Superresolution SAR Imaging Algorithm Based on Mvm and Weighted Norm Extrapolation
NASA Astrophysics Data System (ADS)
Zhang, P.; Chen, Q.; Li, Z.; Tang, Z.; Liu, J.; Zhao, L.
2013-08-01
In this paper, we present an extrapolation approach, which uses minimum weighted norm constraint and minimum variance spectrum estimation, for improving synthetic aperture radar (SAR) resolution. Minimum variance method is a robust high resolution method to estimate spectrum. Based on the theory of SAR imaging, the signal model of SAR imagery is analyzed to be feasible for using data extrapolation methods to improve the resolution of SAR image. The method is used to extrapolate the efficient bandwidth in phase history field and better results are obtained compared with adaptive weighted norm extrapolation (AWNE) method and traditional imaging method using simulated data and actual measured data.
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter
Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Gu, Chengfan
2018-01-01
This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation. PMID:29415509
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter.
Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan
2018-02-06
This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.
Approximate sample size formulas for the two-sample trimmed mean test with unequal variances.
Luh, Wei-Ming; Guo, Jiin-Huarng
2007-05-01
Yuen's two-sample trimmed mean test statistic is one of the most robust methods to apply when variances are heterogeneous. The present study develops formulas for the sample size required for the test. The formulas are applicable for the cases of unequal variances, non-normality and unequal sample sizes. Given the specified alpha and the power (1-beta), the minimum sample size needed by the proposed formulas under various conditions is less than is given by the conventional formulas. Moreover, given a specified size of sample calculated by the proposed formulas, simulation results show that Yuen's test can achieve statistical power which is generally superior to that of the approximate t test. A numerical example is provided.
Mixed model approaches for diallel analysis based on a bio-model.
Zhu, J; Weir, B S
1996-12-01
A MINQUE(1) procedure, which is minimum norm quadratic unbiased estimation (MINQUE) method with 1 for all the prior values, is suggested for estimating variance and covariance components in a bio-model for diallel crosses. Unbiasedness and efficiency of estimation were compared for MINQUE(1), restricted maximum likelihood (REML) and MINQUE theta which has parameter values for the prior values. MINQUE(1) is almost as efficient as MINQUE theta for unbiased estimation of genetic variance and covariance components. The bio-model is efficient and robust for estimating variance and covariance components for maternal and paternal effects as well as for nuclear effects. A procedure of adjusted unbiased prediction (AUP) is proposed for predicting random genetic effects in the bio-model. The jack-knife procedure is suggested for estimation of sampling variances of estimated variance and covariance components and of predicted genetic effects. Worked examples are given for estimation of variance and covariance components and for prediction of genetic merits.
On the robustness of a Bayes estimate. [in reliability theory
NASA Technical Reports Server (NTRS)
Canavos, G. C.
1974-01-01
This paper examines the robustness of a Bayes estimator with respect to the assigned prior distribution. A Bayesian analysis for a stochastic scale parameter of a Weibull failure model is summarized in which the natural conjugate is assigned as the prior distribution of the random parameter. The sensitivity analysis is carried out by the Monte Carlo method in which, although an inverted gamma is the assigned prior, realizations are generated using distribution functions of varying shape. For several distributional forms and even for some fixed values of the parameter, simulated mean squared errors of Bayes and minimum variance unbiased estimators are determined and compared. Results indicate that the Bayes estimator remains squared-error superior and appears to be largely robust to the form of the assigned prior distribution.
A Robust Statistics Approach to Minimum Variance Portfolio Optimization
NASA Astrophysics Data System (ADS)
Yang, Liusha; Couillet, Romain; McKay, Matthew R.
2015-12-01
We study the design of portfolios under a minimum risk criterion. The performance of the optimized portfolio relies on the accuracy of the estimated covariance matrix of the portfolio asset returns. For large portfolios, the number of available market returns is often of similar order to the number of assets, so that the sample covariance matrix performs poorly as a covariance estimator. Additionally, financial market data often contain outliers which, if not correctly handled, may further corrupt the covariance estimation. We address these shortcomings by studying the performance of a hybrid covariance matrix estimator based on Tyler's robust M-estimator and on Ledoit-Wolf's shrinkage estimator while assuming samples with heavy-tailed distribution. Employing recent results from random matrix theory, we develop a consistent estimator of (a scaled version of) the realized portfolio risk, which is minimized by optimizing online the shrinkage intensity. Our portfolio optimization method is shown via simulations to outperform existing methods both for synthetic and real market data.
NASA Astrophysics Data System (ADS)
Chebbi, A.; Bargaoui, Z. K.; da Conceição Cunha, M.
2012-12-01
Based on rainfall intensity-duration-frequency (IDF) curves, a robust optimization approach is proposed to identify the best locations to install new rain gauges. The advantage of robust optimization is that the resulting design solutions yield networks which behave acceptably under hydrological variability. Robust optimisation can overcome the problem of selecting representative rainfall events when building the optimization process. This paper reports an original approach based on Montana IDF model parameters. The latter are assumed to be geostatistical variables and their spatial interdependence is taken into account through the adoption of cross-variograms in the kriging process. The problem of optimally locating a fixed number of new monitoring stations based on an existing rain gauge network is addressed. The objective function is based on the mean spatial kriging variance and rainfall variogram structure using a variance-reduction method. Hydrological variability was taken into account by considering and implementing several return periods to define the robust objective function. Variance minimization is performed using a simulated annealing algorithm. In addition, knowledge of the time horizon is needed for the computation of the robust objective function. A short and a long term horizon were studied, and optimal networks are identified for each. The method developed is applied to north Tunisia (area = 21 000 km2). Data inputs for the variogram analysis were IDF curves provided by the hydrological bureau and available for 14 tipping bucket type rain gauges. The recording period was from 1962 to 2001, depending on the station. The study concerns an imaginary network augmentation based on the network configuration in 1973, which is a very significant year in Tunisia because there was an exceptional regional flood event in March 1973. This network consisted of 13 stations and did not meet World Meteorological Organization (WMO) recommendations for the minimum spatial density. So, it is proposed to virtually augment it by 25, 50, 100 and 160% which is the rate that would meet WMO requirements. Results suggest that for a given augmentation robust networks remain stable overall for the two time horizons.
NASA Astrophysics Data System (ADS)
Chebbi, A.; Bargaoui, Z. K.; da Conceição Cunha, M.
2013-10-01
Based on rainfall intensity-duration-frequency (IDF) curves, fitted in several locations of a given area, a robust optimization approach is proposed to identify the best locations to install new rain gauges. The advantage of robust optimization is that the resulting design solutions yield networks which behave acceptably under hydrological variability. Robust optimization can overcome the problem of selecting representative rainfall events when building the optimization process. This paper reports an original approach based on Montana IDF model parameters. The latter are assumed to be geostatistical variables, and their spatial interdependence is taken into account through the adoption of cross-variograms in the kriging process. The problem of optimally locating a fixed number of new monitoring stations based on an existing rain gauge network is addressed. The objective function is based on the mean spatial kriging variance and rainfall variogram structure using a variance-reduction method. Hydrological variability was taken into account by considering and implementing several return periods to define the robust objective function. Variance minimization is performed using a simulated annealing algorithm. In addition, knowledge of the time horizon is needed for the computation of the robust objective function. A short- and a long-term horizon were studied, and optimal networks are identified for each. The method developed is applied to north Tunisia (area = 21 000 km2). Data inputs for the variogram analysis were IDF curves provided by the hydrological bureau and available for 14 tipping bucket type rain gauges. The recording period was from 1962 to 2001, depending on the station. The study concerns an imaginary network augmentation based on the network configuration in 1973, which is a very significant year in Tunisia because there was an exceptional regional flood event in March 1973. This network consisted of 13 stations and did not meet World Meteorological Organization (WMO) recommendations for the minimum spatial density. Therefore, it is proposed to augment it by 25, 50, 100 and 160% virtually, which is the rate that would meet WMO requirements. Results suggest that for a given augmentation robust networks remain stable overall for the two time horizons.
NASA Astrophysics Data System (ADS)
Zhou, Xiangrong; Kano, Takuya; Cai, Yunliang; Li, Shuo; Zhou, Xinxin; Hara, Takeshi; Yokoyama, Ryujiro; Fujita, Hiroshi
2016-03-01
This paper describes a brand new automatic segmentation method for quantifying volume and density of mammary gland regions on non-contrast CT images. The proposed method uses two processing steps: (1) breast region localization, and (2) breast region decomposition to accomplish a robust mammary gland segmentation task on CT images. The first step detects two minimum bounding boxes of left and right breast regions, respectively, based on a machine-learning approach that adapts to a large variance of the breast appearances on different age levels. The second step divides the whole breast region in each side into mammary gland, fat tissue, and other regions by using spectral clustering technique that focuses on intra-region similarities of each patient and aims to overcome the image variance caused by different scan-parameters. The whole approach is designed as a simple structure with very minimum number of parameters to gain a superior robustness and computational efficiency for real clinical setting. We applied this approach to a dataset of 300 CT scans, which are sampled with the equal number from 30 to 50 years-old-women. Comparing to human annotations, the proposed approach can measure volume and quantify distributions of the CT numbers of mammary gland regions successfully. The experimental results demonstrated that the proposed approach achieves results consistent with manual annotations. Through our proposed framework, an efficient and effective low cost clinical screening scheme may be easily implemented to predict breast cancer risk, especially on those already acquired scans.
Prediction of episodic acidification in North-eastern USA: An empirical/mechanistic approach
Davies, T.D.; Tranter, M.; Wigington, P.J.; Eshleman, K.N.; Peters, N.E.; Van Sickle, J.; DeWalle, David R.; Murdoch, Peter S.
1999-01-01
Observations from the US Environmental Protection Agency's Episodic Response Project (ERP) in the North-eastern United States are used to develop an empirical/mechanistic scheme for prediction of the minimum values of acid neutralizing capacity (ANC) during episodes. An acidification episode is defined as a hydrological event during which ANC decreases. The pre-episode ANC is used to index the antecedent condition, and the stream flow increase reflects how much the relative contributions of sources of waters change during the episode. As much as 92% of the total variation in the minimum ANC in individual catchments can be explained (with levels of explanation >70% for nine of the 13 streams) by a multiple linear regression model that includes pre-episode ANC and change in discharge as independent variable. The predictive scheme is demonstrated to be regionally robust, with the regional variance explained ranging from 77 to 83%. The scheme is not successful for each ERP stream, and reasons are suggested for the individual failures. The potential for applying the predictive scheme to other watersheds is demonstrated by testing the model with data from the Panola Mountain Research Watershed in the South-eastern United States, where the variance explained by the model was 74%. The model can also be utilized to assess 'chemically new' and 'chemically old' water sources during acidification episodes.Observations from the US Environmental Protection Agency's Episodic Response Project (ERP) in the Northeastern United States are used to develop an empirical/mechanistic scheme for prediction of the minimum values of acid neutralizing capacity (ANC) during episodes. An acidification episode is defined as a hydrological event during which ANC decreases. The pre-episode ANC is used to index the antecedent condition, and the stream flow increase reflects how much the relative contributions of sources of waters change during the episode. As much as 92% of the total variation in the minimum ANC in individual catchments can be explained (with levels of explanation >70% for nine of the 13 streams) by a multiple linear regression model that includes pre-episode ANC and change in discharge as independent variables. The predictive scheme is demonstrated to be regionally robust, with the regional variance explained ranging from 77 to 83%. The scheme is not successful for each ERP stream, and reasons are suggested for the individual failures. The potential for applying the predictive scheme to other watersheds is demonstrated by testing the model with data from the Panola Mountain Research Watershed in the South-eastern United States, where the variance explained by the model was 74%. The model can also be utilized to assess `chemically new' and `chemically old' water sources during acidification episodes.
Robust design of a 2-DOF GMV controller: a direct self-tuning and fuzzy scheduling approach.
Silveira, Antonio S; Rodríguez, Jaime E N; Coelho, Antonio A R
2012-01-01
This paper presents a study on self-tuning control strategies with generalized minimum variance control in a fixed two degree of freedom structure-or simply GMV2DOF-within two adaptive perspectives. One, from the process model point of view, using a recursive least squares estimator algorithm for direct self-tuning design, and another, using a Mamdani fuzzy GMV2DOF parameters scheduling technique based on analytical and physical interpretations from robustness analysis of the system. Both strategies are assessed by simulation and real plants experimentation environments composed of a damped pendulum and an under development wind tunnel from the Department of Automation and Systems of the Federal University of Santa Catarina. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Tanner-Smith, Emily E; Tipton, Elizabeth
2014-03-01
Methodologists have recently proposed robust variance estimation as one way to handle dependent effect sizes in meta-analysis. Software macros for robust variance estimation in meta-analysis are currently available for Stata (StataCorp LP, College Station, TX, USA) and spss (IBM, Armonk, NY, USA), yet there is little guidance for authors regarding the practical application and implementation of those macros. This paper provides a brief tutorial on the implementation of the Stata and spss macros and discusses practical issues meta-analysts should consider when estimating meta-regression models with robust variance estimates. Two example databases are used in the tutorial to illustrate the use of meta-analysis with robust variance estimates. Copyright © 2013 John Wiley & Sons, Ltd.
Darzi, Soodabeh; Tiong, Sieh Kiong; Tariqul Islam, Mohammad; Rezai Soleymanpour, Hassan; Kibria, Salehin
2016-01-01
An experience oriented-convergence improved gravitational search algorithm (ECGSA) based on two new modifications, searching through the best experiments and using of a dynamic gravitational damping coefficient (α), is introduced in this paper. ECGSA saves its best fitness function evaluations and uses those as the agents' positions in searching process. In this way, the optimal found trajectories are retained and the search starts from these trajectories, which allow the algorithm to avoid the local optimums. Also, the agents can move faster in search space to obtain better exploration during the first stage of the searching process and they can converge rapidly to the optimal solution at the final stage of the search process by means of the proposed dynamic gravitational damping coefficient. The performance of ECGSA has been evaluated by applying it to eight standard benchmark functions along with six complicated composite test functions. It is also applied to adaptive beamforming problem as a practical issue to improve the weight vectors computed by minimum variance distortionless response (MVDR) beamforming technique. The results of implementation of the proposed algorithm are compared with some well-known heuristic methods and verified the proposed method in both reaching to optimal solutions and robustness.
Robust linear discriminant analysis with distance based estimators
NASA Astrophysics Data System (ADS)
Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Ali, Hazlina
2017-11-01
Linear discriminant analysis (LDA) is one of the supervised classification techniques concerning relationship between a categorical variable and a set of continuous variables. The main objective of LDA is to create a function to distinguish between populations and allocating future observations to previously defined populations. Under the assumptions of normality and homoscedasticity, the LDA yields optimal linear discriminant rule (LDR) between two or more groups. However, the optimality of LDA highly relies on the sample mean and pooled sample covariance matrix which are known to be sensitive to outliers. To alleviate these conflicts, a new robust LDA using distance based estimators known as minimum variance vector (MVV) has been proposed in this study. The MVV estimators were used to substitute the classical sample mean and classical sample covariance to form a robust linear discriminant rule (RLDR). Simulation and real data study were conducted to examine on the performance of the proposed RLDR measured in terms of misclassification error rates. The computational result showed that the proposed RLDR is better than the classical LDR and was comparable with the existing robust LDR.
ERIC Educational Resources Information Center
Tanner-Smith, Emily E.; Tipton, Elizabeth
2014-01-01
Methodologists have recently proposed robust variance estimation as one way to handle dependent effect sizes in meta-analysis. Software macros for robust variance estimation in meta-analysis are currently available for Stata (StataCorp LP, College Station, TX, USA) and SPSS (IBM, Armonk, NY, USA), yet there is little guidance for authors regarding…
van Breukelen, Gerard J P; Candel, Math J J M
2018-06-10
Cluster randomized trials evaluate the effect of a treatment on persons nested within clusters, where treatment is randomly assigned to clusters. Current equations for the optimal sample size at the cluster and person level assume that the outcome variances and/or the study costs are known and homogeneous between treatment arms. This paper presents efficient yet robust designs for cluster randomized trials with treatment-dependent costs and treatment-dependent unknown variances, and compares these with 2 practical designs. First, the maximin design (MMD) is derived, which maximizes the minimum efficiency (minimizes the maximum sampling variance) of the treatment effect estimator over a range of treatment-to-control variance ratios. The MMD is then compared with the optimal design for homogeneous variances and costs (balanced design), and with that for homogeneous variances and treatment-dependent costs (cost-considered design). The results show that the balanced design is the MMD if the treatment-to control cost ratio is the same at both design levels (cluster, person) and within the range for the treatment-to-control variance ratio. It still is highly efficient and better than the cost-considered design if the cost ratio is within the range for the squared variance ratio. Outside that range, the cost-considered design is better and highly efficient, but it is not the MMD. An example shows sample size calculation for the MMD, and the computer code (SPSS and R) is provided as supplementary material. The MMD is recommended for trial planning if the study costs are treatment-dependent and homogeneity of variances cannot be assumed. © 2018 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Darzi, Soodabeh; Tiong, Sieh Kiong; Tariqul Islam, Mohammad; Rezai Soleymanpour, Hassan; Kibria, Salehin
2016-01-01
An experience oriented-convergence improved gravitational search algorithm (ECGSA) based on two new modifications, searching through the best experiments and using of a dynamic gravitational damping coefficient (α), is introduced in this paper. ECGSA saves its best fitness function evaluations and uses those as the agents’ positions in searching process. In this way, the optimal found trajectories are retained and the search starts from these trajectories, which allow the algorithm to avoid the local optimums. Also, the agents can move faster in search space to obtain better exploration during the first stage of the searching process and they can converge rapidly to the optimal solution at the final stage of the search process by means of the proposed dynamic gravitational damping coefficient. The performance of ECGSA has been evaluated by applying it to eight standard benchmark functions along with six complicated composite test functions. It is also applied to adaptive beamforming problem as a practical issue to improve the weight vectors computed by minimum variance distortionless response (MVDR) beamforming technique. The results of implementation of the proposed algorithm are compared with some well-known heuristic methods and verified the proposed method in both reaching to optimal solutions and robustness. PMID:27399904
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-14
... for drought-based temporary variance of the reservoir elevations and minimum flow releases at the Dead... temporary variance to the reservoir elevation and minimum flow requirements at the Hoist Development. The...: (1) Releasing a minimum flow of 75 cubic feet per second (cfs) from the Hoist Reservoir, instead of...
The Variance of Solar Wind Magnetic Fluctuations: Solutions and Further Puzzles
NASA Technical Reports Server (NTRS)
Roberts, D. A.; Goldstein, M. L.
2006-01-01
We study the dependence of the variance directions of the magnetic field in the solar wind as a function of scale, radial distance, and Alfvenicity. The study resolves the question of why different studies have arrived at widely differing values for the maximum to minimum power (approximately equal to 3:1 up to approximately equal to 20:1). This is due to the decreasing anisotropy with increasing time interval chosen for the variance, and is a direct result of the "spherical polarization" of the waves which follows from the near constancy of |B|. The reason for the magnitude preserving evolution is still unresolved. Moreover, while the long-known tendency for the minimum variance to lie along the mean field also follows from this view (as shown by Barnes many years ago), there is no theory for why the minimum variance follows the field direction as the Parker angle changes. We show that this turning is quite generally true in Alfvenic regions over a wide range of heliocentric distances. The fact that nonAlfvenic regions, while still showing strong power anisotropies, tend to have a much broader range of angles between the minimum variance and the mean field makes it unlikely that the cause of the variance turning is to be found in a turbulence mechanism. There are no obvious alternative mechanisms, leaving us with another intriguing puzzle.
Minimum variance geographic sampling
NASA Technical Reports Server (NTRS)
Terrell, G. R. (Principal Investigator)
1980-01-01
Resource inventories require samples with geographical scatter, sometimes not as widely spaced as would be hoped. A simple model of correlation over distances is used to create a minimum variance unbiased estimate population means. The fitting procedure is illustrated from data used to estimate Missouri corn acreage.
ERIC Educational Resources Information Center
Fan, Weihua; Hancock, Gregory R.
2012-01-01
This study proposes robust means modeling (RMM) approaches for hypothesis testing of mean differences for between-subjects designs in order to control the biasing effects of nonnormality and variance inequality. Drawing from structural equation modeling (SEM), the RMM approaches make no assumption of variance homogeneity and employ robust…
Signal-dependent noise determines motor planning
NASA Astrophysics Data System (ADS)
Harris, Christopher M.; Wolpert, Daniel M.
1998-08-01
When we make saccadic eye movements or goal-directed arm movements, there is an infinite number of possible trajectories that the eye or arm could take to reach the target,. However, humans show highly stereotyped trajectories in which velocity profiles of both the eye and hand are smooth and symmetric for brief movements,. Here we present a unifying theory of eye and arm movements based on the single physiological assumption that the neural control signals are corrupted by noise whose variance increases with the size of the control signal. We propose that in the presence of such signal-dependent noise, the shape of a trajectory is selected to minimize the variance of the final eye or arm position. This minimum-variance theory accurately predicts the trajectories of both saccades and arm movements and the speed-accuracy trade-off described by Fitt's law. These profiles are robust to changes in the dynamics of the eye or arm, as found empirically,. Moreover, the relation between path curvature and hand velocity during drawing movements reproduces the empirical `two-thirds power law',. This theory provides a simple and powerful unifying perspective for both eye and arm movement control.
A note on variance estimation in random effects meta-regression.
Sidik, Kurex; Jonkman, Jeffrey N
2005-01-01
For random effects meta-regression inference, variance estimation for the parameter estimates is discussed. Because estimated weights are used for meta-regression analysis in practice, the assumed or estimated covariance matrix used in meta-regression is not strictly correct, due to possible errors in estimating the weights. Therefore, this note investigates the use of a robust variance estimation approach for obtaining variances of the parameter estimates in random effects meta-regression inference. This method treats the assumed covariance matrix of the effect measure variables as a working covariance matrix. Using an example of meta-analysis data from clinical trials of a vaccine, the robust variance estimation approach is illustrated in comparison with two other methods of variance estimation. A simulation study is presented, comparing the three methods of variance estimation in terms of bias and coverage probability. We find that, despite the seeming suitability of the robust estimator for random effects meta-regression, the improved variance estimator of Knapp and Hartung (2003) yields the best performance among the three estimators, and thus may provide the best protection against errors in the estimated weights.
Robust human machine interface based on head movements applied to assistive robotics.
Perez, Elisa; López, Natalia; Orosco, Eugenio; Soria, Carlos; Mut, Vicente; Freire-Bastos, Teodiano
2013-01-01
This paper presents an interface that uses two different sensing techniques and combines both results through a fusion process to obtain the minimum-variance estimator of the orientation of the user's head. Sensing techniques of the interface are based on an inertial sensor and artificial vision. The orientation of the user's head is used to steer the navigation of a robotic wheelchair. Also, a control algorithm for assistive technology system is presented. The system is evaluated by four individuals with severe motors disability and a quantitative index was developed, in order to objectively evaluate the performance. The results obtained are promising since most users could perform the proposed tasks with the robotic wheelchair.
Robust Human Machine Interface Based on Head Movements Applied to Assistive Robotics
Perez, Elisa; López, Natalia; Orosco, Eugenio; Soria, Carlos; Mut, Vicente; Freire-Bastos, Teodiano
2013-01-01
This paper presents an interface that uses two different sensing techniques and combines both results through a fusion process to obtain the minimum-variance estimator of the orientation of the user's head. Sensing techniques of the interface are based on an inertial sensor and artificial vision. The orientation of the user's head is used to steer the navigation of a robotic wheelchair. Also, a control algorithm for assistive technology system is presented. The system is evaluated by four individuals with severe motors disability and a quantitative index was developed, in order to objectively evaluate the performance. The results obtained are promising since most users could perform the proposed tasks with the robotic wheelchair. PMID:24453877
Schnitzer, Mireille E.; Lok, Judith J.; Gruber, Susan
2015-01-01
This paper investigates the appropriateness of the integration of flexible propensity score modeling (nonparametric or machine learning approaches) in semiparametric models for the estimation of a causal quantity, such as the mean outcome under treatment. We begin with an overview of some of the issues involved in knowledge-based and statistical variable selection in causal inference and the potential pitfalls of automated selection based on the fit of the propensity score. Using a simple example, we directly show the consequences of adjusting for pure causes of the exposure when using inverse probability of treatment weighting (IPTW). Such variables are likely to be selected when using a naive approach to model selection for the propensity score. We describe how the method of Collaborative Targeted minimum loss-based estimation (C-TMLE; van der Laan and Gruber, 2010) capitalizes on the collaborative double robustness property of semiparametric efficient estimators to select covariates for the propensity score based on the error in the conditional outcome model. Finally, we compare several approaches to automated variable selection in low-and high-dimensional settings through a simulation study. From this simulation study, we conclude that using IPTW with flexible prediction for the propensity score can result in inferior estimation, while Targeted minimum loss-based estimation and C-TMLE may benefit from flexible prediction and remain robust to the presence of variables that are highly correlated with treatment. However, in our study, standard influence function-based methods for the variance underestimated the standard errors, resulting in poor coverage under certain data-generating scenarios. PMID:26226129
Schnitzer, Mireille E; Lok, Judith J; Gruber, Susan
2016-05-01
This paper investigates the appropriateness of the integration of flexible propensity score modeling (nonparametric or machine learning approaches) in semiparametric models for the estimation of a causal quantity, such as the mean outcome under treatment. We begin with an overview of some of the issues involved in knowledge-based and statistical variable selection in causal inference and the potential pitfalls of automated selection based on the fit of the propensity score. Using a simple example, we directly show the consequences of adjusting for pure causes of the exposure when using inverse probability of treatment weighting (IPTW). Such variables are likely to be selected when using a naive approach to model selection for the propensity score. We describe how the method of Collaborative Targeted minimum loss-based estimation (C-TMLE; van der Laan and Gruber, 2010 [27]) capitalizes on the collaborative double robustness property of semiparametric efficient estimators to select covariates for the propensity score based on the error in the conditional outcome model. Finally, we compare several approaches to automated variable selection in low- and high-dimensional settings through a simulation study. From this simulation study, we conclude that using IPTW with flexible prediction for the propensity score can result in inferior estimation, while Targeted minimum loss-based estimation and C-TMLE may benefit from flexible prediction and remain robust to the presence of variables that are highly correlated with treatment. However, in our study, standard influence function-based methods for the variance underestimated the standard errors, resulting in poor coverage under certain data-generating scenarios.
A two-step sensitivity analysis for hydrological signatures in Jinhua River Basin, East China
NASA Astrophysics Data System (ADS)
Pan, S.; Fu, G.; Chiang, Y. M.; Xu, Y. P.
2016-12-01
Owing to model complexity and large number of parameters, calibration and sensitivity analysis are difficult processes for distributed hydrological models. In this study, a two-step sensitivity analysis approach is proposed for analyzing the hydrological signatures in Jinhua River Basin, East China, using the Distributed Hydrology-Soil-Vegetation Model (DHSVM). A rough sensitivity analysis is firstly conducted to obtain preliminary influential parameters via Analysis of Variance. The number of parameters was greatly reduced from eighteen-three to sixteen. Afterwards, the sixteen parameters are further analyzed based on a variance-based global sensitivity analysis, i.e., Sobol's sensitivity analysis method, to achieve robust sensitivity rankings and parameter contributions. Parallel-Computing is applied to reduce computational burden in variance-based sensitivity analysis. The results reveal that only a few number of model parameters are significantly sensitive, including rain LAI multiplier, lateral conductivity, porosity, field capacity, wilting point of clay loam, understory monthly LAI, understory minimum resistance and root zone depths of croplands. Finally several hydrological signatures are used for investigating the performance of DHSVM. Results show that high value of efficiency criteria didn't indicate excellent performance of hydrological signatures. For most samples from Sobol's sensitivity analysis, water yield was simulated very well. However, lowest and maximum annual daily runoffs were underestimated. Most of seven-day minimum runoffs were overestimated. Nevertheless, good performances of the three signatures above still exist in a number of samples. Analysis of peak flow shows that small and medium floods are simulated perfectly while slight underestimations happen to large floods. The work in this study helps to further multi-objective calibration of DHSVM model and indicates where to improve the reliability and credibility of model simulation.
Robust versus consistent variance estimators in marginal structural Cox models.
Enders, Dirk; Engel, Susanne; Linder, Roland; Pigeot, Iris
2018-06-11
In survival analyses, inverse-probability-of-treatment (IPT) and inverse-probability-of-censoring (IPC) weighted estimators of parameters in marginal structural Cox models are often used to estimate treatment effects in the presence of time-dependent confounding and censoring. In most applications, a robust variance estimator of the IPT and IPC weighted estimator is calculated leading to conservative confidence intervals. This estimator assumes that the weights are known rather than estimated from the data. Although a consistent estimator of the asymptotic variance of the IPT and IPC weighted estimator is generally available, applications and thus information on the performance of the consistent estimator are lacking. Reasons might be a cumbersome implementation in statistical software, which is further complicated by missing details on the variance formula. In this paper, we therefore provide a detailed derivation of the variance of the asymptotic distribution of the IPT and IPC weighted estimator and explicitly state the necessary terms to calculate a consistent estimator of this variance. We compare the performance of the robust and consistent variance estimators in an application based on routine health care data and in a simulation study. The simulation reveals no substantial differences between the 2 estimators in medium and large data sets with no unmeasured confounding, but the consistent variance estimator performs poorly in small samples or under unmeasured confounding, if the number of confounders is large. We thus conclude that the robust estimator is more appropriate for all practical purposes. Copyright © 2018 John Wiley & Sons, Ltd.
A Fast and Robust Beamspace Adaptive Beamformer for Medical Ultrasound Imaging.
Mohades Deylami, Ali; Mohammadzadeh Asl, Babak
2017-06-01
Minimum variance beamformer (MVB) increases the resolution and contrast of medical ultrasound imaging compared with nonadaptive beamformers. These advantages come at the expense of high computational complexity that prevents this adaptive beamformer to be applied in a real-time imaging system. A new beamspace (BS) based on discrete cosine transform is proposed in which the medical ultrasound signals can be represented with less dimensions compared with the standard BS. This is because of symmetric beampattern of the beams in the proposed BS compared with the asymmetric ones in the standard BS. This lets us decrease the dimensions of data to two, so a high complex algorithm, such as the MVB, can be applied faster in this BS. The results indicated that by keeping only two beams, the MVB in the proposed BS provides very similar resolution and also better contrast compared with the standard MVB (SMVB) with only 0.44% of needed flops. Also, this beamformer is more robust against sound speed estimation errors than the SMVB.
Portfolio optimization with mean-variance model
NASA Astrophysics Data System (ADS)
Hoe, Lam Weng; Siew, Lam Weng
2016-06-01
Investors wish to achieve the target rate of return at the minimum level of risk in their investment. Portfolio optimization is an investment strategy that can be used to minimize the portfolio risk and can achieve the target rate of return. The mean-variance model has been proposed in portfolio optimization. The mean-variance model is an optimization model that aims to minimize the portfolio risk which is the portfolio variance. The objective of this study is to construct the optimal portfolio using the mean-variance model. The data of this study consists of weekly returns of 20 component stocks of FTSE Bursa Malaysia Kuala Lumpur Composite Index (FBMKLCI). The results of this study show that the portfolio composition of the stocks is different. Moreover, investors can get the return at minimum level of risk with the constructed optimal mean-variance portfolio.
Zeng, Xing; Chen, Cheng; Wang, Yuanyuan
2012-12-01
In this paper, a new beamformer which combines the eigenspace-based minimum variance (ESBMV) beamformer with the Wiener postfilter is proposed for medical ultrasound imaging. The primary goal of this work is to further improve the medical ultrasound imaging quality on the basis of the ESBMV beamformer. In this method, we optimize the ESBMV weights with a Wiener postfilter. With the optimization of the Wiener postfilter, the output power of the new beamformer becomes closer to the actual signal power at the imaging point than the ESBMV beamformer. Different from the ordinary Wiener postfilter, the output signal and noise power needed in calculating the Wiener postfilter are estimated respectively by the orthogonal signal subspace and noise subspace constructed from the eigenstructure of the sample covariance matrix. We demonstrate the performance of the new beamformer when resolving point scatterers and cyst phantom using both simulated data and experimental data and compare it with the delay-and-sum (DAS), the minimum variance (MV) and the ESBMV beamformer. We use the full width at half maximum (FWHM) and the peak-side-lobe level (PSL) to quantify the performance of imaging resolution and the contrast ratio (CR) to quantify the performance of imaging contrast. The FWHM of the new beamformer is only 15%, 50% and 50% of those of the DAS, MV and ESBMV beamformer, while the PSL is 127.2dB, 115dB and 60dB lower. What is more, an improvement of 239.8%, 232.5% and 32.9% in CR using simulated data and an improvement of 814%, 1410.7% and 86.7% in CR using experimental data are achieved compared to the DAS, MV and ESBMV beamformer respectively. In addition, the effect of the sound speed error is investigated by artificially overestimating the speed used in calculating the propagation delay and the results show that the new beamformer provides better robustness against the sound speed errors. Therefore, the proposed beamformer offers a better performance than the DAS, MV and ESBMV beamformer, showing its potential in medical ultrasound imaging. Copyright © 2012 Elsevier B.V. All rights reserved.
Using Robust Variance Estimation to Combine Multiple Regression Estimates with Meta-Analysis
ERIC Educational Resources Information Center
Williams, Ryan
2013-01-01
The purpose of this study was to explore the use of robust variance estimation for combining commonly specified multiple regression models and for combining sample-dependent focal slope estimates from diversely specified models. The proposed estimator obviates traditionally required information about the covariance structure of the dependent…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-07
... drought-based temporary variance of the Martin Project rule curve and minimum flow releases at the Yates... requesting a drought- based temporary variance to the Martin Project rule curve. The rule curve variance...
Manju, Md Abu; Candel, Math J J M; Berger, Martijn P F
2014-07-10
In this paper, the optimal sample sizes at the cluster and person levels for each of two treatment arms are obtained for cluster randomized trials where the cost-effectiveness of treatments on a continuous scale is studied. The optimal sample sizes maximize the efficiency or power for a given budget or minimize the budget for a given efficiency or power. Optimal sample sizes require information on the intra-cluster correlations (ICCs) for effects and costs, the correlations between costs and effects at individual and cluster levels, the ratio of the variance of effects translated into costs to the variance of the costs (the variance ratio), sampling and measuring costs, and the budget. When planning, a study information on the model parameters usually is not available. To overcome this local optimality problem, the current paper also presents maximin sample sizes. The maximin sample sizes turn out to be rather robust against misspecifying the correlation between costs and effects at the cluster and individual levels but may lose much efficiency when misspecifying the variance ratio. The robustness of the maximin sample sizes against misspecifying the ICCs depends on the variance ratio. The maximin sample sizes are robust under misspecification of the ICC for costs for realistic values of the variance ratio greater than one but not robust under misspecification of the ICC for effects. Finally, we show how to calculate optimal or maximin sample sizes that yield sufficient power for a test on the cost-effectiveness of an intervention.
NASA Astrophysics Data System (ADS)
Chen, Sang; Hoffmann, Sharon S.; Lund, David C.; Cobb, Kim M.; Emile-Geay, Julien; Adkins, Jess F.
2016-05-01
The El Niño-Southern Oscillation (ENSO) is the primary driver of interannual climate variability in the tropics and subtropics. Despite substantial progress in understanding ocean-atmosphere feedbacks that drive ENSO today, relatively little is known about its behavior on centennial and longer timescales. Paleoclimate records from lakes, corals, molluscs and deep-sea sediments generally suggest that ENSO variability was weaker during the mid-Holocene (4-6 kyr BP) than the late Holocene (0-4 kyr BP). However, discrepancies amongst the records preclude a clear timeline of Holocene ENSO evolution and therefore the attribution of ENSO variability to specific climate forcing mechanisms. Here we present δ18 O results from a U-Th dated speleothem in Malaysian Borneo sampled at sub-annual resolution. The δ18 O of Borneo rainfall is a robust proxy of regional convective intensity and precipitation amount, both of which are directly influenced by ENSO activity. Our estimates of stalagmite δ18 O variance at ENSO periods (2-7 yr) show a significant reduction in interannual variability during the mid-Holocene (3240-3380 and 5160-5230 yr BP) relative to both the late Holocene (2390-2590 yr BP) and early Holocene (6590-6730 yr BP). The Borneo results are therefore inconsistent with lacustrine records of ENSO from the eastern equatorial Pacific that show little or no ENSO variance during the early Holocene. Instead, our results support coral, mollusc and foraminiferal records from the central and eastern equatorial Pacific that show a mid-Holocene minimum in ENSO variance. Reduced mid-Holocene interannual δ18 O variability in Borneo coincides with an overall minimum in mean δ18 O from 3.5 to 5.5 kyr BP. Persistent warm pool convection would tend to enhance the Walker circulation during the mid-Holocene, which likely contributed to reduced ENSO variance during this period. This finding implies that both convective intensity and interannual variability in Borneo are driven by coupled air-sea dynamics that are sensitive to precessional insolation forcing. Isolating the exact mechanisms that drive long-term ENSO evolution will require additional high-resolution paleoclimatic reconstructions and further investigation of Holocene tropical climate evolution using coupled climate models.
An improved method for bivariate meta-analysis when within-study correlations are unknown.
Hong, Chuan; D Riley, Richard; Chen, Yong
2018-03-01
Multivariate meta-analysis, which jointly analyzes multiple and possibly correlated outcomes in a single analysis, is becoming increasingly popular in recent years. An attractive feature of the multivariate meta-analysis is its ability to account for the dependence between multiple estimates from the same study. However, standard inference procedures for multivariate meta-analysis require the knowledge of within-study correlations, which are usually unavailable. This limits standard inference approaches in practice. Riley et al proposed a working model and an overall synthesis correlation parameter to account for the marginal correlation between outcomes, where the only data needed are those required for a separate univariate random-effects meta-analysis. As within-study correlations are not required, the Riley method is applicable to a wide variety of evidence synthesis situations. However, the standard variance estimator of the Riley method is not entirely correct under many important settings. As a consequence, the coverage of a function of pooled estimates may not reach the nominal level even when the number of studies in the multivariate meta-analysis is large. In this paper, we improve the Riley method by proposing a robust variance estimator, which is asymptotically correct even when the model is misspecified (ie, when the likelihood function is incorrect). Simulation studies of a bivariate meta-analysis, in a variety of settings, show a function of pooled estimates has improved performance when using the proposed robust variance estimator. In terms of individual pooled estimates themselves, the standard variance estimator and robust variance estimator give similar results to the original method, with appropriate coverage. The proposed robust variance estimator performs well when the number of studies is relatively large. Therefore, we recommend the use of the robust method for meta-analyses with a relatively large number of studies (eg, m≥50). When the sample size is relatively small, we recommend the use of the robust method under the working independence assumption. We illustrate the proposed method through 2 meta-analyses. Copyright © 2017 John Wiley & Sons, Ltd.
Mauer, Michael; Caramori, Maria Luiza; Fioretto, Paola; Najafian, Behzad
2015-06-01
Studies of structural-functional relationships have improved understanding of the natural history of diabetic nephropathy (DN). However, in order to consider structural end points for clinical trials, the robustness of the resultant models needs to be verified. This study examined whether structural-functional relationship models derived from a large cohort of type 1 diabetic (T1D) patients with a wide range of renal function are robust. The predictability of models derived from multiple regression analysis and piecewise linear regression analysis was also compared. T1D patients (n = 161) with research renal biopsies were divided into two equal groups matched for albumin excretion rate (AER). Models to explain AER and glomerular filtration rate (GFR) by classical DN lesions in one group (T1D-model, or T1D-M) were applied to the other group (T1D-test, or T1D-T) and regression analyses were performed. T1D-M-derived models explained 70 and 63% of AER variance and 32 and 21% of GFR variance in T1D-M and T1D-T, respectively, supporting the substantial robustness of the models. Piecewise linear regression analyses substantially improved predictability of the models with 83% of AER variance and 66% of GFR variance explained by classical DN glomerular lesions alone. These studies demonstrate that DN structural-functional relationship models are robust, and if appropriate models are used, glomerular lesions alone explain a major proportion of AER and GFR variance in T1D patients. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Analysis and Design of Launch Vehicle Flight Control Systems
NASA Technical Reports Server (NTRS)
Wie, Bong; Du, Wei; Whorton, Mark
2008-01-01
This paper describes the fundamental principles of launch vehicle flight control analysis and design. In particular, the classical concept of "drift-minimum" and "load-minimum" control principles is re-examined and its performance and stability robustness with respect to modeling uncertainties and a gimbal angle constraint is discussed. It is shown that an additional feedback of angle-of-attack or lateral acceleration can significantly improve the overall performance and robustness, especially in the presence of unexpected large wind disturbance. Non-minimum-phase structural filtering of "unstably interacting" bending modes of large flexible launch vehicles is also shown to be effective and robust.
Survival estimation and the effects of dependency among animals
Schmutz, Joel A.; Ward, David H.; Sedinger, James S.; Rexstad, Eric A.
1995-01-01
Survival models assume that fates of individuals are independent, yet the robustness of this assumption has been poorly quantified. We examine how empirically derived estimates of the variance of survival rates are affected by dependency in survival probability among individuals. We used Monte Carlo simulations to generate known amounts of dependency among pairs of individuals and analyzed these data with Kaplan-Meier and Cormack-Jolly-Seber models. Dependency significantly increased these empirical variances as compared to theoretically derived estimates of variance from the same populations. Using resighting data from 168 pairs of black brant, we used a resampling procedure and program RELEASE to estimate empirical and mean theoretical variances. We estimated that the relationship between paired individuals caused the empirical variance of the survival rate to be 155% larger than the empirical variance for unpaired individuals. Monte Carlo simulations and use of this resampling strategy can provide investigators with information on how robust their data are to this common assumption of independent survival probabilities.
1984-05-01
By means of the concept of change-of variance function we investigate the stability properties of the asymptotic variance of R-estimators. This allows us to construct the optimal V-robust R-estimator that minimizes the asymptotic variance at the model, under the side condition of a bounded change-of variance function. Finally, we discuss the connection between this function and an influence function for two-sample rank tests introduced by Eplett (1980). (Author)
Analysis and application of minimum variance discrete time system identification
NASA Technical Reports Server (NTRS)
Kaufman, H.; Kotob, S.
1975-01-01
An on-line minimum variance parameter identifier is developed which embodies both accuracy and computational efficiency. The formulation results in a linear estimation problem with both additive and multiplicative noise. The resulting filter which utilizes both the covariance of the parameter vector itself and the covariance of the error in identification is proven to be mean square convergent and mean square consistent. The MV parameter identification scheme is then used to construct a stable state and parameter estimation algorithm.
NASA Astrophysics Data System (ADS)
Sudharsanan, Subramania I.; Mahalanobis, Abhijit; Sundareshan, Malur K.
1990-12-01
Discrete frequency domain design of Minimum Average Correlation Energy filters for optical pattern recognition introduces an implementational limitation of circular correlation. An alternative methodology which uses space domain computations to overcome this problem is presented. The technique is generalized to construct an improved synthetic discriminant function which satisfies the conflicting requirements of reduced noise variance and sharp correlation peaks to facilitate ease of detection. A quantitative evaluation of the performance characteristics of the new filter is conducted and is shown to compare favorably with the well known Minimum Variance Synthetic Discriminant Function and the space domain Minimum Average Correlation Energy filter, which are special cases of the present design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, M.
1980-12-01
The maximum likelihood method for the multivariate normal distribution is applied to the case of several individual eigenvalues. Correlated Monte Carlo estimates of the eigenvalue are assumed to follow this prescription and aspects of the assumption are examined. Monte Carlo cell calculations using the SAM-CE and VIM codes for the TRX-1 and TRX-2 benchmark reactors, and SAM-CE full core results are analyzed with this method. Variance reductions of a few percent to a factor of 2 are obtained from maximum likelihood estimation as compared with the simple average and the minimum variance individual eigenvalue. The numerical results verify that themore » use of sample variances and correlation coefficients in place of the corresponding population statistics still leads to nearly minimum variance estimation for a sufficient number of histories and aggregates.« less
Applications of active adaptive noise control to jet engines
NASA Technical Reports Server (NTRS)
Shoureshi, Rahmat; Brackney, Larry
1993-01-01
During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.
Large amplitude MHD waves upstream of the Jovian bow shock
NASA Technical Reports Server (NTRS)
Goldstein, M. L.; Smith, C. W.; Matthaeus, W. H.
1983-01-01
Observations of large amplitude magnetohydrodynamics (MHD) waves upstream of Jupiter's bow shock are analyzed. The waves are found to be right circularly polarized in the solar wind frame which suggests that they are propagating in the fast magnetosonic mode. A complete spectral and minimum variance eigenvalue analysis of the data was performed. The power spectrum of the magnetic fluctuations contains several peaks. The fluctuations at 2.3 mHz have a direction of minimum variance along the direction of the average magnetic field. The direction of minimum variance of these fluctuations lies at approximately 40 deg. to the magnetic field and is parallel to the radial direction. We argue that these fluctuations are waves excited by protons reflected off the Jovian bow shock. The inferred speed of the reflected protons is about two times the solar wind speed in the plasma rest frame. A linear instability analysis is presented which suggests an explanation for many of the observed features of the observations.
A negentropy minimization approach to adaptive equalization for digital communication systems.
Choi, Sooyong; Lee, Te-Won
2004-07-01
In this paper, we introduce and investigate a new adaptive equalization method based on minimizing approximate negentropy of the estimation error for a finite-length equalizer. We consider an approximate negentropy using nonpolynomial expansions of the estimation error as a new performance criterion to improve performance of a linear equalizer based on minimizing minimum mean squared error (MMSE). Negentropy includes higher order statistical information and its minimization provides improved converge, performance and accuracy compared to traditional methods such as MMSE in terms of bit error rate (BER). The proposed negentropy minimization (NEGMIN) equalizer has two kinds of solutions, the MMSE solution and the other one, depending on the ratio of the normalization parameters. The NEGMIN equalizer has best BER performance when the ratio of the normalization parameters is properly adjusted to maximize the output power(variance) of the NEGMIN equalizer. Simulation experiments show that BER performance of the NEGMIN equalizer with the other solution than the MMSE one has similar characteristics to the adaptive minimum bit error rate (AMBER) equalizer. The main advantage of the proposed equalizer is that it needs significantly fewer training symbols than the AMBER equalizer. Furthermore, the proposed equalizer is more robust to nonlinear distortions than the MMSE equalizer.
The developmental genetics of biological robustness
Mestek Boukhibar, Lamia; Barkoulas, Michalis
2016-01-01
Background Living organisms are continuously confronted with perturbations, such as environmental changes that include fluctuations in temperature and nutrient availability, or genetic changes such as mutations. While some developmental systems are affected by such challenges and display variation in phenotypic traits, others continue consistently to produce invariable phenotypes despite perturbation. This ability of a living system to maintain an invariable phenotype in the face of perturbations is termed developmental robustness. Biological robustness is a phenomenon observed across phyla, and studying its mechanisms is central to deciphering the genotype–phenotype relationship. Recent work in yeast, animals and plants has shown that robustness is genetically controlled and has started to reveal the underlying mechinisms behind it. Scope and Conclusions Studying biological robustness involves focusing on an important property of developmental traits, which is the phenotypic distribution within a population. This is often neglected because the vast majority of developmental biology studies instead focus on population aggregates, such as trait averages. By drawing on findings in animals and yeast, this Viewpoint considers how studies on plant developmental robustness may benefit from strict definitions of what is the developmental system of choice and what is the relevant perturbation, and also from clear distinctions between gene effects on the trait mean and the trait variance. Recent advances in quantitative developmental biology and high-throughput phenotyping now allow the design of targeted genetic screens to identify genes that amplify or restrict developmental trait variance and to study how variation propagates across different phenotypic levels in biological systems. The molecular characterization of more quantitative trait loci affecting trait variance will provide further insights into the evolution of genes modulating developmental robustness. The study of robustness mechanisms in closely related species will address whether mechanisms of robustness are evolutionarily conserved. PMID:26292993
Bernard R. Parresol
1993-01-01
In the context of forest modeling, it is often reasonable to assume a multiplicative heteroscedastic error structure to the data. Under such circumstances ordinary least squares no longer provides minimum variance estimates of the model parameters. Through study of the error structure, a suitable error variance model can be specified and its parameters estimated. This...
NASA Technical Reports Server (NTRS)
Avis, L. M.; Green, R. N.; Suttles, J. T.; Gupta, S. K.
1984-01-01
Computer simulations of a least squares estimator operating on the ERBE scanning channels are discussed. The estimator is designed to minimize the errors produced by nonideal spectral response to spectrally varying and uncertain radiant input. The three ERBE scanning channels cover a shortwave band a longwave band and a ""total'' band from which the pseudo inverse spectral filter estimates the radiance components in the shortwave band and a longwave band. The radiance estimator draws on instantaneous field of view (IFOV) scene type information supplied by another algorithm of the ERBE software, and on a priori probabilistic models of the responses of the scanning channels to the IFOV scene types for given Sun scene spacecraft geometry. It is found that the pseudoinverse spectral filter is stable, tolerant of errors in scene identification and in channel response modeling, and, in the absence of such errors, yields minimum variance and essentially unbiased radiance estimates.
2dFLenS and KiDS: determining source redshift distributions with cross-correlations
NASA Astrophysics Data System (ADS)
Johnson, Andrew; Blake, Chris; Amon, Alexandra; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; McFarland, John; Morrison, Christopher B.; Parkinson, David; Poole, Gregory B.; Radovich, Mario; Wolf, Christian
2017-03-01
We develop a statistical estimator to infer the redshift probability distribution of a photometric sample of galaxies from its angular cross-correlation in redshift bins with an overlapping spectroscopic sample. This estimator is a minimum-variance weighted quadratic function of the data: a quadratic estimator. This extends and modifies the methodology presented by McQuinn & White. The derived source redshift distribution is degenerate with the source galaxy bias, which must be constrained via additional assumptions. We apply this estimator to constrain source galaxy redshift distributions in the Kilo-Degree imaging survey through cross-correlation with the spectroscopic 2-degree Field Lensing Survey, presenting results first as a binned step-wise distribution in the range z < 0.8, and then building a continuous distribution using a Gaussian process model. We demonstrate the robustness of our methodology using mock catalogues constructed from N-body simulations, and comparisons with other techniques for inferring the redshift distribution.
Robust Programming Problems Based on the Mean-Variance Model Including Uncertainty Factors
NASA Astrophysics Data System (ADS)
Hasuike, Takashi; Ishii, Hiroaki
2009-01-01
This paper considers robust programming problems based on the mean-variance model including uncertainty sets and fuzzy factors. Since these problems are not well-defined problems due to fuzzy factors, it is hard to solve them directly. Therefore, introducing chance constraints, fuzzy goals and possibility measures, the proposed models are transformed into the deterministic equivalent problems. Furthermore, in order to solve these equivalent problems efficiently, the solution method is constructed introducing the mean-absolute deviation and doing the equivalent transformations.
Minimum number of measurements for evaluating soursop (Annona muricata L.) yield.
Sánchez, C F B; Teodoro, P E; Londoño, S; Silva, L A; Peixoto, L A; Bhering, L L
2017-05-31
Repeatability studies on fruit species are of great importance to identify the minimum number of measurements necessary to accurately select superior genotypes. This study aimed to identify the most efficient method to estimate the repeatability coefficient (r) and predict the minimum number of measurements needed for a more accurate evaluation of soursop (Annona muricata L.) genotypes based on fruit yield. Sixteen measurements of fruit yield from 71 soursop genotypes were carried out between 2000 and 2016. In order to estimate r with the best accuracy, four procedures were used: analysis of variance, principal component analysis based on the correlation matrix, principal component analysis based on the phenotypic variance and covariance matrix, and structural analysis based on the correlation matrix. The minimum number of measurements needed to predict the actual value of individuals was estimated. Principal component analysis using the phenotypic variance and covariance matrix provided the most accurate estimates of both r and the number of measurements required for accurate evaluation of fruit yield in soursop. Our results indicate that selection of soursop genotypes with high fruit yield can be performed based on the third and fourth measurements in the early years and/or based on the eighth and ninth measurements at more advanced stages.
Chen, Bor-Sen; Lin, Ying-Po
2011-01-01
In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective. PMID:22084563
Robust Means and Covariance Matrices by the Minimum Volume Ellipsoid (MVE).
ERIC Educational Resources Information Center
Blankmeyer, Eric
P. Rousseeuw and A. Leroy (1987) proposed a very robust alternative to classical estimates of mean vectors and covariance matrices, the Minimum Volume Ellipsoid (MVE). This paper describes the MVE technique and presents a BASIC program to implement it. The MVE is a "high breakdown" estimator, one that can cope with samples in which as…
Analysis of 20 magnetic clouds at 1 AU during a solar minimum
NASA Astrophysics Data System (ADS)
Gulisano, A. M.; Dasso, S.; Mandrini, C. H.; Démoulin, P.
We study 20 magnetic clouds, observed in situ by the spacecraft Wind, at the Lagrangian point L1, from 22 August, 1995, to 7 November, 1997. In previous works, assuming a cylindrical symmetry for the local magnetic configuration and a satellite trajectory crossing the axis of the cloud, we obtained their orientations using a minimum variance analysis. In this work we compute the orientations and magnetic configurations using a non-linear simultaneous fit of the geometric and physical parameters for a linear force-free model, including the possibility of a not null impact parameter. We quantify global magnitudes such as the relative magnetic helicity per unit length and compare the values found with both methods (minimum variance and the simultaneous fit). FULL TEXT IN SPANISH
NASA Astrophysics Data System (ADS)
He, Minhui; Yang, Bao; Datsenko, Nina M.
2014-08-01
The recent unprecedented warming found in different regions has aroused much attention in the past years. How temperature has really changed on the Tibetan Plateau (TP) remains unknown since very limited high-resolution temperature series can be found over this region, where large areas of snow and ice exist. Herein, we develop two Juniperus tibetica Kom. tree-ring width chronologies from different elevations. We found that the two tree-ring series only share high-frequency variability. Correlation, response function and partial correlation analysis indicate that prior year annual (January-December) minimum temperature is most responsible for the higher belt juniper radial growth, while more or less precipitation signal is contained by the tree-ring width chronology at the lower belt and is thus excluded from further analysis. The tree growth-climate model accounted for 40 % of the total variance in actual temperature during the common period 1957-2010. The detected temperature signal is further robustly verified by other results. Consequently, a six century long annual minimum temperature history was firstly recovered for the Yushu region, central TP. Interestingly, the rapid warming trend during the past five decades is identified as a significant cold phase in the context of the past 600 years. The recovered temperature series reflects low-frequency variability consistent with other temperature reconstructions over the whole TP region. Furthermore, the present recovered temperature series is associated with the Asian monsoon strength on decadal to multidecadal scales over the past 600 years.
Estimation of transformation parameters for microarray data.
Durbin, Blythe; Rocke, David M
2003-07-22
Durbin et al. (2002), Huber et al. (2002) and Munson (2001) independently introduced a family of transformations (the generalized-log family) which stabilizes the variance of microarray data up to the first order. We introduce a method for estimating the transformation parameter in tandem with a linear model based on the procedure outlined in Box and Cox (1964). We also discuss means of finding transformations within the generalized-log family which are optimal under other criteria, such as minimum residual skewness and minimum mean-variance dependency. R and Matlab code and test data are available from the authors on request.
ERIC Educational Resources Information Center
Lix, Lisa M.; And Others
1996-01-01
Meta-analytic techniques were used to summarize the statistical robustness literature on Type I error properties of alternatives to the one-way analysis of variance "F" test. The James (1951) and Welch (1951) tests performed best under violations of the variance homogeneity assumption, although their use is not always appropriate. (SLD)
NASA Astrophysics Data System (ADS)
Wang, Zhuozheng; Deller, J. R.; Fleet, Blair D.
2016-01-01
Acquired digital images are often corrupted by a lack of camera focus, faulty illumination, or missing data. An algorithm is presented for fusion of multiple corrupted images of a scene using the lifting wavelet transform. The method employs adaptive fusion arithmetic based on matrix completion and self-adaptive regional variance estimation. Characteristics of the wavelet coefficients are used to adaptively select fusion rules. Robust principal component analysis is applied to low-frequency image components, and regional variance estimation is applied to high-frequency components. Experiments reveal that the method is effective for multifocus, visible-light, and infrared image fusion. Compared with traditional algorithms, the new algorithm not only increases the amount of preserved information and clarity but also improves robustness.
Chang, Wen-Jer; Huang, Bo-Jyun
2014-11-01
The multi-constrained robust fuzzy control problem is investigated in this paper for perturbed continuous-time nonlinear stochastic systems. The nonlinear system considered in this paper is represented by a Takagi-Sugeno fuzzy model with perturbations and state multiplicative noises. The multiple performance constraints considered in this paper include stability, passivity and individual state variance constraints. The Lyapunov stability theory is employed to derive sufficient conditions to achieve the above performance constraints. By solving these sufficient conditions, the contribution of this paper is to develop a parallel distributed compensation based robust fuzzy control approach to satisfy multiple performance constraints for perturbed nonlinear systems with multiplicative noises. At last, a numerical example for the control of perturbed inverted pendulum system is provided to illustrate the applicability and effectiveness of the proposed multi-constrained robust fuzzy control method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luis, Alfredo
The use of Renyi entropy as an uncertainty measure alternative to variance leads to the study of states with quantum fluctuations below the levels established by Gaussian states, which are the position-momentum minimum uncertainty states according to variance. We examine the quantum properties of states with exponential wave functions, which combine reduced fluctuations with practical feasibility.
ERIC Educational Resources Information Center
Wang, Yan; Rodríguez de Gil, Patricia; Chen, Yi-Hsin; Kromrey, Jeffrey D.; Kim, Eun Sook; Pham, Thanh; Nguyen, Diep; Romano, Jeanine L.
2017-01-01
Various tests to check the homogeneity of variance assumption have been proposed in the literature, yet there is no consensus as to their robustness when the assumption of normality does not hold. This simulation study evaluated the performance of 14 tests for the homogeneity of variance assumption in one-way ANOVA models in terms of Type I error…
NASA Technical Reports Server (NTRS)
Wie, Bong; Liu, Qiang
1992-01-01
Both feedback and feedforward control approaches for uncertain dynamical systems (in particular, with uncertainty in structural mode frequency) are investigated. The control objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant uncertainty. Preshaping of an ideal, time optimal control input using a tapped-delay filter is shown to provide a fast settling time with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. It is shown that a properly designed, feedback controller performs well, as compared with a time optimal open loop controller with special preshaping for performance robustness. Also included are two separate papers by the same authors on this subject.
Robust LOD scores for variance component-based linkage analysis.
Blangero, J; Williams, J T; Almasy, L
2000-01-01
The variance component method is now widely used for linkage analysis of quantitative traits. Although this approach offers many advantages, the importance of the underlying assumption of multivariate normality of the trait distribution within pedigrees has not been studied extensively. Simulation studies have shown that traits with leptokurtic distributions yield linkage test statistics that exhibit excessive Type I error when analyzed naively. We derive analytical formulae relating the deviation from the expected asymptotic distribution of the lod score to the kurtosis and total heritability of the quantitative trait. A simple correction constant yields a robust lod score for any deviation from normality and for any pedigree structure, and effectively eliminates the problem of inflated Type I error due to misspecification of the underlying probability model in variance component-based linkage analysis.
Maximum Likelihood and Minimum Distance Applied to Univariate Mixture Distributions.
ERIC Educational Resources Information Center
Wang, Yuh-Yin Wu; Schafer, William D.
This Monte-Carlo study compared modified Newton (NW), expectation-maximization algorithm (EM), and minimum Cramer-von Mises distance (MD), used to estimate parameters of univariate mixtures of two components. Data sets were fixed at size 160 and manipulated by mean separation, variance ratio, component proportion, and non-normality. Results…
A Minimum Variance Algorithm for Overdetermined TOA Equations with an Altitude Constraint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, Louis A; Mason, John J.
We present a direct (non-iterative) method for solving for the location of a radio frequency (RF) emitter, or an RF navigation receiver, using four or more time of arrival (TOA) measurements and an assumed altitude above an ellipsoidal earth. Both the emitter tracking problem and the navigation application are governed by the same equations, but with slightly different interpreta- tions of several variables. We treat the assumed altitude as a soft constraint, with a specified noise level, just as the TOA measurements are handled, with their respective noise levels. With 4 or more TOA measurements and the assumed altitude, themore » problem is overdetermined and is solved in the weighted least squares sense for the 4 unknowns, the 3-dimensional position and time. We call the new technique the TAQMV (TOA Altitude Quartic Minimum Variance) algorithm, and it achieves the minimum possible error variance for given levels of TOA and altitude estimate noise. The method algebraically produces four solutions, the least-squares solution, and potentially three other low residual solutions, if they exist. In the lightly overdermined cases where multiple local minima in the residual error surface are more likely to occur, this algebraic approach can produce all of the minima even when an iterative approach fails to converge. Algorithm performance in terms of solution error variance and divergence rate for bas eline (iterative) and proposed approach are given in tables.« less
A method for minimum risk portfolio optimization under hybrid uncertainty
NASA Astrophysics Data System (ADS)
Egorova, Yu E.; Yazenin, A. V.
2018-03-01
In this paper, we investigate a minimum risk portfolio model under hybrid uncertainty when the profitability of financial assets is described by fuzzy random variables. According to Feng, the variance of a portfolio is defined as a crisp value. To aggregate fuzzy information the weakest (drastic) t-norm is used. We construct an equivalent stochastic problem of the minimum risk portfolio model and specify the stochastic penalty method for solving it.
Estimating integrated variance in the presence of microstructure noise using linear regression
NASA Astrophysics Data System (ADS)
Holý, Vladimír
2017-07-01
Using financial high-frequency data for estimation of integrated variance of asset prices is beneficial but with increasing number of observations so-called microstructure noise occurs. This noise can significantly bias the realized variance estimator. We propose a method for estimation of the integrated variance robust to microstructure noise as well as for testing the presence of the noise. Our method utilizes linear regression in which realized variances estimated from different data subsamples act as dependent variable while the number of observations act as explanatory variable. We compare proposed estimator with other methods on simulated data for several microstructure noise structures.
Kalman filter for statistical monitoring of forest cover across sub-continental regions [Symposium
Raymond L. Czaplewski
1991-01-01
The Kalman filter is a generalization of the composite estimator. The univariate composite estimate combines 2 prior estimates of population parameter with a weighted average where the scalar weight is inversely proportional to the variances. The composite estimator is a minimum variance estimator that requires no distributional assumptions other than estimates of the...
NASA Astrophysics Data System (ADS)
Setiawan, E. P.; Rosadi, D.
2017-01-01
Portfolio selection problems conventionally means ‘minimizing the risk, given the certain level of returns’ from some financial assets. This problem is frequently solved with quadratic or linear programming methods, depending on the risk measure that used in the objective function. However, the solutions obtained by these method are in real numbers, which may give some problem in real application because each asset usually has its minimum transaction lots. In the classical approach considering minimum transaction lots were developed based on linear Mean Absolute Deviation (MAD), variance (like Markowitz’s model), and semi-variance as risk measure. In this paper we investigated the portfolio selection methods with minimum transaction lots with conditional value at risk (CVaR) as risk measure. The mean-CVaR methodology only involves the part of the tail of the distribution that contributed to high losses. This approach looks better when we work with non-symmetric return probability distribution. Solution of this method can be found with Genetic Algorithm (GA) methods. We provide real examples using stocks from Indonesia stocks market.
Poston, Brach; Van Gemmert, Arend W.A.; Sharma, Siddharth; Chakrabarti, Somesh; Zavaremi, Shahrzad H.; Stelmach, George
2013-01-01
The minimum variance theory proposes that motor commands are corrupted by signal-dependent noise and smooth trajectories with low noise levels are selected to minimize endpoint error and endpoint variability. The purpose of the study was to determine the contribution of trajectory smoothness to the endpoint accuracy and endpoint variability of rapid multi-joint arm movements. Young and older adults performed arm movements (4 blocks of 25 trials) as fast and as accurately as possible to a target with the right (dominant) arm. Endpoint accuracy and endpoint variability along with trajectory smoothness and error were quantified for each block of trials. Endpoint error and endpoint variance were greater in older adults compared with young adults, but decreased at a similar rate with practice for the two age groups. The greater endpoint error and endpoint variance exhibited by older adults were primarily due to impairments in movement extent control and not movement direction control. The normalized jerk was similar for the two age groups, but was not strongly associated with endpoint error or endpoint variance for either group. However, endpoint variance was strongly associated with endpoint error for both the young and older adults. Finally, trajectory error was similar for both groups and was weakly associated with endpoint error for the older adults. The findings are not consistent with the predictions of the minimum variance theory, but support and extend previous observations that movement trajectories and endpoints are planned independently. PMID:23584101
NASA Astrophysics Data System (ADS)
Haji Heidari, Mehdi; Mozaffarzadeh, Moein; Manwar, Rayyan; Nasiriavanaki, Mohammadreza
2018-02-01
In recent years, the minimum variance (MV) beamforming has been widely studied due to its high resolution and contrast in B-mode Ultrasound imaging (USI). However, the performance of the MV beamformer is degraded at the presence of noise, as a result of the inaccurate covariance matrix estimation which leads to a low quality image. Second harmonic imaging (SHI) provides many advantages over the conventional pulse-echo USI, such as enhanced axial and lateral resolutions. However, the low signal-to-noise ratio (SNR) is a major problem in SHI. In this paper, Eigenspace-based minimum variance (EIBMV) beamformer has been employed for second harmonic USI. The Tissue Harmonic Imaging (THI) is achieved by Pulse Inversion (PI) technique. Using the EIBMV weights, instead of the MV ones, would lead to reduced sidelobes and improved contrast, without compromising the high resolution of the MV beamformer (even at the presence of a strong noise). In addition, we have investigated the effects of variations of the important parameters in computing EIBMV weights, i.e., K, L, and δ, on the resolution and contrast obtained in SHI. The results are evaluated using numerical data (using point target and cyst phantoms), and the proper parameters of EIBMV are indicated for THI.
Hydraulic geometry of river cross sections; theory of minimum variance
Williams, Garnett P.
1978-01-01
This study deals with the rates at which mean velocity, mean depth, and water-surface width increase with water discharge at a cross section on an alluvial stream. Such relations often follow power laws, the exponents in which are called hydraulic exponents. The Langbein (1964) minimum-variance theory is examined in regard to its validity and its ability to predict observed hydraulic exponents. The variables used with the theory were velocity, depth, width, bed shear stress, friction factor, slope (energy gradient), and stream power. Slope is often constant, in which case only velocity, depth, width, shear and friction factor need be considered. The theory was tested against a wide range of field data from various geographic areas of the United States. The original theory was intended to produce only the average hydraulic exponents for a group of cross sections in a similar type of geologic or hydraulic environment. The theory does predict these average exponents with a reasonable degree of accuracy. An attempt to forecast the exponents at any selected cross section was moderately successful. Empirical equations are more accurate than the minimum variance, Gauckler-Manning, or Chezy methods. Predictions of the exponent of width are most reliable, the exponent of depth fair, and the exponent of mean velocity poor. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Mozaffarzadeh, Moein; Mahloojifar, Ali; Orooji, Mahdi; Kratkiewicz, Karl; Adabi, Saba; Nasiriavanaki, Mohammadreza
2018-02-01
In photoacoustic imaging, delay-and-sum (DAS) beamformer is a common beamforming algorithm having a simple implementation. However, it results in a poor resolution and high sidelobes. To address these challenges, a new algorithm namely delay-multiply-and-sum (DMAS) was introduced having lower sidelobes compared to DAS. To improve the resolution of DMAS, a beamformer is introduced using minimum variance (MV) adaptive beamforming combined with DMAS, so-called minimum variance-based DMAS (MVB-DMAS). It is shown that expanding the DMAS equation results in multiple terms representing a DAS algebra. It is proposed to use the MV adaptive beamformer instead of the existing DAS. MVB-DMAS is evaluated numerically and experimentally. In particular, at the depth of 45 mm MVB-DMAS results in about 31, 18, and 8 dB sidelobes reduction compared to DAS, MV, and DMAS, respectively. The quantitative results of the simulations show that MVB-DMAS leads to improvement in full-width-half-maximum about 96%, 94%, and 45% and signal-to-noise ratio about 89%, 15%, and 35% compared to DAS, DMAS, MV, respectively. In particular, at the depth of 33 mm of the experimental images, MVB-DMAS results in about 20 dB sidelobes reduction in comparison with other beamformers.
Savalei, Victoria
2018-01-01
A new type of nonnormality correction to the RMSEA has recently been developed, which has several advantages over existing corrections. In particular, the new correction adjusts the sample estimate of the RMSEA for the inflation due to nonnormality, while leaving its population value unchanged, so that established cutoff criteria can still be used to judge the degree of approximate fit. A confidence interval (CI) for the new robust RMSEA based on the mean-corrected ("Satorra-Bentler") test statistic has also been proposed. Follow up work has provided the same type of nonnormality correction for the CFI (Brosseau-Liard & Savalei, 2014). These developments have recently been implemented in lavaan. This note has three goals: a) to show how to compute the new robust RMSEA and CFI from the mean-and-variance corrected test statistic; b) to offer a new CI for the robust RMSEA based on the mean-and-variance corrected test statistic; and c) to caution that the logic of the new nonnormality corrections to RMSEA and CFI is most appropriate for the maximum likelihood (ML) estimator, and cannot easily be generalized to the most commonly used categorical data estimators.
Mesoscale Gravity Wave Variances from AMSU-A Radiances
NASA Technical Reports Server (NTRS)
Wu, Dong L.
2004-01-01
A variance analysis technique is developed here to extract gravity wave (GW) induced temperature fluctuations from NOAA AMSU-A (Advanced Microwave Sounding Unit-A) radiance measurements. By carefully removing the instrument/measurement noise, the algorithm can produce reliable GW variances with the minimum detectable value as small as 0.1 K2. Preliminary analyses with AMSU-A data show GW variance maps in the stratosphere have very similar distributions to those found with the UARS MLS (Upper Atmosphere Research Satellite Microwave Limb Sounder). However, the AMSU-A offers better horizontal and temporal resolution for observing regional GW variability, such as activity over sub-Antarctic islands.
Analysis of conditional genetic effects and variance components in developmental genetics.
Zhu, J
1995-12-01
A genetic model with additive-dominance effects and genotype x environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t-1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects.
Analysis of Conditional Genetic Effects and Variance Components in Developmental Genetics
Zhu, J.
1995-01-01
A genetic model with additive-dominance effects and genotype X environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t - 1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects. PMID:8601500
Some refinements on the comparison of areal sampling methods via simulation
Jeffrey Gove
2017-01-01
The design of forest inventories and development of new sampling methods useful in such inventories normally have a two-fold target of design unbiasedness and minimum variance in mind. Many considerations such as costs go into the choices of sampling method for operational and other levels of inventory. However, the variance in terms of meeting a specified level of...
A comparison of coronal and interplanetary current sheet inclinations
NASA Technical Reports Server (NTRS)
Behannon, K. W.; Burlaga, L. F.; Hundhausen, A. J.
1983-01-01
The HAO white light K-coronameter observations show that the inclination of the heliospheric current sheet at the base of the corona can be both large (nearly vertical with respect to the solar equator) or small during Cararington rotations 1660 - 1666 and even on a single solar rotation. Voyager 1 and 2 magnetic field observations of crossing of the heliospheric current sheet at distances from the Sun of 1.4 and 2.8 AU. Two cases are considered, one in which the corresponding coronameter data indicate a nearly vertical (north-south) current sheet and another in which a nearly horizontal, near equatorial current sheet is indicated. For the crossings of the vertical current sheet, a variance analysis based on hour averages of the magnetic field data gave a minimum variance direction consistent with a steep inclination. The horizontal current sheet was observed by Voyager as a region of mixed polarity and low speeds lasting several days, consistent with multiple crossings of a horizontal but irregular and fluctuating current sheet at 1.4 AU. However, variance analysis of individual current sheet crossings in this interval using 1.92 see averages did not give minimum variance directions consistent with a horizontal current sheet.
Robustness results in LQG based multivariable control designs
NASA Technical Reports Server (NTRS)
Lehtomaki, N. A.; Sandell, N. R., Jr.; Athans, M.
1980-01-01
The robustness of control systems with respect to model uncertainty is considered using simple frequency domain criteria. Results are derived under a common framework in which the minimum singular value of the return difference transfer matrix is the key quantity. In particular, the LQ and LQG robustness results are discussed.
Kiong, Tiong Sieh; Salem, S. Balasem; Paw, Johnny Koh Siaw; Sankar, K. Prajindra
2014-01-01
In smart antenna applications, the adaptive beamforming technique is used to cancel interfering signals (placing nulls) and produce or steer a strong beam toward the target signal according to the calculated weight vectors. Minimum variance distortionless response (MVDR) beamforming is capable of determining the weight vectors for beam steering; however, its nulling level on the interference sources remains unsatisfactory. Beamforming can be considered as an optimization problem, such that optimal weight vector should be obtained through computation. Hence, in this paper, a new dynamic mutated artificial immune system (DM-AIS) is proposed to enhance MVDR beamforming for controlling the null steering of interference and increase the signal to interference noise ratio (SINR) for wanted signals. PMID:25003136
Kiong, Tiong Sieh; Salem, S Balasem; Paw, Johnny Koh Siaw; Sankar, K Prajindra; Darzi, Soodabeh
2014-01-01
In smart antenna applications, the adaptive beamforming technique is used to cancel interfering signals (placing nulls) and produce or steer a strong beam toward the target signal according to the calculated weight vectors. Minimum variance distortionless response (MVDR) beamforming is capable of determining the weight vectors for beam steering; however, its nulling level on the interference sources remains unsatisfactory. Beamforming can be considered as an optimization problem, such that optimal weight vector should be obtained through computation. Hence, in this paper, a new dynamic mutated artificial immune system (DM-AIS) is proposed to enhance MVDR beamforming for controlling the null steering of interference and increase the signal to interference noise ratio (SINR) for wanted signals.
25 CFR 542.18 - How does a gaming operation apply for a variance from the standards of the part?
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 2 2010-04-01 2010-04-01 false How does a gaming operation apply for a variance from the standards of the part? 542.18 Section 542.18 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS § 542.18 How does a gaming operation apply for a...
Robust linear discriminant models to solve financial crisis in banking sectors
NASA Astrophysics Data System (ADS)
Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Idris, Faoziah; Ali, Hazlina; Omar, Zurni
2014-12-01
Linear discriminant analysis (LDA) is a widely-used technique in patterns classification via an equation which will minimize the probability of misclassifying cases into their respective categories. However, the performance of classical estimators in LDA highly depends on the assumptions of normality and homoscedasticity. Several robust estimators in LDA such as Minimum Covariance Determinant (MCD), S-estimators and Minimum Volume Ellipsoid (MVE) are addressed by many authors to alleviate the problem of non-robustness of the classical estimates. In this paper, we investigate on the financial crisis of the Malaysian banking institutions using robust LDA and classical LDA methods. Our objective is to distinguish the "distress" and "non-distress" banks in Malaysia by using the LDA models. Hit ratio is used to validate the accuracy predictive of LDA models. The performance of LDA is evaluated by estimating the misclassification rate via apparent error rate. The results and comparisons show that the robust estimators provide a better performance than the classical estimators for LDA.
Running Technique is an Important Component of Running Economy and Performance
FOLLAND, JONATHAN P.; ALLEN, SAM J.; BLACK, MATTHEW I.; HANDSAKER, JOSEPH C.; FORRESTER, STEPHANIE E.
2017-01-01
ABSTRACT Despite an intuitive relationship between technique and both running economy (RE) and performance, and the diverse techniques used by runners to achieve forward locomotion, the objective importance of overall technique and the key components therein remain to be elucidated. Purpose This study aimed to determine the relationship between individual and combined kinematic measures of technique with both RE and performance. Methods Ninety-seven endurance runners (47 females) of diverse competitive standards performed a discontinuous protocol of incremental treadmill running (4-min stages, 1-km·h−1 increments). Measurements included three-dimensional full-body kinematics, respiratory gases to determine energy cost, and velocity of lactate turn point. Five categories of kinematic measures (vertical oscillation, braking, posture, stride parameters, and lower limb angles) and locomotory energy cost (LEc) were averaged across 10–12 km·h−1 (the highest common velocity < velocity of lactate turn point). Performance was measured as season's best (SB) time converted to a sex-specific z-score. Results Numerous kinematic variables were correlated with RE and performance (LEc, 19 variables; SB time, 11 variables). Regression analysis found three variables (pelvis vertical oscillation during ground contact normalized to height, minimum knee joint angle during ground contact, and minimum horizontal pelvis velocity) explained 39% of LEc variability. In addition, four variables (minimum horizontal pelvis velocity, shank touchdown angle, duty factor, and trunk forward lean) combined to explain 31% of the variability in performance (SB time). Conclusions This study provides novel and robust evidence that technique explains a substantial proportion of the variance in RE and performance. We recommend that runners and coaches are attentive to specific aspects of stride parameters and lower limb angles in part to optimize pelvis movement, and ultimately enhance performance. PMID:28263283
A test of source-surface model predictions of heliospheric current sheet inclination
NASA Technical Reports Server (NTRS)
Burton, M. E.; Crooker, N. U.; Siscoe, G. L.; Smith, E. J.
1994-01-01
The orientation of the heliospheric current sheet predicted from a source surface model is compared with the orientation determined from minimum-variance analysis of International Sun-Earth Explorer (ISEE) 3 magnetic field data at 1 AU near solar maximum. Of the 37 cases analyzed, 28 have minimum variance normals that lie orthogonal to the predicted Parker spiral direction. For these cases, the correlation coefficient between the predicted and measured inclinations is 0.6. However, for the subset of 14 cases for which transient signatures (either interplanetary shocks or bidirectional electrons) are absent, the agreement in inclinations improves dramatically, with a correlation coefficient of 0.96. These results validate not only the use of the source surface model as a predictor but also the previously questioned usefulness of minimum variance analysis across complex sector boundaries. In addition, the results imply that interplanetary dynamics have little effect on current sheet inclination at 1 AU. The dependence of the correlation on transient occurrence suggests that the leading edge of a coronal mass ejection (CME), where transient signatures are detected, disrupts the heliospheric current sheet but that the sheet re-forms between the trailing legs of the CME. In this way the global structure of the heliosphere, reflected both in the source surface maps and in the interplanetary sector structure, can be maintained even when the CME occurrence rate is high.
Mozaffarzadeh, Moein; Mahloojifar, Ali; Orooji, Mahdi; Kratkiewicz, Karl; Adabi, Saba; Nasiriavanaki, Mohammadreza
2018-02-01
In photoacoustic imaging, delay-and-sum (DAS) beamformer is a common beamforming algorithm having a simple implementation. However, it results in a poor resolution and high sidelobes. To address these challenges, a new algorithm namely delay-multiply-and-sum (DMAS) was introduced having lower sidelobes compared to DAS. To improve the resolution of DMAS, a beamformer is introduced using minimum variance (MV) adaptive beamforming combined with DMAS, so-called minimum variance-based DMAS (MVB-DMAS). It is shown that expanding the DMAS equation results in multiple terms representing a DAS algebra. It is proposed to use the MV adaptive beamformer instead of the existing DAS. MVB-DMAS is evaluated numerically and experimentally. In particular, at the depth of 45 mm MVB-DMAS results in about 31, 18, and 8 dB sidelobes reduction compared to DAS, MV, and DMAS, respectively. The quantitative results of the simulations show that MVB-DMAS leads to improvement in full-width-half-maximum about 96%, 94%, and 45% and signal-to-noise ratio about 89%, 15%, and 35% compared to DAS, DMAS, MV, respectively. In particular, at the depth of 33 mm of the experimental images, MVB-DMAS results in about 20 dB sidelobes reduction in comparison with other beamformers. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
A Robust Crowdsourcing-Based Indoor Localization System.
Zhou, Baoding; Li, Qingquan; Mao, Qingzhou; Tu, Wei
2017-04-14
WiFi fingerprinting-based indoor localization has been widely used due to its simplicity and can be implemented on the smartphones. The major drawback of WiFi fingerprinting is that the radio map construction is very labor-intensive and time-consuming. Another drawback of WiFi fingerprinting is the Received Signal Strength (RSS) variance problem, caused by environmental changes and device diversity. RSS variance severely degrades the localization accuracy. In this paper, we propose a robust crowdsourcing-based indoor localization system (RCILS). RCILS can automatically construct the radio map using crowdsourcing data collected by smartphones. RCILS abstracts the indoor map as the semantics graph in which the edges are the possible user paths and the vertexes are the location where users may take special activities. RCILS extracts the activity sequence contained in the trajectories by activity detection and pedestrian dead-reckoning. Based on the semantics graph and activity sequence, crowdsourcing trajectories can be located and a radio map is constructed based on the localization results. For the RSS variance problem, RCILS uses the trajectory fingerprint model for indoor localization. During online localization, RCILS obtains an RSS sequence and realizes localization by matching the RSS sequence with the radio map. To evaluate RCILS, we apply RCILS in an office building. Experiment results demonstrate the efficiency and robustness of RCILS.
A Robust Crowdsourcing-Based Indoor Localization System
Zhou, Baoding; Li, Qingquan; Mao, Qingzhou; Tu, Wei
2017-01-01
WiFi fingerprinting-based indoor localization has been widely used due to its simplicity and can be implemented on the smartphones. The major drawback of WiFi fingerprinting is that the radio map construction is very labor-intensive and time-consuming. Another drawback of WiFi fingerprinting is the Received Signal Strength (RSS) variance problem, caused by environmental changes and device diversity. RSS variance severely degrades the localization accuracy. In this paper, we propose a robust crowdsourcing-based indoor localization system (RCILS). RCILS can automatically construct the radio map using crowdsourcing data collected by smartphones. RCILS abstracts the indoor map as the semantics graph in which the edges are the possible user paths and the vertexes are the location where users may take special activities. RCILS extracts the activity sequence contained in the trajectories by activity detection and pedestrian dead-reckoning. Based on the semantics graph and activity sequence, crowdsourcing trajectories can be located and a radio map is constructed based on the localization results. For the RSS variance problem, RCILS uses the trajectory fingerprint model for indoor localization. During online localization, RCILS obtains an RSS sequence and realizes localization by matching the RSS sequence with the radio map. To evaluate RCILS, we apply RCILS in an office building. Experiment results demonstrate the efficiency and robustness of RCILS. PMID:28420108
Vegetation greenness impacts on maximum and minimum temperatures in northeast Colorado
Hanamean, J. R.; Pielke, R.A.; Castro, C. L.; Ojima, D.S.; Reed, Bradley C.; Gao, Z.
2003-01-01
The impact of vegetation on the microclimate has not been adequately considered in the analysis of temperature forecasting and modelling. To fill part of this gap, the following study was undertaken.A daily 850–700 mb layer mean temperature, computed from the National Center for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis, and satellite-derived greenness values, as defined by NDVI (Normalised Difference Vegetation Index), were correlated with surface maximum and minimum temperatures at six sites in northeast Colorado for the years 1989–98. The NDVI values, representing landscape greenness, act as a proxy for latent heat partitioning via transpiration. These sites encompass a wide array of environments, from irrigated-urban to short-grass prairie. The explained variance (r2 value) of surface maximum and minimum temperature by only the 850–700 mb layer mean temperature was subtracted from the corresponding explained variance by the 850–700 mb layer mean temperature and NDVI values. The subtraction shows that by including NDVI values in the analysis, the r2 values, and thus the degree of explanation of the surface temperatures, increase by a mean of 6% for the maxima and 8% for the minima over the period March–October. At most sites, there is a seasonal dependence in the explained variance of the maximum temperatures because of the seasonal cycle of plant growth and senescence. Between individual sites, the highest increase in explained variance occurred at the site with the least amount of anthropogenic influence. This work suggests the vegetation state needs to be included as a factor in surface temperature forecasting, numerical modeling, and climate change assessments.
Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region
NASA Astrophysics Data System (ADS)
Griffiths, G. M.; Chambers, L. E.; Haylock, M. R.; Manton, M. J.; Nicholls, N.; Baek, H.-J.; Choi, Y.; della-Marta, P. M.; Gosai, A.; Iga, N.; Lata, R.; Laurent, V.; Maitrepierre, L.; Nakamigawa, H.; Ouprasitwong, N.; Solofa, D.; Tahani, L.; Thuy, D. T.; Tibig, L.; Trewin, B.; Vediapan, K.; Zhai, P.
2005-08-01
Trends (1961-2003) in daily maximum and minimum temperatures, extremes and variance were found to be spatially coherent across the Asia-Pacific region. The majority of stations exhibited significant trends: increases in mean maximum and mean minimum temperature, decreases in cold nights and cool days, and increases in warm nights. No station showed a significant increase in cold days or cold nights, but a few sites showed significant decreases in hot days and warm nights. Significant decreases were observed in both maximum and minimum temperature standard deviation in China, Korea and some stations in Japan (probably reflecting urbanization effects), but also for some Thailand and coastal Australian sites. The South Pacific convergence zone (SPCZ) region between Fiji and the Solomon Islands showed a significant increase in maximum temperature variability.Correlations between mean temperature and the frequency of extreme temperatures were strongest in the tropical Pacific Ocean from French Polynesia to Papua New Guinea, Malaysia, the Philippines, Thailand and southern Japan. Correlations were weaker at continental or higher latitude locations, which may partly reflect urbanization.For non-urban stations, the dominant distribution change for both maximum and minimum temperature involved a change in the mean, impacting on one or both extremes, with no change in standard deviation. This occurred from French Polynesia to Papua New Guinea (except for maximum temperature changes near the SPCZ), in Malaysia, the Philippines, and several outlying Japanese islands. For urbanized stations the dominant change was a change in the mean and variance, impacting on one or both extremes. This result was particularly evident for minimum temperature.The results presented here, for non-urban tropical and maritime locations in the Asia-Pacific region, support the hypothesis that changes in mean temperature may be used to predict changes in extreme temperatures. At urbanized or higher latitude locations, changes in variance should be incorporated.
Robustness analysis of an air heating plant and control law by using polynomial chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colón, Diego; Ferreira, Murillo A. S.; Bueno, Átila M.
2014-12-10
This paper presents a robustness analysis of an air heating plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the air input (that forces the air through the tube) and a mass flux sensor in the output. A heating resistance warms the air as it flows inside the tube, and a thermo-couple sensor measures the air temperature. The plant has thus two inputs (the fan's rotation intensity and heat generated by the resistance, both measured in percent of the maximum value) and two outputsmore » (air temperature and air mass flux, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass flux sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.« less
Obtaining Reliable Predictions of Terrestrial Energy Coupling From Real-Time Solar Wind Measurement
NASA Technical Reports Server (NTRS)
Weimer, Daniel R.
2001-01-01
The first draft of a manuscript titled "Variable time delays in the propagation of the interplanetary magnetic field" has been completed, for submission to the Journal of Geophysical Research. In the preparation of this manuscript all data and analysis programs had been updated to the highest temporal resolution possible, at 16 seconds or better. The program which computes the "measured" IMF propagation time delays from these data has also undergone another improvement. In another significant development, a technique has been developed in order to predict IMF phase plane orientations, and the resulting time delays, using only measurements from a single satellite at L1. The "minimum variance" method is used for this computation. Further work will be done on optimizing the choice of several parameters for the minimum variance calculation.
A Generally Robust Approach for Testing Hypotheses and Setting Confidence Intervals for Effect Sizes
ERIC Educational Resources Information Center
Keselman, H. J.; Algina, James; Lix, Lisa M.; Wilcox, Rand R.; Deering, Kathleen N.
2008-01-01
Standard least squares analysis of variance methods suffer from poor power under arbitrarily small departures from normality and fail to control the probability of a Type I error when standard assumptions are violated. This article describes a framework for robust estimation and testing that uses trimmed means with an approximate degrees of…
NASA Astrophysics Data System (ADS)
Dilla, Shintia Ulfa; Andriyana, Yudhie; Sudartianto
2017-03-01
Acid rain causes many bad effects in life. It is formed by two strong acids, sulfuric acid (H2SO4) and nitric acid (HNO3), where sulfuric acid is derived from SO2 and nitric acid from NOx {x=1,2}. The purpose of the research is to find out the influence of So4 and NO3 levels contained in the rain to the acidity (pH) of rainwater. The data are incomplete panel data with two-way error component model. The panel data is a collection of some of the observations that observed from time to time. It is said incomplete if each individual has a different amount of observation. The model used in this research is in the form of random effects model (REM). Minimum variance quadratic unbiased estimation (MIVQUE) is used to estimate the variance error components, while maximum likelihood estimation is used to estimate the parameters. As a result, we obtain the following model: Ŷ* = 0.41276446 - 0.00107302X1 + 0.00215470X2.
NASA Astrophysics Data System (ADS)
Mayvan, Ali D.; Aghaeinia, Hassan; Kazemi, Mohammad
2017-12-01
This paper focuses on robust transceiver design for throughput enhancement on the interference channel (IC), under imperfect channel state information (CSI). In this paper, two algorithms are proposed to improve the throughput of the multi-input multi-output (MIMO) IC. Each transmitter and receiver has, respectively, M and N antennas and IC operates in a time division duplex mode. In the first proposed algorithm, each transceiver adjusts its filter to maximize the expected value of signal-to-interference-plus-noise ratio (SINR). On the other hand, the second algorithm tries to minimize the variances of the SINRs to hedge against the variability due to CSI error. Taylor expansion is exploited to approximate the effect of CSI imperfection on mean and variance. The proposed robust algorithms utilize the reciprocity of wireless networks to optimize the estimated statistical properties in two different working modes. Monte Carlo simulations are employed to investigate sum rate performance of the proposed algorithms and the advantage of incorporating variation minimization into the transceiver design.
Bias and robustness of uncertainty components estimates in transient climate projections
NASA Astrophysics Data System (ADS)
Hingray, Benoit; Blanchet, Juliette; Jean-Philippe, Vidal
2016-04-01
A critical issue in climate change studies is the estimation of uncertainties in projections along with the contribution of the different uncertainty sources, including scenario uncertainty, the different components of model uncertainty and internal variability. Quantifying the different uncertainty sources faces actually different problems. For instance and for the sake of simplicity, an estimate of model uncertainty is classically obtained from the empirical variance of the climate responses obtained for the different modeling chains. These estimates are however biased. Another difficulty arises from the limited number of members that are classically available for most modeling chains. In this case, the climate response of one given chain and the effect of its internal variability may be actually difficult if not impossible to separate. The estimate of scenario uncertainty, model uncertainty and internal variability components are thus likely to be not really robust. We explore the importance of the bias and the robustness of the estimates for two classical Analysis of Variance (ANOVA) approaches: a Single Time approach (STANOVA), based on the only data available for the considered projection lead time and a time series based approach (QEANOVA), which assumes quasi-ergodicity of climate outputs over the whole available climate simulation period (Hingray and Saïd, 2014). We explore both issues for a simple but classical configuration where uncertainties in projections are composed of two single sources: model uncertainty and internal climate variability. The bias in model uncertainty estimates is explored from theoretical expressions of unbiased estimators developed for both ANOVA approaches. The robustness of uncertainty estimates is explored for multiple synthetic ensembles of time series projections generated with MonteCarlo simulations. For both ANOVA approaches, when the empirical variance of climate responses is used to estimate model uncertainty, the bias is always positive. It can be especially high with STANOVA. In the most critical configurations, when the number of members available for each modeling chain is small (< 3) and when internal variability explains most of total uncertainty variance (75% or more), the overestimation is higher than 100% of the true model uncertainty variance. The bias can be considerably reduced with a time series ANOVA approach, owing to the multiple time steps accounted for. The longer the transient time period used for the analysis, the larger the reduction. When a quasi-ergodic ANOVA approach is applied to decadal data for the whole 1980-2100 period, the bias is reduced by a factor 2.5 to 20 depending on the projection lead time. In all cases, the bias is likely to be not negligible for a large number of climate impact studies resulting in a likely large overestimation of the contribution of model uncertainty to total variance. For both approaches, the robustness of all uncertainty estimates is higher when more members are available, when internal variability is smaller and/or the response-to-uncertainty ratio is higher. QEANOVA estimates are much more robust than STANOVA ones: QEANOVA simulated confidence intervals are roughly 3 to 5 times smaller than STANOVA ones. Excepted for STANOVA when less than 3 members is available, the robustness is rather high for total uncertainty and moderate for internal variability estimates. For model uncertainty or response-to-uncertainty ratio estimates, the robustness is conversely low for QEANOVA to very low for STANOVA. In the most critical configurations (small number of member, large internal variability), large over- or underestimation of uncertainty components is very thus likely. To propose relevant uncertainty analyses and avoid misleading interpretations, estimates of uncertainty components should be therefore bias corrected and ideally come with estimates of their robustness. This work is part of the COMPLEX Project (European Collaborative Project FP7-ENV-2012 number: 308601; http://www.complex.ac.uk/). Hingray, B., Saïd, M., 2014. Partitioning internal variability and model uncertainty components in a multimodel multireplicate ensemble of climate projections. J.Climate. doi:10.1175/JCLI-D-13-00629.1 Hingray, B., Blanchet, J. (revision) Unbiased estimators for uncertainty components in transient climate projections. J. Climate Hingray, B., Blanchet, J., Vidal, J.P. (revision) Robustness of uncertainty components estimates in climate projections. J.Climate
Yadav, Kartikey K; Dasgupta, Kinshuk; Singh, Dhruva K; Varshney, Lalit; Singh, Harvinderpal
2015-03-06
Polyethersulfone-based beads encapsulating di-2-ethylhexyl phosphoric acid have been synthesized and evaluated for the recovery of rare earth values from the aqueous media. Percentage recovery and the sorption behavior of Dy(III) have been investigated under wide range of experimental parameters using these beads. Taguchi method utilizing L-18 orthogonal array has been adopted to identify the most influential process parameters responsible for higher degree of recovery with enhanced sorption of Dy(III) from chloride medium. Analysis of variance indicated that the feed concentration of Dy(III) is the most influential factor for equilibrium sorption capacity, whereas aqueous phase acidity influences the percentage recovery most. The presence of polyvinyl alcohol and multiwalled carbon nanotube modified the internal structure of the composite beads and resulted in uniform distribution of organic extractant inside polymeric matrix. The experiment performed under optimum process conditions as predicted by Taguchi method resulted in enhanced Dy(III) recovery and sorption capacity by polymeric beads with minimum standard deviation. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schaffrin, Burkhard
2008-02-01
In a linear Gauss-Markov model, the parameter estimates from BLUUE (Best Linear Uniformly Unbiased Estimate) are not robust against possible outliers in the observations. Moreover, by giving up the unbiasedness constraint, the mean squared error (MSE) risk may be further reduced, in particular when the problem is ill-posed. In this paper, the α-weighted S-homBLE (Best homogeneously Linear Estimate) is derived via formulas originally used for variance component estimation on the basis of the repro-BIQUUE (reproducing Best Invariant Quadratic Uniformly Unbiased Estimate) principle in a model with stochastic prior information. In the present model, however, such prior information is not included, which allows the comparison of the stochastic approach (α-weighted S-homBLE) with the well-established algebraic approach of Tykhonov-Phillips regularization, also known as R-HAPS (Hybrid APproximation Solution), whenever the inverse of the “substitute matrix” S exists and is chosen as the R matrix that defines the relative impact of the regularizing term on the final result.
Prediction-error variance in Bayesian model updating: a comparative study
NASA Astrophysics Data System (ADS)
Asadollahi, Parisa; Li, Jian; Huang, Yong
2017-04-01
In Bayesian model updating, the likelihood function is commonly formulated by stochastic embedding in which the maximum information entropy probability model of prediction error variances plays an important role and it is Gaussian distribution subject to the first two moments as constraints. The selection of prediction error variances can be formulated as a model class selection problem, which automatically involves a trade-off between the average data-fit of the model class and the information it extracts from the data. Therefore, it is critical for the robustness in the updating of the structural model especially in the presence of modeling errors. To date, three ways of considering prediction error variances have been seem in the literature: 1) setting constant values empirically, 2) estimating them based on the goodness-of-fit of the measured data, and 3) updating them as uncertain parameters by applying Bayes' Theorem at the model class level. In this paper, the effect of different strategies to deal with the prediction error variances on the model updating performance is investigated explicitly. A six-story shear building model with six uncertain stiffness parameters is employed as an illustrative example. Transitional Markov Chain Monte Carlo is used to draw samples of the posterior probability density function of the structure model parameters as well as the uncertain prediction variances. The different levels of modeling uncertainty and complexity are modeled through three FE models, including a true model, a model with more complexity, and a model with modeling error. Bayesian updating is performed for the three FE models considering the three aforementioned treatments of the prediction error variances. The effect of number of measurements on the model updating performance is also examined in the study. The results are compared based on model class assessment and indicate that updating the prediction error variances as uncertain parameters at the model class level produces more robust results especially when the number of measurement is small.
Diallel analysis for sex-linked and maternal effects.
Zhu, J; Weir, B S
1996-01-01
Genetic models including sex-linked and maternal effects as well as autosomal gene effects are described. Monte Carlo simulations were conducted to compare efficiencies of estimation by minimum norm quadratic unbiased estimation (MINQUE) and restricted maximum likelihood (REML) methods. MINQUE(1), which has 1 for all prior values, has a similar efficiency to MINQUE(θ), which requires prior estimates of parameter values. MINQUE(1) has the advantage over REML of unbiased estimation and convenient computation. An adjusted unbiased prediction (AUP) method is developed for predicting random genetic effects. AUP is desirable for its easy computation and unbiasedness of both mean and variance of predictors. The jackknife procedure is appropriate for estimating the sampling variances of estimated variances (or covariances) and of predicted genetic effects. A t-test based on jackknife variances is applicable for detecting significance of variation. Worked examples from mice and silkworm data are given in order to demonstrate variance and covariance estimation and genetic effect prediction.
NASA Astrophysics Data System (ADS)
Gusriani, N.; Firdaniza
2018-03-01
The existence of outliers on multiple linear regression analysis causes the Gaussian assumption to be unfulfilled. If the Least Square method is forcedly used on these data, it will produce a model that cannot represent most data. For that, we need a robust regression method against outliers. This paper will compare the Minimum Covariance Determinant (MCD) method and the TELBS method on secondary data on the productivity of phytoplankton, which contains outliers. Based on the robust determinant coefficient value, MCD method produces a better model compared to TELBS method.
Effects of regulated river flows on habitat suitability for the robust redhorse
Fisk, J. M.; Kwak, Thomas J.; Heise, R. J.
2015-01-01
The Robust Redhorse Moxostoma robustum is a rare and imperiled fish, with wild populations occurring in three drainages from North Carolina to Georgia. Hydroelectric dams have altered the species’ habitat and restricted its range. An augmented minimum-flow regime that will affect Robust Redhorse habitat was recently prescribed for Blewett Falls Dam, a hydroelectric facility on the Pee Dee River, North Carolina. Our objective was to quantify suitable spawning and nonspawning habitat under current and proposed minimum-flow regimes. We implanted radio transmitters into 27 adult Robust Redhorses and relocated the fish from spring 2008 to summer 2009, and we described habitat at 15 spawning capture locations. Nonspawning habitat consisted of deep, slow-moving pools (mean depth D 2.3 m; mean velocity D 0.23 m/s), bedrock and sand substrates, and boulders or coarse woody debris as cover. Spawning habitat was characterized as shallower, faster-moving water (mean depth D 0.84 m; mean velocity D 0.61 m/s) with gravel and cobble as substrates and boulders as cover associated with shoals. Telemetry relocations revealed two behavioral subgroups: a resident subgroup (linear range [mean § SE] D 7.9 § 3.7 river kilometers [rkm]) that remained near spawning areas in the Piedmont region throughout the year; and a migratory subgroup (linear range D 64.3 § 8.4 rkm) that migrated extensively downstream into the Coastal Plain region. Spawning and nonspawning habitat suitability indices were developed based on field microhabitat measurements and were applied to model suitable available habitat (weighted usable area) for current and proposed augmented minimum flows. Suitable habitat (both spawning and nonspawning) increased for each proposed seasonal minimum flow relative to former minimum flows, with substantial increases for spawning sites. Our results contribute to an understanding of how regulated flows affect available habitats for imperiled species. Flow managers can use these findings to regulate discharge more effectively and to create and maintain important habitats during critical periods for priority species.
Minimum number of measurements for evaluating Bertholletia excelsa.
Baldoni, A B; Tonini, H; Tardin, F D; Botelho, S C C; Teodoro, P E
2017-09-27
Repeatability studies on fruit species are of great importance to identify the minimum number of measurements necessary to accurately select superior genotypes. This study aimed to identify the most efficient method to estimate the repeatability coefficient (r) and predict the minimum number of measurements needed for a more accurate evaluation of Brazil nut tree (Bertholletia excelsa) genotypes based on fruit yield. For this, we assessed the number of fruits and dry mass of seeds of 75 Brazil nut genotypes, from native forest, located in the municipality of Itaúba, MT, for 5 years. To better estimate r, four procedures were used: analysis of variance (ANOVA), principal component analysis based on the correlation matrix (CPCOR), principal component analysis based on the phenotypic variance and covariance matrix (CPCOV), and structural analysis based on the correlation matrix (mean r - AECOR). There was a significant effect of genotypes and measurements, which reveals the need to study the minimum number of measurements for selecting superior Brazil nut genotypes for a production increase. Estimates of r by ANOVA were lower than those observed with the principal component methodology and close to AECOR. The CPCOV methodology provided the highest estimate of r, which resulted in a lower number of measurements needed to identify superior Brazil nut genotypes for the number of fruits and dry mass of seeds. Based on this methodology, three measurements are necessary to predict the true value of the Brazil nut genotypes with a minimum accuracy of 85%.
Tsou, Tsung-Shan
2007-03-30
This paper introduces an exploratory way to determine how variance relates to the mean in generalized linear models. This novel method employs the robust likelihood technique introduced by Royall and Tsou.A urinary data set collected by Ginsberg et al. and the fabric data set analysed by Lee and Nelder are considered to demonstrate the applicability and simplicity of the proposed technique. Application of the proposed method could easily reveal a mean-variance relationship that would generally be left unnoticed, or that would require more complex modelling to detect. Copyright (c) 2006 John Wiley & Sons, Ltd.
2012-04-30
tool that provides a means of balancing capability development against cost and interdependent risks through the use of modern portfolio theory ...Focardi, 2007; Tutuncu & Cornuejols, 2007) that are extensions of modern portfolio and control theory . The reformulation allows for possible changes...Acquisition: Wave Model context • An Investment Portfolio Approach – Mean Variance Approach – Mean - Variance : A Robust Version • Concept
On the design of classifiers for crop inventories
NASA Technical Reports Server (NTRS)
Heydorn, R. P.; Takacs, H. C.
1986-01-01
Crop proportion estimators that use classifications of satellite data to correct, in an additive way, a given estimate acquired from ground observations are discussed. A linear version of these estimators is optimal, in terms of minimum variance, when the regression of the ground observations onto the satellite observations in linear. When this regression is not linear, but the reverse regression (satellite observations onto ground observations) is linear, the estimator is suboptimal but still has certain appealing variance properties. In this paper expressions are derived for those regressions which relate the intercepts and slopes to conditional classification probabilities. These expressions are then used to discuss the question of classifier designs that can lead to low-variance crop proportion estimates. Variance expressions for these estimates in terms of classifier omission and commission errors are also derived.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S; Markel, D; Hegyi, G
2016-06-15
Purpose: The reliability of computed tomography (CT) textures is an important element of radiomics analysis. This study investigates the dependency of lung CT textures on different breathing phases and changes in CT image acquisition protocols in a realistic phantom setting. Methods: We investigated 11 CT texture features for radiation-induced lung disease from 3 categories (first-order, grey level co-ocurrence matrix (GLCM), and Law’s filter). A biomechanical swine lung phantom was scanned at two breathing phases (inhale/exhale) and two scanning protocols set for PET/CT and diagnostic CT scanning. Lung volumes acquired from the CT images were divided into 2-dimensional sub-regions with amore » grid spacing of 31 mm. The distribution of the evaluated texture features from these sub-regions were compared between the two scanning protocols and two breathing phases. The significance of each factor on feature values were tested at 95% significance level using analysis of covariance (ANCOVA) model with interaction terms included. Robustness of a feature to a scanning factor was defined as non-significant dependence on the factor. Results: Three GLCM textures (variance, sum entropy, difference entropy) were robust to breathing changes. Two GLCM (variance, sum entropy) and 3 Law’s filter textures (S5L5, E5L5, W5L5) were robust to scanner changes. Moreover, the two GLCM textures (variance, sum entropy) were consistent across all 4 scanning conditions. First-order features, especially Hounsfield unit intensity features, presented the most drastic variation up to 39%. Conclusion: Amongst the studied features, GLCM and Law’s filter texture features were more robust than first-order features. However, the majority of the features were modified by either breathing phase or scanner changes, suggesting a need for calibration when retrospectively comparing scans obtained at different conditions. Further investigation is necessary to identify the sensitivity of individual image acquisition parameters.« less
Workers' compensation costs among construction workers: a robust regression analysis.
Friedman, Lee S; Forst, Linda S
2009-11-01
Workers' compensation data are an important source for evaluating costs associated with construction injuries. We describe the characteristics of injured construction workers filing claims in Illinois between 2000 and 2005 and the factors associated with compensation costs using a robust regression model. In the final multivariable model, the cumulative percent temporary and permanent disability-measures of severity of injury-explained 38.7% of the variance of cost. Attorney costs explained only 0.3% of the variance of the dependent variable. The model used in this study clearly indicated that percent disability was the most important determinant of cost, although the method and uniformity of percent impairment allocation could be better elucidated. There is a need to integrate analytical methods that are suitable for skewed data when analyzing claim costs.
Gupta, Himanshu; Schiros, Chun G; Sharifov, Oleg F; Jain, Apurva; Denney, Thomas S
2016-08-31
Recently released American College of Cardiology/American Heart Association (ACC/AHA) guideline recommends the Pooled Cohort equations for evaluating atherosclerotic cardiovascular risk of individuals. The impact of the clinical input variable uncertainties on the estimates of ten-year cardiovascular risk based on ACC/AHA guidelines is not known. Using a publicly available the National Health and Nutrition Examination Survey dataset (2005-2010), we computed maximum and minimum ten-year cardiovascular risks by assuming clinically relevant variations/uncertainties in input of age (0-1 year) and ±10 % variation in total-cholesterol, high density lipoprotein- cholesterol, and systolic blood pressure and by assuming uniform distribution of the variance of each variable. We analyzed the changes in risk category compared to the actual inputs at 5 % and 7.5 % risk limits as these limits define the thresholds for consideration of drug therapy in the new guidelines. The new-pooled cohort equations for risk estimation were implemented in a custom software package. Based on our input variances, changes in risk category were possible in up to 24 % of the population cohort at both 5 % and 7.5 % risk boundary limits. This trend was consistently noted across all subgroups except in African American males where most of the cohort had ≥7.5 % baseline risk regardless of the variation in the variables. The uncertainties in the input variables can alter the risk categorization. The impact of these variances on the ten-year risk needs to be incorporated into the patient/clinician discussion and clinical decision making. Incorporating good clinical practices for the measurement of critical clinical variables and robust standardization of laboratory parameters to more stringent reference standards is extremely important for successful implementation of the new guidelines. Furthermore, ability to customize the risk calculator inputs to better represent unique clinical circumstances specific to individual needs would be highly desirable in the future versions of the risk calculator.
ERIC Educational Resources Information Center
Algina, James; Keselman, H. J.; Penfield, Randall D.
2005-01-01
The authors argue that a robust version of Cohen's effect size constructed by replacing population means with 20% trimmed means and the population standard deviation with the square root of a 20% Winsorized variance is a better measure of population separation than is Cohen's effect size. The authors investigated coverage probability for…
Inverse Optimization: A New Perspective on the Black-Litterman Model.
Bertsimas, Dimitris; Gupta, Vishal; Paschalidis, Ioannis Ch
2012-12-11
The Black-Litterman (BL) model is a widely used asset allocation model in the financial industry. In this paper, we provide a new perspective. The key insight is to replace the statistical framework in the original approach with ideas from inverse optimization. This insight allows us to significantly expand the scope and applicability of the BL model. We provide a richer formulation that, unlike the original model, is flexible enough to incorporate investor information on volatility and market dynamics. Equally importantly, our approach allows us to move beyond the traditional mean-variance paradigm of the original model and construct "BL"-type estimators for more general notions of risk such as coherent risk measures. Computationally, we introduce and study two new "BL"-type estimators and their corresponding portfolios: a Mean Variance Inverse Optimization (MV-IO) portfolio and a Robust Mean Variance Inverse Optimization (RMV-IO) portfolio. These two approaches are motivated by ideas from arbitrage pricing theory and volatility uncertainty. Using numerical simulation and historical backtesting, we show that both methods often demonstrate a better risk-reward tradeoff than their BL counterparts and are more robust to incorrect investor views.
Biochemical phenotypes to discriminate microbial subpopulations and improve outbreak detection.
Galar, Alicia; Kulldorff, Martin; Rudnick, Wallis; O'Brien, Thomas F; Stelling, John
2013-01-01
Clinical microbiology laboratories worldwide constitute an invaluable resource for monitoring emerging threats and the spread of antimicrobial resistance. We studied the growing number of biochemical tests routinely performed on clinical isolates to explore their value as epidemiological markers. Microbiology laboratory results from January 2009 through December 2011 from a 793-bed hospital stored in WHONET were examined. Variables included patient location, collection date, organism, and 47 biochemical and 17 antimicrobial susceptibility test results reported by Vitek 2. To identify biochemical tests that were particularly valuable (stable with repeat testing, but good variability across the species) or problematic (inconsistent results with repeat testing), three types of variance analyses were performed on isolates of K. pneumonia: descriptive analysis of discordant biochemical results in same-day isolates, an average within-patient variance index, and generalized linear mixed model variance component analysis. 4,200 isolates of K. pneumoniae were identified from 2,485 patients, 32% of whom had multiple isolates. The first two variance analyses highlighted SUCT, TyrA, GlyA, and GGT as "nuisance" biochemicals for which discordant within-patient test results impacted a high proportion of patient results, while dTAG had relatively good within-patient stability with good heterogeneity across the species. Variance component analyses confirmed the relative stability of dTAG, and identified additional biochemicals such as PHOS with a large between patient to within patient variance ratio. A reduced subset of biochemicals improved the robustness of strain definition for carbapenem-resistant K. pneumoniae. Surveillance analyses suggest that the reduced biochemical profile could improve the timeliness and specificity of outbreak detection algorithms. The statistical approaches explored can improve the robust recognition of microbial subpopulations with routinely available biochemical test results, of value in the timely detection of outbreak clones and evolutionarily important genetic events.
Robust portfolio selection based on asymmetric measures of variability of stock returns
NASA Astrophysics Data System (ADS)
Chen, Wei; Tan, Shaohua
2009-10-01
This paper addresses a new uncertainty set--interval random uncertainty set for robust optimization. The form of interval random uncertainty set makes it suitable for capturing the downside and upside deviations of real-world data. These deviation measures capture distributional asymmetry and lead to better optimization results. We also apply our interval random chance-constrained programming to robust mean-variance portfolio selection under interval random uncertainty sets in the elements of mean vector and covariance matrix. Numerical experiments with real market data indicate that our approach results in better portfolio performance.
Minimum-variance Brownian motion control of an optically trapped probe.
Huang, Yanan; Zhang, Zhipeng; Menq, Chia-Hsiang
2009-10-20
This paper presents a theoretical and experimental investigation of the Brownian motion control of an optically trapped probe. The Langevin equation is employed to describe the motion of the probe experiencing random thermal force and optical trapping force. Since active feedback control is applied to suppress the probe's Brownian motion, actuator dynamics and measurement delay are included in the equation. The equation of motion is simplified to a first-order linear differential equation and transformed to a discrete model for the purpose of controller design and data analysis. The derived model is experimentally verified by comparing the model prediction to the measured response of a 1.87 microm trapped probe subject to proportional control. It is then employed to design the optimal controller that minimizes the variance of the probe's Brownian motion. Theoretical analysis is derived to evaluate the control performance of a specific optical trap. Both experiment and simulation are used to validate the design as well as theoretical analysis, and to illustrate the performance envelope of the active control. Moreover, adaptive minimum variance control is implemented to maintain the optimal performance in the case in which the system is time varying when operating the actively controlled optical trap in a complex environment.
Moss, Marshall E.; Gilroy, Edward J.
1980-01-01
This report describes the theoretical developments and illustrates the applications of techniques that recently have been assembled to analyze the cost-effectiveness of federally funded stream-gaging activities in support of the Colorado River compact and subsequent adjudications. The cost effectiveness of 19 stream gages in terms of minimizing the sum of the variances of the errors of estimation of annual mean discharge is explored by means of a sequential-search optimization scheme. The search is conducted over a set of decision variables that describes the number of times that each gaging route is traveled in a year. A gage route is defined as the most expeditious circuit that is made from a field office to visit one or more stream gages and return to the office. The error variance is defined as a function of the frequency of visits to a gage by using optimal estimation theory. Currently a minimum of 12 visits per year is made to any gage. By changing to a six-visit minimum, the same total error variance can be attained for the 19 stations with a budget of 10% less than the current one. Other strategies are also explored. (USGS)
River meanders - Theory of minimum variance
Langbein, Walter Basil; Leopold, Luna Bergere
1966-01-01
Meanders are the result of erosion-deposition processes tending toward the most stable form in which the variability of certain essential properties is minimized. This minimization involves the adjustment of the planimetric geometry and the hydraulic factors of depth, velocity, and local slope.The planimetric geometry of a meander is that of a random walk whose most frequent form minimizes the sum of the squares of the changes in direction in each successive unit length. The direction angles are then sine functions of channel distance. This yields a meander shape typically present in meandering rivers and has the characteristic that the ratio of meander length to average radius of curvature in the bend is 4.7.Depth, velocity, and slope are shown by field observations to be adjusted so as to decrease the variance of shear and the friction factor in a meander curve over that in an otherwise comparable straight reach of the same riverSince theory and observation indicate meanders achieve the minimum variance postulated, it follows that for channels in which alternating pools and riffles occur, meandering is the most probable form of channel geometry and thus is more stable geometry than a straight or nonmeandering alinement.
Point focusing using loudspeaker arrays from the perspective of optimal beamforming.
Bai, Mingsian R; Hsieh, Yu-Hao
2015-06-01
Sound focusing is to create a concentrated acoustic field in the region surrounded by a loudspeaker array. This problem was tackled in the previous research via the Helmholtz integral approach, brightness control, acoustic contrast control, etc. In this paper, the same problem was revisited from the perspective of beamforming. A source array model is reformulated in terms of the steering matrix between the source and the field points, which lends itself to the use of beamforming algorithms such as minimum variance distortionless response (MVDR) and linearly constrained minimum variance (LCMV) originally intended for sensor arrays. The beamforming methods are compared with the conventional methods in terms of beam pattern, directional index, and control effort. Objective tests are conducted to assess the audio quality by using perceptual evaluation of audio quality (PEAQ). Experiments of produced sound field and listening tests are conducted in a listening room, with results processed using analysis of variance and regression analysis. In contrast to the conventional energy-based methods, the results have shown that the proposed methods are phase-sensitive in light of the distortionless constraint in formulating the array filters, which helps enhance audio quality and focusing performance.
RFI in hybrid loops - Simulation and experimental results.
NASA Technical Reports Server (NTRS)
Ziemer, R. E.; Nelson, D. R.; Raghavan, H. R.
1972-01-01
A digital simulation of an imperfect second-order hybrid phase-locked loop (HPLL) operating in radio frequency interference (RFI) is described. Its performance is characterized in terms of phase error variance and phase error probability density function (PDF). Monte-Carlo simulation is used to show that the HPLL can be superior to the conventional phase-locked loops in RFI backgrounds when minimum phase error variance is the goodness criterion. Similar experimentally obtained data are given in support of the simulation data.
NASA Astrophysics Data System (ADS)
Mozaffarzadeh, Moein; Mahloojifar, Ali; Nasiriavanaki, Mohammadreza; Orooji, Mahdi
2018-02-01
Delay and sum (DAS) is the most common beamforming algorithm in linear-array photoacoustic imaging (PAI) as a result of its simple implementation. However, it leads to a low resolution and high sidelobes. Delay multiply and sum (DMAS) was used to address the incapabilities of DAS, providing a higher image quality. However, the resolution improvement is not well enough compared to eigenspace-based minimum variance (EIBMV). In this paper, the EIBMV beamformer has been combined with DMAS algebra, called EIBMV-DMAS, using the expansion of DMAS algorithm. The proposed method is used as the reconstruction algorithm in linear-array PAI. EIBMV-DMAS is experimentally evaluated where the quantitative and qualitative results show that it outperforms DAS, DMAS and EIBMV. The proposed method degrades the sidelobes for about 365 %, 221 % and 40 %, compared to DAS, DMAS and EIBMV, respectively. Moreover, EIBMV-DMAS improves the SNR about 158 %, 63 % and 20 %, respectively.
Xiao, Mengli; Zhang, Yongbo; Fu, Huimin; Wang, Zhihua
2018-05-01
High-precision navigation algorithm is essential for the future Mars pinpoint landing mission. The unknown inputs caused by large uncertainties of atmospheric density and aerodynamic coefficients as well as unknown measurement biases may cause large estimation errors of conventional Kalman filters. This paper proposes a derivative-free version of nonlinear unbiased minimum variance filter for Mars entry navigation. This filter has been designed to solve this problem by estimating the state and unknown measurement biases simultaneously with derivative-free character, leading to a high-precision algorithm for the Mars entry navigation. IMU/radio beacons integrated navigation is introduced in the simulation, and the result shows that with or without radio blackout, our proposed filter could achieve an accurate state estimation, much better than the conventional unscented Kalman filter, showing the ability of high-precision Mars entry navigation algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Charged particle tracking at Titan, and further applications
NASA Astrophysics Data System (ADS)
Bebesi, Zsofia; Erdos, Geza; Szego, Karoly
2016-04-01
We use the CAPS ion data of Cassini to investigate the dynamics and origin of Titan's atmospheric ions. We developed a 4th order Runge-Kutta method to calculate particle trajectories in a time reversed scenario. The test particle magnetic field environment imitates the curved magnetic environment in the vicinity of Titan. The minimum variance directions along the S/C trajectory have been calculated for all available Titan flybys, and we assumed a homogeneous field that is perpendicular to the minimum variance direction. Using this method the magnetic field lines have been calculated along the flyby orbits so we could select those observational intervals when Cassini and the upper atmosphere of Titan were magnetically connected. We have also taken the Kronian magnetodisc into consideration, and used different upstream magnetic field approximations depending on whether Titan was located inside of the magnetodisc current sheet, or in the lobe regions. We also discuss the code's applicability to comets.
Microstructure of the IMF turbulences at 2.5 AU
NASA Technical Reports Server (NTRS)
Mavromichalaki, H.; Vassilaki, A.; Marmatsouri, L.; Moussas, X.; Quenby, J. J.; Smith, E. J.
1995-01-01
A detailed analysis of small period (15-900 sec) magnetohydrodynamic (MHD) turbulences of the interplanetary magnetic field (IMF) has been made using Pioneer-11 high time resolution data (0.75 sec) inside a Corotating Interaction Region (CIR) at a heliocentric distance of 2.5 AU in 1973. The methods used are the hodogram analysis, the minimum variance matrix analysis and the cohenrence analysis. The minimum variance analysis gives evidence of linear polarized wave modes. Coherence analysis has shown that the field fluctuations are dominated by the magnetosonic fast modes with periods 15 sec to 15 min. However, it is also shown that some small amplitude Alfven waves are present in the trailing edge of this region with characteristic periods (15-200 sec). The observed wave modes are locally generated and possibly attributed to the scattering of Alfven waves energy into random magnetosonic waves.
Optical tomographic detection of rheumatoid arthritis with computer-aided classification schemes
NASA Astrophysics Data System (ADS)
Klose, Christian D.; Klose, Alexander D.; Netz, Uwe; Beuthan, Jürgen; Hielscher, Andreas H.
2009-02-01
A recent research study has shown that combining multiple parameters, drawn from optical tomographic images, leads to better classification results to identifying human finger joints that are affected or not affected by rheumatic arthritis RA. Building up on the research findings of the previous study, this article presents an advanced computer-aided classification approach for interpreting optical image data to detect RA in finger joints. Additional data are used including, for example, maximum and minimum values of the absorption coefficient as well as their ratios and image variances. Classification performances obtained by the proposed method were evaluated in terms of sensitivity, specificity, Youden index and area under the curve AUC. Results were compared to different benchmarks ("gold standard"): magnet resonance, ultrasound and clinical evaluation. Maximum accuracies (AUC=0.88) were reached when combining minimum/maximum-ratios and image variances and using ultrasound as gold standard.
A robust ordering strategy for retailers facing a free shipping option.
Meng, Qing-chun; Wan, Xiao-le; Rong, Xiao-xia
2015-01-01
Free shipping with conditions has become one of the most effective marketing tools available. An increasing number of companies, especially e-businesses, prefer to offer free shipping with some predetermined condition, such as a minimum purchase amount by the customer. However, in practice, the demands of buyers are uncertain; they are often affected by many factors, such as the weather and season. We begin by modeling the centralized ordering problem in which the supplier offers a free shipping service and retailers face stochastic demands. As these random data are considered, only partial information such as the known mean, support, and deviation is needed. The model is then analyzed via a robust optimization method, and the two types of equivalent sets of uncertainty constraints that are obtained provide good mathematical properties with consideration of the robustness of solutions. Subsequently, a numerical example is used to compare the results achieved from a robust optimization method and the linear decision rules. Additionally, the robustness of the optimal solution is discussed, as it is affected by the minimum quantity parameters. The increasing cost-threshold relationship is divided into three periods. In addition, the case study shows that the proposed method achieves better stability as well as computational complexity.
NASA Astrophysics Data System (ADS)
Dziekan, Thomas; Weissbach, Carmen; Voigt, Jan; Ebert, Bernd; MacDonald, Rainer; Bahner, Malte L.; Mahler, Marianne; Schirner, Michael; Berliner, Michael; Berliner, Birgitt; Osel, Jens; Osel, Ilka
2011-07-01
Fluorescence imaging using the dye indocyanine green as a contrast agent was investigated in a prospective clinical study for the detection of rheumatoid arthritis. Normalized variances of correlated time series of fluorescence intensities describing the bolus kinetics of the contrast agent in certain regions of interest were analyzed to differentiate healthy from inflamed finger joints. These values are determined using a robust, parameter-free algorithm. We found that the normalized variance of correlation functions improves the differentiation between healthy joints of volunteers and joints with rheumatoid arthritis of patients by about 10% compared to, e.g., ratios of areas under the curves of raw data.
Robust optimization of supersonic ORC nozzle guide vanes
NASA Astrophysics Data System (ADS)
Bufi, Elio A.; Cinnella, Paola
2017-03-01
An efficient Robust Optimization (RO) strategy is developed for the design of 2D supersonic Organic Rankine Cycle turbine expanders. The dense gas effects are not-negligible for this application and they are taken into account describing the thermodynamics by means of the Peng-Robinson-Stryjek-Vera equation of state. The design methodology combines an Uncertainty Quantification (UQ) loop based on a Bayesian kriging model of the system response to the uncertain parameters, used to approximate statistics (mean and variance) of the uncertain system output, a CFD solver, and a multi-objective non-dominated sorting algorithm (NSGA), also based on a Kriging surrogate of the multi-objective fitness function, along with an adaptive infill strategy for surrogate enrichment at each generation of the NSGA. The objective functions are the average and variance of the isentropic efficiency. The blade shape is parametrized by means of a Free Form Deformation (FFD) approach. The robust optimal blades are compared to the baseline design (based on the Method of Characteristics) and to a blade obtained by means of a deterministic CFD-based optimization.
Extensions of output variance constrained controllers to hard constraints
NASA Technical Reports Server (NTRS)
Skelton, R.; Zhu, G.
1989-01-01
Covariance Controllers assign specified matrix values to the state covariance. A number of robustness results are directly related to the covariance matrix. The conservatism in known upperbounds on the H infinity, L infinity, and L (sub 2) norms for stability and disturbance robustness of linear uncertain systems using covariance controllers is illustrated with examples. These results are illustrated for continuous and discrete time systems. **** ONLY 2 BLOCK MARKERS FOUND -- RETRY *****
Effect size measures in a two-independent-samples case with nonnormal and nonhomogeneous data.
Li, Johnson Ching-Hong
2016-12-01
In psychological science, the "new statistics" refer to the new statistical practices that focus on effect size (ES) evaluation instead of conventional null-hypothesis significance testing (Cumming, Psychological Science, 25, 7-29, 2014). In a two-independent-samples scenario, Cohen's (1988) standardized mean difference (d) is the most popular ES, but its accuracy relies on two assumptions: normality and homogeneity of variances. Five other ESs-the unscaled robust d (d r * ; Hogarty & Kromrey, 2001), scaled robust d (d r ; Algina, Keselman, & Penfield, Psychological Methods, 10, 317-328, 2005), point-biserial correlation (r pb ; McGrath & Meyer, Psychological Methods, 11, 386-401, 2006), common-language ES (CL; Cliff, Psychological Bulletin, 114, 494-509, 1993), and nonparametric estimator for CL (A w ; Ruscio, Psychological Methods, 13, 19-30, 2008)-may be robust to violations of these assumptions, but no study has systematically evaluated their performance. Thus, in this simulation study the performance of these six ESs was examined across five factors: data distribution, sample, base rate, variance ratio, and sample size. The results showed that A w and d r were generally robust to these violations, and A w slightly outperformed d r . Implications for the use of A w and d r in real-world research are discussed.
Lu, Xinjiang; Liu, Wenbo; Zhou, Chuang; Huang, Minghui
2017-06-13
The least-squares support vector machine (LS-SVM) is a popular data-driven modeling method and has been successfully applied to a wide range of applications. However, it has some disadvantages, including being ineffective at handling non-Gaussian noise as well as being sensitive to outliers. In this paper, a robust LS-SVM method is proposed and is shown to have more reliable performance when modeling a nonlinear system under conditions where Gaussian or non-Gaussian noise is present. The construction of a new objective function allows for a reduction of the mean of the modeling error as well as the minimization of its variance, and it does not constrain the mean of the modeling error to zero. This differs from the traditional LS-SVM, which uses a worst-case scenario approach in order to minimize the modeling error and constrains the mean of the modeling error to zero. In doing so, the proposed method takes the modeling error distribution information into consideration and is thus less conservative and more robust in regards to random noise. A solving method is then developed in order to determine the optimal parameters for the proposed robust LS-SVM. An additional analysis indicates that the proposed LS-SVM gives a smaller weight to a large-error training sample and a larger weight to a small-error training sample, and is thus more robust than the traditional LS-SVM. The effectiveness of the proposed robust LS-SVM is demonstrated using both artificial and real life cases.
Estimation of bias and variance of measurements made from tomography scans
NASA Astrophysics Data System (ADS)
Bradley, Robert S.
2016-09-01
Tomographic imaging modalities are being increasingly used to quantify internal characteristics of objects for a wide range of applications, from medical imaging to materials science research. However, such measurements are typically presented without an assessment being made of their associated variance or confidence interval. In particular, noise in raw scan data places a fundamental lower limit on the variance and bias of measurements made on the reconstructed 3D volumes. In this paper, the simulation-extrapolation technique, which was originally developed for statistical regression, is adapted to estimate the bias and variance for measurements made from a single scan. The application to x-ray tomography is considered in detail and it is demonstrated that the technique can also allow the robustness of automatic segmentation strategies to be compared.
Effect of non-normality on test statistics for one-way independent groups designs.
Cribbie, Robert A; Fiksenbaum, Lisa; Keselman, H J; Wilcox, Rand R
2012-02-01
The data obtained from one-way independent groups designs is typically non-normal in form and rarely equally variable across treatment populations (i.e., population variances are heterogeneous). Consequently, the classical test statistic that is used to assess statistical significance (i.e., the analysis of variance F test) typically provides invalid results (e.g., too many Type I errors, reduced power). For this reason, there has been considerable interest in finding a test statistic that is appropriate under conditions of non-normality and variance heterogeneity. Previously recommended procedures for analysing such data include the James test, the Welch test applied either to the usual least squares estimators of central tendency and variability, or the Welch test with robust estimators (i.e., trimmed means and Winsorized variances). A new statistic proposed by Krishnamoorthy, Lu, and Mathew, intended to deal with heterogeneous variances, though not non-normality, uses a parametric bootstrap procedure. In their investigation of the parametric bootstrap test, the authors examined its operating characteristics under limited conditions and did not compare it to the Welch test based on robust estimators. Thus, we investigated how the parametric bootstrap procedure and a modified parametric bootstrap procedure based on trimmed means perform relative to previously recommended procedures when data are non-normal and heterogeneous. The results indicated that the tests based on trimmed means offer the best Type I error control and power when variances are unequal and at least some of the distribution shapes are non-normal. © 2011 The British Psychological Society.
Robust geostatistical analysis of spatial data
NASA Astrophysics Data System (ADS)
Papritz, Andreas; Künsch, Hans Rudolf; Schwierz, Cornelia; Stahel, Werner A.
2013-04-01
Most of the geostatistical software tools rely on non-robust algorithms. This is unfortunate, because outlying observations are rather the rule than the exception, in particular in environmental data sets. Outliers affect the modelling of the large-scale spatial trend, the estimation of the spatial dependence of the residual variation and the predictions by kriging. Identifying outliers manually is cumbersome and requires expertise because one needs parameter estimates to decide which observation is a potential outlier. Moreover, inference after the rejection of some observations is problematic. A better approach is to use robust algorithms that prevent automatically that outlying observations have undue influence. Former studies on robust geostatistics focused on robust estimation of the sample variogram and ordinary kriging without external drift. Furthermore, Richardson and Welsh (1995) proposed a robustified version of (restricted) maximum likelihood ([RE]ML) estimation for the variance components of a linear mixed model, which was later used by Marchant and Lark (2007) for robust REML estimation of the variogram. We propose here a novel method for robust REML estimation of the variogram of a Gaussian random field that is possibly contaminated by independent errors from a long-tailed distribution. It is based on robustification of estimating equations for the Gaussian REML estimation (Welsh and Richardson, 1997). Besides robust estimates of the parameters of the external drift and of the variogram, the method also provides standard errors for the estimated parameters, robustified kriging predictions at both sampled and non-sampled locations and kriging variances. Apart from presenting our modelling framework, we shall present selected simulation results by which we explored the properties of the new method. This will be complemented by an analysis a data set on heavy metal contamination of the soil in the vicinity of a metal smelter. Marchant, B.P. and Lark, R.M. 2007. Robust estimation of the variogram by residual maximum likelihood. Geoderma 140: 62-72. Richardson, A.M. and Welsh, A.H. 1995. Robust restricted maximum likelihood in mixed linear models. Biometrics 51: 1429-1439. Welsh, A.H. and Richardson, A.M. 1997. Approaches to the robust estimation of mixed models. In: Handbook of Statistics Vol. 15, Elsevier, pp. 343-384.
Robust guaranteed-cost adaptive quantum phase estimation
NASA Astrophysics Data System (ADS)
Roy, Shibdas; Berry, Dominic W.; Petersen, Ian R.; Huntington, Elanor H.
2017-05-01
Quantum parameter estimation plays a key role in many fields like quantum computation, communication, and metrology. Optimal estimation allows one to achieve the most precise parameter estimates, but requires accurate knowledge of the model. Any inevitable uncertainty in the model parameters may heavily degrade the quality of the estimate. It is therefore desired to make the estimation process robust to such uncertainties. Robust estimation was previously studied for a varying phase, where the goal was to estimate the phase at some time in the past, using the measurement results from both before and after that time within a fixed time interval up to current time. Here, we consider a robust guaranteed-cost filter yielding robust estimates of a varying phase in real time, where the current phase is estimated using only past measurements. Our filter minimizes the largest (worst-case) variance in the allowable range of the uncertain model parameter(s) and this determines its guaranteed cost. It outperforms in the worst case the optimal Kalman filter designed for the model with no uncertainty, which corresponds to the center of the possible range of the uncertain parameter(s). Moreover, unlike the Kalman filter, our filter in the worst case always performs better than the best achievable variance for heterodyne measurements, which we consider as the tolerable threshold for our system. Furthermore, we consider effective quantum efficiency and effective noise power, and show that our filter provides the best results by these measures in the worst case.
Curative procedures of oral health and structural characteristics of primary dental care.
Baumgarten, Alexandre; Hugo, Fernando Neves; Bulgarelli, Alexandre Fávero; Hilgert, Juliana Balbinot
2018-04-09
To evaluate if the provision of clinical dental care, by means of the main curative procedures recommended in Primary Health Care, is associated with team structural characteristics, considering the presence of a minimum set of equipment, instrument, and supplies in Brazil's primary health care services. A cross-sectional exploratory study based on data collected from 18,114 primary healthcare services with dental health teams in Brazil, in 2014. The outcome was created from the confirmation of five clinical procedures performed by the dentist, accounting for the presence of minimum equipment, instrument, and supplies to carry them out. Covariables were related to structural characteristics. Poisson regression with robust variance was used to obtain crude and adjusted prevalence ratios, with 95% confidence intervals. A total of 1,190 (6.5%) dental health teams did not present the minimum equipment to provide clinical dental care and only 2,498 (14.8%) had all the instrument and supplies needed and provided the five curative procedures assessed. There was a positive association between the outcome and the composition of dental health teams, higher workload, performing analysis of health condition, and monitoring of oral health indicators. Additionally, the dental health teams that planned and programmed oral health actions with the primary care team monthly provided the procedures more frequently. Dentists with better employment status, career plans, graduation in public health or those who underwent permanent education activities provided the procedures more frequently. A relevant number of Primary Health Care services did not have the infrastructure to provide clinical dental care. However, better results were found in dental health teams with oral health technicians, with higher workload and that plan their activities, as well as in those that employed dentists with better working relationships, who had dentists with degrees in public health and who underwent permanent education activities.
Kaufman, Michelle R; Patel, Eshan U; Dam, Kim H; Packman, Zoe R; Van Lith, Lynn M; Hatzold, Karin; Marcell, Arik V; Mavhu, Webster; Kahabuka, Catherine; Mahlasela, Lusanda; Njeuhmeli, Emmanuel; Seifert Ahanda, Kim; Ncube, Getrude; Lija, Gissenge; Bonnecwe, Collen; Tobian, Aaron A R
2018-04-03
The minimum package of voluntary medical male circumcision (VMMC) services, as defined by the World Health Organization, includes human immunodeficiency virus (HIV) testing, HIV prevention counseling, screening/treatment for sexually transmitted infections, condom promotion, and the VMMC procedure. The current study aimed to assess whether adolescents received these key elements. Quantitative surveys were conducted among male adolescents aged 10-19 years (n = 1293) seeking VMMC in South Africa, Tanzania, and Zimbabwe. We used a summative index score of 8 self-reported binary items to measure receipt of important elements of the World Health Organization-recommended HIV minimum package and the US President's Emergency Plan for AIDS Relief VMMC recommendations. Counseling sessions were observed for a subset of adolescents (n = 44). To evaluate factors associated with counseling content, we used Poisson regression models with generalized estimating equations and robust variance estimation. Although counseling included VMMC benefits, little attention was paid to risks, including how to identify complications, what to do if they arise, and why avoiding sex and masturbation could prevent complications. Overall, older adolescents (aged 15-19 years) reported receiving more items in the recommended minimum package than younger adolescents (aged 10-14 years; adjusted β, 0.17; 95% confidence interval [CI], .12-.21; P < .001). Older adolescents were also more likely to report receiving HIV test education and promotion (42.7% vs 29.5%; adjusted prevalence ratio [aPR], 1.53; 95% CI, 1.16-2.02) and a condom demonstration with condoms to take home (16.8% vs 4.4%; aPR, 2.44; 95% CI, 1.30-4.58). No significant age differences appeared in reports of explanations of VMMC risks and benefits or uptake of HIV testing. These self-reported findings were confirmed during counseling observations. Moving toward age-equitable HIV prevention services during adolescent VMMC likely requires standardizing counseling content, as there are significant age differences in HIV prevention content received by adolescents.
Robustness of mission plans for unmanned aircraft
NASA Astrophysics Data System (ADS)
Niendorf, Moritz
This thesis studies the robustness of optimal mission plans for unmanned aircraft. Mission planning typically involves tactical planning and path planning. Tactical planning refers to task scheduling and in multi aircraft scenarios also includes establishing a communication topology. Path planning refers to computing a feasible and collision-free trajectory. For a prototypical mission planning problem, the traveling salesman problem on a weighted graph, the robustness of an optimal tour is analyzed with respect to changes to the edge costs. Specifically, the stability region of an optimal tour is obtained, i.e., the set of all edge cost perturbations for which that tour is optimal. The exact stability region of solutions to variants of the traveling salesman problems is obtained from a linear programming relaxation of an auxiliary problem. Edge cost tolerances and edge criticalities are derived from the stability region. For Euclidean traveling salesman problems, robustness with respect to perturbations to vertex locations is considered and safe radii and vertex criticalities are introduced. For weighted-sum multi-objective problems, stability regions with respect to changes in the objectives, weights, and simultaneous changes are given. Most critical weight perturbations are derived. Computing exact stability regions is intractable for large instances. Therefore, tractable approximations are desirable. The stability region of solutions to relaxations of the traveling salesman problem give under approximations and sets of tours give over approximations. The application of these results to the two-neighborhood and the minimum 1-tree relaxation are discussed. Bounds on edge cost tolerances and approximate criticalities are obtainable likewise. A minimum spanning tree is an optimal communication topology for minimizing the cumulative transmission power in multi aircraft missions. The stability region of a minimum spanning tree is given and tolerances, stability balls, and criticalities are derived. This analysis is extended to Euclidean minimum spanning trees. This thesis aims at enabling increased mission performance by providing means of assessing the robustness and optimality of a mission and methods for identifying critical elements. Examples of the application to mission planning in contested environments, cargo aircraft mission planning, multi-objective mission planning, and planning optimal communication topologies for teams of unmanned aircraft are given.
DIF Detection Using Multiple-Group Categorical CFA with Minimum Free Baseline Approach
ERIC Educational Resources Information Center
Chang, Yu-Wei; Huang, Wei-Kang; Tsai, Rung-Ching
2015-01-01
The aim of this study is to assess the efficiency of using the multiple-group categorical confirmatory factor analysis (MCCFA) and the robust chi-square difference test in differential item functioning (DIF) detection for polytomous items under the minimum free baseline strategy. While testing for DIF items, despite the strong assumption that all…
Inverse Optimization: A New Perspective on the Black-Litterman Model
Bertsimas, Dimitris; Gupta, Vishal; Paschalidis, Ioannis Ch.
2014-01-01
The Black-Litterman (BL) model is a widely used asset allocation model in the financial industry. In this paper, we provide a new perspective. The key insight is to replace the statistical framework in the original approach with ideas from inverse optimization. This insight allows us to significantly expand the scope and applicability of the BL model. We provide a richer formulation that, unlike the original model, is flexible enough to incorporate investor information on volatility and market dynamics. Equally importantly, our approach allows us to move beyond the traditional mean-variance paradigm of the original model and construct “BL”-type estimators for more general notions of risk such as coherent risk measures. Computationally, we introduce and study two new “BL”-type estimators and their corresponding portfolios: a Mean Variance Inverse Optimization (MV-IO) portfolio and a Robust Mean Variance Inverse Optimization (RMV-IO) portfolio. These two approaches are motivated by ideas from arbitrage pricing theory and volatility uncertainty. Using numerical simulation and historical backtesting, we show that both methods often demonstrate a better risk-reward tradeoff than their BL counterparts and are more robust to incorrect investor views. PMID:25382873
Recent Immigrants as Labor Market Arbitrageurs: Evidence from the Minimum Wage.
Cadena, Brian C
2014-03-01
This paper investigates the local labor supply effects of changes to the minimum wage by examining the response of low-skilled immigrants' location decisions. Canonical models emphasize the importance of labor mobility when evaluating the employment effects of the minimum wage; yet few studies address this outcome directly. Low-skilled immigrant populations shift toward labor markets with stagnant minimum wages, and this result is robust to a number of alternative interpretations. This mobility provides behavior-based evidence in favor of a non-trivial negative employment effect of the minimum wage. Further, it reduces the estimated demand elasticity using teens; employment losses among native teens are substantially larger in states that have historically attracted few immigrant residents.
Li, Peng; Redden, David T.
2014-01-01
SUMMARY The sandwich estimator in generalized estimating equations (GEE) approach underestimates the true variance in small samples and consequently results in inflated type I error rates in hypothesis testing. This fact limits the application of the GEE in cluster-randomized trials (CRTs) with few clusters. Under various CRT scenarios with correlated binary outcomes, we evaluate the small sample properties of the GEE Wald tests using bias-corrected sandwich estimators. Our results suggest that the GEE Wald z test should be avoided in the analyses of CRTs with few clusters even when bias-corrected sandwich estimators are used. With t-distribution approximation, the Kauermann and Carroll (KC)-correction can keep the test size to nominal levels even when the number of clusters is as low as 10, and is robust to the moderate variation of the cluster sizes. However, in cases with large variations in cluster sizes, the Fay and Graubard (FG)-correction should be used instead. Furthermore, we derive a formula to calculate the power and minimum total number of clusters one needs using the t test and KC-correction for the CRTs with binary outcomes. The power levels as predicted by the proposed formula agree well with the empirical powers from the simulations. The proposed methods are illustrated using real CRT data. We conclude that with appropriate control of type I error rates under small sample sizes, we recommend the use of GEE approach in CRTs with binary outcomes due to fewer assumptions and robustness to the misspecification of the covariance structure. PMID:25345738
An analytic technique for statistically modeling random atomic clock errors in estimation
NASA Technical Reports Server (NTRS)
Fell, P. J.
1981-01-01
Minimum variance estimation requires that the statistics of random observation errors be modeled properly. If measurements are derived through the use of atomic frequency standards, then one source of error affecting the observable is random fluctuation in frequency. This is the case, for example, with range and integrated Doppler measurements from satellites of the Global Positioning and baseline determination for geodynamic applications. An analytic method is presented which approximates the statistics of this random process. The procedure starts with a model of the Allan variance for a particular oscillator and develops the statistics of range and integrated Doppler measurements. A series of five first order Markov processes is used to approximate the power spectral density obtained from the Allan variance.
Software for the grouped optimal aggregation technique
NASA Technical Reports Server (NTRS)
Brown, P. M.; Shaw, G. W. (Principal Investigator)
1982-01-01
The grouped optimal aggregation technique produces minimum variance, unbiased estimates of acreage and production for countries, zones (states), or any designated collection of acreage strata. It uses yield predictions, historical acreage information, and direct acreage estimate from satellite data. The acreage strata are grouped in such a way that the ratio model over historical acreage provides a smaller variance than if the model were applied to each individual stratum. An optimal weighting matrix based on historical acreages, provides the link between incomplete direct acreage estimates and the total, current acreage estimate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordström, Jan, E-mail: jan.nordstrom@liu.se; Wahlsten, Markus, E-mail: markus.wahlsten@liu.se
We consider a hyperbolic system with uncertainty in the boundary and initial data. Our aim is to show that different boundary conditions give different convergence rates of the variance of the solution. This means that we can with the same knowledge of data get a more or less accurate description of the uncertainty in the solution. A variety of boundary conditions are compared and both analytical and numerical estimates of the variance of the solution are presented. As an application, we study the effect of this technique on Maxwell's equations as well as on a subsonic outflow boundary for themore » Euler equations.« less
Pal, Partha S; Kar, R; Mandal, D; Ghoshal, S P
2015-11-01
This paper presents an efficient approach to identify different stable and practically useful Hammerstein models as well as unstable nonlinear process along with its stable closed loop counterpart with the help of an evolutionary algorithm as Colliding Bodies Optimization (CBO) optimization algorithm. The performance measures of the CBO based optimization approach such as precision, accuracy are justified with the minimum output mean square value (MSE) which signifies that the amount of bias and variance in the output domain are also the least. It is also observed that the optimization of output MSE in the presence of outliers has resulted in a very close estimation of the output parameters consistently, which also justifies the effective general applicability of the CBO algorithm towards the system identification problem and also establishes the practical usefulness of the applied approach. Optimum values of the MSEs, computational times and statistical information of the MSEs are all found to be the superior as compared with those of the other existing similar types of stochastic algorithms based approaches reported in different recent literature, which establish the robustness and efficiency of the applied CBO based identification scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Xun; Ghidaoui, Mohamed S.
2018-07-01
This paper considers the problem of identifying multiple leaks in a water-filled pipeline based on inverse transient wave theory. The analytical solution to this problem involves nonlinear interaction terms between the various leaks. This paper shows analytically and numerically that these nonlinear terms are of the order of the leak sizes to the power two and; thus, negligible. As a result of this simplification, a maximum likelihood (ML) scheme that identifies leak locations and leak sizes separately is formulated and tested. It is found that the ML estimation scheme is highly efficient and robust with respect to noise. In addition, the ML method is a super-resolution leak localization scheme because its resolvable leak distance (approximately 0.15λmin , where λmin is the minimum wavelength) is below the Nyquist-Shannon sampling theorem limit (0.5λmin). Moreover, the Cramér-Rao lower bound (CRLB) is derived and used to show the efficiency of the ML scheme estimates. The variance of the ML estimator approximates the CRLB proving that the ML scheme belongs to class of best unbiased estimator of leak localization methods.
Set size manipulations reveal the boundary conditions of perceptual ensemble learning.
Chetverikov, Andrey; Campana, Gianluca; Kristjánsson, Árni
2017-11-01
Recent evidence suggests that observers can grasp patterns of feature variations in the environment with surprising efficiency. During visual search tasks where all distractors are randomly drawn from a certain distribution rather than all being homogeneous, observers are capable of learning highly complex statistical properties of distractor sets. After only a few trials (learning phase), the statistical properties of distributions - mean, variance and crucially, shape - can be learned, and these representations affect search during a subsequent test phase (Chetverikov, Campana, & Kristjánsson, 2016). To assess the limits of such distribution learning, we varied the information available to observers about the underlying distractor distributions by manipulating set size during the learning phase in two experiments. We found that robust distribution learning only occurred for large set sizes. We also used set size to assess whether the learning of distribution properties makes search more efficient. The results reveal how a certain minimum of information is required for learning to occur, thereby delineating the boundary conditions of learning of statistical variation in the environment. However, the benefits of distribution learning for search efficiency remain unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.
Secure Fusion Estimation for Bandwidth Constrained Cyber-Physical Systems Under Replay Attacks.
Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li; Bo Chen; Ho, Daniel W C; Guoqiang Hu; Li Yu; Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li
2018-06-01
State estimation plays an essential role in the monitoring and supervision of cyber-physical systems (CPSs), and its importance has made the security and estimation performance a major concern. In this case, multisensor information fusion estimation (MIFE) provides an attractive alternative to study secure estimation problems because MIFE can potentially improve estimation accuracy and enhance reliability and robustness against attacks. From the perspective of the defender, the secure distributed Kalman fusion estimation problem is investigated in this paper for a class of CPSs under replay attacks, where each local estimate obtained by the sink node is transmitted to a remote fusion center through bandwidth constrained communication channels. A new mathematical model with compensation strategy is proposed to characterize the replay attacks and bandwidth constrains, and then a recursive distributed Kalman fusion estimator (DKFE) is designed in the linear minimum variance sense. According to different communication frameworks, two classes of data compression and compensation algorithms are developed such that the DKFEs can achieve the desired performance. Several attack-dependent and bandwidth-dependent conditions are derived such that the DKFEs are secure under replay attacks. An illustrative example is given to demonstrate the effectiveness of the proposed methods.
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir
2016-10-14
A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM) optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF) kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research.
A Robust Ordering Strategy for Retailers Facing a Free Shipping Option
Meng, Qing-chun; Wan, Xiao-le; Rong, Xiao-xia
2015-01-01
Free shipping with conditions has become one of the most effective marketing tools available. An increasing number of companies, especially e-businesses, prefer to offer free shipping with some predetermined condition, such as a minimum purchase amount by the customer. However, in practice, the demands of buyers are uncertain; they are often affected by many factors, such as the weather and season. We begin by modeling the centralized ordering problem in which the supplier offers a free shipping service and retailers face stochastic demands. As these random data are considered, only partial information such as the known mean, support, and deviation is needed. The model is then analyzed via a robust optimization method, and the two types of equivalent sets of uncertainty constraints that are obtained provide good mathematical properties with consideration of the robustness of solutions. Subsequently, a numerical example is used to compare the results achieved from a robust optimization method and the linear decision rules. Additionally, the robustness of the optimal solution is discussed, as it is affected by the minimum quantity parameters. The increasing cost-threshold relationship is divided into three periods. In addition, the case study shows that the proposed method achieves better stability as well as computational complexity. PMID:25993533
Mumford, Jeanette A.
2017-01-01
Even after thorough preprocessing and a careful time series analysis of functional magnetic resonance imaging (fMRI) data, artifact and other issues can lead to violations of the assumption that the variance is constant across subjects in the group level model. This is especially concerning when modeling a continuous covariate at the group level, as the slope is easily biased by outliers. Various models have been proposed to deal with outliers including models that use the first level variance or that use the group level residual magnitude to differentially weight subjects. The most typically used robust regression, implementing a robust estimator of the regression slope, has been previously studied in the context of fMRI studies and was found to perform well in some scenarios, but a loss of Type I error control can occur for some outlier settings. A second type of robust regression using a heteroscedastic autocorrelation consistent (HAC) estimator, which produces robust slope and variance estimates has been shown to perform well, with better Type I error control, but with large sample sizes (500–1000 subjects). The Type I error control with smaller sample sizes has not been studied in this model and has not been compared to other modeling approaches that handle outliers such as FSL’s Flame 1 and FSL’s outlier de-weighting. Focusing on group level inference with a continuous covariate over a range of sample sizes and degree of heteroscedasticity, which can be driven either by the within- or between-subject variability, both styles of robust regression are compared to ordinary least squares (OLS), FSL’s Flame 1, Flame 1 with outlier de-weighting algorithm and Kendall’s Tau. Additionally, subject omission using the Cook’s Distance measure with OLS and nonparametric inference with the OLS statistic are studied. Pros and cons of these models as well as general strategies for detecting outliers in data and taking precaution to avoid inflated Type I error rates are discussed. PMID:28030782
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas
We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequencemore » (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.« less
Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas; ...
2017-08-08
Here, we present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a MetagenomeAssembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Genemore » Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas
Here, we present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a MetagenomeAssembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Genemore » Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.« less
Source-space ICA for MEG source imaging.
Jonmohamadi, Yaqub; Jones, Richard D
2016-02-01
One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and localize multiple concurrent sources. Among inverse techniques, the minimum-variance beamformers offer a high spatial resolution. However, in order to have both high spatial resolution of beamformer and be able to take on multiple concurrent sources, sensor-space ICA + beamformer is not an ideal combination. We propose source-space ICA for MEG as a powerful alternative approach which can provide the high spatial resolution of the beamformer and handle multiple concurrent sources. The concept of source-space ICA for MEG is to apply the beamformer first and then singular value decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA both in simulation and real MEG. The simulations included two challenging scenarios of correlated/concurrent cluster sources. Source-space ICA provided superior performance in spatial reconstruction of source maps, even though both techniques performed equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli were also used to compare performance of sensor-space ICA and source-space ICA. We have also proposed a new variant of minimum-variance beamformer called weight-normalized linearly-constrained minimum-variance with orthonormal lead-field. As sensor-space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that source-space ICA has superior spatial performance, it is expected that source-space ICA will supersede its predecessor in many applications.
NASA Astrophysics Data System (ADS)
Yun, Wanying; Lu, Zhenzhou; Jiang, Xian
2018-06-01
To efficiently execute the variance-based global sensitivity analysis, the law of total variance in the successive intervals without overlapping is proved at first, on which an efficient space-partition sampling-based approach is subsequently proposed in this paper. Through partitioning the sample points of output into different subsets according to different inputs, the proposed approach can efficiently evaluate all the main effects concurrently by one group of sample points. In addition, there is no need for optimizing the partition scheme in the proposed approach. The maximum length of subintervals is decreased by increasing the number of sample points of model input variables in the proposed approach, which guarantees the convergence condition of the space-partition approach well. Furthermore, a new interpretation on the thought of partition is illuminated from the perspective of the variance ratio function. Finally, three test examples and one engineering application are employed to demonstrate the accuracy, efficiency and robustness of the proposed approach.
Biochemical Phenotypes to Discriminate Microbial Subpopulations and Improve Outbreak Detection
Galar, Alicia; Kulldorff, Martin; Rudnick, Wallis; O'Brien, Thomas F.; Stelling, John
2013-01-01
Background Clinical microbiology laboratories worldwide constitute an invaluable resource for monitoring emerging threats and the spread of antimicrobial resistance. We studied the growing number of biochemical tests routinely performed on clinical isolates to explore their value as epidemiological markers. Methodology/Principal Findings Microbiology laboratory results from January 2009 through December 2011 from a 793-bed hospital stored in WHONET were examined. Variables included patient location, collection date, organism, and 47 biochemical and 17 antimicrobial susceptibility test results reported by Vitek 2. To identify biochemical tests that were particularly valuable (stable with repeat testing, but good variability across the species) or problematic (inconsistent results with repeat testing), three types of variance analyses were performed on isolates of K. pneumonia: descriptive analysis of discordant biochemical results in same-day isolates, an average within-patient variance index, and generalized linear mixed model variance component analysis. Results: 4,200 isolates of K. pneumoniae were identified from 2,485 patients, 32% of whom had multiple isolates. The first two variance analyses highlighted SUCT, TyrA, GlyA, and GGT as “nuisance” biochemicals for which discordant within-patient test results impacted a high proportion of patient results, while dTAG had relatively good within-patient stability with good heterogeneity across the species. Variance component analyses confirmed the relative stability of dTAG, and identified additional biochemicals such as PHOS with a large between patient to within patient variance ratio. A reduced subset of biochemicals improved the robustness of strain definition for carbapenem-resistant K. pneumoniae. Surveillance analyses suggest that the reduced biochemical profile could improve the timeliness and specificity of outbreak detection algorithms. Conclusions The statistical approaches explored can improve the robust recognition of microbial subpopulations with routinely available biochemical test results, of value in the timely detection of outbreak clones and evolutionarily important genetic events. PMID:24391936
Feedforward/feedback control synthesis for performance and robustness
NASA Technical Reports Server (NTRS)
Wie, Bong; Liu, Qiang
1990-01-01
Both feedforward and feedback control approaches for uncertain dynamical systems are investigated. The control design objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant modeling uncertainty. Preshapong of an ideal, time-optimal control input using a 'tapped-delay' filter is shown to provide a rapid maneuver with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. The proposed feedforward/feedback control approach is robust for a certain class of uncertain dynamical systems, since the control input command computed for a given desired output does not depend on the plant parameters.
Design of a compensation for an ARMA model of a discrete time system. M.S. Thesis
NASA Technical Reports Server (NTRS)
Mainemer, C. I.
1978-01-01
The design of an optimal dynamic compensator for a multivariable discrete time system is studied. Also the design of compensators to achieve minimum variance control strategies for single input single output systems is analyzed. In the first problem the initial conditions of the plant are random variables with known first and second order moments, and the cost is the expected value of the standard cost, quadratic in the states and controls. The compensator is based on the minimum order Luenberger observer and it is found optimally by minimizing a performance index. Necessary and sufficient conditions for optimality of the compensator are derived. The second problem is solved in three different ways; two of them working directly in the frequency domain and one working in the time domain. The first and second order moments of the initial conditions are irrelevant to the solution. Necessary and sufficient conditions are derived for the compensator to minimize the variance of the output.
An Examination of Sunspot Number Rates of Growth and Decay in Relation to the Sunspot Cycle
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.
2006-01-01
On the basis of annual sunspot number averages, sunspot number rates of growth and decay are examined relative to both minimum and maximum amplitudes and the time of their occurrences using cycles 12 through present, the most reliably determined sunspot cycles. Indeed, strong correlations are found for predicting the minimum and maximum amplitudes and the time of their occurrences years in advance. As applied to predicting sunspot minimum for cycle 24, the next cycle, its minimum appears likely to occur in 2006, especially if it is a robust cycle similar in nature to cycles 17-23.
Mollah, Mohammad Manir Hossain; Jamal, Rahman; Mokhtar, Norfilza Mohd; Harun, Roslan; Mollah, Md. Nurul Haque
2015-01-01
Background Identifying genes that are differentially expressed (DE) between two or more conditions with multiple patterns of expression is one of the primary objectives of gene expression data analysis. Several statistical approaches, including one-way analysis of variance (ANOVA), are used to identify DE genes. However, most of these methods provide misleading results for two or more conditions with multiple patterns of expression in the presence of outlying genes. In this paper, an attempt is made to develop a hybrid one-way ANOVA approach that unifies the robustness and efficiency of estimation using the minimum β-divergence method to overcome some problems that arise in the existing robust methods for both small- and large-sample cases with multiple patterns of expression. Results The proposed method relies on a β-weight function, which produces values between 0 and 1. The β-weight function with β = 0.2 is used as a measure of outlier detection. It assigns smaller weights (≥ 0) to outlying expressions and larger weights (≤ 1) to typical expressions. The distribution of the β-weights is used to calculate the cut-off point, which is compared to the observed β-weight of an expression to determine whether that gene expression is an outlier. This weight function plays a key role in unifying the robustness and efficiency of estimation in one-way ANOVA. Conclusion Analyses of simulated gene expression profiles revealed that all eight methods (ANOVA, SAM, LIMMA, EBarrays, eLNN, KW, robust BetaEB and proposed) perform almost identically for m = 2 conditions in the absence of outliers. However, the robust BetaEB method and the proposed method exhibited considerably better performance than the other six methods in the presence of outliers. In this case, the BetaEB method exhibited slightly better performance than the proposed method for the small-sample cases, but the the proposed method exhibited much better performance than the BetaEB method for both the small- and large-sample cases in the presence of more than 50% outlying genes. The proposed method also exhibited better performance than the other methods for m > 2 conditions with multiple patterns of expression, where the BetaEB was not extended for this condition. Therefore, the proposed approach would be more suitable and reliable on average for the identification of DE genes between two or more conditions with multiple patterns of expression. PMID:26413858
Optimization of robustness of interdependent network controllability by redundant design
2018-01-01
Controllability of complex networks has been a hot topic in recent years. Real networks regarded as interdependent networks are always coupled together by multiple networks. The cascading process of interdependent networks including interdependent failure and overload failure will destroy the robustness of controllability for the whole network. Therefore, the optimization of the robustness of interdependent network controllability is of great importance in the research area of complex networks. In this paper, based on the model of interdependent networks constructed first, we determine the cascading process under different proportions of node attacks. Then, the structural controllability of interdependent networks is measured by the minimum driver nodes. Furthermore, we propose a parameter which can be obtained by the structure and minimum driver set of interdependent networks under different proportions of node attacks and analyze the robustness for interdependent network controllability. Finally, we optimize the robustness of interdependent network controllability by redundant design including node backup and redundancy edge backup and improve the redundant design by proposing different strategies according to their cost. Comparative strategies of redundant design are conducted to find the best strategy. Results shows that node backup and redundancy edge backup can indeed decrease those nodes suffering from failure and improve the robustness of controllability. Considering the cost of redundant design, we should choose BBS (betweenness-based strategy) or DBS (degree based strategy) for node backup and HDF(high degree first) for redundancy edge backup. Above all, our proposed strategies are feasible and effective at improving the robustness of interdependent network controllability. PMID:29438426
Recent Immigrants as Labor Market Arbitrageurs: Evidence from the Minimum Wage*
Cadena, Brian C.
2014-01-01
This paper investigates the local labor supply effects of changes to the minimum wage by examining the response of low-skilled immigrants’ location decisions. Canonical models emphasize the importance of labor mobility when evaluating the employment effects of the minimum wage; yet few studies address this outcome directly. Low-skilled immigrant populations shift toward labor markets with stagnant minimum wages, and this result is robust to a number of alternative interpretations. This mobility provides behavior-based evidence in favor of a non-trivial negative employment effect of the minimum wage. Further, it reduces the estimated demand elasticity using teens; employment losses among native teens are substantially larger in states that have historically attracted few immigrant residents. PMID:24999288
Thermospheric mass density model error variance as a function of time scale
NASA Astrophysics Data System (ADS)
Emmert, J. T.; Sutton, E. K.
2017-12-01
In the increasingly crowded low-Earth orbit environment, accurate estimation of orbit prediction uncertainties is essential for collision avoidance. Poor characterization of such uncertainty can result in unnecessary and costly avoidance maneuvers (false positives) or disregard of a collision risk (false negatives). Atmospheric drag is a major source of orbit prediction uncertainty, and is particularly challenging to account for because it exerts a cumulative influence on orbital trajectories and is therefore not amenable to representation by a single uncertainty parameter. To address this challenge, we examine the variance of measured accelerometer-derived and orbit-derived mass densities with respect to predictions by thermospheric empirical models, using the data-minus-model variance as a proxy for model uncertainty. Our analysis focuses mainly on the power spectrum of the residuals, and we construct an empirical model of the variance as a function of time scale (from 1 hour to 10 years), altitude, and solar activity. We find that the power spectral density approximately follows a power-law process but with an enhancement near the 27-day solar rotation period. The residual variance increases monotonically with altitude between 250 and 550 km. There are two components to the variance dependence on solar activity: one component is 180 degrees out of phase (largest variance at solar minimum), and the other component lags 2 years behind solar maximum (largest variance in the descending phase of the solar cycle).
Kinetic Energy Transfer Process in a Double Shell Leading to Robust Burn
NASA Astrophysics Data System (ADS)
Montgomery, D. S.; Daughton, W. S.; Albright, B. J.; Wilson, D. C.; Loomis, E. N.; Merritt, E. C.; Dodd, E. S.; Kirkpatrick, R. C.; Watt, R. G.; Rosen, M. D.
2017-10-01
A goal of double shell capsule implosions is to impart sufficient internal energy to the D-T fuel at stagnation in order to obtain robust α-heating and burn with low hot spot convergence, C.R. < 10. A simple description of the kinetic energy transfer from the outer shell to the inner shell is found using shock physics and adiabatic compression, and compares well with 1D modeling. An isobaric model for the stagnation phase of the inner shell is used to determine the ideal partition of internal energy in the D-T fuel. Robust burn of the fuel requires, at minimum, that α-heating exceeds the rate of cooling by expansion of the hot spot so that the yield occurs before the hot spot disassembles, which is then used to define a minimum requirement for robust burn. One potential advantage of a double shell capsule compared to single shell capsules is the use of a heavy metal pusher, which may lead to a longer hot spot disassembly time. We present these analytic results and compare them to 1D and 2D radiation-hydrodynamic simulations. Work performed under the auspices of DOE by LANL under contract DE-AC52-06NA25396.
Code of Federal Regulations, 2014 CFR
2014-04-01
... available upon demand for each day, shift, and drop cycle (this is not required if the system does not track..., beverage containers, etc., into and out of the cage. (j) Variances. The operation must establish, as...
Code of Federal Regulations, 2013 CFR
2013-04-01
... available upon demand for each day, shift, and drop cycle (this is not required if the system does not track..., beverage containers, etc., into and out of the cage. (j) Variances. The operation must establish, as...
Nonparametric estimation of plant density by the distance method
Patil, S.A.; Burnham, K.P.; Kovner, J.L.
1979-01-01
A relation between the plant density and the probability density function of the nearest neighbor distance (squared) from a random point is established under fairly broad conditions. Based upon this relationship, a nonparametric estimator for the plant density is developed and presented in terms of order statistics. Consistency and asymptotic normality of the estimator are discussed. An interval estimator for the density is obtained. The modifications of this estimator and its variance are given when the distribution is truncated. Simulation results are presented for regular, random and aggregated populations to illustrate the nonparametric estimator and its variance. A numerical example from field data is given. Merits and deficiencies of the estimator are discussed with regard to its robustness and variance.
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Mukhopadhyay, V.
1983-01-01
A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two-input/two-output drone flight control system.
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Mukhopadhyay, V.
1983-01-01
A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two output drone flight control system.
Optimisation in the Design of Environmental Sensor Networks with Robustness Consideration
Budi, Setia; de Souza, Paulo; Timms, Greg; Malhotra, Vishv; Turner, Paul
2015-01-01
This work proposes the design of Environmental Sensor Networks (ESN) through balancing robustness and redundancy. An Evolutionary Algorithm (EA) is employed to find the optimal placement of sensor nodes in the Region of Interest (RoI). Data quality issues are introduced to simulate their impact on the performance of the ESN. Spatial Regression Test (SRT) is also utilised to promote robustness in data quality of the designed ESN. The proposed method provides high network representativeness (fit for purpose) with minimum sensor redundancy (cost), and ensures robustness by enabling the network to continue to achieve its objectives when some sensors fail. PMID:26633392
Robust Portfolio Optimization Using Pseudodistances.
Toma, Aida; Leoni-Aubin, Samuela
2015-01-01
The presence of outliers in financial asset returns is a frequently occurring phenomenon which may lead to unreliable mean-variance optimized portfolios. This fact is due to the unbounded influence that outliers can have on the mean returns and covariance estimators that are inputs in the optimization procedure. In this paper we present robust estimators of mean and covariance matrix obtained by minimizing an empirical version of a pseudodistance between the assumed model and the true model underlying the data. We prove and discuss theoretical properties of these estimators, such as affine equivariance, B-robustness, asymptotic normality and asymptotic relative efficiency. These estimators can be easily used in place of the classical estimators, thereby providing robust optimized portfolios. A Monte Carlo simulation study and applications to real data show the advantages of the proposed approach. We study both in-sample and out-of-sample performance of the proposed robust portfolios comparing them with some other portfolios known in literature.
Robust Portfolio Optimization Using Pseudodistances
2015-01-01
The presence of outliers in financial asset returns is a frequently occurring phenomenon which may lead to unreliable mean-variance optimized portfolios. This fact is due to the unbounded influence that outliers can have on the mean returns and covariance estimators that are inputs in the optimization procedure. In this paper we present robust estimators of mean and covariance matrix obtained by minimizing an empirical version of a pseudodistance between the assumed model and the true model underlying the data. We prove and discuss theoretical properties of these estimators, such as affine equivariance, B-robustness, asymptotic normality and asymptotic relative efficiency. These estimators can be easily used in place of the classical estimators, thereby providing robust optimized portfolios. A Monte Carlo simulation study and applications to real data show the advantages of the proposed approach. We study both in-sample and out-of-sample performance of the proposed robust portfolios comparing them with some other portfolios known in literature. PMID:26468948
Patterns and Prevalence of Core Profile Types in the WPPSI Standardization Sample.
ERIC Educational Resources Information Center
Glutting, Joseph J.; McDermott, Paul A.
1990-01-01
Found most representative subtest profiles for 1,200 children comprising standardization sample of Wechsler Preschool and Primary Scale of Intelligence (WPPSI). Grouped scaled scores from WPPSI subtests according to similar level and shape using sequential minimum-variance cluster analysis with independent replications. Obtained final solution of…
A Review on Sensor, Signal, and Information Processing Algorithms (PREPRINT)
2010-01-01
processing [214], ambi- guity surface averaging [215], optimum uncertain field tracking, and optimal minimum variance track - before - detect [216]. In [217, 218...2) (2001) 739–746. [216] S. L. Tantum, L. W. Nolte, J. L. Krolik, K. Harmanci, The performance of matched-field track - before - detect methods using
A Comparison of Item Selection Techniques for Testlets
ERIC Educational Resources Information Center
Murphy, Daniel L.; Dodd, Barbara G.; Vaughn, Brandon K.
2010-01-01
This study examined the performance of the maximum Fisher's information, the maximum posterior weighted information, and the minimum expected posterior variance methods for selecting items in a computerized adaptive testing system when the items were grouped in testlets. A simulation study compared the efficiency of ability estimation among the…
Husby, Arild; Gustafsson, Lars; Qvarnström, Anna
2012-01-01
The avian incubation period is associated with high energetic costs and mortality risks suggesting that there should be strong selection to reduce the duration to the minimum required for normal offspring development. Although there is much variation in the duration of the incubation period across species, there is also variation within species. It is necessary to estimate to what extent this variation is genetically determined if we want to predict the evolutionary potential of this trait. Here we use a long-term study of collared flycatchers to examine the genetic basis of variation in incubation duration. We demonstrate limited genetic variance as reflected in the low and nonsignificant additive genetic variance, with a corresponding heritability of 0.04 and coefficient of additive genetic variance of 2.16. Any selection acting on incubation duration will therefore be inefficient. To our knowledge, this is the first time heritability of incubation duration has been estimated in a natural bird population. © 2011 by The University of Chicago.
Overlap between treatment and control distributions as an effect size measure in experiments.
Hedges, Larry V; Olkin, Ingram
2016-03-01
The proportion π of treatment group observations that exceed the control group mean has been proposed as an effect size measure for experiments that randomly assign independent units into 2 groups. We give the exact distribution of a simple estimator of π based on the standardized mean difference and use it to study the small sample bias of this estimator. We also give the minimum variance unbiased estimator of π under 2 models, one in which the variance of the mean difference is known and one in which the variance is unknown. We show how to use the relation between the standardized mean difference and the overlap measure to compute confidence intervals for π and show that these results can be used to obtain unbiased estimators, large sample variances, and confidence intervals for 3 related effect size measures based on the overlap. Finally, we show how the effect size π can be used in a meta-analysis. (c) 2016 APA, all rights reserved).
Khandoker, Ahsan H; Karmakar, Chandan K; Begg, Rezaul K; Palaniswami, Marimuthu
2007-01-01
As humans age or are influenced by pathology of the neuromuscular system, gait patterns are known to adjust, accommodating for reduced function in the balance control system. The aim of this study was to investigate the effectiveness of a wavelet based multiscale analysis of a gait variable [minimum toe clearance (MTC)] in deriving indexes for understanding age-related declines in gait performance and screening of balance impairments in the elderly. MTC during walking on a treadmill for 30 healthy young, 27 healthy elderly and 10 falls risk elderly subjects with a history of tripping falls were analyzed. The MTC signal from each subject was decomposed to eight detailed signals at different wavelet scales by using the discrete wavelet transform. The variances of detailed signals at scales 8 to 1 were calculated. The multiscale exponent (beta) was then estimated from the slope of the variance progression at successive scales. The variance at scale 5 was significantly (p<0.01) different between young and healthy elderly group. Results also suggest that the Beta between scales 1 to 2 are effective for recognizing falls risk gait patterns. Results have implication for quantifying gait dynamics in normal, ageing and pathological conditions. Early detection of gait pattern changes due to ageing and balance impairments using wavelet-based multiscale analysis might provide the opportunity to initiate preemptive measures to be undertaken to avoid injurious falls.
NASA Astrophysics Data System (ADS)
Lehmkuhl, John F.
1984-03-01
The concept of minimum populations of wildlife and plants has only recently been discussed in the literature. Population genetics has emerged as a basic underlying criterion for determining minimum population size. This paper presents a genetic framework and procedure for determining minimum viable population size and dispersion strategies in the context of multiple-use land management planning. A procedure is presented for determining minimum population size based on maintenance of genetic heterozygosity and reduction of inbreeding. A minimum effective population size ( N e ) of 50 breeding animals is taken from the literature as the minimum shortterm size to keep inbreeding below 1% per generation. Steps in the procedure adjust N e to account for variance in progeny number, unequal sex ratios, overlapping generations, population fluctuations, and period of habitat/population constraint. The result is an approximate census number that falls within a range of effective population size of 50 500 individuals. This population range defines the time range of short- to long-term population fitness and evolutionary potential. The length of the term is a relative function of the species generation time. Two population dispersion strategies are proposed: core population and dispersed population.
Structural changes and out-of-sample prediction of realized range-based variance in the stock market
NASA Astrophysics Data System (ADS)
Gong, Xu; Lin, Boqiang
2018-03-01
This paper aims to examine the effects of structural changes on forecasting the realized range-based variance in the stock market. Considering structural changes in variance in the stock market, we develop the HAR-RRV-SC model on the basis of the HAR-RRV model. Subsequently, the HAR-RRV and HAR-RRV-SC models are used to forecast the realized range-based variance of S&P 500 Index. We find that there are many structural changes in variance in the U.S. stock market, and the period after the financial crisis contains more structural change points than the period before the financial crisis. The out-of-sample results show that the HAR-RRV-SC model significantly outperforms the HAR-BV model when they are employed to forecast the 1-day, 1-week, and 1-month realized range-based variances, which means that structural changes can improve out-of-sample prediction of realized range-based variance. The out-of-sample results remain robust across the alternative rolling fixed-window, the alternative threshold value in ICSS algorithm, and the alternative benchmark models. More importantly, we believe that considering structural changes can help improve the out-of-sample performances of most of other existing HAR-RRV-type models in addition to the models used in this paper.
Robust geostatistical analysis of spatial data
NASA Astrophysics Data System (ADS)
Papritz, A.; Künsch, H. R.; Schwierz, C.; Stahel, W. A.
2012-04-01
Most of the geostatistical software tools rely on non-robust algorithms. This is unfortunate, because outlying observations are rather the rule than the exception, in particular in environmental data sets. Outlying observations may results from errors (e.g. in data transcription) or from local perturbations in the processes that are responsible for a given pattern of spatial variation. As an example, the spatial distribution of some trace metal in the soils of a region may be distorted by emissions of local anthropogenic sources. Outliers affect the modelling of the large-scale spatial variation, the so-called external drift or trend, the estimation of the spatial dependence of the residual variation and the predictions by kriging. Identifying outliers manually is cumbersome and requires expertise because one needs parameter estimates to decide which observation is a potential outlier. Moreover, inference after the rejection of some observations is problematic. A better approach is to use robust algorithms that prevent automatically that outlying observations have undue influence. Former studies on robust geostatistics focused on robust estimation of the sample variogram and ordinary kriging without external drift. Furthermore, Richardson and Welsh (1995) [2] proposed a robustified version of (restricted) maximum likelihood ([RE]ML) estimation for the variance components of a linear mixed model, which was later used by Marchant and Lark (2007) [1] for robust REML estimation of the variogram. We propose here a novel method for robust REML estimation of the variogram of a Gaussian random field that is possibly contaminated by independent errors from a long-tailed distribution. It is based on robustification of estimating equations for the Gaussian REML estimation. Besides robust estimates of the parameters of the external drift and of the variogram, the method also provides standard errors for the estimated parameters, robustified kriging predictions at both sampled and unsampled locations and kriging variances. The method has been implemented in an R package. Apart from presenting our modelling framework, we shall present selected simulation results by which we explored the properties of the new method. This will be complemented by an analysis of the Tarrawarra soil moisture data set [3].
Uncertainty in Population Estimates for Endangered Animals and Improving the Recovery Process
Haines, Aaron M.; Zak, Matthew; Hammond, Katie; Scott, J. Michael; Goble, Dale D.; Rachlow, Janet L.
2013-01-01
Simple Summary The objective of our study was to evaluate the mention of uncertainty (i.e., variance) associated with population size estimates within U.S. recovery plans for endangered animals. To do this we reviewed all finalized recovery plans for listed terrestrial vertebrate species. We found that more recent recovery plans reported more estimates of population size and uncertainty. Also, bird and mammal recovery plans reported more estimates of population size and uncertainty. We recommend that updated recovery plans combine uncertainty of population size estimates with a minimum detectable difference to aid in successful recovery. Abstract United States recovery plans contain biological information for a species listed under the Endangered Species Act and specify recovery criteria to provide basis for species recovery. The objective of our study was to evaluate whether recovery plans provide uncertainty (e.g., variance) with estimates of population size. We reviewed all finalized recovery plans for listed terrestrial vertebrate species to record the following data: (1) if a current population size was given, (2) if a measure of uncertainty or variance was associated with current estimates of population size and (3) if population size was stipulated for recovery. We found that 59% of completed recovery plans specified a current population size, 14.5% specified a variance for the current population size estimate and 43% specified population size as a recovery criterion. More recent recovery plans reported more estimates of current population size, uncertainty and population size as a recovery criterion. Also, bird and mammal recovery plans reported more estimates of population size and uncertainty compared to reptiles and amphibians. We suggest the use of calculating minimum detectable differences to improve confidence when delisting endangered animals and we identified incentives for individuals to get involved in recovery planning to improve access to quantitative data. PMID:26479531
Petruzzellis, Francesco; Palandrani, Chiara; Savi, Tadeja; Alberti, Roberto; Nardini, Andrea; Bacaro, Giovanni
2017-12-01
The choice of the best sampling strategy to capture mean values of functional traits for a species/population, while maintaining information about traits' variability and minimizing the sampling size and effort, is an open issue in functional trait ecology. Intraspecific variability (ITV) of functional traits strongly influences sampling size and effort. However, while adequate information is available about intraspecific variability between individuals (ITV BI ) and among populations (ITV POP ), relatively few studies have analyzed intraspecific variability within individuals (ITV WI ). Here, we provide an analysis of ITV WI of two foliar traits, namely specific leaf area (SLA) and osmotic potential (π), in a population of Quercus ilex L. We assessed the baseline ITV WI level of variation between the two traits and provided the minimum and optimal sampling size in order to take into account ITV WI , comparing sampling optimization outputs with those previously proposed in the literature. Different factors accounted for different amount of variance of the two traits. SLA variance was mostly spread within individuals (43.4% of the total variance), while π variance was mainly spread between individuals (43.2%). Strategies that did not account for all the canopy strata produced mean values not representative of the sampled population. The minimum size to adequately capture the studied functional traits corresponded to 5 leaves taken randomly from 5 individuals, while the most accurate and feasible sampling size was 4 leaves taken randomly from 10 individuals. We demonstrate that the spatial structure of the canopy could significantly affect traits variability. Moreover, different strategies for different traits could be implemented during sampling surveys. We partially confirm sampling sizes previously proposed in the recent literature and encourage future analysis involving different traits.
Olivoto, T; Nardino, M; Carvalho, I R; Follmann, D N; Ferrari, M; Szareski, V J; de Pelegrin, A J; de Souza, V Q
2017-03-22
Methodologies using restricted maximum likelihood/best linear unbiased prediction (REML/BLUP) in combination with sequential path analysis in maize are still limited in the literature. Therefore, the aims of this study were: i) to use REML/BLUP-based procedures in order to estimate variance components, genetic parameters, and genotypic values of simple maize hybrids, and ii) to fit stepwise regressions considering genotypic values to form a path diagram with multi-order predictors and minimum multicollinearity that explains the relationships of cause and effect among grain yield-related traits. Fifteen commercial simple maize hybrids were evaluated in multi-environment trials in a randomized complete block design with four replications. The environmental variance (78.80%) and genotype-vs-environment variance (20.83%) accounted for more than 99% of the phenotypic variance of grain yield, which difficult the direct selection of breeders for this trait. The sequential path analysis model allowed the selection of traits with high explanatory power and minimum multicollinearity, resulting in models with elevated fit (R 2 > 0.9 and ε < 0.3). The number of kernels per ear (NKE) and thousand-kernel weight (TKW) are the traits with the largest direct effects on grain yield (r = 0.66 and 0.73, respectively). The high accuracy of selection (0.86 and 0.89) associated with the high heritability of the average (0.732 and 0.794) for NKE and TKW, respectively, indicated good reliability and prospects of success in the indirect selection of hybrids with high-yield potential through these traits. The negative direct effect of NKE on TKW (r = -0.856), however, must be considered. The joint use of mixed models and sequential path analysis is effective in the evaluation of maize-breeding trials.
The effectiveness of robust RMCD control chart as outliers’ detector
NASA Astrophysics Data System (ADS)
Darmanto; Astutik, Suci
2017-12-01
A well-known control chart to monitor a multivariate process is Hotelling’s T 2 which its parameters are estimated classically, very sensitive and also marred by masking and swamping of outliers data effect. To overcome these situation, robust estimators are strongly recommended. One of robust estimators is re-weighted minimum covariance determinant (RMCD) which has robust characteristics as same as MCD. In this paper, the effectiveness term is accuracy of the RMCD control chart in detecting outliers as real outliers. In other word, how effectively this control chart can identify and remove masking and swamping effects of outliers. We assessed the effectiveness the robust control chart based on simulation by considering different scenarios: n sample sizes, proportion of outliers, number of p quality characteristics. We found that in some scenarios, this RMCD robust control chart works effectively.
NASA Technical Reports Server (NTRS)
Metcalf, Thomas R.
1994-01-01
I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.
Posed versus spontaneous facial expressions are modulated by opposite cerebral hemispheres.
Ross, Elliott D; Pulusu, Vinay K
2013-05-01
Clinical research has indicated that the left face is more expressive than the right face, suggesting that modulation of facial expressions is lateralized to the right hemisphere. The findings, however, are controversial because the results explain, on average, approximately 4% of the data variance. Using high-speed videography, we sought to determine if movement-onset asymmetry was a more powerful research paradigm than terminal movement asymmetry. The results were very robust, explaining up to 70% of the data variance. Posed expressions began overwhelmingly on the right face whereas spontaneous expressions began overwhelmingly on the left face. This dichotomy was most robust for upper facial expressions. In addition, movement-onset asymmetries did not predict terminal movement asymmetries, which were not significantly lateralized. The results support recent neuroanatomic observations that upper versus lower facial movements have different forebrain motor representations and recent behavioral constructs that posed versus spontaneous facial expressions are modulated preferentially by opposite cerebral hemispheres and that spontaneous facial expressions are graded rather than non-graded movements. Published by Elsevier Ltd.
Robustness of S1 statistic with Hodges-Lehmann for skewed distributions
NASA Astrophysics Data System (ADS)
Ahad, Nor Aishah; Yahaya, Sharipah Soaad Syed; Yin, Lee Ping
2016-10-01
Analysis of variance (ANOVA) is a common use parametric method to test the differences in means for more than two groups when the populations are normally distributed. ANOVA is highly inefficient under the influence of non- normal and heteroscedastic settings. When the assumptions are violated, researchers are looking for alternative such as Kruskal-Wallis under nonparametric or robust method. This study focused on flexible method, S1 statistic for comparing groups using median as the location estimator. S1 statistic was modified by substituting the median with Hodges-Lehmann and the default scale estimator with the variance of Hodges-Lehmann and MADn to produce two different test statistics for comparing groups. Bootstrap method was used for testing the hypotheses since the sampling distributions of these modified S1 statistics are unknown. The performance of the proposed statistic in terms of Type I error was measured and compared against the original S1 statistic, ANOVA and Kruskal-Wallis. The propose procedures show improvement compared to the original statistic especially under extremely skewed distribution.
A de-noising method using the improved wavelet threshold function based on noise variance estimation
NASA Astrophysics Data System (ADS)
Liu, Hui; Wang, Weida; Xiang, Changle; Han, Lijin; Nie, Haizhao
2018-01-01
The precise and efficient noise variance estimation is very important for the processing of all kinds of signals while using the wavelet transform to analyze signals and extract signal features. In view of the problem that the accuracy of traditional noise variance estimation is greatly affected by the fluctuation of noise values, this study puts forward the strategy of using the two-state Gaussian mixture model to classify the high-frequency wavelet coefficients in the minimum scale, which takes both the efficiency and accuracy into account. According to the noise variance estimation, a novel improved wavelet threshold function is proposed by combining the advantages of hard and soft threshold functions, and on the basis of the noise variance estimation algorithm and the improved wavelet threshold function, the research puts forth a novel wavelet threshold de-noising method. The method is tested and validated using random signals and bench test data of an electro-mechanical transmission system. The test results indicate that the wavelet threshold de-noising method based on the noise variance estimation shows preferable performance in processing the testing signals of the electro-mechanical transmission system: it can effectively eliminate the interference of transient signals including voltage, current, and oil pressure and maintain the dynamic characteristics of the signals favorably.
Practical robustness measures in multivariable control system analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lehtomaki, N. A.
1981-01-01
The robustness of the stability of multivariable linear time invariant feedback control systems with respect to model uncertainty is considered using frequency domain criteria. Available robustness tests are unified under a common framework based on the nature and structure of model errors. These results are derived using a multivariable version of Nyquist's stability theorem in which the minimum singular value of the return difference transfer matrix is shown to be the multivariable generalization of the distance to the critical point on a single input, single output Nyquist diagram. Using the return difference transfer matrix, a very general robustness theorem is presented from which all of the robustness tests dealing with specific model errors may be derived. The robustness tests that explicitly utilized model error structure are able to guarantee feedback system stability in the face of model errors of larger magnitude than those robustness tests that do not. The robustness of linear quadratic Gaussian control systems are analyzed.
Robust Lee local statistic filter for removal of mixed multiplicative and impulse noise
NASA Astrophysics Data System (ADS)
Ponomarenko, Nikolay N.; Lukin, Vladimir V.; Egiazarian, Karen O.; Astola, Jaakko T.
2004-05-01
A robust version of Lee local statistic filter able to effectively suppress the mixed multiplicative and impulse noise in images is proposed. The performance of the proposed modification is studied for a set of test images, several values of multiplicative noise variance, Gaussian and Rayleigh probability density functions of speckle, and different characteris-tics of impulse noise. The advantages of the designed filter in comparison to the conventional Lee local statistic filter and some other filters able to cope with mixed multiplicative+impulse noise are demonstrated.
R. L. Czaplewski
2009-01-01
The minimum variance multivariate composite estimator is a relatively simple sequential estimator for complex sampling designs (Czaplewski 2009). Such designs combine a probability sample of expensive field data with multiple censuses and/or samples of relatively inexpensive multi-sensor, multi-resolution remotely sensed data. Unfortunately, the multivariate composite...
2014-03-27
42 4.2.3 Number of Hops Hs . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.4 Number of Sensors M... 45 4.5 Standard deviation vs. Ns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.6 Bias...laboratory MTM multiple taper method MUSIC multiple signal classification MVDR minimum variance distortionless reposnse PSK phase shift keying QAM
Extreme Response Style: Which Model Is Best?
ERIC Educational Resources Information Center
Leventhal, Brian
2017-01-01
More robust and rigorous psychometric models, such as multidimensional Item Response Theory models, have been advocated for survey applications. However, item responses may be influenced by construct-irrelevant variance factors such as preferences for extreme response options. Through empirical and simulation methods, this study evaluates the use…
Fast computation of an optimal controller for large-scale adaptive optics.
Massioni, Paolo; Kulcsár, Caroline; Raynaud, Henri-François; Conan, Jean-Marc
2011-11-01
The linear quadratic Gaussian regulator provides the minimum-variance control solution for a linear time-invariant system. For adaptive optics (AO) applications, under the hypothesis of a deformable mirror with instantaneous response, such a controller boils down to a minimum-variance phase estimator (a Kalman filter) and a projection onto the mirror space. The Kalman filter gain can be computed by solving an algebraic Riccati matrix equation, whose computational complexity grows very quickly with the size of the telescope aperture. This "curse of dimensionality" makes the standard solvers for Riccati equations very slow in the case of extremely large telescopes. In this article, we propose a way of computing the Kalman gain for AO systems by means of an approximation that considers the turbulence phase screen as the cropped version of an infinite-size screen. We demonstrate the advantages of the methods for both off- and on-line computational time, and we evaluate its performance for classical AO as well as for wide-field tomographic AO with multiple natural guide stars. Simulation results are reported.
Analysis of quantitative data obtained from toxicity studies showing non-normal distribution.
Kobayashi, Katsumi
2005-05-01
The data obtained from toxicity studies are examined for homogeneity of variance, but, usually, they are not examined for normal distribution. In this study I examined the measured items of a carcinogenicity/chronic toxicity study with rats for both homogeneity of variance and normal distribution. It was observed that a lot of hematology and biochemistry items showed non-normal distribution. For testing normal distribution of the data obtained from toxicity studies, the data of the concurrent control group may be examined, and for the data that show a non-normal distribution, non-parametric tests with robustness may be applied.
Static vs stochastic optimization: A case study of FTSE Bursa Malaysia sectorial indices
NASA Astrophysics Data System (ADS)
Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah@Rozita
2014-06-01
Traditional portfolio optimization methods in the likes of Markowitz' mean-variance model and semi-variance model utilize static expected return and volatility risk from historical data to generate an optimal portfolio. The optimal portfolio may not truly be optimal in reality due to the fact that maximum and minimum values from the data may largely influence the expected return and volatility risk values. This paper considers distributions of assets' return and volatility risk to determine a more realistic optimized portfolio. For illustration purposes, the sectorial indices data in FTSE Bursa Malaysia is employed. The results show that stochastic optimization provides more stable information ratio.
A new variance stabilizing transformation for gene expression data analysis.
Kelmansky, Diana M; Martínez, Elena J; Leiva, Víctor
2013-12-01
In this paper, we introduce a new family of power transformations, which has the generalized logarithm as one of its members, in the same manner as the usual logarithm belongs to the family of Box-Cox power transformations. Although the new family has been developed for analyzing gene expression data, it allows a wider scope of mean-variance related data to be reached. We study the analytical properties of the new family of transformations, as well as the mean-variance relationships that are stabilized by using its members. We propose a methodology based on this new family, which includes a simple strategy for selecting the family member adequate for a data set. We evaluate the finite sample behavior of different classical and robust estimators based on this strategy by Monte Carlo simulations. We analyze real genomic data by using the proposed transformation to empirically show how the new methodology allows the variance of these data to be stabilized.
A linear programming approach to characterizing norm bounded uncertainty from experimental data
NASA Technical Reports Server (NTRS)
Scheid, R. E.; Bayard, D. S.; Yam, Y.
1991-01-01
The linear programming spectral overbounding and factorization (LPSOF) algorithm, an algorithm for finding a minimum phase transfer function of specified order whose magnitude tightly overbounds a specified nonparametric function of frequency, is introduced. This method has direct application to transforming nonparametric uncertainty bounds (available from system identification experiments) into parametric representations required for modern robust control design software (i.e., a minimum-phase transfer function multiplied by a norm-bounded perturbation).
Homeostatic maintenance via degradation and repair of elastic fibers under tension
NASA Astrophysics Data System (ADS)
Alves, Calebe; Araújo, Ascanio D.; Oliveira, Cláudio L. N.; Imsirovic, Jasmin; Bartolák-Suki, Erzsébet; Andrade, José S.; Suki, Béla
2016-06-01
Cellular maintenance of the extracellular matrix requires an effective regulation that balances enzymatic degradation with the repair of collagen fibrils and fibers. Here, we investigate the long-term maintenance of elastic fibers under tension combined with diffusion of general degradative and regenerative particles associated with digestion and repair processes. Computational results show that homeostatic fiber stiffness can be achieved by assuming that cells periodically probe fiber stiffness to adjust the production and release of degradative and regenerative particles. However, this mechanism is unable to maintain a homogeneous fiber. To account for axial homogeneity, we introduce a robust control mechanism that is locally governed by how the binding affinity of particles is modulated by mechanical forces applied to the ends of the fiber. This model predicts diameter variations along the fiber that are in agreement with the axial distribution of collagen fibril diameters obtained from scanning electron microscopic images of normal rat thoracic aorta. The model predictions match the experiments only when the applied force on the fiber is in the range where the variance of local stiffness along the fiber takes a minimum value. Our model thus predicts that the biophysical properties of the fibers play an important role in the long-term regulatory maintenance of these fibers.
SU-F-T-18: The Importance of Immobilization Devices in Brachytherapy Treatments of Vaginal Cuff
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shojaei, M; Dumitru, N; Pella, S
2016-06-15
Purpose: High dose rate brachytherapy is a highly localized radiation therapy that has a very high dose gradient. Thus one of the most important parts of the treatment is the immobilization. The smallest movement of the patient or applicator can result in dose variation to the surrounding tissues as well as to the tumor to be treated. We will revise the ML Cylinder treatments and their localization challenges. Methods: A retrospective study of 25 patients with 5 treatments each looking into the applicator’s placement in regard to the organs at risk. Motion possibilities for each applicator intra and inter fractionationmore » with their dosimetric implications were covered and measured in regard with their dose variance. The localization immobilization devices used were assessed for the capability to prevent motion before and during the treatment delivery. Results: We focused on the 100% isodose on central axis and a 15 degree displacement due to possible rotation analyzing the dose variations to the bladder and rectum walls. The average dose variation for bladder was 15% of the accepted tolerance, with a minimum variance of 11.1% and a maximum one of 23.14% on the central axis. For the off axis measurements we found an average variation of 16.84% of the accepted tolerance, with a minimum variance of 11.47% and a maximum one of 27.69%. For the rectum we focused on the rectum wall closest to the 120% isodose line. The average dose variation was 19.4%, minimum 11.3% and a maximum of 34.02% from the accepted tolerance values Conclusion: Improved immobilization devices are recommended. For inter-fractionation, localization devices are recommended in place with consistent planning in regards with the initial fraction. Many of the present immobilization devices produced for external radiotherapy can be used to improve the localization of HDR applicators during transportation of the patient and during treatment.« less
Scientists, especially environmental scientists often encounter trace level concentrations that are typically reported as less than a certain limit of detection, L. Type 1, left-censored data arise when certain low values lying below L are ignored or unknown as they cannot be mea...
Piepho, H P
1995-03-01
The additive main effects multiplicative interaction model is frequently used in the analysis of multilocation trials. In the analysis of such data it is of interest to decide how many of the multiplicative interaction terms are significant. Several tests for this task are available, all of which assume that errors are normally distributed with a common variance. This paper investigates the robustness of several tests (Gollob, F GH1, FGH2, FR)to departures from these assumptions. It is concluded that, because of its better robustness, the F Rtest is preferable. If the other tests are to be used, preliminary tests for the validity of assumptions should be performed.
A probabilistic approach for the estimation of earthquake source parameters from spectral inversion
NASA Astrophysics Data System (ADS)
Supino, M.; Festa, G.; Zollo, A.
2017-12-01
The amplitude spectrum of a seismic signal related to an earthquake source carries information about the size of the rupture, moment, stress and energy release. Furthermore, it can be used to characterize the Green's function of the medium crossed by the seismic waves. We describe the earthquake amplitude spectrum assuming a generalized Brune's (1970) source model, and direct P- and S-waves propagating in a layered velocity model, characterized by a frequency-independent Q attenuation factor. The observed displacement spectrum depends indeed on three source parameters, the seismic moment (through the low-frequency spectral level), the corner frequency (that is a proxy of the fault length) and the high-frequency decay parameter. These parameters are strongly correlated each other and with the quality factor Q; a rigorous estimation of the associated uncertainties and parameter resolution is thus needed to obtain reliable estimations.In this work, the uncertainties are characterized adopting a probabilistic approach for the parameter estimation. Assuming an L2-norm based misfit function, we perform a global exploration of the parameter space to find the absolute minimum of the cost function and then we explore the cost-function associated joint a-posteriori probability density function around such a minimum, to extract the correlation matrix of the parameters. The global exploration relies on building a Markov chain in the parameter space and on combining a deterministic minimization with a random exploration of the space (basin-hopping technique). The joint pdf is built from the misfit function using the maximum likelihood principle and assuming a Gaussian-like distribution of the parameters. It is then computed on a grid centered at the global minimum of the cost-function. The numerical integration of the pdf finally provides mean, variance and correlation matrix associated with the set of best-fit parameters describing the model. Synthetic tests are performed to investigate the robustness of the method and uncertainty propagation from the data-space to the parameter space. Finally, the method is applied to characterize the source parameters of the earthquakes occurring during the 2016-2017 Central Italy sequence, with the goal of investigating the source parameter scaling with magnitude.
Kaufman, Michelle R; Patel, Eshan U; Dam, Kim H; Packman, Zoe R; Van Lith, Lynn M; Hatzold, Karin; Marcell, Arik V; Mavhu, Webster; Kahabuka, Catherine; Mahlasela, Lusanda; Njeuhmeli, Emmanuel; Seifert Ahanda, Kim; Ncube, Getrude; Lija, Gissenge; Bonnecwe, Collen; Tobian, Aaron A R
2018-01-01
Abstract Background The minimum package of voluntary medical male circumcision (VMMC) services, as defined by the World Health Organization, includes human immunodeficiency virus (HIV) testing, HIV prevention counseling, screening/treatment for sexually transmitted infections, condom promotion, and the VMMC procedure. The current study aimed to assess whether adolescents received these key elements. Methods Quantitative surveys were conducted among male adolescents aged 10–19 years (n = 1293) seeking VMMC in South Africa, Tanzania, and Zimbabwe. We used a summative index score of 8 self-reported binary items to measure receipt of important elements of the World Health Organization–recommended HIV minimum package and the US President’s Emergency Plan for AIDS Relief VMMC recommendations. Counseling sessions were observed for a subset of adolescents (n = 44). To evaluate factors associated with counseling content, we used Poisson regression models with generalized estimating equations and robust variance estimation. Results Although counseling included VMMC benefits, little attention was paid to risks, including how to identify complications, what to do if they arise, and why avoiding sex and masturbation could prevent complications. Overall, older adolescents (aged 15–19 years) reported receiving more items in the recommended minimum package than younger adolescents (aged 10–14 years; adjusted β, 0.17; 95% confidence interval [CI], .12–.21; P < .001). Older adolescents were also more likely to report receiving HIV test education and promotion (42.7% vs 29.5%; adjusted prevalence ratio [aPR], 1.53; 95% CI, 1.16–2.02) and a condom demonstration with condoms to take home (16.8% vs 4.4%; aPR, 2.44; 95% CI, 1.30–4.58). No significant age differences appeared in reports of explanations of VMMC risks and benefits or uptake of HIV testing. These self-reported findings were confirmed during counseling observations. Conclusions Moving toward age-equitable HIV prevention services during adolescent VMMC likely requires standardizing counseling content, as there are significant age differences in HIV prevention content received by adolescents. PMID:29617776
Variable variance Preisach model for multilayers with perpendicular magnetic anisotropy
NASA Astrophysics Data System (ADS)
Franco, A. F.; Gonzalez-Fuentes, C.; Morales, R.; Ross, C. A.; Dumas, R.; Åkerman, J.; Garcia, C.
2016-08-01
We present a variable variance Preisach model that fully accounts for the different magnetization processes of a multilayer structure with perpendicular magnetic anisotropy by adjusting the evolution of the interaction variance as the magnetization changes. We successfully compare in a quantitative manner the results obtained with this model to experimental hysteresis loops of several [CoFeB/Pd ] n multilayers. The effect of the number of repetitions and the thicknesses of the CoFeB and Pd layers on the magnetization reversal of the multilayer structure is studied, and it is found that many of the observed phenomena can be attributed to an increase of the magnetostatic interactions and subsequent decrease of the size of the magnetic domains. Increasing the CoFeB thickness leads to the disappearance of the perpendicular anisotropy, and such a minimum thickness of the Pd layer is necessary to achieve an out-of-plane magnetization.
Experimental study on an FBG strain sensor
NASA Astrophysics Data System (ADS)
Liu, Hong-lin; Zhu, Zheng-wei; Zheng, Yong; Liu, Bang; Xiao, Feng
2018-01-01
Landslides and other geological disasters occur frequently and often cause high financial and humanitarian cost. The real-time, early-warning monitoring of landslides has important significance in reducing casualties and property losses. In this paper, by taking the high initial precision and high sensitivity advantage of FBG, an FBG strain sensor is designed combining FBGs with inclinometer. The sensor was regarded as a cantilever beam with one end fixed. According to the anisotropic material properties of the inclinometer, a theoretical formula between the FBG wavelength and the deflection of the sensor was established using the elastic mechanics principle. Accuracy of the formula established had been verified through laboratory calibration testing and model slope monitoring experiments. The displacement of landslide could be calculated by the established theoretical formula using the changing values of FBG central wavelength obtained by the demodulation instrument remotely. Results showed that the maximum error at different heights was 9.09%; the average of the maximum error was 6.35%, and its corresponding variance was 2.12; the minimum error was 4.18%; the average of the minimum error was 5.99%, and its corresponding variance was 0.50. The maximum error of the theoretical and the measured displacement decrease gradually, and the variance of the error also decreases gradually. This indicates that the theoretical results are more and more reliable. It also shows that the sensor and the theoretical formula established in this paper can be used for remote, real-time, high precision and early warning monitoring of the slope.
NASA Astrophysics Data System (ADS)
Karimi Movahed, Kamran; Zhang, Zhi-Hai
2015-09-01
Demand and lead time uncertainties have significant effects on supply chain behaviour. In this paper, we present a single-product three-level multi-period supply chain with uncertain demands and lead times by using robust techniques to study the managerial insights of the supply chain inventory system under uncertainty. We formulate this problem as a robust mixed-integer linear program with minimised expected cost and total cost variation to determine the optimal (s, S) values of the inventory parameters. Several numerical studies are performed to investigate the supply chain behaviour. Useful guidelines for the design of a robust supply chain are also provided. Results show that the order variance and the expected cost in a supply chain significantly increase when the manufacturer's review period is an integer ratio of the distributor's and the retailer's review periods.
Employing Sensitivity Derivatives for Robust Optimization under Uncertainty in CFD
NASA Technical Reports Server (NTRS)
Newman, Perry A.; Putko, Michele M.; Taylor, Arthur C., III
2004-01-01
A robust optimization is demonstrated on a two-dimensional inviscid airfoil problem in subsonic flow. Given uncertainties in statistically independent, random, normally distributed flow parameters (input variables), an approximate first-order statistical moment method is employed to represent the Computational Fluid Dynamics (CFD) code outputs as expected values with variances. These output quantities are used to form the objective function and constraints. The constraints are cast in probabilistic terms; that is, the probability that a constraint is satisfied is greater than or equal to some desired target probability. Gradient-based robust optimization of this stochastic problem is accomplished through use of both first and second-order sensitivity derivatives. For each robust optimization, the effect of increasing both input standard deviations and target probability of constraint satisfaction are demonstrated. This method provides a means for incorporating uncertainty when considering small deviations from input mean values.
New robust statistical procedures for the polytomous logistic regression models.
Castilla, Elena; Ghosh, Abhik; Martin, Nirian; Pardo, Leandro
2018-05-17
This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications. © 2018, The International Biometric Society.
Post-stratified estimation: with-in strata and total sample size recommendations
James A. Westfall; Paul L. Patterson; John W. Coulston
2011-01-01
Post-stratification is used to reduce the variance of estimates of the mean. Because the stratification is not fixed in advance, within-strata sample sizes can be quite small. The survey statistics literature provides some guidance on minimum within-strata sample sizes; however, the recommendations and justifications are inconsistent and apply broadly for many...
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Salvucci, Guido D.; Rigden, Angela J.; Jung, Martin; Collatz, G. James; Schubert, Siegfried D.
2015-01-01
The spatial pattern across the continental United States of the interannual variance of warm season water-dependent evapotranspiration, a pattern of relevance to land-atmosphere feedback, cannot be measured directly. Alternative and indirect approaches to estimating the pattern, however, do exist, and given the uncertainty of each, we use several such approaches here. We first quantify the water dependent evapotranspiration variance pattern inherent in two derived evapotranspiration datasets available from the literature. We then search for the pattern in proxy geophysical variables (air temperature, stream flow, and NDVI) known to have strong ties to evapotranspiration. The variances inherent in all of the different (and mostly independent) data sources show some differences but are generally strongly consistent they all show a large variance signal down the center of the U.S., with lower variances toward the east and (for the most part) toward the west. The robustness of the pattern across the datasets suggests that it indeed represents the pattern operating in nature. Using Budykos hydroclimatic framework, we show that the pattern can largely be explained by the relative strength of water and energy controls on evapotranspiration across the continent.
Working covariance model selection for generalized estimating equations.
Carey, Vincent J; Wang, You-Gan
2011-11-20
We investigate methods for data-based selection of working covariance models in the analysis of correlated data with generalized estimating equations. We study two selection criteria: Gaussian pseudolikelihood and a geodesic distance based on discrepancy between model-sensitive and model-robust regression parameter covariance estimators. The Gaussian pseudolikelihood is found in simulation to be reasonably sensitive for several response distributions and noncanonical mean-variance relations for longitudinal data. Application is also made to a clinical dataset. Assessment of adequacy of both correlation and variance models for longitudinal data should be routine in applications, and we describe open-source software supporting this practice. Copyright © 2011 John Wiley & Sons, Ltd.
Design of optimally normal minimum gain controllers by continuation method
NASA Technical Reports Server (NTRS)
Lim, K. B.; Juang, J.-N.; Kim, Z. C.
1989-01-01
A measure of the departure from normality is investigated for system robustness. An attractive feature of the normality index is its simplicity for pole placement designs. To allow a tradeoff between system robustness and control effort, a cost function consisting of the sum of a norm of weighted gain matrix and a normality index is minimized. First- and second-order necessary conditions for the constrained optimization problem are derived and solved by a Newton-Raphson algorithm imbedded into a one-parameter family of neighboring zero problems. The method presented allows the direct computation of optimal gains in terms of robustness and control effort for pole placement problems.
NASA Technical Reports Server (NTRS)
Jacobson, R. A.
1975-01-01
Difficulties arise in guiding a solar electric propulsion spacecraft due to nongravitational accelerations caused by random fluctuations in the magnitude and direction of the thrust vector. These difficulties may be handled by using a low thrust guidance law based on the linear-quadratic-Gaussian problem of stochastic control theory with a minimum terminal miss performance criterion. Explicit constraints are imposed on the variances of the control parameters, and an algorithm based on the Hilbert space extension of a parameter optimization method is presented for calculation of gains in the guidance law. The terminal navigation of a 1980 flyby mission to the comet Encke is used as an example.
Static vs stochastic optimization: A case study of FTSE Bursa Malaysia sectorial indices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah Rozita
2014-06-19
Traditional portfolio optimization methods in the likes of Markowitz' mean-variance model and semi-variance model utilize static expected return and volatility risk from historical data to generate an optimal portfolio. The optimal portfolio may not truly be optimal in reality due to the fact that maximum and minimum values from the data may largely influence the expected return and volatility risk values. This paper considers distributions of assets' return and volatility risk to determine a more realistic optimized portfolio. For illustration purposes, the sectorial indices data in FTSE Bursa Malaysia is employed. The results show that stochastic optimization provides more stablemore » information ratio.« less
Sun, Li; Li, Donghai; Gao, Zhiqiang; Yang, Zhao; Zhao, Shen
2016-09-01
Control of the non-minimum phase (NMP) system is challenging, especially in the presence of modelling uncertainties and external disturbances. To this end, this paper presents a combined feedforward and model-assisted Active Disturbance Rejection Control (MADRC) strategy. Based on the nominal model, the feedforward controller is used to produce a tracking performance that has minimum settling time subject to a prescribed undershoot constraint. On the other hand, the unknown disturbances and uncertain dynamics beyond the nominal model are compensated by MADRC. Since the conventional Extended State Observer (ESO) is not suitable for the NMP system, a model-assisted ESO (MESO) is proposed based on the nominal observable canonical form. The convergence of MESO is proved in time domain. The stability, steady-state characteristics and robustness of the closed-loop system are analyzed in frequency domain. The proposed strategy has only one tuning parameter, i.e., the bandwidth of MESO, which can be readily determined with a prescribed robustness level. Some comparative examples are given to show the efficacy of the proposed method. This paper depicts a promising prospect of the model-assisted ADRC in dealing with complex systems. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Ramseyer, Gary C.; Tcheng, Tse-Kia
The present study was directed at determining the extent to which the Type I Error rate is affected by violations in the basic assumptions of the q statistic. Monte Carlo methods were employed, and a variety of departures from the assumptions were examined. (Author)
Brian Buma; Jennifer K Costanza; Kurt Riitters
2017-01-01
The scale of investigation for disturbanceinfluenced processes plays a critical role in theoretical assumptions about stability, variance, and equilibrium, as well as conservation reserve and long-term monitoring program design. Critical consideration of scale is required for robust planning designs, especially when anticipating future disturbances whose exact...
Farhadifar, Reza; Ponciano, José Miguel; Andersen, Erik C.; Needleman, Daniel J.; Baer, Charles F.
2016-01-01
Different types of phenotypic traits consistently exhibit different levels of genetic variation in natural populations. There are two potential explanations: Either mutation produces genetic variation at different rates or natural selection removes or promotes genetic variation at different rates. Whether mutation or selection is of greater general importance is a longstanding unresolved question in evolutionary genetics. We report mutational variances (VM) for 19 traits related to the first mitotic cell division in Caenorhabditis elegans and compare them to the standing genetic variances (VG) for the same suite of traits in a worldwide collection C. elegans. Two robust conclusions emerge. First, the mutational process is highly repeatable: The correlation between VM in two independent sets of mutation accumulation lines is ∼0.9. Second, VM for a trait is a good predictor of VG for that trait: The correlation between VM and VG is ∼0.9. This result is predicted for a population at mutation–selection balance; it is not predicted if balancing selection plays a primary role in maintaining genetic variation. PMID:27334268
Huang, Lei
2015-01-01
To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required. PMID:26437409
Reduced conservatism in stability robustness bounds by state transformation
NASA Technical Reports Server (NTRS)
Yedavalli, R. K.; Liang, Z.
1986-01-01
This note addresses the issue of 'conservatism' in the time domain stability robustness bounds obtained by the Liapunov approach. A state transformation is employed to improve the upper bounds on the linear time-varying perturbation of an asymptotically stable linear time-invariant system for robust stability. This improvement is due to the variance of the conservatism of the Liapunov approach with respect to the basis of the vector space in which the Liapunov function is constructed. Improved bounds are obtained, using a transformation, on elemental and vector norms of perturbations (i.e., structured perturbations) as well as on a matrix norm of perturbations (i.e., unstructured perturbations). For the case of a diagonal transformation, an algorithm is proposed to find the 'optimal' transformation. Several examples are presented to illustrate the proposed analysis.
Jackknife variance of the partial area under the empirical receiver operating characteristic curve.
Bandos, Andriy I; Guo, Ben; Gur, David
2017-04-01
Receiver operating characteristic analysis provides an important methodology for assessing traditional (e.g., imaging technologies and clinical practices) and new (e.g., genomic studies, biomarker development) diagnostic problems. The area under the clinically/practically relevant part of the receiver operating characteristic curve (partial area or partial area under the receiver operating characteristic curve) is an important performance index summarizing diagnostic accuracy at multiple operating points (decision thresholds) that are relevant to actual clinical practice. A robust estimate of the partial area under the receiver operating characteristic curve is provided by the area under the corresponding part of the empirical receiver operating characteristic curve. We derive a closed-form expression for the jackknife variance of the partial area under the empirical receiver operating characteristic curve. Using the derived analytical expression, we investigate the differences between the jackknife variance and a conventional variance estimator. The relative properties in finite samples are demonstrated in a simulation study. The developed formula enables an easy way to estimate the variance of the empirical partial area under the receiver operating characteristic curve, thereby substantially reducing the computation burden, and provides important insight into the structure of the variability. We demonstrate that when compared with the conventional approach, the jackknife variance has substantially smaller bias, and leads to a more appropriate type I error rate of the Wald-type test. The use of the jackknife variance is illustrated in the analysis of a data set from a diagnostic imaging study.
Du, Gang; Jiang, Zhibin; Diao, Xiaodi; Yao, Yang
2013-07-01
Takagi-Sugeno (T-S) fuzzy neural networks (FNNs) can be used to handle complex, fuzzy, uncertain clinical pathway (CP) variances. However, there are many drawbacks, such as slow training rate, propensity to become trapped in a local minimum and poor ability to perform a global search. In order to improve overall performance of variance handling by T-S FNNs, a new CP variance handling method is proposed in this study. It is based on random cooperative decomposing particle swarm optimization with double mutation mechanism (RCDPSO_DM) for T-S FNNs. Moreover, the proposed integrated learning algorithm, combining the RCDPSO_DM algorithm with a Kalman filtering algorithm, is applied to optimize antecedent and consequent parameters of constructed T-S FNNs. Then, a multi-swarm cooperative immigrating particle swarm algorithm ensemble method is used for intelligent ensemble T-S FNNs with RCDPSO_DM optimization to further improve stability and accuracy of CP variance handling. Finally, two case studies on liver and kidney poisoning variances in osteosarcoma preoperative chemotherapy are used to validate the proposed method. The result demonstrates that intelligent ensemble T-S FNNs based on the RCDPSO_DM achieves superior performances, in terms of stability, efficiency, precision and generalizability, over PSO ensemble of all T-S FNNs with RCDPSO_DM optimization, single T-S FNNs with RCDPSO_DM optimization, standard T-S FNNs, standard Mamdani FNNs and T-S FNNs based on other algorithms (cooperative particle swarm optimization and particle swarm optimization) for CP variance handling. Therefore, it makes CP variance handling more effective. Copyright © 2013 Elsevier Ltd. All rights reserved.
2012-09-01
by the ARL Translational Neuroscience Branch. It covers the Emotiv EPOC,6 Advanced Brain Monitoring (ABM) B-Alert X10,7 Quasar 8 DSI helmet-based...Systems; ARL-TR-5945; U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, 2012 4 Ibid. 5 Ibid. 6 EPOC is a trademark of Emotiv . 7 B
ERIC Educational Resources Information Center
Johnson, Jim
2017-01-01
A growing number of U.S. business schools now offer an undergraduate degree in international business (IB), for which training in a foreign language is a requirement. However, there appears to be considerable variance in the minimum requirements for foreign language training across U.S. business schools, including the provision of…
Iterative Minimum Variance Beamformer with Low Complexity for Medical Ultrasound Imaging.
Deylami, Ali Mohades; Asl, Babak Mohammadzadeh
2018-06-04
Minimum variance beamformer (MVB) improves the resolution and contrast of medical ultrasound images compared with delay and sum (DAS) beamformer. The weight vector of this beamformer should be calculated for each imaging point independently, with a cost of increasing computational complexity. The large number of necessary calculations limits this beamformer to application in real-time systems. A beamformer is proposed based on the MVB with lower computational complexity while preserving its advantages. This beamformer avoids matrix inversion, which is the most complex part of the MVB, by solving the optimization problem iteratively. The received signals from two imaging points close together do not vary much in medical ultrasound imaging. Therefore, using the previously optimized weight vector for one point as initial weight vector for the new neighboring point can improve the convergence speed and decrease the computational complexity. The proposed method was applied on several data sets, and it has been shown that the method can regenerate the results obtained by the MVB while the order of complexity is decreased from O(L 3 ) to O(L 2 ). Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
GIS-based niche modeling for mapping species' habitats
Rotenberry, J.T.; Preston, K.L.; Knick, S.
2006-01-01
Ecological a??niche modelinga?? using presence-only locality data and large-scale environmental variables provides a powerful tool for identifying and mapping suitable habitat for species over large spatial extents. We describe a niche modeling approach that identifies a minimum (rather than an optimum) set of basic habitat requirements for a species, based on the assumption that constant environmental relationships in a species' distribution (i.e., variables that maintain a consistent value where the species occurs) are most likely to be associated with limiting factors. Environmental variables that take on a wide range of values where a species occurs are less informative because they do not limit a species' distribution, at least over the range of variation sampled. This approach is operationalized by partitioning Mahalanobis D2 (standardized difference between values of a set of environmental variables for any point and mean values for those same variables calculated from all points at which a species was detected) into independent components. The smallest of these components represents the linear combination of variables with minimum variance; increasingly larger components represent larger variances and are increasingly less limiting. We illustrate this approach using the California Gnatcatcher (Polioptila californica Brewster) and provide SAS code to implement it.
Spectral analysis comparisons of Fourier-theory-based methods and minimum variance (Capon) methods
NASA Astrophysics Data System (ADS)
Garbanzo-Salas, Marcial; Hocking, Wayne. K.
2015-09-01
In recent years, adaptive (data dependent) methods have been introduced into many areas where Fourier spectral analysis has traditionally been used. Although the data-dependent methods are often advanced as being superior to Fourier methods, they do require some finesse in choosing the order of the relevant filters. In performing comparisons, we have found some concerns about the mappings, particularly when related to cases involving many spectral lines or even continuous spectral signals. Using numerical simulations, several comparisons between Fourier transform procedures and minimum variance method (MVM) have been performed. For multiple frequency signals, the MVM resolves most of the frequency content only for filters that have more degrees of freedom than the number of distinct spectral lines in the signal. In the case of Gaussian spectral approximation, MVM will always underestimate the width, and can misappropriate the location of spectral line in some circumstances. Large filters can be used to improve results with multiple frequency signals, but are computationally inefficient. Significant biases can occur when using MVM to study spectral information or echo power from the atmosphere. Artifacts and artificial narrowing of turbulent layers is one such impact.
NASA Astrophysics Data System (ADS)
Zhou, Ming; Wu, Jianyang; Xu, Xiaoyi; Mu, Xin; Dou, Yunping
2018-02-01
In order to obtain improved electrical discharge machining (EDM) performance, we have dedicated more than a decade to correcting one essential EDM defect, the weak stability of the machining, by developing adaptive control systems. The instabilities of machining are mainly caused by complicated disturbances in discharging. To counteract the effects from the disturbances on machining, we theoretically developed three control laws from minimum variance (MV) control law to minimum variance and pole placements coupled (MVPPC) control law and then to a two-step-ahead prediction (TP) control law. Based on real-time estimation of EDM process model parameters and measured ratio of arcing pulses which is also called gap state, electrode discharging cycle was directly and adaptively tuned so that a stable machining could be achieved. To this end, we not only theoretically provide three proved control laws for a developed EDM adaptive control system, but also practically proved the TP control law to be the best in dealing with machining instability and machining efficiency though the MVPPC control law provided much better EDM performance than the MV control law. It was also shown that the TP control law also provided a burn free machining.
The performance of matched-field track-before-detect methods using shallow-water Pacific data.
Tantum, Stacy L; Nolte, Loren W; Krolik, Jeffrey L; Harmanci, Kerem
2002-07-01
Matched-field track-before-detect processing, which extends the concept of matched-field processing to include modeling of the source dynamics, has recently emerged as a promising approach for maintaining the track of a moving source. In this paper, optimal Bayesian and minimum variance beamforming track-before-detect algorithms which incorporate a priori knowledge of the source dynamics in addition to the underlying uncertainties in the ocean environment are presented. A Markov model is utilized for the source motion as a means of capturing the stochastic nature of the source dynamics without assuming uniform motion. In addition, the relationship between optimal Bayesian track-before-detect processing and minimum variance track-before-detect beamforming is examined, revealing how an optimal tracking philosophy may be used to guide the modification of existing beamforming techniques to incorporate track-before-detect capabilities. Further, the benefits of implementing an optimal approach over conventional methods are illustrated through application of these methods to shallow-water Pacific data collected as part of the SWellEX-1 experiment. The results show that incorporating Markovian dynamics for the source motion provides marked improvement in the ability to maintain target track without the use of a uniform velocity hypothesis.
NASA Astrophysics Data System (ADS)
Polat, Esra; Gunay, Suleyman
2013-10-01
One of the problems encountered in Multiple Linear Regression (MLR) is multicollinearity, which causes the overestimation of the regression parameters and increase of the variance of these parameters. Hence, in case of multicollinearity presents, biased estimation procedures such as classical Principal Component Regression (CPCR) and Partial Least Squares Regression (PLSR) are then performed. SIMPLS algorithm is the leading PLSR algorithm because of its speed, efficiency and results are easier to interpret. However, both of the CPCR and SIMPLS yield very unreliable results when the data set contains outlying observations. Therefore, Hubert and Vanden Branden (2003) have been presented a robust PCR (RPCR) method and a robust PLSR (RPLSR) method called RSIMPLS. In RPCR, firstly, a robust Principal Component Analysis (PCA) method for high-dimensional data on the independent variables is applied, then, the dependent variables are regressed on the scores using a robust regression method. RSIMPLS has been constructed from a robust covariance matrix for high-dimensional data and robust linear regression. The purpose of this study is to show the usage of RPCR and RSIMPLS methods on an econometric data set, hence, making a comparison of two methods on an inflation model of Turkey. The considered methods have been compared in terms of predictive ability and goodness of fit by using a robust Root Mean Squared Error of Cross-validation (R-RMSECV), a robust R2 value and Robust Component Selection (RCS) statistic.
Budiarto, E; Keijzer, M; Storchi, P R M; Heemink, A W; Breedveld, S; Heijmen, B J M
2014-01-20
Radiotherapy dose delivery in the tumor and surrounding healthy tissues is affected by movements and deformations of the corresponding organs between fractions. The random variations may be characterized by non-rigid, anisotropic principal component analysis (PCA) modes. In this article new dynamic dose deposition matrices, based on established PCA modes, are introduced as a tool to evaluate the mean and the variance of the dose at each target point resulting from any given set of fluence profiles. The method is tested for a simple cubic geometry and for a prostate case. The movements spread out the distributions of the mean dose and cause the variance of the dose to be highest near the edges of the beams. The non-rigidity and anisotropy of the movements are reflected in both quantities. The dynamic dose deposition matrices facilitate the inclusion of the mean and the variance of the dose in the existing fluence-profile optimizer for radiotherapy planning, to ensure robust plans with respect to the movements.
Bureau, Alexandre; Duchesne, Thierry
2015-12-01
Splitting extended families into their component nuclear families to apply a genetic association method designed for nuclear families is a widespread practice in familial genetic studies. Dependence among genotypes and phenotypes of nuclear families from the same extended family arises because of genetic linkage of the tested marker with a risk variant or because of familial specificity of genetic effects due to gene-environment interaction. This raises concerns about the validity of inference conducted under the assumption of independence of the nuclear families. We indeed prove theoretically that, in a conditional logistic regression analysis applicable to disease cases and their genotyped parents, the naive model-based estimator of the variance of the coefficient estimates underestimates the true variance. However, simulations with realistic effect sizes of risk variants and variation of this effect from family to family reveal that the underestimation is negligible. The simulations also show the greater efficiency of the model-based variance estimator compared to a robust empirical estimator. Our recommendation is therefore, to use the model-based estimator of variance for inference on effects of genetic variants.
Kirkpatrick, Robert M; McGue, Matt; Iacono, William G
2015-03-01
The present study of general cognitive ability attempts to replicate and extend previous investigations of a biometric moderator, family-of-origin socioeconomic status (SES), in a sample of 2,494 pairs of adolescent twins, non-twin biological siblings, and adoptive siblings assessed with individually administered IQ tests. We hypothesized that SES would covary positively with additive-genetic variance and negatively with shared-environmental variance. Important potential confounds unaddressed in some past studies, such as twin-specific effects, assortative mating, and differential heritability by trait level, were found to be negligible. In our main analysis, we compared models by their sample-size corrected AIC, and base our statistical inference on model-averaged point estimates and standard errors. Additive-genetic variance increased with SES-an effect that was statistically significant and robust to model specification. We found no evidence that SES moderated shared-environmental influence. We attempt to explain the inconsistent replication record of these effects, and provide suggestions for future research.
Kirkpatrick, Robert M.; McGue, Matt; Iacono, William G.
2015-01-01
The present study of general cognitive ability attempts to replicate and extend previous investigations of a biometric moderator, family-of-origin socioeconomic status (SES), in a sample of 2,494 pairs of adolescent twins, non-twin biological siblings, and adoptive siblings assessed with individually administered IQ tests. We hypothesized that SES would covary positively with additive-genetic variance and negatively with shared-environmental variance. Important potential confounds unaddressed in some past studies, such as twin-specific effects, assortative mating, and differential heritability by trait level, were found to be negligible. In our main analysis, we compared models by their sample-size corrected AIC, and base our statistical inference on model-averaged point estimates and standard errors. Additive-genetic variance increased with SES—an effect that was statistically significant and robust to model specification. We found no evidence that SES moderated shared-environmental influence. We attempt to explain the inconsistent replication record of these effects, and provide suggestions for future research. PMID:25539975
NASA Astrophysics Data System (ADS)
Kitagawa, M.; Yamamoto, Y.
1987-11-01
An alternative scheme for generating amplitude-squeezed states of photons based on unitary evolution which can properly be described by quantum mechanics is presented. This scheme is a nonlinear Mach-Zehnder interferometer containing an optical Kerr medium. The quasi-probability density (QPD) and photon-number distribution of the output field are calculated, and it is demonstrated that the reduced photon-number uncertainty and enhanced phase uncertainty maintain the minimum-uncertainty product. A self-phase-modulation of the single-mode quantized field in the Kerr medium is described based on localized operators. The spatial evolution of the state is demonstrated by QPD in the Schroedinger picture. It is shown that photon-number variance can be reduced to a level far below the limit for an ordinary squeezed state, and that the state prepared using this scheme remains a number-phase minimum-uncertainty state until the maximum reduction of number fluctuations is surpassed.
NASA Astrophysics Data System (ADS)
Hou, Liqiang; Cai, Yuanli; Liu, Jin; Hou, Chongyuan
2016-04-01
A variable fidelity robust optimization method for pulsed laser orbital debris removal (LODR) under uncertainty is proposed. Dempster-shafer theory of evidence (DST), which merges interval-based and probabilistic uncertainty modeling, is used in the robust optimization. The robust optimization method optimizes the performance while at the same time maximizing its belief value. A population based multi-objective optimization (MOO) algorithm based on a steepest descent like strategy with proper orthogonal decomposition (POD) is used to search robust Pareto solutions. Analytical and numerical lifetime predictors are used to evaluate the debris lifetime after the laser pulses. Trust region based fidelity management is designed to reduce the computational cost caused by the expensive model. When the solutions fall into the trust region, the analytical model is used to reduce the computational cost. The proposed robust optimization method is first tested on a set of standard problems and then applied to the removal of Iridium 33 with pulsed lasers. It will be shown that the proposed approach can identify the most robust solutions with minimum lifetime under uncertainty.
Distribution path robust optimization of electric vehicle with multiple distribution centers
Hao, Wei; He, Ruichun; Jia, Xiaoyan; Pan, Fuquan; Fan, Jing; Xiong, Ruiqi
2018-01-01
To identify electrical vehicle (EV) distribution paths with high robustness, insensitivity to uncertainty factors, and detailed road-by-road schemes, optimization of the distribution path problem of EV with multiple distribution centers and considering the charging facilities is necessary. With the minimum transport time as the goal, a robust optimization model of EV distribution path with adjustable robustness is established based on Bertsimas’ theory of robust discrete optimization. An enhanced three-segment genetic algorithm is also developed to solve the model, such that the optimal distribution scheme initially contains all road-by-road path data using the three-segment mixed coding and decoding method. During genetic manipulation, different interlacing and mutation operations are carried out on different chromosomes, while, during population evolution, the infeasible solution is naturally avoided. A part of the road network of Xifeng District in Qingyang City is taken as an example to test the model and the algorithm in this study, and the concrete transportation paths are utilized in the final distribution scheme. Therefore, more robust EV distribution paths with multiple distribution centers can be obtained using the robust optimization model. PMID:29518169
NASA Technical Reports Server (NTRS)
Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi
2002-01-01
Ulysses observations have shown that pressure balance structures (PBSs) are a common feature in high-latitude, fast solar wind near solar minimum. Previous studies of Ulysses/SWOOPS plasma data suggest these PBSs may be remnants of coronal polar plumes. Here we find support for this suggestion in an analysis of PBS magnetic structure. We used Ulysses magnetometer data and applied a minimum variance analysis to magnetic discontinuities in PBSs. We found that PBSs preferentially contain tangential discontinuities, as opposed to rotational discontinuities and to non-PBS regions in the solar wind. This suggests that PBSs contain structures like current sheets or plasmoids that may be associated with network activity at the base of plumes.
NASA Technical Reports Server (NTRS)
Yamauchi, Y.; Suess, Steven T.; Sakurai, T.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Ulysses observations have shown that pressure balance structures (PBSs) are a common feature in high-latitude, fast solar wind near solar minimum. Previous studies of Ulysses/SWOOPS plasma data suggest these PBSs may be remnants of coronal polar plumes. Here we find support for this suggestion in an analysis of PBS magnetic structure. We used Ulysses magnetometer data and applied a minimum variance analysis to discontinuities. We found that PBSs preferentially contain tangential discontinuities, as opposed to rotational discontinuities and to non-PBS regions in the solar wind. This suggests that PBSs contain structures like current sheets or plasmoids that may be associated with network activity at the base of plumes.
Improving Your Data Transformations: Applying the Box-Cox Transformation
ERIC Educational Resources Information Center
Osborne, Jason W.
2010-01-01
Many of us in the social sciences deal with data that do not conform to assumptions of normality and/or homoscedasticity/homogeneity of variance. Some research has shown that parametric tests (e.g., multiple regression, ANOVA) can be robust to modest violations of these assumptions. Yet the reality is that almost all analyses (even nonparametric…
Smoking and Cancers: Case-Robust Analysis of a Classic Data Set
ERIC Educational Resources Information Center
Bentler, Peter M.; Satorra, Albert; Yuan, Ke-Hai
2009-01-01
A typical structural equation model is intended to reproduce the means, variances, and correlations or covariances among a set of variables based on parameter estimates of a highly restricted model. It is not widely appreciated that the sample statistics being modeled can be quite sensitive to outliers and influential observations, leading to bias…
ERIC Educational Resources Information Center
Tipton, Elizabeth
2014-01-01
Replication studies allow for making comparisons and generalizations regarding the effectiveness of an intervention across different populations, versions of a treatment, settings and contexts, and outcomes. One method for making these comparisons across many replication studies is through the use of meta-analysis. A recent innovation in…
Appropriate Statistical Analysis for Two Independent Groups of Likert-Type Data
ERIC Educational Resources Information Center
Warachan, Boonyasit
2011-01-01
The objective of this research was to determine the robustness and statistical power of three different methods for testing the hypothesis that ordinal samples of five and seven Likert categories come from equal populations. The three methods are the two sample t-test with equal variances, the Mann-Whitney test, and the Kolmogorov-Smirnov test. In…
Lo, P; Young, S; Kim, H J; Brown, M S; McNitt-Gray, M F
2016-08-01
To investigate the effects of dose level and reconstruction method on density and texture based features computed from CT lung nodules. This study had two major components. In the first component, a uniform water phantom was scanned at three dose levels and images were reconstructed using four conventional filtered backprojection (FBP) and four iterative reconstruction (IR) methods for a total of 24 different combinations of acquisition and reconstruction conditions. In the second component, raw projection (sinogram) data were obtained for 33 lung nodules from patients scanned as a part of their clinical practice, where low dose acquisitions were simulated by adding noise to sinograms acquired at clinical dose levels (a total of four dose levels) and reconstructed using one FBP kernel and two IR kernels for a total of 12 conditions. For the water phantom, spherical regions of interest (ROIs) were created at multiple locations within the water phantom on one reference image obtained at a reference condition. For the lung nodule cases, the ROI of each nodule was contoured semiautomatically (with manual editing) from images obtained at a reference condition. All ROIs were applied to their corresponding images reconstructed at different conditions. For 17 of the nodule cases, repeat contours were performed to assess repeatability. Histogram (eight features) and gray level co-occurrence matrix (GLCM) based texture features (34 features) were computed for all ROIs. For the lung nodule cases, the reference condition was selected to be 100% of clinical dose with FBP reconstruction using the B45f kernel; feature values calculated from other conditions were compared to this reference condition. A measure was introduced, which the authors refer to as Q, to assess the stability of features across different conditions, which is defined as the ratio of reproducibility (across conditions) to repeatability (across repeat contours) of each feature. The water phantom results demonstrated substantial variability among feature values calculated across conditions, with the exception of histogram mean. Features calculated from lung nodules demonstrated similar results with histogram mean as the most robust feature (Q ≤ 1), having a mean and standard deviation Q of 0.37 and 0.22, respectively. Surprisingly, histogram standard deviation and variance features were also quite robust. Some GLCM features were also quite robust across conditions, namely, diff. variance, sum variance, sum average, variance, and mean. Except for histogram mean, all features have a Q of larger than one in at least one of the 3% dose level conditions. As expected, the histogram mean is the most robust feature in their study. The effects of acquisition and reconstruction conditions on GLCM features vary widely, though trending toward features involving summation of product between intensities and probabilities being more robust, barring a few exceptions. Overall, care should be taken into account for variation in density and texture features if a variety of dose and reconstruction conditions are used for the quantification of lung nodules in CT, otherwise changes in quantification results may be more reflective of changes due to acquisition and reconstruction conditions than in the nodule itself.
Gap-filling methods to impute eddy covariance flux data by preserving variance.
NASA Astrophysics Data System (ADS)
Kunwor, S.; Staudhammer, C. L.; Starr, G.; Loescher, H. W.
2015-12-01
To represent carbon dynamics, in terms of exchange of CO2 between the terrestrial ecosystem and the atmosphere, eddy covariance (EC) data has been collected using eddy flux towers from various sites across globe for more than two decades. However, measurements from EC data are missing for various reasons: precipitation, routine maintenance, or lack of vertical turbulence. In order to have estimates of net ecosystem exchange of carbon dioxide (NEE) with high precision and accuracy, robust gap-filling methods to impute missing data are required. While the methods used so far have provided robust estimates of the mean value of NEE, little attention has been paid to preserving the variance structures embodied by the flux data. Preserving the variance of these data will provide unbiased and precise estimates of NEE over time, which mimic natural fluctuations. We used a non-linear regression approach with moving windows of different lengths (15, 30, and 60-days) to estimate non-linear regression parameters for one year of flux data from a long-leaf pine site at the Joseph Jones Ecological Research Center. We used as our base the Michaelis-Menten and Van't Hoff functions. We assessed the potential physiological drivers of these parameters with linear models using micrometeorological predictors. We then used a parameter prediction approach to refine the non-linear gap-filling equations based on micrometeorological conditions. This provides us an opportunity to incorporate additional variables, such as vapor pressure deficit (VPD) and volumetric water content (VWC) into the equations. Our preliminary results indicate that improvements in gap-filling can be gained with a 30-day moving window with additional micrometeorological predictors (as indicated by lower root mean square error (RMSE) of the predicted values of NEE). Our next steps are to use these parameter predictions from moving windows to gap-fill the data with and without incorporation of potential driver variables of the parameters traditionally used. Then, comparisons of the predicted values from these methods and 'traditional' gap-filling methods (using 12 fixed monthly windows) will be assessed to show the scale of preserving variance. Further, this method will be applied to impute artificially created gaps for analyzing if variance is preserved.
On actuator placement for robust time-optimal control of uncertain flexible spacecraft
NASA Technical Reports Server (NTRS)
Wie, Bong; Sinha, Ravi; Liu, Qiang
1992-01-01
The problem of computing open-loop, on-off jet firing logic for flexible spacecraft in the face of plant modeling uncertainty is investigated. The primary control objective is to achieve a fast maneuvering time with a minimum of structural vibrations during and/or after a maneuver. This paper is also concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated. A three-mass-spring model of flexible spacecraft with a rigid-body mode and two flexible modes is used to illustrate the concept.
Influence function based variance estimation and missing data issues in case-cohort studies.
Mark, S D; Katki, H
2001-12-01
Recognizing that the efficiency in relative risk estimation for the Cox proportional hazards model is largely constrained by the total number of cases, Prentice (1986) proposed the case-cohort design in which covariates are measured on all cases and on a random sample of the cohort. Subsequent to Prentice, other methods of estimation and sampling have been proposed for these designs. We formalize an approach to variance estimation suggested by Barlow (1994), and derive a robust variance estimator based on the influence function. We consider the applicability of the variance estimator to all the proposed case-cohort estimators, and derive the influence function when known sampling probabilities in the estimators are replaced by observed sampling fractions. We discuss the modifications required when cases are missing covariate information. The missingness may occur by chance, and be completely at random; or may occur as part of the sampling design, and depend upon other observed covariates. We provide an adaptation of S-plus code that allows estimating influence function variances in the presence of such missing covariates. Using examples from our current case-cohort studies on esophageal and gastric cancer, we illustrate how our results our useful in solving design and analytic issues that arise in practice.
Attempts to Simulate Anisotropies of Solar Wind Fluctuations Using MHD with a Turning Magnetic Field
NASA Technical Reports Server (NTRS)
Ghosh, Sanjoy; Roberts, D. Aaron
2010-01-01
We examine a "two-component" model of the solar wind to see if any of the observed anisotropies of the fields can be explained in light of the need for various quantities, such as the magnetic minimum variance direction, to turn along with the Parker spiral. Previous results used a 3-D MHD spectral code to show that neither Q2D nor slab-wave components will turn their wave vectors in a turning Parker-like field, and that nonlinear interactions between the components are required to reproduce observations. In these new simulations we use higher resolution in both decaying and driven cases, and with and without a turning background field, to see what, if any, conditions lead to variance anisotropies similar to observations. We focus especially on the middle spectral range, and not the energy-containing scales, of the simulation for comparison with the solar wind. Preliminary results have shown that it is very difficult to produce the required variances with a turbulent cascade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, Mohd Khairul Bazli Mohd, E-mail: mkbazli@yahoo.com; Yusof, Fadhilah, E-mail: fadhilahy@utm.my; Daud, Zalina Mohd, E-mail: zalina@ic.utm.my
Recently, many rainfall network design techniques have been developed, discussed and compared by many researchers. Present day hydrological studies require higher levels of accuracy from collected data. In numerous basins, the rain gauge stations are located without clear scientific understanding. In this study, an attempt is made to redesign rain gauge network for Johor, Malaysia in order to meet the required level of accuracy preset by rainfall data users. The existing network of 84 rain gauges in Johor is optimized and redesigned into a new locations by using rainfall, humidity, solar radiation, temperature and wind speed data collected during themore » monsoon season (November - February) of 1975 until 2008. This study used the combination of geostatistics method (variance-reduction method) and simulated annealing as the algorithm of optimization during the redesigned proses. The result shows that the new rain gauge location provides minimum value of estimated variance. This shows that the combination of geostatistics method (variance-reduction method) and simulated annealing is successful in the development of the new optimum rain gauge system.« less
Bartz, Daniel; Hatrick, Kerr; Hesse, Christian W; Müller, Klaus-Robert; Lemm, Steven
2013-01-01
Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation.
Bartz, Daniel; Hatrick, Kerr; Hesse, Christian W.; Müller, Klaus-Robert; Lemm, Steven
2013-01-01
Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation. PMID:23844016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, K. K.; Phanikumar, D. V.; Newsom, Rob K.
2014-03-01
A Doppler lidar was installed at Manora Peak, Nainital (29.4 N; 79.2 E, 1958 amsl) to estimate mixing layer height for the first time by using vertical velocity variance as basic measurement parameter for the period September-November 2011. Mixing layer height is found to be located ~0.57 +/- 0.1and 0.45 +/- 0.05km AGL during day and nighttime, respectively. The estimation of mixing layer height shows good correlation (R>0.8) between different instruments and with different methods. Our results show that wavelet co-variance transform is a robust method for mixing layer height estimation.
Experimental demonstration of quantum teleportation of a squeezed state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takei, Nobuyuki; Aoki, Takao; Yonezawa, Hidehiro
2005-10-15
Quantum teleportation of a squeezed state is demonstrated experimentally. Due to some inevitable losses in experiments, a squeezed vacuum necessarily becomes a mixed state which is no longer a minimum uncertainty state. We establish an operational method of evaluation for quantum teleportation of such a state using fidelity and discuss the classical limit for the state. The measured fidelity for the input state is 0.85{+-}0.05, which is higher than the classical case of 0.73{+-}0.04. We also verify that the teleportation process operates properly for the nonclassical state input and its squeezed variance is certainly transferred through the process. We observemore » the smaller variance of the teleported squeezed state than that for the vacuum state input.« less
Quantizing and sampling considerations in digital phased-locked loops
NASA Technical Reports Server (NTRS)
Hurst, G. T.; Gupta, S. C.
1974-01-01
The quantizer problem is first considered. The conditions under which the uniform white sequence model for the quantizer error is valid are established independent of the sampling rate. An equivalent spectral density is defined for the quantizer error resulting in an effective SNR value. This effective SNR may be used to determine quantized performance from infinitely fine quantized results. Attention is given to sampling rate considerations. Sampling rate characteristics of the digital phase-locked loop (DPLL) structure are investigated for the infinitely fine quantized system. The predicted phase error variance equation is examined as a function of the sampling rate. Simulation results are presented and a method is described which enables the minimum required sampling rate to be determined from the predicted phase error variance equations.
Cheng, Xianfu; Lin, Yuqun
2014-01-01
The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system.
Winslow, Stephen D; Pepich, Barry V; Martin, John J; Hallberg, George R; Munch, David J; Frebis, Christopher P; Hedrick, Elizabeth J; Krop, Richard A
2006-01-01
The United States Environmental Protection Agency's Office of Ground Water and Drinking Water has developed a single-laboratory quantitation procedure: the lowest concentration minimum reporting level (LCMRL). The LCMRL is the lowest true concentration for which future recovery is predicted to fall, with high confidence (99%), between 50% and 150%. The procedure takes into account precision and accuracy. Multiple concentration replicates are processed through the entire analytical method and the data are plotted as measured sample concentration (y-axis) versus true concentration (x-axis). If the data support an assumption of constant variance over the concentration range, an ordinary least-squares regression line is drawn; otherwise, a variance-weighted least-squares regression is used. Prediction interval lines of 99% confidence are drawn about the regression. At the points where the prediction interval lines intersect with data quality objective lines of 50% and 150% recovery, lines are dropped to the x-axis. The higher of the two values is the LCMRL. The LCMRL procedure is flexible because the data quality objectives (50-150%) and the prediction interval confidence (99%) can be varied to suit program needs. The LCMRL determination is performed during method development only. A simpler procedure for verification of data quality objectives at a given minimum reporting level (MRL) is also presented. The verification procedure requires a single set of seven samples taken through the entire method procedure. If the calculated prediction interval is contained within data quality recovery limits (50-150%), the laboratory performance at the MRL is verified.
Developing Uncertainty Models for Robust Flutter Analysis Using Ground Vibration Test Data
NASA Technical Reports Server (NTRS)
Potter, Starr; Lind, Rick; Kehoe, Michael W. (Technical Monitor)
2001-01-01
A ground vibration test can be used to obtain information about structural dynamics that is important for flutter analysis. Traditionally, this information#such as natural frequencies of modes#is used to update analytical models used to predict flutter speeds. The ground vibration test can also be used to obtain uncertainty models, such as natural frequencies and their associated variations, that can update analytical models for the purpose of predicting robust flutter speeds. Analyzing test data using the -norm, rather than the traditional 2-norm, is shown to lead to a minimum-size uncertainty description and, consequently, a least-conservative robust flutter speed. This approach is demonstrated using ground vibration test data for the Aerostructures Test Wing. Different norms are used to formulate uncertainty models and their associated robust flutter speeds to evaluate which norm is least conservative.
Michael L. Hoppus; Rachel I. Riemann; Andrew J. Lister; Mark V. Finco
2002-01-01
The panchromatic bands of Landsat 7, SPOT, and IRS satellite imagery provide an opportunity to evaluate the effectiveness of texture analysis of satellite imagery for mapping of land use/cover, especially forest cover. A variety of texture algorithms, including standard deviation, Ryherd-Woodcock minimum variance adaptive window, low pass etc., were applied to moving...
Solution Methods for Certain Evolution Equations
NASA Astrophysics Data System (ADS)
Vega-Guzman, Jose Manuel
Solution methods for certain linear and nonlinear evolution equations are presented in this dissertation. Emphasis is placed mainly on the analytical treatment of nonautonomous differential equations, which are challenging to solve despite the existent numerical and symbolic computational software programs available. Ideas from the transformation theory are adopted allowing one to solve the problems under consideration from a non-traditional perspective. First, the Cauchy initial value problem is considered for a class of nonautonomous and inhomogeneous linear diffusion-type equation on the entire real line. Explicit transformations are used to reduce the equations under study to their corresponding standard forms emphasizing on natural relations with certain Riccati(and/or Ermakov)-type systems. These relations give solvability results for the Cauchy problem of the parabolic equation considered. The superposition principle allows to solve formally this problem from an unconventional point of view. An eigenfunction expansion approach is also considered for this general evolution equation. Examples considered to corroborate the efficacy of the proposed solution methods include the Fokker-Planck equation, the Black-Scholes model and the one-factor Gaussian Hull-White model. The results obtained in the first part are used to solve the Cauchy initial value problem for certain inhomogeneous Burgers-type equation. The connection between linear (the Diffusion-type) and nonlinear (Burgers-type) parabolic equations is stress in order to establish a strong commutative relation. Traveling wave solutions of a nonautonomous Burgers equation are also investigated. Finally, it is constructed explicitly the minimum-uncertainty squeezed states for quantum harmonic oscillators. They are derived by the action of corresponding maximal kinematical invariance group on the standard ground state solution. It is shown that the product of the variances attains the required minimum value only at the instances that one variance is a minimum and the other is a maximum, when the squeezing of one of the variances occurs. Such explicit construction is possible due to the relation between the diffusion-type equation studied in the first part and the time-dependent Schrodinger equation. A modication of the radiation field operators for squeezed photons in a perfect cavity is also suggested with the help of a nonstandard solution of Heisenberg's equation of motion.
Engineering of Fast and Robust Adaptive Control for Fixed-Wing Unmanned Aircraft
2017-06-01
12.6volts) lithium polymer batteries wired in parallel. The remaining cargo space was used for accommodating the Pixhawk autopilot. 33 Figure 4.3...was achievable under four hours of build time. 4.4.1 Spear Specifications • weight without battery : 1.45 lbs (658 g) • center of gravity: 3 – 3.5” (76...motor: 425 sized, 1200 kv minimum • prop: 9 x 4.5 CW (reverse) prop • electronic speed control (ESC): 30 amp minimum • battery : (2) 2200 mAH 12.6 volt
NASA Astrophysics Data System (ADS)
Smith, James F.
2017-11-01
With the goal of designing interferometers and interferometer sensors, e.g., LADARs with enhanced sensitivity, resolution, and phase estimation, states using quantum entanglement are discussed. These states include N00N states, plain M and M states (PMMSs), and linear combinations of M and M states (LCMMS). Closed form expressions for the optimal detection operators; visibility, a measure of the state's robustness to loss and noise; a resolution measure; and phase estimate error, are provided in closed form. The optimal resolution for the maximum visibility and minimum phase error are found. For the visibility, comparisons between PMMSs, LCMMS, and N00N states are provided. For the minimum phase error, comparisons between LCMMS, PMMSs, N00N states, separate photon states (SPSs), the shot noise limit (SNL), and the Heisenberg limit (HL) are provided. A representative collection of computational results illustrating the superiority of LCMMS when compared to PMMSs and N00N states is given. It is found that for a resolution 12 times the classical result LCMMS has visibility 11 times that of N00N states and 4 times that of PMMSs. For the same case, the minimum phase error for LCMMS is 10.7 times smaller than that of PMMS and 29.7 times smaller than that of N00N states.
Ganju, Jitendra; Yu, Xinxin; Ma, Guoguang Julie
2013-01-01
Formal inference in randomized clinical trials is based on controlling the type I error rate associated with a single pre-specified statistic. The deficiency of using just one method of analysis is that it depends on assumptions that may not be met. For robust inference, we propose pre-specifying multiple test statistics and relying on the minimum p-value for testing the null hypothesis of no treatment effect. The null hypothesis associated with the various test statistics is that the treatment groups are indistinguishable. The critical value for hypothesis testing comes from permutation distributions. Rejection of the null hypothesis when the smallest p-value is less than the critical value controls the type I error rate at its designated value. Even if one of the candidate test statistics has low power, the adverse effect on the power of the minimum p-value statistic is not much. Its use is illustrated with examples. We conclude that it is better to rely on the minimum p-value rather than a single statistic particularly when that single statistic is the logrank test, because of the cost and complexity of many survival trials. Copyright © 2013 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Longford, Nicholas T.
Large scale surveys usually employ a complex sampling design and as a consequence, no standard methods for estimation of the standard errors associated with the estimates of population means are available. Resampling methods, such as jackknife or bootstrap, are often used, with reference to their properties of robustness and reduction of bias. A…
Comparison of mode estimation methods and application in molecular clock analysis
NASA Technical Reports Server (NTRS)
Hedges, S. Blair; Shah, Prachi
2003-01-01
BACKGROUND: Distributions of time estimates in molecular clock studies are sometimes skewed or contain outliers. In those cases, the mode is a better estimator of the overall time of divergence than the mean or median. However, different methods are available for estimating the mode. We compared these methods in simulations to determine their strengths and weaknesses and further assessed their performance when applied to real data sets from a molecular clock study. RESULTS: We found that the half-range mode and robust parametric mode methods have a lower bias than other mode methods under a diversity of conditions. However, the half-range mode suffers from a relatively high variance and the robust parametric mode is more susceptible to bias by outliers. We determined that bootstrapping reduces the variance of both mode estimators. Application of the different methods to real data sets yielded results that were concordant with the simulations. CONCLUSION: Because the half-range mode is a simple and fast method, and produced less bias overall in our simulations, we recommend the bootstrapped version of it as a general-purpose mode estimator and suggest a bootstrap method for obtaining the standard error and 95% confidence interval of the mode.
Multi-clues image retrieval based on improved color invariants
NASA Astrophysics Data System (ADS)
Liu, Liu; Li, Jian-Xun
2012-05-01
At present, image retrieval has a great progress in indexing efficiency and memory usage, which mainly benefits from the utilization of the text retrieval technology, such as the bag-of-features (BOF) model and the inverted-file structure. Meanwhile, because the robust local feature invariants are selected to establish BOF, the retrieval precision of BOF is enhanced, especially when it is applied to a large-scale database. However, these local feature invariants mainly consider the geometric variance of the objects in the images, and thus the color information of the objects fails to be made use of. Because of the development of the information technology and Internet, the majority of our retrieval objects is color images. Therefore, retrieval performance can be further improved through proper utilization of the color information. We propose an improved method through analyzing the flaw of shadow-shading quasi-invariant. The response and performance of shadow-shading quasi-invariant for the object edge with the variance of lighting are enhanced. The color descriptors of the invariant regions are extracted and integrated into BOF based on the local feature. The robustness of the algorithm and the improvement of the performance are verified in the final experiments.
Robust interferometry against imperfections based on weak value amplification
NASA Astrophysics Data System (ADS)
Fang, Chen; Huang, Jing-Zheng; Zeng, Guihua
2018-06-01
Optical interferometry has been widely used in various high-precision applications. Usually, the minimum precision of an interferometry is limited by various technical noises in practice. To suppress such kinds of noises, we propose a scheme which combines the weak measurement with the standard interferometry. The proposed scheme dramatically outperforms the standard interferometry in the signal-to-noise ratio and the robustness against noises caused by the optical elements' reflections and the offset fluctuation between two paths. A proof-of-principle experiment is demonstrated to validate the amplification theory.
DEVELOPMENT OF AN IMPROVED ARBORLOO TO PROMOTE SANITATION IN RURAL ENVIRONMENTS
Multiple designs will be generated. They will be evaluated against appropriate criteria as identified by the design teams in consultation with advisors and likely users. Such criteria will, at a minimum include the ability to sequester waste material, structural robustness,...
Vandenplas, J; Bastin, C; Gengler, N; Mulder, H A
2013-09-01
Animals that are robust to environmental changes are desirable in the current dairy industry. Genetic differences in micro-environmental sensitivity can be studied through heterogeneity of residual variance between animals. However, residual variance between animals is usually assumed to be homogeneous in traditional genetic evaluations. The aim of this study was to investigate genetic heterogeneity of residual variance by estimating variance components in residual variance for milk yield, somatic cell score, contents in milk (g/dL) of 2 groups of milk fatty acids (i.e., saturated and unsaturated fatty acids), and the content in milk of one individual fatty acid (i.e., oleic acid, C18:1 cis-9), for first-parity Holstein cows in the Walloon Region of Belgium. A total of 146,027 test-day records from 26,887 cows in 747 herds were available. All cows had at least 3 records and a known sire. These sires had at least 10 cows with records and each herd × test-day had at least 5 cows. The 5 traits were analyzed separately based on fixed lactation curve and random regression test-day models for the mean. Estimation of variance components was performed by running iteratively expectation maximization-REML algorithm by the implementation of double hierarchical generalized linear models. Based on fixed lactation curve test-day mean models, heritability for residual variances ranged between 1.01×10(-3) and 4.17×10(-3) for all traits. The genetic standard deviation in residual variance (i.e., approximately the genetic coefficient of variation of residual variance) ranged between 0.12 and 0.17. Therefore, some genetic variance in micro-environmental sensitivity existed in the Walloon Holstein dairy cattle for the 5 studied traits. The standard deviations due to herd × test-day and permanent environment in residual variance ranged between 0.36 and 0.45 for herd × test-day effect and between 0.55 and 0.97 for permanent environmental effect. Therefore, nongenetic effects also contributed substantially to micro-environmental sensitivity. Addition of random regressions to the mean model did not reduce heterogeneity in residual variance and that genetic heterogeneity of residual variance was not simply an effect of an incomplete mean model. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Doubly robust nonparametric inference on the average treatment effect.
Benkeser, D; Carone, M; Laan, M J Van Der; Gilbert, P B
2017-12-01
Doubly robust estimators are widely used to draw inference about the average effect of a treatment. Such estimators are consistent for the effect of interest if either one of two nuisance parameters is consistently estimated. However, if flexible, data-adaptive estimators of these nuisance parameters are used, double robustness does not readily extend to inference. We present a general theoretical study of the behaviour of doubly robust estimators of an average treatment effect when one of the nuisance parameters is inconsistently estimated. We contrast different methods for constructing such estimators and investigate the extent to which they may be modified to also allow doubly robust inference. We find that while targeted minimum loss-based estimation can be used to solve this problem very naturally, common alternative frameworks appear to be inappropriate for this purpose. We provide a theoretical study and a numerical evaluation of the alternatives considered. Our simulations highlight the need for and usefulness of these approaches in practice, while our theoretical developments have broad implications for the construction of estimators that permit doubly robust inference in other problems.
Solar-cycle dependence of a model turbulence spectrum using IMP and ACE observations over 38 years
NASA Astrophysics Data System (ADS)
Burger, R. A.; Nel, A. E.; Engelbrecht, N. E.
2014-12-01
Ab initio modulation models require a number of turbulence quantities as input for any reasonable diffusion tensor. While turbulence transport models describe the radial evolution of such quantities, they in turn require observations in the inner heliosphere as input values. So far we have concentrated on solar minimum conditions (e.g. Engelbrecht and Burger 2013, ApJ), but are now looking at long-term modulation which requires turbulence data over at a least a solar magnetic cycle. As a start we analyzed 1-minute resolution data for the N-component of the magnetic field, from 1974 to 2012, covering about two solar magnetic cycles (initially using IMP and then ACE data). We assume a very simple three-stage power-law frequency spectrum, calculate the integral from the highest to the lowest frequency, and fit it to variances calculated with lags from 5 minutes to 80 hours. From the fit we then obtain not only the asymptotic variance at large lags, but also the spectral index of the inertial and the energy, as well as the breakpoint between the inertial and energy range (bendover scale) and between the energy and cutoff range (cutoff scale). All values given here are preliminary. The cutoff range is a constraint imposed in order to ensure a finite energy density; the spectrum is forced to be either flat or to decrease with decreasing frequency in this range. Given that cosmic rays sample magnetic fluctuations over long periods in their transport through the heliosphere, we average the spectra over at least 27 days. We find that the variance of the N-component has a clear solar cycle dependence, with smaller values (~6 nT2) during solar minimum and larger during solar maximum periods (~17 nT2), well correlated with the magnetic field magnitude (e.g. Smith et al. 2006, ApJ). Whereas the inertial range spectral index (-1.65 ± 0.06) does not show a significant solar cycle variation, the energy range index (-1.1 ± 0.3) seems to be anti-correlated with the variance (Bieber et al. 1993, JGR); both indices show close to normal distributions. In contrast, the variance (e.g. Burlaga and Ness, 1998, JGR), and both the bendover scale (see Ruiz et al. 2014, Solar Physics) and cutoff scale appear to be log-normal distributed.
The magnitude and colour of noise in genetic negative feedback systems.
Voliotis, Margaritis; Bowsher, Clive G
2012-08-01
The comparative ability of transcriptional and small RNA-mediated negative feedback to control fluctuations or 'noise' in gene expression remains unexplored. Both autoregulatory mechanisms usually suppress the average (mean) of the protein level and its variability across cells. The variance of the number of proteins per molecule of mean expression is also typically reduced compared with the unregulated system, but is almost never below the value of one. This relative variance often substantially exceeds a recently obtained, theoretical lower limit for biochemical feedback systems. Adding the transcriptional or small RNA-mediated control has different effects. Transcriptional autorepression robustly reduces both the relative variance and persistence (lifetime) of fluctuations. Both benefits combine to reduce noise in downstream gene expression. Autorepression via small RNA can achieve more extreme noise reduction and typically has less effect on the mean expression level. However, it is often more costly to implement and is more sensitive to rate parameters. Theoretical lower limits on the relative variance are known to decrease slowly as a measure of the cost per molecule of mean expression increases. However, the proportional increase in cost to achieve substantial noise suppression can be different away from the optimal frontier-for transcriptional autorepression, it is frequently negligible.
A new Method for Determining the Interplanetary Current-Sheet Local Orientation
NASA Astrophysics Data System (ADS)
Blanco, J. J.; Rodríguez-pacheco, J.; Sequeiros, J.
2003-03-01
In this work we have developed a new method for determining the interplanetary current sheet local parameters. The method, called `HYTARO' (from Hyperbolic Tangent Rotation), is based on a modified Harris magnetic field. This method has been applied to a pool of 57 events, all of them recorded during solar minimum conditions. The model performance has been tested by comparing both, its outputs and noise response, with these of the `classic MVM' (from Minimum Variance Method). The results suggest that, despite the fact that in many cases they behave in a similar way, there are specific crossing conditions that produce an erroneous MVM response. Moreover, our method shows a lower noise level sensitivity than that of MVM.
Tom, Stephanie; Frayne, Mark; Manske, Sarah L; Burghardt, Andrew J; Stok, Kathryn S; Boyd, Steven K; Barnabe, Cheryl
2016-10-01
The position-dependence of a method to measure the joint space of metacarpophalangeal (MCP) joints using high-resolution peripheral quantitative computed tomography (HR-pQCT) was studied. Cadaveric MCP were imaged at 7 flexion angles between 0 and 30 degrees. The variability in reproducibility for mean, minimum, and maximum joint space widths and volume measurements was calculated for increasing degrees of flexion. Root mean square coefficient of variance values were < 5% under 20 degrees of flexion for mean, maximum, and volumetric joint spaces. Values for minimum joint space width were optimized under 10 degrees of flexion. MCP joint space measurements should be acquired at < 10 degrees of flexion in longitudinal studies.
Comparison of reproducibility of natural head position using two methods.
Khan, Abdul Rahim; Rajesh, R N G; Dinesh, M R; Sanjay, N; Girish, K S; Venkataraghavan, Karthik
2012-01-01
Lateral cephalometric radiographs have become virtually indispensable to orthodontists in the treatment of patients. They are important in orthodontic growth analysis, diagnosis, treatment planning, monitoring of therapy and evaluation of final treatment outcome. The purpose of this study was to evaluate and compare the maximum reproducibility with minimum variation of natural head position using two methods, i.e. the mirror method and the fluid level device method. The study included two sets of 40 lateral cephalograms taken using two methods of obtaining natural head position: (1) The mirror method and (2) fluid level device method, with a time interval of 2 months. Inclusion criteria • Subjects were randomly selected aged between 18 to 26 years Exclusion criteria • History of orthodontic treatment • Any history of respiratory tract problem or chronic mouth breathing • Any congenital deformity • History of traumatically-induced deformity • History of myofacial pain syndrome • Any previous history of head and neck surgery. The result showed that both the methods for obtaining natural head position-the mirror method and fluid level device method were comparable, but maximum reproducibility was more with the fluid level device as shown by the Dahlberg's coefficient and Bland-Altman plot. The minimum variance was seen with the fluid level device method as shown by Precision and Pearson correlation. The mirror method and the fluid level device method used for obtaining natural head position were comparable without any significance, and the fluid level device method was more reproducible and showed less variance when compared to mirror method for obtaining natural head position. Fluid level device method was more reproducible and shows less variance when compared to mirror method for obtaining natural head position.
Tang, Jinghua; Kearney, Bradley M.; Wang, Qiu; Doerschuk, Peter C.; Baker, Timothy S.; Johnson, John E.
2014-01-01
Quasi-equivalent viruses that infect animals and bacteria require a maturation process in which particles transition from initially assembled procapsids to infectious virions. Nudaurelia capensis ω virus (NωV) is a T=4, eukaryotic, ssRNA virus that has proved to be an excellent model system for studying the mechanisms of viral maturation. Structures of NωV procapsids (diam. = 480 Å), a maturation intermediate (410 Å), and the mature virion (410 Å) were determined by electron cryo-microscopy and three-dimensional image reconstruction (cryoEM). The cryoEM density for each particle type was analyzed with a recently developed Maximum Likelihood Variance (MLV) method for characterizing microstates occupied in the ensemble of particles used for the reconstructions. The procapsid and the mature capsid had overall low variance (i.e. uniform particle populations) while the maturation intermediate (that had not undergone post-assembly autocatalytic cleavage) had roughly 2-4 times the variance of the first two particles. Without maturation cleavage the particles assume a variety of microstates, as the frustrated subunits cannot reach a minimum energy configuration. Geometric analyses of subunit coordinates provided a quantitative description of the particle reorganization during maturation. Superposition of the four quasi-equivalent subunits in the procapsid had an average root mean square deviation (RMSD) of 3Å while the mature particle had an RMSD of 11Å, showing that the subunits differentiate from near equivalent environments in the procapsid to strikingly non-equivalent environments during maturation. Autocatalytic cleavage is clearly required for the reorganized mature particle to reach the minimum energy state required for stability and infectivity. PMID:24591180
Tang, Jinghua; Kearney, Bradley M; Wang, Qiu; Doerschuk, Peter C; Baker, Timothy S; Johnson, John E
2014-04-01
Quasi-equivalent viruses that infect animals and bacteria require a maturation process in which particles transition from initially assembled procapsids to infectious virions. Nudaurelia capensis ω virus (NωV) is a T = 4, eukaryotic, single-stranded ribonucleic acid virus that has proved to be an excellent model system for studying the mechanisms of viral maturation. Structures of NωV procapsids (diameter = 480 Å), a maturation intermediate (410 Å), and the mature virion (410 Å) were determined by electron cryo-microscopy and three-dimensional image reconstruction (cryoEM). The cryoEM density for each particle type was analyzed with a recently developed maximum likelihood variance (MLV) method for characterizing microstates occupied in the ensemble of particles used for the reconstructions. The procapsid and the mature capsid had overall low variance (i.e., uniform particle populations) while the maturation intermediate (that had not undergone post-assembly autocatalytic cleavage) had roughly two to four times the variance of the first two particles. Without maturation cleavage, the particles assume a variety of microstates, as the frustrated subunits cannot reach a minimum energy configuration. Geometric analyses of subunit coordinates provided a quantitative description of the particle reorganization during maturation. Superposition of the four quasi-equivalent subunits in the procapsid had an average root mean square deviation (RMSD) of 3 Å while the mature particle had an RMSD of 11 Å, showing that the subunits differentiate from near equivalent environments in the procapsid to strikingly non-equivalent environments during maturation. Autocatalytic cleavage is clearly required for the reorganized mature particle to reach the minimum energy state required for stability and infectivity. Copyright © 2014 John Wiley & Sons, Ltd.
Hudson, Nathan W.; Lucas, Richard E.; Donnellan, M. Brent; Kushlev, Kostadin
2017-01-01
Kushlev, Dunn, and Lucas (2015) found that income predicts less daily sadness—but not greater happiness—among Americans. The present study used longitudinal data from an approximately representative German sample to replicate and extend these findings. Our results largely replicated Kushlev and colleagues’: income predicted less daily sadness (albeit with a smaller effect size), but was unrelated to happiness. Moreover, the association between income and sadness could not be explained by demographics, stress, or daily time-use. Extending Kushlev and colleagues’ findings, new analyses indicated that only between-persons variance in income (but not within-persons variance) predicted daily sadness—perhaps because there was relatively little within-persons variance in income. Finally, income predicted less daily sadness and worry, but not less anger or frustration—potentially suggesting that income predicts less “internalizing” but not less “externalizing” negative emotions. Together, our study and Kushlev and colleagues’ provide evidence that income robustly predicts select daily negative emotions—but not positive ones. PMID:29250303
A New Look at Some Solar Wind Turbulence Puzzles
NASA Technical Reports Server (NTRS)
Roberts, Aaron
2006-01-01
Some aspects of solar wind turbulence have defied explanation. While it seems likely that the evolution of Alfvenicity and power spectra are largely explained by the shearing of an initial population of solar-generated Alfvenic fluctuations, the evolution of the anisotropies of the turbulence does not fit into the model so far. A two-component model, consisting of slab waves and quasi-two-dimensional fluctuations, offers some ideas, but does not account for the turning of both wave-vector-space power anisotropies and minimum variance directions in the fluctuating vectors as the Parker spiral turns. We will show observations that indicate that the minimum variance evolution is likely not due to traditional turbulence mechanisms, and offer arguments that the idea of two-component turbulence is at best a local approximation that is of little help in explaining the evolution of the fluctuations. Finally, time-permitting, we will discuss some observations that suggest that the low Alfvenicity of many regions of the solar wind in the inner heliosphere is not due to turbulent evolution, but rather to the existence of convected structures, including mini-clouds and other twisted flux tubes, that were formed with low Alfvenicity. There is still a role for turbulence in the above picture, but it is highly modified from the traditional views.
Robust inference under the beta regression model with application to health care studies.
Ghosh, Abhik
2017-01-01
Data on rates, percentages, or proportions arise frequently in many different applied disciplines like medical biology, health care, psychology, and several others. In this paper, we develop a robust inference procedure for the beta regression model, which is used to describe such response variables taking values in (0, 1) through some related explanatory variables. In relation to the beta regression model, the issue of robustness has been largely ignored in the literature so far. The existing maximum likelihood-based inference has serious lack of robustness against outliers in data and generate drastically different (erroneous) inference in the presence of data contamination. Here, we develop the robust minimum density power divergence estimator and a class of robust Wald-type tests for the beta regression model along with several applications. We derive their asymptotic properties and describe their robustness theoretically through the influence function analyses. Finite sample performances of the proposed estimators and tests are examined through suitable simulation studies and real data applications in the context of health care and psychology. Although we primarily focus on the beta regression models with a fixed dispersion parameter, some indications are also provided for extension to the variable dispersion beta regression models with an application.
Herdağdelen, Amaç; Marelli, Marco
2017-05-01
Corpus-based word frequencies are one of the most important predictors in language processing tasks. Frequencies based on conversational corpora (such as movie subtitles) are shown to better capture the variance in lexical decision tasks compared to traditional corpora. In this study, we show that frequencies computed from social media are currently the best frequency-based estimators of lexical decision reaction times (up to 3.6% increase in explained variance). The results are robust (observed for Twitter- and Facebook-based frequencies on American English and British English datasets) and are still substantial when we control for corpus size. © 2016 The Authors. Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.
A mixture model for robust registration in Kinect sensor
NASA Astrophysics Data System (ADS)
Peng, Li; Zhou, Huabing; Zhu, Shengguo
2018-03-01
The Microsoft Kinect sensor has been widely used in many applications, but it suffers from the drawback of low registration precision between color image and depth image. In this paper, we present a robust method to improve the registration precision by a mixture model that can handle multiply images with the nonparametric model. We impose non-parametric geometrical constraints on the correspondence, as a prior distribution, in a reproducing kernel Hilbert space (RKHS).The estimation is performed by the EM algorithm which by also estimating the variance of the prior model is able to obtain good estimates. We illustrate the proposed method on the public available dataset. The experimental results show that our approach outperforms the baseline methods.
Austin, Peter C
2016-12-30
Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is calculated for each subject that is equal to the inverse of the probability of receiving the treatment that was actually received. These weights are then incorporated into the analyses to minimize the effects of observed confounding. Previous research has found that these methods result in unbiased estimation when estimating the effect of treatment on survival outcomes. However, conventional methods of variance estimation were shown to result in biased estimates of standard error. In this study, we conducted an extensive set of Monte Carlo simulations to examine different methods of variance estimation when using a weighted Cox proportional hazards model to estimate the effect of treatment. We considered three variance estimation methods: (i) a naïve model-based variance estimator; (ii) a robust sandwich-type variance estimator; and (iii) a bootstrap variance estimator. We considered estimation of both the average treatment effect and the average treatment effect in the treated. We found that the use of a bootstrap estimator resulted in approximately correct estimates of standard errors and confidence intervals with the correct coverage rates. The other estimators resulted in biased estimates of standard errors and confidence intervals with incorrect coverage rates. Our simulations were informed by a case study examining the effect of statin prescribing on mortality. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.
Steinacher, Arno; Bates, Declan G; Akman, Ozgur E; Soyer, Orkun S
2016-01-01
Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for the ubiquity of nonlinear dynamics in gene expression networks, and generate useful guidelines for the design of synthetic gene circuits.
[Medical image segmentation based on the minimum variation snake model].
Zhou, Changxiong; Yu, Shenglin
2007-02-01
It is difficult for traditional parametric active contour (Snake) model to deal with automatic segmentation of weak edge medical image. After analyzing snake and geometric active contour model, a minimum variation snake model was proposed and successfully applied to weak edge medical image segmentation. This proposed model replaces constant force in the balloon snake model by variable force incorporating foreground and background two regions information. It drives curve to evolve with the criterion of the minimum variation of foreground and background two regions. Experiments and results have proved that the proposed model is robust to initial contours placements and can segment weak edge medical image automatically. Besides, the testing for segmentation on the noise medical image filtered by curvature flow filter, which preserves edge features, shows a significant effect.
ERIC Educational Resources Information Center
Tipton, Elizabeth; Pustejovsky, James E.
2015-01-01
Randomized experiments are commonly used to evaluate the effectiveness of educational interventions. The goal of the present investigation is to develop small-sample corrections for multiple contrast hypothesis tests (i.e., F-tests) such as the omnibus test of meta-regression fit or a test for equality of three or more levels of a categorical…
Robust Active Portfolio Management
2006-11-27
the Markowitz mean-variance model led to development of the Capital Asset Pricing Model ( CAPM ) for asset pricing [35, 29, 23] which remains one of the...active portfolio management. Our model uses historical returns and equilibrium expected returns predicted by the CAPM to identify assets that are...incorrectly priced in the market. There is a fundamental inconsistency between the CAPM and active portfolio management. The CAPM assumes that markets are
Stream-temperature patterns of the Muddy Creek basin, Anne Arundel County, Maryland
Pluhowski, E.J.
1981-01-01
Using a water-balance equation based on a 4.25-year gaging-station record on North Fork Muddy Creek, the following mean annual values were obtained for the Muddy Creek basin: precipitation, 49.0 inches; evapotranspiration, 28.0 inches; runoff, 18.5 inches; and underflow, 2.5 inches. Average freshwater outflow from the Muddy Creek basin to the Rhode River estuary was 12.2 cfs during the period October 1, 1971, to December 31, 1975. Harmonic equations were used to describe seasonal maximum and minimum stream-temperature patterns at 12 sites in the basin. These equations were fitted to continuous water-temperature data obtained periodically at each site between November 1970 and June 1978. The harmonic equations explain at least 78 percent of the variance in maximum stream temperatures and 81 percent of the variance in minimum temperatures. Standard errors of estimate averaged 2.3C (Celsius) for daily maximum water temperatures and 2.1C for daily minimum temperatures. Mean annual water temperatures developed for a 5.4-year base period ranged from 11.9C at Muddy Creek to 13.1C at Many Fork Branch. The largest variations in stream temperatures were detected at thermograph sites below ponded reaches and where forest coverage was sparse or missing. At most sites the largest variations in daily water temperatures were recorded in April whereas the smallest were in September and October. The low thermal inertia of streams in the Muddy Creek basin tends to amplify the impact of surface energy-exchange processes on short-period stream-temperature patterns. Thus, in response to meteorologic events, wide ranging stream-temperature perturbations of as much as 6C have been documented in the basin. (USGS)
Jay, Sylvain; Guillaume, Mireille; Chami, Malik; Minghelli, Audrey; Deville, Yannick; Lafrance, Bruno; Serfaty, Véronique
2018-01-22
We present an analytical approach based on Cramer-Rao Bounds (CRBs) to investigate the uncertainties in estimated ocean color parameters resulting from the propagation of uncertainties in the bio-optical reflectance modeling through the inversion process. Based on given bio-optical and noise probabilistic models, CRBs can be computed efficiently for any set of ocean color parameters and any sensor configuration, directly providing the minimum estimation variance that can be possibly attained by any unbiased estimator of any targeted parameter. Here, CRBs are explicitly developed using (1) two water reflectance models corresponding to deep and shallow waters, resp., and (2) four probabilistic models describing the environmental noises observed within four Sentinel-2 MSI, HICO, Sentinel-3 OLCI and MODIS images, resp. For both deep and shallow waters, CRBs are shown to be consistent with the experimental estimation variances obtained using two published remote-sensing methods, while not requiring one to perform any inversion. CRBs are also used to investigate to what extent perfect a priori knowledge on one or several geophysical parameters can improve the estimation of remaining unknown parameters. For example, using pre-existing knowledge of bathymetry (e.g., derived from LiDAR) within the inversion is shown to greatly improve the retrieval of bottom cover for shallow waters. Finally, CRBs are shown to provide valuable information on the best estimation performances that may be achieved with the MSI, HICO, OLCI and MODIS configurations for a variety of oceanic, coastal and inland waters. CRBs are thus demonstrated to be an informative and efficient tool to characterize minimum uncertainties in inverted ocean color geophysical parameters.
Research@ARL: Network Sciences
2013-03-01
and Power Allocation for Minimum Energy Consumption in Consensus Networks ................ 21 Stefania Sardellitti, Sergio Barbarossa, and Ananthram...battlefield effectiveness and to ensure that Soldier performance requirements are adequately considered in technology development and system design...Operations (NCO). NCW/NCO seeks to dramatically increase mission effectiveness via robust networking for information sharing leading to shared
The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences.
Hedge, Craig; Powell, Georgina; Sumner, Petroc
2018-06-01
Individual differences in cognitive paradigms are increasingly employed to relate cognition to brain structure, chemistry, and function. However, such efforts are often unfruitful, even with the most well established tasks. Here we offer an explanation for failures in the application of robust cognitive paradigms to the study of individual differences. Experimental effects become well established - and thus those tasks become popular - when between-subject variability is low. However, low between-subject variability causes low reliability for individual differences, destroying replicable correlations with other factors and potentially undermining published conclusions drawn from correlational relationships. Though these statistical issues have a long history in psychology, they are widely overlooked in cognitive psychology and neuroscience today. In three studies, we assessed test-retest reliability of seven classic tasks: Eriksen Flanker, Stroop, stop-signal, go/no-go, Posner cueing, Navon, and Spatial-Numerical Association of Response Code (SNARC). Reliabilities ranged from 0 to .82, being surprisingly low for most tasks given their common use. As we predicted, this emerged from low variance between individuals rather than high measurement variance. In other words, the very reason such tasks produce robust and easily replicable experimental effects - low between-participant variability - makes their use as correlational tools problematic. We demonstrate that taking such reliability estimates into account has the potential to qualitatively change theoretical conclusions. The implications of our findings are that well-established approaches in experimental psychology and neuropsychology may not directly translate to the study of individual differences in brain structure, chemistry, and function, and alternative metrics may be required.
Influential input classification in probabilistic multimedia models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddalena, Randy L.; McKone, Thomas E.; Hsieh, Dennis P.H.
1999-05-01
Monte Carlo analysis is a statistical simulation method that is often used to assess and quantify the outcome variance in complex environmental fate and effects models. Total outcome variance of these models is a function of (1) the uncertainty and/or variability associated with each model input and (2) the sensitivity of the model outcome to changes in the inputs. To propagate variance through a model using Monte Carlo techniques, each variable must be assigned a probability distribution. The validity of these distributions directly influences the accuracy and reliability of the model outcome. To efficiently allocate resources for constructing distributions onemore » should first identify the most influential set of variables in the model. Although existing sensitivity and uncertainty analysis methods can provide a relative ranking of the importance of model inputs, they fail to identify the minimum set of stochastic inputs necessary to sufficiently characterize the outcome variance. In this paper, we describe and demonstrate a novel sensitivity/uncertainty analysis method for assessing the importance of each variable in a multimedia environmental fate model. Our analyses show that for a given scenario, a relatively small number of input variables influence the central tendency of the model and an even smaller set determines the shape of the outcome distribution. For each input, the level of influence depends on the scenario under consideration. This information is useful for developing site specific models and improving our understanding of the processes that have the greatest influence on the variance in outcomes from multimedia models.« less
MSEBAG: a dynamic classifier ensemble generation based on `minimum-sufficient ensemble' and bagging
NASA Astrophysics Data System (ADS)
Chen, Lei; Kamel, Mohamed S.
2016-01-01
In this paper, we propose a dynamic classifier system, MSEBAG, which is characterised by searching for the 'minimum-sufficient ensemble' and bagging at the ensemble level. It adopts an 'over-generation and selection' strategy and aims to achieve a good bias-variance trade-off. In the training phase, MSEBAG first searches for the 'minimum-sufficient ensemble', which maximises the in-sample fitness with the minimal number of base classifiers. Then, starting from the 'minimum-sufficient ensemble', a backward stepwise algorithm is employed to generate a collection of ensembles. The objective is to create a collection of ensembles with a descending fitness on the data, as well as a descending complexity in the structure. MSEBAG dynamically selects the ensembles from the collection for the decision aggregation. The extended adaptive aggregation (EAA) approach, a bagging-style algorithm performed at the ensemble level, is employed for this task. EAA searches for the competent ensembles using a score function, which takes into consideration both the in-sample fitness and the confidence of the statistical inference, and averages the decisions of the selected ensembles to label the test pattern. The experimental results show that the proposed MSEBAG outperforms the benchmarks on average.
Response to selection while maximizing genetic variance in small populations.
Cervantes, Isabel; Gutiérrez, Juan Pablo; Meuwissen, Theo H E
2016-09-20
Rare breeds represent a valuable resource for future market demands. These populations are usually well-adapted, but their low census compromises the genetic diversity and future of these breeds. Since improvement of a breed for commercial traits may also confer higher probabilities of survival for the breed, it is important to achieve good responses to artificial selection. Therefore, efficient genetic management of these populations is essential to ensure that they respond adequately to genetic selection in possible future artificial selection scenarios. Scenarios that maximize the maximum genetic variance in a unique population could be a valuable option. The aim of this work was to study the effect of the maximization of genetic variance to increase selection response and improve the capacity of a population to adapt to a new environment/production system. We simulated a random scenario (A), a full-sib scenario (B), a scenario applying the maximum variance total (MVT) method (C), a MVT scenario with a restriction on increases in average inbreeding (D), a MVT scenario with a restriction on average individual increases in inbreeding (E), and a minimum coancestry scenario (F). Twenty replicates of each scenario were simulated for 100 generations, followed by 10 generations of selection. Effective population size was used to monitor the outcomes of these scenarios. Although the best response to selection was achieved in scenarios B and C, they were discarded because they are unpractical. Scenario A was also discarded because of its low response to selection. Scenario D yielded less response to selection and a smaller effective population size than scenario E, for which response to selection was higher during early generations because of the moderately structured population. In scenario F, response to selection was slightly higher than in Scenario E in the last generations. Application of MVT with a restriction on individual increases in inbreeding resulted in the largest response to selection during early generations, but if inbreeding depression is a concern, a minimum coancestry scenario is then a valuable alternative, in particular for a long-term response to selection.
The Impact of Truth Surrogate Variance on Quality Assessment/Assurance in Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
DeLoach, Richard
2016-01-01
Minimum data volume requirements for wind tunnel testing are reviewed and shown to depend on error tolerance, response model complexity, random error variance in the measurement environment, and maximum acceptable levels of inference error risk. Distinctions are made between such related concepts as quality assurance and quality assessment in response surface modeling, as well as between precision and accuracy. Earlier research on the scaling of wind tunnel tests is extended to account for variance in the truth surrogates used at confirmation sites in the design space to validate proposed response models. A model adequacy metric is presented that represents the fraction of the design space within which model predictions can be expected to satisfy prescribed quality specifications. The impact of inference error on the assessment of response model residuals is reviewed. The number of sites where reasonably well-fitted response models actually predict inadequately is shown to be considerably less than the number of sites where residuals are out of tolerance. The significance of such inference error effects on common response model assessment strategies is examined.
Yuan, Yuan-Yuan; Zhou, Yu-Bi; Sun, Jing; Deng, Juan; Bai, Ying; Wang, Jie; Lu, Xue-Feng
2017-06-01
The content of elements in fifteen different regions of Nitraria roborowskii samples were determined by inductively coupled plasma-atomic emission spectrometry(ICP-OES), and its elemental characteristics were analyzed by principal component analysis. The results indicated that 18 mineral elements were detected in N. roborowskii of which V cannot be detected. In addition, contents of Na, K and Ca showed high concentration. Ti showed maximum content variance, while K is minimum. Four principal components were gained from the original data. The cumulative variance contribution rate is 81.542% and the variance contribution of the first principal component was 44.997%, indicating that Cr, Fe, P and Ca were the characteristic elements of N. roborowskii.Thus, the established method was simple, precise and can be used for determination of mineral elements in N.roborowskii Kom. fruits. The elemental distribution characteristics among N.roborowskii fruits are related to geographical origins which were clearly revealed by PCA. All the results will provide good basis for comprehensive utilization of N.roborowskii. Copyright© by the Chinese Pharmaceutical Association.
Benthic macroinvertebrate field sampling effort required to ...
This multi-year pilot study evaluated a proposed field method for its effectiveness in the collection of a benthic macroinvertebrate sample adequate for use in the condition assessment of streams and rivers in the Neuquén Province, Argentina. A total of 13 sites, distributed across three rivers, were sampled. At each site, benthic macroinvertebrates were collected at 11 transects. Each sample was processed independently in the field and laboratory. Based on a literature review and resource considerations, the collection of 300 organisms (minimum) at each site was determined to be necessary to support a robust condition assessment, and therefore, selected as the criterion for judging the adequacy of the method. This targeted number of organisms was collected at all sites, at a minimum, when collections from all 11 transects were combined. Subsequent bootstrapping analysis of data was used to estimate whether collecting at fewer transects would reach the minimum target number of organisms for all sites. In a subset of sites, the total number of organisms frequently fell below the target when fewer than 11 transects collections were combined.Site conditions where <300 organisms might be collected are discussed. These preliminary results suggest that the proposed field method results in a sample that is adequate for robust condition assessment of the rivers and streams of interest. When data become available from a broader range of sites, the adequacy of the field
Buma, Brian; Costanza, Jennifer K; Riitters, Kurt
2017-11-21
The scale of investigation for disturbance-influenced processes plays a critical role in theoretical assumptions about stability, variance, and equilibrium, as well as conservation reserve and long-term monitoring program design. Critical consideration of scale is required for robust planning designs, especially when anticipating future disturbances whose exact locations are unknown. This research quantified disturbance proportion and pattern (as contagion) at multiple scales across North America. This pattern of scale-associated variability can guide selection of study and management extents, for example, to minimize variance (measured as standard deviation) between any landscapes within an ecoregion. We identified the proportion and pattern of forest disturbance (30 m grain size) across multiple landscape extents up to 180 km 2 . We explored the variance in proportion of disturbed area and the pattern of that disturbance between landscapes (within an ecoregion) as a function of the landscape extent. In many ecoregions, variance between landscapes within an ecoregion was minimal at broad landscape extents (low standard deviation). Gap-dominated regions showed the least variance, while fire-dominated showed the largest. Intensively managed ecoregions displayed unique patterns. A majority of the ecoregions showed low variance between landscapes at some scale, indicating an appropriate extent for incorporating natural regimes and unknown future disturbances was identified. The quantification of the scales of disturbance at the ecoregion level provides guidance for individuals interested in anticipating future disturbances which will occur in unknown spatial locations. Information on the extents required to incorporate disturbance patterns into planning is crucial for that process.
Peroni, M; Golland, P; Sharp, G C; Baroni, G
2011-01-01
Deformable Image Registration is a complex optimization algorithm with the goal of modeling a non-rigid transformation between two images. A crucial issue in this field is guaranteeing the user a robust but computationally reasonable algorithm. We rank the performances of four stopping criteria and six stopping value computation strategies for a log domain deformable registration. The stopping criteria we test are: (a) velocity field update magnitude, (b) vector field Jacobian, (c) mean squared error, and (d) harmonic energy. Experiments demonstrate that comparing the metric value over the last three iterations with the metric minimum of between four and six previous iterations is a robust and appropriate strategy. The harmonic energy and vector field update magnitude metrics give the best results in terms of robustness and speed of convergence.
A robust H.264/AVC video watermarking scheme with drift compensation.
Jiang, Xinghao; Sun, Tanfeng; Zhou, Yue; Wang, Wan; Shi, Yun-Qing
2014-01-01
A robust H.264/AVC video watermarking scheme for copyright protection with self-adaptive drift compensation is proposed. In our scheme, motion vector residuals of macroblocks with the smallest partition size are selected to hide copyright information in order to hold visual impact and distortion drift to a minimum. Drift compensation is also implemented to reduce the influence of watermark to the most extent. Besides, discrete cosine transform (DCT) with energy compact property is applied to the motion vector residual group, which can ensure robustness against intentional attacks. According to the experimental results, this scheme gains excellent imperceptibility and low bit-rate increase. Malicious attacks with different quantization parameters (QPs) or motion estimation algorithms can be resisted efficiently, with 80% accuracy on average after lossy compression.
A Robust H.264/AVC Video Watermarking Scheme with Drift Compensation
Sun, Tanfeng; Zhou, Yue; Shi, Yun-Qing
2014-01-01
A robust H.264/AVC video watermarking scheme for copyright protection with self-adaptive drift compensation is proposed. In our scheme, motion vector residuals of macroblocks with the smallest partition size are selected to hide copyright information in order to hold visual impact and distortion drift to a minimum. Drift compensation is also implemented to reduce the influence of watermark to the most extent. Besides, discrete cosine transform (DCT) with energy compact property is applied to the motion vector residual group, which can ensure robustness against intentional attacks. According to the experimental results, this scheme gains excellent imperceptibility and low bit-rate increase. Malicious attacks with different quantization parameters (QPs) or motion estimation algorithms can be resisted efficiently, with 80% accuracy on average after lossy compression. PMID:24672376
Robust Speech Enhancement Using Two-Stage Filtered Minima Controlled Recursive Averaging
NASA Astrophysics Data System (ADS)
Ghourchian, Negar; Selouani, Sid-Ahmed; O'Shaughnessy, Douglas
In this paper we propose an algorithm for estimating noise in highly non-stationary noisy environments, which is a challenging problem in speech enhancement. This method is based on minima-controlled recursive averaging (MCRA) whereby an accurate, robust and efficient noise power spectrum estimation is demonstrated. We propose a two-stage technique to prevent the appearance of musical noise after enhancement. This algorithm filters the noisy speech to achieve a robust signal with minimum distortion in the first stage. Subsequently, it estimates the residual noise using MCRA and removes it with spectral subtraction. The proposed Filtered MCRA (FMCRA) performance is evaluated using objective tests on the Aurora database under various noisy environments. These measures indicate the higher output SNR and lower output residual noise and distortion.
Plasma dynamics on current-carrying magnetic flux tubes
NASA Technical Reports Server (NTRS)
Swift, Daniel W.
1992-01-01
A 1D numerical simulation is used to investigate the evolution of a plasma in a current-carrying magnetic flux tube of variable cross section. A large potential difference, parallel to the magnetic field, is applied across the domain. The result is that density minimum tends to deepen, primarily in the cathode end, and the entire potential drop becomes concentrated across the region of density minimum. The evolution of the simulation shows some sensitivity to particle boundary conditions, but the simulations inevitably evolve into a final state with a nearly stationary double layer near the cathode end. The simulation results are at sufficient variance with observations that it appears unlikely that auroral electrons can be explained by a simple process of acceleration through a field-aligned potential drop.
A New Method for Estimating the Effective Population Size from Allele Frequency Changes
Pollak, Edward
1983-01-01
A new procedure is proposed for estimating the effective population size, given that information is available on changes in frequencies of the alleles at one or more independently segregating loci and the population is observed at two or more separate times. Approximate expressions are obtained for the variances of the new statistic, as well as others, also based on allele frequency changes, that have been discussed in the literature. This analysis indicates that the new statistic will generally have a smaller variance than the others. Estimates of effective population sizes and of the standard errors of the estimates are computed for data on two fly populations that have been discussed in earlier papers. In both cases, there is evidence that the effective population size is very much smaller than the minimum census size of the population. PMID:17246147
New heterogeneous test statistics for the unbalanced fixed-effect nested design.
Guo, Jiin-Huarng; Billard, L; Luh, Wei-Ming
2011-05-01
When the underlying variances are unknown or/and unequal, using the conventional F test is problematic in the two-factor hierarchical data structure. Prompted by the approximate test statistics (Welch and Alexander-Govern methods), the authors develop four new heterogeneous test statistics to test factor A and factor B nested within A for the unbalanced fixed-effect two-stage nested design under variance heterogeneity. The actual significance levels and statistical power of the test statistics were compared in a simulation study. The results show that the proposed procedures maintain better Type I error rate control and have greater statistical power than those obtained by the conventional F test in various conditions. Therefore, the proposed test statistics are recommended in terms of robustness and easy implementation. ©2010 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Li, J.; Xie, S. P.
2017-12-01
The El Niño influence on monsoon Asia climate weakened during the mid-20th century and strenthened substantially after the late 1970s. Exploring the nature of such an interdecadal variation is constrained by short instrumental records. Here we synthesize the Indo-Pacific tree-rings and coral records to reconstruct monsoon Asia temperature and moisture change during the past five centuries, and show that the interdecadal modulation of El Niño teleconnection on monsoon Asia climate is a robust feature beyond the instrumenal era. Comparison with proxy El Niño records indicates that the El Niño-monsoon Asia climate teleconnection is controlled by interdecadal changes in ENSO variance, with strong (weak) teleconnection in periods of high (low) variance, respectively.
On long-only information-based portfolio diversification framework
NASA Astrophysics Data System (ADS)
Santos, Raphael A.; Takada, Hellinton H.
2014-12-01
Using the concepts from information theory, it is possible to improve the traditional frameworks for long-only asset allocation. In modern portfolio theory, the investor has two basic procedures: the choice of a portfolio that maximizes its risk-adjusted excess return or the mixed allocation between the maximum Sharpe portfolio and the risk-free asset. In the literature, the first procedure was already addressed using information theory. One contribution of this paper is the consideration of the second procedure in the information theory context. The performance of these approaches was compared with three traditional asset allocation methodologies: the Markowitz's mean-variance, the resampled mean-variance and the equally weighted portfolio. Using simulated and real data, the information theory-based methodologies were verified to be more robust when dealing with the estimation errors.
Ant Colony Optimization for Markowitz Mean-Variance Portfolio Model
NASA Astrophysics Data System (ADS)
Deng, Guang-Feng; Lin, Woo-Tsong
This work presents Ant Colony Optimization (ACO), which was initially developed to be a meta-heuristic for combinatorial optimization, for solving the cardinality constraints Markowitz mean-variance portfolio model (nonlinear mixed quadratic programming problem). To our knowledge, an efficient algorithmic solution for this problem has not been proposed until now. Using heuristic algorithms in this case is imperative. Numerical solutions are obtained for five analyses of weekly price data for the following indices for the period March, 1992 to September, 1997: Hang Seng 31 in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100 in USA and Nikkei 225 in Japan. The test results indicate that the ACO is much more robust and effective than Particle swarm optimization (PSO), especially for low-risk investment portfolios.
Segmentation of the Knee for Analysis of Osteoarthritis
NASA Astrophysics Data System (ADS)
Zerfass, Peter; Museyko, Oleg; Bousson, Valérie; Laredo, Jean-Denis; Kalender, Willi A.; Engelke, Klaus
Osteoarthritis changes the load distribution within joints and also changes bone density and structure. Within typical timelines of clinical studies these changes can be very small. Therefore precise definition of evaluation regions which are highly robust and show little to no interand intra-operator variance are essential for high quality quantitative analysis. To achieve this goal we have developed a system for the definition of such regions with minimal user input.
WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection.
Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang
2015-12-21
With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate.
WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection †
Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang
2015-01-01
With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate. PMID:26703612
Luque-Fernandez, Miguel Angel; Belot, Aurélien; Quaresma, Manuela; Maringe, Camille; Coleman, Michel P; Rachet, Bernard
2016-10-01
In population-based cancer research, piecewise exponential regression models are used to derive adjusted estimates of excess mortality due to cancer using the Poisson generalized linear modelling framework. However, the assumption that the conditional mean and variance of the rate parameter given the set of covariates x i are equal is strong and may fail to account for overdispersion given the variability of the rate parameter (the variance exceeds the mean). Using an empirical example, we aimed to describe simple methods to test and correct for overdispersion. We used a regression-based score test for overdispersion under the relative survival framework and proposed different approaches to correct for overdispersion including a quasi-likelihood, robust standard errors estimation, negative binomial regression and flexible piecewise modelling. All piecewise exponential regression models showed the presence of significant inherent overdispersion (p-value <0.001). However, the flexible piecewise exponential model showed the smallest overdispersion parameter (3.2 versus 21.3) for non-flexible piecewise exponential models. We showed that there were no major differences between methods. However, using a flexible piecewise regression modelling, with either a quasi-likelihood or robust standard errors, was the best approach as it deals with both, overdispersion due to model misspecification and true or inherent overdispersion.
NASA Astrophysics Data System (ADS)
Li, Zhi; Jin, Jiming
2017-11-01
Projected hydrological variability is important for future resource and hazard management of water supplies because changes in hydrological variability can cause more disasters than changes in the mean state. However, climate change scenarios downscaled from Earth System Models (ESMs) at single sites cannot meet the requirements of distributed hydrologic models for simulating hydrological variability. This study developed multisite multivariate climate change scenarios via three steps: (i) spatial downscaling of ESMs using a transfer function method, (ii) temporal downscaling of ESMs using a single-site weather generator, and (iii) reconstruction of spatiotemporal correlations using a distribution-free shuffle procedure. Multisite precipitation and temperature change scenarios for 2011-2040 were generated from five ESMs under four representative concentration pathways to project changes in streamflow variability using the Soil and Water Assessment Tool (SWAT) for the Jing River, China. The correlation reconstruction method performed realistically for intersite and intervariable correlation reproduction and hydrological modeling. The SWAT model was found to be well calibrated with monthly streamflow with a model efficiency coefficient of 0.78. It was projected that the annual mean precipitation would not change, while the mean maximum and minimum temperatures would increase significantly by 1.6 ± 0.3 and 1.3 ± 0.2 °C; the variance ratios of 2011-2040 to 1961-2005 were 1.15 ± 0.13 for precipitation, 1.15 ± 0.14 for mean maximum temperature, and 1.04 ± 0.10 for mean minimum temperature. A warmer climate was predicted for the flood season, while the dry season was projected to become wetter and warmer; the findings indicated that the intra-annual and interannual variations in the future climate would be greater than in the current climate. The total annual streamflow was found to change insignificantly but its variance ratios of 2011-2040 to 1961-2005 increased by 1.25 ± 0.55. Streamflow variability was predicted to become greater over most months on the seasonal scale because of the increased monthly maximum streamflow and decreased monthly minimum streamflow. The increase in streamflow variability was attributed mainly to larger positive contributions from increased precipitation variances rather than negative contributions from increased mean temperatures.
The structure and photocatalytic activity of TiO2 thin films deposited by dc magnetron sputtering
NASA Astrophysics Data System (ADS)
Yang, W. J.; Hsu, C. Y.; Liu, Y. W.; Hsu, R. Q.; Lu, T. W.; Hu, C. C.
2012-12-01
This paper seeks to determine the optimal settings for the deposition parameters, for TiO2 thin film, prepared on non-alkali glass substrates, by direct current (dc) sputtering, using a ceramic TiO2 target in an argon gas environment. An orthogonal array, the signal-to-noise ratio and analysis of variance are used to analyze the effect of the deposition parameters. Using the Taguchi method for design of a robust experiment, the interactions between factors are also investigated. The main deposition parameters, such as dc power (W), sputtering pressure (Pa), substrate temperature (°C) and deposition time (min), were optimized, with reference to the structure and photocatalytic characteristics of TiO2. The results of this study show that substrate temperature and deposition time have the most significant effect on photocatalytic performance. For the optimal combination of deposition parameters, the (1 1 0) and (2 0 0) peaks of the rutile structure and the (2 0 0) peak of the anatase structure were observed, at 2θ ˜ 27.4°, 39.2° and 48°, respectively. The experimental results illustrate that the Taguchi method allowed a suitable solution to the problem, with the minimum number of trials, compared to a full factorial design. The adhesion of the coatings was also measured and evaluated, via a scratch test. Superior wear behavior was observed, for the TiO2 film, because of the increased strength of the interface of micro-blasted tools.
The magnitude and colour of noise in genetic negative feedback systems
Voliotis, Margaritis; Bowsher, Clive G.
2012-01-01
The comparative ability of transcriptional and small RNA-mediated negative feedback to control fluctuations or ‘noise’ in gene expression remains unexplored. Both autoregulatory mechanisms usually suppress the average (mean) of the protein level and its variability across cells. The variance of the number of proteins per molecule of mean expression is also typically reduced compared with the unregulated system, but is almost never below the value of one. This relative variance often substantially exceeds a recently obtained, theoretical lower limit for biochemical feedback systems. Adding the transcriptional or small RNA-mediated control has different effects. Transcriptional autorepression robustly reduces both the relative variance and persistence (lifetime) of fluctuations. Both benefits combine to reduce noise in downstream gene expression. Autorepression via small RNA can achieve more extreme noise reduction and typically has less effect on the mean expression level. However, it is often more costly to implement and is more sensitive to rate parameters. Theoretical lower limits on the relative variance are known to decrease slowly as a measure of the cost per molecule of mean expression increases. However, the proportional increase in cost to achieve substantial noise suppression can be different away from the optimal frontier—for transcriptional autorepression, it is frequently negligible. PMID:22581772
Code of Federal Regulations, 2013 CFR
2013-04-01
... or integrity of the game, and are specially manufactured or proprietary and not off-the-shelf, must... the potential to affect the outcome or integrity of any game, progressive award, financial instrument... of a robust construction designed to resist determined illegal entry. All protuberances and...
Code of Federal Regulations, 2014 CFR
2014-04-01
... or integrity of the game, and are specially manufactured or proprietary and not off-the-shelf, must... the potential to affect the outcome or integrity of any game, progressive award, financial instrument... of a robust construction designed to resist determined illegal entry. All protuberances and...
Frequency of Input Effects on Word Comprehension of Children with Specific Language Impairment.
ERIC Educational Resources Information Center
Rice, Mabel L.; And Others
1994-01-01
This study compared factors contributing to Quick Incidental Learning of new vocabulary by 50 5-year olds with specific language impairment (SLI) and 2 comparison groups. Although SLI children exhibited a robust representational mapping ability, performance was modulated by a minimum input constraint and apparent problems with storage into…
Robust Crossfeed Design for Hovering Rotorcraft
NASA Technical Reports Server (NTRS)
Catapang, David R.
1993-01-01
Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust'. A new low-order matching method is presented here to design robust crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.
NASA Astrophysics Data System (ADS)
McPhail, C.; Maier, H. R.; Kwakkel, J. H.; Giuliani, M.; Castelletti, A.; Westra, S.
2018-02-01
Robustness is being used increasingly for decision analysis in relation to deep uncertainty and many metrics have been proposed for its quantification. Recent studies have shown that the application of different robustness metrics can result in different rankings of decision alternatives, but there has been little discussion of what potential causes for this might be. To shed some light on this issue, we present a unifying framework for the calculation of robustness metrics, which assists with understanding how robustness metrics work, when they should be used, and why they sometimes disagree. The framework categorizes the suitability of metrics to a decision-maker based on (1) the decision-context (i.e., the suitability of using absolute performance or regret), (2) the decision-maker's preferred level of risk aversion, and (3) the decision-maker's preference toward maximizing performance, minimizing variance, or some higher-order moment. This article also introduces a conceptual framework describing when relative robustness values of decision alternatives obtained using different metrics are likely to agree and disagree. This is used as a measure of how "stable" the ranking of decision alternatives is when determined using different robustness metrics. The framework is tested on three case studies, including water supply augmentation in Adelaide, Australia, the operation of a multipurpose regulated lake in Italy, and flood protection for a hypothetical river based on a reach of the river Rhine in the Netherlands. The proposed conceptual framework is confirmed by the case study results, providing insight into the reasons for disagreements between rankings obtained using different robustness metrics.
NASA Astrophysics Data System (ADS)
Zahari, Siti Meriam; Ramli, Norazan Mohamed; Moktar, Balkiah; Zainol, Mohammad Said
2014-09-01
In the presence of multicollinearity and multiple outliers, statistical inference of linear regression model using ordinary least squares (OLS) estimators would be severely affected and produces misleading results. To overcome this, many approaches have been investigated. These include robust methods which were reported to be less sensitive to the presence of outliers. In addition, ridge regression technique was employed to tackle multicollinearity problem. In order to mitigate both problems, a combination of ridge regression and robust methods was discussed in this study. The superiority of this approach was examined when simultaneous presence of multicollinearity and multiple outliers occurred in multiple linear regression. This study aimed to look at the performance of several well-known robust estimators; M, MM, RIDGE and robust ridge regression estimators, namely Weighted Ridge M-estimator (WRM), Weighted Ridge MM (WRMM), Ridge MM (RMM), in such a situation. Results of the study showed that in the presence of simultaneous multicollinearity and multiple outliers (in both x and y-direction), the RMM and RIDGE are more or less similar in terms of superiority over the other estimators, regardless of the number of observation, level of collinearity and percentage of outliers used. However, when outliers occurred in only single direction (y-direction), the WRMM estimator is the most superior among the robust ridge regression estimators, by producing the least variance. In conclusion, the robust ridge regression is the best alternative as compared to robust and conventional least squares estimators when dealing with simultaneous presence of multicollinearity and outliers.
Identification, Characterization, and Utilization of Adult Meniscal Progenitor Cells
2017-11-01
approach including row scaling and Ward’s minimum variance method was chosen. This analysis revealed two groups of four samples each. For the selected...articular cartilage in an ovine model. Am J Sports Med. 2008;36(5):841-50. 7. Deshpande BR, Katz JN, Solomon DH, Yelin EH, Hunter DJ, Messier SP, et al...Miosge1,* 1Tissue Regeneration Work Group , Department of Prosthodontics, Medical Faculty, Georg-August-University, 37075 Goettingen, Germany 2Institute of
2017-12-01
carefully to ensure only minimum information needed for effective management control is requested. Requires cost-benefit analysis and PM...baseline offers metrics that highlights performance treads and program variances. This information provides Program Managers and higher levels of...The existing training philosophy is effective only if the managers using the information have well trained and experienced personnel that can
Ways to improve your correlation functions
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.
1993-01-01
This paper describes a number of ways to improve on the standard method for measuring the two-point correlation function of large scale structure in the Universe. Issues addressed are: (1) the problem of the mean density, and how to solve it; (2) how to estimate the uncertainty in a measured correlation function; (3) minimum variance pair weighting; (4) unbiased estimation of the selection function when magnitudes are discrete; and (5) analytic computation of angular integrals in background pair counts.
The Three-Dimensional Power Spectrum Of Galaxies from the Sloan Digital Sky Survey
2004-05-10
aspects of the three-dimensional clustering of a much larger data set involving over 200,000 galaxies with redshifts. This paper is focused on measuring... papers , we will constrain galaxy bias empirically by using clustering measurements on smaller scales (e.g., I. Zehavi et al. 2004, in preparation...minimum-variance measurements in 22 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well
NASA Astrophysics Data System (ADS)
Wang, Feng; Yang, Dongkai; Zhang, Bo; Li, Weiqiang
2018-03-01
This paper explores two types of mathematical functions to fit single- and full-frequency waveform of spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R), respectively. The metrics of the waveforms, such as the noise floor, peak magnitude, mid-point position of the leading edge, leading edge slope and trailing edge slope, can be derived from the parameters of the proposed models. Because the quality of the UK TDS-1 data is not at the level required by remote sensing mission, the waveforms buried in noise or from ice/land are removed by defining peak-to-mean ratio, cosine similarity of the waveform before wind speed are retrieved. The single-parameter retrieval models are developed by comparing the peak magnitude, leading edge slope and trailing edge slope derived from the parameters of the proposed models with in situ wind speed from the ASCAT scatterometer. To improve the retrieval accuracy, three types of multi-parameter observations based on the principle component analysis (PCA), minimum variance (MV) estimator and Back Propagation (BP) network are implemented. The results indicate that compared to the best results of the single-parameter observation, the approaches based on the principle component analysis and minimum variance could not significantly improve retrieval accuracy, however, the BP networks obtain improvement with the RMSE of 2.55 m/s and 2.53 m/s for single- and full-frequency waveform, respectively.
Fast Minimum Variance Beamforming Based on Legendre Polynomials.
Bae, MooHo; Park, Sung Bae; Kwon, Sung Jae
2016-09-01
Currently, minimum variance beamforming (MV) is actively investigated as a method that can improve the performance of an ultrasound beamformer, in terms of the lateral and contrast resolution. However, this method has the disadvantage of excessive computational complexity since the inverse spatial covariance matrix must be calculated. Some noteworthy methods among various attempts to solve this problem include beam space adaptive beamforming methods and the fast MV method based on principal component analysis, which are similar in that the original signal in the element space is transformed to another domain using an orthonormal basis matrix and the dimension of the covariance matrix is reduced by approximating the matrix only with important components of the matrix, hence making the inversion of the matrix very simple. Recently, we proposed a new method with further reduced computational demand that uses Legendre polynomials as the basis matrix for such a transformation. In this paper, we verify the efficacy of the proposed method through Field II simulations as well as in vitro and in vivo experiments. The results show that the approximation error of this method is less than or similar to those of the above-mentioned methods and that the lateral response of point targets and the contrast-to-speckle noise in anechoic cysts are also better than or similar to those methods when the dimensionality of the covariance matrices is reduced to the same dimension.
Darzi, Soodabeh; Kiong, Tiong Sieh; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Salem, Balasem
2014-01-01
Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program.
Sieh Kiong, Tiong; Tariqul Islam, Mohammad; Ismail, Mahamod; Salem, Balasem
2014-01-01
Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program. PMID:25147859
Demographics of an ornate box turtle population experiencing minimal human-induced disturbances
Converse, S.J.; Iverson, J.B.; Savidge, J.A.
2005-01-01
Human-induced disturbances may threaten the viability of many turtle populations, including populations of North American box turtles. Evaluation of the potential impacts of these disturbances can be aided by long-term studies of populations subject to minimal human activity. In such a population of ornate box turtles (Terrapene ornata ornata) in western Nebraska, we examined survival rates and population growth rates from 1981-2000 based on mark-recapture data. The average annual apparent survival rate of adult males was 0.883 (SE = 0.021) and of adult females was 0.932 (SE = 0.014). Minimum winter temperature was the best of five climate variables as a predictor of adult survival. Survival rates were highest in years with low minimum winter temperatures, suggesting that global warming may result in declining survival. We estimated an average adult population growth rate (????) of 1.006 (SE = 0.065), with an estimated temporal process variance (????2) of 0.029 (95% CI = 0.005-0.176). Stochastic simulations suggest that this mean and temporal process variance would result in a 58% probability of a population decrease over a 20-year period. This research provides evidence that, unless unknown density-dependent mechanisms are operating in the adult age class, significant human disturbances, such as commercial harvest or turtle mortality on roads, represent a potential risk to box turtle populations. ?? 2005 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Harudin, N.; Jamaludin, K. R.; Muhtazaruddin, M. Nabil; Ramlie, F.; Muhamad, Wan Zuki Azman Wan
2018-03-01
T-Method is one of the techniques governed under Mahalanobis Taguchi System that developed specifically for multivariate data predictions. Prediction using T-Method is always possible even with very limited sample size. The user of T-Method required to clearly understanding the population data trend since this method is not considering the effect of outliers within it. Outliers may cause apparent non-normality and the entire classical methods breakdown. There exist robust parameter estimate that provide satisfactory results when the data contain outliers, as well as when the data are free of them. The robust parameter estimates of location and scale measure called Shamos Bickel (SB) and Hodges Lehman (HL) which are used as a comparable method to calculate the mean and standard deviation of classical statistic is part of it. Embedding these into T-Method normalize stage feasibly help in enhancing the accuracy of the T-Method as well as analysing the robustness of T-method itself. However, the result of higher sample size case study shows that T-method is having lowest average error percentages (3.09%) on data with extreme outliers. HL and SB is having lowest error percentages (4.67%) for data without extreme outliers with minimum error differences compared to T-Method. The error percentages prediction trend is vice versa for lower sample size case study. The result shows that with minimum sample size, which outliers always be at low risk, T-Method is much better on that, while higher sample size with extreme outliers, T-Method as well show better prediction compared to others. For the case studies conducted in this research, it shows that normalization of T-Method is showing satisfactory results and it is not feasible to adapt HL and SB or normal mean and standard deviation into it since it’s only provide minimum effect of percentages errors. Normalization using T-method is still considered having lower risk towards outlier’s effect.
Fisk, J. M.; Kwak, Thomas J.; Heise, R. J.
2014-01-01
A critical component of a species reintroduction is assessment of contemporary habitat suitability. The robust redhorse, Moxostoma robustum (Cope), is an imperilled catostomid that occupies a restricted range in the south-eastern USA. A remnant population persists downstream of Blewett Falls Dam, the terminal dam in the Pee Dee River, North Carolina. Reintroduction upstream of Blewett Falls Dam may promote long-term survival of this population. Tillery Dam is the next hydroelectric facility upstream, which includes a 30 rkm lotic reach. Habitat suitability indices developed in the Pee Dee River were applied to model suitable habitat for proposed minimum flows downstream of Tillery Dam. Modelling results indicate that the Tillery reach provides suitable robust redhorse habitat, with spawning habitat more abundant than non-spawning habitat. Sensitivity analyses suggested that suitable water depth and substrate were limiting physical habitat variables. These results can inform decisions on flow regulation and guide planning for reintroduction of the robust redhorse and other species.
Minimum constitutive relation error based static identification of beams using force method
NASA Astrophysics Data System (ADS)
Guo, Jia; Takewaki, Izuru
2017-05-01
A new static identification approach based on the minimum constitutive relation error (CRE) principle for beam structures is introduced. The exact stiffness and the exact bending moment are shown to make the CRE minimal for given displacements to beam damages. A two-step substitution algorithm—a force-method step for the bending moment and a constitutive-relation step for the stiffness—is developed and its convergence is rigorously derived. Identifiability is further discussed and the stiffness in the undeformed region is found to be unidentifiable. An extra set of static measurements is complemented to remedy the drawback. Convergence and robustness are finally verified through numerical examples.
Xiao, Yongling; Abrahamowicz, Michal
2010-03-30
We propose two bootstrap-based methods to correct the standard errors (SEs) from Cox's model for within-cluster correlation of right-censored event times. The cluster-bootstrap method resamples, with replacement, only the clusters, whereas the two-step bootstrap method resamples (i) the clusters, and (ii) individuals within each selected cluster, with replacement. In simulations, we evaluate both methods and compare them with the existing robust variance estimator and the shared gamma frailty model, which are available in statistical software packages. We simulate clustered event time data, with latent cluster-level random effects, which are ignored in the conventional Cox's model. For cluster-level covariates, both proposed bootstrap methods yield accurate SEs, and type I error rates, and acceptable coverage rates, regardless of the true random effects distribution, and avoid serious variance under-estimation by conventional Cox-based standard errors. However, the two-step bootstrap method over-estimates the variance for individual-level covariates. We also apply the proposed bootstrap methods to obtain confidence bands around flexible estimates of time-dependent effects in a real-life analysis of cluster event times.
Data assimilation method based on the constraints of confidence region
NASA Astrophysics Data System (ADS)
Li, Yong; Li, Siming; Sheng, Yao; Wang, Luheng
2018-03-01
The ensemble Kalman filter (EnKF) is a distinguished data assimilation method that is widely used and studied in various fields including methodology and oceanography. However, due to the limited sample size or imprecise dynamics model, it is usually easy for the forecast error variance to be underestimated, which further leads to the phenomenon of filter divergence. Additionally, the assimilation results of the initial stage are poor if the initial condition settings differ greatly from the true initial state. To address these problems, the variance inflation procedure is usually adopted. In this paper, we propose a new method based on the constraints of a confidence region constructed by the observations, called EnCR, to estimate the inflation parameter of the forecast error variance of the EnKF method. In the new method, the state estimate is more robust to both the inaccurate forecast models and initial condition settings. The new method is compared with other adaptive data assimilation methods in the Lorenz-63 and Lorenz-96 models under various model parameter settings. The simulation results show that the new method performs better than the competing methods.
RepExplore: addressing technical replicate variance in proteomics and metabolomics data analysis.
Glaab, Enrico; Schneider, Reinhard
2015-07-01
High-throughput omics datasets often contain technical replicates included to account for technical sources of noise in the measurement process. Although summarizing these replicate measurements by using robust averages may help to reduce the influence of noise on downstream data analysis, the information on the variance across the replicate measurements is lost in the averaging process and therefore typically disregarded in subsequent statistical analyses.We introduce RepExplore, a web-service dedicated to exploit the information captured in the technical replicate variance to provide more reliable and informative differential expression and abundance statistics for omics datasets. The software builds on previously published statistical methods, which have been applied successfully to biomedical omics data but are difficult to use without prior experience in programming or scripting. RepExplore facilitates the analysis by providing a fully automated data processing and interactive ranking tables, whisker plot, heat map and principal component analysis visualizations to interpret omics data and derived statistics. Freely available at http://www.repexplore.tk enrico.glaab@uni.lu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Robust analysis of semiparametric renewal process models
Lin, Feng-Chang; Truong, Young K.; Fine, Jason P.
2013-01-01
Summary A rate model is proposed for a modulated renewal process comprising a single long sequence, where the covariate process may not capture the dependencies in the sequence as in standard intensity models. We consider partial likelihood-based inferences under a semiparametric multiplicative rate model, which has been widely studied in the context of independent and identical data. Under an intensity model, gap times in a single long sequence may be used naively in the partial likelihood with variance estimation utilizing the observed information matrix. Under a rate model, the gap times cannot be treated as independent and studying the partial likelihood is much more challenging. We employ a mixing condition in the application of limit theory for stationary sequences to obtain consistency and asymptotic normality. The estimator's variance is quite complicated owing to the unknown gap times dependence structure. We adapt block bootstrapping and cluster variance estimators to the partial likelihood. Simulation studies and an analysis of a semiparametric extension of a popular model for neural spike train data demonstrate the practical utility of the rate approach in comparison with the intensity approach. PMID:24550568
An improved state-parameter analysis of ecosystem models using data assimilation
Chen, M.; Liu, S.; Tieszen, L.L.; Hollinger, D.Y.
2008-01-01
Much of the effort spent in developing data assimilation methods for carbon dynamics analysis has focused on estimating optimal values for either model parameters or state variables. The main weakness of estimating parameter values alone (i.e., without considering state variables) is that all errors from input, output, and model structure are attributed to model parameter uncertainties. On the other hand, the accuracy of estimating state variables may be lowered if the temporal evolution of parameter values is not incorporated. This research develops a smoothed ensemble Kalman filter (SEnKF) by combining ensemble Kalman filter with kernel smoothing technique. SEnKF has following characteristics: (1) to estimate simultaneously the model states and parameters through concatenating unknown parameters and state variables into a joint state vector; (2) to mitigate dramatic, sudden changes of parameter values in parameter sampling and parameter evolution process, and control narrowing of parameter variance which results in filter divergence through adjusting smoothing factor in kernel smoothing algorithm; (3) to assimilate recursively data into the model and thus detect possible time variation of parameters; and (4) to address properly various sources of uncertainties stemming from input, output and parameter uncertainties. The SEnKF is tested by assimilating observed fluxes of carbon dioxide and environmental driving factor data from an AmeriFlux forest station located near Howland, Maine, USA, into a partition eddy flux model. Our analysis demonstrates that model parameters, such as light use efficiency, respiration coefficients, minimum and optimum temperatures for photosynthetic activity, and others, are highly constrained by eddy flux data at daily-to-seasonal time scales. The SEnKF stabilizes parameter values quickly regardless of the initial values of the parameters. Potential ecosystem light use efficiency demonstrates a strong seasonality. Results show that the simultaneous parameter estimation procedure significantly improves model predictions. Results also show that the SEnKF can dramatically reduce the variance in state variables stemming from the uncertainty of parameters and driving variables. The SEnKF is a robust and effective algorithm in evaluating and developing ecosystem models and in improving the understanding and quantification of carbon cycle parameters and processes. ?? 2008 Elsevier B.V.
Robust stochastic resonance: Signal detection and adaptation in impulsive noise
NASA Astrophysics Data System (ADS)
Kosko, Bart; Mitaim, Sanya
2001-11-01
Stochastic resonance (SR) occurs when noise improves a system performance measure such as a spectral signal-to-noise ratio or a cross-correlation measure. All SR studies have assumed that the forcing noise has finite variance. Most have further assumed that the noise is Gaussian. We show that SR still occurs for the more general case of impulsive or infinite-variance noise. The SR effect fades as the noise grows more impulsive. We study this fading effect on the family of symmetric α-stable bell curves that includes the Gaussian bell curve as a special case. These bell curves have thicker tails as the parameter α falls from 2 (the Gaussian case) to 1 (the Cauchy case) to even lower values. Thicker tails create more frequent and more violent noise impulses. The main feedback and feedforward models in the SR literature show this fading SR effect for periodic forcing signals when we plot either the signal-to-noise ratio or a signal correlation measure against the dispersion of the α-stable noise. Linear regression shows that an exponential law γopt(α)=cAα describes this relation between the impulsive index α and the SR-optimal noise dispersion γopt. The results show that SR is robust against noise ``outliers.'' So SR may be more widespread in nature than previously believed. Such robustness also favors the use of SR in engineering systems. We further show that an adaptive system can learn the optimal noise dispersion for two standard SR models (the quartic bistable model and the FitzHugh-Nagumo neuron model) for the signal-to-noise ratio performance measure. This also favors practical applications of SR and suggests that evolution may have tuned the noise-sensitive parameters of biological systems.
Briat, Corentin; Gupta, Ankit; Khammash, Mustafa
2018-06-01
The ability of a cell to regulate and adapt its internal state in response to unpredictable environmental changes is called homeostasis and this ability is crucial for the cell's survival and proper functioning. Understanding how cells can achieve homeostasis, despite the intrinsic noise or randomness in their dynamics, is fundamentally important for both systems and synthetic biology. In this context, a significant development is the proposed antithetic integral feedback (AIF) motif, which is found in natural systems, and is known to ensure robust perfect adaptation for the mean dynamics of a given molecular species involved in a complex stochastic biomolecular reaction network. From the standpoint of applications, one drawback of this motif is that it often leads to an increased cell-to-cell heterogeneity or variance when compared to a constitutive (i.e. open-loop) control strategy. Our goal in this paper is to show that this performance deterioration can be countered by combining the AIF motif and a negative feedback strategy. Using a tailored moment closure method, we derive approximate expressions for the stationary variance for the controlled network that demonstrate that increasing the strength of the negative feedback can indeed decrease the variance, sometimes even below its constitutive level. Numerical results verify the accuracy of these results and we illustrate them by considering three biomolecular networks with two types of negative feedback strategies. Our computational analysis indicates that there is a trade-off between the speed of the settling-time of the mean trajectories and the stationary variance of the controlled species; i.e. smaller variance is associated with larger settling-time. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Wang, Q.; Elbouz, M.; Alfalou, A.; Brosseau, C.
2017-06-01
We present a novel method to optimize the discrimination ability and noise robustness of composite filters. This method is based on the iterative preprocessing of training images which can extract boundary and detailed feature information of authentic training faces, thereby improving the peak-to-correlation energy (PCE) ratio of authentic faces and to be immune to intra-class variance and noise interference. By adding the training images directly, one can obtain a composite template with high discrimination ability and robustness for face recognition task. The proposed composite correlation filter does not involve any complicated mathematical analysis and computation which are often required in the design of correlation algorithms. Simulation tests have been conducted to check the effectiveness and feasibility of our proposal. Moreover, to assess robustness of composite filters using receiver operating characteristic (ROC) curves, we devise a new method to count the true positive and false positive rates for which the difference between PCE and threshold is involved.
Atlas-based liver segmentation and hepatic fat-fraction assessment for clinical trials.
Yan, Zhennan; Zhang, Shaoting; Tan, Chaowei; Qin, Hongxing; Belaroussi, Boubakeur; Yu, Hui Jing; Miller, Colin; Metaxas, Dimitris N
2015-04-01
Automated assessment of hepatic fat-fraction is clinically important. A robust and precise segmentation would enable accurate, objective and consistent measurement of hepatic fat-fraction for disease quantification, therapy monitoring and drug development. However, segmenting the liver in clinical trials is a challenging task due to the variability of liver anatomy as well as the diverse sources the images were acquired from. In this paper, we propose an automated and robust framework for liver segmentation and assessment. It uses single statistical atlas registration to initialize a robust deformable model to obtain fine segmentation. Fat-fraction map is computed by using chemical shift based method in the delineated region of liver. This proposed method is validated on 14 abdominal magnetic resonance (MR) volumetric scans. The qualitative and quantitative comparisons show that our proposed method can achieve better segmentation accuracy with less variance comparing with two other atlas-based methods. Experimental results demonstrate the promises of our assessment framework. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ison, Mark; Artemiadis, Panagiotis
2014-10-01
Myoelectric control is filled with potential to significantly change human-robot interaction due to the ability to non-invasively measure human motion intent. However, current control schemes have struggled to achieve the robust performance that is necessary for use in commercial applications. As demands in myoelectric control trend toward simultaneous multifunctional control, multi-muscle coordinations, or synergies, play larger roles in the success of the control scheme. Detecting and refining patterns in muscle activations robust to the high variance and transient changes associated with surface electromyography is essential for efficient, user-friendly control. This article reviews the role of muscle synergies in myoelectric control schemes by dissecting each component of the scheme with respect to associated challenges for achieving robust simultaneous control of myoelectric interfaces. Electromyography recording details, signal feature extraction, pattern recognition and motor learning based control schemes are considered, and future directions are proposed as steps toward fulfilling the potential of myoelectric control in clinically and commercially viable applications.
Todd, Helena; Mirawdeli, Avin; Costelloe, Sarah; Cavenagh, Penny; Davis, Stephen; Howell, Peter
2014-12-01
Riley stated that the minimum speech sample length necessary to compute his stuttering severity estimates was 200 syllables. This was investigated. Procedures supplied for the assessment of readers and non-readers were examined to see whether they give equivalent scores. Recordings of spontaneous speech samples from 23 young children (aged between 2 years 8 months and 6 years 3 months) and 31 older children (aged between 10 years 0 months and 14 years 7 months) were made. Riley's severity estimates were scored on extracts of different lengths. The older children provided spontaneous and read samples, which were scored for severity according to reader and non-reader procedures. Analysis of variance supported the use of 200-syllable-long samples as the minimum necessary for obtaining severity scores. There was no significant difference in SSI-3 scores for the older children when the reader and non-reader procedures were used. Samples that are 200-syllables long are the minimum that is appropriate for obtaining stable Riley's severity scores. The procedural variants provide similar severity scores.
1981-06-01
independently on the same network. Given this reduction in scale, the projected impl widely distributed, fully replicated, synchronized dat design...Manager that "owns" other resources. This strategy requires minimum synchronization while providing advantages in reliability and robustness. 2 3...interactive tools on TENEX, transparent file motion and translation, and a primitive set of project management functions. This demonstration confirmed that
An improved stochastic fractal search algorithm for 3D protein structure prediction.
Zhou, Changjun; Sun, Chuan; Wang, Bin; Wang, Xiaojun
2018-05-03
Protein structure prediction (PSP) is a significant area for biological information research, disease treatment, and drug development and so on. In this paper, three-dimensional structures of proteins are predicted based on the known amino acid sequences, and the structure prediction problem is transformed into a typical NP problem by an AB off-lattice model. This work applies a novel improved Stochastic Fractal Search algorithm (ISFS) to solve the problem. The Stochastic Fractal Search algorithm (SFS) is an effective evolutionary algorithm that performs well in exploring the search space but falls into local minimums sometimes. In order to avoid the weakness, Lvy flight and internal feedback information are introduced in ISFS. In the experimental process, simulations are conducted by ISFS algorithm on Fibonacci sequences and real peptide sequences. Experimental results prove that the ISFS performs more efficiently and robust in terms of finding the global minimum and avoiding getting stuck in local minimums.
NASA Astrophysics Data System (ADS)
Lin, Geng; Guan, Jian; Feng, Huibin
2018-06-01
The positive influence dominating set problem is a variant of the minimum dominating set problem, and has lots of applications in social networks. It is NP-hard, and receives more and more attention. Various methods have been proposed to solve the positive influence dominating set problem. However, most of the existing work focused on greedy algorithms, and the solution quality needs to be improved. In this paper, we formulate the minimum positive influence dominating set problem as an integer linear programming (ILP), and propose an ILP based memetic algorithm (ILPMA) for solving the problem. The ILPMA integrates a greedy randomized adaptive construction procedure, a crossover operator, a repair operator, and a tabu search procedure. The performance of ILPMA is validated on nine real-world social networks with nodes up to 36,692. The results show that ILPMA significantly improves the solution quality, and is robust.
Future mission studies: Preliminary comparisons of solar flux models
NASA Technical Reports Server (NTRS)
Ashrafi, S.
1991-01-01
The results of comparisons of the solar flux models are presented. (The wavelength lambda = 10.7 cm radio flux is the best indicator of the strength of the ionizing radiations such as solar ultraviolet and x-ray emissions that directly affect the atmospheric density thereby changing the orbit lifetime of satellites. Thus, accurate forecasting of solar flux F sub 10.7 is crucial for orbit determination of spacecrafts.) The measured solar flux recorded by National Oceanic and Atmospheric Administration (NOAA) is compared against the forecasts made by Schatten, MSFC, and NOAA itself. The possibility of a combined linear, unbiased minimum-variance estimation that properly combines all three models into one that minimizes the variance is also discussed. All the physics inherent in each model are combined. This is considered to be the dead-end statistical approach to solar flux forecasting before any nonlinear chaotic approach.
NASA Astrophysics Data System (ADS)
Sun, Xuelian; Liu, Zixian
2016-02-01
In this paper, a new estimator of correlation matrix is proposed, which is composed of the detrended cross-correlation coefficients (DCCA coefficients), to improve portfolio optimization. In contrast to Pearson's correlation coefficients (PCC), DCCA coefficients acquired by the detrended cross-correlation analysis (DCCA) method can describe the nonlinear correlation between assets, and can be decomposed in different time scales. These properties of DCCA make it possible to improve the investment effect and more valuable to investigate the scale behaviors of portfolios. The minimum variance portfolio (MVP) model and the Mean-Variance (MV) model are used to evaluate the effectiveness of this improvement. Stability analysis shows the effect of two kinds of correlation matrices on the estimation error of portfolio weights. The observed scale behaviors are significant to risk management and could be used to optimize the portfolio selection.
Demodulation of messages received with low signal to noise ratio
NASA Astrophysics Data System (ADS)
Marguinaud, A.; Quignon, T.; Romann, B.
The implementation of this all-digital demodulator is derived from maximum likelihood considerations applied to an analytical representation of the received signal. Traditional adapted filters and phase lock loops are replaced by minimum variance estimators and hypothesis tests. These statistical tests become very simple when working on phase signal. These methods, combined with rigorous control data representation allow significant computation savings as compared to conventional realizations. Nominal operation has been verified down to energetic signal over noise of -3 dB upon a QPSK demodulator.
An adaptive technique for estimating the atmospheric density profile during the AE mission
NASA Technical Reports Server (NTRS)
Argentiero, P.
1973-01-01
A technique is presented for processing accelerometer data obtained during the AE missions in order to estimate the atmospheric density profile. A minimum variance, adaptive filter is utilized. The trajectory of the probe and probe parameters are in a consider mode where their estimates are unimproved but their associated uncertainties are permitted an impact on filter behavior. Simulations indicate that the technique is effective in estimating a density profile to within a few percentage points.
Real-time performance assessment and adaptive control for a water chiller unit in an HVAC system
NASA Astrophysics Data System (ADS)
Bai, Jianbo; Li, Yang; Chen, Jianhao
2018-02-01
The paper proposes an adaptive control method for a water chiller unit in a HVAC system. Based on the minimum variance evaluation, the adaptive control method was used to realize better control of the water chiller unit. To verify the performance of the adaptive control method, the proposed method was compared with an a conventional PID controller, the simulation results showed that adaptive control method had superior control performance to that of the conventional PID controller.
NASA Technical Reports Server (NTRS)
Menard, Richard; Chang, Lang-Ping
1998-01-01
A Kalman filter system designed for the assimilation of limb-sounding observations of stratospheric chemical tracers, which has four tunable covariance parameters, was developed in Part I (Menard et al. 1998) The assimilation results of CH4 observations from the Cryogenic Limb Array Etalon Sounder instrument (CLAES) and the Halogen Observation Experiment instrument (HALOE) on board of the Upper Atmosphere Research Satellite are described in this paper. A robust (chi)(sup 2) criterion, which provides a statistical validation of the forecast and observational error covariances, was used to estimate the tunable variance parameters of the system. In particular, an estimate of the model error variance was obtained. The effect of model error on the forecast error variance became critical after only three days of assimilation of CLAES observations, although it took 14 days of forecast to double the initial error variance. We further found that the model error due to numerical discretization as arising in the standard Kalman filter algorithm, is comparable in size to the physical model error due to wind and transport modeling errors together. Separate assimilations of CLAES and HALOE observations were compared to validate the state estimate away from the observed locations. A wave-breaking event that took place several thousands of kilometers away from the HALOE observation locations was well captured by the Kalman filter due to highly anisotropic forecast error correlations. The forecast error correlation in the assimilation of the CLAES observations was found to have a structure similar to that in pure forecast mode except for smaller length scales. Finally, we have conducted an analysis of the variance and correlation dynamics to determine their relative importance in chemical tracer assimilation problems. Results show that the optimality of a tracer assimilation system depends, for the most part, on having flow-dependent error correlation rather than on evolving the error variance.
Optimization of data analysis for the in vivo neutron activation analysis of aluminum in bone.
Mohseni, H K; Matysiak, W; Chettle, D R; Byun, S H; Priest, N; Atanackovic, J; Prestwich, W V
2016-10-01
An existing system at McMaster University has been used for the in vivo measurement of aluminum in human bone. Precise and detailed analysis approaches are necessary to determine the aluminum concentration because of the low levels of aluminum found in the bone and the challenges associated with its detection. Phantoms resembling the composition of the human hand with varying concentrations of aluminum were made for testing the system prior to the application to human studies. A spectral decomposition model and a photopeak fitting model involving the inverse-variance weighted mean and a time-dependent analysis were explored to analyze the results and determine the model with the best performance and lowest minimum detection limit. The results showed that the spectral decomposition and the photopeak fitting model with the inverse-variance weighted mean both provided better results compared to the other methods tested. The spectral decomposition method resulted in a marginally lower detection limit (5μg Al/g Ca) compared to the inverse-variance weighted mean (5.2μg Al/g Ca), rendering both equally applicable to human measurements. Copyright © 2016 Elsevier Ltd. All rights reserved.
Uncertainty in Population Estimates for Endangered Animals and Improving the Recovery Process.
Haines, Aaron M; Zak, Matthew; Hammond, Katie; Scott, J Michael; Goble, Dale D; Rachlow, Janet L
2013-08-13
United States recovery plans contain biological information for a species listed under the Endangered Species Act and specify recovery criteria to provide basis for species recovery. The objective of our study was to evaluate whether recovery plans provide uncertainty (e.g., variance) with estimates of population size. We reviewed all finalized recovery plans for listed terrestrial vertebrate species to record the following data: (1) if a current population size was given, (2) if a measure of uncertainty or variance was associated with current estimates of population size and (3) if population size was stipulated for recovery. We found that 59% of completed recovery plans specified a current population size, 14.5% specified a variance for the current population size estimate and 43% specified population size as a recovery criterion. More recent recovery plans reported more estimates of current population size, uncertainty and population size as a recovery criterion. Also, bird and mammal recovery plans reported more estimates of population size and uncertainty compared to reptiles and amphibians. We suggest the use of calculating minimum detectable differences to improve confidence when delisting endangered animals and we identified incentives for individuals to get involved in recovery planning to improve access to quantitative data.
Lekking without a paradox in the buff-breasted sandpiper
Lanctot, Richard B.; Scribner, Kim T.; Kempenaers, Bart; Weatherhead, Patrick J.
1997-01-01
Females in lek‐breeding species appear to copulate with a small subset of the available males. Such strong directional selection is predicted to decrease additive genetic variance in the preferred male traits, yet females continue to mate selectively, thus generating the lek paradox. In a study of buff‐breasted sandpipers (Tryngites subruficollis), we combine detailed behavioral observations with paternity analyses using single‐locus minisatellite DNA probes to provide the first evidence from a lek‐breeding species that the variance in male reproductive success is much lower than expected. In 17 and 30 broods sampled in two consecutive years, a minimum of 20 and 39 males, respectively, sired offspring. This low variance in male reproductive success resulted from effective use of alternative reproductive tactics by males, females mating with solitary males off leks, and multiple mating by females. Thus, the results of this study suggests that sexual selection through female choice is weak in buff‐breasted sandpipers. The behavior of other lek‐breeding birds is sufficiently similar to that of buff‐breasted sandpipers that paternity studies of those species should be conducted to determine whether leks generally are less paradoxical than they appear.
Kriging analysis of mean annual precipitation, Powder River Basin, Montana and Wyoming
Karlinger, M.R.; Skrivan, James A.
1981-01-01
Kriging is a statistical estimation technique for regionalized variables which exhibit an autocorrelation structure. Such structure can be described by a semi-variogram of the observed data. The kriging estimate at any point is a weighted average of the data, where the weights are determined using the semi-variogram and an assumed drift, or lack of drift, in the data. Block, or areal, estimates can also be calculated. The kriging algorithm, based on unbiased and minimum-variance estimates, involves a linear system of equations to calculate the weights. Kriging variances can then be used to give confidence intervals of the resulting estimates. Mean annual precipitation in the Powder River basin, Montana and Wyoming, is an important variable when considering restoration of coal-strip-mining lands of the region. Two kriging analyses involving data at 60 stations were made--one assuming no drift in precipitation, and one a partial quadratic drift simulating orographic effects. Contour maps of estimates of mean annual precipitation were similar for both analyses, as were the corresponding contours of kriging variances. Block estimates of mean annual precipitation were made for two subbasins. Runoff estimates were 1-2 percent of the kriged block estimates. (USGS)
NASA Technical Reports Server (NTRS)
Murphy, M. R.; Awe, C. A.
1986-01-01
Six professionally active, retired captains rated the coordination and decisionmaking performances of sixteen aircrews while viewing videotapes of a simulated commercial air transport operation. The scenario featured a required diversion and a probable minimum fuel situation. Seven point Likert-type scales were used in rating variables on the basis of a model of crew coordination and decisionmaking. The variables were based on concepts of, for example, decision difficulty, efficiency, and outcome quality; and leader-subordin ate concepts such as person and task-oriented leader behavior, and competency motivation of subordinate crewmembers. Five-front-end variables of the model were in turn dependent variables for a hierarchical regression procedure. The variance in safety performance was explained 46%, by decision efficiency, command reversal, and decision quality. The variance of decision quality, an alternative substantive dependent variable to safety performance, was explained 60% by decision efficiency and the captain's quality of within-crew communications. The variance of decision efficiency, crew coordination, and command reversal were in turn explained 78%, 80%, and 60% by small numbers of preceding independent variables. A principle component, varimax factor analysis supported the model structure suggested by regression analyses.
Conditioning and Robustness of RNA Boltzmann Sampling under Thermodynamic Parameter Perturbations.
Rogers, Emily; Murrugarra, David; Heitsch, Christine
2017-07-25
Understanding how RNA secondary structure prediction methods depend on the underlying nearest-neighbor thermodynamic model remains a fundamental challenge in the field. Minimum free energy (MFE) predictions are known to be "ill conditioned" in that small changes to the thermodynamic model can result in significantly different optimal structures. Hence, the best practice is now to sample from the Boltzmann distribution, which generates a set of suboptimal structures. Although the structural signal of this Boltzmann sample is known to be robust to stochastic noise, the conditioning and robustness under thermodynamic perturbations have yet to be addressed. We present here a mathematically rigorous model for conditioning inspired by numerical analysis, and also a biologically inspired definition for robustness under thermodynamic perturbation. We demonstrate the strong correlation between conditioning and robustness and use its tight relationship to define quantitative thresholds for well versus ill conditioning. These resulting thresholds demonstrate that the majority of the sequences are at least sample robust, which verifies the assumption of sampling's improved conditioning over the MFE prediction. Furthermore, because we find no correlation between conditioning and MFE accuracy, the presence of both well- and ill-conditioned sequences indicates the continued need for both thermodynamic model refinements and alternate RNA structure prediction methods beyond the physics-based ones. Copyright © 2017. Published by Elsevier Inc.
Robust on-off pulse control of flexible space vehicles
NASA Technical Reports Server (NTRS)
Wie, Bong; Sinha, Ravi
1993-01-01
The on-off reaction jet control system is often used for attitude and orbital maneuvering of various spacecraft. Future space vehicles such as the orbital transfer vehicles, orbital maneuvering vehicles, and space station will extensively use reaction jets for orbital maneuvering and attitude stabilization. The proposed robust fuel- and time-optimal control algorithm is used for a three-mass spacing model of flexible spacecraft. A fuel-efficient on-off control logic is developed for robust rest-to-rest maneuver of a flexible vehicle with minimum excitation of structural modes. The first part of this report is concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated and solved. The second part of this report deals with obtaining parameter insensitive fuel- and time- optimal control inputs by solving a constrained optimization problem subject to robustness constraints. It is shown that sensitivity to modeling errors can be significantly reduced by the proposed, robustified open-loop control approach. The final part of this report deals with sliding mode control design for uncertain flexible structures. The benchmark problem of a flexible structure is used as an example for the feedback sliding mode controller design with bounded control inputs and robustness to parameter variations is investigated.
NASA Astrophysics Data System (ADS)
Whitney, Heather M.; Drukker, Karen; Edwards, Alexandra; Papaioannou, John; Giger, Maryellen L.
2018-02-01
Radiomics features extracted from breast lesion images have shown potential in diagnosis and prognosis of breast cancer. As clinical institutions transition from 1.5 T to 3.0 T magnetic resonance imaging (MRI), it is helpful to identify robust features across these field strengths. In this study, dynamic contrast-enhanced MR images were acquired retrospectively under IRB/HIPAA compliance, yielding 738 cases: 241 and 124 benign lesions imaged at 1.5 T and 3.0 T and 231 and 142 luminal A cancers imaged at 1.5 T and 3.0 T, respectively. Lesions were segmented using a fuzzy C-means method. Extracted radiomic values for each group of lesions by cancer status and field strength of acquisition were compared using a Kolmogorov-Smirnov test for the null hypothesis that two groups being compared came from the same distribution, with p-values being corrected for multiple comparisons by the Holm-Bonferroni method. Two shape features, one texture feature, and three enhancement variance kinetics features were found to be potentially robust. All potentially robust features had areas under the receiver operating characteristic curve (AUC) statistically greater than 0.5 in the task of distinguishing between lesion types (range of means 0.57-0.78). The significant difference in voxel size between field strength of acquisition limits the ability to affirm more features as robust or not robust according to field strength alone, and inhomogeneities in static field strength and radiofrequency field could also have affected the assessment of kinetic curve features as robust or not. Vendor-specific image scaling could have also been a factor. These findings will contribute to the development of radiomic signatures that use features identified as robust across field strength.
The impact of the UK National Minimum Wage on mental health.
Kronenberg, Christoph; Jacobs, Rowena; Zucchelli, Eugenio
2017-12-01
Despite an emerging literature, there is still sparse and mixed evidence on the wider societal benefits of Minimum Wage policies, including their effects on mental health. Furthermore, causal evidence on the relationship between earnings and mental health is limited. We focus on low-wage earners, who are at higher risk of psychological distress, and exploit the quasi-experiment provided by the introduction of the UK National Minimum Wage (NMW) to identify the causal impact of wage increases on mental health. We employ difference-in-differences models and find that the introduction of the UK NMW had no effect on mental health. Our estimates do not appear to support earlier findings which indicate that minimum wages affect mental health of low-wage earners. A series of robustness checks accounting for measurement error, as well as treatment and control group composition, confirm our main results. Overall, our findings suggest that policies aimed at improving the mental health of low-wage earners should either consider the non-wage characteristics of employment or potentially larger wage increases.
Robust optimisation-based microgrid scheduling with islanding constraints
Liu, Guodong; Starke, Michael; Xiao, Bailu; ...
2017-02-17
This paper proposes a robust optimization based optimal scheduling model for microgrid operation considering constraints of islanding capability. Our objective is to minimize the total operation cost, including generation cost and spinning reserve cost of local resources as well as purchasing cost of energy from the main grid. In order to ensure the resiliency of a microgrid and improve the reliability of the local electricity supply, the microgrid is required to maintain enough spinning reserve (both up and down) to meet local demand and accommodate local renewable generation when the supply of power from the main grid is interrupted suddenly,more » i.e., microgrid transitions from grid-connected into islanded mode. Prevailing operational uncertainties in renewable energy resources and load are considered and captured using a robust optimization method. With proper robust level, the solution of the proposed scheduling model ensures successful islanding of the microgrid with minimum load curtailment and guarantees robustness against all possible realizations of the modeled operational uncertainties. Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator and a battery demonstrate the effectiveness of the proposed scheduling model.« less
On the Design of Attitude-Heading Reference Systems Using the Allan Variance.
Hidalgo-Carrió, Javier; Arnold, Sascha; Poulakis, Pantelis
2016-04-01
The Allan variance is a method to characterize stochastic random processes. The technique was originally developed to characterize the stability of atomic clocks and has also been successfully applied to the characterization of inertial sensors. Inertial navigation systems (INS) can provide accurate results in a short time, which tend to rapidly degrade in longer time intervals. During the last decade, the performance of inertial sensors has significantly improved, particularly in terms of signal stability, mechanical robustness, and power consumption. The mass and volume of inertial sensors have also been significantly reduced, offering system-level design and accommodation advantages. This paper presents a complete methodology for the characterization and modeling of inertial sensors using the Allan variance, with direct application to navigation systems. Although the concept of sensor fusion is relatively straightforward, accurate characterization and sensor-information filtering is not a trivial task, yet they are essential for good performance. A complete and reproducible methodology utilizing the Allan variance, including all the intermediate steps, is described. An end-to-end (E2E) process for sensor-error characterization and modeling up to the final integration in the sensor-fusion scheme is explained in detail. The strength of this approach is demonstrated with representative tests on novel, high-grade inertial sensors. Experimental navigation results are presented from two distinct robotic applications: a planetary exploration rover prototype and an autonomous underwater vehicle (AUV).
Chalmers, Jenny; Carragher, Natacha; Davoren, Sondra; O'Brien, Paula
2013-11-01
A burgeoning body of empirical evidence demonstrates that increases in the price of alcohol can reduce per capita alcohol consumption and harmful drinking. Taxes on alcohol can be raised to increase prices, but this strategy can be undermined if the industry absorbs the tax increase and cross-subsidises the price of one alcoholic beverage with other products. Such loss-leading strategies are not possible with minimum pricing. We argue that a minimum (or floor) price for alcohol should be used as a complement to alcohol taxation. Several jurisdictions have already introduced minimum pricing (e.g., Canada, Ukraine) and others are currently investigating pathways to introduce a floor price (e.g., Scotland). Tasked by the Australian government to examine the public interest case for a minimum price, Australia's peak preventative health agency recommended against setting one at the present time. The agency was concerned that there was insufficient Australian specific modelling evidence to make robust estimates of the net benefits. Nonetheless, its initial judgement was that it would be difficult for a minimum price to produce benefits for Australia at the national level. Whilst modelling evidence is certainly warranted to support the introduction of the policy, the development and uptake of policy is influenced by more than just empirical evidence. This article considers three potential impediments to minimum pricing: public opinion and misunderstandings or misgivings about the operation of a minimum price; the strength of alcohol industry objections and measures to undercut the minimum price through discounts and promotions; and legal obstacles including competition and trade law. The analysis of these factors is situated in an Australian context, but has salience internationally. Copyright © 2013 Elsevier B.V. All rights reserved.
Correlation techniques to determine model form in robust nonlinear system realization/identification
NASA Technical Reports Server (NTRS)
Stry, Greselda I.; Mook, D. Joseph
1991-01-01
The fundamental challenge in identification of nonlinear dynamic systems is determining the appropriate form of the model. A robust technique is presented which essentially eliminates this problem for many applications. The technique is based on the Minimum Model Error (MME) optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature is the ability to identify nonlinear dynamic systems without prior assumption regarding the form of the nonlinearities, in contrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. Model form is determined via statistical correlation of the MME optimal state estimates with the MME optimal model error estimates. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.
NASA Technical Reports Server (NTRS)
Nissim, E.
1989-01-01
The aerodynamic energy method is used in this paper to synthesize control laws for NASA's Drone for Aerodynamic and Structural Testing-Aerodynamic Research Wing 1 (DAST-ARW1) mathematical model. The performance of these control laws in terms of closed-loop flutter dynamic pressure, control surface activity, and robustness is compared against other control laws that appear in the literature and relate to the same model. A control law synthesis technique that makes use of the return difference singular values is developed in this paper. it is based on the aerodynamic energy approach and is shown to yield results superior to those given in the literature and based on optimal control theory. Nyquist plots are presented together with a short discussion regarding the relative merits of the minimum singular value as a measure of robustness, compared with the more traditional measure of robustness involving phase and gain margins.
Robust, Adaptive Radar Detection and Estimation
2015-07-21
cost function is not a convex function in R, we apply a transformation variables i.e., let X = σ2R−1 and S′ = 1 σ2 S. Then, the revised cost function in...1 viv H i . We apply this inverse covariance matrix in computing the SINR as well as estimator variance. • Rank Constrained Maximum Likelihood: Our...even as almost all available training samples are corrupted. Probability of Detection vs. SNR We apply three test statistics, the normalized matched
Taguchi Method Applied in Optimization of Shipley SJR 5740 Positive Resist Deposition
NASA Technical Reports Server (NTRS)
Hui, A.; Blosiu, J. O.; Wiberg, D. V.
1998-01-01
Taguchi Methods of Robust Design presents a way to optimize output process performance through an organized set of experiments by using orthogonal arrays. Analysis of variance and signal-to-noise ratio is used to evaluate the contribution of each of the process controllable parameters in the realization of the process optimization. In the photoresist deposition process, there are numerous controllable parameters that can affect the surface quality and thickness of the final photoresist layer.
Derkach, Andriy; Chiang, Theodore; Gong, Jiafen; Addis, Laura; Dobbins, Sara; Tomlinson, Ian; Houlston, Richard; Pal, Deb K.; Strug, Lisa J.
2014-01-01
Motivation: Sufficiently powered case–control studies with next-generation sequence (NGS) data remain prohibitively expensive for many investigators. If feasible, a more efficient strategy would be to include publicly available sequenced controls. However, these studies can be confounded by differences in sequencing platform; alignment, single nucleotide polymorphism and variant calling algorithms; read depth; and selection thresholds. Assuming one can match cases and controls on the basis of ethnicity and other potential confounding factors, and one has access to the aligned reads in both groups, we investigate the effect of systematic differences in read depth and selection threshold when comparing allele frequencies between cases and controls. We propose a novel likelihood-based method, the robust variance score (RVS), that substitutes genotype calls by their expected values given observed sequence data. Results: We show theoretically that the RVS eliminates read depth bias in the estimation of minor allele frequency. We also demonstrate that, using simulated and real NGS data, the RVS method controls Type I error and has comparable power to the ‘gold standard’ analysis with the true underlying genotypes for both common and rare variants. Availability and implementation: An RVS R script and instructions can be found at strug.research.sickkids.ca, and at https://github.com/strug-lab/RVS. Contact: lisa.strug@utoronto.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24733292
NASA Astrophysics Data System (ADS)
Gharibnezhad, Fahit; Mujica, Luis E.; Rodellar, José
2015-01-01
Using Principal Component Analysis (PCA) for Structural Health Monitoring (SHM) has received considerable attention over the past few years. PCA has been used not only as a direct method to identify, classify and localize damages but also as a significant primary step for other methods. Despite several positive specifications that PCA conveys, it is very sensitive to outliers. Outliers are anomalous observations that can affect the variance and the covariance as vital parts of PCA method. Therefore, the results based on PCA in the presence of outliers are not fully satisfactory. As a main contribution, this work suggests the use of robust variant of PCA not sensitive to outliers, as an effective way to deal with this problem in SHM field. In addition, the robust PCA is compared with the classical PCA in the sense of detecting probable damages. The comparison between the results shows that robust PCA can distinguish the damages much better than using classical one, and even in many cases allows the detection where classic PCA is not able to discern between damaged and non-damaged structures. Moreover, different types of robust PCA are compared with each other as well as with classical counterpart in the term of damage detection. All the results are obtained through experiments with an aircraft turbine blade using piezoelectric transducers as sensors and actuators and adding simulated damages.
3D facial landmarks: Inter-operator variability of manual annotation
2014-01-01
Background Manual annotation of landmarks is a known source of variance, which exist in all fields of medical imaging, influencing the accuracy and interpretation of the results. However, the variability of human facial landmarks is only sparsely addressed in the current literature as opposed to e.g. the research fields of orthodontics and cephalometrics. We present a full facial 3D annotation procedure and a sparse set of manually annotated landmarks, in effort to reduce operator time and minimize the variance. Method Facial scans from 36 voluntary unrelated blood donors from the Danish Blood Donor Study was randomly chosen. Six operators twice manually annotated 73 anatomical and pseudo-landmarks, using a three-step scheme producing a dense point correspondence map. We analyzed both the intra- and inter-operator variability, using mixed-model ANOVA. We then compared four sparse sets of landmarks in order to construct a dense correspondence map of the 3D scans with a minimum point variance. Results The anatomical landmarks of the eye were associated with the lowest variance, particularly the center of the pupils. Whereas points of the jaw and eyebrows have the highest variation. We see marginal variability in regards to intra-operator and portraits. Using a sparse set of landmarks (n=14), that capture the whole face, the dense point mean variance was reduced from 1.92 to 0.54 mm. Conclusion The inter-operator variability was primarily associated with particular landmarks, where more leniently landmarks had the highest variability. The variables embedded in the portray and the reliability of a trained operator did only have marginal influence on the variability. Further, using 14 of the annotated landmarks we were able to reduced the variability and create a dense correspondences mesh to capture all facial features. PMID:25306436
Cruz-Ramírez, Nicandro; Acosta-Mesa, Héctor Gabriel; Mezura-Montes, Efrén; Guerra-Hernández, Alejandro; Hoyos-Rivera, Guillermo de Jesús; Barrientos-Martínez, Rocío Erandi; Gutiérrez-Fragoso, Karina; Nava-Fernández, Luis Alonso; González-Gaspar, Patricia; Novoa-del-Toro, Elva María; Aguilera-Rueda, Vicente Josué; Ameca-Alducin, María Yaneli
2014-01-01
The bias-variance dilemma is a well-known and important problem in Machine Learning. It basically relates the generalization capability (goodness of fit) of a learning method to its corresponding complexity. When we have enough data at hand, it is possible to use these data in such a way so as to minimize overfitting (the risk of selecting a complex model that generalizes poorly). Unfortunately, there are many situations where we simply do not have this required amount of data. Thus, we need to find methods capable of efficiently exploiting the available data while avoiding overfitting. Different metrics have been proposed to achieve this goal: the Minimum Description Length principle (MDL), Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC), among others. In this paper, we focus on crude MDL and empirically evaluate its performance in selecting models with a good balance between goodness of fit and complexity: the so-called bias-variance dilemma, decomposition or tradeoff. Although the graphical interaction between these dimensions (bias and variance) is ubiquitous in the Machine Learning literature, few works present experimental evidence to recover such interaction. In our experiments, we argue that the resulting graphs allow us to gain insights that are difficult to unveil otherwise: that crude MDL naturally selects balanced models in terms of bias-variance, which not necessarily need be the gold-standard ones. We carry out these experiments using a specific model: a Bayesian network. In spite of these motivating results, we also should not overlook three other components that may significantly affect the final model selection: the search procedure, the noise rate and the sample size.
Cruz-Ramírez, Nicandro; Acosta-Mesa, Héctor Gabriel; Mezura-Montes, Efrén; Guerra-Hernández, Alejandro; Hoyos-Rivera, Guillermo de Jesús; Barrientos-Martínez, Rocío Erandi; Gutiérrez-Fragoso, Karina; Nava-Fernández, Luis Alonso; González-Gaspar, Patricia; Novoa-del-Toro, Elva María; Aguilera-Rueda, Vicente Josué; Ameca-Alducin, María Yaneli
2014-01-01
The bias-variance dilemma is a well-known and important problem in Machine Learning. It basically relates the generalization capability (goodness of fit) of a learning method to its corresponding complexity. When we have enough data at hand, it is possible to use these data in such a way so as to minimize overfitting (the risk of selecting a complex model that generalizes poorly). Unfortunately, there are many situations where we simply do not have this required amount of data. Thus, we need to find methods capable of efficiently exploiting the available data while avoiding overfitting. Different metrics have been proposed to achieve this goal: the Minimum Description Length principle (MDL), Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC), among others. In this paper, we focus on crude MDL and empirically evaluate its performance in selecting models with a good balance between goodness of fit and complexity: the so-called bias-variance dilemma, decomposition or tradeoff. Although the graphical interaction between these dimensions (bias and variance) is ubiquitous in the Machine Learning literature, few works present experimental evidence to recover such interaction. In our experiments, we argue that the resulting graphs allow us to gain insights that are difficult to unveil otherwise: that crude MDL naturally selects balanced models in terms of bias-variance, which not necessarily need be the gold-standard ones. We carry out these experiments using a specific model: a Bayesian network. In spite of these motivating results, we also should not overlook three other components that may significantly affect the final model selection: the search procedure, the noise rate and the sample size. PMID:24671204
Estimation of stable boundary-layer height using variance processing of backscatter lidar data
NASA Astrophysics Data System (ADS)
Saeed, Umar; Rocadenbosch, Francesc
2017-04-01
Stable boundary layer (SBL) is one of the most complex and less understood topics in atmospheric science. The type and height of the SBL is an important parameter for several applications such as understanding the formation of haze fog, and accuracy of chemical and pollutant dispersion models, etc. [1]. This work addresses nocturnal Stable Boundary-Layer Height (SBLH) estimation by using variance processing and attenuated backscatter lidar measurements, its principles and limitations. It is shown that temporal and spatial variance profiles of the attenuated backscatter signal are related to the stratification of aerosols in the SBL. A minimum variance SBLH estimator using local minima in the variance profiles of backscatter lidar signals is introduced. The method is validated using data from HD(CP)2 Observational Prototype Experiment (HOPE) campaign at Jülich, Germany [2], under different atmospheric conditions. This work has received funding from the European Union Seventh Framework Programme, FP7 People, ITN Marie Curie Actions Programme (2012-2016) in the frame of ITaRS project (GA 289923), H2020 programme under ACTRIS-2 project (GA 654109), the Spanish Ministry of Economy and Competitiveness - European Regional Development Funds under TEC2015-63832-P project, and from the Generalitat de Catalunya (Grup de Recerca Consolidat) 2014-SGR-583. [1] R. B. Stull, An Introduction to Boundary Layer Meteorology, chapter 12, Stable Boundary Layer, pp. 499-543, Springer, Netherlands, 1988. [2] U. Löhnert, J. H. Schween, C. Acquistapace, K. Ebell, M. Maahn, M. Barrera-Verdejo, A. Hirsikko, B. Bohn, A. Knaps, E. O'Connor, C. Simmer, A. Wahner, and S. Crewell, "JOYCE: Jülich Observatory for Cloud Evolution," Bull. Amer. Meteor. Soc., vol. 96, no. 7, pp. 1157-1174, 2015.
Measuring the Power Spectrum with Peculiar Velocities
NASA Astrophysics Data System (ADS)
Macaulay, Edward; Feldman, H. A.; Ferreira, P. G.; Jaffe, A. H.; Agarwal, S.; Hudson, M. J.; Watkins, R.
2012-01-01
The peculiar velocities of galaxies are an inherently valuable cosmological probe, providing an unbiased estimate of the distribution of matter on scales much larger than the depth of the survey. Much research interest has been motivated by the high dipole moment of our local peculiar velocity field, which suggests a large scale excess in the matter power spectrum, and can appear to be in some tension with the LCDM model. We use a composite catalogue of 4,537 peculiar velocity measurements with a characteristic depth of 33 h-1 Mpc to estimate the matter power spectrum. We compare the constraints with this method, directly studying the full peculiar velocity catalogue, to results from Macaulay et al. (2011), studying minimum variance moments of the velocity field, as calculated by Watkins, Feldman & Hudson (2009) and Feldman, Watkins & Hudson (2010). We find good agreement with the LCDM model on scales of k > 0.01 h Mpc-1. We find an excess of power on scales of k < 0.01 h Mpc-1, although with a 1 sigma uncertainty which includes the LCDM model. We find that the uncertainty in the excess at these scales is larger than an alternative result studying only moments of the velocity field, which is due to the minimum variance weights used to calculate the moments. At small scales, we are able to clearly discriminate between linear and nonlinear clustering in simulated peculiar velocity catalogues, and find some evidence (although less clear) for linear clustering in the real peculiar velocity data.
Power spectrum estimation from peculiar velocity catalogues
NASA Astrophysics Data System (ADS)
Macaulay, E.; Feldman, H. A.; Ferreira, P. G.; Jaffe, A. H.; Agarwal, S.; Hudson, M. J.; Watkins, R.
2012-09-01
The peculiar velocities of galaxies are an inherently valuable cosmological probe, providing an unbiased estimate of the distribution of matter on scales much larger than the depth of the survey. Much research interest has been motivated by the high dipole moment of our local peculiar velocity field, which suggests a large-scale excess in the matter power spectrum and can appear to be in some tension with the Λ cold dark matter (ΛCDM) model. We use a composite catalogue of 4537 peculiar velocity measurements with a characteristic depth of 33 h-1 Mpc to estimate the matter power spectrum. We compare the constraints with this method, directly studying the full peculiar velocity catalogue, to results by Macaulay et al., studying minimum variance moments of the velocity field, as calculated by Feldman, Watkins & Hudson. We find good agreement with the ΛCDM model on scales of k > 0.01 h Mpc-1. We find an excess of power on scales of k < 0.01 h Mpc-1 with a 1σ uncertainty which includes the ΛCDM model. We find that the uncertainty in excess at these scales is larger than an alternative result studying only moments of the velocity field, which is due to the minimum variance weights used to calculate the moments. At small scales, we are able to clearly discriminate between linear and non-linear clustering in simulated peculiar velocity catalogues and find some evidence (although less clear) for linear clustering in the real peculiar velocity data.
An experimental study of nonlinear dynamic system identification
NASA Technical Reports Server (NTRS)
Stry, Greselda I.; Mook, D. Joseph
1990-01-01
A technique for robust identification of nonlinear dynamic systems is developed and illustrated using both simulations and analog experiments. The technique is based on the Minimum Model Error optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature of the current work is the ability to identify nonlinear dynamic systems without prior assumptions regarding the form of the nonlinearities, in constrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.
An Efficient, Robust, and Inexpensive Grinding Device for Herbal Samples like Cinchona Bark.
Hansen, Steen Honoré; Holmfred, Else; Cornett, Claus; Maldonado, Carla; Rønsted, Nina
2015-01-01
An effective, robust, and inexpensive grinding device for the grinding of herb samples like bark and roots was developed by rebuilding a commercially available coffee grinder. The grinder was constructed to be able to provide various particle sizes, to be easy to clean, and to have a minimum of dead volume. The recovery of the sample when grinding as little as 50 mg of crude Cinchona bark was about 60%. Grinding is performed in seconds with no rise in temperature, and the grinder is easily disassembled to be cleaned. The influence of the particle size of the obtained powders on the recovery of analytes in extracts of Cinchona bark was investigated using HPLC.
Interval Analysis Approach to Prototype the Robust Control of the Laboratory Overhead Crane
NASA Astrophysics Data System (ADS)
Smoczek, J.; Szpytko, J.; Hyla, P.
2014-07-01
The paper describes the software-hardware equipment and control-measurement solutions elaborated to prototype the laboratory scaled overhead crane control system. The novelty approach to crane dynamic system modelling and fuzzy robust control scheme design is presented. The iterative procedure for designing a fuzzy scheduling control scheme is developed based on the interval analysis of discrete-time closed-loop system characteristic polynomial coefficients in the presence of rope length and mass of a payload variation to select the minimum set of operating points corresponding to the midpoints of membership functions at which the linear controllers are determined through desired poles assignment. The experimental results obtained on the laboratory stand are presented.
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.
1995-01-01
The potential for a revolutionary step in the durability of reusable rocket engines is made possible by the combination of several emerging technologies. The recent creation and analytical demonstration of life extending (or damage mitigating) control technology enables rapid rocket engine transients with minimum fatigue and creep damage. This technology has been further enhanced by the formulation of very simple but conservative continuum damage models. These new ideas when combined with recent advances in multidisciplinary optimization provide the potential for a large (revolutionary) step in reusable rocket engine durability. This concept has been named the robust rocket engine concept (RREC) and is the basic contribution of this paper. The concept also includes consideration of design innovations to minimize critical point damage.
Wu, Wenzheng; Ye, Wenli; Wu, Zichao; Geng, Peng; Wang, Yulei; Zhao, Ji
2017-01-01
The success of the 3D-printing process depends upon the proper selection of process parameters. However, the majority of current related studies focus on the influence of process parameters on the mechanical properties of the parts. The influence of process parameters on the shape-memory effect has been little studied. This study used the orthogonal experimental design method to evaluate the influence of the layer thickness H, raster angle θ, deformation temperature Td and recovery temperature Tr on the shape-recovery ratio Rr and maximum shape-recovery rate Vm of 3D-printed polylactic acid (PLA). The order and contribution of every experimental factor on the target index were determined by range analysis and ANOVA, respectively. The experimental results indicated that the recovery temperature exerted the greatest effect with a variance ratio of 416.10, whereas the layer thickness exerted the smallest effect on the shape-recovery ratio with a variance ratio of 4.902. The recovery temperature exerted the most significant effect on the maximum shape-recovery rate with the highest variance ratio of 1049.50, whereas the raster angle exerted the minimum effect with a variance ratio of 27.163. The results showed that the shape-memory effect of 3D-printed PLA parts depended strongly on recovery temperature, and depended more weakly on the deformation temperature and 3D-printing parameters. PMID:28825617
Genetic parameters of legendre polynomials for first parity lactation curves.
Pool, M H; Janss, L L; Meuwissen, T H
2000-11-01
Variance components of the covariance function coefficients in a random regression test-day model were estimated by Legendre polynomials up to a fifth order for first-parity records of Dutch dairy cows using Gibbs sampling. Two Legendre polynomials of equal order were used to model the random part of the lactation curve, one for the genetic component and one for permanent environment. Test-day records from cows registered between 1990 to 1996 and collected by regular milk recording were available. For the data set, 23,700 complete lactations were selected from 475 herds sired by 262 sires. Because the application of a random regression model is limited by computing capacity, we investigated the minimum order needed to fit the variance structure in the data sufficiently. Predictions of genetic and permanent environmental variance structures were compared with bivariate estimates on 30-d intervals. A third-order or higher polynomial modeled the shape of variance curves over DIM with sufficient accuracy for the genetic and permanent environment part. Also, the genetic correlation structure was fitted with sufficient accuracy by a third-order polynomial, but, for the permanent environmental component, a fourth order was needed. Because equal orders are suggested in the literature, a fourth-order Legendre polynomial is recommended in this study. However, a rank of three for the genetic covariance matrix and of four for permanent environment allows a simpler covariance function with a reduced number of parameters based on the eigenvalues and eigenvectors.
UNCOVERING THE INTRINSIC VARIABILITY OF GAMMA-RAY BURSTS
NASA Astrophysics Data System (ADS)
Golkhou, V. Zach; Butler, Nathaniel R
2014-08-01
We develop a robust technique to determine the minimum variability timescale for gamma-ray burst (GRB) light curves, utilizing Haar wavelets. Our approach averages over the data for a given GRB, providing an aggregate measure of signal variation while also retaining sensitivity to narrow pulses within complicated time series. In contrast to previous studies using wavelets, which simply define the minimum timescale in reference to the measurement noise floor, our approach identifies the signature of temporally smooth features in the wavelet scaleogram and then additionally identifies a break in the scaleogram on longer timescales as a signature of a true, temporally unsmooth light curve feature or features. We apply our technique to the large sample of Swift GRB gamma-ray light curves and for the first time—due to the presence of a large number of GRBs with measured redshift—determine the distribution of minimum variability timescales in the source frame. We find a median minimum timescale for long-duration GRBs in the source frame of Δtmin = 0.5 s, with the shortest timescale found being on the order of 10 ms. This short timescale suggests a compact central engine (3000 km). We discuss further implications for the GRB fireball model and present a tantalizing correlation between the minimum timescale and redshift, which may in part be due to cosmological time dilation.
NASA Astrophysics Data System (ADS)
Wang, Limin; Shen, Yiteng; Yu, Jingxian; Li, Ping; Zhang, Ridong; Gao, Furong
2018-01-01
In order to cope with system disturbances in multi-phase batch processes with different dimensions, a hybrid robust control scheme of iterative learning control combined with feedback control is proposed in this paper. First, with a hybrid iterative learning control law designed by introducing the state error, the tracking error and the extended information, the multi-phase batch process is converted into a two-dimensional Fornasini-Marchesini (2D-FM) switched system with different dimensions. Second, a switching signal is designed using the average dwell-time method integrated with the related switching conditions to give sufficient conditions ensuring stable running for the system. Finally, the minimum running time of the subsystems and the control law gains are calculated by solving the linear matrix inequalities. Meanwhile, a compound 2D controller with robust performance is obtained, which includes a robust extended feedback control for ensuring the steady-state tracking error to converge rapidly. The application on an injection molding process displays the effectiveness and superiority of the proposed strategy.
Robust mislabel logistic regression without modeling mislabel probabilities.
Hung, Hung; Jou, Zhi-Yu; Huang, Su-Yun
2018-03-01
Logistic regression is among the most widely used statistical methods for linear discriminant analysis. In many applications, we only observe possibly mislabeled responses. Fitting a conventional logistic regression can then lead to biased estimation. One common resolution is to fit a mislabel logistic regression model, which takes into consideration of mislabeled responses. Another common method is to adopt a robust M-estimation by down-weighting suspected instances. In this work, we propose a new robust mislabel logistic regression based on γ-divergence. Our proposal possesses two advantageous features: (1) It does not need to model the mislabel probabilities. (2) The minimum γ-divergence estimation leads to a weighted estimating equation without the need to include any bias correction term, that is, it is automatically bias-corrected. These features make the proposed γ-logistic regression more robust in model fitting and more intuitive for model interpretation through a simple weighting scheme. Our method is also easy to implement, and two types of algorithms are included. Simulation studies and the Pima data application are presented to demonstrate the performance of γ-logistic regression. © 2017, The International Biometric Society.
Variance reduction for Fokker–Planck based particle Monte Carlo schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorji, M. Hossein, E-mail: gorjih@ifd.mavt.ethz.ch; Andric, Nemanja; Jenny, Patrick
Recently, Fokker–Planck based particle Monte Carlo schemes have been proposed and evaluated for simulations of rarefied gas flows [1–3]. In this paper, the variance reduction for particle Monte Carlo simulations based on the Fokker–Planck model is considered. First, deviational based schemes were derived and reviewed, and it is shown that these deviational methods are not appropriate for practical Fokker–Planck based rarefied gas flow simulations. This is due to the fact that the deviational schemes considered in this study lead either to instabilities in the case of two-weight methods or to large statistical errors if the direct sampling method is applied.more » Motivated by this conclusion, we developed a novel scheme based on correlated stochastic processes. The main idea here is to synthesize an additional stochastic process with a known solution, which is simultaneously solved together with the main one. By correlating the two processes, the statistical errors can dramatically be reduced; especially for low Mach numbers. To assess the methods, homogeneous relaxation, planar Couette and lid-driven cavity flows were considered. For these test cases, it could be demonstrated that variance reduction based on parallel processes is very robust and effective.« less
A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns
NASA Astrophysics Data System (ADS)
Li, Xiang; Zhang, Yang; Wong, Hau-San; Qin, Zhongfeng
2009-11-01
Portfolio selection theory with fuzzy returns has been well developed and widely applied. Within the framework of credibility theory, several fuzzy portfolio selection models have been proposed such as mean-variance model, entropy optimization model, chance constrained programming model and so on. In order to solve these nonlinear optimization models, a hybrid intelligent algorithm is designed by integrating simulated annealing algorithm, neural network and fuzzy simulation techniques, where the neural network is used to approximate the expected value and variance for fuzzy returns and the fuzzy simulation is used to generate the training data for neural network. Since these models are used to be solved by genetic algorithm, some comparisons between the hybrid intelligent algorithm and genetic algorithm are given in terms of numerical examples, which imply that the hybrid intelligent algorithm is robust and more effective. In particular, it reduces the running time significantly for large size problems.
The pyramid system for multiscale raster analysis
De Cola, L.; Montagne, N.
1993-01-01
Geographical research requires the management and analysis of spatial data at multiple scales. As part of the U.S. Geological Survey's global change research program a software system has been developed that reads raster data (such as an image or digital elevation model) and produces a pyramid of aggregated lattices as well as various measurements of spatial complexity. For a given raster dataset the system uses the pyramid to report: (1) mean, (2) variance, (3) a spatial autocorrelation parameter based on multiscale analysis of variance, and (4) a monofractal scaling parameter based on the analysis of isoline lengths. The system is applied to 1-km digital elevation model (DEM) data for a 256-km2 region of central California, as well as to 64 partitions of the region. PYRAMID, which offers robust descriptions of data complexity, also is used to describe the behavior of topographic aspect with scale. ?? 1993.
The predictive consequences of parameterization
NASA Astrophysics Data System (ADS)
White, J.; Hughes, J. D.; Doherty, J. E.
2013-12-01
In numerical groundwater modeling, parameterization is the process of selecting the aspects of a computer model that will be allowed to vary during history matching. This selection process is dependent on professional judgment and is, therefore, inherently subjective. Ideally, a robust parameterization should be commensurate with the spatial and temporal resolution of the model and should include all uncertain aspects of the model. Limited computing resources typically require reducing the number of adjustable parameters so that only a subset of the uncertain model aspects are treated as estimable parameters; the remaining aspects are treated as fixed parameters during history matching. We use linear subspace theory to develop expressions for the predictive error incurred by fixing parameters. The predictive error is comprised of two terms. The first term arises directly from the sensitivity of a prediction to fixed parameters. The second term arises from prediction-sensitive adjustable parameters that are forced to compensate for fixed parameters during history matching. The compensation is accompanied by inappropriate adjustment of otherwise uninformed, null-space parameter components. Unwarranted adjustment of null-space components away from prior maximum likelihood values may produce bias if a prediction is sensitive to those components. The potential for subjective parameterization choices to corrupt predictions is examined using a synthetic model. Several strategies are evaluated, including use of piecewise constant zones, use of pilot points with Tikhonov regularization and use of the Karhunen-Loeve transformation. The best choice of parameterization (as defined by minimum error variance) is strongly dependent on the types of predictions to be made by the model.
Support vector machine-based facial-expression recognition method combining shape and appearance
NASA Astrophysics Data System (ADS)
Han, Eun Jung; Kang, Byung Jun; Park, Kang Ryoung; Lee, Sangyoun
2010-11-01
Facial expression recognition can be widely used for various applications, such as emotion-based human-machine interaction, intelligent robot interfaces, face recognition robust to expression variation, etc. Previous studies have been classified as either shape- or appearance-based recognition. The shape-based method has the disadvantage that the individual variance of facial feature points exists irrespective of similar expressions, which can cause a reduction of the recognition accuracy. The appearance-based method has a limitation in that the textural information of the face is very sensitive to variations in illumination. To overcome these problems, a new facial-expression recognition method is proposed, which combines both shape and appearance information, based on the support vector machine (SVM). This research is novel in the following three ways as compared to previous works. First, the facial feature points are automatically detected by using an active appearance model. From these, the shape-based recognition is performed by using the ratios between the facial feature points based on the facial-action coding system. Second, the SVM, which is trained to recognize the same and different expression classes, is proposed to combine two matching scores obtained from the shape- and appearance-based recognitions. Finally, a single SVM is trained to discriminate four different expressions, such as neutral, a smile, anger, and a scream. By determining the expression of the input facial image whose SVM output is at a minimum, the accuracy of the expression recognition is much enhanced. The experimental results showed that the recognition accuracy of the proposed method was better than previous researches and other fusion methods.
Krüger, Stephanie; Morlock, Gertrud E
2018-02-23
Colored wheat varieties and crosses were analyzed to figure out their anthocyanin profiles, and thus, their potential as health-related food. After method development, the obtained 94 anthocyanin fingerprints allowed the clear differentiation of the blue aleurone and purple pericarp genotypes as well as their breeding lines. The method was trimmed so that the complete analysis of the whole grain flour including sample preparation of up to 20 samples on one plate took less than 3 h (<9 min per sample) and total costs including sample preparation were <1.0 Euro/sample. Sample preparation of the complex wheat matrix was reduced to a minimum (only acidified methanol extraction of the ground whole wheat grain). Separation was well achieved on amino phases with a mixture of ethyl acetate, 2-butanone, water and formic acid. It was superior to the separation on either normal or reversed phases and more robust with regard to intrinsic pH variances of the sample extracts. Pattern recognition of anthocyanins was simply performed by visual detection (the image), a key feature of high-performance thin-layer chromatography. Wheat varieties and crosses with higher anthocyanin contents were easily selectable, and thus, successfully made out. Prominent anthocyanin zones were characterized by electrospray ionization mass spectrometry. Their sugar moiety was characterized via methanolysis and compared with the sugars available freely in the whole wheat grain. The developed profiling is a fast and efficient screening tool with option for quantification or identification on the same HPTLC plate. Copyright © 2018 Elsevier B.V. All rights reserved.
Robust Algorithms for Detecting a Change in a Stochastic Process with Infinite Memory
1988-03-01
breakdown point and the additional assumption of 0-mixing on the nominal meas- influence function . The structure of the optimal algorithm ures. Then Huber’s...are i.i.d. sequences of Gaus- For the breakdown point and the influence function sian random variables, with identical variance o2 . Let we will use...algebraic sign for i=0,1. Here z will be chosen such = f nthat it leads to worst case or earliest breakdown. i (14) Next, the influence function measures
1993-04-01
the use of thus seems more natural . It eliminates the parameter a symbolic manipulation program. Their robustness is 790 questionable. variance and...and learning (UMd/GMU), IU and reasoning (ISI/USC), IU and natural language (SUNY Buffalo), and IU and neural nets (new BAA; contracts to be awarded...visual navigation is defined as different natures . Among these are theoretical questions, the process of motion control based on an analysis of im
Real-time traffic sign recognition based on a general purpose GPU and deep-learning.
Lim, Kwangyong; Hong, Yongwon; Choi, Yeongwoo; Byun, Hyeran
2017-01-01
We present a General Purpose Graphics Processing Unit (GPGPU) based real-time traffic sign detection and recognition method that is robust against illumination changes. There have been many approaches to traffic sign recognition in various research fields; however, previous approaches faced several limitations when under low illumination or wide variance of light conditions. To overcome these drawbacks and improve processing speeds, we propose a method that 1) is robust against illumination changes, 2) uses GPGPU-based real-time traffic sign detection, and 3) performs region detecting and recognition using a hierarchical model. This method produces stable results in low illumination environments. Both detection and hierarchical recognition are performed in real-time, and the proposed method achieves 0.97 F1-score on our collective dataset, which uses the Vienna convention traffic rules (Germany and South Korea).
An Ensemble Approach to Understanding the ENSO Response to Climate Change
NASA Astrophysics Data System (ADS)
Stevenson, S.; Capotondi, A.; Fasullo, J.; Otto-Bliesner, B. L.
2017-12-01
The dynamics of the El Nino/Southern Oscillation (ENSO) are known to be sensitive to changes in background climate conditions, as well as atmosphere/ocean feedbacks. However, the degree to which shifts in ENSO characteristics can be robustly attributed to external climate forcings remains unknown. Efforts to assess these changes in a multi-model framework are subject to uncertainties due to both differing model physics and internal ENSO variability. New community ensembles created at the National Center for Atmospheric Research and the NOAA Geophysical Fluid Dynamics Laboratory are ideally suited to addressing this problem, providing many realizations of the climate of the 850-2100 period with a combination of both natural and anthropogenic climate forcing factors. Here we analyze the impacts of external forcing on El Nino and La Nina evolution using four sets of simulations: the CESM Last Millennium Ensemble (CESM-LME), which covers the 850-2005 period and provides long-term context for forced responses; the Large Ensemble (CESM-LE), which includes 20th century and 21st century (RCP8.5) projections; the Medium Ensemble (CESM-ME), which is composed of 21st century RCP4.5 projections; and a large ensemble with the GFDL ESM2M, which includes 20th century and RCP8.5 projections. In the CESM, ENSO variance increases slightly over the 20th century in all ensembles, with the effects becoming much larger during the 21st. The slower increase in variance over the 20th century is shown to arise from compensating influences from greenhouse gas (GHG) and anthropogenic aerosol emissions, which give way to GHG-dominated effects by 2100. However, the 21st century variance increase is not robust: CESM and the ESM2M differ drastically in their ENSO projections. The mechanisms for these inter-model differences are discussed, as are the implications for the design of future multi-model ENSO projection experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Y; Bues, M; Schild, S
Purpose: We propose to apply a robust optimization model based on fuzzy-logic constraints in the intensity-modulated proton therapy (IMPT) planning subject to range and patient setup uncertainties. The purpose is to ensure the plan robustness under uncertainty and obtain the best trade-off between tumor dose coverage and organ-at-risk(OAR) sparing. Methods: Two IMPT plans were generated for 3 head-and-neck cancer patients: one used the planning target volume(PTV) method; the other used the fuzzy robust optimization method. In the latter method, nine dose distributions were computed - the nominal one and one each for ±3mm setup uncertainties along three cardinal axes andmore » for ±3.5% range uncertainty. For tumors, these nine dose distributions were explicitly controlled by adding hard constraints with adjustable parameters. For OARs, fuzzy constraints that allow the dose to vary within a certain range were used so that the tumor dose distribution was guaranteed by minimum compromise of that of OARs. We rendered this model tractable by converting the fuzzy constraints to linear constraints. The plan quality was evaluated using dose-volume histogram(DVH) indices such as tumor dose coverage(D95%), homogeneity(D5%-D95%), plan robustness(DVH band at D95%), and OAR sparing like D1% of brain and D1% of brainstem. Results: Our model could yield clinically acceptable plans. The fuzzy-logic robust optimization method produced IMPT plans with comparable target dose coverage and homogeneity compared to the PTV method(unit: Gy[RBE]; average[min, max])(CTV D95%: 59 [52.7, 63.5] vs 53.5[46.4, 60.1], CTV D5% - D95%: 11.1[5.3, 18.6] vs 14.4[9.2, 21.5]). It also generated more robust plans(CTV DVH band at D95%: 3.8[1.2, 5.6] vs 11.5[6.2, 16.7]). The parameters of tumor constraints could be adjusted to control the tradeoff between tumor coverage and OAR sparing. Conclusion: The fuzzy-logic robust optimization generates superior IMPT with minimum compromise of OAR sparing. This research was supported by the National Cancer Institute Career Developmental Award K25CA168984, by the Fraternal Order of Eagles Cancer Research Fund Career Development Award, by The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research, by Mayo Arizona State University Seed Grant, and by The Kemper Marley Foundation. eRA Person ID(s) for the Principal Investigator: 11017970 (Research Supported by National Institutes of Health)« less
Zhou, Jinghao; Yan, Zhennan; Lasio, Giovanni; Huang, Junzhou; Zhang, Baoshe; Sharma, Navesh; Prado, Karl; D'Souza, Warren
2015-12-01
To resolve challenges in image segmentation in oncologic patients with severely compromised lung, we propose an automated right lung segmentation framework that uses a robust, atlas-based active volume model with a sparse shape composition prior. The robust atlas is achieved by combining the atlas with the output of sparse shape composition. Thoracic computed tomography images (n=38) from patients with lung tumors were collected. The right lung in each scan was manually segmented to build a reference training dataset against which the performance of the automated segmentation method was assessed. The quantitative results of this proposed segmentation method with sparse shape composition achieved mean Dice similarity coefficient (DSC) of (0.72, 0.81) with 95% CI, mean accuracy (ACC) of (0.97, 0.98) with 95% CI, and mean relative error (RE) of (0.46, 0.74) with 95% CI. Both qualitative and quantitative comparisons suggest that this proposed method can achieve better segmentation accuracy with less variance than other atlas-based segmentation methods in the compromised lung segmentation. Published by Elsevier Ltd.
Robustness of observation-based decadal sea level variability in the Indo-Pacific Ocean
NASA Astrophysics Data System (ADS)
Nidheesh, A. G.; Lengaigne, M.; Vialard, J.; Izumo, T.; Unnikrishnan, A. S.; Meyssignac, B.; Hamlington, B.; de Boyer Montegut, C.
2017-07-01
We examine the consistency of Indo-Pacific decadal sea level variability in 10 gridded, observation-based sea level products for the 1960-2010 period. Decadal sea level variations are robust in the Pacific, with more than 50% of variance explained by decadal modulation of two flavors of El Niño-Southern Oscillation (classical ENSO and Modoki). Amplitude of decadal sea level variability is weaker in the Indian Ocean than in the Pacific. All data sets indicate a transmission of decadal sea level signals from the western Pacific to the northwest Australian coast through the Indonesian throughflow. The southern tropical Indian Ocean sea level variability is associated with decadal modulations of ENSO in reconstructions but not in reanalyses or in situ data set. The Pacific-independent Indian Ocean decadal sea level variability is not robust but tends to be maximum in the southwestern tropical Indian Ocean. The inconsistency of Indian Ocean decadal variability across the sea level products calls for caution in making definitive conclusions on decadal sea level variability in this basin.
de Abreu E Lima, Francisco; Westhues, Matthias; Cuadros-Inostroza, Álvaro; Willmitzer, Lothar; Melchinger, Albrecht E; Nikoloski, Zoran
2017-04-01
Heterosis has been extensively exploited for yield gain in maize (Zea mays L.). Here we conducted a comparative metabolomics-based analysis of young roots from in vitro germinating seedlings and from leaves of field-grown plants in a panel of inbred lines from the Dent and Flint heterotic patterns as well as selected F 1 hybrids. We found that metabolite levels in hybrids were more robust than in inbred lines. Using state-of-the-art modeling techniques, the most robust metabolites from roots and leaves explained up to 37 and 44% of the variance in the biomass from plants grown in two distinct field trials. In addition, a correlation-based analysis highlighted the trade-off between defense-related metabolites and hybrid performance. Therefore, our findings demonstrated the potential of metabolic profiles from young maize roots grown under tightly controlled conditions to predict hybrid performance in multiple field trials, thus bridging the greenhouse-field gap. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Robustness of speckle imaging techniques applied to horizontal imaging scenarios
NASA Astrophysics Data System (ADS)
Bos, Jeremy P.
Atmospheric turbulence near the ground severely limits the quality of imagery acquired over long horizontal paths. In defense, surveillance, and border security applications, there is interest in deploying man-portable, embedded systems incorporating image reconstruction to improve the quality of imagery available to operators. To be effective, these systems must operate over significant variations in turbulence conditions while also subject to other variations due to operation by novice users. Systems that meet these requirements and are otherwise designed to be immune to the factors that cause variation in performance are considered robust. In addition to robustness in design, the portable nature of these systems implies a preference for systems with a minimum level of computational complexity. Speckle imaging methods are one of a variety of methods recently been proposed for use in man-portable horizontal imagers. In this work, the robustness of speckle imaging methods is established by identifying a subset of design parameters that provide immunity to the expected variations in operating conditions while minimizing the computation time necessary for image recovery. This performance evaluation is made possible using a novel technique for simulating anisoplanatic image formation. I find that incorporate as few as 15 image frames and 4 estimates of the object phase per reconstructed frame provide an average reduction of 45% reduction in Mean Squared Error (MSE) and 68% reduction in deviation in MSE. In addition, the Knox-Thompson phase recovery method is demonstrated to produce images in half the time required by the bispectrum. Finally, it is shown that certain blind image quality metrics can be used in place of the MSE to evaluate reconstruction quality in field scenarios. Using blind metrics rather depending on user estimates allows for reconstruction quality that differs from the minimum MSE by as little as 1%, significantly reducing the deviation in performance due to user action.
Evolution and inheritance of early embryonic patterning in D. simulans and D. sechellia
Lott, Susan E.; Ludwig, Michael Z.; Kreitman, Martin
2010-01-01
Pattern formation in Drosophila is a widely studied example of a robust developmental system. Such robust systems pose a challenge to adaptive evolution, as they mask variation which selection may otherwise act upon. Yet we find variation in the localization of expression domains (henceforth ‘stripe allometry’) in the pattern formation pathway. Specifically, we characterize differences in the gap genes giant and Kruppel, and the pair-rule gene even-skipped, which differ between the sibling species D. simulans and D. sechellia. In a double-backcross experiment, stripe allometry is consistent with maternal inheritance of stripe positioning and multiple genetic factors, with a distinct genetic basis from embryo length. Embryos produced by F1 and F2 backcross mothers exhibit novel spatial patterns of gene expression relative to the parental species, with no measurable increase in positional variance among individuals. Buffering of novel spatial patterns in the backcross genotypes suggests that robustness need not be disrupted in order for the trait to evolve, and perhaps the system is incapable of evolving to prevent the expression of all genetic variation. This limitation, and the ability of natural selection to act on minute genetic differences that are within the “margin of error” for the buffering mechanism, indicates that developmentally buffered traits can evolve without disruption of robustness PMID:21121913
Robust parameter design for automatically controlled systems and nanostructure synthesis
NASA Astrophysics Data System (ADS)
Dasgupta, Tirthankar
2007-12-01
This research focuses on developing comprehensive frameworks for developing robust parameter design methodology for dynamic systems with automatic control and for synthesis of nanostructures. In many automatically controlled dynamic processes, the optimal feedback control law depends on the parameter design solution and vice versa and therefore an integrated approach is necessary. A parameter design methodology in the presence of feedback control is developed for processes of long duration under the assumption that experimental noise factors are uncorrelated over time. Systems that follow a pure-gain dynamic model are considered and the best proportional-integral and minimum mean squared error control strategies are developed by using robust parameter design. The proposed method is illustrated using a simulated example and a case study in a urea packing plant. This idea is also extended to cases with on-line noise factors. The possibility of integrating feedforward control with a minimum mean squared error feedback control scheme is explored. To meet the needs of large scale synthesis of nanostructures, it is critical to systematically find experimental conditions under which the desired nanostructures are synthesized reproducibly, at large quantity and with controlled morphology. The first part of the research in this area focuses on modeling and optimization of existing experimental data. Through a rigorous statistical analysis of experimental data, models linking the probabilities of obtaining specific morphologies to the process variables are developed. A new iterative algorithm for fitting a Multinomial GLM is proposed and used. The optimum process conditions, which maximize the above probabilities and make the synthesis process less sensitive to variations of process variables around set values, are derived from the fitted models using Monte-Carlo simulations. The second part of the research deals with development of an experimental design methodology, tailor-made to address the unique phenomena associated with nanostructure synthesis. A sequential space filling design called Sequential Minimum Energy Design (SMED) for exploring best process conditions for synthesis of nanowires. The SMED is a novel approach to generate sequential designs that are model independent, can quickly "carve out" regions with no observable nanostructure morphology, and allow for the exploration of complex response surfaces.
A robust interrupted time series model for analyzing complex health care intervention data.
Cruz, Maricela; Bender, Miriam; Ombao, Hernando
2017-12-20
Current health policy calls for greater use of evidence-based care delivery services to improve patient quality and safety outcomes. Care delivery is complex, with interacting and interdependent components that challenge traditional statistical analytic techniques, in particular, when modeling a time series of outcomes data that might be "interrupted" by a change in a particular method of health care delivery. Interrupted time series (ITS) is a robust quasi-experimental design with the ability to infer the effectiveness of an intervention that accounts for data dependency. Current standardized methods for analyzing ITS data do not model changes in variation and correlation following the intervention. This is a key limitation since it is plausible for data variability and dependency to change because of the intervention. Moreover, present methodology either assumes a prespecified interruption time point with an instantaneous effect or removes data for which the effect of intervention is not fully realized. In this paper, we describe and develop a novel robust interrupted time series (robust-ITS) model that overcomes these omissions and limitations. The robust-ITS model formally performs inference on (1) identifying the change point; (2) differences in preintervention and postintervention correlation; (3) differences in the outcome variance preintervention and postintervention; and (4) differences in the mean preintervention and postintervention. We illustrate the proposed method by analyzing patient satisfaction data from a hospital that implemented and evaluated a new nursing care delivery model as the intervention of interest. The robust-ITS model is implemented in an R Shiny toolbox, which is freely available to the community. Copyright © 2017 John Wiley & Sons, Ltd.
VizieR Online Data Catalog: AGNs in submm-selected Lockman Hole galaxies (Serjeant+, 2010)
NASA Astrophysics Data System (ADS)
Serjeant, S.; Negrello, M.; Pearson, C.; Mortier, A.; Austermann, J.; Aretxaga, I.; Clements, D.; Chapman, S.; Dye, S.; Dunlop, J.; Dunne, L.; Farrah, D.; Hughes, D.; Lee, H. M.; Matsuhara, H.; Ibar, E.; Im, M.; Jeong, W.-S.; Kim, S.; Oyabu, S.; Takagi, T.; Wada, T.; Wilson, G.; Vaccari, M.; Yun, M.
2013-11-01
We present a comparison of the SCUBA half degree extragalactic survey (SHADES) at 450μm, 850μm and 1100μm with deep guaranteed time 15μm AKARI FU-HYU survey data and Spitzer guaranteed time data at 3.6-24μm in the Lockman hole east. The AKARI data was analysed using bespoke software based in part on the drizzling and minimum-variance matched filtering developed for SHADES, and was cross-calibrated against ISO fluxes. (2 data files).
A Bayesian approach to parameter and reliability estimation in the Poisson distribution.
NASA Technical Reports Server (NTRS)
Canavos, G. C.
1972-01-01
For life testing procedures, a Bayesian analysis is developed with respect to a random intensity parameter in the Poisson distribution. Bayes estimators are derived for the Poisson parameter and the reliability function based on uniform and gamma prior distributions of that parameter. A Monte Carlo procedure is implemented to make possible an empirical mean-squared error comparison between Bayes and existing minimum variance unbiased, as well as maximum likelihood, estimators. As expected, the Bayes estimators have mean-squared errors that are appreciably smaller than those of the other two.
Pogue, Brian W; Song, Xiaomei; Tosteson, Tor D; McBride, Troy O; Jiang, Shudong; Paulsen, Keith D
2002-07-01
Near-infrared (NIR) diffuse tomography is an emerging method for imaging the interior of tissues to quantify concentrations of hemoglobin and exogenous chromophores non-invasively in vivo. It often exploits an optical diffusion model-based image reconstruction algorithm to estimate spatial property values from measurements of the light flux at the surface of the tissue. In this study, mean-squared error (MSE) over the image is used to evaluate methods for regularizing the ill-posed inverse image reconstruction problem in NIR tomography. Estimates of image bias and image standard deviation were calculated based upon 100 repeated reconstructions of a test image with randomly distributed noise added to the light flux measurements. It was observed that the bias error dominates at high regularization parameter values while variance dominates as the algorithm is allowed to approach the optimal solution. This optimum does not necessarily correspond to the minimum projection error solution, but typically requires further iteration with a decreasing regularization parameter to reach the lowest image error. Increasing measurement noise causes a need to constrain the minimum regularization parameter to higher values in order to achieve a minimum in the overall image MSE.
Aa, Jiye; Zheng, Tian; Shi, Jian; Li, Mengjie; Wang, Xinwen; Zhao, Chunyan; Xiao, Wenjing; Yu, Xiaoyi; Sun, Runbin; Gu, Rongrong; Zhou, Jun; Wu, Liang; Hao, Gang; Zhu, Xuanxuan; Wang, Guangji
2012-01-01
Background Individual variances usually affect drug metabolism and disposition, and hence result in either ineffectiveness or toxicity of a drug. In addition to genetic polymorphism, the multiple confounding factors of lifestyles, such as dietary preferences, contribute partially to individual variances. However, the difficulty of quantifying individual diversity greatly challenges the realization of individualized drug therapy. This study aims at quantitative evaluating the association between individual variances and the pharmacokinetics. Methodology/Principal Findings Molecules in pre-dose baseline serum were profiled using gas chromatography mass spectrometry to represent the individual variances of the model rats provided with high fat diets (HFD), routine chows and calorie restricted (CR) chows. Triptolide and its metabolites were determined using high performance liquid chromatography mass spectrometry. Metabonomic and pharmacokinetic data revealed that rats treated with the varied diets had distinctly different metabolic patterns and showed differential Cmax values, AUC and drug metabolism after oral administration of triptolide. Rats with fatty chows had the lowest Cmax and AUC values and the highest percentage of triptolide metabolic transformation, while rats with CR chows had the highest Cmax and AUC values and the least percentage of triptolide transformation. Multivariate linear regression revealed that in baseline serum, the concentrations of creatinine and glutamic acid, which is the precursor of GSH, were linearly negatively correlated to Cmax and AUC values. The glutamic acid and creatinine in baseline serum were suggested as the potential markers to represent individual diversity and as predictors of the disposal and pharmacokinetics of triptolide. Conclusions/Significance These results highlight the robust potential of metabonomics in characterizing individual variances and identifying relevant markers that have the potential to facilitate individualized drug therapy. PMID:22912866
The Dependence of Cloud-SST Feedback on Circulation Regime and Timescale
NASA Astrophysics Data System (ADS)
Middlemas, E.; Clement, A. C.; Medeiros, B.
2017-12-01
Studies suggest cloud radiative feedback amplifies internal variability of Pacific sea surface temperature (SST) on interannual-and-longer timescales, though only a few modeling studies have tested the quantitative importance of this feedback (Bellomo et al. 2014b, Brown et al. 2016, Radel et al. 2016 Burgman et al. 2017). We prescribe clouds from a previous control run in the radiation module in Community Atmospheric Model (CAM5-slab), a method called "cloud-locking". By comparing this run to a control run, in which cloud radiative forcing can feedback on the climate system, we isolate the effect of cloud radiative forcing on SST variability. Cloud-locking prevents clouds from radiatively interacting with atmospheric circulation, water vapor, and SST, while maintaining a similar mean state to the control. On all timescales, cloud radiative forcing's influence on SST variance is modulated by the circulation regime. Cloud radiative forcing amplifies SST variance in subsiding regimes and dampens SST variance in convecting regimes. In this particular model, a tug of war between latent heat flux and cloud radiative forcing determines the variance of SST, and the winner depends on the timescale. On decadal-and-longer timescales, cloud radiative forcing plays a relatively larger role than on interannual-and-shorter timescales, while latent heat flux plays a smaller role. On longer timescales, the absence of cloud radiative feedback changes SST variance in a zonally asymmetric pattern in the Pacific Ocean that resembles an IPO-like pattern. We also present an analysis of cloud feedback's role on Pacific SST variability among preindustrial control CMIP5 models to test the model robustness of our results. Our results suggest that circulation plays a crucial role in cloud-SST feedbacks across the globe and cloud radiative feedbacks cannot be ignored when studying SST variability on decadal-and-longer timescales.
Global-scale high-resolution ( 1 km) modelling of mean, maximum and minimum annual streamflow
NASA Astrophysics Data System (ADS)
Barbarossa, Valerio; Huijbregts, Mark; Hendriks, Jan; Beusen, Arthur; Clavreul, Julie; King, Henry; Schipper, Aafke
2017-04-01
Quantifying mean, maximum and minimum annual flow (AF) of rivers at ungauged sites is essential for a number of applications, including assessments of global water supply, ecosystem integrity and water footprints. AF metrics can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict AF metrics based on climate and catchment characteristics. Yet, so far, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. We developed global-scale regression models that quantify mean, maximum and minimum AF as function of catchment area and catchment-averaged slope, elevation, and mean, maximum and minimum annual precipitation and air temperature. We then used these models to obtain global 30 arc-seconds (˜ 1 km) maps of mean, maximum and minimum AF for each year from 1960 through 2015, based on a newly developed hydrologically conditioned digital elevation model. We calibrated our regression models based on observations of discharge and catchment characteristics from about 4,000 catchments worldwide, ranging from 100 to 106 km2 in size, and validated them against independent measurements as well as the output of a number of process-based global hydrological models (GHMs). The variance explained by our regression models ranged up to 90% and the performance of the models compared well with the performance of existing GHMs. Yet, our AF maps provide a level of spatial detail that cannot yet be achieved by current GHMs.
Gorban, Alexander N; Pokidysheva, Lyudmila I; Smirnova, Elena V; Tyukina, Tatiana A
2011-09-01
The "Law of the Minimum" states that growth is controlled by the scarcest resource (limiting factor). This concept was originally applied to plant or crop growth (Justus von Liebig, 1840, Salisbury, Plant physiology, 4th edn., Wadsworth, Belmont, 1992) and quantitatively supported by many experiments. Some generalizations based on more complicated "dose-response" curves were proposed. Violations of this law in natural and experimental ecosystems were also reported. We study models of adaptation in ensembles of similar organisms under load of environmental factors and prove that violation of Liebig's law follows from adaptation effects. If the fitness of an organism in a fixed environment satisfies the Law of the Minimum then adaptation equalizes the pressure of essential factors and, therefore, acts against the Liebig's law. This is the the Law of the Minimum paradox: if for a randomly chosen pair "organism-environment" the Law of the Minimum typically holds, then in a well-adapted system, we have to expect violations of this law.For the opposite interaction of factors (a synergistic system of factors which amplify each other), adaptation leads from factor equivalence to limitations by a smaller number of factors.For analysis of adaptation, we develop a system of models based on Selye's idea of the universal adaptation resource (adaptation energy). These models predict that under the load of an environmental factor a population separates into two groups (phases): a less correlated, well adapted group and a highly correlated group with a larger variance of attributes, which experiences problems with adaptation. Some empirical data are presented and evidences of interdisciplinary applications to econometrics are discussed. © Society for Mathematical Biology 2010
On the Optimization of Aerospace Plane Ascent Trajectory
NASA Astrophysics Data System (ADS)
Al-Garni, Ahmed; Kassem, Ayman Hamdy
A hybrid heuristic optimization technique based on genetic algorithms and particle swarm optimization has been developed and tested for trajectory optimization problems with multi-constraints and a multi-objective cost function. The technique is used to calculate control settings for two types for ascending trajectories (constant dynamic pressure and minimum-fuel-minimum-heat) for a two-dimensional model of an aerospace plane. A thorough statistical analysis is done on the hybrid technique to make comparisons with both basic genetic algorithms and particle swarm optimization techniques with respect to convergence and execution time. Genetic algorithm optimization showed better execution time performance while particle swarm optimization showed better convergence performance. The hybrid optimization technique, benefiting from both techniques, showed superior robust performance compromising convergence trends and execution time.
NASA Astrophysics Data System (ADS)
Cortesi, Nicola; Peña-Angulo, Dhais; Simolo, Claudia; Stepanek, Peter; Brunetti, Michele; Gonzalez-Hidalgo, José Carlos
2014-05-01
One of the key point in the develop of the MOTEDAS dataset (see Poster 1 MOTEDAS) in the framework of the HIDROCAES Project (Impactos Hidrológicos del Calentamiento Global en España, Spanish Ministery of Research CGL2011-27574-C02-01) is the reference series for which no generalized metadata exist. In this poster we present an analysis of spatial variability of monthly minimum and maximum temperatures in the conterminous land of Spain (Iberian Peninsula, IP), by using the Correlation Decay Distance function (CDD), with the aim of evaluating, at sub-regional level, the optimal threshold distance between neighbouring stations for producing the set of reference series used in the quality control (see MOTEDAS Poster 1) and the reconstruction (see MOREDAS Poster 3). The CDD analysis for Tmax and Tmin was performed calculating a correlation matrix at monthly scale between 1981-2010 among monthly mean values of maximum (Tmax) and minimum (Tmin) temperature series (with at least 90% of data), free of anomalous data and homogenized (see MOTEDAS Poster 1), obtained from AEMEt archives (National Spanish Meteorological Agency). Monthly anomalies (difference between data and mean 1981-2010) were used to prevent the dominant effect of annual cycle in the CDD annual estimation. For each station, and time scale, the common variance r2 (using the square of Pearson's correlation coefficient) was calculated between all neighbouring temperature series and the relation between r2 and distance was modelled according to the following equation (1): Log (r2ij) = b*°dij (1) being Log(rij2) the common variance between target (i) and neighbouring series (j), dij the distance between them and b the slope of the ordinary least-squares linear regression model applied taking into account only the surrounding stations within a starting radius of 50 km and with a minimum of 5 stations required. Finally, monthly, seasonal and annual CDD values were interpolated using the Ordinary Kriging with a spherical variogram over conterminous land of Spain, and converted on a regular 10 km2 grid (resolution similar to the mean distance between stations) to map the results. In the conterminous land of Spain the distance at which couples of stations have a common variance in temperature (both maximum Tmax, and minimum Tmin) above the selected threshold (50%, r Pearson ~0.70) on average does not exceed 400 km, with relevant spatial and temporal differences. The spatial distribution of the CDD shows a clear coastland-to-inland gradient at annual, seasonal and monthly scale, with highest spatial variability along the coastland areas and lower variability inland. The highest spatial variability coincide particularly with coastland areas surrounded by mountain chains and suggests that the orography is one of the most driving factor causing higher interstation variability. Moreover, there are some differences between the behaviour of Tmax and Tmin, being Tmin spatially more homogeneous than Tmax, but its lower CDD values indicate that night-time temperature is more variable than diurnal one. The results suggest that in general local factors affects the spatial variability of monthly Tmin more than Tmax and then higher network density would be necessary to capture the higher spatial variability highlighted for Tmin respect to Tmax. The results suggest that in general local factors affects the spatial variability of Tmin more than Tmax and then higher network density would be necessary to capture the higher spatial variability highlighted for minimum temperature respect to maximum temperature. A conservative distance for reference series could be evaluated in 200 km, that we propose for continental land of Spain and use in the development of MOTEDAS.
Wickenberg-Bolin, Ulrika; Göransson, Hanna; Fryknäs, Mårten; Gustafsson, Mats G; Isaksson, Anders
2006-03-13
Supervised learning for classification of cancer employs a set of design examples to learn how to discriminate between tumors. In practice it is crucial to confirm that the classifier is robust with good generalization performance to new examples, or at least that it performs better than random guessing. A suggested alternative is to obtain a confidence interval of the error rate using repeated design and test sets selected from available examples. However, it is known that even in the ideal situation of repeated designs and tests with completely novel samples in each cycle, a small test set size leads to a large bias in the estimate of the true variance between design sets. Therefore different methods for small sample performance estimation such as a recently proposed procedure called Repeated Random Sampling (RSS) is also expected to result in heavily biased estimates, which in turn translates into biased confidence intervals. Here we explore such biases and develop a refined algorithm called Repeated Independent Design and Test (RIDT). Our simulations reveal that repeated designs and tests based on resampling in a fixed bag of samples yield a biased variance estimate. We also demonstrate that it is possible to obtain an improved variance estimate by means of a procedure that explicitly models how this bias depends on the number of samples used for testing. For the special case of repeated designs and tests using new samples for each design and test, we present an exact analytical expression for how the expected value of the bias decreases with the size of the test set. We show that via modeling and subsequent reduction of the small sample bias, it is possible to obtain an improved estimate of the variance of classifier performance between design sets. However, the uncertainty of the variance estimate is large in the simulations performed indicating that the method in its present form cannot be directly applied to small data sets.
Contextual Advantage for State Discrimination
NASA Astrophysics Data System (ADS)
Schmid, David; Spekkens, Robert W.
2018-02-01
Finding quantitative aspects of quantum phenomena which cannot be explained by any classical model has foundational importance for understanding the boundary between classical and quantum theory. It also has practical significance for identifying information processing tasks for which those phenomena provide a quantum advantage. Using the framework of generalized noncontextuality as our notion of classicality, we find one such nonclassical feature within the phenomenology of quantum minimum-error state discrimination. Namely, we identify quantitative limits on the success probability for minimum-error state discrimination in any experiment described by a noncontextual ontological model. These constraints constitute noncontextuality inequalities that are violated by quantum theory, and this violation implies a quantum advantage for state discrimination relative to noncontextual models. Furthermore, our noncontextuality inequalities are robust to noise and are operationally formulated, so that any experimental violation of the inequalities is a witness of contextuality, independently of the validity of quantum theory. Along the way, we introduce new methods for analyzing noncontextuality scenarios and demonstrate a tight connection between our minimum-error state discrimination scenario and a Bell scenario.
NASA Astrophysics Data System (ADS)
Inoue, Shigeru; Aoyama, Tojiro
Grinding fluids have been commonly used during the grinding of tools for their cooling and lubricating effect since the hard, robust materials used for cutting tools are difficult to grind. Grinding fluids help prevent a drop in hardness due to burning of the cutting edge and keep chipping to an absolute minimum. However, there is a heightened awareness of the need to improve the work environment and protect the global environment. Thus, the present study is aimed at applying dry grinding, cooling-air grinding, cooling-air grinding with minimum quantity lubrication (MQL), and oil-based fluid grinding to manufacturing actual endmills (HSS-Co). Cutting tests were performed by a vertical machining center. The results indicated that the lowest surface inclination values and longest tool life were obtained by cooling-air grinding with MQL. Thus, cooling-air grinding with MQL has been demonstrated to be at least as effective as oil-based fluid grinding.
Stochastic Methods for Aircraft Design
NASA Technical Reports Server (NTRS)
Pelz, Richard B.; Ogot, Madara
1998-01-01
The global stochastic optimization method, simulated annealing (SA), was adapted and applied to various problems in aircraft design. The research was aimed at overcoming the problem of finding an optimal design in a space with multiple minima and roughness ubiquitous to numerically generated nonlinear objective functions. SA was modified to reduce the number of objective function evaluations for an optimal design, historically the main criticism of stochastic methods. SA was applied to many CFD/MDO problems including: low sonic-boom bodies, minimum drag on supersonic fore-bodies, minimum drag on supersonic aeroelastic fore-bodies, minimum drag on HSCT aeroelastic wings, FLOPS preliminary design code, another preliminary aircraft design study with vortex lattice aerodynamics, HSR complete aircraft aerodynamics. In every case, SA provided a simple, robust and reliable optimization method which found optimal designs in order 100 objective function evaluations. Perhaps most importantly, from this academic/industrial project, technology has been successfully transferred; this method is the method of choice for optimization problems at Northrop Grumman.
A Fuel-Efficient Conflict Resolution Maneuver for Separation Assurance
NASA Technical Reports Server (NTRS)
Bowe, Aisha Ruth; Santiago, Confesor
2012-01-01
Automated separation assurance algorithms are envisioned to play an integral role in accommodating the forecasted increase in demand of the National Airspace System. Developing a robust, reliable, air traffic management system involves safely increasing efficiency and throughput while considering the potential impact on users. This experiment seeks to evaluate the benefit of augmenting a conflict detection and resolution algorithm to consider a fuel efficient, Zero-Delay Direct-To maneuver, when resolving a given conflict based on either minimum fuel burn or minimum delay. A total of twelve conditions were tested in a fast-time simulation conducted in three airspace regions with mixed aircraft types and light weather. Results show that inclusion of this maneuver has no appreciable effect on the ability of the algorithm to safely detect and resolve conflicts. The results further suggest that enabling the Zero-Delay Direct-To maneuver significantly increases the cumulative fuel burn savings when choosing resolution based on minimum fuel burn while marginally increasing the average delay per resolution.
Biochemical methane potential (BMP) tests: Reducing test time by early parameter estimation.
Da Silva, C; Astals, S; Peces, M; Campos, J L; Guerrero, L
2018-01-01
Biochemical methane potential (BMP) test is a key analytical technique to assess the implementation and optimisation of anaerobic biotechnologies. However, this technique is characterised by long testing times (from 20 to >100days), which is not suitable for waste utilities, consulting companies or plants operators whose decision-making processes cannot be held for such a long time. This study develops a statistically robust mathematical strategy using sensitivity functions for early prediction of BMP first-order model parameters, i.e. methane yield (B 0 ) and kinetic constant rate (k). The minimum testing time for early parameter estimation showed a potential correlation with the k value, where (i) slowly biodegradable substrates (k≤0.1d -1 ) have a minimum testing times of ≥15days, (ii) moderately biodegradable substrates (0.1
Exploring local regularities for 3D object recognition
NASA Astrophysics Data System (ADS)
Tian, Huaiwen; Qin, Shengfeng
2016-11-01
In order to find better simplicity measurements for 3D object recognition, a new set of local regularities is developed and tested in a stepwise 3D reconstruction method, including localized minimizing standard deviation of angles(L-MSDA), localized minimizing standard deviation of segment magnitudes(L-MSDSM), localized minimum standard deviation of areas of child faces (L-MSDAF), localized minimum sum of segment magnitudes of common edges (L-MSSM), and localized minimum sum of areas of child face (L-MSAF). Based on their effectiveness measurements in terms of form and size distortions, it is found that when two local regularities: L-MSDA and L-MSDSM are combined together, they can produce better performance. In addition, the best weightings for them to work together are identified as 10% for L-MSDSM and 90% for L-MSDA. The test results show that the combined usage of L-MSDA and L-MSDSM with identified weightings has a potential to be applied in other optimization based 3D recognition methods to improve their efficacy and robustness.
Minimum variance optimal rate allocation for multiplexed H.264/AVC bitstreams.
Tagliasacchi, Marco; Valenzise, Giuseppe; Tubaro, Stefano
2008-07-01
Consider the problem of transmitting multiple video streams to fulfill a constant bandwidth constraint. The available bit budget needs to be distributed across the sequences in order to meet some optimality criteria. For example, one might want to minimize the average distortion or, alternatively, minimize the distortion variance, in order to keep almost constant quality among the encoded sequences. By working in the rho-domain, we propose a low-delay rate allocation scheme that, at each time instant, provides a closed form solution for either the aforementioned problems. We show that minimizing the distortion variance instead of the average distortion leads, for each of the multiplexed sequences, to a coding penalty less than 0.5 dB, in terms of average PSNR. In addition, our analysis provides an explicit relationship between model parameters and this loss. In order to smooth the distortion also along time, we accommodate a shared encoder buffer to compensate for rate fluctuations. Although the proposed scheme is general, and it can be adopted for any video and image coding standard, we provide experimental evidence by transcoding bitstreams encoded using the state-of-the-art H.264/AVC standard. The results of our simulations reveal that is it possible to achieve distortion smoothing both in time and across the sequences, without sacrificing coding efficiency.
NASA Astrophysics Data System (ADS)
Hernandez, Monica
2017-12-01
This paper proposes a method for primal-dual convex optimization in variational large deformation diffeomorphic metric mapping problems formulated with robust regularizers and robust image similarity metrics. The method is based on Chambolle and Pock primal-dual algorithm for solving general convex optimization problems. Diagonal preconditioning is used to ensure the convergence of the algorithm to the global minimum. We consider three robust regularizers liable to provide acceptable results in diffeomorphic registration: Huber, V-Huber and total generalized variation. The Huber norm is used in the image similarity term. The primal-dual equations are derived for the stationary and the non-stationary parameterizations of diffeomorphisms. The resulting algorithms have been implemented for running in the GPU using Cuda. For the most memory consuming methods, we have developed a multi-GPU implementation. The GPU implementations allowed us to perform an exhaustive evaluation study in NIREP and LPBA40 databases. The experiments showed that, for all the considered regularizers, the proposed method converges to diffeomorphic solutions while better preserving discontinuities at the boundaries of the objects compared to baseline diffeomorphic registration methods. In most cases, the evaluation showed a competitive performance for the robust regularizers, close to the performance of the baseline diffeomorphic registration methods.
On robust parameter estimation in brain-computer interfacing
NASA Astrophysics Data System (ADS)
Samek, Wojciech; Nakajima, Shinichi; Kawanabe, Motoaki; Müller, Klaus-Robert
2017-12-01
Objective. The reliable estimation of parameters such as mean or covariance matrix from noisy and high-dimensional observations is a prerequisite for successful application of signal processing and machine learning algorithms in brain-computer interfacing (BCI). This challenging task becomes significantly more difficult if the data set contains outliers, e.g. due to subject movements, eye blinks or loose electrodes, as they may heavily bias the estimation and the subsequent statistical analysis. Although various robust estimators have been developed to tackle the outlier problem, they ignore important structural information in the data and thus may not be optimal. Typical structural elements in BCI data are the trials consisting of a few hundred EEG samples and indicating the start and end of a task. Approach. This work discusses the parameter estimation problem in BCI and introduces a novel hierarchical view on robustness which naturally comprises different types of outlierness occurring in structured data. Furthermore, the class of minimum divergence estimators is reviewed and a robust mean and covariance estimator for structured data is derived and evaluated with simulations and on a benchmark data set. Main results. The results show that state-of-the-art BCI algorithms benefit from robustly estimated parameters. Significance. Since parameter estimation is an integral part of various machine learning algorithms, the presented techniques are applicable to many problems beyond BCI.
An Efficient, Robust, and Inexpensive Grinding Device for Herbal Samples like Cinchona Bark
Hansen, Steen Honoré; Holmfred, Else; Cornett, Claus; Maldonado, Carla; Rønsted, Nina
2015-01-01
An effective, robust, and inexpensive grinding device for the grinding of herb samples like bark and roots was developed by rebuilding a commercially available coffee grinder. The grinder was constructed to be able to provide various particle sizes, to be easy to clean, and to have a minimum of dead volume. The recovery of the sample when grinding as little as 50 mg of crude Cinchona bark was about 60%. Grinding is performed in seconds with no rise in temperature, and the grinder is easily disassembled to be cleaned. The influence of the particle size of the obtained powders on the recovery of analytes in extracts of Cinchona bark was investigated using HPLC. PMID:26839823
Zhan, Tingting; Chevoneva, Inna; Iglewicz, Boris
2010-01-01
The family of weighted likelihood estimators largely overlaps with minimum divergence estimators. They are robust to data contaminations compared to MLE. We define the class of generalized weighted likelihood estimators (GWLE), provide its influence function and discuss the efficiency requirements. We introduce a new truncated cubic-inverse weight, which is both first and second order efficient and more robust than previously reported weights. We also discuss new ways of selecting the smoothing bandwidth and weighted starting values for the iterative algorithm. The advantage of the truncated cubic-inverse weight is illustrated in a simulation study of three-components normal mixtures model with large overlaps and heavy contaminations. A real data example is also provided. PMID:20835375
NASA Astrophysics Data System (ADS)
Ngastiti, P. T. B.; Surarso, Bayu; Sutimin
2018-05-01
Transportation issue of the distribution problem such as the commodity or goods from the supply tothe demmand is to minimize the transportation costs. Fuzzy transportation problem is an issue in which the transport costs, supply and demand are in the form of fuzzy quantities. Inthe case study at CV. Bintang Anugerah Elektrik, a company engages in the manufacture of gensets that has more than one distributors. We use the methods of zero point and zero suffix to investigate the transportation minimum cost. In implementing both methods, we use robust ranking techniques for the defuzzification process. The studyresult show that the iteration of zero suffix method is less than that of zero point method.
Towards designing robust coupled networks
NASA Astrophysics Data System (ADS)
Schneider, Christian M.; Yazdani, Nuri; Araújo, Nuno A. M.; Havlin, Shlomo; Herrmann, Hans J.
2013-06-01
Natural and technological interdependent systems have been shown to be highly vulnerable due to cascading failures and an abrupt collapse of global connectivity under initial failure. Mitigating the risk by partial disconnection endangers their functionality. Here we propose a systematic strategy of selecting a minimum number of autonomous nodes that guarantee a smooth transition in robustness. Our method which is based on betweenness is tested on various examples including the famous 2003 electrical blackout of Italy. We show that, with this strategy, the necessary number of autonomous nodes can be reduced by a factor of five compared to a random choice. We also find that the transition to abrupt collapse follows tricritical scaling characterized by a set of exponents which is independent on the protection strategy.
Robust crossfeed design for hovering rotorcraft. M.S. Thesis
NASA Technical Reports Server (NTRS)
Catapang, David R.
1993-01-01
Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust.' A new low-order matching method is presented here to design robost crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw, and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily-used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.
Chung, Eun-Sung; Kim, Yeonjoo
2014-12-15
This study proposed a robust prioritization framework to identify the priorities of treated wastewater (TWW) use locations with consideration of various uncertainties inherent in the climate change scenarios and the decision-making process. First, a fuzzy concept was applied because future forecast precipitation and their hydrological impact analysis results displayed significant variances when considering various climate change scenarios and long periods (e.g., 2010-2099). Second, various multi-criteria decision making (MCDM) techniques including weighted sum method (WSM), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and fuzzy TOPSIS were introduced to robust prioritization because different MCDM methods use different decision philosophies. Third, decision making method under complete uncertainty (DMCU) including maximin, maximax, minimax regret, Hurwicz, and equal likelihood were used to find robust final rankings. This framework is then applied to a Korean urban watershed. As a result, different rankings were obviously appeared between fuzzy TOPSIS and non-fuzzy MCDMs (e.g., WSM and TOPSIS) because the inter-annual variability in effectiveness was considered only with fuzzy TOPSIS. Then, robust prioritizations were derived based on 18 rankings from nine decadal periods of RCP4.5 and RCP8.5. For more robust rankings, five DMCU approaches using the rankings from fuzzy TOPSIS were derived. This framework combining fuzzy TOPSIS with DMCU approaches can be rendered less controversial among stakeholders under complete uncertainty of changing environments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Using geostatistical methods to estimate snow water equivalence distribution in a mountain watershed
Balk, B.; Elder, K.; Baron, Jill S.
1998-01-01
Knowledge of the spatial distribution of snow water equivalence (SWE) is necessary to adequately forecast the volume and timing of snowmelt runoff. In April 1997, peak accumulation snow depth and density measurements were independently taken in the Loch Vale watershed (6.6 km2), Rocky Mountain National Park, Colorado. Geostatistics and classical statistics were used to estimate SWE distribution across the watershed. Snow depths were spatially distributed across the watershed through kriging interpolation methods which provide unbiased estimates that have minimum variances. Snow densities were spatially modeled through regression analysis. Combining the modeled depth and density with snow-covered area (SCA produced an estimate of the spatial distribution of SWE. The kriged estimates of snow depth explained 37-68% of the observed variance in the measured depths. Steep slopes, variably strong winds, and complex energy balance in the watershed contribute to a large degree of heterogeneity in snow depth.
Robertson, David S; Prevost, A Toby; Bowden, Jack
2016-09-30
Seamless phase II/III clinical trials offer an efficient way to select an experimental treatment and perform confirmatory analysis within a single trial. However, combining the data from both stages in the final analysis can induce bias into the estimates of treatment effects. Methods for bias adjustment developed thus far have made restrictive assumptions about the design and selection rules followed. In order to address these shortcomings, we apply recent methodological advances to derive the uniformly minimum variance conditionally unbiased estimator for two-stage seamless phase II/III trials. Our framework allows for the precision of the treatment arm estimates to take arbitrary values, can be utilised for all treatments that are taken forward to phase III and is applicable when the decision to select or drop treatment arms is driven by a multiplicity-adjusted hypothesis testing procedure. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Additive-Multiplicative Approximation of Genotype-Environment Interaction
Gimelfarb, A.
1994-01-01
A model of genotype-environment interaction in quantitative traits is considered. The model represents an expansion of the traditional additive (first degree polynomial) approximation of genotypic and environmental effects to a second degree polynomial incorporating a multiplicative term besides the additive terms. An experimental evaluation of the model is suggested and applied to a trait in Drosophila melanogaster. The environmental variance of a genotype in the model is shown to be a function of the genotypic value: it is a convex parabola. The broad sense heritability in a population depends not only on the genotypic and environmental variances, but also on the position of the genotypic mean in the population relative to the minimum of the parabola. It is demonstrated, using the model, that GXE interaction rectional may cause a substantial non-linearity in offspring-parent regression and a reversed response to directional selection. It is also shown that directional selection may be accompanied by an increase in the heritability. PMID:7896113
Combinatorics of least-squares trees.
Mihaescu, Radu; Pachter, Lior
2008-09-09
A recurring theme in the least-squares approach to phylogenetics has been the discovery of elegant combinatorial formulas for the least-squares estimates of edge lengths. These formulas have proved useful for the development of efficient algorithms, and have also been important for understanding connections among popular phylogeny algorithms. For example, the selection criterion of the neighbor-joining algorithm is now understood in terms of the combinatorial formulas of Pauplin for estimating tree length. We highlight a phylogenetically desirable property that weighted least-squares methods should satisfy, and provide a complete characterization of methods that satisfy the property. The necessary and sufficient condition is a multiplicative four-point condition that the variance matrix needs to satisfy. The proof is based on the observation that the Lagrange multipliers in the proof of the Gauss-Markov theorem are tree-additive. Our results generalize and complete previous work on ordinary least squares, balanced minimum evolution, and the taxon-weighted variance model. They also provide a time-optimal algorithm for computation.
Mutch, Sarah A.; Gadd, Jennifer C.; Fujimoto, Bryant S.; Kensel-Hammes, Patricia; Schiro, Perry G.; Bajjalieh, Sandra M.; Chiu, Daniel T.
2013-01-01
This protocol describes a method to determine both the average number and variance of proteins in the few to tens of copies in isolated cellular compartments, such as organelles and protein complexes. Other currently available protein quantification techniques either provide an average number but lack information on the variance or are not suitable for reliably counting proteins present in the few to tens of copies. This protocol entails labeling the cellular compartment with fluorescent primary-secondary antibody complexes, TIRF (total internal reflection fluorescence) microscopy imaging of the cellular compartment, digital image analysis, and deconvolution of the fluorescence intensity data. A minimum of 2.5 days is required to complete the labeling, imaging, and analysis of a set of samples. As an illustrative example, we describe in detail the procedure used to determine the copy number of proteins in synaptic vesicles. The same procedure can be applied to other organelles or signaling complexes. PMID:22094731
Cohn, Timothy A.
2005-01-01
This paper presents an adjusted maximum likelihood estimator (AMLE) that can be used to estimate fluvial transport of contaminants, like phosphorus, that are subject to censoring because of analytical detection limits. The AMLE is a generalization of the widely accepted minimum variance unbiased estimator (MVUE), and Monte Carlo experiments confirm that it shares essentially all of the MVUE's desirable properties, including high efficiency and negligible bias. In particular, the AMLE exhibits substantially less bias than alternative censored‐data estimators such as the MLE (Tobit) or the MLE followed by a jackknife. As with the MLE and the MVUE the AMLE comes close to achieving the theoretical Frechet‐Cramér‐Rao bounds on its variance. This paper also presents a statistical framework, applicable to both censored and complete data, for understanding and estimating the components of uncertainty associated with load estimates. This can serve to lower the cost and improve the efficiency of both traditional and real‐time water quality monitoring.
M-estimator for the 3D symmetric Helmert coordinate transformation
NASA Astrophysics Data System (ADS)
Chang, Guobin; Xu, Tianhe; Wang, Qianxin
2018-01-01
The M-estimator for the 3D symmetric Helmert coordinate transformation problem is developed. Small-angle rotation assumption is abandoned. The direction cosine matrix or the quaternion is used to represent the rotation. The 3 × 1 multiplicative error vector is defined to represent the rotation estimation error. An analytical solution can be employed to provide the initial approximate for iteration, if the outliers are not large. The iteration is carried out using the iterative reweighted least-squares scheme. In each iteration after the first one, the measurement equation is linearized using the available parameter estimates, the reweighting matrix is constructed using the residuals obtained in the previous iteration, and then the parameter estimates with their variance-covariance matrix are calculated. The influence functions of a single pseudo-measurement on the least-squares estimator and on the M-estimator are derived to theoretically show the robustness. In the solution process, the parameter is rescaled in order to improve the numerical stability. Monte Carlo experiments are conducted to check the developed method. Different cases to investigate whether the assumed stochastic model is correct are considered. The results with the simulated data slightly deviating from the true model are used to show the developed method's statistical efficacy at the assumed stochastic model, its robustness against the deviations from the assumed stochastic model, and the validity of the estimated variance-covariance matrix no matter whether the assumed stochastic model is correct or not.
Proyer, René T; Wellenzohn, Sara; Gander, Fabian; Ruch, Willibald
2015-03-01
Robust evidence exists that positive psychology interventions are effective in enhancing well-being and ameliorating depression. Comparatively little is known about the conditions under which they work best. Models describing characteristics that impact the effectiveness of positive interventions typically contain features of the person, of the activity, and the fit between the two. This study focuses on indicators of the person × intervention fit in predicting happiness and depressive symptoms 3.5 years after completion of the intervention. A sample of 165 women completed measures for happiness and depressive symptoms before and about 3.5 years after completion of a positive intervention (random assignment to one out of nine interventions, which were aggregated for the analyses). Four fit indicators were assessed: Preference; continued practice; effort; and early reactivity. Three out of four person × intervention fit indicators were positively related to happiness or negatively related to depression when controlled for the pretest scores. Together, they explained 6 per cent of the variance in happiness, and 10 per cent of the variance of depressive symptoms. Most tested indicators of a person × intervention fit are robust predictors of happiness and depressive symptoms-even after 3.5 years. They might serve for an early estimation of the effectiveness of a positive intervention. © 2014 The International Association of Applied Psychology.
Robustness of serial clustering of extra-tropical cyclones to the choice of tracking method
NASA Astrophysics Data System (ADS)
Pinto, Joaquim G.; Ulbrich, Sven; Karremann, Melanie K.; Stephenson, David B.; Economou, Theodoros; Shaffrey, Len C.
2016-04-01
Cyclone families are a frequent synoptic weather feature in the Euro-Atlantic area in winter. Given appropriate large-scale conditions, the occurrence of such series (clusters) of storms may lead to large socio-economic impacts and cumulative losses. Recent studies analyzing Reanalysis data using single cyclone tracking methods have shown that serial clustering of cyclones occurs on both flanks and downstream regions of the North Atlantic storm track. This study explores the sensitivity of serial clustering to the choice of tracking method. With this aim, the IMILAST cyclone track database based on ERA-interim data is analysed. Clustering is estimated by the dispersion (ratio of variance to mean) of winter (DJF) cyclones passages near each grid point over the Euro-Atlantic area. Results indicate that while the general pattern of clustering is identified for all methods, there are considerable differences in detail. This can primarily be attributed to the differences in the variance of cyclone counts between the methods, which range up to one order of magnitude. Nevertheless, clustering over the Eastern North Atlantic and Western Europe can be identified for all methods and can thus be generally considered as a robust feature. The statistical links between large-scale patterns like the NAO and clustering are obtained for all methods, though with different magnitudes. We conclude that the occurrence of cyclone clustering over the Eastern North Atlantic and Western Europe is largely independent from the choice of tracking method and hence from the definition of a cyclone.
Derkach, Andriy; Chiang, Theodore; Gong, Jiafen; Addis, Laura; Dobbins, Sara; Tomlinson, Ian; Houlston, Richard; Pal, Deb K; Strug, Lisa J
2014-08-01
Sufficiently powered case-control studies with next-generation sequence (NGS) data remain prohibitively expensive for many investigators. If feasible, a more efficient strategy would be to include publicly available sequenced controls. However, these studies can be confounded by differences in sequencing platform; alignment, single nucleotide polymorphism and variant calling algorithms; read depth; and selection thresholds. Assuming one can match cases and controls on the basis of ethnicity and other potential confounding factors, and one has access to the aligned reads in both groups, we investigate the effect of systematic differences in read depth and selection threshold when comparing allele frequencies between cases and controls. We propose a novel likelihood-based method, the robust variance score (RVS), that substitutes genotype calls by their expected values given observed sequence data. We show theoretically that the RVS eliminates read depth bias in the estimation of minor allele frequency. We also demonstrate that, using simulated and real NGS data, the RVS method controls Type I error and has comparable power to the 'gold standard' analysis with the true underlying genotypes for both common and rare variants. An RVS R script and instructions can be found at strug.research.sickkids.ca, and at https://github.com/strug-lab/RVS. lisa.strug@utoronto.ca Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Silva, F G; Torres, R A; Brito, L F; Euclydes, R F; Melo, A L P; Souza, N O; Ribeiro, J I; Rodrigues, M T
2013-12-11
The objective of this study was to identify the best random regression model using Legendre orthogonal polynomials to evaluate Alpine goats genetically and to estimate the parameters for test day milk yield. On the test day, we analyzed 20,710 records of milk yield of 667 goats from the Goat Sector of the Universidade Federal de Viçosa. The evaluated models had combinations of distinct fitting orders for polynomials (2-5), random genetic (1-7), and permanent environmental (1-7) fixed curves and a number of classes for residual variance (2, 4, 5, and 6). WOMBAT software was used for all genetic analyses. A random regression model using the best Legendre orthogonal polynomial for genetic evaluation of milk yield on the test day of Alpine goats considered a fixed curve of order 4, curve of genetic additive effects of order 2, curve of permanent environmental effects of order 7, and a minimum of 5 classes of residual variance because it was the most economical model among those that were equivalent to the complete model by the likelihood ratio test. Phenotypic variance and heritability were higher at the end of the lactation period, indicating that the length of lactation has more genetic components in relation to the production peak and persistence. It is very important that the evaluation utilizes the best combination of fixed, genetic additive and permanent environmental regressions, and number of classes of heterogeneous residual variance for genetic evaluation using random regression models, thereby enhancing the precision and accuracy of the estimates of parameters and prediction of genetic values.
Robust ultrasensitive tunneling-FET biosensor for point-of-care diagnostics
Gao, Anran; Lu, Na; Wang, Yuelin; Li, Tie
2016-01-01
For point-of-care (POC) applications, robust, ultrasensitive, small, rapid, low-power, and low-cost sensors are highly desirable. Here, we present a novel biosensor based on a complementary metal oxide semiconductor (CMOS)-compatible silicon nanowire tunneling field-effect transistor (SiNW-TFET). They were fabricated “top-down” with a low-cost anisotropic self-stop etching technique. Notably, the SiNW-TFET device provided strong anti-interference capacity by applying the inherent ambipolarity via both pH and CYFRA21-1 sensing. This offered a more robust and portable general protocol. The specific label-free detection of CYFRA21-1 down to 0.5 fgml−1 or ~12.5 aM was achieved using a highly responsive SiNW-TFET device with a minimum sub-threshold slope (SS) of 37 mVdec−1. Furthermore, real-time measurements highlighted the ability to use clinically relevant samples such as serum. The developed high performance diagnostic system is expected to provide a generic platform for numerous POC applications. PMID:26932158
Robust Adaptive Flight Control Design of Air-breathing Hypersonic Vehicles
2016-12-07
dynamic inversion controller design for a non -minimum phase hypersonic vehicle is derived by Kuipers et al. [2008]. Moreover, integrated guidance and...stabilization time for inner loop variables is lesser than the intermediate loop variables because of the three-loop-control design methodology . The control...adaptive design . Control Engineering Practice, 2016. Michael A Bolender and David B Doman. A non -linear model for the longitudinal dynamics of a
Robust Estimation of Mahalanobis Distances in Hyperspectral Images
2006-12-01
each method used to fit the MD distribution from the DFC ROI. No- tice how the F -mixture is affected by the last two data points (points most unlike...bottom spectra are the minimum and maximum in magnitude. Notice the decrease in variability compared to DFC and MCFC. For this ROI, the variability is...performance for DFC MD Data (ROI = 11,557 pix- els). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 6.5. Summary of performance
NASA Astrophysics Data System (ADS)
Feng, Wenjie; Wu, Shenghe; Yin, Yanshu; Zhang, Jiajia; Zhang, Ke
2017-07-01
A training image (TI) can be regarded as a database of spatial structures and their low to higher order statistics used in multiple-point geostatistics (MPS) simulation. Presently, there are a number of methods to construct a series of candidate TIs (CTIs) for MPS simulation based on a modeler's subjective criteria. The spatial structures of TIs are often various, meaning that the compatibilities of different CTIs with the conditioning data are different. Therefore, evaluation and optimal selection of CTIs before MPS simulation is essential. This paper proposes a CTI evaluation and optimal selection method based on minimum data event distance (MDevD). In the proposed method, a set of MDevD properties are established through calculation of the MDevD of conditioning data events in each CTI. Then, CTIs are evaluated and ranked according to the mean value and variance of the MDevD properties. The smaller the mean value and variance of an MDevD property are, the more compatible the corresponding CTI is with the conditioning data. In addition, data events with low compatibility in the conditioning data grid can be located to help modelers select a set of complementary CTIs for MPS simulation. The MDevD property can also help to narrow the range of the distance threshold for MPS simulation. The proposed method was evaluated using three examples: a 2D categorical example, a 2D continuous example, and an actual 3D oil reservoir case study. To illustrate the method, a C++ implementation of the method is attached to the paper.
Wu, Tiecheng; Fan, Jie; Lee, Kim Seng; Li, Xiaoping
2016-02-01
Previous simulation works concerned with the mechanism of non-invasive neuromodulation has isolated many of the factors that can influence stimulation potency, but an inclusive account of the interplay between these factors on realistic neurons is still lacking. To give a comprehensive investigation on the stimulation-evoked neuronal activation, we developed a simulation scheme which incorporates highly detailed physiological and morphological properties of pyramidal cells. The model was implemented on a multitude of neurons; their thresholds and corresponding activation points with respect to various field directions and pulse waveforms were recorded. The results showed that the simulated thresholds had a minor anisotropy and reached minimum when the field direction was parallel to the dendritic-somatic axis; the layer 5 pyramidal cells always had lower thresholds but substantial variances were also observed within layers; reducing pulse length could magnify the threshold values as well as the variance; tortuosity and arborization of axonal segments could obstruct action potential initiation. The dependence of the initiation sites on both the orientation and the duration of the stimulus implies that the cellular excitability might represent the result of the competition between various firing-capable axonal components, each with a unique susceptibility determined by the local geometry. Moreover, the measurements obtained in simulation intimately resemble recordings in physiological and clinical studies, which seems to suggest that, with minimum simplification of the neuron model, the cable theory-based simulation approach can have sufficient verisimilitude to give quantitatively accurate evaluation of cell activities in response to the externally applied field.
A robust background regression based score estimation algorithm for hyperspectral anomaly detection
NASA Astrophysics Data System (ADS)
Zhao, Rui; Du, Bo; Zhang, Liangpei; Zhang, Lefei
2016-12-01
Anomaly detection has become a hot topic in the hyperspectral image analysis and processing fields in recent years. The most important issue for hyperspectral anomaly detection is the background estimation and suppression. Unreasonable or non-robust background estimation usually leads to unsatisfactory anomaly detection results. Furthermore, the inherent nonlinearity of hyperspectral images may cover up the intrinsic data structure in the anomaly detection. In order to implement robust background estimation, as well as to explore the intrinsic data structure of the hyperspectral image, we propose a robust background regression based score estimation algorithm (RBRSE) for hyperspectral anomaly detection. The Robust Background Regression (RBR) is actually a label assignment procedure which segments the hyperspectral data into a robust background dataset and a potential anomaly dataset with an intersection boundary. In the RBR, a kernel expansion technique, which explores the nonlinear structure of the hyperspectral data in a reproducing kernel Hilbert space, is utilized to formulate the data as a density feature representation. A minimum squared loss relationship is constructed between the data density feature and the corresponding assigned labels of the hyperspectral data, to formulate the foundation of the regression. Furthermore, a manifold regularization term which explores the manifold smoothness of the hyperspectral data, and a maximization term of the robust background average density, which suppresses the bias caused by the potential anomalies, are jointly appended in the RBR procedure. After this, a paired-dataset based k-nn score estimation method is undertaken on the robust background and potential anomaly datasets, to implement the detection output. The experimental results show that RBRSE achieves superior ROC curves, AUC values, and background-anomaly separation than some of the other state-of-the-art anomaly detection methods, and is easy to implement in practice.
Robust THP Transceiver Designs for Multiuser MIMO Downlink with Imperfect CSIT
NASA Astrophysics Data System (ADS)
Ubaidulla, P.; Chockalingam, A.
2009-12-01
We present robust joint nonlinear transceiver designs for multiuser multiple-input multiple-output (MIMO) downlink in the presence of imperfections in the channel state information at the transmitter (CSIT). The base station (BS) is equipped with multiple transmit antennas, and each user terminal is equipped with one or more receive antennas. The BS employs Tomlinson-Harashima precoding (THP) for interuser interference precancellation at the transmitter. We consider robust transceiver designs that jointly optimize the transmit THP filters and receive filter for two models of CSIT errors. The first model is a stochastic error (SE) model, where the CSIT error is Gaussian-distributed. This model is applicable when the CSIT error is dominated by channel estimation error. In this case, the proposed robust transceiver design seeks to minimize a stochastic function of the sum mean square error (SMSE) under a constraint on the total BS transmit power. We propose an iterative algorithm to solve this problem. The other model we consider is a norm-bounded error (NBE) model, where the CSIT error can be specified by an uncertainty set. This model is applicable when the CSIT error is dominated by quantization errors. In this case, we consider a worst-case design. For this model, we consider robust (i) minimum SMSE, (ii) MSE-constrained, and (iii) MSE-balancing transceiver designs. We propose iterative algorithms to solve these problems, wherein each iteration involves a pair of semidefinite programs (SDPs). Further, we consider an extension of the proposed algorithm to the case with per-antenna power constraints. We evaluate the robustness of the proposed algorithms to imperfections in CSIT through simulation, and show that the proposed robust designs outperform nonrobust designs as well as robust linear transceiver designs reported in the recent literature.
Growth dynamics and the evolution of cooperation in microbial populations
NASA Astrophysics Data System (ADS)
Cremer, Jonas; Melbinger, Anna; Frey, Erwin
2012-02-01
Microbes providing public goods are widespread in nature despite running the risk of being exploited by free-riders. However, the precise ecological factors supporting cooperation are still puzzling. Following recent experiments, we consider the role of population growth and the repetitive fragmentation of populations into new colonies mimicking simple microbial life-cycles. Individual-based modeling reveals that demographic fluctuations, which lead to a large variance in the composition of colonies, promote cooperation. Biased by population dynamics these fluctuations result in two qualitatively distinct regimes of robust cooperation under repetitive fragmentation into groups. First, if the level of cooperation exceeds a threshold, cooperators will take over the whole population. Second, cooperators can also emerge from a single mutant leading to a robust coexistence between cooperators and free-riders. We find frequency and size of population bottlenecks, and growth dynamics to be the major ecological factors determining the regimes and thereby the evolutionary pathway towards cooperation.
Real-time traffic sign recognition based on a general purpose GPU and deep-learning
Hong, Yongwon; Choi, Yeongwoo; Byun, Hyeran
2017-01-01
We present a General Purpose Graphics Processing Unit (GPGPU) based real-time traffic sign detection and recognition method that is robust against illumination changes. There have been many approaches to traffic sign recognition in various research fields; however, previous approaches faced several limitations when under low illumination or wide variance of light conditions. To overcome these drawbacks and improve processing speeds, we propose a method that 1) is robust against illumination changes, 2) uses GPGPU-based real-time traffic sign detection, and 3) performs region detecting and recognition using a hierarchical model. This method produces stable results in low illumination environments. Both detection and hierarchical recognition are performed in real-time, and the proposed method achieves 0.97 F1-score on our collective dataset, which uses the Vienna convention traffic rules (Germany and South Korea). PMID:28264011
Vehicle detection and orientation estimation using the radon transform
NASA Astrophysics Data System (ADS)
Pelapur, Rengarajan; Bunyak, Filiz; Palaniappan, Kannappan; Seetharaman, Gunasekaran
2013-05-01
Determining the location and orientation of vehicles in satellite and airborne imagery is a challenging task given the density of cars and other vehicles and complexity of the environment in urban scenes almost anywhere in the world. We have developed a robust and accurate method for detecting vehicles using a template-based directional chamfer matching, combined with vehicle orientation estimation based on a refined segmentation, followed by a Radon transform based profile variance peak analysis approach. The same algorithm was applied to both high resolution satellite imagery and wide area aerial imagery and initial results show robustness to illumination changes and geometric appearance distortions. Nearly 80% of the orientation angle estimates for 1585 vehicles across both satellite and aerial imagery were accurate to within 15? of the ground truth. In the case of satellite imagery alone, nearly 90% of the objects have an estimated error within +/-1.0° of the ground truth.
A new framework for comprehensive, robust, and efficient global sensitivity analysis: 2. Application
NASA Astrophysics Data System (ADS)
Razavi, Saman; Gupta, Hoshin V.
2016-01-01
Based on the theoretical framework for sensitivity analysis called "Variogram Analysis of Response Surfaces" (VARS), developed in the companion paper, we develop and implement a practical "star-based" sampling strategy (called STAR-VARS), for the application of VARS to real-world problems. We also develop a bootstrap approach to provide confidence level estimates for the VARS sensitivity metrics and to evaluate the reliability of inferred factor rankings. The effectiveness, efficiency, and robustness of STAR-VARS are demonstrated via two real-data hydrological case studies (a 5-parameter conceptual rainfall-runoff model and a 45-parameter land surface scheme hydrology model), and a comparison with the "derivative-based" Morris and "variance-based" Sobol approaches are provided. Our results show that STAR-VARS provides reliable and stable assessments of "global" sensitivity across the full range of scales in the factor space, while being 1-2 orders of magnitude more efficient than the Morris or Sobol approaches.
Kameda, Tatsuya; Inukai, Keigo; Higuchi, Satomi; Ogawa, Akitoshi; Kim, Hackjin; Matsuda, Tetsuya; Sakagami, Masamichi
2016-01-01
Distributive justice concerns the moral principles by which we seek to allocate resources fairly among diverse members of a society. Although the concept of fair allocation is one of the fundamental building blocks for societies, there is no clear consensus on how to achieve “socially just” allocations. Here, we examine neurocognitive commonalities of distributive judgments and risky decisions. We explore the hypothesis that people’s allocation decisions for others are closely related to economic decisions for oneself at behavioral, cognitive, and neural levels, via a concern about the minimum, worst-off position. In a series of experiments using attention-monitoring and brain-imaging techniques, we investigated this “maximin” concern (maximizing the minimum possible payoff) via responses in two seemingly disparate tasks: third-party distribution of rewards for others, and choosing gambles for self. The experiments revealed three robust results: (i) participants’ distributive choices closely matched their risk preferences—“Rawlsians,” who maximized the worst-off position in distributions for others, avoided riskier gambles for themselves, whereas “utilitarians,” who favored the largest-total distributions, preferred riskier but more profitable gambles; (ii) across such individual choice preferences, however, participants generally showed the greatest spontaneous attention to information about the worst possible outcomes in both tasks; and (iii) this robust concern about the minimum outcomes was correlated with activation of the right temporoparietal junction (RTPJ), the region associated with perspective taking. The results provide convergent evidence that social distribution for others is psychologically linked to risky decision making for self, drawing on common cognitive–neural processes with spontaneous perspective taking of the worst-off position. PMID:27688764
Refining area of occupancy to address the modifiable areal unit problem in ecology and conservation.
Moat, Justin; Bachman, Steven P; Field, Richard; Boyd, Doreen S
2018-05-23
The 'modifiable areal unit problem' is prevalent across many aspects of spatial analysis within ecology and conservation. The problem is particularly manifest when calculating metrics for extinction risk estimation, for example, area of occupancy (AOO). Although embedded into the International Union for the Conservation of Nature (IUCN) Red List criteria, AOO is often not used or is poorly applied. Here we evaluate new and existing methods for calculating AOO from occurrence records and present a method for determining the minimum AOO using a uniform grid. We evaluate the grid cell shape, grid origin and grid rotation with both real-world and simulated data, reviewing the effects on AOO values, and possible impacts for species already assessed on the IUCN Red List. We show that AOO can vary by up to 80% and a ratio of cells to points of 1:1.21 gives the maximum variation in the number of occupied cells. These findings potentially impact 3% of existing species on the IUCN Red List, as well as species not yet assessed. We show that a new method that combines both grid rotation and moving grid origin gives fast, robust and reproducible results and, in the majority of cases, achieves the minimum AOO. As well as reporting minimum AOO, we outline a confidence interval which should be incorporated into existing tools that support species risk assessment. We also make further recommendations for reporting AOO and other areal measurements within ecology, leading to more robust methods for future species risk assessment. This article is protected by copyright. All rights reserved. © 2018 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Bao, Yihai; Main, Joseph A; Noh, Sam-Young
2017-08-01
A computational methodology is presented for evaluating structural robustness against column loss. The methodology is illustrated through application to reinforced concrete (RC) frame buildings, using a reduced-order modeling approach for three-dimensional RC framing systems that includes the floor slabs. Comparisons with high-fidelity finite-element model results are presented to verify the approach. Pushdown analyses of prototype buildings under column loss scenarios are performed using the reduced-order modeling approach, and an energy-based procedure is employed to account for the dynamic effects associated with sudden column loss. Results obtained using the energy-based approach are found to be in good agreement with results from direct dynamic analysis of sudden column loss. A metric for structural robustness is proposed, calculated by normalizing the ultimate capacities of the structural system under sudden column loss by the applicable service-level gravity loading and by evaluating the minimum value of this normalized ultimate capacity over all column removal scenarios. The procedure is applied to two prototype 10-story RC buildings, one employing intermediate moment frames (IMFs) and the other employing special moment frames (SMFs). The SMF building, with its more stringent seismic design and detailing, is found to have greater robustness.
NASA Astrophysics Data System (ADS)
Dosio, Alessandro; Fischer, Erich M.
2018-01-01
Based on high-resolution models, we investigate the change in climate extremes and impact-relevant indicators over Europe under different levels of global warming. We specifically assess the robustness of the changes and the benefits of limiting warming to 1.5°C instead of 2°C. Compared to 1.5°C world, a further 0.5°C warming results in a robust change of minimum summer temperature indices (mean, Tn10p, and Tn900p) over more than 70% of Europe. Robust changes (more than 0.5°C) in maximum temperature affect smaller areas (usually less than 20%). There is a substantial nonlinear change of fixed-threshold indices, with more than 60% increase of the number of tropical nights over southern Europe and more than 50% decrease in the number of frost days over central Europe. The change in mean precipitation due to 0.5°C warming is mostly nonsignificant at the grid point level, but, locally, it is accompanied by a more marked change in extreme rainfall.
Robust Rate Maximization for Heterogeneous Wireless Networks under Channel Uncertainties
Xu, Yongjun; Hu, Yuan; Li, Guoquan
2018-01-01
Heterogeneous wireless networks are a promising technology in next generation wireless communication networks, which has been shown to efficiently reduce the blind area of mobile communication and improve network coverage compared with the traditional wireless communication networks. In this paper, a robust power allocation problem for a two-tier heterogeneous wireless networks is formulated based on orthogonal frequency-division multiplexing technology. Under the consideration of imperfect channel state information (CSI), the robust sum-rate maximization problem is built while avoiding sever cross-tier interference to macrocell user and maintaining the minimum rate requirement of each femtocell user. To be practical, both of channel estimation errors from the femtocells to the macrocell and link uncertainties of each femtocell user are simultaneously considered in terms of outage probabilities of users. The optimization problem is analyzed under no CSI feedback with some cumulative distribution function and partial CSI with Gaussian distribution of channel estimation error. The robust optimization problem is converted into the convex optimization problem which is solved by using Lagrange dual theory and subgradient algorithm. Simulation results demonstrate the effectiveness of the proposed algorithm by the impact of channel uncertainties on the system performance. PMID:29466315
Galí, A; García-Montoya, E; Ascaso, M; Pérez-Lozano, P; Ticó, J R; Miñarro, M; Suñé-Negre, J M
2016-09-01
Although tablet coating processes are widely used in the pharmaceutical industry, they often lack adequate robustness. Up-scaling can be challenging as minor changes in parameters can lead to varying quality results. To select critical process parameters (CPP) using retrospective data of a commercial product and to establish a design of experiments (DoE) that would improve the robustness of the coating process. A retrospective analysis of data from 36 commercial batches. Batches were selected based on the quality results generated during batch release, some of which revealed quality deviations concerning the appearance of the coated tablets. The product is already marketed and belongs to the portfolio of a multinational pharmaceutical company. The Statgraphics 5.1 software was used for data processing to determine critical process parameters in order to propose new working ranges. This study confirms that it is possible to determine the critical process parameters and create design spaces based on retrospective data of commercial batches. This type of analysis is thus converted into a tool to optimize the robustness of existing processes. Our results show that a design space can be established with minimum investment in experiments, since current commercial batch data are processed statistically.
Disaster Metrics: Evaluation of de Boer's Disaster Severity Scale (DSS) Applied to Earthquakes.
Bayram, Jamil D; Zuabi, Shawki; McCord, Caitlin M; Sherak, Raphael A G; Hsu, Edberdt B; Kelen, Gabor D
2015-02-01
Quantitative measurement of the medical severity following multiple-casualty events (MCEs) is an important goal in disaster medicine. In 1990, de Boer proposed a 13-point, 7-parameter scale called the Disaster Severity Scale (DSS). Parameters include cause, duration, radius, number of casualties, nature of injuries, rescue time, and effect on surrounding community. Hypothesis This study aimed to examine the reliability and dimensionality (number of salient themes) of de Boer's DSS scale through its application to 144 discrete earthquake events. A search for earthquake events was conducted via National Oceanic and Atmospheric Administration (NOAA) and US Geological Survey (USGS) databases. Two experts in the field of disaster medicine independently reviewed and assigned scores for parameters that had no data readily available (nature of injuries, rescue time, and effect on surrounding community), and differences were reconciled via consensus. Principle Component Analysis was performed using SPSS Statistics for Windows Version 22.0 (IBM Corp; Armonk, New York USA) to evaluate the reliability and dimensionality of the DSS. A total of 144 individual earthquakes from 2003 through 2013 were identified and scored. Of 13 points possible, the mean score was 6.04, the mode = 5, minimum = 4, maximum = 11, and standard deviation = 2.23. Three parameters in the DSS had zero variance (ie, the parameter received the same score in all 144 earthquakes). Because of the zero contribution to variance, these three parameters (cause, duration, and radius) were removed to run the statistical analysis. Cronbach's alpha score, a coefficient of internal consistency, for the remaining four parameters was found to be robust at 0.89. Principle Component Analysis showed uni-dimensional characteristics with only one component having an eigenvalue greater than one at 3.17. The 4-parameter DSS, however, suffered from restriction of scoring range on both parameter and scale levels. Jan de Boer's DSS in its 7-parameter format fails to hold statistically in a dataset of 144 earthquakes subjected to analysis. A modified 4-parameter scale was found to quantitatively assess medical severity more directly, but remains flawed due to range restriction on both individual parameter and scale levels. Further research is needed in the field of disaster metrics to develop a scale that is reliable in its complete set of parameters, capable of better fine discrimination, and uni-dimensional in measurement of the medical severity of MCEs.
Parameter uncertainty and variability in evaluative fate and exposure models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hertwich, E.G.; McKone, T.E.; Pease, W.S.
The human toxicity potential, a weighting scheme used to evaluate toxic emissions for life cycle assessment and toxics release inventories, is based on potential dose calculations and toxicity factors. This paper evaluates the variance in potential dose calculations that can be attributed to the uncertainty in chemical-specific input parameters as well as the variability in exposure factors and landscape parameters. A knowledge of the uncertainty allows us to assess the robustness of a decision based on the toxicity potential; a knowledge of the sources of uncertainty allows one to focus resources if the uncertainty is to be reduced. The potentialmore » does of 236 chemicals was assessed. The chemicals were grouped by dominant exposure route, and a Monte Carlo analysis was conducted for one representative chemical in each group. The variance is typically one to two orders of magnitude. For comparison, the point estimates in potential dose for 236 chemicals span ten orders of magnitude. Most of the variance in the potential dose is due to chemical-specific input parameters, especially half-lives, although exposure factors such as fish intake and the source of drinking water can be important for chemicals whose dominant exposure is through indirect routes. Landscape characteristics are generally of minor importance.« less
Predicting the evolution of sex on complex fitness landscapes.
Misevic, Dusan; Kouyos, Roger D; Bonhoeffer, Sebastian
2009-09-01
Most population genetic theories on the evolution of sex or recombination are based on fairly restrictive assumptions about the nature of the underlying fitness landscapes. Here we use computer simulations to study the evolution of sex on fitness landscapes with different degrees of complexity and epistasis. We evaluate predictors of the evolution of sex, which are derived from the conditions established in the population genetic literature for the evolution of sex on simpler fitness landscapes. These predictors are based on quantities such as the variance of Hamming distance, mean fitness, additive genetic variance, and epistasis. We show that for complex fitness landscapes all the predictors generally perform poorly. Interestingly, while the simplest predictor, Delta Var(HD), also suffers from a lack of accuracy, it turns out to be the most robust across different types of fitness landscapes. Delta Var(HD) is based on the change in Hamming distance variance induced by recombination and thus does not require individual fitness measurements. The presence of loci that are not under selection can, however, severely diminish predictor accuracy. Our study thus highlights the difficulty of establishing reliable criteria for the evolution of sex on complex fitness landscapes and illustrates the challenge for both theoretical and experimental research on the origin and maintenance of sexual reproduction.
Ivan, J Solomon; Goswami, Kaumudibikash
2015-06-01
Two natural requirements on a measurable quantity possessed by a paraxially propagating light-field to be suitable for free space optical communication are invariance under free space propagation and invariance under transverse plane rotation. While the former invariance ensures that the measurable quantity is robust while signalling through free space, the latter invariance ensures that a detector measuring the quantity can be oriented at any angle in the transverse plane, and a measurement by the detector yields the same value for the quantity irrespective of the transverse angle, thus avoiding alignment issues. The variance matrix of a paraxially propagating light-field is analyzed from the perspective of the aforementioned invariances. That the "charge" of a paraxial light-field, which is contained in the variance matrix, and which has been previously well studied for its suitability toward free space optical communication, possesses these two invariance properties, emerges naturally in the analysis. Seven functionally independent quantities other than charge, which are derived from the variance matrix, and which share these invariances, are presented and studied for their suitability toward signalling through turbulent atmosphere using the low-order Hermite-Gaussian modes. It is found that the spot size of a Gaussian light-field can be effectively used as a switch, to communicate through short distances in a turbulent atmosphere.
Predicting the Evolution of Sex on Complex Fitness Landscapes
Misevic, Dusan; Kouyos, Roger D.; Bonhoeffer, Sebastian
2009-01-01
Most population genetic theories on the evolution of sex or recombination are based on fairly restrictive assumptions about the nature of the underlying fitness landscapes. Here we use computer simulations to study the evolution of sex on fitness landscapes with different degrees of complexity and epistasis. We evaluate predictors of the evolution of sex, which are derived from the conditions established in the population genetic literature for the evolution of sex on simpler fitness landscapes. These predictors are based on quantities such as the variance of Hamming distance, mean fitness, additive genetic variance, and epistasis. We show that for complex fitness landscapes all the predictors generally perform poorly. Interestingly, while the simplest predictor, ΔVarHD, also suffers from a lack of accuracy, it turns out to be the most robust across different types of fitness landscapes. ΔVarHD is based on the change in Hamming distance variance induced by recombination and thus does not require individual fitness measurements. The presence of loci that are not under selection can, however, severely diminish predictor accuracy. Our study thus highlights the difficulty of establishing reliable criteria for the evolution of sex on complex fitness landscapes and illustrates the challenge for both theoretical and experimental research on the origin and maintenance of sexual reproduction. PMID:19763171
NASA Astrophysics Data System (ADS)
Zhu, Ge; Yao, Xu-Ri; Qiu, Peng; Mahmood, Waqas; Yu, Wen-Kai; Sun, Zhi-Bin; Zhai, Guang-Jie; Zhao, Qing
2018-02-01
In general, the sound waves can cause the vibration of the objects that are encountered in the traveling path. If we make a laser beam illuminate the rough surface of an object, it will be scattered into a speckle pattern that vibrates with these sound waves. Here, an efficient variance-based method is proposed to recover the sound information from speckle patterns captured by a high-speed camera. This method allows us to select the proper pixels that have large variances of the gray-value variations over time, from a small region of the speckle patterns. The gray-value variations of these pixels are summed together according to a simple model to recover the sound with a high signal-to-noise ratio. Meanwhile, our method will significantly simplify the computation compared with the traditional digital-image-correlation technique. The effectiveness of the proposed method has been verified by applying a variety of objects. The experimental results illustrate that the proposed method is robust to the quality of the speckle patterns and costs more than one-order less time to perform the same number of the speckle patterns. In our experiment, a sound signal of time duration 1.876 s is recovered from various objects with time consumption of 5.38 s only.
Tokarev, Alexander; Phillips, Abigail R; Hughes, David J; Irwing, Paul
2017-10-01
A growing body of empirical evidence now supports a negative association between dark traits in leaders and the psychological health of employees. To date, such investigations have mostly focused on psychopathy, nonspecific measures of psychological wellbeing, and have not considered the mechanisms through which these relationships might operate. In the current study (N = 508), we utilized other-ratings of personality (employees rated leaders' personality), psychometrically robust measures, and sophisticated modeling techniques, to examine whether the effects of leaders' levels of narcissism and psychopathy on employee depression are mediated by workplace bullying. Structural equation models provided clear evidence to suggest that employee perceptions of both leader narcissism and psychopathy are associated with increased workplace bullying (25.8% and 41.0% variance explained, respectively) and that workplace bullying fully mediates the effect of leader narcissism and psychopathy on employee depression (21.5% and 20.8% variance explained, respectively). However, when psychopathy and narcissism were modeled concurrently, narcissism did not explain any variance in bullying, suggesting that it is the overlap between psychopathy and narcissism, namely, the "dark core," which primarily accounts for the observed effects. We examined this assertion empirically and explored the unique effects of the subfactors of psychopathy. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
A surface hopping algorithm for nonadiabatic minimum energy path calculations.
Schapiro, Igor; Roca-Sanjuán, Daniel; Lindh, Roland; Olivucci, Massimo
2015-02-15
The article introduces a robust algorithm for the computation of minimum energy paths transiting along regions of near-to or degeneracy of adiabatic states. The method facilitates studies of excited state reactivity involving weakly avoided crossings and conical intersections. Based on the analysis of the change in the multiconfigurational wave function the algorithm takes the decision whether the optimization should continue following the same electronic state or switch to a different state. This algorithm helps to overcome convergence difficulties near degeneracies. The implementation in the MOLCAS quantum chemistry package is discussed. To demonstrate the utility of the proposed procedure four examples of application are provided: thymine, asulam, 1,2-dioxetane, and a three-double-bond model of the 11-cis-retinal protonated Schiff base. © 2015 Wiley Periodicals, Inc.
Robust Estimation Based on Walsh Averages for the General Linear Model.
1983-11-01
estimate of I minimizing Ip(Z ) has an influence function proportional to p(y) and its asymptotic 2 2-1 variance-covariance matrix is E(* )/(E...in particular, on the influence function h(y) and quantities appearing in the asymptotic vari- ance. Some cno-ents are made on the one- and two...for signed rank estimates. The function P2 (t) of (1.4) has derivative 2(t) = - if t < -c 0 if It < c + I if t > c. *Then the influence function is h(t
Hanson, Jeffery A; Yang, Haw
2008-11-06
The statistical properties of the cross correlation between two time series has been studied. An analytical expression for the cross correlation function's variance has been derived. On the basis of these results, a statistically robust method has been proposed to detect the existence and determine the direction of cross correlation between two time series. The proposed method has been characterized by computer simulations. Applications to single-molecule fluorescence spectroscopy are discussed. The results may also find immediate applications in fluorescence correlation spectroscopy (FCS) and its variants.
2003-03-01
test returns a p-value greater than 0.05. Similarly, the assumption of constant variance can be confirmed using the Breusch - Pagan test ...megaphone effect. To test this visual observation, the Breusch - Pagan test is applied. .515 6 3.919 31 2 5.371= The p-value returned from this...The data points have a relatively even spread, but a potential megaphone pattern is present. An application of the more robust Breusch - Pagan test
Species interactions differ in their genetic robustness
Chubiz, Lon M.; Granger, Brian R.; Segre, Daniel; ...
2015-04-14
Conflict and cooperation between bacterial species drive the composition and function of microbial communities. Stability of these emergent properties will be influenced by the degree to which species' interactions are robust to genetic perturbations. We use genome-scale metabolic modeling to computationally analyze the impact of genetic changes when Escherichia coli and Salmonella enterica compete, or cooperate. We systematically knocked out in silico each reaction in the metabolic network of E. coli to construct all 2583 mutant stoichiometric models. Then, using a recently developed multi-scale computational framework, we simulated the growth of each mutant E. coli in the presence of S.more » enterica. The type of interaction between species was set by modulating the initial metabolites present in the environment. We found that the community was most robust to genetic perturbations when the organisms were cooperating. Species ratios were more stable in the cooperative community, and community biomass had equal variance in the two contexts. Additionally, the number of mutations that have a substantial effect is lower when the species cooperate than when they are competing. In contrast, when mutations were added to the S. enterica network the system was more robust when the bacteria were competing. These results highlight the utility of connecting metabolic mechanisms and studies of ecological stability. Cooperation and conflict alter the connection between genetic changes and properties that emerge at higher levels of biological organization.« less
Evolution and inheritance of early embryonic patterning in Drosophila simulans and D. sechellia.
Lott, Susan E; Ludwig, Michael Z; Kreitman, Martin
2011-05-01
Pattern formation in Drosophila is a widely studied example of a robust developmental system. Such robust systems pose a challenge to adaptive evolution, as they mask variation that selection may otherwise act upon. Yet we find variation in the localization of expression domains (henceforth "stripe allometry") in the pattern formation pathway. Specifically, we characterize differences in the gap genes giant and Kruppel, and the pair-rule gene even-skipped, which differ between the sibling species Drosophila simulans and D. sechellia. In a double-backcross experiment, stripe allometry is consistent with maternal inheritance of stripe positioning and multiple genetic factors, with a distinct genetic basis from embryo length. Embryos produced by F1 and F2 backcross mothers exhibit novel spatial patterns of gene expression relative to the parental species, with no measurable increase in positional variance among individuals. Buffering of novel spatial patterns in the backcross genotypes suggests that robustness need not be disrupted in order for the trait to evolve, and perhaps the system is incapable of evolving to prevent the expression of all genetic variation. This limitation, and the ability of natural selection to act on minute genetic differences that are within the "margin of error" for the buffering mechanism, indicates that developmentally buffered traits can evolve without disruption of robustness. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.
Zhang, Bao; Yao, Yibin; Fok, Hok Sum; Hu, Yufeng; Chen, Qiang
2016-09-19
This study uses the observed vertical displacements of Global Positioning System (GPS) time series obtained from the Crustal Movement Observation Network of China (CMONOC) with careful pre- and post-processing to estimate the seasonal crustal deformation in response to the hydrological loading in lower three-rivers headwater region of southwest China, followed by inferring the annual EWH changes through geodetic inversion methods. The Helmert Variance Component Estimation (HVCE) and the Minimum Mean Square Error (MMSE) criterion were successfully employed. The GPS inferred EWH changes agree well qualitatively with the Gravity Recovery and Climate Experiment (GRACE)-inferred and the Global Land Data Assimilation System (GLDAS)-inferred EWH changes, with a discrepancy of 3.2-3.9 cm and 4.8-5.2 cm, respectively. In the research areas, the EWH changes in the Lancang basin is larger than in the other regions, with a maximum of 21.8-24.7 cm and a minimum of 3.1-6.9 cm.
NASA Astrophysics Data System (ADS)
Kant Garg, Girish; Garg, Suman; Sangwan, K. S.
2018-04-01
The manufacturing sector consumes huge energy demand and the machine tools used in this sector have very less energy efficiency. Selection of the optimum machining parameters for machine tools is significant for energy saving and for reduction of environmental emission. In this work an empirical model is developed to minimize the power consumption using response surface methodology. The experiments are performed on a lathe machine tool during the turning of AISI 6061 Aluminum with coated tungsten inserts. The relationship between the power consumption and machining parameters is adequately modeled. This model is used for formulation of minimum power consumption criterion as a function of optimal machining parameters using desirability function approach. The influence of machining parameters on the energy consumption has been found using the analysis of variance. The validation of the developed empirical model is proved using the confirmation experiments. The results indicate that the developed model is effective and has potential to be adopted by the industry for minimum power consumption of machine tools.
Blind Channel Equalization with Colored Source Based on Constrained Optimization Methods
NASA Astrophysics Data System (ADS)
Wang, Yunhua; DeBrunner, Linda; DeBrunner, Victor; Zhou, Dayong
2008-12-01
Tsatsanis and Xu have applied the constrained minimum output variance (CMOV) principle to directly blind equalize a linear channel—a technique that has proven effective with white inputs. It is generally assumed in the literature that their CMOV method can also effectively equalize a linear channel with a colored source. In this paper, we prove that colored inputs will cause the equalizer to incorrectly converge due to inadequate constraints. We also introduce a new blind channel equalizer algorithm that is based on the CMOV principle, but with a different constraint that will correctly handle colored sources. Our proposed algorithm works for channels with either white or colored inputs and performs equivalently to the trained minimum mean-square error (MMSE) equalizer under high SNR. Thus, our proposed algorithm may be regarded as an extension of the CMOV algorithm proposed by Tsatsanis and Xu. We also introduce several methods to improve the performance of our introduced algorithm in the low SNR condition. Simulation results show the superior performance of our proposed methods.
Comparative efficacy of storage bags, storability and damage potential of bruchid beetle.
Harish, G; Nataraja, M V; Ajay, B C; Holajjer, Prasanna; Savaliya, S D; Gedia, M V
2014-12-01
Groundnut during storage is attacked by number of stored grain pests and management of these insect pests particularly bruchid beetle, Caryedon serratus (Oliver) is of prime importance as they directly damage the pod and kernels. In this regard different storage bags that could be used and duration up to which we can store groundnut has been studied. Super grain bag recorded minimum number of eggs laid and less damage and minimum weight loss in pods and kernels in comparison to other storage bags. Analysis of variance for multiple regression models were found to be significant in all bags for variables viz, number of eggs laid, damage in pods and kernels, weight loss in pods and kernels throughout the season. Multiple comparison results showed that there was a high probability of eggs laid and pod damage in lino bag, fertilizer bag and gunny bag, whereas super grain bag was found to be more effective in managing the C. serratus owing to very low air circulation.
Noise sensitivity of portfolio selection in constant conditional correlation GARCH models
NASA Astrophysics Data System (ADS)
Varga-Haszonits, I.; Kondor, I.
2007-11-01
This paper investigates the efficiency of minimum variance portfolio optimization for stock price movements following the Constant Conditional Correlation GARCH process proposed by Bollerslev. Simulations show that the quality of portfolio selection can be improved substantially by computing optimal portfolio weights from conditional covariances instead of unconditional ones. Measurement noise can be further reduced by applying some filtering method on the conditional correlation matrix (such as Random Matrix Theory based filtering). As an empirical support for the simulation results, the analysis is also carried out for a time series of S&P500 stock prices.
A Sparse Matrix Approach for Simultaneous Quantification of Nystagmus and Saccade
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.; Stone, Lee; Boyle, Richard D.
2012-01-01
The vestibulo-ocular reflex (VOR) consists of two intermingled non-linear subsystems; namely, nystagmus and saccade. Typically, nystagmus is analysed using a single sufficiently long signal or a concatenation of them. Saccade information is not analysed and discarded due to insufficient data length to provide consistent and minimum variance estimates. This paper presents a novel sparse matrix approach to system identification of the VOR. It allows for the simultaneous estimation of both nystagmus and saccade signals. We show via simulation of the VOR that our technique provides consistent and unbiased estimates in the presence of output additive noise.
Statistical indicators of collective behavior and functional clusters in gene networks of yeast
NASA Astrophysics Data System (ADS)
Živković, J.; Tadić, B.; Wick, N.; Thurner, S.
2006-03-01
We analyze gene expression time-series data of yeast (S. cerevisiae) measured along two full cell-cycles. We quantify these data by using q-exponentials, gene expression ranking and a temporal mean-variance analysis. We construct gene interaction networks based on correlation coefficients and study the formation of the corresponding giant components and minimum spanning trees. By coloring genes according to their cell function we find functional clusters in the correlation networks and functional branches in the associated trees. Our results suggest that a percolation point of functional clusters can be identified on these gene expression correlation networks.
Gravity anomalies, compensation mechanisms, and the geodynamics of western Ishtar Terra, Venus
NASA Technical Reports Server (NTRS)
Grimm, Robert E.; Phillips, Roger J.
1991-01-01
Pioneer Venus line-of-sight orbital accelerations were utilized to calculate the geoid and vertical gravity anomalies for western Ishtar Terra on various planes of altitude z sub 0. The apparent depth of isostatic compensation at z sub 0 = 1400 km is 180 + or - 20 km based on the usual method of minimum variance in the isostatic anomaly. An attempt is made here to explain this observation, as well as the regional elevation, peripheral mountain belts, and inferred age of western Ishtar Terra, in terms of one or three broad geodynamic models.
Minimal Model of Prey Localization through the Lateral-Line System
NASA Astrophysics Data System (ADS)
Franosch, Jan-Moritz P.; Sobotka, Marion C.; Elepfandt, Andreas; van Hemmen, J. Leo
2003-10-01
The clawed frog Xenopus is an aquatic predator catching prey at night by detecting water movements caused by its prey. We present a general method, a “minimal model” based on a minimum-variance estimator, to explain prey detection through the frog's many lateral-line organs, even in case several of them are defunct. We show how waveform reconstruction allows Xenopus' neuronal system to determine both the direction and the character of the prey and even to distinguish two simultaneous wave sources. The results can be applied to many aquatic amphibians, fish, or reptiles such as crocodilians.
Bertrand, Alexander; Seo, Dongjin; Maksimovic, Filip; Carmena, Jose M; Maharbiz, Michel M; Alon, Elad; Rabaey, Jan M
2014-01-01
In this paper, we examine the use of beamforming techniques to interrogate a multitude of neural implants in a distributed, ultrasound-based intra-cortical recording platform known as Neural Dust. We propose a general framework to analyze system design tradeoffs in the ultrasonic beamformer that extracts neural signals from modulated ultrasound waves that are backscattered by free-floating neural dust (ND) motes. Simulations indicate that high-resolution linearly-constrained minimum variance beamforming sufficiently suppresses interference from unselected ND motes and can be incorporated into the ND-based cortical recording system.
Generating Multivariate Ordinal Data via Entropy Principles.
Lee, Yen; Kaplan, David
2018-03-01
When conducting robustness research where the focus of attention is on the impact of non-normality, the marginal skewness and kurtosis are often used to set the degree of non-normality. Monte Carlo methods are commonly applied to conduct this type of research by simulating data from distributions with skewness and kurtosis constrained to pre-specified values. Although several procedures have been proposed to simulate data from distributions with these constraints, no corresponding procedures have been applied for discrete distributions. In this paper, we present two procedures based on the principles of maximum entropy and minimum cross-entropy to estimate the multivariate observed ordinal distributions with constraints on skewness and kurtosis. For these procedures, the correlation matrix of the observed variables is not specified but depends on the relationships between the latent response variables. With the estimated distributions, researchers can study robustness not only focusing on the levels of non-normality but also on the variations in the distribution shapes. A simulation study demonstrates that these procedures yield excellent agreement between specified parameters and those of estimated distributions. A robustness study concerning the effect of distribution shape in the context of confirmatory factor analysis shows that shape can affect the robust [Formula: see text] and robust fit indices, especially when the sample size is small, the data are severely non-normal, and the fitted model is complex.
Optimal Control for Fast and Robust Generation of Entangled States in Anisotropic Heisenberg Chains
NASA Astrophysics Data System (ADS)
Zhang, Xiong-Peng; Shao, Bin; Zou, Jian
2017-05-01
Motivated by some recent results of the optimal control (OC) theory, we study anisotropic XXZ Heisenberg spin-1/2 chains with control fields acting on a single spin, with the aim of exploring how maximally entangled state can be prepared. To achieve the goal, we use a numerical optimization algorithm (e.g., the Krotov algorithm, which was shown to be capable of reaching the quantum speed limit) to search an optimal set of control parameters, and then obtain OC pulses corresponding to the target fidelity. We find that the minimum time for implementing our target state depending on the anisotropy parameter Δ of the model. Finally, we analyze the robustness of the obtained results for the optimal fidelities and the effectiveness of the Krotov method under some realistic conditions.
Novel health monitoring method using an RGB camera.
Hassan, M A; Malik, A S; Fofi, D; Saad, N; Meriaudeau, F
2017-11-01
In this paper we present a novel health monitoring method by estimating the heart rate and respiratory rate using an RGB camera. The heart rate and the respiratory rate are estimated from the photoplethysmography (PPG) and the respiratory motion. The method mainly operates by using the green spectrum of the RGB camera to generate a multivariate PPG signal to perform multivariate de-noising on the video signal to extract the resultant PPG signal. A periodicity based voting scheme (PVS) was used to measure the heart rate and respiratory rate from the estimated PPG signal. We evaluated our proposed method with a state of the art heart rate measuring method for two scenarios using the MAHNOB-HCI database and a self collected naturalistic environment database. The methods were furthermore evaluated for various scenarios at naturalistic environments such as a motion variance session and a skin tone variance session. Our proposed method operated robustly during the experiments and outperformed the state of the art heart rate measuring methods by compensating the effects of the naturalistic environment.
A Secure Base in Adolescence: Markers of Attachment Security in the Mother–Adolescent Relationship
Allen, Joseph P.; McElhaney, Kathleen Boykin; Land, Deborah J.; Kuperminc, Gabriel P.; Moore, Cynthia W.; O’Beirne-Kelly, Heather; Kilmer, Sarah Liebman
2017-01-01
This study sought to identify ways in which adolescent attachment security, as assessed via the Adult Attachment Interview, is manifest in qualities of the secure base provided by the mother–adolescent relationship. Assessments included data coded from mother–adolescent interactions, test-based data, and adolescent self-reports obtained from an ethnically and socioeconomically diverse sample of moderately at-risk 9th and 10th graders. This study found several robust markers of adolescent attachment security in the mother–adolescent relationship. Each of these markers was found to contribute unique variance to explaining adolescent security, and in combination, they accounted for as much as 40% of the raw variance in adolescent security. These findings suggest that security is closely connected to the workings of the mother–adolescent relationship via a secure-base phenomenon, in which the teen can explore independence in thought and speech from the secure base of a maternal relationship characterized by maternal attunement to the adolescent and maternal supportiveness. PMID:12625451
Cao, Yanpeng; Tisse, Christel-Loic
2013-09-01
In uncooled long-wave infrared (LWIR) microbolometer imaging systems, temperature fluctuations of the focal plane array (FPA) result in thermal drift and spatial nonuniformity. In this paper, we present a novel approach based on single-image processing to simultaneously estimate temperature variances of FPAs and compensate the resulting temperature-dependent nonuniformity. Through well-controlled thermal calibrations, empirical behavioral models are derived to characterize the relationship between the responses of microbolometer and FPA temperature variations. Then, under the assumption that strong dependency exists between spatially adjacent pixels, we estimate the optimal FPA temperature so as to minimize the global intensity variance across the entire thermal infrared image. We make use of the estimated FPA temperature to infer an appropriate nonuniformity correction (NUC) profile. The performance and robustness of the proposed temperature-adaptive NUC method are evaluated on realistic IR images obtained by a 640 × 512 pixels uncooled LWIR microbolometer imaging system operating in a significantly changed temperature environment.
Magnetic resonance image restoration via dictionary learning under spatially adaptive constraints.
Wang, Shanshan; Xia, Yong; Dong, Pei; Feng, David Dagan; Luo, Jianhua; Huang, Qiu
2013-01-01
This paper proposes a spatially adaptive constrained dictionary learning (SAC-DL) algorithm for Rician noise removal in magnitude magnetic resonance (MR) images. This algorithm explores both the strength of dictionary learning to preserve image structures and the robustness of local variance estimation to remove signal-dependent Rician noise. The magnitude image is first separated into a number of partly overlapping image patches. The statistics of each patch are collected and analyzed to obtain a local noise variance. To better adapt to Rician noise, a correction factor is formulated with the local signal-to-noise ratio (SNR). Finally, the trained dictionary is used to denoise each image patch under spatially adaptive constraints. The proposed algorithm has been compared to the popular nonlocal means (NLM) filtering and unbiased NLM (UNLM) algorithm on simulated T1-weighted, T2-weighted and PD-weighted MR images. Our results suggest that the SAC-DL algorithm preserves more image structures while effectively removing the noise than NLM and it is also superior to UNLM at low noise levels.
Increasing ENSO-Driven Drought and Wildfire Risks in a Warming Climate
NASA Astrophysics Data System (ADS)
Fasullo, J.; Otto-Bliesner, B. L.; Stevenson, S.
2015-12-01
ENSO-related teleconnections occurring in the transient climate states of the 20th and 21st centuries are examined using the NCAR CESM1-CAM5 Large Ensemble (LE). A focus is given to quantifying the changing nature of related variability in a warming climate, the statistical robustness of which is enhanced by the numerous members of the LE (presently ~40). It is found that while the dynamical components of ENSO's teleconnections weaken considerably in a warming world, associated variability over land is in many cases sustained by changes in the background state, such as for rainfall due to the background rise in specific humidity. In some fields, particularly those associated with associated with thermal stress (e.g. drought and wildfire), ENSO-related variance increases dramatically. This, combined with the fact that ENSO variance itself increases in a warming climate in the LE, contributes to dramatic projected increases in ENSO-driven drought and wildfire risks in a warming world.
Zaitlen, Noah A.; Ye, Chun Jimmie; Witte, John S.
2016-01-01
The role of rare alleles in complex phenotypes has been hotly debated, but most rare variant association tests (RVATs) do not account for the evolutionary forces that affect genetic architecture. Here, we use simulation and numerical algorithms to show that explosive population growth, as experienced by human populations, can dramatically increase the impact of very rare alleles on trait variance. We then assess the ability of RVATs to detect causal loci using simulations and human RNA-seq data. Surprisingly, we find that statistical performance is worst for phenotypes in which genetic variance is due mainly to rare alleles, and explosive population growth decreases power. Although many studies have attempted to identify causal rare variants, few have reported novel associations. This has sometimes been interpreted to mean that rare variants make negligible contributions to complex trait heritability. Our work shows that RVATs are not robust to realistic human evolutionary forces, so general conclusions about the impact of rare variants on complex traits may be premature. PMID:27197206
Gaussian processes with optimal kernel construction for neuro-degenerative clinical onset prediction
NASA Astrophysics Data System (ADS)
Canas, Liane S.; Yvernault, Benjamin; Cash, David M.; Molteni, Erika; Veale, Tom; Benzinger, Tammie; Ourselin, Sébastien; Mead, Simon; Modat, Marc
2018-02-01
Gaussian Processes (GP) are a powerful tool to capture the complex time-variations of a dataset. In the context of medical imaging analysis, they allow a robust modelling even in case of highly uncertain or incomplete datasets. Predictions from GP are dependent of the covariance kernel function selected to explain the data variance. To overcome this limitation, we propose a framework to identify the optimal covariance kernel function to model the data.The optimal kernel is defined as a composition of base kernel functions used to identify correlation patterns between data points. Our approach includes a modified version of the Compositional Kernel Learning (CKL) algorithm, in which we score the kernel families using a new energy function that depends both the Bayesian Information Criterion (BIC) and the explained variance score. We applied the proposed framework to model the progression of neurodegenerative diseases over time, in particular the progression of autosomal dominantly-inherited Alzheimer's disease, and use it to predict the time to clinical onset of subjects carrying genetic mutation.
Robustness of survival estimates for radio-marked animals
Bunck, C.M.; Chen, C.-L.
1992-01-01
Telemetry techniques are often used to study the survival of birds and mammals; particularly whcn mark-recapture approaches are unsuitable. Both parametric and nonparametric methods to estimate survival have becn developed or modified from other applications. An implicit assumption in these approaches is that the probability of re-locating an animal with a functioning transmitter is one. A Monte Carlo study was conducted to determine the bias and variance of the Kaplan-Meier estimator and an estimator based also on the assumption of constant hazard and to eva!uate the performance of the two-sample tests associated with each. Modifications of each estimator which allow a re-Iocation probability of less than one are described and evaluated. Generallv the unmodified estimators were biased but had lower variance. At low sample sizes all estimators performed poorly. Under the null hypothesis, the distribution of all test statistics reasonably approximated the null distribution when survival was low but not when it was high. The power of the two-sample tests were similar.
NASA Technical Reports Server (NTRS)
Switzer, Eric Ryan; Watts, Duncan J.
2016-01-01
The B-mode polarization of the cosmic microwave background provides a unique window into tensor perturbations from inflationary gravitational waves. Survey effects complicate the estimation and description of the power spectrum on the largest angular scales. The pixel-space likelihood yields parameter distributions without the power spectrum as an intermediate step, but it does not have the large suite of tests available to power spectral methods. Searches for primordial B-modes must rigorously reject and rule out contamination. Many forms of contamination vary or are uncorrelated across epochs, frequencies, surveys, or other data treatment subsets. The cross power and the power spectrum of the difference of subset maps provide approaches to reject and isolate excess variance. We develop an analogous joint pixel-space likelihood. Contamination not modeled in the likelihood produces parameter-dependent bias and complicates the interpretation of the difference map. We describe a null test that consistently weights the difference map. Excess variance should either be explicitly modeled in the covariance or be removed through reprocessing the data.
Naragon-Gainey, Kristin; Gallagher, Matthew W.; Brown, Timothy A.
2013-01-01
A large body of research has found robust associations between dimensions of temperament (e.g., neuroticism, extraversion) and the mood and anxiety disorders. However, mood-state distortion (i.e., the tendency for current mood state to bias ratings of temperament) likely confounds these associations, rendering their interpretation and validity unclear. This issue is of particular relevance to clinical populations who experience elevated levels of general distress. The current study used the “trait-state-occasion” latent variable model (Cole, Martin, & Steiger, 2005) to separate the stable components of temperament from transient, situational influences such as current mood state. We examined the predictive power of the time-invariant components of temperament on the course of depression and social phobia in a large, treatment-seeking sample with mood and/or anxiety disorders (N = 826). Participants were assessed three times over the course of one year, using interview and self-report measures; most participants received treatment during this time. Results indicated that both neuroticism/behavioral inhibition (N/BI) and behavioral activation/positive affect (BA/P) consisted largely of stable, time-invariant variance (57% to 78% of total variance). Furthermore, the time-invariant components of N/BI and BA/P were uniquely and incrementally predictive of change in depression and social phobia, adjusting for initial symptom levels. These results suggest that the removal of state variance bolsters the effect of temperament on psychopathology among clinically distressed individuals. Implications for temperament-psychopathology models, psychopathology assessment, and the stability of traits are discussed. PMID:24016004
Multisite Reliability of Cognitive BOLD Data
Brown, Gregory G.; Mathalon, Daniel H.; Stern, Hal; Ford, Judith; Mueller, Bryon; Greve, Douglas N.; McCarthy, Gregory; Voyvodic, Jim; Glover, Gary; Diaz, Michele; Yetter, Elizabeth; Burak Ozyurt, I.; Jorgensen, Kasper W.; Wible, Cynthia G.; Turner, Jessica A.; Thompson, Wesley K.; Potkin, Steven G.
2010-01-01
Investigators perform multi-site functional magnetic resonance imaging studies to increase statistical power, to enhance generalizability, and to improve the likelihood of sampling relevant subgroups. Yet undesired site variation in imaging methods could off-set these potential advantages. We used variance components analysis to investigate sources of variation in the blood oxygen level dependent (BOLD) signal across four 3T magnets in voxelwise and region of interest (ROI) analyses. Eighteen participants traveled to four magnet sites to complete eight runs of a working memory task involving emotional or neutral distraction. Person variance was more than 10 times larger than site variance for five of six ROIs studied. Person-by-site interactions, however, contributed sizable unwanted variance to the total. Averaging over runs increased between-site reliability, with many voxels showing good to excellent between-site reliability when eight runs were averaged and regions of interest showing fair to good reliability. Between-site reliability depended on the specific functional contrast analyzed in addition to the number of runs averaged. Although median effect size was correlated with between-site reliability, dissociations were observed for many voxels. Brain regions where the pooled effect size was large but between-site reliability was poor were associated with reduced individual differences. Brain regions where the pooled effect size was small but between-site reliability was excellent were associated with a balance of participants who displayed consistently positive or consistently negative BOLD responses. Although between-site reliability of BOLD data can be good to excellent, acquiring highly reliable data requires robust activation paradigms, ongoing quality assurance, and careful experimental control. PMID:20932915
Naragon-Gainey, Kristin; Gallagher, Matthew W; Brown, Timothy A
2013-08-01
A large body of research has found robust associations between dimensions of temperament (e.g., neuroticism, extraversion) and the mood and anxiety disorders. However, mood-state distortion (i.e., the tendency for current mood state to bias ratings of temperament) likely confounds these associations, rendering their interpretation and validity unclear. This issue is of particular relevance to clinical populations who experience elevated levels of general distress. The current study used the "trait-state-occasion" latent variable model (D. A. Cole, N. C. Martin, & J. H. Steiger, 2005) to separate the stable components of temperament from transient, situational influences such as current mood state. We examined the predictive power of the time-invariant components of temperament on the course of depression and social phobia in a large, treatment-seeking sample with mood and/or anxiety disorders (N = 826). Participants were assessed 3 times over the course of 1 year, using interview and self-report measures; most participants received treatment during this time. Results indicated that both neuroticism/behavioral inhibition (N/BI) and behavioral activation/positive affect (BA/P) consisted largely of stable, time-invariant variance (57% to 78% of total variance). Furthermore, the time-invariant components of N/BI and BA/P were uniquely and incrementally predictive of change in depression and social phobia, adjusting for initial symptom levels. These results suggest that the removal of state variance bolsters the effect of temperament on psychopathology among clinically distressed individuals. Implications for temperament-psychopathology models, psychopathology assessment, and the stability of traits are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Wallace, I J; Botigué, L R; Lin, M; Smaers, J B; Henn, B M; Grine, F E
2016-09-01
This study investigates the influence of genetic differentiation in determining worldwide heterogeneity in osteoporosis-related hip fracture rates. The results indicate that global variation in fracture incidence exceeds that expected on the basis of random genetic variance. Worldwide, the incidence of osteoporotic hip fractures varies considerably. This variability is believed to relate mainly to non-genetic factors. It is conceivable, however, that genetic susceptibility indeed differs across populations. Here, we present the first quantitative assessment of the effects of genetic differentiation on global variability in hip fracture rates. We investigate the observed variance in publically reported age-standardized rates of hip fracture among 28 populations from around the world relative to the expected variance given the phylogenetic relatedness of these populations. The extent to which these variances are similar constitutes a "phylogenetic signal," which was measured using the K statistic. Population genetic divergence was calculated using a robust array of genome-wide single nucleotide polymorphisms. While phylogenetic signal is maximized when K > 1, a K value of only 0.103 was detected in the combined-sex fracture rate pattern across the 28 populations, indicating that fracture rates vary more than expected based on phylogenetic relationships. When fracture rates for the sexes were analyzed separately, the degree of phylogenetic signal was also found to be small (females: K = 0.102; males: K = 0.081). The lack of a strong phylogenetic signal underscores the importance of factors other than stochastic genetic diversity in shaping worldwide heterogeneity in hip fracture incidence.