by the automotive industry. For example, this process has been used to join the component...metal additions were not needed. This process has been also used to weld various assemblies for automotive transmissions (e.g., annulus gear assemblies

  8. Tungsten foil laminate for structural divertor applications - Joining of tungsten foils

    NASA Astrophysics Data System (ADS)

    Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou

    2013-05-01

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  9. Advanced Ceramic Matrix Composites (CMCs) for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2005-01-01

    Advanced ceramic matrix composites (CMCs) are enabling materials for a number of demanding applications in aerospace, energy, and nuclear industries. In the aerospace systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, vanes, nozzle components, nose cones, leading edges of reentry vehicles, and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters, and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. In the last few years, a number of CMC components have been developed and successfully tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. They include robust fabrication and manufacturing, assembly and integration, coatings, property modeling and life prediction, design codes and databases, repair and refurbishment, and cost. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, a number of examples of successful CMC component development and testing will be provided. In addition, critical need for robust manufacturing, joining and assembly technologies in successful implementation of these systems will be discussed.

  10. Redundant function of DNA ligase 1 and 3 in alternative end-joining during immunoglobulin class switch recombination.

    PubMed

    Masani, Shahnaz; Han, Li; Meek, Katheryn; Yu, Kefei

    2016-02-02

    Nonhomologous end-joining (NHEJ) is the major DNA double-strand break (DSB) repair pathway in mammals and resolves the DSBs generated during both V(D)J recombination in developing lymphocytes and class switch recombination (CSR) in antigen-stimulated B cells. In contrast to the absolute requirement for NHEJ to resolve DSBs associated with V(D)J recombination, DSBs associated with CSR can be resolved in NHEJ-deficient cells (albeit at a reduced level) by a poorly defined alternative end-joining (A-EJ) pathway. Deletion of DNA ligase IV (Lig4), a core component of the NHEJ pathway, reduces CSR efficiency in a mouse B-cell line capable of robust cytokine-stimulated CSR in cell culture. Here, we report that CSR levels are not further reduced by deletion of either of the two remaining DNA ligases (Lig1 and nuclear Lig3) in Lig4(-/-) cells. We conclude that in the absence of Lig4, Lig1, and Lig3 function in a redundant manner in resolving switch region DSBs during CSR.

  11. Delaunay based algorithm for finding polygonal voids in planar point sets

    NASA Astrophysics Data System (ADS)

    Alonso, R.; Ojeda, J.; Hitschfeld, N.; Hervías, C.; Campusano, L. E.

    2018-01-01

    This paper presents a new algorithm to find under-dense regions called voids inside a 2D point set. The algorithm starts from terminal-edges (local longest-edges) in a Delaunay triangulation and builds the largest possible low density terminal-edge regions around them. A terminal-edge region can represent either an entire void or part of a void (subvoid). Using artificial data sets, the case of voids that are detected as several adjacent subvoids is analyzed and four subvoid joining criteria are proposed and evaluated. Since this work is inspired on searches of a more robust, effective and efficient algorithm to find 3D cosmological voids the evaluation of the joining criteria considers this context. However, the design of the algorithm permits its adaption to the requirements of any similar application.

  12. Complete Status Report Documenting Development of Friction Stir Welding for Joining Thin Wall Tubing of ODS Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoelzer, David T.; Bunn, Jeffrey R.; Gussev, Maxim N.

    The development of friction stir welding (FSW) for joining thin sections of the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy was initiated in Fuel Cycle Research and Development (FCRD), now the Nuclear Technology Research and Development (NTRD), in 2015. The first FSW experiment was conducted in late FY15 and successfully produced a bead-on-plate stir zone (SZ) on a 1 mm thick plate of 14YWT (SM13 heat). The goal of this research task is to ultimately demonstrate that FSW is a feasible method for joining thin wall (0.5 mm thick) tubing of 14YWT.

  13. Hans Küpper discusses science and venture capital.

    PubMed

    Küpper, Hans

    2004-11-01

    Hans Küpper has over 30 years of experience in the biotechnology industry in areas from research to R&D management, technology assessment and business acquisitions. He received his PhD in 1974 from the University of Heidelberg. After additional academic research at the Massachusetts Institute of Technology in the USA and at the University of Heidelberg, Germany, he joined Biogen in 1980. Here, he held various R&D positions, the last of which was Assistant Research Director. In 1985, he joined Behringwerke AG, Marburg, to build up and head the company's Molecular Biology Department and thereafter became Head of R&D of the Immunology/Oncology Business Unit. In 1999 he joined Global Life Science Ventures at their Munich office. Dr Küpper is the author of numerous publications and patents/applications and has also served as a consultant to the Pharmaceutical Industry and the European Commission. He is a board member of several early stage companies in the life sciences.

  14. Integral blow moulding for cycle time reduction of CFR-TP aluminium contour joint processing

    NASA Astrophysics Data System (ADS)

    Barfuss, Daniel; Würfel, Veit; Grützner, Raik; Gude, Maik; Müller, Roland

    2018-05-01

    Integral blow moulding (IBM) as a joining technology of carbon fibre reinforced thermoplastic (CFR-TP) hollow profiles with metallic load introduction elements enables significant cycle time reduction by shortening of the process chain. As the composite part is joined to the metallic part during its consolidation process subsequent joining steps are omitted. In combination with a multi-scale structured load introduction element its form closure function enables to pass very high loads and is capable to achieve high degrees of material utilization. This paper first shows the process set-up utilizing thermoplastic tape braided preforms and two-staged press and internal hydro formed load introduction elements. Second focuses on heating technologies and process optimization. Aiming at cycle time reduction convection and induction heating in regard to the resulting product quality is inspected by photo micrographs and computer tomographic scans. Concluding remarks give final recommendations for the process design in regard to the structural design.

  15. Laser Transmission Welding of CFRTP Using Filler Material

    NASA Astrophysics Data System (ADS)

    Berger, Stefan; Schmidt, Michael

    In the automotive industry the increasing environmental awareness is reflected through consistent lightweight construction. Especially the use of carbon fiber reinforced thermoplastics (CFRTP) plays an increasingly important role. Accordingto the material substitution, the demand for adequate joining technologies is growing. Therefore, laser transmission welding with filler material provides a way to combine two opaque joining partners by using process specific advantages of the laser transmission welding process. After introducing the new processing variant and the used experimental setup, this paper investigates the process itselfand conditions for a stable process. The influence of the used process parameters on weld quality and process stability is characterized by tensile shear tests. The successfully performed joining of PA 6 CF 42 organic sheets using natural PA 6 as filler material underlines the potential of the described joining method for lightweight design and other industrial applications.

  16. 76 FR 72902 - Emerging Technology and Research Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... Controls on the conduct of U.S. science and technology activities in the United States. 2. Public Comments... serve basis. To join the conference, submit inquiries to Ms. Yvette Springer at [[Page 72903

  17. Global knowledge, local implications: a community college's response

    NASA Astrophysics Data System (ADS)

    Valentin, Marjorie R.; Stroup, Margaret H.; Donnelly, Judith F.

    2005-10-01

    Three Rivers Community College (TRCC), with federal funding, provided a customized laser program for Joining Technologies in Connecticut, which offers world-class resources for welding and joining applications. This program addresses the shortage of skilled labor in the laser arena, lack of knowledge of fundamental science of applied light, and an increase in nonperforming product. Hiring and retraining a skilled workforce are important and costly issues facing today's small manufacturing companies.

  18. Information Technology: A Model for Brandon University.

    ERIC Educational Resources Information Center

    Bazillion, Richard J.

    Information technology is having a profound effect on higher education in North America, and Brandon University in Manitoba (Canada) is in a position to join this movement in its early stages. The case for integrating information technology into the curriculum is argued, and the potential role of the new library complex in the teaching function is…

  19. Successful Technology Transfer in Colorado: A Portfolio of Technology Transfer "Success Stories."

    ERIC Educational Resources Information Center

    Colorado Advanced Tech. Inst., Denver.

    The examples in this portfolio demonstrate how technology transfer among universities, businesses, and federal laboratories solve real-world problems, and create new goods and services. They reveal how, through strengthening the infrastructure joining private and public sectors, Colorado can better compete in the global marketplace. All of the…

  20. Closing the Achievement Gap with Culturally Relevant Technology-Based Learning Environments

    ERIC Educational Resources Information Center

    Joseph, Roberto

    2009-01-01

    The most significant educational problem of our time has been the achievement gap. The author discusses the need for the field of educational technology to join in the social movement to close this gap. He provides background on the significance of incorporating culture throughout the design and development of technology-based learning…

  1. Internationalizing the Business Curriculum: Technology and Social Change.

    ERIC Educational Resources Information Center

    Seabrook, Roberta

    In 1986 the Technology and Social Change Program and the College of Business at Iowa State University joined forces to develop a new graduate course that focused on the role of the multinational corporation in technology transfer to the lesser developed countries. The course was team taught by faculty from different disciplines and colleges, and…

  2. Teaching and Learning with Technology in Higher Education: Blended and Distance Education Needs "Joined-up Thinking" Rather than Technological Determinism

    ERIC Educational Resources Information Center

    Kirkwood, Adrian

    2014-01-01

    In higher education (HE), some of the distinctions between conventional, campus-based universities and those dedicated to distance education are being eroded through the use of information and communication technology. Despite huge investments in technology to enhance teaching and learning, there has been a considerable lack of clarity about what…

  3. Diffusion-Welded Microchannel Heat Exchanger for Industrial Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwall; Denis E. Clark; Michael V. Glazoff

    The goal of next generation reactors is to increase energy ef?ciency in the production of electricity and provide high-temperature heat for industrial processes. The ef?cient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process. The need for ef?ciency, compactness, and safety challenge the boundaries of existing heat exchanger technology. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more ef?cientmore » industrial processes. Modern compact heat exchangers can provide high compactness, a measure of the ratio of surface area-to-volume of a heat exchange. The microchannel heat exchanger studied here is a plate-type, robust heat exchanger that combines compactness, low pressure drop, high effectiveness, and the ability to operate with a very large pressure differential between hot and cold sides. The plates are etched and thereafter joined by diffusion welding, resulting in extremely strong all-metal heat exchanger cores. After bonding, any number of core blocks can be welded together to provide the required ?ow capacity. This study explores the microchannel heat exchanger and draws conclusions about diffusion welding/bonding for joining heat exchanger plates, with both experimental and computational modeling, along with existing challenges and gaps. Also, presented is a thermal design method for determining overall design speci?cations for a microchannel printed circuit heat exchanger for both supercritical (24 MPa) and subcritical (17 MPa) Rankine power cycles.« less

  4. Partnerships Take a New Turn.

    ERIC Educational Resources Information Center

    Rich, Don

    1983-01-01

    Milwaukee Area Technical College has joined with business and industry to develop training programs for computer-based information processing, and engineering and manufacturing technologies. These partnerships are important as companies look for ways to improve productivity and quality, keep abreast of changing technology, and ensure economic…

  5. 76 FR 76937 - Emerging Technology and Research Advisory Committee; Notice of Partially Closed Meeting-Room Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... of Export Controls on the conduct of U.S. science and technology activities in the United States. 2... come, first serve basis. To join the conference, submit inquiries to Ms. Yvette Springer at Yvette...

  6. Advantages and challenges of dissimilar materials in automotive lightweight construction

    NASA Astrophysics Data System (ADS)

    Weberpals, Jan-Philipp; Schmidt, Philipp A.; Böhm, Daniel; Müller, Steffen

    2015-03-01

    The core of future automotive lightweight materials is the joining technology of various material mixes. The type of joining will be essential, particularly in electrified propulsion systems, especially as an improved electrical energy transmission leads to a higher total efficiency of the vehicle. The most evident parts to start the optimization process are the traction battery, the electrical performance modules and the engines. Consequently aluminum plays a very central role for lightweight construction applications. However, the physical-technical requirements of components often require the combination with other materials. Thus the joining of mixed material connections is an essential key technology for many of the current developments, for example in the areas E-Mobility, solar energy and lightweight construction. Due to these advantages mixed material joints are already established in the automotive industry and laser beam remote welding is now a focus technology for mixed material connections. The secret of the laser welding process with mixed materials lies within the different areas of the melting phase diagram depending on the mixing ratio and the cooling down rate. According to that areas with unwanted, prim, intermetallic phases arise in the fusion zone. Therefore, laser welding of mixed material connections can currently only be used with additional filler in the automotive industry.

  7. CPTC and KIST Join Efforts to Solve Complex Proteomic Issues | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute's (NCI) Clinical Proteomic Technologies for Cancer (CPTC) initiative at the National Institutes of Health has entered into a memorandum of understanding (MOU) with the Korea Institute of Science and Technology (KIST). This MOU promotes proteomic technology optimization and standards implementation in large-scale international programs.

  8. Induction Heating Systems

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Induction heating technology, a magnetic non-deforming process, was developed by Langley researchers to join plastic and composite components in space. Under NASA license, Inductron Corporation uses the process to produce induction heating systems and equipment for numerous applications. The Torobonder, a portable system, comes with a number of interchangeable heads for aircraft repair. Other developments are the E Heating Head, the Toroid Joining Gun, and the Torobrazer. These products perform bonding applications more quickly, safely and efficiently than previous methods.

  9. Joining and Adhesion of Advanced Inorganic Materials. Symposium Held in San Francisco, California on April 12-14, 1993. Volume 314

    DTIC Science & Technology

    1993-04-14

    Scaling (Technology)-Congresses. 3. Joints (Engineering)-Congresses, 4. Metals-Congresses. 5. Composite naterials-Congresses. 6. Ceramic niaterials... COMPOSITE 103 Hsin-Fu Wang, John C, Nelson, Chlen-Li Lin, William W. Gerberich, Charles 1. Skowronek, and Herve E, Deve STRESS-CORROSION CRACKING AT...Arunajatesan, A,H, Carim, TYY Yiin, and VK, Varadan HIGH SPEED JOINING OF ALUMINUM METAL MATRIX COMPOSITES !1SING CONTINUOUS WAVE AND PULSED LASERS

  10. The influence of joint technologies on ELV recyclability.

    PubMed

    Soo, Vi Kie; Compston, Paul; Doolan, Matthew

    2017-10-01

    Stricter vehicle emission legislation has led to the increasing use of lightweight materials and multi-material concepts to reduce the vehicle mass. To account for the complexity of multi-material vehicle designs, the choice of joining techniques used is becoming more diverse. Moreover, the different material combinations, and their respective joining methods play an important role in determining the potential of full material separation in a closed-loop system. This paper evaluates the types of joining technologies used in the automotive industry, and identifies those that hinder the sorting of ELV materials. The study is based on an industrial shredding trial of car doors. Observations from the case study showed that steel screws and bolts are increasingly used to combine different material types and are less likely to be perfectly liberated during the shredding process. The characteristics of joints that lead to impurities and valuable material losses, such as joint strength, material type, size, diameter, location, and protrusion level, can influence the material liberation in the current sorting practices and thus, lead to ELV waste minimisation. Additionally, the liberation of joints is also affected by the density and thickness of materials being joined. Correlation analyses are carried out to further support the influence of mechanical screws and bolts on material separation efficiencies. The observations are representative of the initial phases of current global ELV sorting practices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Feasibility of remotely manipulated welding in space. A step in the development of novel joining technologies

    NASA Technical Reports Server (NTRS)

    Masubuchi, K.; Agapakis, J. E.; Debiccari, A.; Vonalt, C.

    1983-01-01

    In order to establish permanent human presence in space technologies of constructing and repairing space stations and other space structures must be developed. Most construction jobs are performed on earth and the fabricated modules will then be delivered to space by the Space Shuttle. Only limited final assembly jobs, which are primarily mechanical fastening, will be performed on site in space. Such fabrication plans, however, limit the designs of these structures, because each module must fit inside the transport vehicle and must withstand launching stresses which are considerably high. Large-scale utilization of space necessitates more extensive construction work on site. Furthermore, continuous operations of space stations and other structures require maintenance and repairs of structural components as well as of tools and equipment on these space structures. Metal joining technologies, and especially high-quality welding, in space need developing.

  12. Indian Institute of Technology Bombay and Tata Memorial Centre Join the International Efforts in Clinical Proteogenomics Cancer Research | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute’s (NCI) Office of Cancer Clinical Proteomics Research, part of the National Institutes of Health, along with the Indian Institute of Technology Bombay (IITB) and Tata Memorial Centre (TMC) have signed a Memorandum of Understanding (MOU) on clinical proteogenomics cancer research. The MOU between NCI, IITB, and Tata Memorial Centre represents the thirtieth and thirty-first institutions and the twelfth country to join the International Cancer Proteogenome Consortium (ICPC). The purpose of the MOU is to facilitate scientific and programmatic collaborations between NCI, IITB, and TMC in basic and clinical proteogenomic studies leading to patient care and public dissemination and information sharing to the research community.

  13. The Relationship of IT Professionals and Facilitators Joining Together to Emphasize Pedagogy with Technology

    ERIC Educational Resources Information Center

    Peterson, Debra

    2011-01-01

    This paper focuses on the lack of technological skills that educators do not have to intertwine pedagogy with technology. Teachers are finding themselves lacking the skills necessary to keep up with their tech savvy students, therefore the electronic rift is growing bigger. Educators must be able to master software that allows them to become more…

  14. Ferromagnetic Swimmers - Devices and Applications

    NASA Astrophysics Data System (ADS)

    Hamilton, Joshua; Petrov, Peter; Winlove, C. Peter; Gilbert, Andrew; Bryan, Matthew; Ogrin, Feodor

    2017-11-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. We propose a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. Experimentally, these devices (3.6 mm) are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters and demonstrate stable propulsion over a wide range of Reynolds numbers. Manipulation of the external magnetic field resulted in robust control over the speed and direction of propulsion. We also demonstrate our ferromagnetic swimmer working as a macroscopic prototype of a microfluidic pump. By physically tethering the swimmer, instead of swimming, the swimmer generates a directional flow of liquid around itself.

  15. ITER-FEAT vacuum vessel and blanket design features and implications for the R&D programme

    NASA Astrophysics Data System (ADS)

    Ioki, K.; Dänner, W.; Koizumi, K.; Krylov, V. A.; Cardella, A.; Elio, F.; Onozuka, M.; ITER Joint Central Team; ITER Home Teams

    2001-03-01

    A configuration in which the vacuum vessel (VV) fits tightly to the plasma aids the passive plasma vertical stability, and ferromagnetic material in the VV reduces the toroidal field ripple. The blanket modules are supported directly by the VV. A full scale VV sector model has provided critical information related to fabrication technology and for testing the magnitude of welding distortions and achievable tolerances. This R&D validated the fundamental feasibility of the double wall VV design. The blanket module configuration consists of a shield body to which a separate first wall is mounted. The separate first wall has a facet geometry consisting of multiple flat panels, where 3-D machining will not be required. A configuration with deep slits minimizes the induced eddy currents and loads. The feasibility and robustness of solid hot isostatic pressing joining were demonstrated in the R&D by manufacturing and testing several small and medium scale mock-ups and finally two prototypes. Remote handling tests and assembly tests of a blanket module have demonstrated the basic feasibility of its installation and removal.

  16. Multiple methods integration for structural mechanics analysis and design

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Aminpour, M. A.

    1991-01-01

    A new research area of multiple methods integration is proposed for joining diverse methods of structural mechanics analysis which interact with one another. Three categories of multiple methods are defined: those in which a physical interface are well defined; those in which a physical interface is not well-defined, but selected; and those in which the interface is a mathematical transformation. Two fundamental integration procedures are presented that can be extended to integrate various methods (e.g., finite elements, Rayleigh Ritz, Galerkin, and integral methods) with one another. Since the finite element method will likely be the major method to be integrated, its enhanced robustness under element distortion is also examined and a new robust shell element is demonstrated.

  17. Team Teaching with Academic Core Curricula Teachers: Using Aviation Concepts

    ERIC Educational Resources Information Center

    Berentsen, Lowell W.

    2006-01-01

    Technology education teachers today have at their disposal the skills, opportunity, experience, ingenuity, expertise, equipment, and environment to greatly improve students' ability to learn and apply the knowledge they have gained in their academic programs. When a technology education teacher joins forces with an academic core teacher, the…

  18. Developing E-Government Coursework through the NASPAA Competencies Framework

    ERIC Educational Resources Information Center

    McQuiston, James M.; Manoharan, Aroon P.

    2017-01-01

    Information technology (IT) is often less emphasized in coursework related to public administration education, despite the growing need for technological capabilities in those joining the public sector workforce. This coupled with a lesser emphasis on e-government/IT skills by accreditation standards adds to the widening gap between theory and…

  19. Technology and Motor Ability Development

    ERIC Educational Resources Information Center

    Wang, Lin; Lang, Yong; Luo, Zhongmin

    2014-01-01

    As a new member joining the technology family, active video games have been developed to promote physical exercise. This working-in-progress paper shares an ongoing project on examining the basic motor abilities that are enhanced through participating in commercially available active video games. [For the full proceedings see ED557181.

  20. Technology: nursing the system. Technology and the potential for entrepreneurship.

    PubMed

    Simpson, R L

    1997-10-01

    Many nurses are stepping beyond the boundaries of traditional practice and creating their own business or service centers. New entrepreneurial opportunities include working on computer-based patient records, providing consulting services, developing policies and more. Getting involved--joining informatics groups, taking classes--is the first step.

  1. Using Online Education Technologies to Support Studio Instruction

    ERIC Educational Resources Information Center

    Bender, Diane M.; Vredevoogd, Jon D.

    2006-01-01

    Technology is transforming the education and practice of architecture and design. The newest form of education is blended learning, which combines personal interaction from live class sessions with online education for greater learning flexibility (Abrams & Haefner, 2002). Reluctant to join the digital era are educators teaching studio courses…

  2. Biomimetic-inspired joining of composite with metal structures: A survey of natural joints and application to single lap joints

    NASA Astrophysics Data System (ADS)

    Avgoulas, Evangelos Ioannis; Sutcliffe, Michael P. F.

    2014-03-01

    Joining composites with metal parts leads, inevitably, to high stress concentrations because of the material property mismatch. Since joining composite to metal is required in many high performance structures, there is a need to develop a new multifunctional approach to meet this challenge. This paper uses the biomimetics approach to help develop solutions to this problem. Nature has found many ingenious ways of joining dissimilar materials and making robust attachments, alleviating potential stress concentrations. A literature survey of natural joint systems has been carried out, identifying and analysing different natural joint methods from a mechanical perspective. A taxonomy table was developed based on the different methods/functions that nature successfully uses to attach dissimilar tissues (materials). This table is used to understand common themes or approaches used in nature for different joint configurations and functionalities. One of the key characteristics that nature uses to joint dissimilar materials is a transitional zone of stiffness in the insertion site. Several biomimetic-inspired metal-to-composite (steel-to-CFRP), adhesively bonded, Single Lap Joints (SLJs) were numerically investigated using a finite element analysis. The proposed solutions offer a transitional zone of stiffness of one joint part to reduce the material stiffness mismatch at the joint. An optimisation procedure was used to identify the variation in material stiffness which minimises potential failure of the joint. It was found that the proposed biomimetic SLJs reduce the asymmetry of the stress distribution along the adhesive area.

  3. A Conceptual Methodology for Assessing Acquisition Requirements Robustness against Technology Uncertainties

    NASA Astrophysics Data System (ADS)

    Chou, Shuo-Ju

    2011-12-01

    In recent years the United States has shifted from a threat-based acquisition policy that developed systems for countering specific threats to a capabilities-based strategy that emphasizes the acquisition of systems that provide critical national defense capabilities. This shift in policy, in theory, allows for the creation of an "optimal force" that is robust against current and future threats regardless of the tactics and scenario involved. In broad terms, robustness can be defined as the insensitivity of an outcome to "noise" or non-controlled variables. Within this context, the outcome is the successful achievement of defense strategies and the noise variables are tactics and scenarios that will be associated with current and future enemies. Unfortunately, a lack of system capability, budget, and schedule robustness against technology performance and development uncertainties has led to major setbacks in recent acquisition programs. This lack of robustness stems from the fact that immature technologies have uncertainties in their expected performance, development cost, and schedule that cause to variations in system effectiveness and program development budget and schedule requirements. Unfortunately, the Technology Readiness Assessment process currently used by acquisition program managers and decision-makers to measure technology uncertainty during critical program decision junctions does not adequately capture the impact of technology performance and development uncertainty on program capability and development metrics. The Technology Readiness Level metric employed by the TRA to describe program technology elements uncertainties can only provide a qualitative and non-descript estimation of the technology uncertainties. In order to assess program robustness, specifically requirements robustness, against technology performance and development uncertainties, a new process is needed. This process should provide acquisition program managers and decision-makers with the ability to assess or measure the robustness of program requirements against such uncertainties. A literature review of techniques for forecasting technology performance and development uncertainties and subsequent impacts on capability, budget, and schedule requirements resulted in the conclusion that an analysis process that coupled a probabilistic analysis technique such as Monte Carlo Simulations with quantitative and parametric models of technology performance impact and technology development time and cost requirements would allow the probabilities of meeting specific constraints of these requirements to be established. These probabilities of requirements success metrics can then be used as a quantitative and probabilistic measure of program requirements robustness against technology uncertainties. Combined with a Multi-Objective Genetic Algorithm optimization process and computer-based Decision Support System, critical information regarding requirements robustness against technology uncertainties can be captured and quantified for acquisition decision-makers. This results in a more informed and justifiable selection of program technologies during initial program definition as well as formulation of program development and risk management strategies. To meet the stated research objective, the ENhanced TEchnology Robustness Prediction and RISk Evaluation (ENTERPRISE) methodology was formulated to provide a structured and transparent process for integrating these enabling techniques to provide a probabilistic and quantitative assessment of acquisition program requirements robustness against technology performance and development uncertainties. In order to demonstrate the capabilities of the ENTERPRISE method and test the research Hypotheses, an demonstration application of this method was performed on a notional program for acquiring the Carrier-based Suppression of Enemy Air Defenses (SEAD) using Unmanned Combat Aircraft Systems (UCAS) and their enabling technologies. The results of this implementation provided valuable insights regarding the benefits and inner workings of this methodology as well as its limitations that should be addressed in the future to narrow the gap between current state and the desired state.

  4. Influence of friction stir welding parameters on titanium-aluminum heterogeneous lap joining configuration

    NASA Astrophysics Data System (ADS)

    Picot, Florent; Gueydan, Antoine; Hug, Éric

    2017-10-01

    Lap joining configuration for Friction Stir Welding process is a methodology mostly dedicated to heterogeneous bonding. This welding technology was applied to join pure titanium with pure aluminum by varying the rotation speed and the movement speed of the tool. Regardless of the process parameters, it was found that the maximum strength of the junction remains almost constant. Microstructural observations by means of Scanning Electron Microscopy and Energy Dispersive Spectrometry analysis enable to describe the interfacial join and reveal asymmetric Cold Lap Defects on the sides of the junction. Chemical analysis shows the presence of one exclusive intermetallic compound through the interface identified as TiAl3. This compound is responsible of the crack spreading of the junction during the mechanical loading. The original version of this article supplied to AIP Publishing contained an accidental inversion of the authors, names. An updated version of this article, with the authors names formatted correctly was published on 20 October 2017.

  5. JPRS Report. Science & Technology: Japan.

    DTIC Science & Technology

    1988-12-09

    Molding Technology [Takashi Kasai , Akihiko Hirota; KIKAI TO KOGU, May 88] 106 Injection Molding Technology [Toshiyuki Iwahashi; KIKAI TO KOGU, May 88...Development Shu Isa -Planning Office Fumio Sato —Control Office Shizuka Kudo - Patent Office Taro Inoue —Technical Information Office Takeshi...the possibility that a more serious situation could occur. Fumio Kaneko, who is in charge of the marine sector, joined the company in 1971 after

  6. Cornell University Center for Advanced Computing

    Science.gov Websites

    Resource Center Data Management (RDMSG) Computational Agriculture National Science Foundation Other Public agriculture technology acquired Lifka joins National Science Foundation CISE Advisory Committee © Cornell

  7. Dr. William Tumas - Associate Laboratory Director, Materials and Chemical

    Science.gov Websites

    Chemical Science and Technology Dr. William Tumas - Associate Laboratory Director, Materials and Chemical , technical direction, and workforce development of the materials and chemical science and technology , program management, and program execution. He joined NREL in December 2009 as Director of the Chemical and

  8. EARTHWATCH Expeditions Impact Science Education: Exposing Teachers to Science and Technology in the Field and in the Classroom.

    ERIC Educational Resources Information Center

    Nixon, Rachel A.

    1997-01-01

    Presents six case studies of EARTHWATCH expeditions which provide teachers with opportunities to work with scientists, participate in scientific discovery, and employ new technology. Educators join EARTHWATCH teams to explore tropical and dry forests, monitor ecosystems and species, unearth remains, and consequently develop innovative classroom…

  9. E-Learning for University Effectiveness in the Developing World

    ERIC Educational Resources Information Center

    Sekiwu, Denis

    2010-01-01

    The globalisation trends of society have taken centre stage meaning that people around the world are required to develop high level but low cost technologies and innovative competencies in order to enhance social development. In the field of higher education, university managers need to join the technological revolution by adopting low cost ICT…

  10. The GISt of GPS

    ERIC Educational Resources Information Center

    Lane, Kelly

    2004-01-01

    For the fourth year in a row, the author and a computer teacher have joined forces to guide students through an annual technology and research project that benefits area institutions and community members. The author presents the three key areas of the geospatial technologies curriculum at Douglas High School in Box Elder, South Dakota: (1)…

  11. Remote Maneuver of Space Debris Using Photon Pressure for Active Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Smith, C.

    2014-09-01

    The Space Environment Research Corporation (SERC) is a consortium of companies and research institutions that have joined together to pursue research and development of technologies and capabilities that will help to preserve the orbital space environment. The consortium includes, Electro Optics Systems (Australia), Lockheed Martin Australia, Optus Satellite Systems (Australia), The Australian national University, RMIT University, National Institute of Information and Communications Technology (NICT, Japan) as well as affiliates from NASA Ames and ESA. SERC is also the recipient of and Australian Government Cooperative Research Centre grant. SERC will pursue a wide ranging research program including technologies to improve tracking capability and capacity, orbit determination and propagation algorithms, conjunction analysis and collision avoidance. All of these technologies will contribute to the flagship program to demonstrate active collision avoidance using photon pressure to provide remote maneuver of space debris. This project joins of the proposed NASA Lightforce concept with infrastructure and capabilities provided by SERC. This paper will describe the proposed research and development program to provide an on-orbit demonstration within the next five years for remote maneuver of space debris.

  12. Sustainability of Welding Process through Bobbin Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Sued, M. K.; Samsuri, S. S. M.; Kassim, M. K. A. M.; Nasir, S. N. N. M.

    2018-03-01

    Welding process is in high demand, which required a competitive technology to be adopted. This is important for sustaining the needs of the joining industries without ignoring the impact of the process to the environment. Friction stir welding (FSW) is stated to be benefitting the environment through low energy consumption, which cannot be achieved through traditional arc welding. However, this is not well documented, especially for bobbin friction stir welding (BFSW). Therefore, an investigation is conducted by measuring current consumption of the machine during the BFSW process. From the measurement, different phases of BFSW welding process and its electrical demand are presented. It is found that in general total energy in BFSW is about 130kW inclusive of all identified process phases. The phase that utilise for joint formation is in weld phase that used the highest total energy of 120kWs. The recorded total energy is still far below the traditional welding technology and the conventional friction stir welding (CFSW) energy demand. This indicates that BFSW technology with its vast benefit able to sustain the joining technology in near future.

  13. Compact Ceramic Microchannel Heat Exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewinsohn, Charles

    The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe howmore » this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.« less

  14. Precision Nanoparticles

    ScienceCinema

    John Hemminger

    2017-12-09

    A revolutionary technology that efficiently produces nanoparticles in uniform and prescribed sizes (1-100 nanometers) using supercritical fluids. INL researcher Robert Fox was joined by Idaho State University researchers Rene Rodriquez and Joshua Pak in d

  15. Solidification Technologies for Radioactive and Chemical Liquid Waste Treatment - Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castiglioni, Andrew J.; Gelis, Artem V.

    This project, organized under DOE/NNSA's Global Initiatives for Proliferation Prevention program, joined Russian and DOE scientists in developing more effective solidification and storage technologies for liquid radioactive waste. Several patent applications were filed by the Russian scientists (Russia only) and in 2012, the technology developed was approved by Russia's Federal State Unitary Enterprise RADON for application throughout Russia in cleaning up and disposing of radioactive waste.

  16. JPRS Report, Science & Technology, USSR: Science & Technology Policy

    DTIC Science & Technology

    1988-11-14

    the Chemistry Department of Latvian State University. But even prior to graduating from Latvian State University, he joined the Riga Citric Acid ...introduction into production of a technology of micro- biological production of citric acid from molasses. On graduating from Latvian State University...R.Ya. Karklin received a proposal in 1952 to become the chief engineer of the Riga Citric Acid Plant. One of the young chief engineer’s first

  17. Make or Buy: A Systematic Approach to Department of Defense Sourcing Decisions

    DTIC Science & Technology

    2013-07-30

    Defense-Industrial Initiatives Group at CSIS, where he worked on projects related to U.S. and European technology and industrial bases supporting defense...Prior to joining CSIS, Mr. Ben-Ari was a research associate at George Washington University’s Center for International Science and Technology ...collaborative research and development programs for Gilat Satellite Networks Ltd., an Israeli high- technology company in the field of satellite

  18. New Targets for New Accelerators

    NASA Astrophysics Data System (ADS)

    Frentz, Bryce; Manukyan, Khachatur; Aprahamian, Ani

    2013-10-01

    New accelerators, such as the 5 MV Sta Ana accelerator at the University of Notre Dame, will produce more powerful beams up to 100's of μAmps. These accelerators require a complete rethinking of target preparation since the high intensity of such beams would melt conventional targets. Traditionally, accelerator targets are made with a tantalum backing because of its high atomic mass. However, tantalum is brittle, a poor conductor, and, if produced commercially, often contains impurities (e.g. fluorine) that produce undesirable background and reaction products. Tungsten, despite its brittle structure and poor conductivity, has a high atomic mass and lacks impurities, making it a more desirable backing. In conjunction with tungsten's properties, copper is robust and a far superior thermal conductor. We describe a new method of reactive joining that we developed for creating targets that use the advantageous properties of both tungsten and copper. This process involved placing a reactive mixture between tungsten and copper and applying a load force. The mixture is then ignited, and while under pressure, the system produces conditions to join the materials. We present our investigation to optimize the process of reactive joining, as well as some of the final target's properties. This work was supported by the National Science Foundation under Grant PHY-1068192.

  19. Braze Development of Graphite Fiber for Use in Phase Change Material Heat Sinks

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; Gleason, Brian; Beringer, Woody; Stephen, Ryan

    2010-01-01

    Hamilton Sundstrand (HS), together with NASA Johnson Space Center, developed methods to metallurgically join graphite fiber to aluminum. The goal of the effort was to demonstrate improved thermal conductance, tensile strength and manufacturability compared to existing epoxy bonded techniques. These improvements have the potential to increase the performance and robustness of phase change material heat sinks that use graphite fibers as an interstitial material. Initial work focused on evaluating joining techniques from 4 suppliers, each consisting of a metallization step followed by brazing or soldering of one inch square blocks of Fibercore graphite fiber material to aluminum end sheets. Results matched the strength and thermal conductance of the epoxy bonded control samples, so two suppliers were down-selected for a second round of braze development. The second round of braze samples had up to a 300% increase in strength and up to a 132% increase in thermal conductance over the bonded samples. However, scalability and repeatability proved to be significant hurdles with the metallization approach. An alternative approach was pursued which used nickel and active braze allows to prepare the carbon fibers for joining with aluminum. This approach was repeatable and scalable with improved strength and thermal conductance when compared with epoxy bonding.

  20. Braze Development of Graphite Fiber for Use in Phase Change Material Heat Sinks

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; Beringer, Woody; Gleason, Brian; Stephan, Ryan

    2011-01-01

    Hamilton Sundstrand (HS), together with NASA Johnson Space Center, developed methods to metallurgically join graphite fiber to aluminum. The goal of the effort was to demonstrate improved thermal conductance, tensile strength and manufacturability compared to existing epoxy bonded techniques. These improvements have the potential to increase the performance and robustness of phase change material heat sinks that use graphite fibers as an interstitial material. Initial work focused on evaluating joining techniques from four suppliers, each consisting of a metallization step followed by brazing or soldering of one inch square blocks of Fibercore graphite fiber material to aluminum end sheets. Results matched the strength and thermal conductance of the epoxy bonded control samples, so two suppliers were down-selected for a second round of braze development. The second round of braze samples had up to a 300% increase in strength and up to a 132% increase in thermal conductance over the bonded samples. However, scalability and repeatability proved to be significant hurdles with the metallization approach. An alternative approach was pursued which used a nickel braze allow to prepare the carbon fibers for joining with aluminum. Initial results on sample blocks indicate that this approach should be repeatable and scalable with good strength and thermal conductance when compared with epoxy bonding.

  1. An Investigation Into Robust Wind Correction Algorithms for Off-the Shelf Unmanned Aerial Vehicle Autopilots

    DTIC Science & Technology

    2006-06-01

    110’s. Figure 1. Two Completed Sig Rascal 110’s (Jodeh, 2006) The manufacturer provided airfoil was a combination of two Eppler planforms. The...top airfoil surface is an Eppler 193, while the bottom is an Eppler 205, joined at the chord lines. SIG also stated that the resultant section...97 Figure 61 . Various Parameters for the Race Track Pattern at 20 m/s, Wind5 m/s, & TC=250 .................... 97 Figure 62. Real Time Wind

  2. Titanium MEMS Technology Development for Drug Delivery and Microfluidic Applications

    NASA Astrophysics Data System (ADS)

    Khandan, Omid

    The use of microelectromechanical systems (MEMS) technology in medical and biological applications has increased dramatically in the past decade due to the potential for enhanced sensitivity, functionality, and performance associated with the miniaturization of devices, as well as the market potential for low-cost, personalized medicine. However, the utility of such devices in clinical medicine is ultimately limited due to factors associated with prevailing micromachined materials such as silicon, as it poses concerns of safety and reliability due to its intrinsically brittle properties, making it prone to catastrophic failure. Recent advances in titanium (Ti) micromachining provides an opportunity to create devices with enhanced safety and performance due to its proven biocompatibility and high fracture toughness, which causes it to fail by means of graceful, plasticity-based deformation. Motivated by this opportunity, we discuss our efforts to advance Ti MEMS technology in two ways: 1) Through the development of titanium-based microneedles (MNs) that seek to provide a safer, simpler, and more efficacious means of ocular drug delivery, and 2) Through the advancement of Ti anodic bonding for future realization of robust microfluidic devices for photocatalysis applications. As for the first of these thrusts, we show that MN devices with in-plane geometry and through-thickness fenestrations that serve as drug reservoirs for passive delivery via diffusive transport from fast-dissolving coatings can be fabricated utilizing Ti deep reactive ion etching (Ti DRIE). Our mechanical testing and finite element analysis (FEA) results suggest that these devices possess sufficient stiffness for reliable corneal insertion. Our MN coating studies show that, relative to solid MNs of identical shank dimension, fenestrated devices can increase drug carrying capacity by 5-fold. Furthermore, we demonstrate that through-etched fenestrations provide a protective cavity for delivering drugs subsurface, thereby enhancing delivery efficiencies in an ex vivo rabbit cornea model. Collectively, these results show the potential embodied in developing Ti MNs for effective, minimally invasive, and low-cost ocular drug delivery. Additionally, or the second of these thrusts, we report the development of an anodic bonding process that allows, for the first time, high-strength joining of bulk Ti and glass substrates at the wafer-scale, without need for interlayers or adhesives. We demonstrate that uniform, full-wafer bonding can be achieved at temperatures as low as 250°C, and that failure during burst pressure testing occurs via crack propagation through the glass, rather than the Ti/glass interface, thus demonstrating the robustness of the bonding. Moreover, using optimized bonding conditions, we demonstrate the fabrication of rudimentary Ti/glass-based microfluidic devices at the wafer-scale, and their leak-free operation under pressure-driven flow. Finally, we demonstrate the monolithic integration of nanoporous titanium dioxide within such devices, thus illustrating the promise embodied in Ti anodic bonding for future realization of robust microfluidic devices for photocatalysis applications. Together, these results demonstrate the potential embodied in utilizing Ti MEMS technology for the fabrication of novel drug delivery and microfluidic systems with enhanced robustness, safety, and performance.

  3. E-Commerce and Education. Graduate Paper Series on Electronic Commerce.

    ERIC Educational Resources Information Center

    di Giantomasso, Tania

    Broad assumptions about the impact of the Internet have created a "cult of hype" where the latest technological advancement is seen as the next best thing, and educators have been swept up in the promise of an educational utopia. The hype tells us that the world is joined by the infrastructure of this new technology and that…

  4. Professors Join the Fray as Supreme Court Hears Arguments in File-Sharing Case

    ERIC Educational Resources Information Center

    Foster, Andrea L.

    2005-01-01

    U.S. Supreme Court justices struggled in a lively debate with how to balance the competing interests of the entertainment industry and developers of file-sharing technology. Some justices sharply questioned whether it was fair to hold inventors of a distribution technology liable for copyright infringement, while others suggested that it was wrong…

  5. AWS breaks new ground with soldering specification.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vianco, Paul Thomas

    Joining technologies continue to advance with new materials, process innovations, and inspection techniques. An increasing number of high-valued, high-reliability applications -- from boilers and ship hulls to rocket motors and medical devices -- have required the development of industry standards and specifications in order to ensure that the best design and manufacturing practices are being used to produce safe, durable products and assemblies. Standards writing has always had an important role at the American Welding Society (AWS). The AWS standards and specifications cover such topics as filler materials, joining processes, inspection techniques, and qualification methods that are used in weldingmore » and brazing technologies. These AWS standards and specifications, all of which are approved by the American National Standards Institute (ANSI), have also provided the basis for many similar documents used in Europe and in Pacific Rim countries.« less

  6. Study of the undergraduate student's innovation and entrepreneurship training strategy

    NASA Astrophysics Data System (ADS)

    Sui, Guorong; Liang, Binming; Jia, Hongzhi

    2017-08-01

    With the development of science and technology, all teachers in the college will face how to stimulate the undergraduate student's ability and make them to be an excellent engineer. For solving these questions, a new scheme with three steps has been designed. First, students will participate in the class teaching activity not only teacher. It will encourage them to read many extracurricular books and articles. Second, they will be required to think and design more new experiments after complete all experiment about the textbook and join more competition of the innovation and entrepreneurship. Third, some students who have more time and ability can early enter into his advisor professor's lab to join various science and technology project. By this scheme, it will be realized to improve student's innovation ability and be a brilliant engineer.

  7. Joining dissimilar materials using Friction Stir scribe technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Hovanski, Yuri; Jana, Saumyadeep

    2016-10-03

    The ability to effectively join materials with vastly different melting points like Aluminum-Steel, Polymer composites - metals has been one of the road blocks in realizing multi-material components for light weighting efforts. Friction stir scribe (FSS) technique is a promising method that produces continuous overlap joint between materials with vastly different melting regimes and high temperature flow characteristics. FSS uses an offset cutting tool at the tip of the FSW pin to create an insitu mechanical interlock between material interfaces. With investments from Vehicle Technology office, US DOE and several automotive manufacturers and suppliers PNNL is developing the FSS processmore » and has demonstrated viability of joining several material combinations. Details of welding trails, unique challenges and mitigation strategies in different material combinations will be discussed. Joint characterization including mechanical tests and joint performances will also be presented.« less

  8. Rhenium Mechanical Properties and Joining Technology

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Biaglow, James A.

    1996-01-01

    Iridium-coated rhenium (Ir/Re) provides thermal margin for high performance and long life radiation cooled rockets. Two issues that have arisen in the development of flight Ir/Re engines are the sparsity of rhenium (Re) mechanical property data (particularly at high temperatures) required for engineering design, and the inability to directly electron beam weld Re chambers to C103 nozzle skirts. To address these issues, a Re mechanical property database is being established and techniques for creating Re/C103 transition joints are being investigated. This paper discusses the tensile testing results of powder metallurgy Re samples at temperatures from 1370 to 2090 C. Also discussed is the evaluation of Re/C103 transition pieces joined by both, explosive and diffusion bonding. Finally, the evaluation of full size Re transition pieces, joined by inertia welding, as well as explosive and diffusion bonding, is detailed.

  9. Bonding Cu to Al2O3 with Bi-B-Zn Oxide Glass Via Oxidation-Reduction Reaction

    NASA Astrophysics Data System (ADS)

    Chen, Jianqiang; Li, Yufeng; Miao, Weiliang; Mai, Chengle; Li, Mingyu

    2018-01-01

    Bonding Cu on Al2O3 is a key and difficult technology applied in high-power semiconductor devices. A method proposed in this work investigates bonding with a kind of Bi-B-Zn oxide glass powder paste as a solder. Oxidation-reduction reactions between the Cu plate and the solder took place and generated Bi metal during the joining procedure. With an increase in the joining temperature, the tensile strength increased due to the increase of Bi metal formation. The Bi metal played an important role in joining Cu and Al2O3 because of its much better wettability on Cu than that of the oxides. A compound ZnAl2O4 was observed to form between the Al2O3 ceramic and oxide layer, which strengthened the bond.

  10. Disruptive Technology for Vector Control: the Innovative Vector Control Consortium and the US Military Join Forces to Explore Transformative Insecticide Application Technology for Mosquito Control Programmes

    DTIC Science & Technology

    2015-09-26

    Forces Pest Management Board (AFPMB) focused on public health pesticide application technology. Three main top- ics were discussed: the limitations...industry, the World Health Organization, the Bill and Melinda Gates Foundation and others. Keywords: Pesticide application, Indoor residual spraying (IRS...Navy Entomology Center of Excel- lence (NECE), and industry as part of a joint workshop focused on public health pesticide application technology

  11. Numerical investigation of electromagnetic pulse welded interfaces between dissimilar metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wei; Sun, Xin

    Electromagnetic pulse welding (EMPW), an innovative high-speed joining technique, is a potential method for the automotive industry in joining and assembly of dissimilar lightweight metals with drastically different melting temperatures and other thermal physical properties, such as thermal conductivity and thermal expansion coefficients. The weld quality of EMPW is significantly affected by a variety of interacting physical phenomena including large plastic deformation, materials mixing, localized heating and rapid cooling, possible localized melting and subsequent diffusion and solidification, micro-cracking and void, etc. In the present study, a thermo-mechanically coupled dynamic model has been developed to quantitatively resolve the high-speed impact joiningmore » interface characteristics as well as the process-induced interface temperature evolution, defect formation and possible microstructural composition variation. Reasonably good agreement has been obtained between the predicted results and experimental measurements in terms of interfacial morphology characteristics. The modeling framework is expected to provide further understanding of the hierarchical interfacial features of the non-equilibrium material joining process and weld formation mechanisms involved in the EMPW operation, thus accelerating future development and deployment of this advanced joining technology.« less

  12. Laser-Hybrid welding, an innovative technology to join automotive body parts

    NASA Astrophysics Data System (ADS)

    Sieben, Manuel; Brunnecker, Frank

    The design of Tail lamps has been changed dramatically since cars built. At modern lamps, the lenses are absolutely transparent and allow a direct view onto the weld seam. Conventional welding technologies, such as vibration and hot plate welding cannot compete with this demand. Focused on this targeted application, LPKF Laser & Electronics AG has developed in cooperation with the Bavarian Laser Centre a unique Laser welding technology called hybrid welding.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, H.E.

    The predictions of a special Metal Progress round table spanning the next 20 years in materials and process engineering in North America are given. Subjects discussed include the energy crunch, impact of computer technology, new roles for testing and inspection, happenings in non ferrous technology, materials substitution, composites and non metallics, people aspects of technology, materials availability, powder metallurgy changes, casting, welding and joining, heat treatments, carbon and alloy steels, new and improved materials, forming, coatings and conservation, and metal production. (FS)

  14. Study of two different thin film coating methods in transmission laser micro-joining of thin Ti-film coated glass and polyimide for biomedical applications.

    PubMed

    Sultana, T; Georgiev, G L; Baird, R J; Auner, G W; Newaz, G; Patwa, R; Herfurth, H J

    2009-07-01

    Biomedical devices and implants require precision joining for hermetic sealing which can be achieved with low power lasers. The effect of two different thin metal film coating methods was studied in transmission laser micro-joints of titanium-coated glass and polyimide. The coating methods were cathodic arc physical vapor deposition (CA-PVD) and electron beam evaporation (EB-PVD). Titanium-coated glass joined to polyimide film can have neural electrode application. The improvement of the joint quality will be essential for robust performance of the device. Low power fiber laser (wave length = 1100 nm) was used for transmission laser micro-joining of thin titanium (Ti) film (approximately 200 nm) coated Pyrex borosilicate 7740 glass wafer (0.5 mm thick) and polyimide (Imidex) film (0.2 mm thick). Ti film acts as the coupling agent in the joining process. The Ti film deposition rate in the CA-PVD was 5-10 A/s and in the EB-PVD 1.5 A/s. The laser joint strength was measured by a lap shear test, the Ti film surfaces were analyzed by atomic force microscopy (AFM) and the lap shear tested joints were analyzed by optical microscopy and scanning electron microscopy (SEM). The film properties and the failure modes of the joints were correlated to joint strength. The CA-PVD produced around 4 times stronger laser joints than EB-PVD. The adhesion of the Ti film on glass by CA-PVD is better than that of the EB-PVD method. This is likely to be due to a higher film deposition rate and consequently higher adhesion or sticking coefficient for the CA-PVD particles arriving on the substrate compared to that of the EB-PVD film. EB-PVD shows poor laser bonding properties due to the development of thermal hotspots which occurs from film decohesion.

  15. 76 FR 44581 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... for reducing methane emissions. By joining, Natural Gas STAR partners agree to implement cost-effective technologies and practices to reduce methane emissions, which will save money, improve operational...

  16. National Cancer Institute and American Association for Clinical Chemistry Partner to Bridge the Gap | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute, through its Clinical Proteomic Technologies for Cancer (CPTC) initiative has entered into a memorandum of understanding with the American Association for Clinical Chemistry (AACC) to join forces to promote and educate the clinical chemistry community in the area of proteomic standards and technology advances.

  17. Groundwork: Preparing an Effective Basis for Communication and Shared Learning in Design and Technology Education

    ERIC Educational Resources Information Center

    Looijenga, Annemarie; Klapwijk, Remke; de Vries, Marc J.

    2016-01-01

    In Dutch Design and Technology Education the beginning of a process of learning is usually determined by the teacher. In this paper it is argued that a beginning, determined in interaction with the students, is more profitable as the interaction will lead to joined-up exploring, creating and thinking and an increased motivation to learn.…

  18. NASA Chief Technologist Douglas Terrier Moderates Panel During the AAS 55th Robert H. Goddard Memorial Symposium

    NASA Image and Video Library

    2017-03-08

    NASA Chief Technologist Douglas Terrier moderated the discussion “NASA Leadership in the Future of Science and Technology" during the AAS 55th Robert H. Goddard Memorial Symposium on March 8, 2017. Terrier was joined by Associate Administrator for Space Technology Steve Jurczyk, Chief Scientist Gale Allen and Associate Administrator for Science Thomas Zurbuchen.

  19. NASA Chief Technologist Douglas Terrier Moderates Discussion During the AAS 55th Robert H. Goddard Memorial Symposium

    NASA Image and Video Library

    2017-03-08

    NASA Chief Technologist Douglas Terrier moderated the discussion “NASA Leadership in the Future of Science and Technology" during the AAS 55th Robert H. Goddard Memorial Symposium on March 8, 2017. Terrier was joined by Associate Administrator for Space Technology Steve Jurczyk, Chief Scientist Gale Allen and Associate Administrator for Science Thomas Zurbuchen.

  20. From Localization to Internationalization of Higher Education: Globalization and Transformation of University Education in Uganda

    ERIC Educational Resources Information Center

    Sekiwu, Denis

    2010-01-01

    The thrust for globalisation of society has taken centre stage. This means that people around the world are required to develop high level but low cost technologies and innovative competencies in order to enhance social development. In the field of higher education, university managers need to join the technological revolution by adopting low cost…

  1. Website on Protein Interaction and Protein Structure Related Work

    NASA Technical Reports Server (NTRS)

    Samanta, Manoj; Liang, Shoudan; Biegel, Bryan (Technical Monitor)

    2003-01-01

    In today's world, three seemingly diverse fields - computer information technology, nanotechnology and biotechnology are joining forces to enlarge our scientific knowledge and solve complex technological problems. Our group is dedicated to conduct theoretical research exploring the challenges in this area. The major areas of research include: 1) Yeast Protein Interactions; 2) Protein Structures; and 3) Current Transport through Small Molecules.

  2. The Ties That Bind: The Experiences of Women of Color Faculty in STEM

    ERIC Educational Resources Information Center

    Wilkins, Ashlee Nichole

    2017-01-01

    As women of color (WOC) enter the science, technology, engineering, and math (STEM) pipeline with aspirations to join the faculty ranks, it is important that the academy is prepared to address their unique needs to ensure they are supported as they engage in scientific and technological research, support students, and advance in their career.…

  3. Science & Technology Review October 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aufderheide III, M B

    This month's issue has the following articles: (1) Important Missions, Great Science, and Innovative Technology--Commentary by Cherry A. Murray; (2) NanoFoil{reg_sign} Solders with Less Heat--Soldering and brazing to join an array of materials are now Soldering and brazing to join an array of materials are now possible without furnaces, torches, or lead; (3) Detecting Radiation on the Move--An award-winning technology can detect even small amounts An award-winning technology can detect even small amounts of radioactive material in transit; (4) Identifying Airborne Pathogens in Time to Respond--A mass spectrometer identifies airborne spores in less than A mass spectrometer identifies airborne sporesmore » in less than a minute with no false positives; (5) Picture Perfect with VisIt--The Livermore-developed software tool VisIt helps scientists The Livermore-developed software tool VisIt helps scientists visualize and analyze large data sets; (6) Revealing the Mysteries of Water--Scientists are using Livermore's Thunder supercomputer and new algorithms to understand the phases of water; and (7) Lightweight Target Generates Bright, Energetic X Rays--Livermore scientists are producing aerogel targets for use in inertial Livermore scientists are producing aerogel targets for use in inertial confinement fusion experiments and radiation-effects testing.« less

  4. Engineering 2.0: Exploring Lightweight Technologies for the Virtual Enterprise

    NASA Astrophysics Data System (ADS)

    Larsson, Andreas; Ericson, Åsa; Larsson, Tobias; Isaksson, Ola; Bertoni, Marco

    In a traditional business partnership, the partner companies are under contractual obligation to share data, information, and knowledge through one or several information systems that the leading firm decides. In such a case, the issue of sharing "whatever needs to be shared" is settled in contracts before any action is taken, however, also giving the implications that sharing expertise becomes a heavy and time-consuming activity. In turn, it can be argued that the heavy administration affects the lead time of product development negatively since the necessary input flows are delayed. In addition, the adaptation to certain predefined collaborative information systems is both expensive and resource-consuming (e.g., educating staff to use them). Also, the system might not be adaptable to the existing internal technology structure, causing a "translation" procedure, again taking up resources. Another structure for collaboration is a network or alliance of independent partner companies. One motivation for a network structure is that the partners can join or leave it more easily. A reason for joining and staying is an implicit sense of knowledge sharing (Tomkins 2001) and access to a "win-win" environment. Furthermore, the partners can be linked by information technology, i.e., forming a virtual ­structure rather than a physical one. The technologies provide the channels with additional knowledge. In a best-case scenario, a company would get access to a wide range of useful competences, and in a worst-case scenario the company would be drained of its core competences. Accordingly, at least two considerations for joining a partner network can be considered. First, the resources needed to couple the technologies have to be reasonable, due to the underpinning logic of going in and out of more than one network. Second, the company has to identify its knowledge base and evaluate the prospective gains and losses of sharing its expertise.

  5. Correlation analysis of the variation of weld seam and tensile strength in laser welding of galvanized steel

    NASA Astrophysics Data System (ADS)

    Sinha, Amit Kumar; Kim, Duck Young; Ceglarek, Darek

    2013-10-01

    Many advantages of laser welding technology such as high speed and non-contact welding make the use of the technology more attractive in the automotive industry. Many studies have been conducted to search the optimal welding condition experimentally that ensure the joining quality of laser welding that relies both on welding system configuration and welding parameter specification. Both non-destructive and destructive techniques, for example, ultrasonic inspection and tensile test are widely used in practice for estimating the joining quality. Non-destructive techniques are attractive as a rapid quality testing method despite relatively low accuracy. In this paper, we examine the relationship between the variation of weld seam and tensile shear strength in the laser welding of galvanized steel in a lap joint configuration in order to investigate the potential of the variation of weld seam as a joining quality estimator. From the experimental analysis, we identify a trend in between maximum tensile shear strength and the variation of weld seam that clearly supports the fact that laser welded parts having larger variation in the weld seam usually have lower tensile strength. The discovered relationship leads us to conclude that the variation of weld seam can be used as an indirect non-destructive testing method for estimating the tensile strength of the welded parts.

  6. Some problems of brazing technology for the divertor plate manufacturing

    NASA Astrophysics Data System (ADS)

    Prokofiev, Yu. G.; Barabash, V. R.; Khorunov, V. F.; Maksimova, S. V.; Gervash, A. A.; Fabritsiev, S. A.; Vinokurov, V. F.

    1992-09-01

    Among the different design options of the ITER reactor divertor, the joints of the carbon-based materials and molybdenum alloys and joints of tungsten and copper alloys are considered. High-temperature brazing is one of the most promising joining methods for the plasma facing and heat sink materials. The use of brazing for creation of W-Cu and graphite-Mo joints are given here. In addition, the investigation results of microstructure, microhardness and mechanical properties of the joints are presented. For W-Cu samples an influence of the neutron irradiation on the joining strength was studied.

  7. Annular beam shaping system for advanced 3D laser brazing

    NASA Astrophysics Data System (ADS)

    Pütsch, Oliver; Stollenwerk, Jochen; Kogel-Hollacher, Markus; Traub, Martin

    2012-10-01

    As laser brazing benefits from advantages such as smooth joints and small heat-affected zones, it has become established as a joining technology that is widely used in the automotive industry. With the processing of complex-shaped geometries, recent developed brazing heads suffer, however, from the need for continuous reorientation of the optical system and/or limited accessibility due to lateral wire feeding. This motivates the development of a laser brazing head with coaxial wire feeding and enhanced functionality. An optical system is designed that allows to generate an annular intensity distribution in the working zone. The utilization of complex optical components avoids obscuration of the optical path by the wire feeding. The new design overcomes the disadvantages of the state-of-the-art brazing heads with lateral wire feeding and benefits from the independence of direction while processing complex geometries. To increase the robustness of the brazing process, the beam path also includes a seam tracking system, leading to a more challenging design of the whole optical train. This paper mainly discusses the concept and the optical design of the coaxial brazing head, and also presents the results obtained with a prototype and selected application results.

  8. Characterization of Nitinol Laser-Weld Joints by Nondestructive Testing

    NASA Astrophysics Data System (ADS)

    Wohlschlögel, Markus; Gläßel, Gunter; Sanchez, Daniela; Schüßler, Andreas; Dillenz, Alexander; Saal, David; Mayr, Peter

    2015-12-01

    Joining technology is an integral part of today's Nitinol medical device manufacturing. Besides crimping and riveting, laser welding is often applied to join components made from Nitinol to Nitinol, as well as Nitinol components to dissimilar materials. Other Nitinol joining techniques include adhesive bonding, soldering, and brazing. Typically, the performance of joints is assessed by destructive mechanical testing, on a process validation base. In this study, a nondestructive testing method—photothermal radiometry—is applied to characterize small Nitinol laser-weld joints used to connect two wire ends via a sleeve. Two different wire diameters are investigated. Effective joint connection cross sections are visualized using metallography techniques. Results of the nondestructive testing are correlated to data from destructive torsion testing, where the maximum torque at fracture is evaluated for the same joints and criteria for the differentiation of good and poor laser-welding quality by nondestructive testing are established.

  9. Microwave facilities for welding thermoplastic composites and preliminary results.

    PubMed

    Ku, H S; Siores, E; Ball, J A

    1999-01-01

    The wide range of applications of microwave technology in manufacturing industries has been well documented (NRC, 1994; Thuery, 1992). In this paper, a new way of joining fibre reinforced thermoplastic composites with or without primers is presented. The microwave facility used is also discussed. The effect of power input and cycle time on the heat affected zone (HAZ) is detailed together with the underlying principles of test piece material interactions with the electromagnetic field. The process of autogenous joining of 33% by weight of random glass fibre reinforced Nylon 66, polystyrene (PS) and low density polyethylene (LDPE) as well as 23.3% by weight of carbon fibre reinforced PS thermoplastic composites is discussed together with developments using filler materials, or primers in the heterogenous joining mode. The weldability dependence on the dielectric loss tangent of these materials at elevated temperatures is also described.

  10. Joining and Integration of Silicon Carbide for Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Coddington, Bryan; Asthana, Rajiv

    2010-01-01

    The critical need for ceramic joining and integration technologies is becoming better appreciated as the maturity level increases for turbine engine components fabricated from ceramic and ceramic matrix composite materials. Ceramic components offer higher operating temperatures and reduced cooling requirements. This translates into higher efficiencies and lower emissions. For fabricating complex shapes, diffusion bonding of silicon carbide (SiC) to SiC is being developed. For the integration of ceramic parts to the surrounding metallic engine system, brazing of SiC to metals is being developed. Overcoming the chemical, thermal, and mechanical incompatibilities between dissimilar materials is very challenging. This presentation will discuss the types of ceramic components being developed by researchers and industry and the benefits of using ceramic components. Also, the development of strong, crack-free, stable bonds will be discussed. The challenges and progress in developing joining and integration approaches for a specific application, i.e. a SiC injector, will be presented.

  11. Joining of Silicon Carbide: Diffusion Bond Optimization and Characterization

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay

    2008-01-01

    Joining and integration methods are critically needed as enabling technologies for the full utilization of advanced ceramic components in aerospace and aeronautics applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. In the application, several SiC substrates with different hole patterns to form fuel and combustion air channels are bonded to form the injector. Diffusion bonding is a joining approach that offers uniform bonds with high temperature capability, chemical stability, and high strength. Diffusion bonding was investigated with the aid of titanium foils and coatings as the interlayer between SiC substrates to aid bonding. The influence of such variables as interlayer type, interlayer thickness, substrate finish, and processing time were investigated. Optical microscopy, scanning electron microscopy, and electron microprobe analysis were used to characterize the bonds and to identify the reaction formed phases.

  12. Nonproliferation and Threat Reduction Assistance: U.S. Programs in the Former Soviet Union

    DTIC Science & Technology

    2008-01-03

    Technology Center ( ISTC ) in Moscow and its companion Science and Technology Center (STCU) in Kiev, Ukraine. In the FY2005 budget request, it combined...International Science and Technology Center ( ISTC ) in Moscow. Several other former Soviet states joined the center during the 1990s, and other nations, including...research funded by these centers. The Moscow Center funded nearly 1,700 projects that engaged about 41,000 scientists. In 2001, the ISTC in Moscow

  13. State-of-technology for joining TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Holko, K. H.; Moore, T. J.; Gyorgak, C. A.

    1972-01-01

    At the current state-of-technology there are many joining processes that can be used to make sound welds in TD-NiCr sheet. Some of these that are described in this report are electron beam welding, gas-tungsten arc welding, diffusion welding, resistance spot welding, resistance seam welding, and brazing. The strengths of the welds made by the various processes show considerable variation, especially at elevated temperatures. Most of the fusion welding processes tend to give weak welds at elevated temperatures (with the exception of fusion-type resistance spotwelds). However, solid-state welds have been made with parent metal properties. The process used for a specific application will be dictated by the specific joint requirements. In highly stressed joints at elevated temperatures, one of the solid-state processes, such as DFW, RSW (solid-state or fusion), and RSEW, offer the most promise.

  14. A single-molecule sequencing assay for the comprehensive profiling of T4 DNA ligase fidelity and bias during DNA end-joining.

    PubMed

    Potapov, Vladimir; Ong, Jennifer L; Langhorst, Bradley W; Bilotti, Katharina; Cahoon, Dan; Canton, Barry; Knight, Thomas F; Evans, Thomas C; Lohman, Gregory Js

    2018-05-08

    DNA ligases are key enzymes in molecular and synthetic biology that catalyze the joining of breaks in duplex DNA and the end-joining of DNA fragments. Ligation fidelity (discrimination against the ligation of substrates containing mismatched base pairs) and bias (preferential ligation of particular sequences over others) have been well-studied in the context of nick ligation. However, almost no data exist for fidelity and bias in end-joining ligation contexts. In this study, we applied Pacific Biosciences Single-Molecule Real-Time sequencing technology to directly sequence the products of a highly multiplexed ligation reaction. This method has been used to profile the ligation of all three-base 5'-overhangs by T4 DNA ligase under typical ligation conditions in a single experiment. We report the relative frequency of all ligation products with or without mismatches, the position-dependent frequency of each mismatch, and the surprising observation that 5'-TNA overhangs ligate extremely inefficiently compared to all other Watson-Crick pairings. The method can easily be extended to profile other ligases, end-types (e.g. blunt ends and overhangs of different lengths), and the effect of adjacent sequence on the ligation results. Further, the method has the potential to provide new insights into the thermodynamics of annealing and the kinetics of end-joining reactions.

  15. Component improvement of free-piston Stirling engine key technology for space power

    NASA Technical Reports Server (NTRS)

    Alger, Donald L.

    1988-01-01

    The successful performance of the 25 kW Space Power Demonstrator (SPD) engine during an extensive testing period has provided a baseline of free piston Stirling engine technology from which future space Stirling engines may evolve. Much of the success of the engine was due to the initial careful selection of engine materials, fabrication and joining processes, and inspection procedures. Resolution of the few SPD engine problem areas that did occur has resulted in the technological advancement of certain key free piston Stirling engine components. Derivation of two half-SPD, single piston engines from the axially opposed piston SPD engine, designated as Space Power Research (SPR) engines, has made possible the continued improvement of these engine components. The two SPR engines serve as test bed engines for testing of engine components. Some important fabrication and joining processes are reviewed. Also, some component deficiencies that were discovered during SPD engine testing are described and approaches that were taken to correct these deficiencies are discussed. Potential component design modifications, based upon the SPD and SPR engine testing, are also reported.

  16. Eye TVR: Eye Trauma and Visual Restoration Team

    DTIC Science & Technology

    2012-03-01

    overall goal of this project is to develop a technology for non-invasive neuromodulation of retinal activity. Our approach is to measure the neuronal...technologies, including the millimeter wave source and the flexible multielectrode array, have been developed for non-invasive neuromodulation of retinal...activity. Further work is required to validate the feasibility of the proposed neuromodulation approach. (3) The strategy of joining a multisite

  17. NASA Chief Technologist Douglas Terrier Moderates a Panel During the AAS 55th Robert H. Goddard Memorial Symposium

    NASA Image and Video Library

    2017-03-08

    NASA Chief Technologist Douglas Terrier moderated the discussion “NASA Leadership in the Future of Science and Technology" during the AAS 55th Robert H. Goddard Memorial Symposium on March 8, 2017. Terrier was joined by Associate Administrator for Space Technology Steve Jurczyk, Chief Scientist Gale Allen and Associate Administrator for Science Thomas Zurbuchen.

  18. NASA Chief Technologist Douglas Terrier Moderates Panel Discussion During the AAS 55th Robert H. Goddard Memorial Symposium

    NASA Image and Video Library

    2017-03-08

    NASA Chief Technologist Douglas Terrier moderated the discussion “NASA Leadership in the Future of Science and Technology" during the AAS 55th Robert H. Goddard Memorial Symposium on March 8, 2017. Terrier was joined by Associate Administrator for Space Technology Steve Jurczyk, Chief Scientist Gale Allen and Associate Administrator for Science Thomas Zurbuchen.

  19. NASA Chief Technologist Douglas Terrier Moderates A Discussion During the AAS 55th Robert H. Goddard Memorial Symposium

    NASA Image and Video Library

    2017-03-08

    NASA Chief Technologist Douglas Terrier moderated the discussion “NASA Leadership in the Future of Science and Technology" during the AAS 55th Robert H. Goddard Memorial Symposium on March 8, 2017. Terrier was joined by Associate Administrator for Space Technology Steve Jurczyk, Chief Scientist Gale Allen and Associate Administrator for Science Thomas Zurbuchen.

  20. Development of forming and joining technology for TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Torgerson, R. T.

    1973-01-01

    Forming joining techniques and properties data were developed for thin-gage TD-NiCr sheet in the recrystallized and unrecrystallized conditions. Theoretical and actual forming limit data are presented for several gages of each type of material for five forming processes: brake forming, corrugation forming, joggling, dimpling and beading. Recrystallized sheet can be best formed at room temperature, but unrecrystallized sheet requires forming at elevated temperature. Formability is satisfactory with most processes for the longitudinal orientation but poor for the transverse orientation. Dimpling techniques require further development for both material conditions. Data on joining techniques and joint properties are presented for four joining processes: resistance seam welding (solid-state), resistance spot welding (solid-state), resistance spot welding (fusion) and brazing. Resistance seam welded (solid-state) joints with 5t overlap were stronger than parent material for both material conditions when tested in tensile-shear and stress-rupture. Brazing studies resulted in development of NASA 18 braze alloy (Ni-16Cr-15Mo-8Al-4Si) with several properties superior to baseline TD-6 braze alloy, including lower brazing temperture, reduced reaction with Td-Ni-Cr, and higher stress-rupture properties.

  1. 76 FR 8784 - Notice of Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ..., inviting government and private industry to join in collaboration about the latest trends in information... automated collection techniques or the use of other forms of information technology. Comments submitted in... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-015)] Notice of Information Collection...

  2. Managing Technostress: Optimizing the Use of Computer Technology.

    ERIC Educational Resources Information Center

    Brod, Craig

    1982-01-01

    Afraid of change, many employees refuse to join the computer revolution. The author states that only understanding and proper training can break down such resistance. The term "technostress" is described and the importance of employee self-assessment is examined. (CT)

  3. Joining of Silicon Carbide-Based Ceramics by Reaction Forming Method

    NASA Technical Reports Server (NTRS)

    Singh, M.; Kiser, J. D.

    1997-01-01

    Recently, there has been a surge of interest in the development and testing of silicon-based ceramics and composite components for a number of aerospace and ground based systems. The designs often require fabrication of complex shaped parts which can be quite expensive. One attractive way of achieving this goal is to build up complex shapes by joining together geometrically simple shapes. However, the joints should have good mechanical strength and environmental stability comparable to the bulk materials. These joints should also be able to maintain their structural integrity at high temperatures. In addition, the joining technique should be practical, reliable, and affordable. Thus, joining has been recognized as one of the enabling technologies for the successful utilization of silicon carbide based ceramic components in high temperature applications. Overviews of various joining techniques, i.e., mechanical fastening, adhesive bonding, welding, brazing, and soldering have been provided in recent publications. The majority of the techniques used today are based on the joining of monolithic ceramics with metals either by diffusion bonding, metal brazing, brazing with oxides and oxynitrides, or diffusion welding. These techniques need either very high temperatures for processing or hot pressing (high pressures). The joints produced by these techniques have different thermal expansion coefficients than the ceramic materials, which creates a stress concentration in the joint area. The use temperatures for these joints are around 700 C. Ceramic joint interlayers have been developed as a means of obtaining high temperature joints. These joint interlayers have been produced via pre-ceramic polymers, in-situ displacement reactions, and reaction bonding techniques. Joints produced by the pre-ceramic polymer approach exhibit a large amounts of porosity and poor mechanical properties. On the other hand, hot pressing or high pressures are needed for in-situ displacement reactions and reaction bonding techniques. Due to the equipment required, these techniques are impractical for joining large or complex shaped components.

  4. Department of Everything: Department of Defense Spending That Has Little to Do With National Security

    DTIC Science & Technology

    2012-11-01

    and Mathematics (STEM) programs that duplicate the work of the Department of Education and local school districts ($10.7 billion). The Department of...of science, technology, engineering, and mathematics (STEM).16 The Pentagon recently joined the cooking show craze by partnering with the...of DOD Science, Technology, Engineering, and Mathematics (STEM) Programs,” 2010. 17 The Pentagon Channel, “The Grill Sergeants,” http

  5. Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and Navigation Support

    DTIC Science & Technology

    2013-09-30

    underwater acoustic communication technologies for autonomous distributed underwater networks, through innovative signal processing, coding, and navigation...in real enviroments , an offshore testbed has been developed to conduct field experimetns. The testbed consists of four nodes and has been deployed...Leadership by the Connecticut Technology Council. Dr. Zhaohui Wang joined the faculty of the Department of Electrical and Computer Engineering at

  6. Robust Decision Making for Improved Mission Assurance

    DTIC Science & Technology

    2014-06-01

    Technology Team (STT) proposed and was approved to receive funding for a set of four research projects advancing foundational decision science and... technology over a three year period of performance. At the time it was approved, the initiative involved 27 collaborating scientists and engineers from five...Appendix E. Sensors Directorate Technologies for Robust Decision Making for Improved Mission Assurance

  7. 75 FR 75702 - Notice of Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ..., inviting government and private industry to join in collaboration about the latest trends in information... collection techniques or the use of other forms of information technology. Comments submitted in response to... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [10-150] Notice of Information Collection AGENCY...

  8. Woods Hole Oceanographic Institution

    Science.gov Websites

    OCEAN Ocean Topics Oceanus Magazine Visual WHOI Blogs/Expeditions Exhibit Center JOIN US DONATE Technology Transfer 90% of international trade travels by ship Explore Ocean Topics Hydrothermal Vents Trenches Ocean Acidification Phytoplankton Currents, Gyres, & Eddies [ ALL OCEAN TOPICS ] Dive into our

  9. THE GOBAL CHANGE AIR QUALITY ASSESSMENT: BACKGROUND AND OVERVIEW OF INTRAMURAL WORK

    EPA Science Inventory

    Factors such as population growth and migration, economic expansion, land use, resource availability, climate change, and technology change impact environmental quality and human health. With populations expected to continue to grow, and with additional countries joining the ran...

  10. Primary Care Clinics and Accountable Care Organizations

    PubMed Central

    Tang, Chiung-Ya; Lin, Yi-Ling; Masri, Maysoun D.

    2015-01-01

    Background: The Accountable Care Organization (ACO) is one of the new models of health care delivery in the United States. To date, little is known about the characteristics of health care organizations that have joined ACOs. We report on the findings of a survey of primary care clinics, the objective of which was to investigate the opinions of clinic management about participation in ACOs and the characteristics of clinic organizational structure that may contribute to joining ACOs or be willing to do so. Methods: A 27-item survey questionnaire was developed and distributed by mail in 3 annual waves to all Rural Health Clinics (RHCs) in 9 states. Two dependent variables—participation in ACOs and willingness to join ACOs—were created and analyzed using a generalized estimating equation approach. Results: A total of 257 RHCs responded to the survey. A small percentage (5.2%) of the respondent clinics reported that they were participating in ACOs. Rural Health Clinics in isolated areas were 78% less likely to be in ACOs (odds ratio = 0.22, P = .059). Nonprofit RHCs indicated a higher willingness to join an ACO than for-profit RHCs (B = 1.271, P = .054). There is a positive relationship between RHC size and willingness to join an ACO (B = 0.402, P = .010). Conclusion: At this early stage of ACO development, many RHC personnel are unfamiliar with the ACO model. Rural providers’ limited technological and human resources, and the lack of ACO development in rural areas, may delay or prevent their participation in ACOs. PMID:26900587

  11. Ceramic Technology Project semiannual progress report, October 1992--March 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    1993-09-01

    This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.

  12. Ceramic susceptor for induction bonding of metals, ceramics, and plastics

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Buckley, John D.

    1991-01-01

    A thin (.005) flexible ceramic susceptor (carbon) was discovered. It was developed to join ceramics, plastics, metals, and combinations of these materials using a unique induction heating process. Bonding times for laboratory specimens comparing state of the art technology to induction bonding were cut by a factor of 10 to 100 times. This novel type of carbon susceptor allows for applying heat directly and only to the bondline without heating the entire structure, supports, and fixtures of a bonding assembly. The ceramic (carbon film) susceptor produces molten adhesive or matrix material at the bond interface. This molten material flows through the perforated susceptor producing a fusion between the two parts to be joined, which in many instances has proven to be stronger than the parent material. Bonding can be accomplished in 2 minutes on areas submitted to the inductive heating. Because a carbon susceptor is used in bonding carbon fiber reinforced plastics and ceramics, there is no radar signature or return making it an ideal process for joining advanced aerospace composite structures.

  13. Linking process and structure in the friction stir scribe joining of dissimilar materials: A computational approach with experimental support

    DOE PAGES

    Gupta, Varun; Upadhyay, Piyush; Fifield, Leonard S.; ...

    2018-04-04

    We present that friction stir welding (FSW) is a popular technique to join dissimilar materials in numerous applications. The solid state nature of the process enables joining materials with strikingly different physical properties. For welds in lap configuration, an enhancement to this technology is made by introducing a short, hard insert, referred to as a cutting-scribe, at the bottom of the tool pin. The cutting-scribe induces deformation in the bottom plate which leads to the formation of mechanical interlocks or hook like structures at the interface of two materials. A thermo-mechanical computational model employing a coupled Eulerian-Lagrangian approach is developedmore » to quantitatively capture the morphology of these interlocks during the FSW process. Simulations using this model are validated by experimental observations. In conclusion, the identified interface morphology coupled with the predicted temperature field from this process–structure model can be used to estimate the post-weld microstructure and joint strength.« less

  14. Investigation of Thermoelectric Parameters of Bi2Te3: TEGs Assembled using Pressure-Assisted Silver Powder Sintering-Based Joining Technology

    NASA Astrophysics Data System (ADS)

    Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2015-06-01

    Operation of thermoelectric generator (TEG) modules based on bismuth telluride alloys at temperatures higher than 250°C is mostly limited by the melting point of the assembly solder. Although the thermoelectric parameters of bismuth telluride materials degrade for temperatures >130°C, the power output of the module can be enhanced with an increase in the temperature difference. For this, a temperature-stable joining technique, especially for the hot side of the modules, is required. Fabrication and process parameters of TEG modules consisting of bismuth telluride legs, alumina ceramics and copper interconnects using a joining technique based on pressure-assisted silver powder sintering are described. Measurements of the thermal force, electrical resistance, and output power are presented that were performed for hot side module temperatures up to 350°C and temperature differences higher than 300°C. Temperature cycling and results measured during extended high-temperature operation are addressed.

  15. Linking process and structure in the friction stir scribe joining of dissimilar materials: A computational approach with experimental support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Varun; Upadhyay, Piyush; Fifield, Leonard S.

    The friction stir welding (FSW) is a popular technique to join dissimilar materials in numerous applications. The solid state nature of the process enables joining materials with strikingly different physical properties. For the welds in lap configuration, an enhancement to this technology is made by introducing a short hard insert, referred to as cutting-scribe, at the bottom of the tool pin. The cutting-scribe induces deformation in the bottom plate which leads to the formation of mechanical interlocks or hook like structures at the interface of two materials. A thermo-mechanically coupled computational model employing coupled Eulerian-Lagrangian approach is developed to quantitativelymore » capture the morphology of these interlocks during the FSW process. The simulations using developed model are validated by the experimental observations.The identified interface morphology coupled with the predicted temperature field from this process-structure model can then be used to estimate the post-weld microstructure and joint strength.« less

  16. Linking process and structure in the friction stir scribe joining of dissimilar materials: A computational approach with experimental support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Varun; Upadhyay, Piyush; Fifield, Leonard S.

    We present that friction stir welding (FSW) is a popular technique to join dissimilar materials in numerous applications. The solid state nature of the process enables joining materials with strikingly different physical properties. For welds in lap configuration, an enhancement to this technology is made by introducing a short, hard insert, referred to as a cutting-scribe, at the bottom of the tool pin. The cutting-scribe induces deformation in the bottom plate which leads to the formation of mechanical interlocks or hook like structures at the interface of two materials. A thermo-mechanical computational model employing a coupled Eulerian-Lagrangian approach is developedmore » to quantitatively capture the morphology of these interlocks during the FSW process. Simulations using this model are validated by experimental observations. In conclusion, the identified interface morphology coupled with the predicted temperature field from this process–structure model can be used to estimate the post-weld microstructure and joint strength.« less

  17. Review of the Pyrolysis Platform for Producing Bio-oil and Biochar: Technology, Logistics, and Potential Impacts on Greenhouse Gas Emissions, Water Quality, Soil Quality, and Agricultural Productivity

    USDA-ARS?s Scientific Manuscript database

    Pyrolysis is a relatively simple, inexpensive, and robust thermochemical technology for transforming biomass into bio-oil, biochar, and syngas. The robust nature of the pyrolysis technology, which allows considerable flexibility in both the type and quality of the biomass feedstock, combined with a ...

  18. Educational Media Yearbook 1975-1976.

    ERIC Educational Resources Information Center

    Brown, James W., Ed.

    Intended for use by media specialists at all levels, this volume joins two preceding editions in reviewing the current status of educational media, instructional technology, librarianship, information science, and telecommunication. First is a collection of essays which address the following topics: 1) perspectives on educational media; 2) major…

  19. 4 Schools for WIE. Evaluation Report

    ERIC Educational Resources Information Center

    Erkut, Sumru; Marx, Fern

    2005-01-01

    With funding from the National Science Foundation, engineering schools at Northeastern University, Tufts University, Worcester Polytechnic Institute, and Boston University joined forces in an effort to increase the number of girls who develop an interest in science, technology, engineering, and mathematics (STEM) fields during the middle school…

  20. Item Difficulty Modeling of Paragraph Comprehension Items

    ERIC Educational Resources Information Center

    Gorin, Joanna S.; Embretson, Susan E.

    2006-01-01

    Recent assessment research joining cognitive psychology and psychometric theory has introduced a new technology, item generation. In algorithmic item generation, items are systematically created based on specific combinations of features that underlie the processing required to correctly solve a problem. Reading comprehension items have been more…

  1. Encouraging Equitable Enrollment.

    ERIC Educational Resources Information Center

    Hill, Stan

    1997-01-01

    Describes Project JUST (Join Underrepresented in Science and Technology), an initiative whose goal is to create an atmosphere of systemic change within an urban school district that results in minority students excelling in upper level math and science courses. Discusses leadership, governance, and management; a standards-based curriculum;…

  2. Mission oriented R and D and the advancement of technology: The impact of NASA contributions, volume 2

    NASA Technical Reports Server (NTRS)

    Robbins, M. D.; Kelley, J. A.; Elliott, L.

    1972-01-01

    NASA contributions to the advancement of major developments in twelve selected fields of technology are presented. The twelve fields of technology discussed are: (1) cryogenics, (2) electrochemical energy conversion and storage, (3) high-temperature ceramics, (4) high-temperature metals (5) integrated circuits, (6) internal gas dynamics (7) materials machining and forming, (8) materials joining, (9) microwave systems, (10) nondestructive testing, (11) simulation, and (12) telemetry. These field were selected on the basis of both NASA and nonaerospace interest and activity.

  3. Assesment of influncing factors on mechanical and electrical properties of Al/Cu joints

    NASA Astrophysics Data System (ADS)

    Selvaraj, R. Meby; Hynes, N. Rajesh Jesudoss

    2018-05-01

    Joining of dissimilar materials opens up challenging opportunities in todays technology. Al/Cu weldments are used in applications that demands corrosion resistance, thermal and electrical conducting properties. In dissimilar joining mechanical and thermal properties result in large stress gradients during heating. The Al-Cu joints are lighter, cheaper and have conductivity equal to copper alloy. The main scope of this study is to assess the influencing factors of Al/Cu joints in mechanical and electrical properties. It includes the influence of the dilution between the base metals, influence of physical properties, influence of welding parameters, influence of filler metal, influence of heat treatment, and influence of electrical properties

  4. The Coevolution of Digital Ecosystems

    ERIC Educational Resources Information Center

    SungYong, Um

    2016-01-01

    Digital ecosystems are one of the most important strategic issues in the current digital economy. Digital ecosystems are dynamic and generative. They evolve as new firms join and as heterogeneous systems are integrated into other systems. These features digital ecosystems determine economic and technological success in the competition among…

  5. It's on the Line: Tech Policies that Make Sense

    ERIC Educational Resources Information Center

    Calhoun, Kelly J.

    2012-01-01

    ACSA (Association of California School Administrators), the CSBA (California School Boards Association), the California Educational Technology Professionals Association, the Santa Clara County Office of Education, CUE (Computer Using Educators), the law firm Fagen, Friedman & Fulfrost and others have joined forces to develop policies that can…

  6. Composite materials: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Design, analysis and fabrication techniques for boron-aluminum composite-structure technology is presented and a new method of joining different laminated composites without mechanical fasteners is proposed. Also discussed is a low-cost procedure for rigidifying expanded honeycomb tubing and piping simulations. A brief note on patent information is added.

  7. The Power of Partnership

    ERIC Educational Resources Information Center

    Baxter, Barbara

    2008-01-01

    For generations the Arkansas Delta has been a region of poverty, low academic achievement, and low workforce skills. Representing nine counties in the region, four community colleges and a university 300 miles away have joined together to form the Arkansas Delta Science, Technology, Engineering, and Mathematics Talent Expansion Project (ADSTEP).…

  8. Linear friction welding for constructing and repairing rail for high speed and intercity passenger service rail : final report.

    DOT National Transportation Integrated Search

    2016-08-01

    This project developed a solid-state welding process based on linear friction welding (LFW) technology. While resistance flash welding or : thermite techniques are tried and true methods for joining rails and performing partial rail replacement repai...

  9. Comparison of Engineering Education in Norway and China

    ERIC Educational Resources Information Center

    Sun, Xiaodong; Jia, Yanrui; Li, Zhenchun; Song, Yu

    2018-01-01

    The Washington Accord is an internationally recognized agreement in engineering education of undergraduates. China joined the agreement as the 18th member country in 2016. The exploration technology and engineering major of China University of Petroleum has obtained the professional certification from international engineering education system and…

  10. Schools Enlisting Defense Industry to Boost STEM

    ERIC Educational Resources Information Center

    Trotter, Andrew

    2008-01-01

    Defense contractors Northrop Grumman Corp. and Lockheed Martin Corp. are joining forces in an innovative partnership to develop high-tech simulations to boost STEM--or science, technology, engineering, and mathematics--education in the Baltimore County schools. The Baltimore County partnership includes the local operations of two major military…

  11. Adam Bratis, Ph.D. | NREL

    Science.gov Websites

    Sciences & Technology Adam.Bratis@nrel.gov | 303-384-7852 Areas of Expertise Adam Bratis joined the managerial oversight in the areas of biochemical conversion, thermochemical conversion, algal biofuels with 11 years of experience with ExxonMobil in the areas of research and development, corporate

  12. Good cell culture practices &in vitro toxicology.

    PubMed

    Eskes, Chantra; Boström, Ann-Charlotte; Bowe, Gerhard; Coecke, Sandra; Hartung, Thomas; Hendriks, Giel; Pamies, David; Piton, Alain; Rovida, Costanza

    2017-12-01

    Good Cell Culture Practices (GCCP) is of high relevance to in vitro toxicology. The European Society of Toxicology In Vitro (ESTIV), the Center for Alternatives for Animal Testing (CAAT) and the In Vitro Toxicology Industrial Platform (IVTIP) joined forces to address by means of an ESTIV 2016 pre-congress session the different aspects and applications of GCCP. The covered aspects comprised the current status of the OECD guidance document on Good In Vitro Method Practices, the importance of quality assurance for new technological advances in in vitro toxicology including stem cells, and the optimized implementation of Good Manufacturing Practices and Good Laboratory Practices for regulatory testing purposes. General discussions raised the duality related to the difficulties in implementing GCCP in an academic innovative research framework on one hand, and on the other hand, the need for such GCCP principles in order to ensure reproducibility and robustness of in vitro test methods for toxicity testing. Indeed, if good cell culture principles are critical to take into consideration for all uses of in vitro test methods for toxicity testing, the level of application of such principles may depend on the stage of development of the test method as well as on the applications of the test methods, i.e., academic innovative research vs. regulatory standardized test method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Implementation Challenges for Ceramic Matrix Composites in High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, electronics, nuclear, and transportation industries. In the aeronautics and space exploration systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, nozzle components, nose cones, leading edges of reentry vehicles and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters (DPFs), and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. There are a number of critical issues and challenges related to successful implementation of composite materials. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, microstructure and thermomechanical properties of composites fabricated by two techniques (chemical vapor infiltration and melt infiltration), will be presented. In addition, critical need for robust joining and assembly technologies in successful implementation of these systems will be discussed. Other implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  14. Aquantis C-Plane Ocean Current Turbine Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Alex

    The Aquantis 2.5 MW Ocean Current Generation Device technology developed by Dehlsen Associates, LLC (DA) is a derivation of wind power generating technology (a means of harnessing a slow moving fluid) adapted to the ocean environment. The Aquantis Project provides an opportunity for accelerated technological development and early commercialization, since it involves the joining of two mature disciplines: ocean engineering and wind turbine design. The Aquantis Current Plane (C-Plane) technology is an ocean current turbine designed to extract kinetic energy from a current flow. The technology is capable of achieving competitively priced, continuous, base-load, and reliable power generation from amore » source of renewable energy not before possible in this scale or form.« less

  15. Development of a fuzzy-stochastic programming with Green Z-score criterion method for planning water resources systems with a trading mechanism.

    PubMed

    Zeng, X T; Huang, G H; Li, Y P; Zhang, J L; Cai, Y P; Liu, Z P; Liu, L R

    2016-12-01

    This study developed a fuzzy-stochastic programming with Green Z-score criterion (FSGZ) method for water resources allocation and water quality management with a trading-mechanism (WAQT) under uncertainties. FSGZ can handle uncertainties expressed as probability distributions, and it can also quantify objective/subjective fuzziness in the decision-making process. Risk-averse attitudes and robustness coefficient are joined to express the relationship between the expected target and outcome under various risk preferences of decision makers and systemic robustness. The developed method is applied to a real-world case of WAQT in the Kaidu-Kongque River Basin in northwest China, where an effective mechanism (e.g., market trading) to simultaneously confront severely diminished water availability and degraded water quality is required. Results of water transaction amounts, water allocation patterns, pollution mitigation schemes, and system benefits under various scenarios are analyzed, which indicate that a trading-mechanism is a more sustainable method to manage water-environment crisis in the study region. Additionally, consideration of anthropogenic (e.g., a risk-averse attitude) and systemic factors (e.g., the robustness coefficient) can support the generation of a robust plan associated with risk control for WAQT when uncertainty is present. These findings assist local policy and decision makers to gain insights into water-environment capacity planning to balance the basin's social and economic growth with protecting the region's ecosystems.

  16. Development of a double beam process for joining aluminum and steel

    NASA Astrophysics Data System (ADS)

    Frank, Sascha

    2014-02-01

    Multi-material structures pose an attractive option for overcoming some of the central challenges in lightweight design. An exceptionally high potential for creating cost-effective lightweight solutions is attributed to the combination of steel and aluminum. However, these materials are also particularly difficult to join due to their tendency to form intermetallic compounds (IMCs). The growth of these compounds is facilitated by high temperatures and long process times. Due to their high brittleness, IMCs can severely weaken a joint. Thus, it is only possible to create durable steel-aluminum joints when the formation of IMCs can be limited to a non-critical level. To meet this goal, a new joining method has been designed. The method is based on the combination of a continuous wave (pw) and a pulsed laser (pw) source. Laser beams from both sources are superimposed in a common process zone. This makes it possible to apply the advantages of laser brazing to mixed-metal joints without requiring the use of chemical fluxes. The double beam technology was first tested in bead-on-plate experiments using different filler wire materials. Based on the results of these tests, a process for joining steel and aluminum in a double-flanged configuration is now being developed. The double flanged seams are joined using zinc- or aluminum-based filler wires. Microsections of selected seams show that it is possible to achieve good base material wetting while limiting the growth of IMCs to acceptable measures. In addition, the results of tensile tests show that high joint strengths can be achieved.

  17. Metal Matrix Composite LOX Turbopump Housing Via Novel Tool-Less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.; hide

    2002-01-01

    This presentation provides an overview of the effort by Metal Matrix Cast Composites, Inc. to redesign turbopump housing joints using metal matrix composite material and a toolless net-shape pressure infiltration casting technology. Topics covered include: advantage of metal matrix composites for propulsion components, baseline pump design and analysis, advanced toolless pressure infiltration casting process, subscale pump housing, preform splicing and joining for large components, and fullscale pump housing redesign.

  18. Fundamental heat transfer research for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Metzger, D. E. (Editor)

    1980-01-01

    Thirty-seven experts from industry and the universities joined 24 NASA Lewis staff members in an exchange of ideas on trends in aeropropulsion research and technology, basic analyses, computational analyses, basic experiments, near-engine environment experiments, fundamental fluid mechanics and heat transfer, and hot technology as related to gas turbine engines. The workshop proceedings described include pre-workshop input from participants, presentations of current activity by the Lewis staff, reports of the four working groups, and a workshop summary.

  19. Senu Sirnivas | NREL

    Science.gov Websites

    issues in the development of offshore wind energy technology. He advises, facilitates, and executes laboratory initiatives in offshore wind, working closely with DOE, industry, and university research partners . Prior to joining NREL, he worked in the offshore oil and gas industry for 20 years. Education M.S. in

  20. Reviving a Community, Modernizing an Industry: Ireland's Furniture College.

    ERIC Educational Resources Information Center

    Regional Technology Strategies, Inc., Carrboro, NC.

    Connemara, a rural region in Ireland, is characterized by high unemployment, high emigration, poor infrastructure, inadequate public services, and a low rate of transfer to third-level education. To address the situation, the Galway-Mayo Institute of Technology (GMIT), joined forces with Connemara West (a community-owned development organization…

  1. Work with Us | Research Site Name | NREL

    Science.gov Websites

    ullamco laboris nisi ut aliquip ex ea commodo consequat. Hero Image - Width of 1746px - Height can vary ex ea commodo consequat. Learn about our technology partnership agreements. Use our cutting-edge commercialization programs. Join Our Team Find an opportunity: Job | Internship | Post Doc | Director's Postdoctoral

  2. Bridging the Digital Divide with Off-Line E-Learning

    ERIC Educational Resources Information Center

    Hillier, Mathew

    2018-01-01

    This paper explores a proposal for an off-line e-learning platform that will provide a bridge for digitally unconnected students and educators to join the contemporary information and communications technology (ICT) intensive world. Individual remote and unconnected learners face a chicken and egg problem for engagement with contemporary…

  3. Settling the 'Score' with Heart Disease

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Technology and medicine forged a bond in 1986 when a group of dedicated NASA scientists, University of Southern California (USC) medical professors, and a Dutch cardiologist joined forces to prevent heart attacks, using ultrasound images of astronauts blood-flow patterns and the supercomputer depended upon to orchestrate the "Star Wars" Strategic Defense Initiative.

  4. Gender, Religion, and Sociopolitical Issues in Cross-Cultural Online Education

    ERIC Educational Resources Information Center

    Zaidi, Zareen; Verstegen, Daniëlle; Naqvi, Rahat; Morahan, Page; Dornan, Tim

    2016-01-01

    Cross-cultural education is thought to develop critical consciousness of how unequal distributions of power and privilege affect people's health. Learners in different sociopolitical settings can join together in developing critical consciousness--awareness of power and privilege dynamics in society--by means of communication technology. The aim…

  5. Research Staff | Geothermal Technologies | NREL

    Science.gov Websites

    Position Email Phone Akar, Sertac Energy Analyst - Geothermal Sertac.Akar@nrel.gov 303-275-3725 Augustine -Geoscience Kate Young joined NREL in 2008. She has worked on analysis of geothermal exploration, drilling ) Toolkit, the Geothermal Resource Portfolio Optimization and Reporting Technique (GeoRePORT), and the

  6. Tough Times Push More Small Colleges to Join Forces

    ERIC Educational Resources Information Center

    Carlson, Scott

    2013-01-01

    The author reports on how colleges could work together more closely in areas like the library, the colleges' technology infrastructure, human resources and payroll, and, ultimately, their academic programs. Higher education has some famous collaborations--the best-known among them are the Claremont Colleges, where seven institutions, each with a…

  7. Eric Kozubal | NREL

    Science.gov Websites

    researches new methods and technologies for energy-efficient air conditioning systems. He has tested more -6155 Eric joined NREL in 2002 and is a member of the Commercial Buildings Research Group. Eric recommendations. He uses tools such as CAD, Matlab, Engineer Equation Solver, Excel, and statistical software to

  8. Maine Leading Initiative for Multistate Tech. Buys

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2013-01-01

    A group of states has joined forces to arrange the purchase of an unusually comprehensive set of educational-technology devices and services, in a compact that could foreshadow other cooperative efforts by state and local governments attempting to turn the digital-procurement process to their advantage. The initial partners in the multistate…

  9. Xin Jin | NREL

    Science.gov Websites

    Jin joined NREL in 2012. His research focuses on control systems, fault detection and diagnosis, load Jin Photo of Xin Jin Xin Jin Researcher IV-Control Engineering Xin.Jin@nrel.gov | 303-275-4360 Xin project engineer at A.O. Smith Corporate Technology Center creating innovative electronic control

  10. Performance, Cognitive Load, and Behaviour of Technology-Assisted English Listening Learning: From CALL to MALL

    ERIC Educational Resources Information Center

    Chang, Chi-Cheng; Warden, Clyde A.; Liang, Chaoyun; Chou, Pao-Nan

    2018-01-01

    This study examines differences in English listening comprehension, cognitive load, and learning behaviour between outdoor ubiquitous learning and indoor computer-assisted learning. An experimental design, employing a pretest-posttest control group is employed. Randomly assigned foreign language university majors joined either the experimental…

  11. Connecting Classrooms and Community: Engaged Scholarship, Nonacademic Voices, and Organizational Communication Curriculum

    ERIC Educational Resources Information Center

    Garner, Johny T.; Barnes, Jessica

    2013-01-01

    Organizations have changed dramatically over the last decade as globalization, new technology, and generational shifts shape almost every aspect of twenty-first century American society. Ideally, communication education would prepare students for experiences in the workplaces they will join after they graduate, but some have suggested that…

  12. NREL to request proposals for reducing PV costs

    Science.gov Websites

    Laboratory (NREL) invites the photovoltaics and related industries to join its Photovoltaic Manufacturing photovoltaic products. NREL will issue in the next 90 days an $8 million request for proposals for research and development projects that will advance photovoltaic manufacturing technologies, reduce photovoltaic

  13. | NREL

    Science.gov Websites

    Greg.Glatzmaier@nrel.gov | 303-384-7470 Greg originally joined NREL in 1987 and worked in the Solar Thermal work on systems analysis, novel heat-transfer fluids, and thermal-storage concepts for CSP technologies . He currently manages the advanced heat-transfer fluids and thermal-storage work at NREL. Education

  14. Threats and countermeasures for network security

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1991-01-01

    In the late 1980's, the traditional threat of anonymous break-ins to networked computers was joined by viruses and worms, multiplicative surrogates that carry out the bidding of their authors. Technologies for authentication and secrecy, supplemented by good management practices, are the principal countermeasures. Four articles on these subjects are presented.

  15. Enabling lightweight designs by a new laser based approach for joining aluminum to steel

    NASA Astrophysics Data System (ADS)

    Brockmann, Rüdiger; Kaufmann, Sebastian; Kirchhoff, Marc; Candel-Ruiz, Antonio; Müllerschön, Oliver; Havrilla, David

    2015-03-01

    As sustainability is an essential requirement, lightweight design becomes more and more important, especially for mobility. Reduced weight ensures more efficient vehicles and enables better environmental impact. Besides the design, new materials and material combinations are one major trend to achieve the required weight savings. The use of Carbon Fiber Reinforced Plastics (abbr. CFRP) is widely discussed, but so far high volume applications are rarely to be found. This is mainly due to the fact that parts made of CFRP are much more expensive than conventional parts. Furthermore, the proper technologies for high volume production are not yet ready. Another material with a large potential for lightweight design is aluminum. In comparison to CFRP, aluminum alloys are generally more affordable. As aluminum is a metallic material, production technologies for high volume standard cutting or joining applications are already developed. In addition, bending and deep-drawing can be applied. In automotive engineering, hybrid structures such as combining high-strength steels with lightweight aluminum alloys retain significant weight reduction but also have an advantage over monolithic aluminum - enhanced behavior in case of crash. Therefore, since the use of steel for applications requiring high mechanical properties is unavoidable, methods for joining aluminum with steel parts have to be further developed. Former studies showed that the use of a laser beam can be a possibility to join aluminum to steel parts. In this sense, the laser welding process represents a major challenge, since both materials have different thermal expansion coefficients and properties related to the behavior in corrosive media. Additionally, brittle intermetallic phases are formed during welding. A promising approach to welding aluminum to steel is based on the use of Laser Metal Deposition (abbr. LMD) with deposit materials in the form of powders. Within the present work, the advantages of this approach in comparison to conventional processes, as well as expected limitations are described.

  16. Preliminary Investigations of Joining Technologies for Attaching Refractory Metals to Ni-Based Superalloys

    NASA Technical Reports Server (NTRS)

    Gould, Jerry E.; Ritzert, Frank J.; Loewenthal, William S.

    2006-01-01

    In this study, a range of joining technologies has been investigated for creating attachments between refractory metal and Ni-based superalloys. Refractory materials of interest include Mo-47%Re, T-111, and Ta-10%W. The Ni-based superalloys include Hastelloy X and MarM 247. During joining with conventional processes, these materials have potential for a range of solidification and intermetallic formation-related defects. For this study, three non-conventional joining technologies were evaluated. These included inertia welding, electro-spark deposition (ESD) welding, and magnetic pulse welding (MPW). The developed inertia welding practice closely paralleled that typically used for the refractory metals alloys. Metallographic investigations showed that forging during inertia welding occurred predominantly on the nickel base alloy side. It was also noted that at least some degree of forging on the refractory metal side of the joint was necessary to achieve consistent bonding. Both refractory metals were readily weldable to the Hastelloy X material. When bonding to the MarM 247, results were inconsistent. This was related to the higher forging temperatures of the MarM 247, and subsequent reduced deformation on that material during welding. ESD trials using a Hastelloy X filler were successful for all material combinations. ESD places down very thin (5- to 10- m) layers per pass, and interactions between the substrates and the fill were limited (at most) to that layer. For the refractory metals, the fill only appeared to wet the surface, with minimal dilution effects. Microstructures of the deposits showed high weld metal integrity with maximum porosity on the order of a few percent. Some limited success was also obtained with MPW. In these trials, only the T-111 tubes were used. Joints were possible for the T-111 tube to the Hastelloy X bar stock, but the stiffness of the tube (resisting collapse) necessitated the use of very high power levels. These power levels resulted in damage to the equipment (concentrator) during welding. It is of note that the joint made showed the typical wavy bond microstructure associated with magnetic pulse/explosion bond joints. Joints were not possible between the T-111 tube and the MarM 247 bar stock. In this case, the MarM 247 shattered before sufficient impact forces could be developed for bonding.

  17. A proposed holistic approach to on-chip, off-chip, test, and package interconnections

    NASA Astrophysics Data System (ADS)

    Bartelink, Dirk J.

    1998-11-01

    The term interconnection has traditionally implied a `robust' connection from a transistor or a group of transistors in an IC to the outside world, usually a PC board. Optimum system utilization is done from outside the IC. As an alternative, this paper addresses `unimpeded' transistor-to-transistor interconnection aimed at reaching the high circuit densities and computational capabilities of neighboring IC's. In this view, interconnections are not made to some human-centric place outside the IC world requiring robustness—except for system input and output connections. This unimpeded interconnect style is currently available only through intra-chip signal traces in `system-on-a-chip' implementations, as exemplified by embedded DRAMs. Because the traditional off-chip penalty in performance and wiring density is so large, a merging of complex process technologies is the only option today. It is suggested that, for system integration to move forward, the traditional robustness requirement inherited from conventional packaging interconnect and IC manufacturing test must be discarded. Traditional system assembly from vendor parts requires robustness under shipping, inspection and assembly. The trend toward systems on a chip signifies willingness by semiconductor companies to design and fabricate whole systems in house, so that `in-house' chip-to-chip assembly is not beyond reach. In this scenario, bare chips never leave the controlled environment of the IC fabricator while the two major contributors to off-chip signal penalty, ESD protection and the need to source a 50-ohm test head, are avoided. With in-house assembly, ESD protection can be eliminated with the precautions already familiar in plasma etching. Test interconnection impacts the fundamentals of IC manufacturing, particularly with clock speeds approaching 1GHz, and cannot be an afterthought. It should be an integral part of the chip-to-chip interconnection bandwidth optimization, because—as we must recognize—test is also performed using IC's. A system interconnection is proposed using multiple chips fabricated with conventional silicon processes, including MEMS technology. The system resembles an MCM that can be joined without committing to final assembly to perform at-speed testing. 50-Ohm test probes never load the circuit; only intended neighboring chips are ever connected. A `back-plane' chip provides the connection layers for both inter- and intra-chip signals and also serves as the probe card, in analogy with membrane probes now used for single-chip testing. Intra-chip connections, which require complicated connections during test that exactly match the product, are then properly made and all waveforms and loading conditions under test will be identical to those of the product. The major benefit is that all front-end chip technologies can be merged—logic, memory, RF, even passives. ESD protection is required only on external system connections. Manufacturing test information will accurately characterize process faults and thus avoid the Known-Good-Die problem that has slowed the arrival of conventional MCM's.

  18. Interfacing a quantum dot with a spontaneous parametric down-conversion source

    NASA Astrophysics Data System (ADS)

    Huber, Tobias; Prilmüller, Maximilian; Sehner, Michael; Solomon, Glenn S.; Predojević, Ana; Weihs, Gregor

    2017-09-01

    Quantum networks require interfacing stationary and flying qubits. These flying qubits are usually nonclassical states of light. Here we consider two of the leading source technologies for nonclassical light, spontaneous parametric down-conversion and single semiconductor quantum dots. Down-conversion delivers high-grade entangled photon pairs, whereas quantum dots excel at producing single photons. We report on an experiment that joins these two technologies and investigates the conditions under which optimal interference between these dissimilar light sources may be achieved.

  19. Ceramic Matrix Composites for Rotorcraft Engines

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.

    2011-01-01

    Ceramic matrix composite (CMC) components are being developed for turbine engine applications. Compared to metallic components, the CMC components offer benefits of higher temperature capability and less cooling requirements which correlates to improved efficiency and reduced emissions. This presentation discusses a technology develop effort for overcoming challenges in fabricating a CMC vane for the high pressure turbine. The areas of technology development include small component fabrication, ceramic joining and integration, material and component testing and characterization, and design and analysis of concept components.

  20. Piping and tubing technology: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A compilation on the devices, techniques, and methods used in piping and tubing technology is presented. Data cover the following: (1) a number of fittings, couplings, and connectors that are useful in joining tubing and piping and various systems, (2) a family of devices used where flexibility and/or vibration damping are necessary, (3) a number of devices found useful in the regulation and control of fluid flow, and (4) shop hints to aid in maintenance and repair procedures such as cleaning, flaring, and swaging of tubes.

  1. The Participation to The All Japan College of Technology Design Competition and The Trial of Art and Design Education

    NASA Astrophysics Data System (ADS)

    Kato, Kenji; Takeshita, Junji

    The works of Toyota national college of technology gets excellent result on structural design competition (bridge contest) of national college design competition. This paper reports planning and making process of these works. As increase strength of the structures, it is important point the determination of structural type by numerical analysis and test, and precision of production and idea of joining. Second, it reports the curriculum of special items connection with excellent works.

  2. Proceedings of the Tenth Annual National Conference on Ada Technology. Held in Arlington, VA, on February 24-28, 1992

    DTIC Science & Technology

    1992-02-01

    Newsletter, Vol. 5, No. 1, January 1983 be translated from HAL’S. 4. Klumpp, Allan R., An Ada Linear Algebra Software development costs for using the...a linear algebra approach to As noted above, the concept of the problem and address the problem of unitdimensional analysis extends beyond problems...you will join us again next year. The 11th Annual Conference on Ada Technology (1993) will be held here at the Hyatt Regency - Crystal City

  3. In vivo gene correction with targeted sequence substitution through microhomology-mediated end joining.

    PubMed

    Shin, Jeong Hong; Jung, Soobin; Ramakrishna, Suresh; Kim, Hyongbum Henry; Lee, Junwon

    2018-07-07

    Genome editing technology using programmable nucleases has rapidly evolved in recent years. The primary mechanism to achieve precise integration of a transgene is mainly based on homology-directed repair (HDR). However, an HDR-based genome-editing approach is less efficient than non-homologous end-joining (NHEJ). Recently, a microhomology-mediated end-joining (MMEJ)-based transgene integration approach was developed, showing feasibility both in vitro and in vivo. We expanded this method to achieve targeted sequence substitution (TSS) of mutated sequences with normal sequences using double-guide RNAs (gRNAs), and a donor template flanking the microhomologies and target sequence of the gRNAs in vitro and in vivo. Our method could realize more efficient sequence substitution than the HDR-based method in vitro using a reporter cell line, and led to the survival of a hereditary tyrosinemia mouse model in vivo. The proposed MMEJ-based TSS approach could provide a novel therapeutic strategy, in addition to HDR, to achieve gene correction from a mutated sequence to a normal sequence. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Metal Matrix Composite LOX Turbopump Housing Via Novel Tool-Less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.; hide

    2001-01-01

    Metal matrix composites (MMC) offer relatively higher specific strength, specific stiffness, lower coefficient of thermal expansion (CTE) and lower density as compared with conventional alloys. These unique properties make them very attractive for aerospace turbomachinery applications where there is ever increasing emphasis to reduce weight and cost, and to increase engine performance. Through a joint effort between NASA and Metal Matrix Cast Composites, Inc., a complex liquid oxygen (LOX) compatible turbopump housing is being redesigned and manufactured from hybrid (particulate and fibers) Aluminum MMC. To this end, a revolutionary tool-less pressure infiltration casting technology is being perfected. Ceramic preforms for the composite are 3-dimensionally printed using a stereolithography file, acquired from a CAD model. The preforms are then invested into a refractory material and pressure infiltrated with liquid metal. After casting, the refractory material is washed away leaving behind a near net-shape composite part. Benefits of this process include increased composite uniformity, no mold machining, short time from design to part, properties matching traditional methods, ability to make previously impossible to manufacture parts and no size limitations with a newly developed joining technology. The results of materials, manufacturing and design optimizations, preform joining, and sub-element tests will be presented.

  5. Metal Matrix Composite LOX Turbopump Housing Via Novel Tool-Less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.; hide

    2001-01-01

    Metal matrix composites (MMC) offer relatively higher specific strength, specific stiffness, lower coefficient of thermal expansion (CTE) and lower density as compared with conventional alloys. These unique properties make them very attractive for aerospace turbomachinery applications where there is ever increasing emphasis to reduce weight and cost, and to increase engine performance. Through a joint effort between NASA and Metal Matrix Cast Composites, Inc., a complex liquid oxygen (LOX) compatible turbopump housing is being redesigned and manufactured from hybrid (particulate and Fibers) Aluminum MMC. To this end, a revolutionary tool-less pressure infiltration casting technology is being perfected. Ceramic preforms for the composite are 3-dimensionally printed using a stereolithography file, acquired from a CAD model. The preforms are then invested into a refractory material and pressure infiltrated with liquid metal. After casting, the refractory material is washed away leaving behind a near net-shape composite part. Benefits of this process include increased composite uniformity, no mold machining, short time from design to part properties matching traditional methods, ability to make previously impossible to manufacture parts and no size limitations with a newly developed joining technology. The results of materials, manufacturing and design optimizations, preform joining, and sub element tests will be presented.

  6. Metal Matrix Composite LOX Turbopump Housing Via Novel Tool-less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.; hide

    2002-01-01

    Metal matrix composites (MMC) offer relatively higher specific strength, specific stiffness, lower coefficient of thermal expansion (CTE) and lower density as compared with conventional alloys. These unique properties make them very attractive for aerospace turbomachinery applications where there is ever increasing emphasis to reduce weight and cost, and to increase engine performance. Through a joint effort between NASA and Metal Matrix Cast Composites, Inc., a complex liquid oxygen (LOX) compatible turbopump housing is being redesigned and manufactured from hybrid (particulate and fibers) Aluminum MMC. To this end, a revolutionary toolless pressure infiltration casting technology is being perfected. Ceramic preforms for the composite are 3-dimensionally printed using a stereolithography file, acquired from a CAD model. The preforms are then invested into a refractory material and pressure infiltrated with liquid metal. After casting, the refractory material is washed away leaving behind a near net-shape composite part. Benefits of this process include increased composite uniformity, no mold machining, short time from design to part, properties matching traditional methods, ability to make previously impossible to manufacture parts and no size limitations with a newly developed joining technology. The results of materials, manufacturing and design optimizations, preform joining, and sub-element tests will be presented.

  7. Metallurgical investigation on fourth century BCE silver jewellery of two hoards from Samaria

    NASA Astrophysics Data System (ADS)

    Ashkenazi, D.; Gitler, H.; Stern, A.; Tal, O.

    2017-01-01

    A fourth century BCE silver jewellery collection, which is part of two hoards of Samarian coins (the Samaria and Nablus Hoards), was studied by non-destructive analyses. The collection, which consists of pendants, rings, beads and earrings, had been examined by visual testing, multi-focal microscopy and SEM-EDS analysis. In order to enhance our knowledge of past technologies of silver jewellery production, we developed a metallurgical methodology based on the chemical composition of the joints and bulk. The results show that all artefacts are made of silver containing a small percentage of copper. Higher copper concentrations were measured in the joining regions. Our research indicates that the manufacturing of the jewellery from both hoards involved similar techniques, including casting, cutting, hammering, bending, granulating and joining methods, indicating that the artefacts were made by trained silversmiths. Although the burial date of the Samaria Hoard - 352 BCE - is some 21 years earlier than that of the Nablus Hoard - circa 331 BCE, a noted continuity in the local production technology is apparent in the analysed items. This information provides better understanding of the technological abilities in the late Persian-period province of Samaria and bears implications on the local silver coins produced in the region.

  8. Metallurgical investigation on fourth century BCE silver jewellery of two hoards from Samaria

    PubMed Central

    Ashkenazi, D.; Gitler, H.; Stern, A.; Tal, O.

    2017-01-01

    A fourth century BCE silver jewellery collection, which is part of two hoards of Samarian coins (the Samaria and Nablus Hoards), was studied by non-destructive analyses. The collection, which consists of pendants, rings, beads and earrings, had been examined by visual testing, multi-focal microscopy and SEM-EDS analysis. In order to enhance our knowledge of past technologies of silver jewellery production, we developed a metallurgical methodology based on the chemical composition of the joints and bulk. The results show that all artefacts are made of silver containing a small percentage of copper. Higher copper concentrations were measured in the joining regions. Our research indicates that the manufacturing of the jewellery from both hoards involved similar techniques, including casting, cutting, hammering, bending, granulating and joining methods, indicating that the artefacts were made by trained silversmiths. Although the burial date of the Samaria Hoard – 352 BCE – is some 21 years earlier than that of the Nablus Hoard – circa 331 BCE, a noted continuity in the local production technology is apparent in the analysed items. This information provides better understanding of the technological abilities in the late Persian-period province of Samaria and bears implications on the local silver coins produced in the region. PMID:28098171

  9. Mouse embryonic stem cells, but not somatic cells, predominantly use homologous recombination to repair double-strand DNA breaks.

    PubMed

    Tichy, Elisia D; Pillai, Resmi; Deng, Li; Liang, Li; Tischfield, Jay; Schwemberger, Sandy J; Babcock, George F; Stambrook, Peter J

    2010-11-01

    Embryonic stem (ES) cells give rise to all cell types of an organism. Since mutations at this embryonic stage would affect all cells and be detrimental to the overall health of an organism, robust mechanisms must exist to ensure that genomic integrity is maintained. To test this proposition, we compared the capacity of murine ES cells to repair DNA double-strand breaks with that of differentiated cells. Of the 2 major pathways that repair double-strand breaks, error-prone nonhomologous end joining (NHEJ) predominated in mouse embryonic fibroblasts, whereas the high fidelity homologous recombinational repair (HRR) predominated in ES cells. Microhomology-mediated end joining, an emerging repair pathway, persisted at low levels in all cell types examined. The levels of proteins involved in HRR and microhomology-mediated end joining were highly elevated in ES cells compared with mouse embryonic fibroblasts, whereas those for NHEJ were quite variable, with DNA Ligase IV expression low in ES cells. The half-life of DNA Ligase IV protein was also low in ES cells. Attempts to increase the abundance of DNA Ligase IV protein by overexpression or inhibition of its degradation, and thereby elevate NHEJ in ES cells, were unsuccessful. When ES cells were induced to differentiate, however, the level of DNA Ligase IV protein increased, as did the capacity to repair by NHEJ. The data suggest that preferential use of HRR rather than NHEJ may lend ES cells an additional layer of genomic protection and that the limited levels of DNA Ligase IV may account for the low level of NHEJ activity.

  10. Mitochondrial DNA repair and damage tolerance.

    PubMed

    Stein, Alexis; Sia, Elaine A

    2017-01-01

    The accurate maintenance of mitochondrial DNA (mtDNA) is required in order for eukaryotic cells to assemble a functional electron transport chain. This independently-maintained genome relies on nuclear-encoded proteins that are imported into the mitochondria to carry out replication and repair processes. Decades of research has made clear that mitochondria employ robust and varied mtDNA repair and damage tolerance mechanisms in order to ensure the proper maintenance of the mitochondrial genome. This review focuses on our current understanding of mtDNA repair and damage tolerance pathways including base excision repair, mismatch repair, homologous recombination, non-homologous end joining, translesion synthesis and mtDNA degradation in both yeast and mammalian systems.

  11. Grism manufacturing by low temperature mineral bonding

    NASA Astrophysics Data System (ADS)

    Kalkowski, G.; Grabowski, K.; Harnisch, G.; Flügel-Paul, T.; Zeitner, U.; Risse, S.

    2017-09-01

    By uniting a grating with a prism to a GRISM compound, the optical characteristics of diffractive and refractive elements can be favorably combined to achieve outstanding spectral resolution features. Ruling the grating structure into the prism surface is common for wavelengths around 1 μm and beyond, while adhesive bonding of two separate parts is generally used for shorter wavelengths and finer structures. We report on a manufacturing approach for joining the corresponding glass elements by the technology of hydrophilic direct bonding. This allows to manufacture the individual parts separately and subsequently combine them quasimonolithically by generating stiff and durable bonds of vanishing thickness, high strength and excellent transmission. With this approach for GRISM bonding, standard direct-write- or mask-lithography equipment may be used for the fabrication of the grating structure and the drawbacks of adhesive bonding (thermal mismatch, creep, aging) are avoided. The technology of hydrophilic bonding originates from "classical" optical contacting [1], but has been much improved and perfected during the last decades in the context of 3-dimensinal stacking Si-wafers for microelectronic applications [2]. It provides joins through covalent bonds of the Si-O-Si type at the nanometer scale, i.e. the elementary bond type in many minerals and glasses. The mineral nature of the bond is perfectly adapted to most optical materials and the extremely thin bonding layers generated with this technology are well suited for transmission optics. Creeping under mechanical load, as commonly observed with adhesive bonding, is not an issue. With respect to diffusion bonding, which operates at rather high temperatures close to the glass transition or crystal melting point, hydrophilic bonding is a low temperature process that needs only moderate heating. This facilitates provision of handling and alignment means for the individual parts during the set-up stages and greatly eases joining optical materials of different thermal expansion. The technology has been successfully used in the past for bonding various glasses as well as crystalline optical materials [3, 4]. Here we will focus on bonding prisms elements and binary gratings of fused silica with and without coatings at the bonding interface. Further, preliminary results on bonding prism-grating-prism (PGP) combinations will be presented.

  12. Gaining Momentum, Losing Ground. Tapping America's Potential, Progress Report 2008

    ERIC Educational Resources Information Center

    Tapping America's Potential, 2008

    2008-01-01

    In July 2005, 15 of America's most prominent business organizations joined together to express their deep concern about the ability of the United States to sustain its scientific and technological leadership in a world where newly energized foreign competitors are investing in the capacity for innovation--the key driver of productivity and…

  13. Aluminum space frame technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birch, S.

    This article examines the increased application of aluminum to the construction of automobile frames. The topics of the article include a joint venture between Audi and Alcoa, forms in which aluminum is used, new alloys and construction methods, meeting rigidity and safety levels, manufacturing techniques, the use of extrusions, die casting, joining techniques, and pollution control during manufacturing.

  14. Data Collection during the Great American Eclipse

    ERIC Educational Resources Information Center

    Vernier, Dave

    2017-01-01

    In this article Dave Vernier describes how he turned the total eclipse on August 21, 2017 into a science, technology, engineering and mathematics (STEM) lesson by taking data. He asked teachers and former teachers to join in collecting data and to share it. The most frequently monitored parameters were illuminance (a measure of light brightness as…

  15. Creating a National Skills Corporation. Policy Report.

    ERIC Educational Resources Information Center

    Atkinson, Rob

    To address the skills shortages stemming from the transition to a more technological and skills-intensive economy, Congress established a program whereby funds from H-1B visa fees would provide seed funds for private companies, labor, and government to join together in creating training alliances focused on skills in short supply. Unfortunately,…

  16. KEYNOTE ADDRESS: The role of standards in the emerging optical digital data disk storage systems market

    NASA Astrophysics Data System (ADS)

    Bainbridge, Ross C.

    1984-09-01

    The Institute for Computer Sciences and Technology at the National Bureau of Standards is pleased to cooperate with the International Society for Optical Engineering and to join with the other distinguished organizations in cosponsoring this conference on applications of optical digital data disk storage systems.

  17. NASA Chief Technologist Speaks at Massachusetts Institute of Technology

    NASA Image and Video Library

    2018-02-15

    NASA Chief Technologist Douglas Terrier joined students, faculty and experts in Boston as part of MIT's "Better MIT Innovation Week 2018," a week-long program promoting leadership, entrepreneurship and action for a better future. During the February event, Terrier spoke about a culture of innovation at America's Space Program. (Photo: Damian Barabonkov/MIT Technique)

  18. The Faculty of the Future: Leaner, Meaner, More Innovative, Less Secure

    ERIC Educational Resources Information Center

    Chronicle of Higher Education, 2009

    2009-01-01

    The faculty workplace has changed significantly in the last 20 years: More women, minority professors, and adjuncts have joined the professoriate. Information technology has led to new opportunities and expectations. The economic crisis has complicated long-term planning for scholars and institutions alike. Seven scholars from several fields and…

  19. A Case for Teaching Biotechnology

    ERIC Educational Resources Information Center

    Lazaros, Edward; Embree, Caleb

    2016-01-01

    Biotechnology is an innovative field that is consistently growing in popularity. It is important that students are taught about this technology at an early age, so they are motivated to join the field, or at least motivated to become informed citizens and consumers (Gonzalez, et al, 2013). An increase in biotechnology knowledge can result in an…

  20. Shocking Admission

    ERIC Educational Resources Information Center

    Hoover, Eric; Millman, Sierra

    2007-01-01

    Marilee Jones's career had been a remarkable success. She joined Massachusetts Institute of Technology's (MIT's) admissions office in 1979, landing a job in Cambridge at a time when boys ruled the sandbox of the admissions profession. Her job was to help MIT recruit more women, who then made up less than one-fifth of the institute's students. She…

  1. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Editor); Stein, Bland A. (Editor)

    1986-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  2. Summary of Prior Work on Joining of Oxide Dispersion-Strengthened Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Ian G; Tatlock, Gordon J; Badairy, H.

    2009-08-01

    There is a range of joining techniques available for use with ODS alloys, but care should be exercised in matching the technique to the final duty requirements of the joint. The goal for joining ODS alloys is a joint with no local disruption of the distribution of the oxide dispersion, and no significant change in the size and orientation of the alloy microstructure. Not surprisingly, the fusion welding processes typically employed with wrought alloys produce the least satisfactory results with ODS alloys, but some versions, such as fusion spot welding, and the laser and electron-beam welding technologies, have demonstrated potentialmore » for producing sound joints. Welds made using solid-state spot welding reportedly have exhibited parent metal properties. Thus, it is possible to employ processes that result in significant disruption of the alloy microstructure, as long as the processing parameters are adjustment to minimize the extent of or influence of the changes in the alloy microstructure. Selection among these joining approaches largely depends on the particular application and component configuration, and an understanding of the relationships among processing, alloy microstructure, and final properties is key. Recent developments have resulted in friction welding evolving to be a prime method for joining ODS sheet products, and variants of brazing/diffusion bonding have shown excellent promise for use with tubes and pipes. The techniques that come closest to the goal defined above involve solid-state diffusion bonding and, in particular, it has been found that secondary recrystallization of joints made by pulsed plasma-assisted diffusion can produce the desired, continuous, large alloy grain structure through the joint. Such joints have exhibited creep rupture failure at >82% of the load needed to fail the monolithic parent alloy at 1000 C.« less

  3. Space Technology Industry Forum

    NASA Image and Video Library

    2010-07-13

    Bobby Braun, far left, NASA Chief Technologist, speaks during the NASA New Space Technology Industry Forum being held at the University of Maryland in College Park on Wednesday, July 14, 2010. Mr. Braun is joined on the panel by James Reuther, Director of Strategic Integration at NASA Headquarters, second from left; Keith Belvin, NASA Systems Engineer at NASA Langley Research Center and Ramona Travis, NASA Stennis Space Center Chief Technologist, far right. During the two-day event, speakers are focusing on the president's fiscal year 2011 budget request for NASA's new Space Technology Program. Representatives from industry, academia and the federal government are in attendance to discuss strategy, development and implementation of NASA's proposed new technology-enabled exploration. Photo Credit: (NASA/Carla Cioffi)

  4. Health reform and technology--what does it mean for us?

    PubMed

    Abele, J

    1995-01-01

    John Abele, Founder Chairman of Boston Scientific Corporation, spoke at AAMI's 30th Annual Meeting on 22 May in Anaheim, CA. His speech was part of AAMI's plenary session, "The Impact of a Reformed Health System on New Technology." After his speech, Abele joined three of AAMI's experts in a roundtable discussion on the topics he raised. See the BI&T Forum page 479 for their discussion. As a business entrepreneur and scientist, Abele is well versed in the topic of health reform and scientific advancements. He began his career with a degree in physics and philosophy, then moved into the health care field because of his fascination with medical devices and technologies. He has spent years working as an engineer, a salesperson, a general manager, and a partner in a research and development company. He was a cofounder of AAMI in 1965. Boston Scientific's roots trace back to 1969, when Abele joined with Itzhak Bentov to build a company around a steerable catheter. The associated technology became a platform for many types of tools that could be used as alternatives to surgery in most organs of the body. Today, with over 5,000 employees, 4,000 products, and a worldwide presence, the original objective of developing products and procedures that reduce risk, trauma, cost, and time still applies. Abele is the author of many papers and book chapters, and he has lectured extensively on the technology of various medical devices and technical, social, economic, and political trends affecting health care. His major interests are science education and the process by which new technology is invented, developed, and introduced to society. The following article is based on Abele's presentation.

  5. Prepreg and Melt Infiltration Technology Developed for Affordable, Robust Manufacturing of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Petko, Jeannie F.

    2004-01-01

    Affordable fiber-reinforced ceramic matrix composites with multifunctional properties are critically needed for high-temperature aerospace and space transportation applications. These materials have various applications in advanced high-efficiency and high-performance engines, airframe and propulsion components for next-generation launch vehicles, and components for land-based systems. A number of these applications require materials with specific functional characteristics: for example, thick component, hybrid layups for environmental durability and stress management, and self-healing and smart composite matrices. At present, with limited success and very high cost, traditional composite fabrication technologies have been utilized to manufacture some large, complex-shape components of these materials. However, many challenges still remain in developing affordable, robust, and flexible manufacturing technologies for large, complex-shape components with multifunctional properties. The prepreg and melt infiltration (PREMI) technology provides an affordable and robust manufacturing route for low-cost, large-scale production of multifunctional ceramic composite components.

  6. High-Performance AC Power Source by Applying Robust Stability Control Technology for Precision Material Machining

    NASA Astrophysics Data System (ADS)

    Chang, En-Chih

    2018-02-01

    This paper presents a high-performance AC power source by applying robust stability control technology for precision material machining (PMM). The proposed technology associates the benefits of finite-time convergent sliding function (FTCSF) and firefly optimization algorithm (FOA). The FTCSF maintains the robustness of conventional sliding mode, and simultaneously speeds up the convergence speed of the system state. Unfortunately, when a highly nonlinear loading is applied, the chatter will occur. The chatter results in high total harmonic distortion (THD) output voltage of AC power source, and even deteriorates the stability of PMM. The FOA is therefore used to remove the chatter, and the FTCSF still preserves finite system-state convergence time. By combining FTCSF with FOA, the AC power source of PMM can yield good steady-state and transient performance. Experimental results are performed in support of the proposed technology.

  7. The characteristics of welded joints for air conditioning application

    NASA Astrophysics Data System (ADS)

    Weglowski, M. St.; Weglowska, A.; Miara, D.; Kwiecinski, K.; Błacha, S.; Dworak, J.; Rykala, J.; Pikula, J.; Ziobro, G.; Szafron, A.; Zimierska-Nowak, P.; Richert, M.; Noga, P.

    2017-10-01

    In the paper the results of metallographic examination of welded joints for air-conditioning elements are presented. The European directives 2006/40/EC on the greenhouse gasses elimination demand to stop using traditional refrigerant and to change it to R744 (CO2) medium in air conditioning installation. The R744 refrigerant is environmental friendly medium if compared with standard solution such as R12, R134a or R1234yf and safer for passengers than R1234yf. The non-standard thermodynamic parameters of the R744 which translate into high pressure and high temperature require specific materials to develop the shape and to specify the technology of manufacturing for the particular elements of the conduits and moreover the technologies of joining for the whole structure, which would meet the exploitation requirements of the new air-conditioning system. To produce the test welded joints of stainless steels four different joining technologies were applied: laser welding, plasma welding, electron beam welding as well as high speed rotation welding. This paper describes the influence of the selected welding process on the macrostructure and microstructure of welded joints of AISI 304 and AISI 316L steels. The results indicated that plasma welding laser welding and electron beam welding technologies guaranty the proper quality of welded joints and can be used for the air conditioning application in automotive industry. However, high speed rotation welding not guarantee the good quality of welded joints and cannot be used for above application.

  8. Common solutions for power, communication and robustness in operations of large measurement networks within Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Huber, Robert; Beranzoli, Laura; Fiebig, Markus; Gilbert, Olivier; Laj, Paolo; Mazzola, Mauro; Paris, Jean-Daniel; Pedersen, Helle; Stocker, Markus; Vitale, Vito; Waldmann, Christoph

    2017-04-01

    European Environmental Research Infrastructures (RI) frequently comprise in situ observatories from large-scale networks of platforms or sites to local networks of various sensors. Network operation is usually a cumbersome aspect of these RIs facing specific technological problems related to operations in remote areas, maintenance of the network, transmission of observation values, etc.. Robust inter-connection within and across these networks is still at infancy level and the burden increases with remoteness of the station, harshness of environmental conditions, and unavailability of classic communication systems, which is a common feature here. Despite existing RIs having developed ad-hoc solutions to overcome specific problems and innovative technologies becoming available, no common approach yet exists. Within the European project ENVRIplus, a dedicated work package aims to stimulate common network operation technologies and approaches in terms of power supply and storage, robustness, and data transmission. Major objectives of this task are to review existing technologies and RI requirements, propose innovative solutions and evaluate the standardization potential prior to wider deployment across networks. Focus areas within these efforts are: improving energy production and storage units, testing robustness of RI equipment towards extreme conditions as well as methodologies for robust data transmission. We will introduce current project activities which are coordinated at various levels including the engineering as well as the data management perspective, and explain how environmental RIs can benefit from the developments.

  9. The Pulsar Search Collaboratory: A Comprehensive Project for Students and Teachers

    NASA Astrophysics Data System (ADS)

    Rosen, Rachel; Heatherly, S.; McLauglin, M.; Lorimer, D.

    2009-01-01

    The National Radio Astronomy Observatory (NRAO) and West Virginia University (WVU) have partnered to improve the quality of science education in West Virginia high schools through the Pulsar Search Collaboratory (PSC). One of the primary goals of the PSC is to engage students in STEM (science, technology, engineering, and mathematics) and related fields by using information technology to conduct current scientific research, specifically searching for new pulsars. To this end, we also are improving rural teachers' knowledge of the nature of science, the importance of information technology to scientific discovery, and methodologies for incorporating inquiry-based education into the classroom. The PSC hopes to make school science more like the practice of science and to make science fun and interesting for high school students. In 2007, an international team of astronomers received 900 hours of time on the Green Bank Telescope (GBT) during the summer shutdown to search for new pulsars. In conjunction with this group, we applied for and received 300 hours of observing time on the GBT for the PSC students. Around the same time, we were awarded an NSF iTEST grant to fund the Pulsar Search Collaboratory (PSC) project. Over the past year, we have been working with colleagues in the WVU Department of Computer Science to develop a graphical interface through which the students will analyze pulsar search plots (see psrsearch.wvu.edu). We also initiated a robust processing pipeline on a cluster in the WVU Computer Science Department. The PSC started in earnest this summer with a three week workshop in Green Bank where the teachers attended an intensive astronomy mini-course and techniques on introducing astronomy into the classroom. The students joined their teachers for the third week and participated in various activities to teach them about radio astronomy, radio frequency interference, and pulsars.

  10. Optical satellite communications in Europe

    NASA Astrophysics Data System (ADS)

    Sodnik, Zoran; Lutz, Hanspeter; Furch, Bernhard; Meyer, Rolf

    2010-02-01

    This paper describes optical satellite communication activities based on technology developments, which started in Europe more than 30 years ago and led in 2001 to the world-first optical inter-satellite communication link experiment (SILEX). SILEX proved that optical communication technologies can be reliably mastered in space and in 2006 the Japanese Space Agency (JAXA) joined the optical inter-satellite experiment from their own satellite. Since 2008 the German Space Agency (DLR) is operating an inter-satellite link between the NFIRE and TerraSAR-X satellites based on a second generation of laser communication technology, which will be used for the new European Data Relay Satellite (EDRS) system to be deployed in 2013.

  11. Coatings on Earth and Beyond

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2015-01-01

    Coatings have always been spearheading technology developments, as they have to function faultlessly in very demanding conditions. Coatings for use on spacecraft and launch vehicle launch environments offer technological challenges beyond the normal boundaries of most coatings service environments. Among all the space environments, the most treacherous is that of the launch environment. To ensure the success of space missions, NASA must rely on the best materials available, and that very much includes coatings. What kind of technology can meet those challenges? What is expected of coatings manufacturers wanting to join the space race? What insights can the whole industry gain? Luz Marina Calle will present an overview of corrosion protective coatings at NASA.

  12. Experimental and Simulative Investigation of Laser Transmission Welding under Consideration of Scattering

    NASA Astrophysics Data System (ADS)

    Devrient, M.; Da, X.; Frick, T.; Schmidt, M.

    Laser transmission welding is a well known joining technology for thermoplastics. Because of the needs of lightweight, cost effective and green production thermoplastics are usually filled with glass fibers. These lead to higher absorption and more scattering within the upper joining partner with a negative influence on the welding process. Here an experimental method for the characterization of the scattering behavior of semi crystalline thermoplastics filled with short glass fibers and a finite element model of the welding process capable to consider scattering as well as an analytical model are introduced. The experimental data is used for the numerical and analytical investigation of laser transmission welding under consideration of scattering. The scattering effects of several thermoplastics onto the calculated temperature fields as well as weld seam geometries are quantified.

  13. Optimization of Aluminium-to-Magnesium Ultrasonic Spot Welding

    NASA Astrophysics Data System (ADS)

    Panteli, A.; Chen, Y.-C.; Strong, D.; Zhang, Xiaoyun; Prangnell, P. B.

    2012-03-01

    The ability to join dissimilar materials in the automotive industry will result in more efficient multimaterial structures. However, welding of aluminium (Al) to magnesium (Mg) alloys is problematic because of the rapid formation of brittle intermetallic phases at the weld interface. Ultrasonic welding (USW) is a solid-state joining technology that may offer a potential solution, but USW of Al to Mg is currently not well understood. Here, we have investigated the effect of process variables and energy input on joint formation between Al-6111 and Mg-AZ31 alloys, and we report on the optimum welding conditions, heat generation, and the formation of a significant intermetallic reaction layer. Furthermore, the factors influencing the interface reaction rate and the advantages of precoating the Mg with Al are discussed.

  14. ATRF Ribbon-Cutting Ceremony Coincides with Chamber of Commerce Centennial Gala | Poster

    Cancer.gov

    By Frank Blanchard, Staff Writer U.S. Rep. Roscoe Bartlett, NCI Deputy Director for Management John Czajkowski, and SAIC Corporate Chief Executive Officer (CEO) John Jumper were joined by representatives of the Frederick County Chamber of Commerce in cutting the ribbon for the National Cancer Institute’s Advanced Technology Research Facility (ATRF).

  15. Welds in thermoplastic composite materials

    NASA Astrophysics Data System (ADS)

    Taylor, N. S.

    Welding methods are reviewed that can be effectively used for joining of thermoplastic composites and continuous-fiber thermoplastics. Attention is given to the use of ultrasonic, vibration, hot-plate, resistance, and induction welding techniques. The welding techniques are shown to provide complementary weld qualities for the range of thermoplastic materials that are of interest to industrial and technological applications.

  16. Children, Computers, and Powerful Ideas

    ERIC Educational Resources Information Center

    Bull, Glen

    2005-01-01

    Today it is commonplace that computers and technology permeate almost every aspect of education. In the late 1960s, though, the idea that computers could serve as a catalyst for thinking about the way children learn was a radical concept. In the early 1960s, Seymour Papert joined the faculty of MIT and founded the Artificial Intelligence Lab with…

  17. Diagnostics of Metal Plasma in Radio Frequency Glow Discharge during Electron Beam Evaporation

    NASA Astrophysics Data System (ADS)

    Yu, Yong-Hao; Wang, Lang-Ping; Wang, Xiao-Feng; Jiang, Wei; Chen, Qiong

    2015-08-01

    Not Available Supported by the National Natural Science Foundation of China under Grant No 51201051, an Opening Project from the State Key Laboratory of Advanced Welding and Joining at Harbin Institute of Technology under Grant No AWPT-M10, and the Fundamental Research Funds for the Central Universities under Grant No HIT.NSRIF.2012041.

  18. NREL at 40: Research Efforts Drive Advanced Energy | News | NREL

    Science.gov Websites

    blades, getting them to the installation site becomes more difficult. "When I joined the wind industry in 1995, we were still producing 9-meter blades," said Derek Berry, senior wind technology . Eventually we started manufacturing 20- and 30-meter blades and we were still able to ship them without much

  19. International Students Take Up the Model Solar Car Challenge.

    ERIC Educational Resources Information Center

    Wellington, Paul

    2000-01-01

    Introduces an event in which two school teams from Argentina and Vietnam joined those from each Australian state in a race of model cars powered by the sun that provides a challenging and exciting approach for students to apply their scientific and technological knowledge to design and build the most efficient vehicles possible to gain hands-on…

  20. Co-Creation of Value in Higher Education: Using Social Network Marketing in the Recruitment of Students

    ERIC Educational Resources Information Center

    Fagerstrom, Asle; Ghinea, Gheorghita

    2013-01-01

    A social network recruitment campaign was prepared where applicants for information technology bachelor studies at a Norwegian university college were invited to join a Facebook group related to the subject of interest. Each Facebook group was assigned a contact person who received training to facilitate activities and in answering questions from…

  1. Yahoo Works with Academic Libraries on a New Project to Digitize Books

    ERIC Educational Resources Information Center

    Carlson, Scott; Young, Jeffrey R.

    2005-01-01

    This article reports on the most recent search-engine company to join with academic libraries in digitizing large collections of books to make them easily searchable online. Yahoo Inc. has teamed up with the University of California system, the University of Toronto, and several archives and technology companies on a project that could potentially…

  2. Evaluation of Alternative Life Assessment Approaches Using P-3 SLAP Test Results

    DTIC Science & Technology

    2010-06-01

    modelling of fatigue crack growth, infrared NDT technologies and fibre optic corrosion detection devices. He joined DSTO in 2007 in the Air Vehicles...10 3.4 Spectra Properties ...the previously conducted (truly ‘blind’) predictions for RAAF usage . DSTO-TR-2418 4 2. Background to DSTO P-3 SLAP Test Interpretation The P

  3. Training the Future - Swamp Work Activities

    NASA Image and Video Library

    2017-07-19

    In the Swamp Works laboratory at NASA's Kennedy Space Center in Florida, student interns such as Maddy Olson are joining agency scientists, contributing in the area of Exploration Research and Technology. Olson is majoring in mechanical engineering at the University of North Dakota. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  4. Training the Future - Swamp Work Activities

    NASA Image and Video Library

    2017-07-19

    In the Swamp Works laboratory at NASA's Kennedy Space Center in Florida, student interns such as Kevin Murphy are joining agency scientists, contributing in the area of Exploration Research and Technology. Murphy is majoring in mechanical engineering at the University of Illinois at Urbana-Champaign. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  5. Training the Future - Swamp Work Activities

    NASA Image and Video Library

    2017-07-19

    In the Swamp Works laboratory at NASA's Kennedy Space Center in Florida, student interns such as Andrew Thoesen are joining agency scientists, contributing in the area of Exploration Research and Technology. Thoesen is studying mechanical engineering at Arizona State University in Tempe, Arizona. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program

  6. Fermilab Friends for Science Education | About Us

    Science.gov Websites

    photo From a modest, grass-roots organization at its inception in 1983, FFSE has grown to become a use of technology. Programs continue to be developed through a partnership between FFSE and the Historical Review Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get

  7. How to Plug into Teleconferencing/Reach Out and Train Somebody.

    ERIC Educational Resources Information Center

    Jenkins, Thomas M.; Cushing, David

    1983-01-01

    Teleconferencing, as an interactive group communication through an electronic medium joining three or more people at two or more locations, can take one of three forms: audio, audiographic, or full-motion video. This multilocation technology is used in training and in conducting meetings and conferences; it works as a money- and time-saving tool.…

  8. Spellings Joins Passage to India on Education: Trip Tied to Initiatives on Competitiveness Issues

    ERIC Educational Resources Information Center

    Klein, Alyson

    2006-01-01

    Secretary of Education Margaret Spellings and several key senators traveled to India last week to examine how that country, whose schools generally have fewer resources than those in the United States, has managed to produce top-notch engineers and technology professionals. Secretary Spellings arrived in India early in the week and met with…

  9. Psychosocial interventions for technological addictions

    PubMed Central

    Sharma, Manoj Kumar; Palanichamy, Thamil Selvan

    2018-01-01

    Increase in the use of technology has led to an increase in various kinds of technological addictions. A range of psychological and behavioural theories has been proposed to explain technology addictions. These include learning theories, reward-deficiency hypothesis, impulsivity, cognitive-behavioural models and social skills deficiency theories. While no particular form of psychological intervention has been suggested as being the golden standard for its treatment, the most frequently investigated approaches have been cognitive behavioural therapy (CBT) and motivational enhancement therapy. Given the need for the use of technology in daily living, controlled use has taken precedence over complete abstinence as the goal of treatment for technology addictions. Therapeutic techniques suggested for internet addiction include practicing the opposite, using external stoppers, setting goals, selective abstinence from certain applications, using cues, making personal inventories, joining support groups and family therapy interventions. PMID:29540928

  10. Lobachevsky Year at Kazan University: Center of Science, Education, Intellectual-Cognitive Tourism "Kazan - GeoNa - 2020+" and "Kazan-Moon-2020+" projects

    NASA Astrophysics Data System (ADS)

    Gusev, A.; Trudkova, N.

    2017-09-01

    Center "GeoNa" will enable scientists and teachers of the Russian universities to join to advanced achievements of a science, information technologies; to establish scientific communications with foreign colleagues in sphere of the high technology, educational projects and Intellectual-Cognitive Tourism. The Project "Kazan - Moon - 2020+" is directed on the decision of fundamental problems of celestial mechanics, selenodesy and geophysics of the Moon(s) connected to carrying out of complex theoretical researches and computer modelling.

  11. Genomic Data Commons and Genomic Cloud Pilots - Google Hangout

    Cancer.gov

    Join us for a live, moderated discussion about two NCI efforts to expand access to cancer genomics data: the Genomic Data Commons and Genomic Cloud Pilots. NCI subject matters experts will include Louis M. Staudt, M.D., Ph.D., Director Center for Cancer Genomics, Warren Kibbe, Ph.D., Director, NCI Center for Biomedical Informatics and Information Technology, and moderated by Anthony Kerlavage, Ph.D., Chief, Cancer Informatics Branch, Center for Biomedical Informatics and Information Technology. We welcome your questions before and during the Hangout on Twitter using the hashtag #AskNCI.

  12. Cost as a technology driver. [in aerospace R and D

    NASA Technical Reports Server (NTRS)

    Fitzgerald, P. E., Jr.; Savage, M.

    1976-01-01

    Cost managment as a guiding factor in optimum development of technology, and proper timing of cost-saving programs in the development of a system or technology with payoffs in development and operational advances are discussed and illustrated. Advances enhancing the performance of hardware or software advances raising productivity or reducing cost, are outlined, with examples drawn from: thermochemical thrust maximization, development of cryogenic storage tanks, improvements in fuel cells for Space Shuttle, design of a spacecraft pyrotechnic initiator, cost cutting by reduction in the number of parts to be joined, and cost cutting by dramatic reductions in circuit component number with small-scale double-diffused integrated circuitry. Program-focused supporting research and technology models are devised to aid judicious timing of cost-conscious research programs.

  13. Common Technologies for Environmental Research Infrastructures in ENVRIplus

    NASA Astrophysics Data System (ADS)

    Paris, Jean-Daniel

    2016-04-01

    Environmental and geoscientific research infrastructures (RIs) are dedicated to distinct aspects of the ocean, atmosphere, ecosystems, or solid Earth research, yet there is significant commonality in the way they conceive, develop, operate and upgrade their observation systems and platforms. Many environmental Ris are distributed network of observatories (be it drifting buoys, geophysical observatories, ocean-bottom stations, atmospheric measurements sites) with needs for remote operations. Most RIs have to deal with calibration and standardization issues. RIs use a variety of measurements technologies, but this variety is based on a small, common set of physical principles. All RIs have set their own research and development priorities, and developed their solution to their problems - however many problems are common across RIs. Finally, RIs may overlap in terms of scientific perimeter. In ENVRIplus we aim, for the first time, to identify common opportunities for innovation, to support common research and development across RIs on promising issues, and more generally to create a forum to spread state of the art techniques among participants. ENVRIplus activities include 1) measurement technologies: where are the common types of measurement for which we can share expertise or common development? 2) Metrology : how do we tackle together the diversified challenge of quality assurance and standardization? 3) Remote operations: can we address collectively the need for autonomy, robustness and distributed data handling? And 4) joint operations for research: are we able to demonstrate that together, RIs are able to provide relevant information to support excellent research. In this process we need to nurture an ecosystem of key players. Can we involve all the key technologists of the European RIs for a greater mutual benefit? Can we pave the way to a growing common market for innovative European SMEs, with a common programmatic approach conducive to targeted R&D? Can we develop a common metrological language adapted to the observation of our environment? We aim at creating a space for exchange on the "hardware" issues of our networks of observatories, a forum that allows fast transmission across RIs of best practices and state of the art technology, a laboratory for joint research and co-development, where research infrastructures and their communities join efforts on well-identified objectives.

  14. Glue-free assembly of glass fiber reinforced thermoplastics using laser light

    NASA Astrophysics Data System (ADS)

    Binetruy, C.; Clement, S.; Deleglise, M.; Franz, C.; Knapp, W.; Oumarou, M.; Renard, J.; Roesner, A.

    2011-05-01

    The use of laser light for bonding of continuous fiber reinforced thermoplastic composites (CFTPC) offers new possibilities to overcome the constraints of conventional joining technologies. Laser bonding is environmentally friendly as no chemical additive or glue is necessary. Accuracy and flexibility of the laser process as well as the quality of the weld seams provide benefits which are already used in many industrial applications. Laser transmission welding has already been introduced in manufacturing of short fiber thermoplastic composites. The laser replaces hot air in tapelaying systems for pre-preg carbon fiber placement. The paper provides an overview concerning the technical basics of the joining process and outline some material inherent characteristics to be considered when using continuous glass fiber reinforced composites The technical feasibility and the mechanical characterization of laser bonded CFTPC are demonstrated. The influence of the different layer configurations on the laser interaction with the material is investigated and the dependency on the mechanical strength of the weld seem is analyzed. The results show that the laser provides an alternative joining technique and offers new perspectives to assemble structural components emerging in automotive or aeronautical manufacturing. It overcomes the environmental and technical difficulties related to existing gluing processes.

  15. Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining

    PubMed Central

    Soni, Aashish; Siemann, Maria; Grabos, Martha; Murmann, Tamara; Pantelias, Gabriel E.; Iliakis, George

    2014-01-01

    In mammalian cells, ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are repaired in all phases of the cell cycle predominantly by classical, DNA-PK-dependent nonhomologous end joining (D-NHEJ). Homologous recombination repair (HRR) is functional during the S- and G2-phases, when a sister chromatid becomes available. An error-prone, alternative form of end joining, operating as backup (B-NHEJ) functions robustly throughout the cell cycle and particularly in the G2-phase and is thought to backup predominantly D-NHEJ. Parp-1, DNA-ligases 1 (Lig1) and 3 (Lig3), and Xrcc1 are implicated in B-NHEJ. Chromosome and chromatid translocations are manifestations of erroneous DSB repair and are crucial culprits in malignant transformation and IR-induced cell lethality. We analyzed shifts in translocation formation deriving from defects in D-NHEJ or HRR in cells irradiated in the G2-phase and identify B-NHEJ as the main DSB repair pathway backing up both of these defects at the cost of a large increase in translocation formation. Our results identify Parp-1 and Lig1 and 3 as factors involved in translocation formation and show that Xrcc1 reinforces the function of Lig3 in the process without being required for it. Finally, we demonstrate intriguing connections between B-NHEJ and DNA end resection in translocation formation and show that, as for D-NHEJ and HRR, the function of B-NHEJ facilitates the recovery from the G2-checkpoint. These observations advance our understanding of chromosome aberration formation and have implications for the mechanism of action of Parp inhibitors. PMID:24748665

  16. Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining.

    PubMed

    Soni, Aashish; Siemann, Maria; Grabos, Martha; Murmann, Tamara; Pantelias, Gabriel E; Iliakis, George

    2014-06-01

    In mammalian cells, ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are repaired in all phases of the cell cycle predominantly by classical, DNA-PK-dependent nonhomologous end joining (D-NHEJ). Homologous recombination repair (HRR) is functional during the S- and G2-phases, when a sister chromatid becomes available. An error-prone, alternative form of end joining, operating as backup (B-NHEJ) functions robustly throughout the cell cycle and particularly in the G2-phase and is thought to backup predominantly D-NHEJ. Parp-1, DNA-ligases 1 (Lig1) and 3 (Lig3), and Xrcc1 are implicated in B-NHEJ. Chromosome and chromatid translocations are manifestations of erroneous DSB repair and are crucial culprits in malignant transformation and IR-induced cell lethality. We analyzed shifts in translocation formation deriving from defects in D-NHEJ or HRR in cells irradiated in the G2-phase and identify B-NHEJ as the main DSB repair pathway backing up both of these defects at the cost of a large increase in translocation formation. Our results identify Parp-1 and Lig1 and 3 as factors involved in translocation formation and show that Xrcc1 reinforces the function of Lig3 in the process without being required for it. Finally, we demonstrate intriguing connections between B-NHEJ and DNA end resection in translocation formation and show that, as for D-NHEJ and HRR, the function of B-NHEJ facilitates the recovery from the G2-checkpoint. These observations advance our understanding of chromosome aberration formation and have implications for the mechanism of action of Parp inhibitors. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Strategies for optimizing BioNano and Dovetail explored through a second reference quality assembly for the legume model, Medicago truncatula.

    PubMed

    Moll, Karen M; Zhou, Peng; Ramaraj, Thiruvarangan; Fajardo, Diego; Devitt, Nicholas P; Sadowsky, Michael J; Stupar, Robert M; Tiffin, Peter; Miller, Jason R; Young, Nevin D; Silverstein, Kevin A T; Mudge, Joann

    2017-08-04

    Third generation sequencing technologies, with sequencing reads in the tens- of kilo-bases, facilitate genome assembly by spanning ambiguous regions and improving continuity. This has been critical for plant genomes, which are difficult to assemble due to high repeat content, gene family expansions, segmental and tandem duplications, and polyploidy. Recently, high-throughput mapping and scaffolding strategies have further improved continuity. Together, these long-range technologies enable quality draft assemblies of complex genomes in a cost-effective and timely manner. Here, we present high quality genome assemblies of the model legume plant, Medicago truncatula (R108) using PacBio, Dovetail Chicago (hereafter, Dovetail) and BioNano technologies. To test these technologies for plant genome assembly, we generated five assemblies using all possible combinations and ordering of these three technologies in the R108 assembly. While the BioNano and Dovetail joins overlapped, they also showed complementary gains in continuity and join numbers. Both technologies spanned repetitive regions that PacBio alone was unable to bridge. Combining technologies, particularly Dovetail followed by BioNano, resulted in notable improvements compared to Dovetail or BioNano alone. A combination of PacBio, Dovetail, and BioNano was used to generate a high quality draft assembly of R108, a M. truncatula accession widely used in studies of functional genomics. As a test for the usefulness of the resulting genome sequence, the new R108 assembly was used to pinpoint breakpoints and characterize flanking sequence of a previously identified translocation between chromosomes 4 and 8, identifying more than 22.7 Mb of novel sequence not present in the earlier A17 reference assembly. Adding Dovetail followed by BioNano data yielded complementary improvements in continuity over the original PacBio assembly. This strategy proved efficient and cost-effective for developing a quality draft assembly compared to traditional reference assemblies.

  18. Torsional Shear Strength Tests for Glass-Ceramic Joined Silicon Carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraris, Monica; Ventrella, Andrea; Salvo, Milena

    2014-03-17

    A torsion test on hour-glass-shaped samples with a full joined or a ring-shaped joined area was chosen in this study to measure shear strength of glass-ceramic joined silicon carbide. Shear strength of about 100 MPa was measured for full joined SiC with fracture completely inside their joined area. Attempts to obtain this shear strength with a ring-shaped joined area failed due to mixed mode fractures. However, full joined and ring-shaped steel hour-glasses joined by a glass-ceramic gave the same shear strength, thus suggesting that this test measures shear strength of joined components only when their fracture is completely inside theirmore » joined area.« less

  19. Spain: Success story in space

    NASA Astrophysics Data System (ADS)

    Longdon, Norman

    From the early 1960's, European governments were aware that they had to take part in the exploration, and potential exploitation, of space, or be left behind in a field of high-technology that had far-reaching possibilities. It was also realized that financial and manpower constraints would limit the extent to which individual nations could carry out their own national programs. They, therefor, joined forces in two organizations: the European Space Research Organization (ESRO) and the European Launcher Development Organization (ELDO). By 1975, when the potential of space development had been more fully appreciated, the two organizations were merged into the Europeans Space Agency (ESA) of which Spain was a founding member. ESA looks after the interest of 13 member states, one associated member state (Finland), and one cooperating state (Canada) in the peaceful uses of space. Its programs center around a mandatory core of technological research and space science to which member states contribute on the basis of their Gross National Product. Spain in 1992 contributes 6.46% to this mandatory program budget. The member states then have the chance to join optional programs that include telecommunications, observation of the earth and its environment, space transportation systems, microgravity research, and participation in the European contribution to the International Space Station Freedom. Each government decides whether it is in its interest to join a particular optional program, and the percentage that it wishes to contribute to the budget. Although in the early days of ESA, Spain participated in only a few optional programs, today Spain makes a significant contribution to nearly all of ESA's optional programs. This document presents Spain's contributions to particular ESA Programs and discusses Spain's future involvement in ESA.

  20. Impacts of Prolonged Peace on Brazilian Politics

    DTIC Science & Technology

    2005-12-01

    state capacity in developing countries that lack external threats? Finding out the effects of regional peace on Brazilian contemporary politics is...rapid globalization via technologic developments , especially in the area of communication. From the liberal point of view, regional peace has the...regimes and their “national security state” ideologies with the primacy of social and economic development . Brazil joined the global and regional

  1. Stennis personnel participate in test program

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Fernando Figueroa (left), an aerospace technologist at Stennis, and John Schmatzel (center), a professor on loan from Rowan University in Glassboro, N.J., joined Ray Wang, president of Mobitrum Corp., in Silver Springs, Md., to test a virtual sensor instrument in development. The test was performed as part of NASA's Facilitated Access to the Space Environment for Technology Development and Training program.

  2. Development of iFab (Instant Foundry Adaptive Through Bits) Manufacturing Process and Machine Library

    DTIC Science & Technology

    2012-08-01

    loaded joints including bearing -type shear loaded joints and friction type shear loaded joints . Appendix Figure 2f.A-3 shows an illustration of each... Loaded Joint Bearing Type Shear Loaded Joint Friction Type Shear Loaded Joint Tension Loaded Joint 62 Approved for public release...Joining of materials and structures: from pragmatic process to enabling technology.

  3. An Empirical Examination of EFL Learners' Perceptual Learning Styles and Acceptance of ASR-Based Computer-Assisted Pronunciation Training

    ERIC Educational Resources Information Center

    Hsu, Liwei

    2016-01-01

    This study aims to explore the structural relationships among the variables of EFL (English as a foreign language) learners' perceptual learning styles and Technology Acceptance Model (TAM). Three hundred and forty-one (n = 341) EFL learners were invited to join a self-regulated English pronunciation training program through automatic speech…

  4. Beginning to Understand Why New Hampshire's Rural Educators Chose Not to Join New Hampshire's Newly Developed On-Line Professional Learning Communities: A Quantitative and Qualitative Study

    ERIC Educational Resources Information Center

    Baker, Cheryl B.

    2011-01-01

    Rural educators face many barriers when trying to participate in high quality professional development, including isolation, funding issues, distance, and lack of temporary replacements. Technological solutions can assist rural educators in overcoming these barriers. Participating in on-line professional learning communities can provide New…

  5. Professional Organizations and Publications in ISD&T Recommended to New Professionals by Faculty Members

    ERIC Educational Resources Information Center

    Kim, Minjeong; Lee, Youngmin

    2006-01-01

    New members in the field of instructional systems design and technology (ISD&T), including new students in this field, can find lists of publications and organizations available for them to read and to join. However, they may also wish to know which of these publications and organizations are recommended by established professionals. The field of…

  6. Advanced Joining Technology

    DTIC Science & Technology

    1982-01-01

    0.5 percent carbon generally is avoided. The weldability of chromium corrosion- resistant steels and nickel- chromium stainless steels is good, with...19 75; Silk 19 74). Stainless steel welding processes may change drastically due to findings that hexavalent chromium is a potential carcinogen...Minato, S., Investigation of chromium in stainless steel welding fumes, Welding Journal, RS58(1979):195s. Lippold, J. C. , and Savage, W. F

  7. NREL's National Wind Technology Center Director Named ASME Fellow

    Science.gov Websites

    Division before becoming founding director of the NWTC. He joined NREL in 1984 following a 14-year stint as members with at least 10 years of engineering practice who have made "significant contributions" Monrad, (303) 275-4096 Golden, Colo., January 25, 1996 -- Dr. Robert W. Thresher, director of the

  8. Stennis personnel participate in test program

    NASA Image and Video Library

    2008-09-09

    Fernando Figueroa (left), an aerospace technologist at Stennis, and John Schmatzel (center), a professor on loan from Rowan University in Glassboro, N.J., joined Ray Wang, president of Mobitrum Corp., in Silver Springs, Md., to test a virtual sensor instrument in development. The test was performed as part of NASA's Facilitated Access to the Space Environment for Technology Development and Training program.

  9. Tungsten joining with copper alloy and its high heat load performance

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Lian, Youyun; Chen, Lei; Cheng, Zengkui; Chen, Jiming; Duan, Xuru; Song, Jioupeng; Yu, Yang

    2014-12-01

    W-CuCrZr joining technology by using low activation Cu-Mn filler metal was developed at Southwestern Institute of Physics (SWIP) for the manufacturing of divertor components of fusion experiment devices. In addition, a fast W coating technology by chemical vapor deposition (CVD) was also developed and CVD-W/CuCrZr and CVD-W/C mockups with a W coating thickness of 2 mm were prepared. In order to assess their high heat flux (HHF) performances, a 60 kW Electron-beam Material testing Scenario (EMS-60) equipped with a 150 keV electron beam welding gun was constructed at SWIP. Experimental results indicated that brazed W/CuCrZr mockups can withstand 8 MW/m2 heat flux for 1000 cycles without visible damages and CVD-W/CuCrZr mockups with W-Cu gradient interface can survive 1000 cycles under 11 MW/m2 heat flux. An ultrasonic inspection method for non-destructive tests (NDT) of brazed W/CuCrZr mockups was established and 2 mm defect can be detected. Infinite element analysis and heat load tests indicated that 5 mm defect had less noticeable influence on the heat transfer.

  10. Rocket Design for the Future

    NASA Technical Reports Server (NTRS)

    Follett, William W.; Rajagopal, Raj

    2001-01-01

    The focus of the AA MDO team is to reduce product development cost through the capture and automation of best design and analysis practices and through increasing the availability of low-cost, high-fidelity analysis. Implementation of robust designs reduces costs associated with the Test-Fall-Fix cycle. RD is currently focusing on several technologies to improve the design process, including optimization and robust design, expert and rule-based systems, and collaborative technologies.

  11. Flexible design in water and wastewater engineering--definitions, literature and decision guide.

    PubMed

    Spiller, Marc; Vreeburg, Jan H G; Leusbrock, Ingo; Zeeman, Grietje

    2015-02-01

    Urban water and wastewater systems face uncertain developments including technological progress, climate change and urban development. To ensure the sustainability of these systems under dynamic conditions it has been proposed that technologies and infrastructure should be flexible, adaptive and robust. However, in literature it is often unclear what these technologies and infrastructure are. Furthermore, the terms flexible, adaptive and robust are often used interchangeably, despite important differences. In this paper we will i) define the terminology, ii) provide an overview of the status of flexible infrastructure design alternatives for water and wastewater networks and treatment, and iii) develop guidelines for the selection of flexible design alternatives. Results indicate that, with the exception of Net Present Valuation methods, there is little research available on the design and evaluation of technologies that can enable flexibility. Flexible design alternatives reviewed include robust design, phased design, modular design, modular/component platform design and design for remanufacturing. As developments in the water sector are driven by slow variables (climate change, urban development), rather than market forces, it is suggested that phased design or component platform designs are suitable for responding to change, while robust design is an option when operations face highly dynamic variability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Sequential memory: Binding dynamics

    NASA Astrophysics Data System (ADS)

    Afraimovich, Valentin; Gong, Xue; Rabinovich, Mikhail

    2015-10-01

    Temporal order memories are critical for everyday animal and human functioning. Experiments and our own experience show that the binding or association of various features of an event together and the maintaining of multimodality events in sequential order are the key components of any sequential memories—episodic, semantic, working, etc. We study a robustness of binding sequential dynamics based on our previously introduced model in the form of generalized Lotka-Volterra equations. In the phase space of the model, there exists a multi-dimensional binding heteroclinic network consisting of saddle equilibrium points and heteroclinic trajectories joining them. We prove here the robustness of the binding sequential dynamics, i.e., the feasibility phenomenon for coupled heteroclinic networks: for each collection of successive heteroclinic trajectories inside the unified networks, there is an open set of initial points such that the trajectory going through each of them follows the prescribed collection staying in a small neighborhood of it. We show also that the symbolic complexity function of the system restricted to this neighborhood is a polynomial of degree L - 1, where L is the number of modalities.

  13. Coupling effect of nodes popularity and similarity on social network persistence

    PubMed Central

    Jin, Xiaogang; Jin, Cheng; Huang, Jiaxuan; Min, Yong

    2017-01-01

    Network robustness represents the ability of networks to withstand failures and perturbations. In social networks, maintenance of individual activities, also called persistence, is significant towards understanding robustness. Previous works usually consider persistence on pre-generated network structures; while in social networks, the network structure is growing with the cascading inactivity of existed individuals. Here, we address this challenge through analysis for nodes under a coevolution model, which characterizes individual activity changes under three network growth modes: following the descending order of nodes’ popularity, similarity or uniform random. We show that when nodes possess high spontaneous activities, a popularity-first growth mode obtains highly persistent networks; otherwise, with low spontaneous activities, a similarity-first mode does better. Moreover, a compound growth mode, with the consecutive joining of similar nodes in a short period and mixing a few high popularity nodes, obtains the highest persistence. Therefore, nodes similarity is essential for persistent social networks, while properly coupling popularity with similarity further optimizes the persistence. This demonstrates the evolution of nodes activity not only depends on network topology, but also their connective typology. PMID:28220840

  14. Coupling effect of nodes popularity and similarity on social network persistence

    NASA Astrophysics Data System (ADS)

    Jin, Xiaogang; Jin, Cheng; Huang, Jiaxuan; Min, Yong

    2017-02-01

    Network robustness represents the ability of networks to withstand failures and perturbations. In social networks, maintenance of individual activities, also called persistence, is significant towards understanding robustness. Previous works usually consider persistence on pre-generated network structures; while in social networks, the network structure is growing with the cascading inactivity of existed individuals. Here, we address this challenge through analysis for nodes under a coevolution model, which characterizes individual activity changes under three network growth modes: following the descending order of nodes’ popularity, similarity or uniform random. We show that when nodes possess high spontaneous activities, a popularity-first growth mode obtains highly persistent networks; otherwise, with low spontaneous activities, a similarity-first mode does better. Moreover, a compound growth mode, with the consecutive joining of similar nodes in a short period and mixing a few high popularity nodes, obtains the highest persistence. Therefore, nodes similarity is essential for persistent social networks, while properly coupling popularity with similarity further optimizes the persistence. This demonstrates the evolution of nodes activity not only depends on network topology, but also their connective typology.

  15. Coupling effect of nodes popularity and similarity on social network persistence.

    PubMed

    Jin, Xiaogang; Jin, Cheng; Huang, Jiaxuan; Min, Yong

    2017-02-21

    Network robustness represents the ability of networks to withstand failures and perturbations. In social networks, maintenance of individual activities, also called persistence, is significant towards understanding robustness. Previous works usually consider persistence on pre-generated network structures; while in social networks, the network structure is growing with the cascading inactivity of existed individuals. Here, we address this challenge through analysis for nodes under a coevolution model, which characterizes individual activity changes under three network growth modes: following the descending order of nodes' popularity, similarity or uniform random. We show that when nodes possess high spontaneous activities, a popularity-first growth mode obtains highly persistent networks; otherwise, with low spontaneous activities, a similarity-first mode does better. Moreover, a compound growth mode, with the consecutive joining of similar nodes in a short period and mixing a few high popularity nodes, obtains the highest persistence. Therefore, nodes similarity is essential for persistent social networks, while properly coupling popularity with similarity further optimizes the persistence. This demonstrates the evolution of nodes activity not only depends on network topology, but also their connective typology.

  16. Sequential memory: Binding dynamics.

    PubMed

    Afraimovich, Valentin; Gong, Xue; Rabinovich, Mikhail

    2015-10-01

    Temporal order memories are critical for everyday animal and human functioning. Experiments and our own experience show that the binding or association of various features of an event together and the maintaining of multimodality events in sequential order are the key components of any sequential memories-episodic, semantic, working, etc. We study a robustness of binding sequential dynamics based on our previously introduced model in the form of generalized Lotka-Volterra equations. In the phase space of the model, there exists a multi-dimensional binding heteroclinic network consisting of saddle equilibrium points and heteroclinic trajectories joining them. We prove here the robustness of the binding sequential dynamics, i.e., the feasibility phenomenon for coupled heteroclinic networks: for each collection of successive heteroclinic trajectories inside the unified networks, there is an open set of initial points such that the trajectory going through each of them follows the prescribed collection staying in a small neighborhood of it. We show also that the symbolic complexity function of the system restricted to this neighborhood is a polynomial of degree L - 1, where L is the number of modalities.

  17. Application of Interface Technology in Nonlinear Analysis of a Stitched/RFI Composite Wing Stub Box

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Ransom, Jonathan B.

    1997-01-01

    A recently developed interface technology was successfully employed in the geometrically nonlinear analysis of a full-scale stitched/RFI composite wing box loaded in bending. The technology allows mismatched finite element models to be joined in a variationally consistent manner and reduces the modeling complexity by eliminating transition meshing. In the analysis, local finite element models of nonlinearly deformed wide bays of the wing box are refined without the need for transition meshing to the surrounding coarse mesh. The COMET-AR finite element code, which has the interface technology capability, was used to perform the analyses. The COMET-AR analysis is compared to both a NASTRAN analysis and to experimental data. The interface technology solution is shown to be in good agreement with both. The viability of interface technology for coupled global/local analysis of large scale aircraft structures is demonstrated.

  18. Joining up health and planning: how Joint Strategic Needs Assessment (JSNA) can inform health and wellbeing strategies and spatial planning.

    PubMed

    Tomlinson, Paul; Hewitt, Stephen; Blackshaw, Neil

    2013-09-01

    There has been a welcome joining up of the rhetoric around health, the environment and land use or spatial planning in both the English public health white paper and the National Planning Policy Framework. However, this paper highlights a real concern that this is not being followed through into practical guidance needed by local authorities (LAs), health bodies and developers about how to deliver this at the local level. The role of Joint Strategic Needs Assessments (JSNAs) and Health and Wellbeing Strategies (HWSs) have the potential to provide a strong basis for integrated local policies for health improvement, to address the wider determinants of health and to reduce inequities. However, the draft JSNA guidance from the Department of Health falls short of providing a robust, comprehensive and practical guide to meeting these very significant challenges. The paper identifies some examples of good practice. It recommends that action should be taken to raise the standards of all JSNAs to meet the new challenges and that HWSs should be aligned spatially and temporally with local plans and other LA strategies. HWSs should also identify spatially targeted interventions that can be delivered through spatial planning or transport planning. Steps need to be taken to ensure that district councils are brought into the process.

  19. Chemical sintering of direct-written silver nanowire flexible electrodes under room temperature.

    PubMed

    Hui, Zhuang; Liu, Yangai; Guo, Wei; Li, Lihang; Mu, Nan; Jin, Chao; Zhu, Ying; Peng, Peng

    2017-07-14

    Transparent and flexible electrodes on cost effective plastic substrates for wearable electronics have attract great attention recently. Due to the conductivity and flexibility in network form, metal nanowire is regarded as one of the most promising candidates for flexible electrode fabrication. Prior to application, low temperature joining of nanowire processes are required to reduce the resistance of electrodes and simultaneously maintain the dimensionality and uniformity of those nanowires. In the present work, we presented an innovative, robust and cost effective method to minimize the heat effect to plastic substrate and silver nanowires which allows silver nanowire electrodes been directly written on polycarbonate substrate and sintered by different electrolyte solutions at room temperature or near. It has been rigorously demonstrated that the resistance of silver nanowire electrodes has been reduced by 90% after chemical sintering at room temperature due to the joining of silver nanowires at junction areas. After ∼1000 bending cycles, the measured resistance of silver nanowire electrode was stable during both up-bending and down-bending states. The changes of silver nanowires after sintering were characterized using x-ray photoelectron spectroscopy and transmission electron microscopy and a sintering mechanism was proposed and validated. This direct-written silver nanowire electrode with good performance has broad applications in flexible electronics fabrication and packaging.

  20. NASA Design Strengthens Welds

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Friction Stir Welding (FSW) is a solid-state joining process-a combination of extruding and forging-ideal for use when the original metal characteristics must remain as unchanged as possible. While exploring methods to improve the use of FSW in manufacturing, engineers at Marshall Space Flight Center created technologies to address the method's shortcomings. MTS Systems Corporation, of Eden Prairie, Minnesota, discovered the NASA-developed technology and then signed a co-exclusive license agreement to commercialize Marshall's design for use in high-strength structural alloys. The resulting process offers the added bonuses of being cost-competitive, efficient, and most importantly, versatile.

  1. NASA Chief Technologist Douglas Terrier Tours Jacobs' Engineering Development Facility

    NASA Image and Video Library

    2017-08-10

    NASA Chief Technologist Douglas Terrier joins Jacobs General Manager Lon Miller during a tour of the company's Engineering Development Facility in Houston. Jacobs provides advanced technologies used aboard the International Space Station and for deep space exploration. From left: NASA’s Johnson Space Center Chief Technologist Chris Culbert, Chief Technologist Douglas Terrier, Jacobs Clear Lake Group Deputy General Manager Joy Kelly and Jacobs Clear Lake Group General Manager Lon Miller. Date: 08-10-2017 Location: B1 & Jacobs Engineering Subject: NASA Acting Chief Technology Officer Douglas Terrier Tours JSC and Jacobs Photographer: David DeHoyos

  2. NASA Office of Aeronautical and Space Technology Summer Workshop. Volume 7: Materials panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Materials technology requirements pertinent to structures, power, and propulsion for future space missions are identified along with candidate space flight experiments. Most requirements are mission driven, only four (all relating to space processing of materials) are considered to be opportunity driven. Exploitation of the space environment in performing basic research to improve the understanding of materials phenomena (such as solidification) and manufacturing and assembly in space to support missions such as solar energy stations which require the forming, erection, joining, and repair of structures in space are among the topics discussed.

  3. Quality improvement of polymer parts by laser welding

    NASA Astrophysics Data System (ADS)

    Puetz, Heidrun; Treusch, Hans-Georg; Welz, M.; Petring, Dirk; Beyer, Eckhard; Herziger, Gerd

    1994-09-01

    The growing significance of laser technology in industrial manufacturing is also observed in case of plastic industry. Laser cutting and marking are established processes. Laser beam welding is successfully practiced in processes like joining foils or winding reinforced prepregs. Laser radiation and its significant advantages of contactless and local heating could even be an alternative to conventional welding processes using heating elements, vibration or ultrasonic waves as energy sources. Developments in the field of laser diodes increase the interest in laser technology for material processing because in the near future they will represent an inexpensive energy source.

  4. It Takes a Network to Raise a Child: Improving the Communication Infrastructure of Public Education to Enable Community Cooperation in Young People's Success

    ERIC Educational Resources Information Center

    Pollock, Mica

    2013-01-01

    Background/Context: In this essay, I propose a design research agenda that braids equity research and technology research in education. More specifically, I propose that researchers join educators, youth, families, and community partners in tackling a central challenge for education research today: figuring out how and when low-cost and…

  5. Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. David M. Bowden; Dr. William H. Peter

    2012-03-31

    The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operationsmore » to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical feasibility studies were performed to identify the most viable approaches to NNS preform fabrication using basic powder metallurgy mill product forms as the building blocks and advanced joining techniques including fusion and solid state joining to assemble these building blocks into efficient machining performs.« less

  6. Better and more efficient care through ICT-enabled integration of social care and healthcare services: experiences from two European projects

    PubMed Central

    Müller, Sonja; Meyer, Ingo; Kubitschke, Lutz; Delaney, Sarah

    2012-01-01

    Unsynchronised social and health care service delivery leads to inefficiencies, duplication of resources and reduced levels of quality of care. Older people are particularly affected by this situation. They often need both types of services, such as support with daily living activities and chronic disease management. ICT has the potential to support integrated service delivery to achieve high quality independent living and wellbeing for older people across Europe and elsewhere. Against this background, the presentation will demonstrate experiences and results derived from the development and piloting of ICT-supported integrated care services in eight sites across Europe, namely Dublin, Hull, Milton Keynes, Malaga, Veldhoven, Geldrop, Eindhoven and Bielefeld. Through innovative usage of ICT, current ‘silos’ in service delivery are broken up to allow for cooperation across relevant care sectors and participation of family members. The integrated services are to support the effective management of chronic diseases, and to address issues which affect independence, such as reduced agility, vision or hearing, in order to significantly improve the quality of life for older people and their carers. A dedicated programme of service process innovation complemented by adaptation of technology is being pursued in order to develop an integrated digital support infrastructure and related services: using appropriate existing technology to provide as many older people as possible with digital access to support services they needaugmenting and opening sectoral care platforms to enable coordinated cross-sector support deliveryadopting a clearly demand-driven inclusive approach and avoiding a technology ‘push’. Wider deployment of the services is supported by a dedicated programme of socio-economic service evaluation. The evaluation framework utilises a multi-method and multi-perspective approach, involving end users, family carers, service provider staff and key informants at corporate level. Triangulation is used to cross-reference data from different sources in order to maximize the reliability and robustness of conclusions drawn from the evaluation. Based on an overall framework taking into account themes such as integration, user outcomes, staff impact, organisational impact, technology, implementation and overall satisfaction, the specifics of each site are taken into account in operationally applying the overall framework in each case. The designs to be employed at each site have been developed to be as robust as possible, taking into account the constraints of the realities of the interventions. The evaluation is accompanied by a business case modelling approach that builds largely on a cost-benefit analysis covering the service development and implementation activities as well as the pilots and modelling the further deployment of services in each of the pilot sites. The presentation builds upon experiences gained within the framework of two European projects, CommonWell and INDEPENDENT. They are both co-funded under the EU’s Competitiveness and Innovation Framework Programme (CIP) focus on better joining-up of formal social/healthcare services and strengthening participation of the so-called ‘third sector’.

  7. Cheap or Robust? The practical realization of self-driving wheelchair technology.

    PubMed

    Burhanpurkar, Maya; Labbe, Mathieu; Guan, Charlie; Michaud, Francois; Kelly, Jonathan

    2017-07-01

    To date, self-driving experimental wheelchair technologies have been either inexpensive or robust, but not both. Yet, in order to achieve real-world acceptance, both qualities are fundamentally essential. We present a unique approach to achieve inexpensive and robust autonomous and semi-autonomous assistive navigation for existing fielded wheelchairs, of which there are approximately 5 million units in Canada and United States alone. Our prototype wheelchair platform is capable of localization and mapping, as well as robust obstacle avoidance, using only a commodity RGB-D sensor and wheel odometry. As a specific example of the navigation capabilities, we focus on the single most common navigation problem: the traversal of narrow doorways in arbitrary environments. The software we have developed is generalizable to corridor following, desk docking, and other navigation tasks that are either extremely difficult or impossible for people with upper-body mobility impairments.

  8. Optimization-Based Robust Nonlinear Control

    DTIC Science & Technology

    2006-08-01

    ABSTRACT New control algorithms were developed for robust stabilization of nonlinear dynamical systems . Novel, linear matrix inequality-based synthesis...was to further advance optimization-based robust nonlinear control design, for general nonlinear systems (especially in discrete time ), for linear...Teel, IEEE Transactions on Control Systems Technology, vol. 14, no. 3, p. 398-407, May 2006. 3. "A unified framework for input-to-state stability in

  9. Explosive Welding in the 1990's

    NASA Technical Reports Server (NTRS)

    Lalwaney, N. S.; Linse, V. D.

    1985-01-01

    Explosive bonding is a unique joining process with the serious potential to produce composite materials capable of fulfilling many of the high performance materials capable of fulfilling many of the high performance materials needs of the 1990's. The process has the technological versatility to provide a true high quality metallurgical compatible and incompatible systems. Metals routinely explosively bonded include a wide variety of combinations of reactive and refractory metals, low and high density metals and their alloys, corrosion resistant and high strength alloys, and common steels. The major advantage of the process is its ability to custom design and engineer composites with physical and/or mechanical properties that meet a specific or unusual performance requirement. Explosive bonding offers the designer unique opportunities in materials selection with unique combinations of properties and high integrity bonds that cannot be achieved by any other metal joining process. The process and some applications are discussed.

  10. Casting of weldable graphite/magnesium metal matrix composites with built-in metallic inserts

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.; Kashalikar, Uday; Majkowski, Patricia

    1994-01-01

    Technology innovations directed at the advanced development of a potentially low cost and weldable graphite/magnesium metal matrix composites (MMC) through near net shape pressure casting are described. These MMC components uniquely have built-in metallic inserts to provide an innovative approach for joining or connecting other MMC components through conventional joining techniques such as welding, brazing, mechanical fasteners, etc. Moreover, the metallic inserts trapped within the MMC components can be made to transfer the imposed load efficiently to the continuous graphite fiber reinforcement thus producing stronger, stiffer, and more reliable MMC components. The use of low pressure near net shape casting is economical compared to other MMC fabrication processes. These castable and potentially weldable MMC components can provide great payoffs in terms of high strength, high stiffness, low thermal expansion, lightweight, and easily joinable MMC components for several future NASA space structural, industrial, and commercial applications.

  11. Missile Interceptor Guidance System Technology (La Technologie Pour Les Systemes De Guidage Des Missiles Intercepteurs (DE Missiles Ou D’Aeronefs)

    DTIC Science & Technology

    1990-01-01

    robustness of feedback systems with structured uncertainty. Theorem: Robust Stability Fu(G,A) stable V AA iff suP (Gll(JW))Sl. Theorem: Robust ...through a gain KR. The addition of other dynamics and feedback paths creates stabilization problems for this simple roll attitude feedback control...characteristics are most useful to the designer when examined in the frequency domain. Both relative stability and robustness can be determined from an

  12. Beryllium processing technology review for applications in plasma-facing components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.

    1993-07-01

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itselfmore » and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.« less

  13. Intermetallic layers in temperature controlled Friction Stir Welding of dissimilar Al-Cu-joints

    NASA Astrophysics Data System (ADS)

    Marstatt, R.; Krutzlinger, M.; Luderschmid, J.; Constanzi, G.; Mueller, J. F. J.; Haider, F.; Zaeh, M. F.

    2018-06-01

    Friction Stir Welding (FSW) can be performed to join dissimilar metal combinations like aluminium and copper, which is of high interest in modern production of electrical applications. The amount of intermetallic phases in the weld seam is significantly reduced compared to traditional fusion welding technologies. Because the solidus temperature is typically not reached during FSW, the growth of intermetallic phases is impeded and the intermetallic layer thicknesses typically remains on the scale of a few hundred nanometres. These layers provide a substance-to-substance bond, which is the main joining mechanism. Latest research confirms that the layer formation is most likely driven by the heat input during processing. Hence, the welding temperature is the key to achieve high quality joints. In this study, aluminium and copper sheets were welded in lap joint configuration using temperature-controlled FSW. An advanced in-tool measurement set-up was used to determine precise temperature data. Scanning electron microscopy (SEM) was used to analyse metallurgical aspects (e.g. structure and composition of the intermetallic phases) of the joints. The results show a correlation between the welding temperature and the thickness of the intermetallic layer and its structure. The temperature control significantly improved the correlation compared to previous studies. This leads to an enhanced understanding of the dominating joining mechanisms.

  14. Investigation on thixojoining to produce hybrid components with intermetallic phase

    NASA Astrophysics Data System (ADS)

    Seyboldt, Christoph; Liewald, Mathias

    2018-05-01

    Current research activities at the Institute for Metal Forming Technology of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. One process investigated is the joining of different materials in the semi-solid state and is so called "thixojoining". In this process, metallic inlays are inserted into the semi-solid forming die before the actual forming process and are then joined with a material which was heated up to its semi-solid state. Earlier investigations have shown that using this process a very well-shaped form closure can be produced. Furthermore, it was found that sometimes intermetallic phases are built between the different materials, which decisively influence the part properties of such hybrid components for its future application. Within the framework presented in this paper, inlays made of aluminum, brass and steel were joined with aluminum in the semi-solid state. The aim of the investigations was to create an intermetallic bond between the different materials. For this investigations the liquid phase fraction of the aluminum and the temperature of the inlay were varied in order to determine the influence on the formation of the intermetallic phase. Forming trials were performed using a semi-solid forming die with a disk shaped design. Furthermore, the intermetallic phase built was investigated using microsections.

  15. The story of laser brazing technology

    NASA Astrophysics Data System (ADS)

    Hoffmann, Peter; Dierken, Roland

    2012-03-01

    This article gives an overview on the development of laser brazing technology as a new joining technique for car body production. The story starts with fundamental research work at German institutes in 1993, continues with the first implementations in automobile production in 1998, gives examples of applications since then and ends with an outlook. Laser brazing adapted design of joints and boundary conditions for a safe processing are discussed. Besides a better understanding for the sensitivity of the process against joint irregularities and misalignment, the key to successful launch was an advanced system technology. Different working heads equipped with wire feeding device, seam tracking system or tactile sensors for an automated teaching are presented in this paper. Novel laser heads providing a two beam technology will allow improved penetration depth of the filler wire and a more ecological processing by means of energy consumption.

  16. Robust Functionality and Active Data Management for Cooperative Networks in the Presence of WMD Stressors

    DTIC Science & Technology

    2011-09-01

    topological impairments," Wiley Handbook of Science and Technology for Homeland Security, 2009. Technical Summary Introduction: DCSs offer a flexible...8217l , nfc ,approx = 1 - 2 2" N 1S t e second argest rugenv(.l..lue o Tapprox , where aN = .,., an subscript "nEe" denotes the eigenvalues for the case...robust distributed computing in the presence of topological impairmt~nts," Wiley Handbook of Science and Technology for Homeland Security, 2009. (3

  17. Laser-Assisted Stir Welding of 25-mm-Thick HSLA-65 Plate

    NASA Astrophysics Data System (ADS)

    Williamson, Keith M.

    2002-12-01

    Laser-assisted stir welding is a hybrid process that combines energy from a laser with functional heating and mechanical energy to join materials in the solid state. The technology is an adaptation of friction stir welding which is particularly suited for joining thick plates. Aluminum plates up to 75 mm thick have been successfully joined using friction stir welding. Since joining occurs in the solid state, stir technology offers the capability for fabricating full penetration joints in thick plates with better mechanical properties and less weld distortion than is possible by fusion processes. Currently friction stir welding is being used in several industries to improve productivity, reduce weight, and increase the strength of welded structures. Examples include: (a) the aircraft/aerospace industry where stir technology is currently being used to fabricate the space shuttle's external tank as well as components of the Delta family of rockets; (b) the shipping industry where container manufacturers are using stir technology to produce lighter containers with more payload capacity; and (c) the oil industry where offshore platform manufactures are using automated stir welding plants to fabricate large panels and structures up to 16 meters long with widths as required. In all these cases, stir technology has been restricted to aluminum alloys; however, stainless and HSLA 65 steels have been recently stir welded with friction as the primary heat source. One of the difficulties in adapting stir welding to steel is tool wear aggravated by the high tool rubbing velocities needed to provide frictional heat input into the material. Early work showed that the tool shoulder reached temperatures above 1000 C and the weld seam behind the tool stayed within this temperature range for up to 25 mm behind the tool. Cross sections of stir welded samples showed that the heat-affected zone is relatively wide and follows the profile of the tool shoulder. Besides minimizing the tool wear by increasing the energy into the material, another benefit of the proposed Laser Assisted Stir Welding (LASW is to reduce the width of the heat affected zone which typically has the lowest hardness in the weld region. Additionally, thermal modeling of the friction stir process shows that the heat input is asymmetric and suggests that the degree of asymmetry could improve the efficiency of the process. These asymmetries occur because the leading edge of the tool supplies heat to cold material while the trailing edge provides heat to material already preheated by the leading edge. As a result, flow stresses on the advancing side of the joint are lower than corresponding values on the retreating side. The proposed LASW process enhances these asymmetries by providing directional heating to increase the differential in flow stress across the joint and improve the stir tool efficiency. Theoretically the LASW process can provide the energy input to allow the flow stresses on the advancing side to approach zero and the stir efficiency to approach 100 percent. Reducing the flow stresses on the advancing side of the weld creates the greatest pressure differential across the stir weld and eliminates the possibility of voids on the advancing side of the joint. Small pressure differentials result in poor stir welds because voids on the advancing side are not filled by the plastic flow of material from the retreating side.

  18. Robust technology and system for management of sucker rod pumping units in oil wells

    NASA Astrophysics Data System (ADS)

    Aliev, T. A.; Rzayev, A. H.; Guluyev, G. A.; Alizada, T. A.; Rzayeva, N. E.

    2018-01-01

    We propose a technology for calculating the robust, normalized correlation functions of the signal from the force sensor on the rod string attached to the hanger of the sucker rod pumping unit. The robust normalized correlation functions are used to form sets of informative attribute combinations, each of which corresponds to a technical condition of the sucker rod pumping unit. We demonstrate how these sets can be used to solve identification and management problems in the oil production process in real time using inexpensive controllers. The results obtained from using the system on real objects are also presented in this paper. It was determined that the energy saved and prolonged overhaul period substantially increased the cost-effectiveness.

  19. Fully integrated Q-switch for commercial high-power resonator with solitary XLMA-fiber

    NASA Astrophysics Data System (ADS)

    Lange, R.; Bachert, C.; Rehmann, G.; Weber, H.; Luxen, R.; Enns, H.; Schenk, M.; Hosdorf, S.; Marfels, S.; Bay, M.; Kösters, A.; Krause, V.; Giesberts, M.; Fitzau, O.; Hoffmann, H.-D.

    2018-02-01

    In surface processing applications the correlation of laser power to processing speed demands a further enhancement of the performance of short-pulsed laser sources with respect to the investment costs. The frequently applied concept of master oscillator power amplifier relies on a complex structure, parts of which are highly sensitive to back reflected amplified radiation. Aiming for a simpler, robust source using only a single ytterbium doped XLMA fiber in a q-switched resonator appears as promising design approach eliminating the need for subsequent amplification. This concept requires a high power-tolerant resonator which is provided by the multikilowatt laser platform of Laserline including directly water-cooled active fiber thermal management. Laserline GmbH and Fraunhofer Institute for Laser Technology joined their forces1 to upgrade standard high power laser sources for short-pulsed operation exceeding 1 kW of average power. Therefor a compact, modular qswitch has been developed. In this paper the implementation of a polarization independent q-switch into an off-the-shelf multi-kilowatt diodepumped continuous wave fiber source is shown. In this early step of implementation we demonstrated more than 1000 W of average power at pulse lengths below 50 ns FWHM and 7.5 mJ pulse energy. The M2 corresponds to 9.5. Reliability of the system is demonstrated based on measurements including temperature and stability records. We investigated the variation possibilities concerning pulse parameters and shape as well as upcoming challenges in power up-scaling.

  20. The Prince, the Captain and "The State": An Examination of the Mesquita Family Ownership of "O Estado de Sao Paulo" to 1969.

    ERIC Educational Resources Information Center

    Etsinger, Jean

    Julio Mesquita joined the staff of "O Estado de Sao Paulo" in 1885 and became a director in 1891, when he also began his first term as a deputy of the Sao Paulo state assembly. Until his death in 1927, Mesquita guided the newspaper's growth in all respects--editorial, political, technological, and economic. Julio de Mesquita Filho…

  1. Primary Study of Attitudes of Schoolchildren in Rural and Remote Areas toward Digital Imaging Learning--Taking Film-Making Summer Camp as an Example

    ERIC Educational Resources Information Center

    Lee, Szu-Hsin

    2016-01-01

    No matter how fast or wide digital technology develops, because of the gap between urban and rural areas, a digital divide in the education system still exists. The researcher joined the digital film-making summer camp, where the major objective was to decrease the digital divide between urban and rural areas. Thirty schoolchildren from one…

  2. Some Semi-Deep Thoughts about Deep Reading: Rejoinder to "Digital Technology and Student Cognitive Development: The Neuroscience of the University Classroom"

    ERIC Educational Resources Information Center

    Mannheimer, Steve

    2016-01-01

    The author of this thought-provoking article joins an impressive cohort of current commentators and scholars united in their concern over the state of the art of reading. Mostly, they are concerned with the sustained, silent, generally solitary process of reading in which the reader is deeply focused on and immersed in the text. Their fear is that…

  3. JPRS Report, Science & Technology, Europe

    DTIC Science & Technology

    1992-10-27

    reprocessors involved. PRAVDA The BMW, Ford, Mercedes - Benz , Opel, Porsche and VW companies have joined together in the Project Team Recycling of Old...WEHRTECHNIK, Jun 92] 27 Effect of Common Market on European Aerospace Industry [Fausto Cereti; Bonn WEHRTECHNIK, Jun 92] 29 Thyssen Develops Laser...Europe. What, in your opinion, do you think the final solution will be in this sector of the industry? [Mehdorn] We’re talking about four market

  4. The GGOS Global Space Geodesy Network and its Evolution

    NASA Astrophysics Data System (ADS)

    Pearlman, M. R.; Pavlis, E. C.; Ma, C.; Noll, C. E.; Neilan, R. E.; Stowers, D. A.; Wetzel, S.

    2013-12-01

    The improvements in the reference frame and other space geodesy data products spelled out in the GGOS 2020 plan will evolve over time as new space geodesy sites enhance the global distribution of the network and new technologies are implemented at the sites thus enabling improved data processing and analysis. The goal of 30 globally distributed core sites with VLBI, SLR, GNSS and DORIS (where available) will take time to materialize. Co-location sites with less than the full core complement will continue to play a very important role in filling out the network while it is evolving and even after full implementation. GGOS through its Call for Participation, bi-lateral and multi-lateral discussions and work through the IAG Services has been encouraging current groups to upgrade and new groups to join the activity. Simulations examine the projected accuracy and stability of the network that would exist in five- and ten-years time, were the proposed expansion to fully materialize by then. Over the last year additional sites have joined the GGOS network, and ground techniques have continued to make progress in new technology systems. This talk will give an update on the current expansion of the global network and the projection for the network configuration that we forecast over the next 10 years.

  5. An Information Technology Architecture for Pharmaceutical Research and Development

    PubMed Central

    Klingler, Daniel E.; Jaffe, Marvin E.

    1990-01-01

    Rationale for and development of an information technology architecture are presented. The architectural approach described produces a technology environment that is integrating, flexible, robust, productive, and future-oriented. Issues accompanying architecture development and potential impediments to success are discussed.

  6. Learning Practice and Technology: Extending the Structurational Practice Lens to Educational Technology Research

    ERIC Educational Resources Information Center

    Halperin, Ruth

    2017-01-01

    Scholars in the field of educational technology have been calling for robust use of social theory within learning technology research. In view of that, interest has been noted in applying Giddens' structuration theory to the understanding of human interaction with technology in learning settings. However, only few such attempts have been published…

  7. Vehicle System Integration, Optimization, and Robustness

    Science.gov Websites

    Operations Technology Exchange Initiating Partnerships University Partners Government Partners Industry Contacts Researchers Thrust Area 5: Vehicle System Integration, Optimization, and Robustness Thrust Area only optimal design of the vehicle components, but also an optimization of the interactions between

  8. A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies.

    PubMed

    Estrada, José M; Kraakman, N J R Bart; Lebrero, Raquel; Muñoz, Raúl

    2012-01-01

    The sensitivity of the economics of the five most commonly applied odour abatement technologies (biofiltration, biotrickling filtration, activated carbon adsorption, chemical scrubbing and a hybrid technology consisting of a biotrickling filter coupled with carbon adsorption) towards design parameters and commodity prices was evaluated. Besides, the influence of the geographical location on the Net Present Value calculated for a 20 years lifespan (NPV20) of each technology and its robustness towards typical process fluctuations and operational upsets were also assessed. This comparative analysis showed that biological techniques present lower operating costs (up to 6 times) and lower sensitivity than their physical/chemical counterparts, with the packing material being the key parameter affecting their operating costs (40-50% of the total operating costs). The use of recycled or partially treated water (e.g. secondary effluent in wastewater treatment plants) offers an opportunity to significantly reduce costs in biological techniques. Physical/chemical technologies present a high sensitivity towards H2S concentration, which is an important drawback due to the fluctuating nature of malodorous emissions. The geographical analysis evidenced high NPV20 variations around the world for all the technologies evaluated, but despite the differences in wage and price levels, biofiltration and biotrickling filtration are always the most cost-efficient alternatives (NPV20). When, in an economical evaluation, the robustness is as relevant as the overall costs (NPV20), the hybrid technology would move up next to BTF as the most preferred technologies. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Status of NASA's Stirling Space Power Converter Program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.; Winter, Jerry M.

    1991-01-01

    An overview is presented of the NASA-Lewis Free-Piston Stirling Space Power Convertor Technology Program. The goal is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. Stirling experience in space and progress toward 1050 and 1300 K Stirling Space Power Converters is discussed. Fabrication is nearly completed for the 1050 K Component Test Power Converters (CTPC); results of motoring tests of cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing and predictive methodologies. An update is provided of progress in some of these technologies leading off with a discussion of free-piston Stirling experience in space.

  10. CMC Technology Advancements for Gas Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2013-01-01

    CMC research at NASA Glenn is focused on aircraft propulsion applications. The objective is to enable reduced engine emissions and fuel consumption for more environmentally friendly aircraft. Engine system studies show that incorporation of ceramic composites into turbine engines will enable significant reductions in emissions and fuel burn due to increased engine efficiency resulting from reduced cooling requirements for hot section components. This presentation will describe recent progress and challenges in developing fiber and matrix constituents for 2700 F CMC turbine applications. In addition, ongoing research in the development of durable environmental barrier coatings, ceramic joining integration technologies and life prediction methods for CMC engine components will be reviewed.

  11. Astro Stars Camp features underwater robotics

    NASA Image and Video Library

    2010-06-29

    Ian Tonglet, 13, (left) and Seth Malley, 13, both of Picayune, Miss., and both participants in the 2010 Astro Stars session at Stennis Space Center, work with an underwater robot during a camp activity June 29. NASA joined with the U.S. Navy for the underwater robotics exercise involving Sea Perch robots, which are simple, remotely operated underwater vehicles made from PVC pipe and other inexpensive, easily available materials. During the Stennis exercise, students used robots constructed earlier in the day to maneuver underwater and collect plastic rings, as seen to the left of Tonglet. Astro STARS (Spaceflight, Technology, Astronomy & Robotics @ Stennis) is a science and technology camp for 13-15 year olds.

  12. KSC-04pd0505

    NASA Image and Video Library

    2004-03-12

    KENNEDY SPACE CENTER, FLA. - During a break at the 2004 Florida Regional FIRST competition, held at the University of Central Florida, Florida Gov. Jeb Bush joins participants in the FIRST LEGO™ League (FLL). Considered the "little league" of the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition, FLL is the result of a partnership between FIRST and the LEGO™ Company. FLL extends the FIRST concept of inspiring and celebrating science and technology to children aged 9 through 14, using real-world context and hands-on experimentation. Young participants can build a robot and compete in a friendly, FIRST-style robotics event specially designed for their age group.

  13. KSC-04PD-0505

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. During a break at the 2004 Florida Regional FIRST competition, held at the University of Central Florida, Florida Gov. Jeb Bush joins participants in the FIRST LEGO League (FLL). Considered the 'little league' of the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition, FLL is the result of a partnership between FIRST and the LEGO Company. FLL extends the FIRST concept of inspiring and celebrating science and technology to children aged 9 through 14, using real-world context and hands-on experimentation. Young participants can build a robot and compete in a friendly, FIRST-style robotics event specially designed for their age group.

  14. Baby-Crying Acceptance

    NASA Astrophysics Data System (ADS)

    Martins, Tiago; de Magalhães, Sérgio Tenreiro

    The baby's crying is his most important mean of communication. The crying monitoring performed by devices that have been developed doesn't ensure the complete safety of the child. It is necessary to join, to these technological resources, means of communicating the results to the responsible, which would involve the digital processing of information available from crying. The survey carried out, enabled to understand the level of adoption, in the continental territory of Portugal, of a technology that will be able to do such a digital processing. It was used the TAM as the theoretical referential. The statistical analysis showed that there is a good probability of acceptance of such a system.

  15. NIMS and Empa announce STAM collaboration

    NASA Astrophysics Data System (ADS)

    Yoshida, Toyonobu; Krug, Harald F.

    2014-02-01

    In January 2014, the Swiss Federal Laboratories for Materials Science and Technology (Empa) joined the National Institute for Materials Science (NIMS) in collaborative activities on Science and Technology of Advanced Materials (STAM). STAM was founded in 2000. In 2005 NIMS took over the management of its peer review and financial systems, resulting in a continuous rise of the impact of the journal. Empa will provide further support for the editorial management of STAM. In particular, it will establish a European office in Switzerland and reinforce the Editorial Board. From this point of view, I am pleased and excited to have new colleagues from Empa on our Editorial Board, and I believe that this collaboration will bring us a remarkable improvement in the international visibility of STAM and increase the number of paper submissions from Europe. It will expand the topics covered in the journal from traditional fields of materials science with a focus on energy and environmental issues to medical and bioengineering applications, where Empa has a significant expertise. I firmly believe that Empa's participation in publishing STAM will reinforce its position as an open-access journal with a global audience. Together with my colleagues, Yoshio Sakka (NIMS) and Shu Yamaguchi (University of Tokyo), I welcome Harald F Krug as the new Co-Editor-in-Chief of STAM. I am also pleased to learn that the year 2014 not only marks the 15th anniversary of STAM, but also the 150th anniversary of the establishment of diplomatic relations between Japan and Switzerland. Toyonobu Yoshida Advances in materials science are key for the sustainable development of our society. That is why, starting from January 2014, Empa, the Swiss Federal Laboratories for Materials Science and Technology, have engaged in an entirely new field of activity: scientific publishing. As mentioned above, Empa joined NIMS in the publishing of STAM. We have a clear-cut goal in mind: we want to support our sister institute in its efforts to move a renowned scientific journal covering materials science and technology to the next level. To achieve this, we intend to 'diversify' the journal in two ways: firstly, with respect to contributing authors, we would like to attract colleagues from Europe as well as from the US to publish their latest results on groundbreaking and innovative insights into materials science in STAM; secondly, with respect to broadening the scope of the journal, we would like to develop topics in STAM such as biomedical applications or energy devices and systems. More specifically, we would like to offer a forum for discussions on the efficiency and reliability of assay systems, which are used in numerous institutes for investigating the biological safety of new materials. I am convinced that STAM can make significant contributions to the—at least at times—heated debates about widespread use of novel materials and related safety issues. I encourage all of you to join this necessary discussion with opinion papers, reviews and original research contributions. At Empa, we are looking forward to joining the editorial team of STAM to make the journal one of the prime sources for high-quality research on advanced materials and innovative applications. Harald F Krug

  16. In-network processing of joins in wireless sensor networks.

    PubMed

    Kang, Hyunchul

    2013-03-11

    The join or correlated filtering of sensor readings is one of the fundamental query operations in wireless sensor networks (WSNs). Although the join in centralized or distributed databases is a well-researched problem, join processing in WSNs has quite different characteristics and is much more difficult to perform due to the lack of statistics on sensor readings and the resource constraints of sensor nodes. Since data transmission is orders of magnitude more costly than processing at a sensor node, in-network processing of joins is essential. In this paper, the state-of-the-art techniques for join implementation in WSNs are surveyed. The requirements and challenges, join types, and components of join implementation are described. The open issues for further research are identified.

  17. In-Network Processing of Joins in Wireless Sensor Networks

    PubMed Central

    Kang, Hyunchul

    2013-01-01

    The join or correlated filtering of sensor readings is one of the fundamental query operations in wireless sensor networks (WSNs). Although the join in centralized or distributed databases is a well-researched problem, join processing in WSNs has quite different characteristics and is much more difficult to perform due to the lack of statistics on sensor readings and the resource constraints of sensor nodes. Since data transmission is orders of magnitude more costly than processing at a sensor node, in-network processing of joins is essential. In this paper, the state-of-the-art techniques for join implementation in WSNs are surveyed. The requirements and challenges, join types, and components of join implementation are described. The open issues for further research are identified. PMID:23478603

  18. Dual Roles for DNA Polymerase Theta in Alternative End-Joining Repair of Double-Strand Breaks in Drosophila

    PubMed Central

    McVey, Mitch

    2010-01-01

    DNA double-strand breaks are repaired by multiple mechanisms that are roughly grouped into the categories of homology-directed repair and non-homologous end joining. End-joining repair can be further classified as either classical non-homologous end joining, which requires DNA ligase 4, or “alternative” end joining, which does not. Alternative end joining has been associated with genomic deletions and translocations, but its molecular mechanism(s) are largely uncharacterized. Here, we report that Drosophila melanogaster DNA polymerase theta (pol theta), encoded by the mus308 gene and previously implicated in DNA interstrand crosslink repair, plays a crucial role in DNA ligase 4-independent alternative end joining. In the absence of pol theta, end joining is impaired and residual repair often creates large deletions flanking the break site. Analysis of break repair junctions from flies with mus308 separation-of-function alleles suggests that pol theta promotes the use of long microhomologies during alternative end joining and increases the likelihood of complex insertion events. Our results establish pol theta as a key protein in alternative end joining in Drosophila and suggest a potential mechanistic link between alternative end joining and interstrand crosslink repair. PMID:20617203

  19. Automatic segmentation of the left ventricle cavity and myocardium in MRI data.

    PubMed

    Lynch, M; Ghita, O; Whelan, P F

    2006-04-01

    A novel approach for the automatic segmentation has been developed to extract the epi-cardium and endo-cardium boundaries of the left ventricle (lv) of the heart. The developed segmentation scheme takes multi-slice and multi-phase magnetic resonance (MR) images of the heart, transversing the short-axis length from the base to the apex. Each image is taken at one instance in the heart's phase. The images are segmented using a diffusion-based filter followed by an unsupervised clustering technique and the resulting labels are checked to locate the (lv) cavity. From cardiac anatomy, the closest pool of blood to the lv cavity is the right ventricle cavity. The wall between these two blood-pools (interventricular septum) is measured to give an approximate thickness for the myocardium. This value is used when a radial search is performed on a gradient image to find appropriate robust segments of the epi-cardium boundary. The robust edge segments are then joined using a normal spline curve. Experimental results are presented with very encouraging qualitative and quantitative results and a comparison is made against the state-of-the art level-sets method.

  20. Combination of surface and borehole seismic data for robust target-oriented imaging

    NASA Astrophysics Data System (ADS)

    Liu, Yi; van der Neut, Joost; Arntsen, Børge; Wapenaar, Kees

    2016-05-01

    A novel application of seismic interferometry (SI) and Marchenko imaging using both surface and borehole data is presented. A series of redatuming schemes is proposed to combine both data sets for robust deep local imaging in the presence of velocity uncertainties. The redatuming schemes create a virtual acquisition geometry where both sources and receivers lie at the horizontal borehole level, thus only a local velocity model near the borehole is needed for imaging, and erroneous velocities in the shallow area have no effect on imaging around the borehole level. By joining the advantages of SI and Marchenko imaging, a macrovelocity model is no longer required and the proposed schemes use only single-component data. Furthermore, the schemes result in a set of virtual data that have fewer spurious events and internal multiples than previous virtual source redatuming methods. Two numerical examples are shown to illustrate the workflow and to demonstrate the benefits of the method. One is a synthetic model and the other is a realistic model of a field in the North Sea. In both tests, improved local images near the boreholes are obtained using the redatumed data without accurate velocities, because the redatumed data are close to the target.

  1. Space Photovoltaic Concentrator Using Robust Fresnel Lenses, 4-Junction Cells, Graphene Radiators, and Articulating Receivers

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark; McDanal, A. J.; Brandhorst, Henry; Spence, Brian; Iqbal, Shawn; Sharps, Paul; McPheeters, Clay; Steinfeldt, Jeff; Piszczor, Michael; Myers, Matt

    2016-01-01

    At the 42nd PVSC, our team presented recent advances in our space photovoltaic concentrator technology. These advances include more robust Fresnel lenses for optical concentration, more thermally conductive graphene radiators for waste heat rejection, improved color-mixing lens technology to minimize chromatic aberration losses with 4-junction solar cells, and an articulating photovoltaic receiver enabling single-axis sun-tracking, while maintaining a sharp focal line despite large beta angles of incidence. In the past year, under a NASA Phase II SBIR program, our team has made much additional progress in the development of this new space photovoltaic concentrator technology, as described in this paper.

  2. Robust Rocket Engine Concept

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1995-01-01

    The potential for a revolutionary step in the durability of reusable rocket engines is made possible by the combination of several emerging technologies. The recent creation and analytical demonstration of life extending (or damage mitigating) control technology enables rapid rocket engine transients with minimum fatigue and creep damage. This technology has been further enhanced by the formulation of very simple but conservative continuum damage models. These new ideas when combined with recent advances in multidisciplinary optimization provide the potential for a large (revolutionary) step in reusable rocket engine durability. This concept has been named the robust rocket engine concept (RREC) and is the basic contribution of this paper. The concept also includes consideration of design innovations to minimize critical point damage.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarovar, Mohan; Zhang, Jun; Zeng, Lishan

    Analog quantum simulators (AQS) will likely be the first nontrivial application of quantum technology for predictive simulation. However, there remain questions regarding the degree of confidence that can be placed in the results of AQS since they do not naturally incorporate error correction. Specifically, how do we know whether an analog simulation of a quantum model will produce predictions that agree with the ideal model in the presence of inevitable imperfections? At the same time there is a widely held expectation that certain quantum simulation questions will be robust to errors and perturbations in the underlying hardware. Resolving these twomore » points of view is a critical step in making the most of this promising technology. In this paper we formalize the notion of AQS reliability by determining sensitivity of AQS outputs to underlying parameters, and formulate conditions for robust simulation. Our approach naturally reveals the importance of model symmetries in dictating the robust properties. Finally, to demonstrate the approach, we characterize the robust features of a variety of quantum many-body models.« less

  4. Reliability of analog quantum simulation

    DOE PAGES

    Sarovar, Mohan; Zhang, Jun; Zeng, Lishan

    2017-01-03

    Analog quantum simulators (AQS) will likely be the first nontrivial application of quantum technology for predictive simulation. However, there remain questions regarding the degree of confidence that can be placed in the results of AQS since they do not naturally incorporate error correction. Specifically, how do we know whether an analog simulation of a quantum model will produce predictions that agree with the ideal model in the presence of inevitable imperfections? At the same time there is a widely held expectation that certain quantum simulation questions will be robust to errors and perturbations in the underlying hardware. Resolving these twomore » points of view is a critical step in making the most of this promising technology. In this paper we formalize the notion of AQS reliability by determining sensitivity of AQS outputs to underlying parameters, and formulate conditions for robust simulation. Our approach naturally reveals the importance of model symmetries in dictating the robust properties. Finally, to demonstrate the approach, we characterize the robust features of a variety of quantum many-body models.« less

  5. A method of plane geometry primitive presentation

    NASA Astrophysics Data System (ADS)

    Jiao, Anbo; Luo, Haibo; Chang, Zheng; Hui, Bin

    2014-11-01

    Point feature and line feature are basic elements in object feature sets, and they play an important role in object matching and recognition. On one hand, point feature is sensitive to noise; on the other hand, there are usually a huge number of point features in an image, which makes it complex for matching. Line feature includes straight line segment and curve. One difficulty in straight line segment matching is the uncertainty of endpoint location, the other is straight line segment fracture problem or short straight line segments joined to form long straight line segment. While for the curve, in addition to the above problems, there is another difficulty in how to quantitatively describe the shape difference between curves. Due to the problems of point feature and line feature, the robustness and accuracy of target description will be affected; in this case, a method of plane geometry primitive presentation is proposed to describe the significant structure of an object. Firstly, two types of primitives are constructed, they are intersecting line primitive and blob primitive. Secondly, a line segment detector (LSD) is applied to detect line segment, and then intersecting line primitive is extracted. Finally, robustness and accuracy of the plane geometry primitive presentation method is studied. This method has a good ability to obtain structural information of the object, even if there is rotation or scale change of the object in the image. Experimental results verify the robustness and accuracy of this method.

  6. Phylogenetic incongruence in the Drosophila melanogaster species group

    PubMed Central

    Wong, Alex; Jensen, Jeffrey D.; Pool, John E.; Aquadro, Charles F.

    2007-01-01

    Drosophila melanogaster and its close relatives are used extensively in comparative biology. Despite the importance of phylogenetic information for such studies, relationships between some melanogaster species group members are unclear due to conflicting phylogenetic signals at different loci. In this study, we use twelve nuclear loci (eleven coding and one non-coding) to assess the degree of phylogenetic incongruence in this model system. We focus on two nodes: (1) The node joining the D. erecta-D. orena, D. melanogaster-D. simulans, and D. yakuba-D. teissieri lineages, and (2) The node joining the lineages leading to the melanogaster, takahashii, and eugracilis subgroups. We find limited evidence for incongruence at the first node; our data, as well as those of several previous studies, strongly support monophyly of a clade consisting of D. erecta-D. orena and D. yakuba-D. teissieri. By contrast, using likelihood based tests of congruence, we find robust evidence for topological incongruence at the second node. Different loci support different relationships among the melanogaster, takahashii and eugracilis subgroups, and the observed incongruence is not easily attributable to homoplasy, non-equilibrium base composition, or positive selection on a subset of loci. We argue that lineage sorting in the common ancestor of these three subgroups is the most plausible explanation for our observations. Such lineage sorting may lead to biased estimation of tree topology and evolutionary rates, and may confound inferences of positive selection. PMID:17071113

  7. Development of a 3-D Rehabilitation System for Upper Limbs Using ER Actuators in a Nedo Project

    NASA Astrophysics Data System (ADS)

    Furusho, Junji; Koyanagi, Ken'ichi; Nakanishi, Kazuhiko; Ryu, Ushio; Takenaka, Shigekazu; Inoue, Akio; Domen, Kazuhisa; Miyakoshi, Koichi

    New training methods and exercises for upper limbs rehabilitation are made possible by application of robotics and virtual reality technology. The technologies can also make quantitative evaluations and enhance the qualitative effect of training. We have joined a project managed by NEDO (New Energy and Industrial Technology Development Organization as a semi-governmental organization under the Ministry of Economy, Trade and Industry of Japan) 5-year Project, "Rehabilitation System for the Upper Limbs and Lower Limbs", and developed a 3-DOF exercise machine for upper limbs (EMUL) using ER actuators. In this paper, we also present the development of software for motion exercise trainings and some results of clinical evaluation. Moreover, it is discussed how ER actuators ensure the mechanical safety.

  8. NASA Advancing Aviation Technology on This Week @NASA – March 3, 2017

    NASA Image and Video Library

    2017-03-03

    On March 2, NASA’s acting Administrator, Robert Lightfoot spoke at the U.S. Chamber of Commerce’s Aviation Summit in Washington, about how the agency’s technology advancements have helped transform the aviation industry. Lightfoot was then joined by Canadian Minister of Transport Marc Garneau, who is a former astronaut and Canadian Space Agency president, and Carol Hallett, counselor to the chamber, for a discussion with NASA’s Shane Kimbrough and Peggy Whitson, via satellite from the International Space Station. The two talked about the vast array of research and technology development conducted aboard the station. Also, Anniversary of One-Year Crew’s Return, IceCube SmallSat Ready for Launch, Orion Propulsion Qualification Module Installed, Small Business Industry Awards, and African American Pioneers in Aviation and Space!

  9. Harnessing Technology to Improve Formative Assessment of Student Conceptions in STEM: Forging a National Network

    PubMed Central

    Haudek, Kevin C.; Kaplan, Jennifer J.; Knight, Jennifer; Long, Tammy; Merrill, John; Munn, Alan; Nehm, Ross; Smith, Michelle; Urban-Lurain, Mark

    2011-01-01

    Concept inventories, consisting of multiple-choice questions designed around common student misconceptions, are designed to reveal student thinking. However, students often have complex, heterogeneous ideas about scientific concepts. Constructed-response assessments, in which students must create their own answer, may better reveal students’ thinking, but are time- and resource-intensive to evaluate. This report describes the initial meeting of a National Science Foundation–funded cross-institutional collaboration of interdisciplinary science, technology, engineering, and mathematics (STEM) education researchers interested in exploring the use of automated text analysis to evaluate constructed-response assessments. Participants at the meeting shared existing work on lexical analysis and concept inventories, participated in technology demonstrations and workshops, and discussed research goals. We are seeking interested collaborators to join our research community. PMID:21633063

  10. Harnessing technology to improve formative assessment of student conceptions in STEM: forging a national network.

    PubMed

    Haudek, Kevin C; Kaplan, Jennifer J; Knight, Jennifer; Long, Tammy; Merrill, John; Munn, Alan; Nehm, Ross; Smith, Michelle; Urban-Lurain, Mark

    2011-01-01

    Concept inventories, consisting of multiple-choice questions designed around common student misconceptions, are designed to reveal student thinking. However, students often have complex, heterogeneous ideas about scientific concepts. Constructed-response assessments, in which students must create their own answer, may better reveal students' thinking, but are time- and resource-intensive to evaluate. This report describes the initial meeting of a National Science Foundation-funded cross-institutional collaboration of interdisciplinary science, technology, engineering, and mathematics (STEM) education researchers interested in exploring the use of automated text analysis to evaluate constructed-response assessments. Participants at the meeting shared existing work on lexical analysis and concept inventories, participated in technology demonstrations and workshops, and discussed research goals. We are seeking interested collaborators to join our research community.

  11. Enhancing children's health through digital story.

    PubMed

    Wyatt, Tami H; Hauenstein, Emily

    2008-01-01

    Stories in all of their many forms, including books, plays, skits, movies, poems, and songs, appeal to individuals of all ages but especially the young. Children are easily engaged in stories, and today's generation of children, the millennium generation, demands interactive, multimedia-rich environments. Story as a teaching and learning technique is pervasive in the classroom but is infrequently used to promote health. Because of advancing technology, it is possible to create interactive digital storytelling programs that teach children health topics. Using digital storytelling in an interactive environment to promote health has not been tested, but there is empirical support for using story in health education and interactive technology to promote health. This article briefly reviews the literature and discusses how technology and storytelling can be joined to promote positive health outcomes.

  12. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    NASA Technical Reports Server (NTRS)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.

  13. Engaging Students with the Nature of Science and the Nature of Technology by Modeling the Work of Scientists

    ERIC Educational Resources Information Center

    Kruse, Jerrid W.; Wilcox, Jesse L.

    2013-01-01

    Just as science education is too often limited to the acquisition of facts, technology education is too often limited to proficient use of technology. Neither of these goals fully realize a robust definition of science and technology literacy. To achieve greater science and technology literacy, students must understand the natures of both science…

  14. Sail film materials and supporting structure for a solar sail, a preliminary design, volume 4

    NASA Technical Reports Server (NTRS)

    Rowe, W. M. (Editor)

    1978-01-01

    Solar sailing technology was examined in relation to a mission to rendezvous with Halley's Comet. Development of an ultra-light, highly reflecting material system capable of operating at high solar intensity for long periods of time was emphasized. Data resulting from the sail materials study are reported. Topics covered include: basic film; coatings and thermal control; joining and handling; system performance; and supporting structures assessment for the heliogyro.

  15. Advanced Metalworking Solutions for Naval Systems that go in Harm’s Way

    DTIC Science & Technology

    2009-01-01

    friction stir welding (FSW) and advanced machining and casting techniques to produce a prototype Automated weld seam facing on DDG 1000 ships will...transportable friction stir welding (FSW) machine. FSW is a solid state joining technology that offers benefits over traditional welding for several...addition, by locating FSW operation at the construction yard, the aluminum panels that will be friction stir - welded are built to the size needed instead

  16. Training the Future - Swamp Work Activities

    NASA Image and Video Library

    2017-07-19

    In the Swamp Works laboratory at NASA's Kennedy Space Center in Florida, student interns such as Thomas Muller, left, and Austin Langdon are joining agency scientists, contributing in the area of Exploration Research and Technology. Muller is pursuing a degree in computer engineering and control systems and Florida Tech. Langdon is an electrical engineering major at the University of Kentucky. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  17. Analyzing Enron Data: Bitmap Indexing Outperforms MySQL Queries bySeveral Orders of Magnitude

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockinger, Kurt; Rotem, Doron; Shoshani, Arie

    2006-01-28

    FastBit is an efficient, compressed bitmap indexing technology that was developed in our group. In this report we evaluate the performance of MySQL and FastBit for analyzing the email traffic of the Enron dataset. The first finding shows that materializing the join results of several tables significantly improves the query performance. The second finding shows that FastBit outperforms MySQL by several orders of magnitude.

  18. A Proposed Cosmology of Identity in the Sociotechnical Ecosystem of Homeland Security

    DTIC Science & Technology

    2017-12-01

    extremist violence based on “what we know about the psychological and social factors motivating young people to join extremist groups.”6 The consistent...Veblen (1857–1929), an American sociologist and economist.56 If we look at the historical co-evolution of human societies and technology, we see that...in self-perceived identity and physical behaviors when the psychological attachment to avatars becomes an authentic experience. The concept of

  19. Human Exploration of Mars

    NASA Image and Video Library

    2016-10-22

    The scientific knowledge and technologies needed to make human exploration of Mars happen are within our reach. NASA 360 joins Dr. Jim Green, Director of NASA’s Planetary Science Division, as he discusses how NASA is preparing for human exploration of the Red Planet. This video was created from a live recording at the Viking 40th Anniversary Symposium in July 2016. To watch the original talk please visit: http://bit.ly/2bk1PGk

  20. Enhanced Virtual Presence for Immersive Visualization of Complex Situations for Mission Rehearsal

    DTIC Science & Technology

    1997-06-01

    taken. We propose to join both these technologies together in a registration device . The registration device would be small and portable and easily...registering the panning of the camera (or other sensing device ) and also stitch together the shots to automatically generate panoramic files necessary to...database and as the base information changes each of the linked drawings is automatically updated. Filename Format A specific naming convention should be

  1. Selected Scientific and Technical Contributions of Edward C. Polhamus

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    2016-01-01

    Edward C. Polhamus joined the NACA Langley Research Center staff in 1944 and was active in a broad range of aerodynamic research related to high-speed aircraft technology, aerodynamic prediction methods, and cryogenic wind-tunnel development. This lecture will focus on his 'leading-edge suction analogy' for the prediction of vortex-lift effects on slender wings. Briefer treatment of his contributions to variable-sweep aircraft and cryogenic wind tunnels is also included.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, W.L.

    The American family farm is threatened by the combination of low, unstable commodity prices and high costs of machine and chemical technology. Overplanting, erosion, excessive taxation, and non-farm development diminish the best cropland. Government and corporate business policy have encouraged overproduction and soil abuse. To survive, the small farmer takes a second job or joins the urban industrial proletariat. No single national organization protects agriculture or equals the effective lobbying of business and unions for their own interests. Modern technology often produces less per land unit than traditional labor-intensive cultivation and costs more in terms of energy, capital, and depletedmore » soil and natural resources. Usurious interest, archaic tax laws, and rapid rise of current technological production costs force insolvency of the small farm while facilitating expansion of giant agribusiness corporations, but technological innovation many have reached the point of diminishing returns. Meanwhile disruption of rural society continues, aggravating metropolitan overpopulation, unemployment, and social disorganization. 39 references.« less

  3. Laser Materials Processing for NASA's Aerospace Structural Materials

    NASA Technical Reports Server (NTRS)

    Nagarathnam, Karthik; Hunyady, Thomas A.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, and surface treatment. Due to the multifunctional nature of a single tool and the variety of materials that can be processed, these attributes are attractive in order to support long-term missions in space. However, current laser technology also has drawbacks for space-based applications. Specifically, size, power efficiency, lack of robustness, and problems processing highly reflective materials are all concerns. With the advent of recent breakthroughs in solidstate laser (e.g., diode-pumped lasers) and fiber optic technologies, the potential to perform multiple processing techniques in space has increased significantly. A review of the historical development of lasers from their infancy to the present will be used to show how these issues may be addressed. The review will also indicate where further development is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. Both short- and long-term space missions will benefit from the development of a universal laser-based tool with low power consumption, improved process flexibility, compactness (e.g., miniaturization), robustness, and automation for maximum utility with a minimum of human interaction. The potential advantages of using lasers with suitable wavelength and beam properties for future space missions to the moon, Mars and beyond will be discussed. The laser processing experiments in the present report were performed using a diode pumped, pulsed/continuous wave Nd:YAG laser (50 W max average laser power), with a 1064 nm wavelength. The processed materials included Ti-6AI-4V, Al-2219 and Al-2090. For Phase I of this project, the laser process conditions were varied and optimized to see the effects on melt-quenching, cladding/alloying (using the pre-placed powder technique), and cutting. Key parameters such laser power, pulse repetition frequency, process speed, and shield gas flow and the observed process characteristics such as plasma formation during laser/material interaction, have been reported for all experimental runs. Preliminary materials characterization of select samples was carried out using various microscopy, diffraction, spectroscopy and microhardness test methods, and reported. Select nitridation results of Ti-6AI-4V using nitrogen assist gas indicated the successful formation of hard titanium nitrides with much higher hardness (2180 kg/sq mm). A cost-effective and simple powder delivery system has been successfully fabricated for the further experimentation in Phase H.

  4. Mechanically robust and transparent N-halamine grafted PVA-co-PE films with renewable antimicrobial activity

    USDA-ARS?s Scientific Manuscript database

    Antimicrobial polymeric films that are both mechanically robust and function renewable would have broad technological implications for areas ranging from medical safety and bioengineering to foods industry; however, creating such materials has proven extremely challenging. Here, a novel strategy is ...

  5. Experimental investigations on the state of the friction-welded joint zone in steel hybrid components after process-relevant thermo-mechanical loadings

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Bouguecha, A.; Vucetic, M.; Peshekhodov, I.; Matthias, T.; Kolbasnikov, N.; Sokolov, S.; Ganin, S.

    2016-10-01

    As a part of the newly established Collaborative Research Center 1153 (SFB 1153) "Process chain for the manufacturing of hybrid high-performance components by tailored forming" at the Leibniz Universität Hannover, the Institute of Forming Technology and Machines (IFUM) examines the influence of thermo-mechanical stresses on the reduced Young's modulus as well as the hardness of hybrid (steel-steel compound) joined semi-finished products. Currently the expertise in the production of bulk metal formed parts is limited to mono-materials. For manufacturing parts of hybrid materials and also for the methods of the new process routes, practical experience has to be gained. The subproject C1 within the collaborative research center 1153 with the short title "Failure Prediction" deals with the question, if the hybrid semi-finished products fulfill the thermo-mechanical demands or if they fail at the joining zone (JZ) during forging. For this purpose, stresses similar to those in the process were imposed on hybrid semi-finished products by torsion tests by using the thermo-mechanical test system Gleeble 3800. Afterwards, the specimens were examined metallographically and by nanoindentations with the help of a TriboIndenter TI950. Thus, first knowledge on the behaviour of thermo-mechanical stresses on the reduced Young's modulus and the hardness of hybrid joined semi-finished parts was gained.

  6. Simulation based analysis of laser beam brazing

    NASA Astrophysics Data System (ADS)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  7. Kinetics and thermodynamics of ceramic/metal interface reactions related to high T(sub c) superconducting applications

    NASA Technical Reports Server (NTRS)

    Notis, Michael R.; Oh, Min-Seok

    1990-01-01

    Superconducting ceramic materials, no matter what their form, size or shape, must eventually make contact with non-superconducting materials in order to accomplish current transfer to other parts of a real operating system, or for testing and measurement of properties. Thus, whether the configuration is a clad wire, a bulk superconducting disc, tape, or a thick or thin superconducting film on a substrate, the physical and mechanical behavior of interface (interconnections, joints, etc.) between superconductors and normal conductor materials of all kinds is of extreme importance to the technological development of these systems. Fabrication heat treatments associated with the particular joining process allow possible reactions between the superconducting ceramic and the contact to occur, and consequently influence properties at the interface region. The nature of these reactions is therefore of great broad interest, as these may be a primary determinant for the real capability of these materials. Research related both to fabrication of composite sheathed wire products, and the joining contacts for physical property measurements, as well as, a review of other related literature in the field are described. Comparison are made between 1-2-3, Bi-, and Tl-based ceramic superconductors joined to a variety of metals including Cu, Ni, Fe, Cr, Ag, Ag-Pd, Au, In, and Ga. The morphology of reaction products and the nature of interface degradation as a function of time will be highlighted.

  8. A novel modification of the Turing test for artificial intelligence and robotics in healthcare.

    PubMed

    Ashrafian, Hutan; Darzi, Ara; Athanasiou, Thanos

    2015-03-01

    The increasing demands of delivering higher quality global healthcare has resulted in a corresponding expansion in the development of computer-based and robotic healthcare tools that rely on artificially intelligent technologies. The Turing test was designed to assess artificial intelligence (AI) in computer technology. It remains an important qualitative tool for testing the next generation of medical diagnostics and medical robotics. Development of quantifiable diagnostic accuracy meta-analytical evaluative techniques for the Turing test paradigm. Modification of the Turing test to offer quantifiable diagnostic precision and statistical effect-size robustness in the assessment of AI for computer-based and robotic healthcare technologies. Modification of the Turing test to offer robust diagnostic scores for AI can contribute to enhancing and refining the next generation of digital diagnostic technologies and healthcare robotics. Copyright © 2014 John Wiley & Sons, Ltd.

  9. In-Network Processing of an Iceberg Join Query in Wireless Sensor Networks Based on 2-Way Fragment Semijoins

    PubMed Central

    Kang, Hyunchul

    2015-01-01

    We investigate the in-network processing of an iceberg join query in wireless sensor networks (WSNs). An iceberg join is a special type of join where only those joined tuples whose cardinality exceeds a certain threshold (called iceberg threshold) are qualified for the result. Processing such a join involves the value matching for the join predicate as well as the checking of the cardinality constraint for the iceberg threshold. In the previous scheme, the value matching is carried out as the main task for filtering non-joinable tuples while the iceberg threshold is treated as an additional constraint. We take an alternative approach, meeting the cardinality constraint first and matching values next. In this approach, with a logical fragmentation of the join operand relations on the aggregate counts of the joining attribute values, the optimal sequence of 2-way fragment semijoins is generated, where each fragment semijoin employs a Bloom filter as a synopsis of the joining attribute values. This sequence filters non-joinable tuples in an energy-efficient way in WSNs. Through implementation and a set of detailed experiments, we show that our alternative approach considerably outperforms the previous one. PMID:25774710

  10. A test of theory of planned behavior in Korea: participation in alcohol-related social gatherings.

    PubMed

    Park, Hee Sun; Lee, Dong Wook

    2009-12-01

    Two studies are reported using the theory of planned behavior (TPB) to predict and explain joining and not joining alcohol-related social gatherings among Korean undergraduates in various engineering majors. Specifically, considering that the attitudinal component of TPB is behavioral-outcome-based, the current study investigated whether the outcomes of engaging in a behavior and of not engaging in a behavior would similarly predict intentions to engage in a behavior and intentions to not engage in a behavior. The current study also examined whether intentions to engage and intentions to not engage would be significantly related to self-reported behavior a week later. Participants in Study 1 reported TPB components (attitudes toward behavior, subjective norms, perceived behavioral control, and behavioral intentions) concerning joining alcohol-related social gatherings. Participants in Study 2 reported TPB components concerning not joining alcohol-related social gatherings. Additionally, a week later, the participants in both studies reported their participation in alcohol-related social gatherings from the past week. Generally, the results showed that the TPB components were significantly associated with undergraduates' intentions to join and intentions to not join. Specifically, conversation-related attitudes and senior-junior relationship-related attitudes were significantly related to intentions to join, and only group-related attitudes were significantly related to intentions to not join. Intentions to join and intentions to not join were not significantly related to self-reported behavior of joining alcohol-related social gatherings a week later. The findings from the current research provide some evidence that joining or not joining alcohol-related social gatherings may not be mere behavioral opposites, predictable by the presence or absence of the same behavioral outcomes. These two aspects of the behavior may require assessment of different behavioral outcomes or different assessments of the same behavioral outcomes.

  11. Programmatic status of NASA's CSTI high capacity power Stirling space power converter program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.

    1990-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.

  12. Low-Cost, Robust, Threat-aware Wireless Sensor Network for Assuring the Nation's Energy Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlos H. Rentel

    2007-03-31

    The objective of this project was to create a low-cost, robust anticipatory wireless sensor network (A-WSN) to ensure the security and reliability of the United States energy infrastructure. This document highlights Eaton Corporation's plan to bring these technologies to market.

  13. Induction technique in manufacturing preforms

    NASA Astrophysics Data System (ADS)

    Frauenhofer, M.; Ströhlein, T.; Fabig, S.; Böhm, S.; Herbeck, L.; Dilger, K.

    2008-09-01

    The prepreg technology is a state-of-the-art method to produce high-performance CFRP parts. Due to the high material prices, the restricted process rate, and limitations to the component complexity, in future, more and more parts will be assembled by using liquid composite moulding. Especially in the case of series larger than 100 parts per year, the LCM technology offers the best cost-effectiveness. This technology is based on resin injection into dry multilayer fibre textiles (preforms). The Institute of Joining and Welding (TU, Braunschweig), together with the Institute of Composite Structures and Adaptive Systems (DLR), has elaborated a new technology to speed up the preform process, which is the most labour-intensive step within the LCM process chain. A novel concept to consolidate binder-coated fabrics is under development. By applying the high energy transfer rate of induction technology, it is possible to heat up a preform with rates up to 50 K/s to melt the binder and consolidate the preform.

  14. CuInSe2-Based Thin-Film Photovoltaic Technology in the Gigawatt Production Era

    NASA Astrophysics Data System (ADS)

    Kushiya, Katsumi

    2012-10-01

    The objective of this paper is to review current status and future prospect on CuInSe2 (CIS)-based thin-film photovoltaic (PV) technology. In CIS-based thin-film PV technology, total-area cell efficiency in a small-area (i.e., smaller than 1 cm2) solar cell with top grids has been over 20%, while aperture-area efficiency in a large-area (i.e., larger than 800 cm2 as definition) monolithic module is approaching to an 18% milestone. However, most of the companies with CIS-based thin-film PV technology still stay at a production research stage, except Solar Frontier K.K. In July, 2011, Solar Frontier has joined the gigawatt (GW) group by starting up their third facility with a 0.9-GW/year production capacity. They are keeping the closest position to pass a 16% module-efficiency border by transferring the developed technologies in the R&D and accelerating the preparation for the future based on the concept of a product life-cycle management.

  15. Thermochemical Conversion: Using Heat and Catalysts to Make Biofuels and Bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-07-29

    This fact sheet discusses the Bioenergy Technologies Office's thermochemical conversion critical technology goal. And, how through the application of heat, robust thermochemical processes can efficiently convert a broad range of biomass.

  16. Using a Water Purification Activity to Teach the Philosophy and Nature of Technology

    ERIC Educational Resources Information Center

    Kruse, Jerrid; Wilcox, Jesse

    2017-01-01

    Next Generation Science Standards (NGSS), with new emphasis on engineering, reflects broadening definitions of scientific and technological literacy. However, engaging in science and engineering practices is necessary, but insufficient, for developing technological literacy. Just as robust scientific literacy includes a deep understanding of the…

  17. Teaching and Learning in the Mixed-Reality Science Classroom

    ERIC Educational Resources Information Center

    Tolentino, Lisa; Birchfield, David; Megowan-Romanowicz, Colleen; Johnson-Glenberg, Mina C.; Kelliher, Aisling; Martinez, Christopher

    2009-01-01

    As emerging technologies become increasingly inexpensive and robust, there is an exciting opportunity to move beyond general purpose computing platforms to realize a new generation of K-12 technology-based learning environments. Mixed-reality technologies integrate real world components with interactive digital media to offer new potential to…

  18. HEAT INPUT AND POST WELD HEAT TREATMENT EFFECTS ON REDUCED-ACTIVATION FERRITIC/MARTENSITIC STEEL FRICTION STIR WELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Wei; Chen, Gaoqiang; Chen, Jian

    Reduced-activation ferritic/martensitic (RAFM) steels are an important class of structural materials for fusion reactor internals developed in recent years because of their improved irradiation resistance. However, they can suffer from welding induced property degradations. In this paper, a solid phase joining technology friction stir welding (FSW) was adopted to join a RAFM steel Eurofer 97 and different FSW parameters/heat input were chosen to produce welds. FSW response parameters, joint microstructures and microhardness were investigated to reveal relationships among welding heat input, weld structure characterization and mechanical properties. In general, FSW heat input results in high hardness inside the stir zonemore » mostly due to a martensitic transformation. It is possible to produce friction stir welds similar to but not with exactly the same base metal hardness when using low power input because of other hardening mechanisms. Further, post weld heat treatment (PWHT) is a very effective way to reduce FSW stir zone hardness values.« less

  19. For free or for fee? Dilemma of small scientific journals.

    PubMed

    Kljaković-Gaspić, Marko; Petrak, Jelka; Rudan, Igor; Biloglav, Zrinka

    2007-06-01

    Biomedical publishing is becoming increasingly dominated by multinational companies, advertising research articles at the international market, presenting them electronically through web-based services, and distributing them to readers-consumers. It seems that they will soon become the sole publishers for the majority of biomedical journals. In the past decade, however, we witnessed a quiet revolution in the whole structure of scientific communication, influenced by new technologies and initiatives such as Open Access, PubMedCentral, PLoS, and BioMedCentral. The Croatian Medical Journal (CMJ) has recently been approached by two major publishing companies and offered to become one of the journals in their group. The editorial decision was to join neither of the publishers. We felt that the decision had to be explained to our readers by defining CMJ's position in global scientific and medical journal publishing. Our experience may be similar to that of the many biomedical journals which find themselves in a dilemma whether to join major publishers or not.

  20. Indian oil company joins efforts to reduce methane emissions

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    The Oil and Natural Gas Corp, Ltd. (ONGC), headquartered in Dehradun, India, has joined seven U.S. and Canadian oil and natural gas companies as a partner in a U.S. Environmental Protection Agency program to reduce greenhouse gas emissions. EPA's Natural Gas STAR International Program aims to reduce methane emissions from the oil and natural gas sector while delivering more gas to markets around the world. With this partnership, ONGC agrees to implement emissions reduction practices and to submit annual reports on progress achieved; EPA agrees to assist ONGC with training technicians in new cost-effective technologies that will help achieve target emissions. The Natural Gas STAR International Program is administered under the Methane to Markets Partnership, a group of 20 countries and 600 companies across the globe that since 2004 has volunteered to cut methane emissions. More information on EPA's agreement with ONGC can be found at http://www.epa.gov/gasstar/index.htm; information about the Methane to Markets Partnership can be found at http://www.methanetomarkets.org.

  1. Assessment of weld quality of aerospace grade metals by using ultrasonic matrix phased array technology

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Gleeson, Sean T.

    2014-03-01

    Advantages of two dimensional electronic ultrasonic beam focusing, steering and scanning with the matrix phased array (MPA) technology has been used to visualize the conditions of resistance spot welds in auto vehicle grade advanced high strength steel carbon steels nondestructively. Two of the commonly used joining techniques, resistance spot welding and resistance seam welding, for thin aerospace grade plates made of aluminum, titanium, and stainless steels have also been inspected with the same MPA NDE system. In this study, a detailed discussions of the current MPA based ultrasonic real time imaging methodology has been made followed by some of the NDT results obtained with various welded test coupons.

  2. Concept and design of the 2.0-m NGAT: the new generation of astronomical telescopes

    NASA Astrophysics Data System (ADS)

    Mansfield, Anthony G.

    1998-08-01

    The Royal Greenwich Observatory and Liverpool John Moores University, United Kingdom, have joined in a collaboration to produce high quality, ground based robotic telescopes (2.0 to 5.0 m), for use with optical, infrared and interferometric astronomy. This venture has taken the form of a commercial company, Telescope Technologies Limited, to produce the range of Alt-azimuth telescopes. The reliability of the low cost, advanced technology, telescope design will enable remote observing over the Internet. The first two telescopes, currently under production, will see first light in La Palma and India in 1999. This paper covers the concept, design and capability range of the NGAT telescopes.

  3. Effect of Temperature on the Storage Life of Polysulfide Sealants

    DTIC Science & Technology

    1989-01-01

    University of Adelaide, South Australia. After two and a half years of experience in Rubber Technology with the Olympic Tyre and Rubber Company, Melbourne...he joined the rubber section of MRL in November 1970. Since 1975 he has been involved in R & D work in the sealant section as an Experimental Officer...repeatedly passing the mixture through a triple roll mill. One set of the calcium carbonate-solvent series was enclosed in a heat sealed wrapping of

  4. Metal Matrix Composite LOX Turbopump Housing via Novel Tool-less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.

    2003-01-01

    Metal matrix composites for propulsion components offer high performance and affordability, resulting in low weight and cost. The following sections in this viewgraph presentation describe the pressure infiltration casting of a metal matrix composite LOX turbopump housing: 1) Baseline Pump Design and Stress Analysis; 2) Tool-less Advanced Pressure Infiltration Casting Process; 3) Preform Splicing and Joining for Large Components such as Pump Housing; 4) Fullscale Pump Housing Redesign.

  5. Production of Open Cell Bulk Metallic Glass Foam Structures via Electromechanical Forming

    DTIC Science & Technology

    2011-07-20

    brazing of aluminium alloys using liquid gallium (UKpatent application 0128623.6). Science and Technology of Welding and Joining, 2003. 8(2): p. 149-153...interface approaches V2 the bulk strength of the alloy . Recent efforts have focused on varying the stress state at the interface in order to evaluate...gallium surface treatments have shown promise in the successful diffusion bonding of aluminum alloys and stainless steel alloys [1]. However, in the

  6. Exploration of Questions Regarding Modelling of Crack Growth Behaviour under Practical Combinations of Aircraft Spectra, Stress Levels and Materials

    DTIC Science & Technology

    2011-07-01

    Conditions of Release and Disposal This document is the property of the Australian Government; the information it contains is released for defence...of high strength aluminium alloys and stress spectra associated with fatigue sensitive locations on typical RAAF aircraft. This report continues...growth, infrared NDT technologies and fibre optic corrosion detection devices. He joined DSTO in 2007 in the Air Vehicles Division and is currently

  7. A Wind Tunnel Investigation of Joined Wing Scissor Morphing

    DTIC Science & Technology

    2006-06-01

    would use the low sweep for carrier landing and subsonic cruise, and use the high sweep for 12 supersonic flight [13]. According to Raymer [19...Wright-Patterson AFB, Ohio: Air Force Institute of Technology, 2005. 12. Katz, Joseph, Shaun Byrne, and Robert Hahl. "Stall Resistance Features of...Lifting-Body Airplane Configurations." Journal of Aircraft 2nd ser. 36 (1999): 471-474. 13. Kress, Robert W. "Variable Sweep Wing Design." AIAA 83

  8. Joining of graphene flakes by low energy N ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Xin; Zhao, Haiyan; Pei, Jiayun; Yan, Dong

    2017-03-01

    An approach utilizing low energy N ion beam irradiation is applied in joining two monolayer graphene flakes. Raman spectrometry and atomic force microscopy show the joining signal under 40 eV and 1 × 1014 cm-2 N ion irradiation. Molecular dynamics simulations demonstrate that the joining phenomenon is attributed to the punch-down effect and the subsequent chemical bond generation between the two sheets. The generated chemical bonds are made up of inserted ions (embedded joining) and knocked-out carbon atoms (saturation joining). The electronic transport properties of the joint are also calculated for its applications.

  9. EMERGING TECHNOLOGY BULLETIN: SPOUTED BED REACTOR

    EPA Science Inventory

    The Spouted Bed Reactor (SBR) technology utilizes the unique attributes of the "spouting " fluidization regime, which can provide heat transfer rates comparable to traditional fluid beds, while providing robust circulation of highly heterogeneous solids, concurrent with very agg...

  10. Ceramic technology for advanced heat engines project. Semiannual progress report, April-September 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-05-01

    An assessment of needs was completed, and a five-year project plan was developed with input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work described in this report is organized according to the following WBS project elements: management and coordination; materials and processing (monolithics, ceramic composites, thermal and wear coatings, joining); materials design methodology (contact interfaces, newmore » concepts); data base and life prediction (time-dependent behavior, environmental effects, fracture mechanics, NDE development); and technology transfer. This report includes contributions from all currently active project participants.« less

  11. Robust intelligent flight control for hypersonic vehicles. Ph.D. Thesis - Massachusetts Inst. of Technology

    NASA Technical Reports Server (NTRS)

    Chamitoff, Gregory Errol

    1992-01-01

    Intelligent optimization methods are applied to the problem of real-time flight control for a class of airbreathing hypersonic vehicles (AHSV). The extreme flight conditions that will be encountered by single-stage-to-orbit vehicles, such as the National Aerospace Plane, present a tremendous challenge to the entire spectrum of aerospace technologies. Flight control for these vehicles is particularly difficult due to the combination of nonlinear dynamics, complex constraints, and parametric uncertainty. An approach that utilizes all available a priori and in-flight information to perform robust, real time, short-term trajectory planning is presented.

  12. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders

    NASA Astrophysics Data System (ADS)

    Meng, Deyuan; Tao, Guoliang; Zhu, Xiaocong

    2013-09-01

    This paper studies the precision motion trajectory tracking control of a pneumatic cylinder driven by a proportional-directional control valve. An integrated direct/indirect adaptive robust controller is proposed. The controller employs a physical model based indirect-type parameter estimation to obtain reliable estimates of unknown model parameters, and utilises a robust control method with dynamic compensation type fast adaptation to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Due to the use of projection mapping, the robust control law and the parameter adaption algorithm can be designed separately. Since the system model uncertainties are unmatched, the recursive backstepping technology is adopted to design the robust control law. Extensive comparative experimental results are presented to illustrate the effectiveness of the proposed controller and its performance robustness to parameter variations and sudden disturbances.

  13. University Roles in Technological Innovation in California. Research & Occasional Paper Series: CSHE.6.07

    ERIC Educational Resources Information Center

    King, C. Judson

    2007-01-01

    California has achieved considerable economic success through technological innovation and the formation of businesses based upon those technologies. This paper addresses some of the roles of universities in that success story. It starts with some measures of the contributions of innovation and a robust university structure to the California…

  14. Emerging electrochemical energy conversion and storage technologies

    NASA Astrophysics Data System (ADS)

    Badwal, Sukhvinder; Giddey, Sarbjit; Munnings, Christopher; Bhatt, Anand; Hollenkamp, Tony

    2014-09-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation and storage; pollution control / monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.

  15. Emerging electrochemical energy conversion and storage technologies

    PubMed Central

    Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898

  16. Technologies to Combat Aedes Mosquitoes: A Model Based on Smart City.

    PubMed

    de Souza Silva, Geovanna Cristine; Peltonen, Laura-Maria; Pruinelli, Lisiane; Yoshikazu Shishido, Henrique; Jacklin Eler, Gabrielle

    2018-01-01

    Aedes aegypti and Aedes albopictus mosquitoes are responsible for the transmission of diseases such as dengue fever, yellow fever, chikungunya fever, zika virus fever, some of which can cause irreversible central nervous system problems and death. This study investigates what technologies are being used for combatting and monitoring the Aedes mosquitoes and to propose joining these technologies into a single and complete solution using the Smart Cities concept. A search for newscasts on Google and mobile apps in app stores were performed to identify technological solutions for combat to Aedes mosquitoes. Also, a model for joint technology was proposed. Results identified the following technologies: 170 software, two sensors, two drones, one electronic device, ten mosquito traps/lures, seven biological tools, six biotechnologies, and eight chemical formulations. Technological resources and adoption of preventive measures by the population could be a useful method for the mosquito control. Examples include a georeferenced model for identification and examination of larvae, application of chemical/biological products, real-time mapping, sending of educational materials via email or social media for the population, and alerts to health professionals in the zones of combat/risk. In combination, these technologies may indicate a better solution to the current problem.

  17. Disruptive technology for vector control: the Innovative Vector Control Consortium and the US Military join forces to explore transformative insecticide application technology for mosquito control programmes.

    PubMed

    Knapp, Jennifer; Macdonald, Michael; Malone, David; Hamon, Nicholas; Richardson, Jason H

    2015-09-26

    Malaria vector control technology has remained largely static for decades and there is a pressing need for innovative control tools and methodology to radically improve the quality and efficiency of current vector control practices. This report summarizes a workshop jointly organized by the Innovative Vector Control Consortium (IVCC) and the Armed Forces Pest Management Board (AFPMB) focused on public health pesticide application technology. Three main topics were discussed: the limitations with current tools and techniques used for indoor residual spraying (IRS), technology innovation to improve efficacy of IRS programmes, and truly disruptive application technology beyond IRS. The group identified several opportunities to improve application technology to include: insuring all IRS programmes are using constant flow valves and erosion resistant tips; introducing compression sprayer improvements that help minimize pesticide waste and human error; and moving beyond IRS by embracing the potential for new larval source management techniques and next generation technology such as unmanned "smart" spray systems. The meeting served to lay the foundation for broader collaboration between the IVCC and AFPMB and partners in industry, the World Health Organization, the Bill and Melinda Gates Foundation and others.

  18. The joined wing - An overview. [aircraft tandem wings in diamond configurations

    NASA Technical Reports Server (NTRS)

    Wolkovitch, J.

    1985-01-01

    The joined wing is a new type of aircraft configuration which employs tandem wings arranged to form diamond shapes in plan view and front view. Wind-tunnel tests and finite-element structural analyses have shown that the joined wing provides the following advantages over a comparable wing-plus-tail system; lighter weight and higher stiffness, higher span-efficiency factor, higher trimmed maximum lift coefficient, lower wave drag, plus built-in direct lift and direct sideforce control capability. A summary is given of research performed on the joined wing. Calculated joined wing weights are correlated with geometric parameters to provide simple weight estimation methods. The results of low-speed and transonic wind-tunnel tests are summarized, and guidelines for design of joined-wing aircraft are given. Some example joined-wing designs are presented and related configurations having connected wings are reviewed.

  19. Dodging silver bullets: good CRISPR gene-drive design is critical for eradicating exotic vertebrates.

    PubMed

    Prowse, Thomas A A; Cassey, Phillip; Ross, Joshua V; Pfitzner, Chandran; Wittmann, Talia A; Thomas, Paul

    2017-08-16

    Self-replicating gene drives that can spread deleterious alleles through animal populations have been promoted as a much needed but controversial 'silver bullet' for controlling invasive alien species. Homing-based drives comprise an endonuclease and a guide RNA (gRNA) that are replicated during meiosis via homologous recombination. However, their efficacy for controlling wild populations is threatened by inherent polymorphic resistance and the creation of resistance alleles via non-homologous end-joining (NHEJ)-mediated DNA repair. We used stochastic individual-based models to identify realistic gene-drive strategies capable of eradicating vertebrate pest populations (mice, rats and rabbits) on islands. One popular strategy, a sex-reversing drive that converts heterozygous females into sterile males, failed to spread and required the ongoing deployment of gene-drive carriers to achieve eradication. Under alternative strategies, multiplexed gRNAs could overcome inherent polymorphic resistance and were required for eradication success even when the probability of NHEJ was low. Strategies causing homozygotic embryonic non-viability or homozygotic female sterility produced high probabilities of eradication and were robust to NHEJ-mediated deletion of the DNA sequence between multiplexed endonuclease recognition sites. The latter two strategies also purged the gene drive when eradication failed, therefore posing lower long-term risk should animals escape beyond target islands. Multiplexing gRNAs will be necessary if this technology is to be useful for insular extirpation attempts; however, precise knowledge of homing rates will be required to design low-risk gene drives with high probabilities of eradication success. © 2017 The Author(s).

  20. Enhanced Attitude Control Experiment for SSTI Lewis Spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, Peoman G.

    1997-01-01

    The enhanced attitude control system experiment is a technology demonstration experiment on the NASA's small spacecraft technology initiative program's Lewis spacecraft to evaluate advanced attitude control strategies. The purpose of the enhanced attitude control system experiment is to evaluate the feasibility of designing and implementing robust multi-input/multi-output attitude control strategies for enhanced pointing performance of spacecraft to improve the quality of the measurements of the science instruments. Different control design strategies based on modern and robust control theories are being considered for the enhanced attitude control system experiment. This paper describes the experiment as well as the design and synthesis of a mixed H(sub 2)/H(sub infinity) controller for attitude control. The control synthesis uses a nonlinear programming technique to tune the controller parameters and impose robustness and performance constraints. Simulations are carried out to demonstrate the feasibility of the proposed attitude control design strategy. Introduction

  1. Molecular engineering of chiral colloidal liquid crystals using DNA origami

    NASA Astrophysics Data System (ADS)

    Siavashpouri, Mahsa; Wachauf, Christian H.; Zakhary, Mark J.; Praetorius, Florian; Dietz, Hendrik; Dogic, Zvonimir

    2017-08-01

    Establishing precise control over the shape and the interactions of the microscopic building blocks is essential for design of macroscopic soft materials with novel structural, optical and mechanical properties. Here, we demonstrate robust assembly of DNA origami filaments into cholesteric liquid crystals, one-dimensional supramolecular twisted ribbons and two-dimensional colloidal membranes. The exquisite control afforded by the DNA origami technology establishes a quantitative relationship between the microscopic filament structure and the macroscopic cholesteric pitch. Furthermore, it also enables robust assembly of one-dimensional twisted ribbons, which behave as effective supramolecular polymers whose structure and elastic properties can be precisely tuned by controlling the geometry of the elemental building blocks. Our results demonstrate the potential synergy between DNA origami technology and colloidal science, in which the former allows for rapid and robust synthesis of complex particles, and the latter can be used to assemble such particles into bulk materials.

  2. Molecular engineering of chiral colloidal liquid crystals using DNA origami.

    PubMed

    Siavashpouri, Mahsa; Wachauf, Christian H; Zakhary, Mark J; Praetorius, Florian; Dietz, Hendrik; Dogic, Zvonimir

    2017-08-01

    Establishing precise control over the shape and the interactions of the microscopic building blocks is essential for design of macroscopic soft materials with novel structural, optical and mechanical properties. Here, we demonstrate robust assembly of DNA origami filaments into cholesteric liquid crystals, one-dimensional supramolecular twisted ribbons and two-dimensional colloidal membranes. The exquisite control afforded by the DNA origami technology establishes a quantitative relationship between the microscopic filament structure and the macroscopic cholesteric pitch. Furthermore, it also enables robust assembly of one-dimensional twisted ribbons, which behave as effective supramolecular polymers whose structure and elastic properties can be precisely tuned by controlling the geometry of the elemental building blocks. Our results demonstrate the potential synergy between DNA origami technology and colloidal science, in which the former allows for rapid and robust synthesis of complex particles, and the latter can be used to assemble such particles into bulk materials.

  3. Virtues, ecological momentary assessment/intervention and smartphone technology.

    PubMed

    Runyan, Jason D; Steinke, Ellen G

    2015-01-01

    Virtues, broadly understood as stable and robust dispositions for certain responses across morally relevant situations, have been a growing topic of interest in psychology. A central topic of discussion has been whether studies showing that situations can strongly influence our responses provide evidence against the existence of virtues (as a kind of stable and robust disposition). In this review, we examine reasons for thinking that the prevailing methods for examining situational influences are limited in their ability to test dispositional stability and robustness; or, then, whether virtues exist. We make the case that these limitations can be addressed by aggregating repeated, cross-situational assessments of environmental, psychological and physiological variables within everyday life-a form of assessment often called ecological momentary assessment (EMA, or experience sampling). We, then, examine how advances in smartphone application (app) technology, and their mass adoption, make these mobile devices an unprecedented vehicle for EMA and, thus, the psychological study of virtue. We, additionally, examine how smartphones might be used for virtue development by promoting changes in thought and behavior within daily life; a technique often called ecological momentary intervention (EMI). While EMA/I have become widely employed since the 1980s for the purposes of understanding and promoting change amongst clinical populations, few EMA/I studies have been devoted to understanding or promoting virtues within non-clinical populations. Further, most EMA/I studies have relied on journaling, PDAs, phone calls and/or text messaging systems. We explore how smartphone app technology provides a means of making EMA a more robust psychological method, EMI a more robust way of promoting positive change, and, as a result, opens up new possibilities for studying and promoting virtues.

  4. Virtues, ecological momentary assessment/intervention and smartphone technology

    PubMed Central

    Runyan, Jason D.; Steinke, Ellen G.

    2015-01-01

    Virtues, broadly understood as stable and robust dispositions for certain responses across morally relevant situations, have been a growing topic of interest in psychology. A central topic of discussion has been whether studies showing that situations can strongly influence our responses provide evidence against the existence of virtues (as a kind of stable and robust disposition). In this review, we examine reasons for thinking that the prevailing methods for examining situational influences are limited in their ability to test dispositional stability and robustness; or, then, whether virtues exist. We make the case that these limitations can be addressed by aggregating repeated, cross-situational assessments of environmental, psychological and physiological variables within everyday life—a form of assessment often called ecological momentary assessment (EMA, or experience sampling). We, then, examine how advances in smartphone application (app) technology, and their mass adoption, make these mobile devices an unprecedented vehicle for EMA and, thus, the psychological study of virtue. We, additionally, examine how smartphones might be used for virtue development by promoting changes in thought and behavior within daily life; a technique often called ecological momentary intervention (EMI). While EMA/I have become widely employed since the 1980s for the purposes of understanding and promoting change amongst clinical populations, few EMA/I studies have been devoted to understanding or promoting virtues within non-clinical populations. Further, most EMA/I studies have relied on journaling, PDAs, phone calls and/or text messaging systems. We explore how smartphone app technology provides a means of making EMA a more robust psychological method, EMI a more robust way of promoting positive change, and, as a result, opens up new possibilities for studying and promoting virtues. PMID:25999869

  5. Diffusion Bonding of Silicon Carbide Ceramics using Titanium Interlayers

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, James D.

    2006-01-01

    Robust joining approaches for silicon carbide ceramics are critically needed to fabricate leak free joints with high temperature mechanical capability. In this study, titanium foils and physical vapor deposited (PVD) titanium coatings were used to form diffusion bonds between SiC ceramics using hot pressing. Silicon carbide substrate materials used for bonding include sintered SiC and two types of CVD SiC. Microscopy results show the formation of well adhered diffusion bonds. The bond strengths as determined from pull tests are on the order of several ksi, which is much higher than required for a proposed application. Microprobe results show the distribution of silicon, carbon, titanium, and other minor elements across the diffusion bond. Compositions of several phases formed in the joint region were identified. Potential issues of material compatibility and optimal bond formation will also be discussed.

  6. If you cannot beat them, join them! Using Health 2.0 and popular Internet applications to improve information literacy.

    PubMed

    Spring, Hannah

    2011-06-01

    The popularity of Health 2.0 technologies has grown exponentially in recent years. They are increasingly being used to inform and support professional practice. This article discusses the use of the health facet of Web 2.0 applications by health professionals. In particular, it considers their value in the delivery of information literacy agendas by health librarians for health professionals. © 2011 The authors. Health Information and Libraries Journal © 2011 Health Libraries Group.

  7. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kita, Tomohiro, E-mail: tkita@ecei.tohoku.ac.jp; Tang, Rui; Yamada, Hirohito

    2015-03-16

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.

  8. Chemical Remediation of an Ordnance-Related Compound: The Alkaline Hydrolysis of CL-20. Environmental Quality Technology Program

    DTIC Science & Technology

    2007-09-01

    a higher crystal density, a higher heat of formation, and a better oxidizer- to-fuel ratio than conventional nitramines used in propellants. The...resembles two RDX rings joined at several carbon atoms (Larson et al. 2001). CL-20 is a polycyclic nitramine with a higher crystal density, a higher...Heilmann et al. 1996). Research performed on RDX indicates that its degradation in alkaline media was initiated by a single denitration step, which

  9. An Alternative Organizational Structure to Address the Technology Requirements in Health Science Library Information in the '80's

    PubMed Central

    Winant, Richard M.

    1983-01-01

    Virginia Commonwealth University's University Library Services offers through its organizational structure an opportunity for librarians to work directly with media experts. University Library Services envisions the future librarian as an information manager, information specialist, and teacher. In joining together Technical Services, Public Services, Collection Management, Special Collections, Learning Resource Centers, Media Production Center, AV Services, TV Services, Engineering and Telecommunications, the librarian is in an environment which gives the opportunity for growth and support by media expertise.

  10. Nonproliferation and Threat Reduction Assistance: U.S. Programs in the Former Soviet Union

    DTIC Science & Technology

    2007-02-23

    FY1996 and FY2002 in the former Soviet Union.67 The State Department also manages and funds the International Science and Technology Center ( ISTC ) in...Center ( ISTC ) in Moscow. Several other former Soviet states joined the center during the 1990s, and other nations, including Norway and South Korea...centers. The Moscow Center funded nearly 1,700 projects that engaged about 41,000 scientists. In 2001, the ISTC in Moscow supported more than 22,000

  11. Cost and Performance Report: Innovative Welding Technologies Using Silicon Additives to Control Hazardous Air Pollutant (HAP) Emissions

    DTIC Science & Technology

    2013-08-30

    turntable inside the hood to maintain a constant weld speed, while the ER308L stainless steel wire were fed by the welding gun. Figure 2. Fume chamber...size distribution, density and specific surface area of welding fumes from SMAW and GMAW mild- steel and stainless - steel consumables, American...shipyards. It uses mild or stainless steel filler material to join pieces of metal. The intense energy expended in the welding process results in the

  12. Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

  13. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    In some cases, the trail starts narrow and gets wider, as in this photo. Photo credit: NASA/GSFC/Leva McIntire/LPSA intern To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  14. Scaling of Fiber Laser Systems Based on Novel Components and High Power Capable Packaging and Joining Technologies

    DTIC Science & Technology

    2010-09-01

    l ri Laser Splicing / Welding r li i / l i Contact Bonding t t i Wafer Level Bonding Mineralic, Fusion . Anodic, Eutectic, Glass-frit, liquid...28-29 September 2010 SET-171 Mid-IR Fiber Laser Workshop partly sponsored by Tapering and splicing device as well as process control developed...Components Laser based splicing and tapering Multimode fiber (ø720µm) with spliced end cap (ø1500µm) © Fraunhofer IOF 28-29 September 2010 SET-171 Mid-IR

  15. Integrating an Intelligent Tutoring System for TAOs with Second Life

    DTIC Science & Technology

    2010-12-01

    SL) and interacts with a number of computer -controlled objects that take on the roles of the TAO’s teammates. TAOs rely on the same mechanism to...projects that utilize both game and simulation technology for training. He joined Stottler Henke in the fall of 2000 and holds a Ph.D. in computer science...including implementing tutors in multiuser worlds. He has been at Stottler Henke since 2005 and has a MS in computer science from Stanford University

  16. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    The rocks at Racetrack Playa in Death Valley, Calif., are famous. Photo credit: NASA/GSFC/Maggie McAdam To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  17. Field Guide: The Culture of the Chinese People’s Liberation Army

    DTIC Science & Technology

    2009-02-01

    technologies , and were knowledgeable on a wide range of subjects 44 Remedy: Add new officer accession paths. The PLA aspires to draw many more officer...needs only a few hundred thousand new conscripts. There are many ways of avoiding conscription; in the end, few people join the military who really...training are carried out as part of an annual cycle: • On November 1, potential conscripts report for screening. • By around February 1, new conscripts

  18. Gas Shielding Technology for Welding and Brazing

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur J.; Gradl, Paul R.

    2012-01-01

    Welding is a common method that allows two metallic materials to be joined together with high structural integrity. When joints need to be leak-tight, light-weight, or free of contaminant-trapping seams or surface asperities, welding tends to be specified. There are many welding techniques, each with its own advantages and disadvantages. Some of these techniques include Forge Welding, Gas Tungsten Arc Welding, Friction Stir Welding, and Laser Beam Welding to name a few. Whichever technique is used, the objective is a structural joint that meets the requirements of a particular component or assembly. A key practice in producing quality welds is the use of shielding gas. This article discusses various weld techniques, quality of the welds, and importance of shielding gas in each of those techniques. Metallic bonds, or joints, are produced when metals are put into intimate contact. In the solid-state "blacksmith welding" process, now called Forge Welding (FOW), the site to be joined is pounded into intimate contact. The surfaces to be joined usually need to be heated to make it easier to deform the metal. The surfaces are sprinkled with a flux to melt surface oxides and given a concave shape so that surface contamination can be squeezed out of the joint as the surfaces are pounded together; otherwise the surface contamination would be trapped in the joint and would weaken the weld. In solid-state welding processes surface oxides or other contamination are typically squeezed out of the joint in "flash."

  19. A Review on Inertia and Linear Friction Welding of Ni-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Chamanfar, Ahmad; Jahazi, Mohammad; Cormier, Jonathan

    2015-04-01

    Inertia and linear friction welding are being increasingly used for near-net-shape manufacturing of high-value materials in aerospace and power generation gas turbines because of providing a better quality joint and offering many advantages over conventional fusion welding and mechanical joining techniques. In this paper, the published works up-to-date on inertia and linear friction welding of Ni-based superalloys are reviewed with the objective to make clarifications on discrepancies and uncertainties reported in literature regarding issues related to these two friction welding processes as well as microstructure, texture, and mechanical properties of the Ni-based superalloy weldments. Initially, the chemical composition and microstructure of Ni-based superalloys that contribute to the quality of the joint are reviewed briefly. Then, problems related to fusion welding of these alloys are addressed with due consideration of inertia and linear friction welding as alternative techniques. The fundamentals of inertia and linear friction welding processes are analyzed next with emphasis on the bonding mechanisms and evolution of temperature and strain rate across the weld interface. Microstructural features, texture development, residual stresses, and mechanical properties of similar and dissimilar polycrystalline and single crystal Ni-based superalloy weldments are discussed next. Then, application of inertia and linear friction welding for joining Ni-based superalloys and related advantages over fusion welding, mechanical joining, and machining are explained briefly. Finally, present scientific and technological challenges facing inertia and linear friction welding of Ni-based superalloys including those related to modeling of these processes are addressed.

  20. Upgrading weld quality of a friction stir welded aluminum alloys AMG6

    NASA Astrophysics Data System (ADS)

    Chernykh, I. K.; Vasil'ev, E. V.; Matuzko, E. N.; Krivonos, E. V.

    2018-01-01

    In the course of introduction of FSW technology into the industry there is a keen interest in this process; there are issues such as how does joining take place, what is the structure of the joint, and where there are dangerous zones. The objective of this research is to obtain information about the structure of the joint, what are the temperatures that arise during the joining, what strength is apply to the tool when joining the material, what tensile strength of joint, and where fracture tended to occur. Specimens were produced at different modes of welding at a tool rotation speed of 315 to 625 rpm and tool travel speed of 40 to 125 mm/min. During the experiment, the strength applied to the tool was measured, which reached 800016000 N (Fz) and 400-1400 N (Fx) and the temperature on the surface of the tool, which is in the range 250-400°C. Before the welding process the tool was heated to a temperature in the range of 100-250 degrees, but the tensile strength is not had a tangible impact. The tensile strength is about 80 % of that of the aluminum alloy base metal tensile strength, and fracture tended is occur not at the line of joint but follow the shape of the tool. In the transverse cross section of a FSW material there is a microstructural regions such as weld nugget, thermomechanically affected zone and heat-affected zone with parent material.

  1. Scatterometry or imaging overlay: a comparative study

    NASA Astrophysics Data System (ADS)

    Hsu, Simon C. C.; Pai, Yuan Chi; Chen, Charlie; Yu, Chun Chi; Hsing, Henry; Wu, Hsing-Chien; Kuo, Kelly T. L.; Amir, Nuriel

    2015-03-01

    Most fabrication facilities today use imaging overlay measurement methods, as it has been the industry's reliable workhorse for decades. In the last few years, third-generation Scatterometry Overlay (SCOL™) or Diffraction Based Overlay (DBO-1) technology was developed, along another DBO technology (DBO-2). This development led to the question of where the DBO technology should be implemented for overlay measurements. Scatterometry has been adopted for high volume production in only few cases, always with imaging as a backup, but scatterometry overlay is considered by many as the technology of the future. In this paper we compare imaging overlay and DBO technologies by means of measurements and simulations. We outline issues and sensitivities for both technologies, providing guidelines for the best implementation of each. For several of the presented cases, data from two different DBO technologies are compared as well, the first with Pupil data access (DBO-1) and the other without pupil data access (DBO-2). Key indicators of overlay measurement quality include: layer coverage, accuracy, TMU, process robustness and robustness to process changes. Measurement data from real cases across the industry are compared and the conclusions are also backed by simulations. Accuracy is benchmarked with reference OVL, and self-consistency, showing good results for Imaging and DBO-1 technology. Process sensitivity and metrology robustness are mostly simulated with MTD (Metrology Target Designer) comparing the same process variations for both technologies. The experimental data presented in this study was done on ten advanced node layers and three production node layers, for all phases of the IC fabrication process (FEOL, MEOL and BEOL). The metrology tool used for most of the study is KLA-Tencor's Archer 500LCM system (scatterometry-based and imaging-based measurement technologies on the same tool) another type of tool is used for DBO-2 measurements. Finally, we conclude that both imaging overlay technology and DBO-1 technology are fully successful and have a valid roadmap for the next few design nodes, with some use cases better suited for one or the other measurement technologies. Having both imaging and DBO technology options available in parallel, allows Overlay Engineers a mix and match overlay measurement strategy, providing back up when encountering difficulties with one of the technologies and benefiting from the best of both technologies for every use case.

  2. Incorporating driver behaviors into connected and automated vehicle simulation.

    DOT National Transportation Integrated Search

    2016-05-24

    The adoption of connected vehicle (CV) technology is anticipated at various levels of development and deployment over the next decade. One primary challenge with these new technologies is the lack of platform to enable a robust and reliable evaluatio...

  3. Skill Development in Science and Technology Education for Sustainable Development in Nigeria

    ERIC Educational Resources Information Center

    Modebelu, M. N.; Ugwuanyi, S. A.

    2014-01-01

    This paper reviews skill development in science and technology education, which is of crucial importance for sustainable development in Nigeria. The relevant concepts are introduced and robust argumentation is made with respect to the context of Nigeria.

  4. Finite element thermal analysis for PMMA/st.st.304 laser direct joining

    NASA Astrophysics Data System (ADS)

    Hussein, Furat I.; Salloomi, Kareem N.; Akman, E.; Hajim, K. I.; Demir, A.

    2017-01-01

    This work is concerned with building a three-dimensional (3D) ab-initio models that is capable of predicting the thermal distribution of laser direct joining processes between Polymethylmethacrylate (PMMA) and stainless steel 304(st.st.304). ANSYS® simulation based on finite element analysis (FEA) was implemented for materials joining in two modes; laser transmission joining (LTJ) and conduction joining (CJ). ANSYS® simulator was used to explore the thermal environment of the joints during joining (heating time) and after joining (cooling time). For both modes, the investigation is carried out when the laser spot is at the middle of the joint width, at 15 mm from the commencement point (joint edge) at traveling time of 3.75 s. Process parameters involving peak power (Pp=3 kW), pulse duration (τ=5 ms), pulse repetition rate (PRR=20 Hz) and scanning speed (v=4 mm/s) are applied for both modes.

  5. Requirement for XLF/Cernunnos in alignment-based gap filling by DNA polymerases lambda and mu for nonhomologous end joining in human whole-cell extracts.

    PubMed

    Akopiants, Konstantin; Zhou, Rui-Zhe; Mohapatra, Susovan; Valerie, Kristoffer; Lees-Miller, Susan P; Lee, Kyung-Jong; Chen, David J; Revy, Patrick; de Villartay, Jean-Pierre; Povirk, Lawrence F

    2009-07-01

    XLF/Cernunnos is a core protein of the nonhomologous end-joining pathway of DNA double-strand break repair. To better define the role of Cernunnos in end joining, whole-cell extracts were prepared from Cernunnos-deficient human cells. These extracts effected little joining of DNA ends with cohesive 5' or 3' overhangs, and no joining at all of partially complementary 3' overhangs that required gap filling prior to ligation. Assays in which gap-filled but unligated intermediates were trapped using dideoxynucleotides revealed that there was no gap filling on aligned DSB ends in the Cernunnos-deficient extracts. Recombinant Cernunnos protein restored gap filling and end joining of partially complementary overhangs, and stimulated joining of cohesive ends more than twentyfold. XLF-dependent gap filling was nearly eliminated by immunodepletion of DNA polymerase lambda, but was restored by addition of either polymerase lambda or polymerase mu. Thus, Cernunnos is essential for gap filling by either polymerase during nonhomologous end joining, suggesting that it plays a major role in aligning the two DNA ends in the repair complex.

  6. A Modeling Approach for Plastic-Metal Laser Direct Joining

    NASA Astrophysics Data System (ADS)

    Lutey, Adrian H. A.; Fortunato, Alessandro; Ascari, Alessandro; Romoli, Luca

    2017-09-01

    Laser processing has been identified as a feasible approach to direct joining of metal and plastic components without the need for adhesives or mechanical fasteners. The present work sees development of a modeling approach for conduction and transmission laser direct joining of these materials based on multi-layer optical propagation theory and numerical heat flow simulation. The scope of this methodology is to predict process outcomes based on the calculated joint interface and upper surface temperatures. Three representative cases are considered for model verification, including conduction joining of PBT and aluminum alloy, transmission joining of optically transparent PET and stainless steel, and transmission joining of semi-transparent PA 66 and stainless steel. Conduction direct laser joining experiments are performed on black PBT and 6082 anticorodal aluminum alloy, achieving shear loads of over 2000 N with specimens of 2 mm thickness and 25 mm width. Comparison with simulation results shows that consistently high strength is achieved where the peak interface temperature is above the plastic degradation temperature. Comparison of transmission joining simulations and published experimental results confirms these findings and highlights the influence of plastic layer optical absorption on process feasibility.

  7. Empathy, theory of mind, and individual differences in the appropriation bias among 4- and 5-year-olds.

    PubMed

    Ford, Ruth M; Lobao, Sheila N; Macaulay, Catrin; Herdman, Lynsey M

    2011-12-01

    Evidence that young children often claim ownership of their partner's contributions to an earlier collaborative activity, the appropriation bias, has been attributed to shared intentionality (Cognitive Development (1998) 13, 91-108). The current investigation explored this notion by examining individual differences in the bias among 4- and 5-year-olds as a function of empathy and theory of mind. On two occasions, children joined an adult and two dolls (with each doll being operated by one of the humans) in a picture matching board game before being asked to remember who placed each picture. Children showed a robust appropriation bias despite excellent recognition memory for the studied pictures (Study 1) and particularly in relation to the human sources (Study 2). Whereas higher levels of self-reported empathy were associated with a greater frequency of appropriation errors and fewer correct attributions for pictures placed by the adult and her doll partner, the opposite pattern emerged for theory of mind. Moreover, the positive relations between theory of mind and source monitoring accuracy remained robust after controlling for general ability and inhibitory skills. We consider the implications of these findings for understanding the processes driving the appropriation bias. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Infrared transient-liquid-phase joining of SCS-6/ β21S titanium matrix composite

    NASA Astrophysics Data System (ADS)

    Blue, Craig A.; Sikka, Vinod K.; Blue, Randall A.; Lin, Ray Y.

    1996-12-01

    Fiber-reinforced titanium matrix composites (TMCs) are among the advanced materials being considered for use in the aerospace industry due to their light weight, high strength, and high modulus. A rapid infrared joining process has been developed for the joining of composites and advanced materials. Rapid infrared joining has been shown not to have many of the problems associated with conventional joining methods. Two models were utilized to predict the joint evolution and fiber reaction zone growth. Titanium matrix composite, 16-ply SCS-6/ β21S, has been successfully joined with total processing times of approximately 2 minutes, utilizing the rapid infrared joining technique. The process utilizes a 50 °C/s ramping rate, 17- µm Ti-15Cu-15Ni wt pct filler material between the faying surfaces; a joining temperature of 1100 °C; and 120 seconds of time to join the composite material. Joint shear-strength testing of the rapid infrared joints at temperatures as high as 800 °C has revealed no joint failures. Also, due to the rapid cooling of the process, no poststabilization of the matrix material is necessary to prevent the formation of a brittle omega phase during subsequent use of the TMC at intermediate temperatures, 270 °C to 430 °C, for up to 20 hours.

  9. A Robustness Testing Campaign for IMA-SP Partitioning Kernels

    NASA Astrophysics Data System (ADS)

    Grixti, Stephen; Lopez Trecastro, Jorge; Sammut, Nicholas; Zammit-Mangion, David

    2015-09-01

    With time and space partitioned architectures becoming increasingly appealing to the European space sector, the dependability of partitioning kernel technology is a key factor to its applicability in European Space Agency projects. This paper explores the potential of the data type fault model, which injects faults through the Application Program Interface, in partitioning kernel robustness testing. This fault injection methodology has been tailored to investigate its relevance in uncovering vulnerabilities within partitioning kernels and potentially contributing towards fault removal campaigns within this domain. This is demonstrated through a robustness testing case study of the XtratuM partitioning kernel for SPARC LEON3 processors. The robustness campaign exposed a number of vulnerabilities in XtratuM, exhibiting the potential benefits of using such a methodology for the robustness assessment of partitioning kernels.

  10. Reproductive performance of ewes grazing lucerne during different periods around mating.

    PubMed

    Robertson, S M; Clayton, E H; Friend, M A

    2015-11-01

    High intake of lucerne pastures or feeding of other high quality diets during early pregnancy may increase embryo mortality, negating any benefit of improved nutrition on ovulation rate in ewes. This study was conducted to determine whether grazing ewes on lucerne (Medicago sativa) pastures for 7 days prior to and throughout joining would result in greater foetal numbers than if ewes were removed 7 days after the commencement of joining, or if ewes grazed senescent pasture throughout the joining period. Merino ewes (300) were allocated to two replicates of three treatments, grazing pastures between Days -7 and 36 of an unsynchronised, natural autumn joining. Grazing lucerne to Day 7 of joining resulted in 30% more (P<0.05) foetuses per ewe than grazing senescent pasture (1.60±0.07 and 1.31±0.07, respectively), and 19% more lambs marked per ewe joined. Extending grazing of lucerne past Day 7 of joining did not result in additional foetuses per ewe (1.61±0.06) in comparison with only grazing lucerne to Day 7 of joining. Greater than 80% of ewes mated during the first 14 days of joining, and the proportions of ewes returning to oestrus and re-mating (0.18±0.022) and of non-pregnant (0.09±0.017) ewes were similar (P>0.05) among all treatment groups, suggesting no differences between treatments in embryo mortality. Grazing naturally cycling ewes on lucerne prior to and during joinings in autumn is recommended as a means to increase the number of lambs born, although additional gains may not be obtained by grazing past day seven of joining. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Assuring the U.S. Department of Defense a Strong Science, Technology, Engineering, and Mathematics (STEM) Workforce

    ERIC Educational Resources Information Center

    National Academies Press, 2012

    2012-01-01

    The ability of the nation's military to prevail during future conflicts, and to fulfill its humanitarian and other missions, depends on continued advances in the nation's technology base. A workforce with robust Science, Technology, Engineering and Mathematics (STEM) capabilities is critical to sustaining U.S. preeminence. Today, however, the STEM…

  12. In Brief: Suresh slated to head U.S. National Science Foundation

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-06-01

    U.S. president Barack Obama announced on 3 June his intent to nominate Subra Suresh as the next director of the U.S. National Science Foundation (NSF). Arden Bement, who served as NSF director since 2004, resigned earlier this year to lead Purdue University's Global Policy Research Institute, in West Lafayette, Indiana. Suresh is dean of the School of Engineering and the Vannevar Bush Professor of Engineering at Massachusetts Institute of Technology (MIT), Cambridge. Suresh joined MIT in 1993 as the R. P. Simmons Professor of Materials Science and Engineering. Since then, he has held joint faculty appointments in the departments of Mechanical Engineering and Biological Engineering, as well as the Division of Health Sciences and Technology. He previously was head of the university's Department of Materials Science and Engineering. Suresh has a B.S. from the Indian Institute of Technology, Madras, India; an M.S. from Iowa State University of Science and Technology, Ames; and a Sc.D. from MIT.

  13. Rhenium Rocket Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center's On-Board Propulsion Branch has a research and technology program to develop high-temperature (2200 C), iridium-coated rhenium rocket chamber materials for radiation-cooled rockets in satellite propulsion systems. Although successful material demonstrations have gained much industry interest, acceptance of the technology has been hindered by a lack of demonstrated joining technologies and a sparse materials property data base. To alleviate these concerns, we fabricated rhenium to C-103 alloy joints by three methods: explosive bonding, diffusion bonding, and brazing. The joints were tested by simulating their incorporation into a structure by welding and by simulating high-temperature operation. Test results show that the shear strength of the joints degrades with welding and elevated temperature operation but that it is adequate for the application. Rhenium is known to form brittle intermetallics with a number of elements, and this phenomena is suspected to cause the strength degradation. Further bonding tests with a tantalum diffusion barrier between the rhenium and C-103 is planned to prevent the formation of brittle intermetallics.

  14. Progress update of NASA's free-piston Stirling space power converter technology project

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald

    1992-01-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.

  15. Thermoplastic Joining and Assembly of Bulk Metallic Glass Composites Through Capacitive Discharge

    NASA Technical Reports Server (NTRS)

    Roberts, Scott N. (Inventor); Schramm, Joseph P. (Inventor); Hofmann, Douglas C. (Inventor); Johnson, William L. (Inventor); Kozachkov, Henry (Inventor); Demetriou, Marios D. (Inventor)

    2015-01-01

    Systems and methods for joining BMG Composites are disclosed. Specifically, the joining of BMG Composites is implemented so as to preserve the amorphicity of their matrix phase and the microstructure of their particulate phase. Implementation of the joining method with respect to the construction of modular cellular structures that comprise BMG Composites is also discussed.

  16. Analysis of Tyman green detection system based on polarization interference

    NASA Astrophysics Data System (ADS)

    Huang, Yaolin; Wang, Min; Shao, Xiaoping; Kou, Yuanfeng

    2018-02-01

    The optical surface deviation of the lens can directly affect the quality of the optical system.In order to effectively and accurately detect the surface shape, an optical surface on-line detection system based on polarization interference technology is designed and developed. The system is based on Tyman-Green interference optical path, join the polarization interference measuring technology. Based on the theoretical derivation of the optical path and the ZEMAX software simulation, the experimental optical path is constructed. The parallel light is used to detect the concave lens. The parallel light is used as the light source, the size of the polarization splitting prism, detection radius of curvature, the relations between and among the size of the lens aperture, a detection range is given.

  17. Targeted Gene Knock Out Using Nuclease-Assisted Vector Integration: Hemi- and Homozygous Deletion of JAG1.

    PubMed

    Gapinske, Michael; Tague, Nathan; Winter, Jackson; Underhill, Gregory H; Perez-Pinera, Pablo

    2018-01-01

    Gene editing technologies are revolutionizing fields such as biomedicine and biotechnology by providing a simple means to manipulate the genetic makeup of essentially any organism. Gene editing tools function by introducing double-stranded breaks at targeted sites within the genome, which the host cells repair preferentially by Non-Homologous End Joining. While the technologies to introduce double-stranded breaks have been extensively optimized, this progress has not been matched by the development of methods to integrate heterologous DNA at the target sites or techniques to detect and isolate cells that harbor the desired modification. We present here a technique for rapid introduction of vectors at target sites in the genome that enables efficient isolation of successfully edited cells.

  18. Toroid Joining Gun. [thermoplastic welding system using induction heating

    NASA Technical Reports Server (NTRS)

    Buckley, J. D.; Fox, R. L.; Swaim, R J.

    1985-01-01

    The Toroid Joining Gun is a low cost, self-contained, portable low powered (100-400 watts) thermoplastic welding system developed at Langley Research Center for joining plastic and composite parts using an induction heating technique. The device developed for use in the fabrication of large space sructures (LSST Program) can be used in any atmosphere or in a vacuum. Components can be joined in situ, whether on earth or on a space platform. The expanded application of this welding gun is in the joining of thermoplastic composites, thermosetting composites, metals, and combinations of these materials. Its low-power requirements, light weight, rapid response, low cost, portability, and effective joining make it a candidate for solving many varied and unique bonding tasks.

  19. Technology in International Admissions

    ERIC Educational Resources Information Center

    White, Elizabeth

    2012-01-01

    In a relatively short time, technology applications have become an essential feature of the admissions business. They make the jobs of international admissions professionals easier in many ways, allowing for more robust communication with applicants and counselors, a streamlined application process, and quicker access to information about…

  20. Mycotoxin analysis using imprinted materials technology: Recent developments

    USDA-ARS?s Scientific Manuscript database

    Molecular imprinting technology is an attractive, cost effective, and robust alternative to address the limitations of highly selective natural receptors, such as antibodies and aptamers. The field of molecular imprinting has seen a recent surge in growth with several commercially available products...

  1. Wide-area technologies and services in the Trans-Pacific High Data Rate (HDR) satellite communications experiments

    NASA Technical Reports Server (NTRS)

    Hsu, E.; Hung, C.; Kadowaki, N.; Yoshimura, N.; Takahashi, T.; Shopbell, P.; Walker, G.; Wellnitz, D.; Gary, P.; Clark, G.; hide

    2000-01-01

    This paper describes the technologies and services used in the experiments and demonstrations using the Trans-Pacific high data rate satellite communications infrastructure, and how the environment tasked protocol adaptability, scalability, efficiency, interoperability, and robustness.

  2. Patients' perspectives in health technology assessment: a route to robust evidence and fair deliberation.

    PubMed

    Facey, Karen; Boivin, Antoine; Gracia, Javier; Hansen, Helle Ploug; Lo Scalzo, Alessandra; Mossman, Jean; Single, Ann

    2010-07-01

    There is increasing emphasis on providing patient-focused health care and ensuring patient involvement in the design of health services. As health technology assessment (HTA) is meant to be a multidisciplinary, wide-ranging policy analysis that informs decision making, it would be expected that patients' views should be incorporated into the assessment. However, HTA is still driven by collection of quantitative evidence to determine the clinical and cost effectiveness of a health technology. Patients' perspectives about their illness and the technology are rarely included, perhaps because they are seen as anecdotal, biased views. There are two distinct but complementary ways in which HTAs can be strengthened by: (i) gathering robust evidence about the patients' perspectives, and (ii) ensuring effective engagement of patients in the HTA process from scoping, through evidence gathering, assessment of value, development of recommendations and dissemination of findings. Robust evidence eliciting patients' perspectives can be obtained through social science research that is well conducted, critically appraised and carefully reported, either through meta-synthesis of existing studies or new primary research. Engagement with patients can occur at several levels and we propose that HTA should seek to support effective patient participation to create a fair deliberative process. This should allow two-way flow of information, so that the views of patients are obtained in a supportive way and fed into decision-making processes in a transparent manner.

  3. Colors Identification for Blind People using Cell Phone

    NASA Astrophysics Data System (ADS)

    Dominguez, A. L.; Graffigna, J. P.

    2011-12-01

    Assistive Technology (AT) is an interdisciplinary research area that allows finding solutions to the individual with disability [1] by easing or improving the functions or the skills for accomplishing daily activities. A technology can be considered "assistive" if it is fit for the needs, skills and capabilities of the person, taking into account mainly the intended activity and the limitations of the context and environs where the person performs such activity. The current work intends to solve the problems of vision impaired persons to recognize colors. To this aim, a Java application for cell phones has been made which lets complement the mobiles' technology with that of image processing. The means to obtain the colors from a view are based on analysing the different color models join to a mechanism to reduce the collected data. This paper describes preliminary experiences, methodology and results considering the user perception.

  4. Archaic man meets a marvellous automaton: posthumanism, social robots, archetypes.

    PubMed

    Jones, Raya

    2017-06-01

    Posthumanism is associated with critical explorations of how new technologies are rewriting our understanding of what it means to be human and how they might alter human existence itself. Intersections with analytical psychology vary depending on which technologies are held in focus. Social robotics promises to populate everyday settings with entities that have populated the imagination for millennia. A legend of A Marvellous Automaton appears as early as 350 B.C. in a book of Taoist teachings, and is joined by ancient and medieval legends of manmade humanoids coming to life, as well as the familiar robots of modern science fiction. However, while the robotics industry seems to be realizing an archetypal fantasy, the technology creates new social realities that generate distinctive issues of potential relevance for the theory and practice of analytical psychology. © 2017, The Society of Analytical Psychology.

  5. Robust Speaker Authentication Based on Combined Speech and Voiceprint Recognition

    NASA Astrophysics Data System (ADS)

    Malcangi, Mario

    2009-08-01

    Personal authentication is becoming increasingly important in many applications that have to protect proprietary data. Passwords and personal identification numbers (PINs) prove not to be robust enough to ensure that unauthorized people do not use them. Biometric authentication technology may offer a secure, convenient, accurate solution but sometimes fails due to its intrinsically fuzzy nature. This research aims to demonstrate that combining two basic speech processing methods, voiceprint identification and speech recognition, can provide a very high degree of robustness, especially if fuzzy decision logic is used.

  6. Laser microjoining of dissimilar and biocompatible materials

    NASA Astrophysics Data System (ADS)

    Bauer, Ingo; Russek, Ulrich A.; Herfurth, Hans J.; Witte, Reiner; Heinemann, Stefan; Newaz, Golam; Mian, A.; Georgiev, D.; Auner, Gregory W.

    2004-07-01

    Micro-joining and hermetic sealing of dissimilar and biocompatible materials is a critical issue for a broad spectrum of products such as micro-electronics, micro-optical and biomedical products and devices. Today, biocompatible titanium is widely applied as a material for orthopedic implants as well as for the encapsulation of implantable devices such as pacemakers, defibrillators, and neural stimulator devices. Laser joining is the process of choice to hermetically seal such devices. Laser joining is a contact-free process, therefore minimizing mechanical load on the parts to be joined and the controlled heat input decreases the potential for thermal damage to the highly sensitive components. Laser joining also offers flexibility, shorter processing time and higher quality. However, novel biomedical products, in particular implantable microsystems currently under development, pose new challenges to the assembly and packaging process based on the higher level of integration, the small size of the device's features, and the type of materials and material combinations. In addition to metals, devices will also include glass, ceramic and polymers as biocompatible building materials that must be reliably joined in similar and dissimilar combinations. Since adhesives often lack long-term stability or do not meet biocompatibility requirements, new joining techniques are needed to address these joining challenges. Localized laser joining provides promising developments in this area. This paper describes the latest achievements in micro-joining of metallic and non-metallic materials with laser radiation. The focus is on material combinations of metal-polymer, polymer-glass, metal-glass and metal-ceramic using CO2, Nd:YAG and diode laser radiation. The potential for applications in the biomedical sector will be demonstrated.

  7. Present and future trends of laser materials processing in Japan

    NASA Astrophysics Data System (ADS)

    Matsunawa, Akira

    1991-10-01

    Lasers quickly penetrated into Japanese industries in the mid-80s. The paper reviews the present situation of industrial lasers and their applications in Japanese industries for materials removal, joining, and some surface modification technologies as well as their economical evaluation compared with competitive technologies. Laser cutting of metallic and nonmetallic thin sheets is widely prevalent even in small scale industries as a flexible manufacturing tool. As for the laser welding is concerned, industrial applications are rather limited in mass production lines. This mainly comes from the fact that the present laser technologies have not employed the adaptive control because of the lack of sensors, monitoring, and control systems which can tolerate the high-precision and high-speed processing. In spite of this situation, laser welding is rapidly increasing in recent years in industries such as automotive, machinery, electric/electronic, steel, heavy industries, etc. Laser surface modification technologies have attracted significant interest from industrial people, but actual application is very limited today. However, the number of R&D papers is increasing year by year. The paper also reviews these new technology trends in Japan.

  8. 26 CFR 1.168(d)-1 - Applicable conventions-half-year and mid-quarter conventions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... return year (i.e., July 1). (iv) In the case of a corporation that joins or leaves a consolidated group... placed in service by the joining or leaving member in the taxable year before it joins or after it leaves... test for the consolidated return year. If a corporation leaves a consolidated group and joins another...

  9. Robust quantum network architectures and topologies for entanglement distribution

    NASA Astrophysics Data System (ADS)

    Das, Siddhartha; Khatri, Sumeet; Dowling, Jonathan P.

    2018-01-01

    Entanglement distribution is a prerequisite for several important quantum information processing and computing tasks, such as quantum teleportation, quantum key distribution, and distributed quantum computing. In this work, we focus on two-dimensional quantum networks based on optical quantum technologies using dual-rail photonic qubits for the building of a fail-safe quantum internet. We lay out a quantum network architecture for entanglement distribution between distant parties using a Bravais lattice topology, with the technological constraint that quantum repeaters equipped with quantum memories are not easily accessible. We provide a robust protocol for simultaneous entanglement distribution between two distant groups of parties on this network. We also discuss a memory-based quantum network architecture that can be implemented on networks with an arbitrary topology. We examine networks with bow-tie lattice and Archimedean lattice topologies and use percolation theory to quantify the robustness of the networks. In particular, we provide figures of merit on the loss parameter of the optical medium that depend only on the topology of the network and quantify the robustness of the network against intermittent photon loss and intermittent failure of nodes. These figures of merit can be used to compare the robustness of different network topologies in order to determine the best topology in a given real-world scenario, which is critical in the realization of the quantum internet.

  10. Robust Rate Maximization for Heterogeneous Wireless Networks under Channel Uncertainties

    PubMed Central

    Xu, Yongjun; Hu, Yuan; Li, Guoquan

    2018-01-01

    Heterogeneous wireless networks are a promising technology in next generation wireless communication networks, which has been shown to efficiently reduce the blind area of mobile communication and improve network coverage compared with the traditional wireless communication networks. In this paper, a robust power allocation problem for a two-tier heterogeneous wireless networks is formulated based on orthogonal frequency-division multiplexing technology. Under the consideration of imperfect channel state information (CSI), the robust sum-rate maximization problem is built while avoiding sever cross-tier interference to macrocell user and maintaining the minimum rate requirement of each femtocell user. To be practical, both of channel estimation errors from the femtocells to the macrocell and link uncertainties of each femtocell user are simultaneously considered in terms of outage probabilities of users. The optimization problem is analyzed under no CSI feedback with some cumulative distribution function and partial CSI with Gaussian distribution of channel estimation error. The robust optimization problem is converted into the convex optimization problem which is solved by using Lagrange dual theory and subgradient algorithm. Simulation results demonstrate the effectiveness of the proposed algorithm by the impact of channel uncertainties on the system performance. PMID:29466315

  11. New local joining technique for metal materials using exothermic heat of Al/Ni multilayer powder

    NASA Astrophysics Data System (ADS)

    Izumi, Taisei; Kametani, Nagamasa; Miyake, Shugo; Kanetsuki, Shunsuke; Namazu, Takahiro

    2018-06-01

    The use of Al/Ni multilayer powders as a new heat source has been expected for metal joining technique owing to their instantaneous reaction and enormous amount of exothermic heat. In this study, the effects of the amount of Al/Ni multilayer powders on the electrical and mechanical properties of the joining part of Al strip specimens were examined. These electrical and mechanical properties were estimated by electric resistivity measurement using the four-terminal method and shear test, respectively. Experimental results show that Al specimens are successful joined under a limited condition and exhibit low electrical resistance and sufficiently high strength to maintain the joined state. However, overheating increases the amount of Al/Ni multilayer powder in the joined part, which causes considerable damage such as voids and dissolved loss. It is found that optimization of the amount of Al/Ni multilayer powder enables us to realize reliable joining of Al foils in electronics fields in the future.

  12. CFRTP and stainless steel laser joining: Thermal defects analysis and joining parameters optimization

    NASA Astrophysics Data System (ADS)

    Jiao, Junke; Xu, Zifa; Wang, Qiang; Sheng, Liyuan; Zhang, Wenwu

    2018-07-01

    Experiments with different joining parameters were carried out on fiber laser welding system to explore the mechanism of CFRTP/stainless steel joining and the influence of the parameters on the joining quality. The thermal defect and the microstructure of the joint was tested by SEM, EDS. The joint strength and the thermal defect zone width was measured by the tensile tester and the laser confocal microscope, respectively. The influence of parameters such as the laser power, the joining speed and the clamper pressure on the stainless steel surface thermal defect and the joint strength was analyzed. The result showed that the thermal defect on the stainless steel surface would change metal's mechanical properties and reduce its service life. A chemical bonding was found between the CFRTP and the stainless steel besides the physical bonding and the mechanical bonding. The highest shear stress was obtained as the laser power, the joining speed and the clamper pressure is 280 W, 4 mm/s and 0.15 MPa, respectively.

  13. Linear Friction Welding of Dissimilar Materials 316L Stainless Steel to Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Wanjara, P.; Naik, B. S.; Yang, Q.; Cao, X.; Gholipour, J.; Chen, D. L.

    2018-02-01

    In the nuclear industry, there are a number of applications where the transition of stainless steel to Zircaloy is of technological importance. However, due to the differences in their properties there are considerable challenges associated with developing a joining process that will sufficiently limit the heat input and welding time—so as to minimize the extent of interaction at the joint interface and the resulting formation of intermetallic compounds—but still render a functional metallurgical bond between these two alloys. As such, linear friction welding, a solid-state joining technology, was selected in the present study to assess the feasibility of welding 316L stainless steel to Zircaloy-4. The dissimilar alloy welds were examined to evaluate their microstructural characteristics, microhardness evolution across the joint interface, static tensile properties, and fatigue behavior. Microstructural observations revealed a central intermixed region and, on the Zircaloy-4 side, dynamically recrystallized and thermomechanically affected zones were present. By contrast, deformation on the 316L stainless steel side was limited. In the intermixed region a drastic change in the composition was observed along with a local increase in hardness, which was attributed to the presence of intermetallic compounds, such as FeZr3 and Cr2Zr. The average yield (316 MPa) and ultimate tensile (421 MPa) strengths met the minimum strength properties of Zircaloy-4, but the elongation was relatively low ( 2 pct). The tensile and fatigue fracture of the welds always occurred at the interface in the mode of partial cohesive failure.

  14. Three Dimensional Numerical Simulation and Characterization of Crack Growth in the Weld Region of a Friction Stir Welded Structure

    NASA Technical Reports Server (NTRS)

    Seshadri, Banavara R.; Smith, Stephen W.; Newman, John A.

    2013-01-01

    Friction stir welding (FSW) fabrication technology is being adopted in aerospace applications. The use of this technology can reduce production cost, lead-times, reduce structural weight and need for fasteners and lap joints, which are typically the primary locations of crack initiation and multi-site fatigue damage in aerospace structures. FSW is a solid state welding process that is well-suited for joining aluminum alloy components; however, the process introduces residual stresses (both tensile and compressive) in joined components. The propagation of fatigue cracks in a residual stress field and the resulting redistribution of the residual stress field and its effect on crack closure have to be estimated. To insure the safe insertion of complex integral structures, an accurate understanding of the fatigue crack growth behavior and the complex crack path process must be understood. A life prediction methodology for fatigue crack growth through the weld under the influence of residual stresses in aluminum alloy structures fabricated using FSW will be detailed. The effects and significance of the magnitude of residual stress at a crack tip on the estimated crack tip driving force are highlighted. The location of the crack tip relative to the FSW and the effect of microstructure on fatigue crack growth are considered. A damage tolerant life prediction methodology accounting for microstructural variation in the weld zone and residual stress field will lead to the design of lighter and more reliable aerospace structures

  15. Application of Statistics in Engineering Technology Programs

    ERIC Educational Resources Information Center

    Zhan, Wei; Fink, Rainer; Fang, Alex

    2010-01-01

    Statistics is a critical tool for robustness analysis, measurement system error analysis, test data analysis, probabilistic risk assessment, and many other fields in the engineering world. Traditionally, however, statistics is not extensively used in undergraduate engineering technology (ET) programs, resulting in a major disconnect from industry…

  16. Joining of aluminum sheet and glass fiber reinforced polymer using extruded pins

    NASA Astrophysics Data System (ADS)

    Conte, Romina; Buhl, Johannes; Ambrogio, Giuseppina; Bambach, Markus

    2018-05-01

    The present contribution proposes a new approach for joining sheet metal and fiber reinforced composites. The joining process draws upon a Friction Stir Forming (FSF) process, which is performed on the metal sheet to produce slender pins. These pins are used to pierce through the composite. Joining is complete by forming a locking head out of the part if the pin sticks out of the composite. Pins of different diameters and lengths were produced from EN AW-1050 material, which were joined to glass fiber reinforced polyamide-6. The strength of the joint has been experimentally tested in order to understand the effect of the process temperature on the pins strength and therefore on the joining. The results demonstrate the feasibility of this new technique, which uses no excess material.

  17. Welding and Joining of Titanium Aluminides

    PubMed Central

    Cao, Jian; Qi, Junlei; Song, Xiaoguo; Feng, Jicai

    2014-01-01

    Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials. PMID:28788113

  18. CALL from an Ecological Perspective: How a Teacher Perceives Affordance and Fosters Learner Agency in a Technology-Mediated Language Classroom

    ERIC Educational Resources Information Center

    Liu, Qian; Chao, Chin-Chi

    2018-01-01

    The possibility of exploiting technology for more robust and meaningful learning and teaching has invoked messianic responses from the language education community. Yet to be explored are teachers' pedagogical choices based on the perceived technological affordances as well as interactions between teacher and student agency mediated by these…

  19. Advanced space propulsion concepts

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1993-01-01

    The NASA Lewis Research Center has been actively involved in the evaluation and development of advanced spacecraft propulsion. Recent program elements have included high energy density propellants, electrode less plasma thruster concepts, and low power laser propulsion technology. A robust advanced technology program is necessary to develop new, cost-effective methods of spacecraft propulsion, and to continue to push the boundaries of human knowledge and technology.

  20. The interface between forensic science and technology: how technology could cause a paradigm shift in the role of forensic institutes in the criminal justice system

    PubMed Central

    Kloosterman, Ate; Mapes, Anna; Geradts, Zeno; van Eijk, Erwin; Koper, Carola; van den Berg, Jorrit; Verheij, Saskia; van der Steen, Marcel; van Asten, Arian

    2015-01-01

    In this paper, the importance of modern technology in forensic investigations is discussed. Recent technological developments are creating new possibilities to perform robust scientific measurements and studies outside the controlled laboratory environment. The benefits of real-time, on-site forensic investigations are manifold and such technology has the potential to strongly increase the speed and efficacy of the criminal justice system. However, such benefits are only realized when quality can be guaranteed at all times and findings can be used as forensic evidence in court. At the Netherlands Forensic Institute, innovation efforts are currently undertaken to develop integrated forensic platform solutions that allow for the forensic investigation of human biological traces, the chemical identification of illicit drugs and the study of large amounts of digital evidence. These platforms enable field investigations, yield robust and validated evidence and allow for forensic intelligence and targeted use of expert capacity at the forensic institutes. This technological revolution in forensic science could ultimately lead to a paradigm shift in which a new role of the forensic expert emerges as developer and custodian of integrated forensic platforms. PMID:26101289

Top