Sample records for robust numerical integration

  1. A Novel Robust H∞ Filter Based on Krein Space Theory in the SINS/CNS Attitude Reference System.

    PubMed

    Yu, Fei; Lv, Chongyang; Dong, Qianhui

    2016-03-18

    Owing to their numerous merits, such as compact, autonomous and independence, the strapdown inertial navigation system (SINS) and celestial navigation system (CNS) can be used in marine applications. What is more, due to the complementary navigation information obtained from two different kinds of sensors, the accuracy of the SINS/CNS integrated navigation system can be enhanced availably. Thus, the SINS/CNS system is widely used in the marine navigation field. However, the CNS is easily interfered with by the surroundings, which will lead to the output being discontinuous. Thus, the uncertainty problem caused by the lost measurement will reduce the system accuracy. In this paper, a robust H∞ filter based on the Krein space theory is proposed. The Krein space theory is introduced firstly, and then, the linear state and observation models of the SINS/CNS integrated navigation system are established reasonably. By taking the uncertainty problem into account, in this paper, a new robust H∞ filter is proposed to improve the robustness of the integrated system. At last, this new robust filter based on the Krein space theory is estimated by numerical simulations and actual experiments. Additionally, the simulation and experiment results and analysis show that the attitude errors can be reduced by utilizing the proposed robust filter effectively when the measurements are missing discontinuous. Compared to the traditional Kalman filter (KF) method, the accuracy of the SINS/CNS integrated system is improved, verifying the robustness and the availability of the proposed robust H∞ filter.

  2. Integrated approaches to the application of advanced modeling technology in process development and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgor, R.J.; Feehery, W.F.; Tolsma, J.E.

    The batch process development problem serves as good candidate to guide the development of process modeling environments. It demonstrates that very robust numerical techniques are required within an environment that can collect, organize, and maintain the data and models required to address the batch process development problem. This paper focuses on improving the robustness and efficiency of the numerical algorithms required in such a modeling environment through the development of hybrid numerical and symbolic strategies.

  3. A Novel Robust H∞ Filter Based on Krein Space Theory in the SINS/CNS Attitude Reference System

    PubMed Central

    Yu, Fei; Lv, Chongyang; Dong, Qianhui

    2016-01-01

    Owing to their numerous merits, such as compact, autonomous and independence, the strapdown inertial navigation system (SINS) and celestial navigation system (CNS) can be used in marine applications. What is more, due to the complementary navigation information obtained from two different kinds of sensors, the accuracy of the SINS/CNS integrated navigation system can be enhanced availably. Thus, the SINS/CNS system is widely used in the marine navigation field. However, the CNS is easily interfered with by the surroundings, which will lead to the output being discontinuous. Thus, the uncertainty problem caused by the lost measurement will reduce the system accuracy. In this paper, a robust H∞ filter based on the Krein space theory is proposed. The Krein space theory is introduced firstly, and then, the linear state and observation models of the SINS/CNS integrated navigation system are established reasonably. By taking the uncertainty problem into account, in this paper, a new robust H∞ filter is proposed to improve the robustness of the integrated system. At last, this new robust filter based on the Krein space theory is estimated by numerical simulations and actual experiments. Additionally, the simulation and experiment results and analysis show that the attitude errors can be reduced by utilizing the proposed robust filter effectively when the measurements are missing discontinuous. Compared to the traditional Kalman filter (KF) method, the accuracy of the SINS/CNS integrated system is improved, verifying the robustness and the availability of the proposed robust H∞ filter. PMID:26999153

  4. Robust numerical electromagnetic eigenfunction expansion algorithms

    NASA Astrophysics Data System (ADS)

    Sainath, Kamalesh

    This thesis summarizes developments in rigorous, full-wave, numerical spectral-domain (integral plane wave eigenfunction expansion [PWE]) evaluation algorithms concerning time-harmonic electromagnetic (EM) fields radiated by generally-oriented and positioned sources within planar and tilted-planar layered media exhibiting general anisotropy, thickness, layer number, and loss characteristics. The work is motivated by the need to accurately and rapidly model EM fields radiated by subsurface geophysical exploration sensors probing layered, conductive media, where complex geophysical and man-made processes can lead to micro-laminate and micro-fractured geophysical formations exhibiting, at the lower (sub-2MHz) frequencies typically employed for deep EM wave penetration through conductive geophysical media, bulk-scale anisotropic (i.e., directional) electrical conductivity characteristics. When the planar-layered approximation (layers of piecewise-constant material variation and transversely-infinite spatial extent) is locally, near the sensor region, considered valid, numerical spectral-domain algorithms are suitable due to their strong low-frequency stability characteristic, and ability to numerically predict time-harmonic EM field propagation in media with response characterized by arbitrarily lossy and (diagonalizable) dense, anisotropic tensors. If certain practical limitations are addressed, PWE can robustly model sensors with general position and orientation that probe generally numerous, anisotropic, lossy, and thick layers. The main thesis contributions, leading to a sensor and geophysical environment-robust numerical modeling algorithm, are as follows: (1) Simple, rapid estimator of the region (within the complex plane) containing poles, branch points, and branch cuts (critical points) (Chapter 2), (2) Sensor and material-adaptive azimuthal coordinate rotation, integration contour deformation, integration domain sub-region partition and sub-region-dependent integration order (Chapter 3), (3) Integration partition-extrapolation-based (Chapter 3) and Gauss-Laguerre Quadrature (GLQ)-based (Chapter 4) evaluations of the deformed, semi-infinite-length integration contour tails, (4) Robust in-situ-based (i.e., at the spectral-domain integrand level) direct/homogeneous-medium field contribution subtraction and analytical curbing of the source current spatial spectrum function's ill behavior (Chapter 5), and (5) Analytical re-casting of the direct-field expressions when the source is embedded within a NBAM, short for non-birefringent anisotropic medium (Chapter 6). The benefits of these contributions are, respectively, (1) Avoiding computationally intensive critical-point location and tracking (computation time savings), (2) Sensor and material-robust curbing of the integrand's oscillatory and slow decay behavior, as well as preventing undesirable critical-point migration within the complex plane (computation speed, precision, and instability-avoidance benefits), (3) sensor and material-robust reduction (or, for GLQ, elimination) of integral truncation error, (4) robustly stable modeling of scattered fields and/or fields radiated from current sources modeled as spatially distributed (10 to 1000-fold compute-speed acceleration also realized for distributed-source computations), and (5) numerically stable modeling of fields radiated from sources within NBAM layers. Having addressed these limitations, are PWE algorithms applicable to modeling EM waves in tilted planar-layered geometries too? This question is explored in Chapter 7 using a Transformation Optics-based approach, allowing one to model wave propagation through layered media that (in the sensor's vicinity) possess tilted planar interfaces. The technique leads to spurious wave scattering however, whose induced computation accuracy degradation requires analysis. Mathematical exhibition, and exhaustive simulation-based study and analysis of the limitations of, this novel tilted-layer modeling formulation is Chapter 7's main contribution.

  5. Model reference tracking control of an aircraft: a robust adaptive approach

    NASA Astrophysics Data System (ADS)

    Tanyer, Ilker; Tatlicioglu, Enver; Zergeroglu, Erkan

    2017-05-01

    This work presents the design and the corresponding analysis of a nonlinear robust adaptive controller for model reference tracking of an aircraft that has parametric uncertainties in its system matrices and additive state- and/or time-dependent nonlinear disturbance-like terms in its dynamics. Specifically, robust integral of the sign of the error feedback term and an adaptive term is fused with a proportional integral controller. Lyapunov-based stability analysis techniques are utilised to prove global asymptotic convergence of the output tracking error. Extensive numerical simulations are presented to illustrate the performance of the proposed robust adaptive controller.

  6. Robust computation of dipole electromagnetic fields in arbitrarily anisotropic, planar-stratified environments.

    PubMed

    Sainath, Kamalesh; Teixeira, Fernando L; Donderici, Burkay

    2014-01-01

    We develop a general-purpose formulation, based on two-dimensional spectral integrals, for computing electromagnetic fields produced by arbitrarily oriented dipoles in planar-stratified environments, where each layer may exhibit arbitrary and independent anisotropy in both its (complex) permittivity and permeability tensors. Among the salient features of our formulation are (i) computation of eigenmodes (characteristic plane waves) supported in arbitrarily anisotropic media in a numerically robust fashion, (ii) implementation of an hp-adaptive refinement for the numerical integration to evaluate the radiation and weakly evanescent spectra contributions, and (iii) development of an adaptive extension of an integral convergence acceleration technique to compute the strongly evanescent spectrum contribution. While other semianalytic techniques exist to solve this problem, none have full applicability to media exhibiting arbitrary double anisotropies in each layer, where one must account for the whole range of possible phenomena (e.g., mode coupling at interfaces and nonreciprocal mode propagation). Brute-force numerical methods can tackle this problem but only at a much higher computational cost. The present formulation provides an efficient and robust technique for field computation in arbitrary planar-stratified environments. We demonstrate the formulation for a number of problems related to geophysical exploration.

  7. A new operational approach for solving fractional variational problems depending on indefinite integrals

    NASA Astrophysics Data System (ADS)

    Ezz-Eldien, S. S.; Doha, E. H.; Bhrawy, A. H.; El-Kalaawy, A. A.; Machado, J. A. T.

    2018-04-01

    In this paper, we propose a new accurate and robust numerical technique to approximate the solutions of fractional variational problems (FVPs) depending on indefinite integrals with a type of fixed Riemann-Liouville fractional integral. The proposed technique is based on the shifted Chebyshev polynomials as basis functions for the fractional integral operational matrix (FIOM). Together with the Lagrange multiplier method, these problems are then reduced to a system of algebraic equations, which greatly simplifies the solution process. Numerical examples are carried out to confirm the accuracy, efficiency and applicability of the proposed algorithm

  8. Adaptive integral robust control and application to electromechanical servo systems.

    PubMed

    Deng, Wenxiang; Yao, Jianyong

    2017-03-01

    This paper proposes a continuous adaptive integral robust control with robust integral of the sign of the error (RISE) feedback for a class of uncertain nonlinear systems, in which the RISE feedback gain is adapted online to ensure the robustness against disturbances without the prior bound knowledge of the additive disturbances. In addition, an adaptive compensation integrated with the proposed adaptive RISE feedback term is also constructed to further reduce design conservatism when the system also exists parametric uncertainties. Lyapunov analysis reveals the proposed controllers could guarantee the tracking errors are asymptotically converging to zero with continuous control efforts. To illustrate the high performance nature of the developed controllers, numerical simulations are provided. At the end, an application case of an actual electromechanical servo system driven by motor is also studied, with some specific design consideration, and comparative experimental results are obtained to verify the effectiveness of the proposed controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. The Space-Time Conservation Element and Solution Element Method: A New High-Resolution and Genuinely Multidimensional Paradigm for Solving Conservation Laws. 1; The Two Dimensional Time Marching Schemes

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Wang, Xiao-Yen; Chow, Chuen-Yen

    1998-01-01

    A new high resolution and genuinely multidimensional numerical method for solving conservation laws is being, developed. It was designed to avoid the limitations of the traditional methods. and was built from round zero with extensive physics considerations. Nevertheless, its foundation is mathmatically simple enough that one can build from it a coherent, robust. efficient and accurate numerical framework. Two basic beliefs that set the new method apart from the established methods are at the core of its development. The first belief is that, in order to capture physics more efficiently and realistically, the modeling, focus should be placed on the original integral form of the physical conservation laws, rather than the differential form. The latter form follows from the integral form under the additional assumption that the physical solution is smooth, an assumption that is difficult to realize numerically in a region of rapid chance. such as a boundary layer or a shock. The second belief is that, with proper modeling of the integral and differential forms themselves, the resulting, numerical solution should automatically be consistent with the properties derived front the integral and differential forms, e.g., the jump conditions across a shock and the properties of characteristics. Therefore a much simpler and more robust method can be developed by not using the above derived properties explicitly.

  10. Long-term dynamic modeling of tethered spacecraft using nodal position finite element method and symplectic integration

    NASA Astrophysics Data System (ADS)

    Li, G. Q.; Zhu, Z. H.

    2015-12-01

    Dynamic modeling of tethered spacecraft with the consideration of elasticity of tether is prone to the numerical instability and error accumulation over long-term numerical integration. This paper addresses the challenges by proposing a globally stable numerical approach with the nodal position finite element method (NPFEM) and the implicit, symplectic, 2-stage and 4th order Gaussian-Legendre Runge-Kutta time integration. The NPFEM eliminates the numerical error accumulation by using the position instead of displacement of tether as the state variable, while the symplectic integration enforces the energy and momentum conservation of the discretized finite element model to ensure the global stability of numerical solution. The effectiveness and robustness of the proposed approach is assessed by an elastic pendulum problem, whose dynamic response resembles that of tethered spacecraft, in comparison with the commonly used time integrators such as the classical 4th order Runge-Kutta schemes and other families of non-symplectic Runge-Kutta schemes. Numerical results show that the proposed approach is accurate and the energy of the corresponding numerical model is conservative over the long-term numerical integration. Finally, the proposed approach is applied to the dynamic modeling of deorbiting process of tethered spacecraft over a long period.

  11. A spectral boundary integral equation method for the 2-D Helmholtz equation

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    1994-01-01

    In this paper, we present a new numerical formulation of solving the boundary integral equations reformulated from the Helmholtz equation. The boundaries of the problems are assumed to be smooth closed contours. The solution on the boundary is treated as a periodic function, which is in turn approximated by a truncated Fourier series. A Fourier collocation method is followed in which the boundary integral equation is transformed into a system of algebraic equations. It is shown that in order to achieve spectral accuracy for the numerical formulation, the nonsmoothness of the integral kernels, associated with the Helmholtz equation, must be carefully removed. The emphasis of the paper is on investigating the essential elements of removing the nonsmoothness of the integral kernels in the spectral implementation. The present method is robust for a general boundary contour. Aspects of efficient implementation of the method using FFT are also discussed. A numerical example of wave scattering is given in which the exponential accuracy of the present numerical method is demonstrated.

  12. Research on the Efficacy of Sensory Integration Therapy: Past, Present and Future

    ERIC Educational Resources Information Center

    Leong, Han M.; Carter, Mark

    2008-01-01

    Research on the efficacy of sensory integration therapy (SIT) is addressed in this article. Initially, past key reviews of intervention studies until 1994 are considered. Subsequently, more recent studies from 1994 until 2007 are examined. Consistent with numerous previous reviews, no robust evidence supporting the efficacy of SIT was found.…

  13. Event and Apparent Horizon Finders for 3 + 1 Numerical Relativity.

    PubMed

    Thornburg, Jonathan

    2007-01-01

    Event and apparent horizons are key diagnostics for the presence and properties of black holes. In this article I review numerical algorithms and codes for finding event and apparent horizons in numerically-computed spacetimes, focusing on calculations done using the 3 + 1 ADM formalism. The event horizon of an asymptotically-flat spacetime is the boundary between those events from which a future-pointing null geodesic can reach future null infinity and those events from which no such geodesic exists. The event horizon is a (continuous) null surface in spacetime. The event horizon is defined nonlocally in time : it is a global property of the entire spacetime and must be found in a separate post-processing phase after all (or at least the nonstationary part) of spacetime has been numerically computed. There are three basic algorithms for finding event horizons, based on integrating null geodesics forwards in time, integrating null geodesics backwards in time, and integrating null surfaces backwards in time. The last of these is generally the most efficient and accurate. In contrast to an event horizon, an apparent horizon is defined locally in time in a spacelike slice and depends only on data in that slice, so it can be (and usually is) found during the numerical computation of a spacetime. A marginally outer trapped surface (MOTS) in a slice is a smooth closed 2-surface whose future-pointing outgoing null geodesics have zero expansion Θ. An apparent horizon is then defined as a MOTS not contained in any other MOTS. The MOTS condition is a nonlinear elliptic partial differential equation (PDE) for the surface shape, containing the ADM 3-metric, its spatial derivatives, and the extrinsic curvature as coefficients. Most "apparent horizon" finders actually find MOTSs. There are a large number of apparent horizon finding algorithms, with differing trade-offs between speed, robustness, accuracy, and ease of programming. In axisymmetry, shooting algorithms work well and are fairly easy to program. In slices with no continuous symmetries, spectral integral-iteration algorithms and elliptic-PDE algorithms are fast and accurate, but require good initial guesses to converge. In many cases, Schnetter's "pretracking" algorithm can greatly improve an elliptic-PDE algorithm's robustness. Flow algorithms are generally quite slow but can be very robust in their convergence. Minimization methods are slow and relatively inaccurate in the context of a finite differencing simulation, but in a spectral code they can be relatively faster and more robust.

  14. Finite element implementation of state variable-based viscoplasticity models

    NASA Technical Reports Server (NTRS)

    Iskovitz, I.; Chang, T. Y. P.; Saleeb, A. F.

    1991-01-01

    The implementation of state variable-based viscoplasticity models is made in a general purpose finite element code for structural applications of metals deformed at elevated temperatures. Two constitutive models, Walker's and Robinson's models, are studied in conjunction with two implicit integration methods: the trapezoidal rule with Newton-Raphson iterations and an asymptotic integration algorithm. A comparison is made between the two integration methods, and the latter method appears to be computationally more appealing in terms of numerical accuracy and CPU time. However, in order to make the asymptotic algorithm robust, it is necessary to include a self adaptive scheme with subincremental step control and error checking of the Jacobian matrix at the integration points. Three examples are given to illustrate the numerical aspects of the integration methods tested.

  15. Experimenting with galaxies

    NASA Technical Reports Server (NTRS)

    Miller, Richard H.

    1992-01-01

    A study to demonstrate how the dynamics of galaxies may be investigated through the creation of galaxies within a computer model is presented. The numerical technique for simulating galaxies is shown to be both highly efficient and highly robust. Consideration is given to the anatomy of a galaxy, the gravitational N-body problem, numerical approaches to the N-body problem, use of the Poisson equation, and the symplectic integrator.

  16. Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture.

    PubMed

    Ye, Jingfei; Gao, Zhishan; Wang, Shuai; Cheng, Jinlong; Wang, Wei; Sun, Wenqing

    2014-10-01

    Four orthogonal polynomials for reconstructing a wavefront over a square aperture based on the modal method are currently available, namely, the 2D Chebyshev polynomials, 2D Legendre polynomials, Zernike square polynomials and Numerical polynomials. They are all orthogonal over the full unit square domain. 2D Chebyshev polynomials are defined by the product of Chebyshev polynomials in x and y variables, as are 2D Legendre polynomials. Zernike square polynomials are derived by the Gram-Schmidt orthogonalization process, where the integration region across the full unit square is circumscribed outside the unit circle. Numerical polynomials are obtained by numerical calculation. The presented study is to compare these four orthogonal polynomials by theoretical analysis and numerical experiments from the aspects of reconstruction accuracy, remaining errors, and robustness. Results show that the Numerical orthogonal polynomial is superior to the other three polynomials because of its high accuracy and robustness even in the case of a wavefront with incomplete data.

  17. Stochastic Integration H∞ Filter for Rapid Transfer Alignment of INS.

    PubMed

    Zhou, Dapeng; Guo, Lei

    2017-11-18

    The performance of an inertial navigation system (INS) operated on a moving base greatly depends on the accuracy of rapid transfer alignment (RTA). However, in practice, the coexistence of large initial attitude errors and uncertain observation noise statistics poses a great challenge for the estimation accuracy of misalignment angles. This study aims to develop a novel robust nonlinear filter, namely the stochastic integration H ∞ filter (SIH ∞ F) for improving both the accuracy and robustness of RTA. In this new nonlinear H ∞ filter, the stochastic spherical-radial integration rule is incorporated with the framework of the derivative-free H ∞ filter for the first time, and the resulting SIH ∞ F simultaneously attenuates the negative effect in estimations caused by significant nonlinearity and large uncertainty. Comparisons between the SIH ∞ F and previously well-known methodologies are carried out by means of numerical simulation and a van test. The results demonstrate that the newly-proposed method outperforms the cubature H ∞ filter. Moreover, the SIH ∞ F inherits the benefit of the traditional stochastic integration filter, but with more robustness in the presence of uncertainty.

  18. Constraint treatment techniques and parallel algorithms for multibody dynamic analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chiou, Jin-Chern

    1990-01-01

    Computational procedures for kinematic and dynamic analysis of three-dimensional multibody dynamic (MBD) systems are developed from the differential-algebraic equations (DAE's) viewpoint. Constraint violations during the time integration process are minimized and penalty constraint stabilization techniques and partitioning schemes are developed. The governing equations of motion, a two-stage staggered explicit-implicit numerical algorithm, are treated which takes advantage of a partitioned solution procedure. A robust and parallelizable integration algorithm is developed. This algorithm uses a two-stage staggered central difference algorithm to integrate the translational coordinates and the angular velocities. The angular orientations of bodies in MBD systems are then obtained by using an implicit algorithm via the kinematic relationship between Euler parameters and angular velocities. It is shown that the combination of the present solution procedures yields a computationally more accurate solution. To speed up the computational procedures, parallel implementation of the present constraint treatment techniques, the two-stage staggered explicit-implicit numerical algorithm was efficiently carried out. The DAE's and the constraint treatment techniques were transformed into arrowhead matrices to which Schur complement form was derived. By fully exploiting the sparse matrix structural analysis techniques, a parallel preconditioned conjugate gradient numerical algorithm is used to solve the systems equations written in Schur complement form. A software testbed was designed and implemented in both sequential and parallel computers. This testbed was used to demonstrate the robustness and efficiency of the constraint treatment techniques, the accuracy of the two-stage staggered explicit-implicit numerical algorithm, and the speed up of the Schur-complement-based parallel preconditioned conjugate gradient algorithm on a parallel computer.

  19. Numerical Algorithms for Acoustic Integrals - The Devil is in the Details

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1996-01-01

    The accurate prediction of the aeroacoustic field generated by aerospace vehicles or nonaerospace machinery is necessary for designers to control and reduce source noise. Powerful computational aeroacoustic methods, based on various acoustic analogies (primarily the Lighthill acoustic analogy) and Kirchhoff methods, have been developed for prediction of noise from complicated sources, such as rotating blades. Both methods ultimately predict the noise through a numerical evaluation of an integral formulation. In this paper, we consider three generic acoustic formulations and several numerical algorithms that have been used to compute the solutions to these formulations. Algorithms for retarded-time formulations are the most efficient and robust, but they are difficult to implement for supersonic-source motion. Collapsing-sphere and emission-surface formulations are good alternatives when supersonic-source motion is present, but the numerical implementations of these formulations are more computationally demanding. New algorithms - which utilize solution adaptation to provide a specified error level - are needed.

  20. Scale-adaptive compressive tracking with feature integration

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Li, Jicheng; Chen, Xiao; Li, Shuxin

    2016-05-01

    Numerous tracking-by-detection methods have been proposed for robust visual tracking, among which compressive tracking (CT) has obtained some promising results. A scale-adaptive CT method based on multifeature integration is presented to improve the robustness and accuracy of CT. We introduce a keypoint-based model to achieve the accurate scale estimation, which can additionally give a prior location of the target. Furthermore, by the high efficiency of data-independent random projection matrix, multiple features are integrated into an effective appearance model to construct the naïve Bayes classifier. At last, an adaptive update scheme is proposed to update the classifier conservatively. Experiments on various challenging sequences demonstrate substantial improvements by our proposed tracker over CT and other state-of-the-art trackers in terms of dealing with scale variation, abrupt motion, deformation, and illumination changes.

  1. Constraining the thermal conditions of impact environments through integrated low-temperature thermochronometry and numerical modeling

    NASA Astrophysics Data System (ADS)

    Kelly, N. M.; Marchi, S.; Mojzsis, S. J.; Flowers, R. M.; Metcalf, J. R.; Bottke, W. F., Jr.

    2017-12-01

    Impacts have a significant physical and chemical influence on the surface conditions of a planet. The cratering record is used to understand a wide array of impact processes, such as the evolution of the impact flux through time. However, the relationship between impactor size and a resulting impact crater remains controversial (e.g., Bottke et al., 2016). Likewise, small variations in the impact velocity are known to significantly affect the thermal-mechanical disturbances in the aftermath of a collision. Development of more robust numerical models for impact cratering has implications for how we evaluate the disruptive capabilities of impact events, including the extent and duration of thermal anomalies, the volume of ejected material, and the resulting landscape of impacted environments. To address uncertainties in crater scaling relationships, we present an approach and methodology that integrates numerical modeling of the thermal evolution of terrestrial impact craters with low-temperature, (U-Th)/He thermochronometry. The approach uses time-temperature (t-T) paths of crust within an impact crater, generated from numerical simulations of an impact. These t-T paths are then used in forward models to predict the resetting behavior of (U-Th)/He ages in the mineral chronometers apatite and zircon. Differences between the predicted and measured (U-Th)/He ages from a modeled terrestrial impact crater can then be used to evaluate parameters in the original numerical simulations, and refine the crater scaling relationships. We expect our methodology to additionally inform our interpretation of impact products, such as lunar impact breccias and meteorites, providing robust constraints on their thermal histories. In addition, the method is ideal for sample return mission planning - robust "prediction" of ages we expect from a given impact environment enhances our ability to target sampling sites on the Moon, Mars or other solar system bodies where impacts have strongly shaped the surface. Bottke, W.F., Vokrouhlicky, D., Ghent, B., et al. (2016). 47th LPSC, Abstract #2036.

  2. Density-matrix-based algorithm for solving eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Polizzi, Eric

    2009-03-01

    A fast and stable numerical algorithm for solving the symmetric eigenvalue problem is presented. The technique deviates fundamentally from the traditional Krylov subspace iteration based techniques (Arnoldi and Lanczos algorithms) or other Davidson-Jacobi techniques and takes its inspiration from the contour integration and density-matrix representation in quantum mechanics. It will be shown that this algorithm—named FEAST—exhibits high efficiency, robustness, accuracy, and scalability on parallel architectures. Examples from electronic structure calculations of carbon nanotubes are presented, and numerical performances and capabilities are discussed.

  3. Numerical realization of the variational method for generating self-trapped beams

    NASA Astrophysics Data System (ADS)

    Duque, Erick I.; Lopez-Aguayo, Servando; Malomed, Boris A.

    2018-03-01

    We introduce a numerical variational method based on the Rayleigh-Ritz optimization principle for predicting two-dimensional self-trapped beams in nonlinear media. This technique overcomes the limitation of the traditional variational approximation in performing analytical Lagrangian integration and differentiation. Approximate soliton solutions of a generalized nonlinear Schr\\"odinger equation are obtained, demonstrating robustness of the beams of various types (fundamental, vortices, multipoles, azimuthons) in the course of their propagation. The algorithm offers possibilities to produce more sophisticated soliton profiles in general nonlinear models.

  4. Robust integration schemes for generalized viscoplasticity with internal-state variables. Part 1: Theoretical developments and applications

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Li, Wei

    1995-01-01

    This two-part report is concerned with the development of a general framework for the implicit time-stepping integrators for the flow and evolution equations in generalized viscoplastic models. The primary goal is to present a complete theoretical formulation, and to address in detail the algorithmic and numerical analysis aspects involved in its finite element implementation, as well as to critically assess the numerical performance of the developed schemes in a comprehensive set of test cases. On the theoretical side, the general framework is developed on the basis of the unconditionally-stable, backward-Euler difference scheme as a starting point. Its mathematical structure is of sufficient generality to allow a unified treatment of different classes of viscoplastic models with internal variables. In particular, two specific models of this type, which are representative of the present start-of-art in metal viscoplasticity, are considered in applications reported here; i.e., fully associative (GVIPS) and non-associative (NAV) models. The matrix forms developed for both these models are directly applicable for both initially isotropic and anisotropic materials, in general (three-dimensional) situations as well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane stress in shells). On the computational side, issues related to efficiency and robustness are emphasized in developing the (local) interative algorithm. In particular, closed-form expressions for residual vectors and (consistent) material tangent stiffness arrays are given explicitly for both GVIPS and NAV models, with their maximum sizes 'optimized' to depend only on the number of independent stress components (but independent of the number of viscoplastic internal state parameters). Significant robustness of the local iterative solution is provided by complementing the basic Newton-Raphson scheme with a line-search strategy for convergence. In the present first part of the report, we focus on the theoretical developments, and discussions of the results of numerical-performance studies using the integration schemes for GVIPS and NAV models.

  5. Numerical simulation of the generation, propagation, and diffraction of nonlinear waves in a rectangular basin: A three-dimensional numerical wave tank

    NASA Astrophysics Data System (ADS)

    Darwiche, Mahmoud Khalil M.

    The research presented herein is a contribution to the understanding of the numerical modeling of fully nonlinear, transient water waves. The first part of the work involves the development of a time-domain model for the numerical generation of fully nonlinear, transient waves by a piston type wavemaker in a three-dimensional, finite, rectangular tank. A time-domain boundary-integral model is developed for simulating the evolving fluid field. A robust nonsingular, adaptive integration technique for the assembly of the boundary-integral coefficient matrix is developed and tested. A parametric finite-difference technique for calculating the fluid- particle kinematics is also developed and tested. A novel compatibility and continuity condition is implemented to minimize the effect of the singularities that are inherent at the intersections of the various Dirichlet and/or Neumann subsurfaces. Results are presented which demonstrate the accuracy and convergence of the numerical model. The second portion of the work is a study of the interaction of the numerically-generated, fully nonlinear, transient waves with a bottom-mounted, surface-piercing, vertical, circular cylinder. The numerical model developed in the first part of this dissertation is extended to include the presence of the cylinder at the centerline of the basin. The diffraction of the numerically generated waves by the cylinder is simulated, and the particle kinematics of the diffracted flow field are calculated and reported. Again, numerical results showing the accuracy and convergence of the extended model are presented.

  6. Flexible Plasmonic Sensors

    PubMed Central

    Shir, Daniel; Ballard, Zachary S.; Ozcan, Aydogan

    2016-01-01

    Mechanical flexibility and the advent of scalable, low-cost, and high-throughput fabrication techniques have enabled numerous potential applications for plasmonic sensors. Sensitive and sophisticated biochemical measurements can now be performed through the use of flexible plasmonic sensors integrated into existing medical and industrial devices or sample collection units. More robust sensing schemes and practical techniques must be further investigated to fully realize the potentials of flexible plasmonics as a framework for designing low-cost, embedded and integrated sensors for medical, environmental, and industrial applications. PMID:27547023

  7. Exponential integrators in time-dependent density-functional calculations

    NASA Astrophysics Data System (ADS)

    Kidd, Daniel; Covington, Cody; Varga, Kálmán

    2017-12-01

    The integrating factor and exponential time differencing methods are implemented and tested for solving the time-dependent Kohn-Sham equations. Popular time propagation methods used in physics, as well as other robust numerical approaches, are compared to these exponential integrator methods in order to judge the relative merit of the computational schemes. We determine an improvement in accuracy of multiple orders of magnitude when describing dynamics driven primarily by a nonlinear potential. For cases of dynamics driven by a time-dependent external potential, the accuracy of the exponential integrator methods are less enhanced but still match or outperform the best of the conventional methods tested.

  8. Numerical realization of the variational method for generating self-trapped beams.

    PubMed

    Duque, Erick I; Lopez-Aguayo, Servando; Malomed, Boris A

    2018-03-19

    We introduce a numerical variational method based on the Rayleigh-Ritz optimization principle for predicting two-dimensional self-trapped beams in nonlinear media. This technique overcomes the limitation of the traditional variational approximation in performing analytical Lagrangian integration and differentiation. Approximate soliton solutions of a generalized nonlinear Schrödinger equation are obtained, demonstrating robustness of the beams of various types (fundamental, vortices, multipoles, azimuthons) in the course of their propagation. The algorithm offers possibilities to produce more sophisticated soliton profiles in general nonlinear models.

  9. Local Orthogonal Cutting Method for Computing Medial Curves and Its Biomedical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Xiangmin; Einstein, Daniel R.; Dyedov, Volodymyr

    2010-03-24

    Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stabilitymore » and consistency tests. These concepts lend themselves to robust numerical techniques including eigenvalue analysis, weighted least squares approximations, and numerical minimization, resulting in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods.« less

  10. Designing Adaptive Low-Dissipative High Order Schemes for Long-Time Integrations. Chapter 1

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Sjoegreen, B.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    A general framework for the design of adaptive low-dissipative high order schemes is presented. It encompasses a rather complete treatment of the numerical approach based on four integrated design criteria: (1) For stability considerations, condition the governing equations before the application of the appropriate numerical scheme whenever it is possible; (2) For consistency, compatible schemes that possess stability properties, including physical and numerical boundary condition treatments, similar to those of the discrete analogue of the continuum are preferred; (3) For the minimization of numerical dissipation contamination, efficient and adaptive numerical dissipation control to further improve nonlinear stability and accuracy should be used; and (4) For practical considerations, the numerical approach should be efficient and applicable to general geometries, and an efficient and reliable dynamic grid adaptation should be used if necessary. These design criteria are, in general, very useful to a wide spectrum of flow simulations. However, the demand on the overall numerical approach for nonlinear stability and accuracy is much more stringent for long-time integration of complex multiscale viscous shock/shear/turbulence/acoustics interactions and numerical combustion. Robust classical numerical methods for less complex flow physics are not suitable or practical for such applications. The present approach is designed expressly to address such flow problems, especially unsteady flows. The minimization of employing very fine grids to overcome the production of spurious numerical solutions and/or instability due to under-resolved grids is also sought. The incremental studies to illustrate the performance of the approach are summarized. Extensive testing and full implementation of the approach is forthcoming. The results shown so far are very encouraging.

  11. Robust recognition of handwritten numerals based on dual cooperative network

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan; Choi, Yeongwoo

    1992-01-01

    An approach to robust recognition of handwritten numerals using two operating parallel networks is presented. The first network uses inputs in Cartesian coordinates, and the second network uses the same inputs transformed into polar coordinates. How the proposed approach realizes the robustness to local and global variations of input numerals by handling inputs both in Cartesian coordinates and in its transformed Polar coordinates is described. The required network structures and its learning scheme are discussed. Experimental results show that by tracking only a small number of distinctive features for each teaching numeral in each coordinate, the proposed system can provide robust recognition of handwritten numerals.

  12. Extension of CE/SE method to non-equilibrium dissociating flows

    NASA Astrophysics Data System (ADS)

    Wen, C. Y.; Saldivar Massimi, H.; Shen, H.

    2018-03-01

    In this study, the hypersonic non-equilibrium flows over rounded nose geometries are numerically investigated by a robust conservation element and solution element (CE/SE) code, which is based on hybrid meshes consisting of triangular and quadrilateral elements. The dissociating and recombination chemical reactions as well as the vibrational energy relaxation are taken into account. The stiff source terms are solved by an implicit trapezoidal method of integration. Comparison with laboratory and numerical cases are provided to demonstrate the accuracy and reliability of the present CE/SE code in simulating hypersonic non-equilibrium flows.

  13. Multi-criteria robustness analysis of metro networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiangrong; Koç, Yakup; Derrible, Sybil; Ahmad, Sk Nasir; Pino, Willem J. A.; Kooij, Robert E.

    2017-05-01

    Metros (heavy rail transit systems) are integral parts of urban transportation systems. Failures in their operations can have serious impacts on urban mobility, and measuring their robustness is therefore critical. Moreover, as physical networks, metros can be viewed as topological entities, and as such they possess measurable network properties. In this article, by using network science and graph theory, we investigate ten theoretical and four numerical robustness metrics and their performance in quantifying the robustness of 33 metro networks under random failures or targeted attacks. We find that the ten theoretical metrics capture two distinct aspects of robustness of metro networks. First, several metrics place an emphasis on alternative paths. Second, other metrics place an emphasis on the length of the paths. To account for all aspects, we standardize all ten indicators and plot them on radar diagrams to assess the overall robustness for metro networks. Overall, we find that Tokyo and Rome are the most robust networks. Rome benefits from short transferring and Tokyo has a significant number of transfer stations, both in the city center and in the peripheral area of the city, promoting both a higher number of alternative paths and overall relatively short path-lengths.

  14. On the Modeling of Shells in Multibody Dynamics

    NASA Technical Reports Server (NTRS)

    Bauchau, Olivier A.; Choi, Jou-Young; Bottasso, Carlo L.

    2000-01-01

    Energy preserving/decaying schemes are presented for the simulation of the nonlinear multibody systems involving shell components. The proposed schemes are designed to meet four specific requirements: unconditional nonlinear stability of the scheme, a rigorous treatment of both geometric and material nonlinearities, exact satisfaction of the constraints, and the presence of high frequency numerical dissipation. The kinematic nonlinearities associated with arbitrarily large displacements and rotations of shells are treated in a rigorous manner, and the material nonlinearities can be handled when the, constitutive laws stem from the existence of a strain energy density function. The efficiency and robustness of the proposed approach is illustrated with specific numerical examples that also demonstrate the need for integration schemes possessing high frequency numerical dissipation.

  15. Composite Robust $$H_\\infty$$ Control for Uncertain Stochastic Nonlinear Systems with State Delay via Disturbance Observer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yunlong; Wang, Hong; Guo, Lei

    Here in this note, the robust stochastic stabilization and robust H_infinity control problems are investigated for uncertain stochastic time-delay systems with nonlinearity and multiple disturbances. By estimating the disturbance, which can be described by an exogenous model, a composite hierarchical control scheme is proposed that integrates the output of the disturbance observer with state feedback control law. Sufficient conditions for the existence of the disturbance observer and composite hierarchical controller are established in terms of linear matrix inequalities, which ensure the mean-square asymptotic stability of the resulting closed-loop system and the disturbance attenuation. It has been shown that the disturbancemore » rejection performance can also be achieved. A numerical example is provided to show the potential of the proposed techniques and encouraging results have been obtained.« less

  16. Composite Robust $$H_\\infty$$ Control for Uncertain Stochastic Nonlinear Systems with State Delay via Disturbance Observer

    DOE PAGES

    Liu, Yunlong; Wang, Hong; Guo, Lei

    2018-03-26

    Here in this note, the robust stochastic stabilization and robust H_infinity control problems are investigated for uncertain stochastic time-delay systems with nonlinearity and multiple disturbances. By estimating the disturbance, which can be described by an exogenous model, a composite hierarchical control scheme is proposed that integrates the output of the disturbance observer with state feedback control law. Sufficient conditions for the existence of the disturbance observer and composite hierarchical controller are established in terms of linear matrix inequalities, which ensure the mean-square asymptotic stability of the resulting closed-loop system and the disturbance attenuation. It has been shown that the disturbancemore » rejection performance can also be achieved. A numerical example is provided to show the potential of the proposed techniques and encouraging results have been obtained.« less

  17. Stability of the iterative solutions of integral equations as one phase freezing criterion.

    PubMed

    Fantoni, R; Pastore, G

    2003-10-01

    A recently proposed connection between the threshold for the stability of the iterative solution of integral equations for the pair correlation functions of a classical fluid and the structural instability of the corresponding real fluid is carefully analyzed. Direct calculation of the Lyapunov exponent of the standard iterative solution of hypernetted chain and Percus-Yevick integral equations for the one-dimensional (1D) hard rods fluid shows the same behavior observed in 3D systems. Since no phase transition is allowed in such 1D system, our analysis shows that the proposed one phase criterion, at least in this case, fails. We argue that the observed proximity between the numerical and the structural instability in 3D originates from the enhanced structure present in the fluid but, in view of the arbitrary dependence on the iteration scheme, it seems uneasy to relate the numerical stability analysis to a robust one-phase criterion for predicting a thermodynamic phase transition.

  18. A Conformal, Fully-Conservative Approach for Predicting Blast Effects on Ground Vehicles

    DTIC Science & Technology

    2014-04-01

    time integration  Approximate Riemann Fluxes (HLLE, HLLC) ◦ Robust mixture model for multi-material flows  Multiple Equations of State ◦ Perfect Gas...Loci/CHEM: Chemically reacting compressible flow solver . ◦ Currently in production use by NASA for the simulation of rocket motors, plumes, and...vehicles  Loci/DROPLET: Eulerian and Lagrangian multiphase solvers  Loci/STREAM: pressure-based solver ◦ Developed by Streamline Numerics and

  19. Robust integration schemes for generalized viscoplasticity with internal-state variables. Part 2: Algorithmic developments and implementation

    NASA Technical Reports Server (NTRS)

    Li, Wei; Saleeb, Atef F.

    1995-01-01

    This two-part report is concerned with the development of a general framework for the implicit time-stepping integrators for the flow and evolution equations in generalized viscoplastic models. The primary goal is to present a complete theoretical formulation, and to address in detail the algorithmic and numerical analysis aspects involved in its finite element implementation, as well as to critically assess the numerical performance of the developed schemes in a comprehensive set of test cases. On the theoretical side, the general framework is developed on the basis of the unconditionally-stable, backward-Euler difference scheme as a starting point. Its mathematical structure is of sufficient generality to allow a unified treatment of different classes of viscoplastic models with internal variables. In particular, two specific models of this type, which are representative of the present start-of-art in metal viscoplasticity, are considered in applications reported here; i.e., fully associative (GVIPS) and non-associative (NAV) models. The matrix forms developed for both these models are directly applicable for both initially isotropic and anisotropic materials, in general (three-dimensional) situations as well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane stress in shells). On the computational side, issues related to efficiency and robustness are emphasized in developing the (local) interative algorithm. In particular, closed-form expressions for residual vectors and (consistent) material tangent stiffness arrays are given explicitly for both GVIPS and NAV models, with their maximum sizes 'optimized' to depend only on the number of independent stress components (but independent of the number of viscoplastic internal state parameters). Significant robustness of the local iterative solution is provided by complementing the basic Newton-Raphson scheme with a line-search strategy for convergence. In the present second part of the report, we focus on the specific details of the numerical schemes, and associated computer algorithms, for the finite-element implementation of GVIPS and NAV models.

  20. Synthetic Biology and Microbial Fuel Cells: Towards Self-Sustaining Life Support Systems

    NASA Technical Reports Server (NTRS)

    Hogan, John Andrew

    2014-01-01

    NASA ARC and the J. Craig Venter Institute (JCVI) collaborated to investigate the development of advanced microbial fuels cells (MFCs) for biological wastewater treatment and electricity production (electrogenesis). Synthetic biology techniques and integrated hardware advances were investigated to increase system efficiency and robustness, with the intent of increasing power self-sufficiency and potential product formation from carbon dioxide. MFCs possess numerous advantages for space missions, including rapid processing, reduced biomass and effective removal of organics, nitrogen and phosphorus. Project efforts include developing space-based MFC concepts, integration analyses, increasing energy efficiency, and investigating novel bioelectrochemical system applications

  1. Tensorial Minkowski functionals of triply periodic minimal surfaces

    PubMed Central

    Mickel, Walter; Schröder-Turk, Gerd E.; Mecke, Klaus

    2012-01-01

    A fundamental understanding of the formation and properties of a complex spatial structure relies on robust quantitative tools to characterize morphology. A systematic approach to the characterization of average properties of anisotropic complex interfacial geometries is provided by integral geometry which furnishes a family of morphological descriptors known as tensorial Minkowski functionals. These functionals are curvature-weighted integrals of tensor products of position vectors and surface normal vectors over the interfacial surface. We here demonstrate their use by application to non-cubic triply periodic minimal surface model geometries, whose Weierstrass parametrizations allow for accurate numerical computation of the Minkowski tensors. PMID:24098847

  2. Trust-region based return mapping algorithm for implicit integration of elastic-plastic constitutive models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, Brian; Scherzinger, William

    2017-01-19

    Here, a new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, andmore » compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. Through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.« less

  3. Trust-region based return mapping algorithm for implicit integration of elastic-plastic constitutive models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, Brian T.; Scherzinger, William M.

    2017-01-19

    A new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and comparedmore » to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. As a result through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.« less

  4. Integration of Off-Track Sonic Boom Analysis in Conceptual Design of Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu

    2011-01-01

    A highly desired capability for the conceptual design of aircraft is the ability to rapidly and accurately evaluate new concepts to avoid adverse trade decisions that may hinder the development process in the later stages of design. Evaluating the robustness of new low-boom concepts is important for the conceptual design of supersonic aircraft. Here, robustness means that the aircraft configuration has a low-boom ground signature at both under- and off-track locations. An integrated process for off-track boom analysis is developed to facilitate the design of robust low-boom supersonic aircraft. The integrated off-track analysis can also be used to study the sonic boom impact and to plan future flight trajectories where flight conditions and ground elevation might have a significant effect on ground signatures. The key enabler for off-track sonic boom analysis is accurate computational fluid dynamics (CFD) solutions for off-body pressure distributions. To ensure the numerical accuracy of the off-body pressure distributions, a mesh study is performed with Cart3D to determine the mesh requirements for off- body CFD analysis and comparisons are made between the Cart3D and USM3D results. The variations in ground signatures that result from changes in the initial location of the near-field waveform are also examined. Finally, a complete under- and off-track sonic boom analysis is presented for two distinct supersonic concepts to demonstrate the capability of the integrated analysis process.

  5. Reliability-Based Control Design for Uncertain Systems

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.

    2005-01-01

    This paper presents a robust control design methodology for systems with probabilistic parametric uncertainty. Control design is carried out by solving a reliability-based multi-objective optimization problem where the probability of violating design requirements is minimized. Simultaneously, failure domains are optimally enlarged to enable global improvements in the closed-loop performance. To enable an efficient numerical implementation, a hybrid approach for estimating reliability metrics is developed. This approach, which integrates deterministic sampling and asymptotic approximations, greatly reduces the numerical burden associated with complex probabilistic computations without compromising the accuracy of the results. Examples using output-feedback and full-state feedback with state estimation are used to demonstrate the ideas proposed.

  6. An Energy Decaying Scheme for Nonlinear Dynamics of Shells

    NASA Technical Reports Server (NTRS)

    Bottasso, Carlo L.; Bauchau, Olivier A.; Choi, Jou-Young; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    A novel integration scheme for nonlinear dynamics of geometrically exact shells is developed based on the inextensible director assumption. The new algorithm is designed so as to imply the strict decay of the system total mechanical energy at each time step, and consequently unconditional stability is achieved in the nonlinear regime. Furthermore, the scheme features tunable high frequency numerical damping and it is therefore stiffly accurate. The method is tested for a finite element spatial formulation of shells based on mixed interpolations of strain tensorial components and on a two-parameter representation of director rotations. The robustness of the, scheme is illustrated with the help of numerical examples.

  7. A highly accurate analytical solution for the surface fields of a short vertical wire antenna lying on a multilayer ground

    NASA Astrophysics Data System (ADS)

    Parise, M.

    2018-01-01

    A highly accurate analytical solution is derived to the electromagnetic problem of a short vertical wire antenna located on a stratified ground. The derivation consists of three steps. First, the integration path of the integrals describing the fields of the dipole is deformed and wrapped around the pole singularities and the two vertical branch cuts of the integrands located in the upper half of the complex plane. This allows to decompose the radiated field into its three contributions, namely the above-surface ground wave, the lateral wave, and the trapped surface waves. Next, the square root terms responsible for the branch cuts are extracted from the integrands of the branch-cut integrals. Finally, the extracted square roots are replaced with their rational representations according to Newton's square root algorithm, and residue theorem is applied to give explicit expressions, in series form, for the fields. The rigorous integration procedure and the convergence of square root algorithm ensure that the obtained formulas converge to the exact solution. Numerical simulations are performed to show the validity and robustness of the developed formulation, as well as its advantages in terms of time cost over standard numerical integration procedures.

  8. The control of the controller: molecular mechanisms for robust perfect adaptation and temperature compensation.

    PubMed

    Ni, Xiao Yu; Drengstig, Tormod; Ruoff, Peter

    2009-09-02

    Organisms have the property to adapt to a changing environment and keep certain components within a cell regulated at the same level (homeostasis). "Perfect adaptation" describes an organism's response to an external stepwise perturbation by regulating some of its variables/components precisely to their original preperturbation values. Numerous examples of perfect adaptation/homeostasis have been found, as for example, in bacterial chemotaxis, photoreceptor responses, MAP kinase activities, or in metal-ion homeostasis. Two concepts have evolved to explain how perfect adaptation may be understood: In one approach (robust perfect adaptation), the adaptation is a network property, which is mostly, but not entirely, independent of rate constant values; in the other approach (nonrobust perfect adaptation), a fine-tuning of rate constant values is needed. Here we identify two classes of robust molecular homeostatic mechanisms, which compensate for environmental variations in a controlled variable's inflow or outflow fluxes, and allow for the presence of robust temperature compensation. These two classes of homeostatic mechanisms arise due to the fact that concentrations must have positive values. We show that the concept of integral control (or integral feedback), which leads to robust homeostasis, is associated with a control species that has to work under zero-order flux conditions and does not necessarily require the presence of a physico-chemical feedback structure. There are interesting links between the two identified classes of homeostatic mechanisms and molecular mechanisms found in mammalian iron and calcium homeostasis, indicating that homeostatic mechanisms may underlie similar molecular control structures.

  9. Contour integral method for obtaining the self-energy matrices of electrodes in electron transport calculations

    NASA Astrophysics Data System (ADS)

    Iwase, Shigeru; Futamura, Yasunori; Imakura, Akira; Sakurai, Tetsuya; Tsukamoto, Shigeru; Ono, Tomoya

    2018-05-01

    We propose an efficient computational method for evaluating the self-energy matrices of electrodes to study ballistic electron transport properties in nanoscale systems. To reduce the high computational cost incurred in large systems, a contour integral eigensolver based on the Sakurai-Sugiura method combined with the shifted biconjugate gradient method is developed to solve an exponential-type eigenvalue problem for complex wave vectors. A remarkable feature of the proposed algorithm is that the numerical procedure is very similar to that of conventional band structure calculations. We implement the developed method in the framework of the real-space higher-order finite-difference scheme with nonlocal pseudopotentials. Numerical tests for a wide variety of materials validate the robustness, accuracy, and efficiency of the proposed method. As an illustration of the method, we present the electron transport property of the freestanding silicene with the line defect originating from the reversed buckled phases.

  10. Symmetry-plane model of 3D Euler flows: Mapping to regular systems and numerical solutions of blowup

    NASA Astrophysics Data System (ADS)

    Mulungye, Rachel M.; Lucas, Dan; Bustamante, Miguel D.

    2014-11-01

    We introduce a family of 2D models describing the dynamics on the so-called symmetry plane of the full 3D Euler fluid equations. These models depend on a free real parameter and can be solved analytically. For selected representative values of the free parameter, we apply the method introduced in [M.D. Bustamante, Physica D: Nonlinear Phenom. 240, 1092 (2011)] to map the fluid equations bijectively to globally regular systems. By comparing the analytical solutions with the results of numerical simulations, we establish that the numerical simulations of the mapped regular systems are far more accurate than the numerical simulations of the original systems, at the same spatial resolution and CPU time. In particular, the numerical integrations of the mapped regular systems produce robust estimates for the growth exponent and singularity time of the main blowup quantity (vorticity stretching rate), converging well to the analytically-predicted values even beyond the time at which the flow becomes under-resolved (i.e. the reliability time). In contrast, direct numerical integrations of the original systems develop unstable oscillations near the reliability time. We discuss the reasons for this improvement in accuracy, and explain how to extend the analysis to the full 3D case. Supported under the programme for Research in Third Level Institutions (PRTLI) Cycle 5 and co-funded by the European Regional Development Fund.

  11. DYNAMIC STABILITY OF THE SOLAR SYSTEM: STATISTICALLY INCONCLUSIVE RESULTS FROM ENSEMBLE INTEGRATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeebe, Richard E., E-mail: zeebe@soest.hawaii.edu

    Due to the chaotic nature of the solar system, the question of its long-term stability can only be answered in a statistical sense, for instance, based on numerical ensemble integrations of nearby orbits. Destabilization of the inner planets, leading to close encounters and/or collisions can be initiated through a large increase in Mercury's eccentricity, with a currently assumed likelihood of ∼1%. However, little is known at present about the robustness of this number. Here I report ensemble integrations of the full equations of motion of the eight planets and Pluto over 5 Gyr, including contributions from general relativity. The resultsmore » show that different numerical algorithms lead to statistically different results for the evolution of Mercury's eccentricity (e{sub M}). For instance, starting at present initial conditions (e{sub M}≃0.21), Mercury's maximum eccentricity achieved over 5 Gyr is, on average, significantly higher in symplectic ensemble integrations using heliocentric rather than Jacobi coordinates and stricter error control. In contrast, starting at a possible future configuration (e{sub M}≃0.53), Mercury's maximum eccentricity achieved over the subsequent 500 Myr is, on average, significantly lower using heliocentric rather than Jacobi coordinates. For example, the probability for e{sub M} to increase beyond 0.53 over 500 Myr is >90% (Jacobi) versus only 40%-55% (heliocentric). This poses a dilemma because the physical evolution of the real system—and its probabilistic behavior—cannot depend on the coordinate system or the numerical algorithm chosen to describe it. Some tests of the numerical algorithms suggest that symplectic integrators using heliocentric coordinates underestimate the odds for destabilization of Mercury's orbit at high initial e{sub M}.« less

  12. A new smooth robust control design for uncertain nonlinear systems with non-vanishing disturbances

    NASA Astrophysics Data System (ADS)

    Xian, Bin; Zhang, Yao

    2016-06-01

    In this paper, we consider the control problem for a general class of nonlinear system subjected to uncertain dynamics and non-varnishing disturbances. A smooth nonlinear control algorithm is presented to tackle these uncertainties and disturbances. The proposed control design employs the integral of a nonlinear sigmoid function to compensate the uncertain dynamics, and achieve a uniformly semi-global practical asymptotic stable tracking control of the system outputs. A novel Lyapunov-based stability analysis is employed to prove the convergence of the tracking errors and the stability of the closed-loop system. Numerical simulation results on a two-link robot manipulator are presented to illustrate the performance of the proposed control algorithm comparing with the layer-boundary sliding mode controller and the robust of integration of sign of error control design. Furthermore, real-time experiment results for the attitude control of a quadrotor helicopter are also included to confirm the effectiveness of the proposed algorithm.

  13. Maximum correntropy square-root cubature Kalman filter with application to SINS/GPS integrated systems.

    PubMed

    Liu, Xi; Qu, Hua; Zhao, Jihong; Yue, Pengcheng

    2018-05-31

    For a nonlinear system, the cubature Kalman filter (CKF) and its square-root version are useful methods to solve the state estimation problems, and both can obtain good performance in Gaussian noises. However, their performances often degrade significantly in the face of non-Gaussian noises, particularly when the measurements are contaminated by some heavy-tailed impulsive noises. By utilizing the maximum correntropy criterion (MCC) to improve the robust performance instead of traditional minimum mean square error (MMSE) criterion, a new square-root nonlinear filter is proposed in this study, named as the maximum correntropy square-root cubature Kalman filter (MCSCKF). The new filter not only retains the advantage of square-root cubature Kalman filter (SCKF), but also exhibits robust performance against heavy-tailed non-Gaussian noises. A judgment condition that avoids numerical problem is also given. The results of two illustrative examples, especially the SINS/GPS integrated systems, demonstrate the desirable performance of the proposed filter. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Shrink-induced sorting using integrated nanoscale magnetic traps.

    PubMed

    Nawarathna, Dharmakeerthi; Norouzi, Nazila; McLane, Jolie; Sharma, Himanshu; Sharac, Nicholas; Grant, Ted; Chen, Aaron; Strayer, Scott; Ragan, Regina; Khine, Michelle

    2013-02-11

    We present a plastic microfluidic device with integrated nanoscale magnetic traps (NSMTs) that separates magnetic from non-magnetic beads with high purity and throughput, and unprecedented enrichments. Numerical simulations indicate significantly higher localized magnetic field gradients than previously reported. We demonstrated >20 000-fold enrichment for 0.001% magnetic bead mixtures. Since we achieve high purity at all flow-rates tested, this is a robust, rapid, portable, and simple solution to sort target species from small volumes amenable for point-of-care applications. We used the NSMT in a 96 well format to extract DNA from small sample volumes for quantitative polymerase chain reaction (qPCR).

  15. Expressions for tidal conversion at seafloor topography using physical space integrals

    NASA Astrophysics Data System (ADS)

    Schorghofer, Norbert

    2010-12-01

    The barotropic tide interacts with seafloor topography to generate internal gravity waves. Equations for streamfunction and power conversion are derived in terms of integrals over the topography in spatial coordinates. The slope of the topography does not need to be small. Explicit equations are derived up to second order in slope for general topography, and conversion by a bell-shaped topography is calculated analytically to this order. A concise formalism using Hilbert transforms is developed, the minimally converting topographic shape is discussed, and a numerical scheme for the evaluation of power conversion is designed that robustly deals with the singular integrand.

  16. GO2OGS 1.0: a versatile workflow to integrate complex geological information with fault data into numerical simulation models

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Naumov, D.; Sattler, S.; Kolditz, O.; Walther, M.

    2015-11-01

    We offer a versatile workflow to convert geological models built with the ParadigmTM GOCAD© (Geological Object Computer Aided Design) software into the open-source VTU (Visualization Toolkit unstructured grid) format for usage in numerical simulation models. Tackling relevant scientific questions or engineering tasks often involves multidisciplinary approaches. Conversion workflows are needed as a way of communication between the diverse tools of the various disciplines. Our approach offers an open-source, platform-independent, robust, and comprehensible method that is potentially useful for a multitude of environmental studies. With two application examples in the Thuringian Syncline, we show how a heterogeneous geological GOCAD model including multiple layers and faults can be used for numerical groundwater flow modeling, in our case employing the OpenGeoSys open-source numerical toolbox for groundwater flow simulations. The presented workflow offers the chance to incorporate increasingly detailed data, utilizing the growing availability of computational power to simulate numerical models.

  17. A Multi-Band Uncertainty Set Based Robust SCUC With Spatial and Temporal Budget Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Chenxi; Wu, Lei; Wu, Hongyu

    2016-11-01

    The dramatic increase of renewable energy resources in recent years, together with the long-existing load forecast errors and increasingly involved price sensitive demands, has introduced significant uncertainties into power systems operation. In order to guarantee the operational security of power systems with such uncertainties, robust optimization has been extensively studied in security-constrained unit commitment (SCUC) problems, for immunizing the system against worst uncertainty realizations. However, traditional robust SCUC models with single-band uncertainty sets may yield over-conservative solutions in most cases. This paper proposes a multi-band robust model to accurately formulate various uncertainties with higher resolution. By properly tuning band intervalsmore » and weight coefficients of individual bands, the proposed multi-band robust model can rigorously and realistically reflect spatial/temporal relationships and asymmetric characteristics of various uncertainties, and in turn could effectively leverage the tradeoff between robustness and economics of robust SCUC solutions. The proposed multi-band robust SCUC model is solved by Benders decomposition (BD) and outer approximation (OA), while taking the advantage of integral property of the proposed multi-band uncertainty set. In addition, several accelerating techniques are developed for enhancing the computational performance and the convergence speed. Numerical studies on a 6-bus system and the modified IEEE 118-bus system verify the effectiveness of the proposed robust SCUC approach for enhancing uncertainty modeling capabilities and mitigating conservativeness of the robust SCUC solution.« less

  18. Integrating 3D geological information with a national physically-based hydrological modelling system

    NASA Astrophysics Data System (ADS)

    Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark

    2016-04-01

    Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE < 0.5) are located in the chalk in the south east of England. As such, the British Geological Survey 3D geology model for Great Britain (GB3D) has been incorporated, for the first time in any hydrological model, to pave the way for improvements to be made to simulations of catchments with important groundwater regimes. This coupling has involved development of software to allow for easy incorporation of geological information into SHETRAN for any model setup. The addition of more realistic subsurface representation following this approach is shown to greatly improve model performance in areas dominated by groundwater processes. The resulting modelling system has great potential to be used as a resource at national, regional and local scales in an array of different applications, including climate change impact assessments, land cover change studies and integrated assessments of groundwater and surface water resources.

  19. Nonlinearly preconditioned semismooth Newton methods for variational inequality solution of two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Yang, Haijian; Sun, Shuyu; Yang, Chao

    2017-03-01

    Most existing methods for solving two-phase flow problems in porous media do not take the physically feasible saturation fractions between 0 and 1 into account, which often destroys the numerical accuracy and physical interpretability of the simulation. To calculate the solution without the loss of this basic requirement, we introduce a variational inequality formulation of the saturation equilibrium with a box inequality constraint, and use a conservative finite element method for the spatial discretization and a backward differentiation formula with adaptive time stepping for the temporal integration. The resulting variational inequality system at each time step is solved by using a semismooth Newton algorithm. To accelerate the Newton convergence and improve the robustness, we employ a family of adaptive nonlinear elimination methods as a nonlinear preconditioner. Some numerical results are presented to demonstrate the robustness and efficiency of the proposed algorithm. A comparison is also included to show the superiority of the proposed fully implicit approach over the classical IMplicit Pressure-Explicit Saturation (IMPES) method in terms of the time step size and the total execution time measured on a parallel computer.

  20. Compactness and robustness: Applications in the solution of integral equations for chemical kinetics and electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Zhou, Yajun

    This thesis employs the topological concept of compactness to deduce robust solutions to two integral equations arising from chemistry and physics: the inverse Laplace problem in chemical kinetics and the vector wave scattering problem in dielectric optics. The inverse Laplace problem occurs in the quantitative understanding of biological processes that exhibit complex kinetic behavior: different subpopulations of transition events from the "reactant" state to the "product" state follow distinct reaction rate constants, which results in a weighted superposition of exponential decay modes. Reconstruction of the rate constant distribution from kinetic data is often critical for mechanistic understandings of chemical reactions related to biological macromolecules. We devise a "phase function approach" to recover the probability distribution of rate constants from decay data in the time domain. The robustness (numerical stability) of this reconstruction algorithm builds upon the continuity of the transformations connecting the relevant function spaces that are compact metric spaces. The robust "phase function approach" not only is useful for the analysis of heterogeneous subpopulations of exponential decays within a single transition step, but also is generalizable to the kinetic analysis of complex chemical reactions that involve multiple intermediate steps. A quantitative characterization of the light scattering is central to many meteoro-logical, optical, and medical applications. We give a rigorous treatment to electromagnetic scattering on arbitrarily shaped dielectric media via the Born equation: an integral equation with a strongly singular convolution kernel that corresponds to a non-compact Green operator. By constructing a quadratic polynomial of the Green operator that cancels out the kernel singularity and satisfies the compactness criterion, we reveal the universality of a real resonance mode in dielectric optics. Meanwhile, exploiting the properties of compact operators, we outline the geometric and physical conditions that guarantee a robust solution to the light scattering problem, and devise an asymptotic solution to the Born equation of electromagnetic scattering for arbitrarily shaped dielectric in a non-perturbative manner.

  1. The Temporal Morphology of Infrasound Propagation

    NASA Astrophysics Data System (ADS)

    Drob, Douglas P.; Garcés, Milton; Hedlin, Michael; Brachet, Nicolas

    2010-05-01

    Expert knowledge suggests that the performance of automated infrasound event association and source location algorithms could be greatly improved by the ability to continually update station travel-time curves to properly account for the hourly, daily, and seasonal changes of the atmospheric state. With the goal of reducing false alarm rates and improving network detection capability we endeavor to develop, validate, and integrate this capability into infrasound processing operations at the International Data Centre of the Comprehensive Nuclear Test-Ban Treaty Organization. Numerous studies have demonstrated that incorporation of hybrid ground-to-space (G2S) enviromental specifications in numerical calculations of infrasound signal travel time and azimuth deviation yields significantly improved results over that of climatological atmospheric specifications, specifically for tropospheric and stratospheric modes. A robust infrastructure currently exists to generate hybrid G2S vector spherical harmonic coefficients, based on existing operational and emperical models on a real-time basis (every 3- to 6-hours) (D rob et al., 2003). Thus the next requirement in this endeavor is to refine numerical procedures to calculate infrasound propagation characteristics for robust automatic infrasound arrival identification and network detection, location, and characterization algorithms. We present results from a new code that integrates the local (range-independent) τp ray equations to provide travel time, range, turning point, and azimuth deviation for any location on the globe given a G2S vector spherical harmonic coefficient set. The code employs an accurate numerical technique capable of handling square-root singularities. We investigate the seasonal variability of propagation characteristics over a five-year time series for two different stations within the International Monitoring System with the aim of understanding the capabilities of current working knowledge of the atmosphere and infrasound propagation models. The statistical behaviors or occurrence frequency of various propagation configurations are discussed. Representative examples of some of these propagation configuration states are also shown.

  2. Robust PI and PID design for first- and second-order processes with zeros, time-delay and structured uncertainties

    NASA Astrophysics Data System (ADS)

    Parada, M.; Sbarbaro, D.; Borges, R. A.; Peres, P. L. D.

    2017-01-01

    The use of robust design techniques such as the one based on ? and ? for tuning proportional integral (PI) and proportional integral derivative (PID) controllers have been limited to address a small set of processes. This work addresses the problem by considering a wide set of possible plants, both first- and second-order continuous-time systems with time delays and zeros, leading to PI and PID controllers. The use of structured uncertainties to handle neglected dynamics allows to expand the range of processes to be considered. The proposed approach takes into account the robustness of the controller with respect to these structured uncertainties by using the small-gain theorem. In addition, improved performance is sought through the minimisation of an upper bound to the closed-loop system ? norm. A Lyapunov-Krasovskii-type functional is used to obtain delay-dependent design conditions. The controller design is accomplished by means of a convex optimisation procedure formulated using linear matrix inequalities. In order to illustrate the flexibility of the approach, several examples considering recycle compensation, reduced-order controller design and a practical implementation are addressed. Numerical experiments are provided in each case to highlight the main characteristics of the proposed design method.

  3. Integrated and differential accuracy in resummed cross sections

    DOE PAGES

    Bertolini, Daniele; Solon, Mikhail P.; Walsh, Jonathan R.

    2017-03-30

    Standard QCD resummation techniques provide precise predictions for the spectrum and the cumulant of a given observable. The integrated spectrum and the cumulant differ by higher-order terms which, however, can be numerically significant. Here in this paper we propose a method, which we call the σ-improved scheme, to resolve this issue. It consists of two steps: (i) include higher-order terms in the spectrum to improve the agreement with the cumulant central value, and (ii) employ profile scales that encode correlations between different points to give robust uncertainty estimates for the integrated spectrum. We provide a generic algorithm for determining suchmore » profile scales, and show the application to the thrust distribution in e +e - collisions at NLL'+NLO and NNLL'+NNLO.« less

  4. Integral equation approach to time-dependent kinematic dynamos in finite domains

    NASA Astrophysics Data System (ADS)

    Xu, Mingtian; Stefani, Frank; Gerbeth, Gunter

    2004-11-01

    The homogeneous dynamo effect is at the root of cosmic magnetic field generation. With only a very few exceptions, the numerical treatment of homogeneous dynamos is carried out in the framework of the differential equation approach. The present paper tries to facilitate the use of integral equations in dynamo research. Apart from the pedagogical value to illustrate dynamo action within the well-known picture of the Biot-Savart law, the integral equation approach has a number of practical advantages. The first advantage is its proven numerical robustness and stability. The second and perhaps most important advantage is its applicability to dynamos in arbitrary geometries. The third advantage is its intimate connection to inverse problems relevant not only for dynamos but also for technical applications of magnetohydrodynamics. The paper provides the first general formulation and application of the integral equation approach to time-dependent kinematic dynamos, with stationary dynamo sources, in finite domains. The time dependence is restricted to the magnetic field, whereas the velocity or corresponding mean-field sources of dynamo action are supposed to be stationary. For the spherically symmetric α2 dynamo model it is shown how the general formulation is reduced to a coupled system of two radial integral equations for the defining scalars of the poloidal and toroidal field components. The integral equation formulation for spherical dynamos with general stationary velocity fields is also derived. Two numerical examples—the α2 dynamo model with radially varying α and the Bullard-Gellman model—illustrate the equivalence of the approach with the usual differential equation method. The main advantage of the method is exemplified by the treatment of an α2 dynamo in rectangular domains.

  5. Design Considerations of ISTAR Hydrocarbon Fueled Combustor Operating in Air Augmented Rocket, Ramjet and Scramjet Modes

    NASA Technical Reports Server (NTRS)

    Andreadis, Dean; Drake, Alan; Garrett, Joseph L.; Gettinger, Christopher D.; Hoxie, Stephen S.

    2003-01-01

    The development and ground test of a rocket-based combined cycle (RBCC) propulsion system is being conducted as part of the NASA Marshall Space Flight Center (MSFC) Integrated System Test of an Airbreathing Rocket (ISTAR) program. The eventual flight vehicle (X-43B) is designed to support an air-launched self-powered Mach 0.7 to 7.0 demonstration of an RBCC engine through all of its airbreathing propulsion modes - air augmented rocket (AAR), ramjet (RJ), and scramjet (SJ). Through the use of analytical tools, numerical simulations, and experimental tests the ISTAR program is developing and validating a hydrocarbon-fueled RBCC combustor design methodology. This methodology will then be used to design an integrated RBCC propulsion system that produces robust ignition and combustion stability characteristics while maximizing combustion efficiency and minimizing drag losses. First order analytical and numerical methods used to design hydrocarbon-fueled combustors are discussed with emphasis on the methods and determination of requirements necessary to establish engine operability and performance characteristics.

  6. Design Considerations of Istar Hydrocarbon Fueled Combustor Operating in Air Augmented Rocket, Ramjet and Scramjet Modes

    NASA Technical Reports Server (NTRS)

    Andreadis, Dean; Drake, Alan; Garrett, Joseph L.; Gettinger, Christopher D.; Hoxie, Stephen S.

    2002-01-01

    The development and ground test of a rocket-based combined cycle (RBCC) propulsion system is being conducted as part of the NASA Marshall Space Flight Center (MSFC) Integrated System Test of an Airbreathing Rocket (ISTAR) program. The eventual flight vehicle (X-43B) is designed to support an air-launched self-powered Mach 0.7 to 7.0 demonstration of an RBCC engine through all of its airbreathing propulsion modes - air augmented rocket (AAR), ramjet (RJ), and scramjet (SJ). Through the use of analytical tools, numerical simulations, and experimental tests the ISTAR program is developing and validating a hydrocarbon-fueled RBCC combustor design methodology. This methodology will then be used to design an integrated RBCC propulsion system thai: produces robust ignition and combustion stability characteristics while maximizing combustion efficiency and minimizing drag losses. First order analytical and numerical methods used to design hydrocarbon-fueled combustors are discussed with emphasis on the methods and determination of requirements necessary to establish engine operability and performance characteristics.

  7. Development of Multistep and Degenerate Variational Integrators for Applications in Plasma Physics

    NASA Astrophysics Data System (ADS)

    Ellison, Charles Leland

    Geometric integrators yield high-fidelity numerical results by retaining conservation laws in the time advance. A particularly powerful class of geometric integrators is symplectic integrators, which are widely used in orbital mechanics and accelerator physics. An important application presently lacking symplectic integrators is the guiding center motion of magnetized particles represented by non-canonical coordinates. Because guiding center trajectories are foundational to many simulations of magnetically confined plasmas, geometric guiding center algorithms have high potential for impact. The motivation is compounded by the need to simulate long-pulse fusion devices, including ITER, and opportunities in high performance computing, including the use of petascale resources and beyond. This dissertation uses a systematic procedure for constructing geometric integrators --- known as variational integration --- to deliver new algorithms for guiding center trajectories and other plasma-relevant dynamical systems. These variational integrators are non-trivial because the Lagrangians of interest are degenerate - the Euler-Lagrange equations are first-order differential equations and the Legendre transform is not invertible. The first contribution of this dissertation is that variational integrators for degenerate Lagrangian systems are typically multistep methods. Multistep methods admit parasitic mode instabilities that can ruin the numerical results. These instabilities motivate the second major contribution: degenerate variational integrators. By replicating the degeneracy of the continuous system, degenerate variational integrators avoid parasitic mode instabilities. The new methods are therefore robust geometric integrators for degenerate Lagrangian systems. These developments in variational integration theory culminate in one-step degenerate variational integrators for non-canonical magnetic field line flow and guiding center dynamics. The guiding center integrator assumes coordinates such that one component of the magnetic field is zero; it is shown how to construct such coordinates for nested magnetic surface configurations. Additionally, collisional drag effects are incorporated in the variational guiding center algorithm for the first time, allowing simulation of energetic particle thermalization. Advantages relative to existing canonical-symplectic and non-geometric algorithms are numerically demonstrated. All algorithms have been implemented as part of a modern, parallel, ODE-solving library, suitable for use in high-performance simulations.

  8. Robust state estimation for uncertain fuzzy bidirectional associative memory networks with time-varying delays

    NASA Astrophysics Data System (ADS)

    Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Arunkumar, A.

    2013-09-01

    This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov-Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results.

  9. LOCAL ORTHOGONAL CUTTING METHOD FOR COMPUTING MEDIAL CURVES AND ITS BIOMEDICAL APPLICATIONS

    PubMed Central

    Einstein, Daniel R.; Dyedov, Vladimir

    2010-01-01

    Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method called local orthogonal cutting (LOC) for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stability and consistency tests. These concepts lend themselves to robust numerical techniques and result in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods. PMID:20628546

  10. Integration of bed characteristics, geochemical tracers, current measurements, and numerical modeling for assessing the provenance of beach sand in the San Francisco Bay Coastal System

    USGS Publications Warehouse

    Barnard, Patrick L.; Foxgrover, Amy C.; Elias, Edwin P.L.; Erikson, Li H.; Hein, James; McGann, Mary; Mizell, Kira; Rosenbauer, Robert J.; Swarzenski, Peter W.; Takesue, Renee K.; Wong, Florence L.; Woodrow, Don

    2013-01-01

    Over 150 million m3 of sand-sized sediment has disappeared from the central region of the San Francisco Bay Coastal System during the last half century. This enormous loss may reflect numerous anthropogenic influences, such as watershed damming, bay-fill development, aggregate mining, and dredging. The reduction in Bay sediment also appears to be linked to a reduction in sediment supply and recent widespread erosion of adjacent beaches, wetlands, and submarine environments. A unique, multi-faceted provenance study was performed to definitively establish the primary sources, sinks, and transport pathways of beach-sized sand in the region, thereby identifying the activities and processes that directly limit supply to the outer coast. This integrative program is based on comprehensive surficial sediment sampling of the San Francisco Bay Coastal System, including the seabed, Bay floor, area beaches, adjacent rock units, and major drainages. Analyses of sample morphometrics and biological composition (e.g., Foraminifera) were then integrated with a suite of tracers including 87Sr/86Sr and 143Nd/144Nd isotopes, rare earth elements, semi-quantitative X-ray diffraction mineralogy, and heavy minerals, and with process-based numerical modeling, in situ current measurements, and bedform asymmetry to robustly determine the provenance of beach-sized sand in the region.

  11. Modified Chebyshev Picard Iteration for Efficient Numerical Integration of Ordinary Differential Equations

    NASA Astrophysics Data System (ADS)

    Macomber, B.; Woollands, R. M.; Probe, A.; Younes, A.; Bai, X.; Junkins, J.

    2013-09-01

    Modified Chebyshev Picard Iteration (MCPI) is an iterative numerical method for approximating solutions of linear or non-linear Ordinary Differential Equations (ODEs) to obtain time histories of system state trajectories. Unlike other step-by-step differential equation solvers, the Runge-Kutta family of numerical integrators for example, MCPI approximates long arcs of the state trajectory with an iterative path approximation approach, and is ideally suited to parallel computation. Orthogonal Chebyshev Polynomials are used as basis functions during each path iteration; the integrations of the Picard iteration are then done analytically. Due to the orthogonality of the Chebyshev basis functions, the least square approximations are computed without matrix inversion; the coefficients are computed robustly from discrete inner products. As a consequence of discrete sampling and weighting adopted for the inner product definition, Runge phenomena errors are minimized near the ends of the approximation intervals. The MCPI algorithm utilizes a vector-matrix framework for computational efficiency. Additionally, all Chebyshev coefficients and integrand function evaluations are independent, meaning they can be simultaneously computed in parallel for further decreased computational cost. Over an order of magnitude speedup from traditional methods is achieved in serial processing, and an additional order of magnitude is achievable in parallel architectures. This paper presents a new MCPI library, a modular toolset designed to allow MCPI to be easily applied to a wide variety of ODE systems. Library users will not have to concern themselves with the underlying mathematics behind the MCPI method. Inputs are the boundary conditions of the dynamical system, the integrand function governing system behavior, and the desired time interval of integration, and the output is a time history of the system states over the interval of interest. Examples from the field of astrodynamics are presented to compare the output from the MCPI library to current state-of-practice numerical integration methods. It is shown that MCPI is capable of out-performing the state-of-practice in terms of computational cost and accuracy.

  12. Asynchronous collision integrators: Explicit treatment of unilateral contact with friction and nodal restraints

    PubMed Central

    Wolff, Sebastian; Bucher, Christian

    2013-01-01

    This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. PMID:23970806

  13. On decentralized adaptive full-order sliding mode control of multiple UAVs.

    PubMed

    Xiang, Xianbo; Liu, Chao; Su, Housheng; Zhang, Qin

    2017-11-01

    In this study, a novel decentralized adaptive full-order sliding mode control framework is proposed for the robust synchronized formation motion of multiple unmanned aerial vehicles (UAVs) subject to system uncertainty. First, a full-order sliding mode surface in a decentralized manner is designed to incorporate both the individual position tracking error and the synchronized formation error while the UAV group is engaged in building a certain desired geometric pattern in three dimensional space. Second, a decentralized virtual plant controller is constructed which allows the embedded low-pass filter to attain the chattering free property of the sliding mode controller. In addition, robust adaptive technique is integrated in the decentralized chattering free sliding control design in order to handle unknown bounded uncertainties, without requirements for assuming a priori knowledge of bounds on the system uncertainties as stated in conventional chattering free control methods. Subsequently, system robustness as well as stability of the decentralized full-order sliding mode control of multiple UAVs is synthesized. Numerical simulation results illustrate the effectiveness of the proposed control framework to achieve robust 3D formation flight of the multi-UAV system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Sustainability of fisheries through marine reserves: a robust modeling analysis.

    PubMed

    Doyen, L; Béné, C

    2003-09-01

    Among the many factors that contribute to overexploitation of marine fisheries, the role played by uncertainty is important. This uncertainty includes both the scientific uncertainties related to the resource dynamics or assessments and the uncontrollability of catches. Some recent works advocate for the use of marine reserves as a central element of future stock management. In the present paper, we study the influence of protected areas upon fisheries sustainability through a simple dynamic model integrating non-stochastic harvesting uncertainty and a constraint of safe minimum biomass level. Using the mathematical concept of invariance kernel in a robust and worst-case context, we examine through a formal modeling analysis how marine reserves might guarantee viable fisheries. We also show how sustainability requirement is not necessarily conflicting with optimization of catches. Numerical simulations are provided to illustrate the main findings.

  15. Adaptive integral dynamic surface control of a hypersonic flight vehicle

    NASA Astrophysics Data System (ADS)

    Aslam Butt, Waseem; Yan, Lin; Amezquita S., Kendrick

    2015-07-01

    In this article, non-linear adaptive dynamic surface air speed and flight path angle control designs are presented for the longitudinal dynamics of a flexible hypersonic flight vehicle. The tracking performance of the control design is enhanced by introducing a novel integral term that caters to avoiding a large initial control signal. To ensure feasibility, the design scheme incorporates magnitude and rate constraints on the actuator commands. The uncertain non-linear functions are approximated by an efficient use of the neural networks to reduce the computational load. A detailed stability analysis shows that all closed-loop signals are uniformly ultimately bounded and the ? tracking performance is guaranteed. The robustness of the design scheme is verified through numerical simulations of the flexible flight vehicle model.

  16. Integral sliding mode-based attitude coordinated tracking for spacecraft formation with communication delays

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Hu, Qinglei; Xie, Wenbo

    2017-11-01

    This paper investigates the attitude coordinated tracking control for a group of rigid spacecraft under directed communication topology, in which inertia uncertainties, external disturbances, input saturation and constant time-delays between the formation members are handled. Initially, the nominal system with communication delays is studied. A delay-dependent controller is proposed by using Lyapunov-Krasovskii function and sufficient condition for system stability is derived. Then, an integral sliding manifold is designed and adaptive control approach is employed to deal with the total perturbation. Meanwhile, the boundary layer method is introduced to alleviate the unexpected chattering as system trajectories cross the switching surface. Finally, numerical simulation results are presented to validate the effectiveness and robustness of the proposed control strategy.

  17. A general framework for parametric survival analysis.

    PubMed

    Crowther, Michael J; Lambert, Paul C

    2014-12-30

    Parametric survival models are being increasingly used as an alternative to the Cox model in biomedical research. Through direct modelling of the baseline hazard function, we can gain greater understanding of the risk profile of patients over time, obtaining absolute measures of risk. Commonly used parametric survival models, such as the Weibull, make restrictive assumptions of the baseline hazard function, such as monotonicity, which is often violated in clinical datasets. In this article, we extend the general framework of parametric survival models proposed by Crowther and Lambert (Journal of Statistical Software 53:12, 2013), to incorporate relative survival, and robust and cluster robust standard errors. We describe the general framework through three applications to clinical datasets, in particular, illustrating the use of restricted cubic splines, modelled on the log hazard scale, to provide a highly flexible survival modelling framework. Through the use of restricted cubic splines, we can derive the cumulative hazard function analytically beyond the boundary knots, resulting in a combined analytic/numerical approach, which substantially improves the estimation process compared with only using numerical integration. User-friendly Stata software is provided, which significantly extends parametric survival models available in standard software. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Ecotracer: analyzing concentration of contaminants and radioisotopes in an aquatic spatial-dynamic food web model.

    PubMed

    Walters, William J; Christensen, Villy

    2018-01-01

    Ecotracer is a tool in the Ecopath with Ecosim (EwE) software package used to simulate and analyze the transport of contaminants such as methylmercury or radiocesium through aquatic food webs. Ecotracer solves the contaminant dynamic equations simultaneously with the biomass dynamic equations in Ecosim/Ecospace. In this paper, we give a detailed description of the Ecotracer module and analyze the performance on two problems of differing complexity. Ecotracer was modified from previous versions to more accurately model contaminant excretion, and new numerical integration algorithms were implemented to increase accuracy and robustness. To test the mathematical robustness of the computational algorithm, Ecotracer was tested on a simple problem for which we know an analytical solution. These results demonstrated the effectiveness of the program numerics. A much more complex model, the release of the cesium radionuclide 137 Cs from the Fukushima Dai-ichi nuclear accident, was also modeled and analyzed. A comparison of the Ecotracer results to sampled 137 Cs measurements in the coastal ocean area around Fukushima show the promise of the tool but also highlight some important limitations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Stable, high-order computation of impedance-impedance operators for three-dimensional layered medium simulations.

    PubMed

    Nicholls, David P

    2018-04-01

    The faithful modelling of the propagation of linear waves in a layered, periodic structure is of paramount importance in many branches of the applied sciences. In this paper, we present a novel numerical algorithm for the simulation of such problems which is free of the artificial singularities present in related approaches. We advocate for a surface integral formulation which is phrased in terms of impedance-impedance operators that are immune to the Dirichlet eigenvalues which plague the Dirichlet-Neumann operators that appear in classical formulations. We demonstrate a high-order spectral algorithm to simulate these latter operators based upon a high-order perturbation of surfaces methodology which is rapid, robust and highly accurate. We demonstrate the validity and utility of our approach with a sequence of numerical simulations.

  20. Predictive Lateral Logic for Numerical Entry Guidance Algorithms

    NASA Technical Reports Server (NTRS)

    Smith, Kelly M.

    2016-01-01

    Recent entry guidance algorithm development123 has tended to focus on numerical integration of trajectories onboard in order to evaluate candidate bank profiles. Such methods enjoy benefits such as flexibility to varying mission profiles and improved robustness to large dispersions. A common element across many of these modern entry guidance algorithms is a reliance upon the concept of Apollo heritage lateral error (or azimuth error) deadbands in which the number of bank reversals to be performed is non-deterministic. This paper presents a closed-loop bank reversal method that operates with a fixed number of bank reversals defined prior to flight. However, this number of bank reversals can be modified at any point, including in flight, based on contingencies such as fuel leaks where propellant usage must be minimized.

  1. Stable, high-order computation of impedance-impedance operators for three-dimensional layered medium simulations

    NASA Astrophysics Data System (ADS)

    Nicholls, David P.

    2018-04-01

    The faithful modelling of the propagation of linear waves in a layered, periodic structure is of paramount importance in many branches of the applied sciences. In this paper, we present a novel numerical algorithm for the simulation of such problems which is free of the artificial singularities present in related approaches. We advocate for a surface integral formulation which is phrased in terms of impedance-impedance operators that are immune to the Dirichlet eigenvalues which plague the Dirichlet-Neumann operators that appear in classical formulations. We demonstrate a high-order spectral algorithm to simulate these latter operators based upon a high-order perturbation of surfaces methodology which is rapid, robust and highly accurate. We demonstrate the validity and utility of our approach with a sequence of numerical simulations.

  2. Materials, Structures and Manufacturing: An Integrated Approach to Develop Expandable Structures

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Zander, Martin E.; Sleight, Daid W.; Connell, John; Holloway, Nancy; Palmieri, Frank

    2012-01-01

    Membrane dominated space structures are lightweight and package efficiently for launch; however, they must be expanded (deployed) in-orbit to achieve the desired geometry. These expandable structural systems include solar sails, solar power arrays, antennas, and numerous other large aperture devices that are used to collect, reflect and/or transmit electromagnetic radiation. In this work, an integrated approach to development of thin-film damage tolerant membranes is explored using advanced manufacturing. Bio-inspired hierarchical structures were printed on films using additive manufacturing to achieve improved tear resistance and to facilitate membrane deployment. High precision, robust expandable structures can be realized using materials that are both space durable and processable using additive manufacturing. Test results show this initial work produced higher tear resistance than neat film of equivalent mass. Future research and development opportunities for expandable structural systems designed using an integrated approach to structural design, manufacturing, and materials selection are discussed.

  3. Optimisation of assembly scheduling in VCIM systems using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Dao, Son Duy; Abhary, Kazem; Marian, Romeo

    2017-09-01

    Assembly plays an important role in any production system as it constitutes a significant portion of the lead time and cost of a product. Virtual computer-integrated manufacturing (VCIM) system is a modern production system being conceptually developed to extend the application of traditional computer-integrated manufacturing (CIM) system to global level. Assembly scheduling in VCIM systems is quite different from one in traditional production systems because of the difference in the working principles of the two systems. In this article, the assembly scheduling problem in VCIM systems is modeled and then an integrated approach based on genetic algorithm (GA) is proposed to search for a global optimised solution to the problem. Because of dynamic nature of the scheduling problem, a novel GA with unique chromosome representation and modified genetic operations is developed herein. Robustness of the proposed approach is verified by a numerical example.

  4. Algorithms for the computation of solutions of the Ornstein-Zernike equation.

    PubMed

    Peplow, A T; Beardmore, R E; Bresme, F

    2006-10-01

    We introduce a robust and efficient methodology to solve the Ornstein-Zernike integral equation using the pseudoarc length (PAL) continuation method that reformulates the integral equation in an equivalent but nonstandard form. This enables the computation of solutions in regions where the compressibility experiences large changes or where the existence of multiple solutions and so-called branch points prevents Newton's method from converging. We illustrate the use of the algorithm with a difficult problem that arises in the numerical solution of integral equations, namely the evaluation of the so-called no-solution line of the Ornstein-Zernike hypernetted chain (HNC) integral equation for the Lennard-Jones potential. We are able to use the PAL algorithm to solve the integral equation along this line and to connect physical and nonphysical solution branches (both isotherms and isochores) where appropriate. We also show that PAL continuation can compute solutions within the no-solution region that cannot be computed when Newton and Picard methods are applied directly to the integral equation. While many solutions that we find are new, some correspond to states with negative compressibility and consequently are not physical.

  5. Design and Analysis of Morpheus Lander Flight Control System

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Yang, Lee; Fritz, Mathew; Nguyen, Louis H.; Johnson, Wyatt R.; Hart, Jeremy J.

    2014-01-01

    The Morpheus Lander is a vertical takeoff and landing test bed vehicle developed to demonstrate the system performance of the Guidance, Navigation and Control (GN&C) system capability for the integrated autonomous landing and hazard avoidance system hardware and software. The Morpheus flight control system design must be robust to various mission profiles. This paper presents a design methodology for employing numerical optimization to develop the Morpheus flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics and propellant slosh. Under the assumption that the Morpheus time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time control systems in the presence of parametric uncertainty. Both control gains in the inner attitude control loop and guidance gains in the outer position control loop are designed to maximize the vehicle performance while ensuring robustness. The flight control system designs provided herein have been demonstrated to provide stable control systems in both Draper Ares Stability Analysis Tool (ASAT) and the NASA/JSC Trick-based Morpheus time domain simulation.

  6. Exponential-fitted methods for integrating stiff systems of ordinary differential equations: Applications to homogeneous gas-phase chemical kinetics

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.

    1984-01-01

    Conventional algorithms for the numerical integration of ordinary differential equations (ODEs) are based on the use of polynomial functions as interpolants. However, the exact solutions of stiff ODEs behave like decaying exponential functions, which are poorly approximated by polynomials. An obvious choice of interpolant are the exponential functions themselves, or their low-order diagonal Pade (rational function) approximants. A number of explicit, A-stable, integration algorithms were derived from the use of a three-parameter exponential function as interpolant, and their relationship to low-order, polynomial-based and rational-function-based implicit and explicit methods were shown by examining their low-order diagonal Pade approximants. A robust implicit formula was derived by exponential fitting the trapezoidal rule. Application of these algorithms to integration of the ODEs governing homogenous, gas-phase chemical kinetics was demonstrated in a developmental code CREK1D, which compares favorably with the Gear-Hindmarsh code LSODE in spite of the use of a primitive stepsize control strategy.

  7. A two-field modified Lagrangian formulation for robust simulations of extrinsic cohesive zone models

    NASA Astrophysics Data System (ADS)

    Cazes, F.; Coret, M.; Combescure, A.

    2013-06-01

    This paper presents the robust implementation of a cohesive zone model based on extrinsic cohesive laws (i.e. laws involving an infinite initial stiffness). To this end, a two-field Lagrangian weak formulation in which cohesive tractions are chosen as the field variables along the crack's path is presented. Unfortunately, this formulation cannot model the infinite compliance of the broken elements accurately, and no simple criterion can be defined to determine the loading-unloading change of state at the integration points of the cohesive elements. Therefore, a modified Lagrangian formulation using a fictitious cohesive traction instead of the classical cohesive traction as the field variable is proposed. Thanks to this change of variable, the cohesive law becomes an increasing function of the equivalent displacement jump, which eliminates the problems mentioned previously. The ability of the proposed formulations to simulate fracture accurately and without field oscillations is investigated through three numerical test examples.

  8. Robust location of optical fiber modes via the argument principle method

    NASA Astrophysics Data System (ADS)

    Chen, Parry Y.; Sivan, Yonatan

    2017-05-01

    We implement a robust, globally convergent root search method for transcendental equations guaranteed to locate all complex roots within a specified search domain, based on Cauchy's residue theorem. Although several implementations of the argument principle already exist, ours has several advantages: it allows singularities within the search domain and branch points are not fatal to the method. Furthermore, our implementation is simple and is written in MATLAB, fulfilling the need for an easily integrated implementation which can be readily modified to accommodate the many variations of the argument principle method, each of which is suited to a different application. We apply the method to the step index fiber dispersion relation, which has become topical due to the recent proliferation of high index contrast fibers. We also find modes with permittivity as the eigenvalue, catering to recent numerical methods that expand the radiation of sources using eigenmodes.

  9. The use of singular value gradients and optimization techniques to design robust controllers for multiloop systems

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Mukhopadhyay, V.

    1983-01-01

    A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two-input/two-output drone flight control system.

  10. The use of singular value gradients and optimization techniques to design robust controllers for multiloop systems

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Mukhopadhyay, V.

    1983-01-01

    A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two output drone flight control system.

  11. Parareal algorithms with local time-integrators for time fractional differential equations

    NASA Astrophysics Data System (ADS)

    Wu, Shu-Lin; Zhou, Tao

    2018-04-01

    It is challenge work to design parareal algorithms for time-fractional differential equations due to the historical effect of the fractional operator. A direct extension of the classical parareal method to such equations will lead to unbalance computational time in each process. In this work, we present an efficient parareal iteration scheme to overcome this issue, by adopting two recently developed local time-integrators for time fractional operators. In both approaches, one introduces auxiliary variables to localized the fractional operator. To this end, we propose a new strategy to perform the coarse grid correction so that the auxiliary variables and the solution variable are corrected separately in a mixed pattern. It is shown that the proposed parareal algorithm admits robust rate of convergence. Numerical examples are presented to support our conclusions.

  12. Research on knowledge representation, machine learning, and knowledge acquisition

    NASA Technical Reports Server (NTRS)

    Buchanan, Bruce G.

    1987-01-01

    Research in knowledge representation, machine learning, and knowledge acquisition performed at Knowledge Systems Lab. is summarized. The major goal of the research was to develop flexible, effective methods for representing the qualitative knowledge necessary for solving large problems that require symbolic reasoning as well as numerical computation. The research focused on integrating different representation methods to describe different kinds of knowledge more effectively than any one method can alone. In particular, emphasis was placed on representing and using spatial information about three dimensional objects and constraints on the arrangement of these objects in space. Another major theme is the development of robust machine learning programs that can be integrated with a variety of intelligent systems. To achieve this goal, learning methods were designed, implemented and experimented within several different problem solving environments.

  13. Optical frequency selective surface design using a GPU accelerated finite element boundary integral method

    NASA Astrophysics Data System (ADS)

    Ashbach, Jason A.

    Periodic metallodielectric frequency selective surface (FSS) designs have historically seen widespread use in the microwave and radio frequency spectra. By scaling the dimensions of an FSS unit cell for use in a nano-fabrication process, these concepts have recently been adapted for use in optical applications as well. While early optical designs have been limited to wellunderstood geometries or optimized pixelated screens, nano-fabrication, lithographic and interconnect technology has progressed to a point where it is possible to fabricate metallic screens of arbitrary geometries featuring curvilinear or even three-dimensional characteristics that are only tens of nanometers wide. In order to design an FSS featuring such characteristics, it is important to have a robust numerical solver that features triangular elements in purely two-dimensional geometries and prismatic or tetrahedral elements in three-dimensional geometries. In this dissertation, a periodic finite element method code has been developed which features prismatic elements whose top and bottom boundaries are truncated by numerical integration of the boundary integral as opposed to an approximate representation found in a perfectly matched layer. However, since no exact solution exists for the calculation of triangular elements in a boundary integral, this process can be time consuming. To address this, these calculations were optimized for parallelization such that they may be done on a graphics processor, which provides a large increase in computational speed. Additionally, a simple geometrical representation using a Bezier surface is presented which provides generality with few variables. With a fast numerical solver coupled with a lowvariable geometric representation, a heuristic optimization algorithm has been used to develop several optical designs such as an absorber, a circular polarization filter, a transparent conductive surface and an enhanced, optical modulator.

  14. Computational methods for yeast prion curing curves.

    PubMed

    Ridout, Martin S

    2008-10-01

    If the chemical guanidine hydrochloride is added to a dividing culture of yeast cells in which some of the protein Sup35p is in its prion form, the proportion of cells that carry replicating units of the prion, termed propagons, decreases gradually over time. Stochastic models to describe this process of 'curing' have been developed in earlier work. The present paper investigates the use of numerical methods of Laplace transform inversion to calculate curing curves and contrasts this with an alternative, more direct, approach that involves numerical integration. Transform inversion is found to provide a much more efficient computational approach that allows different models to be investigated with minimal programming effort. The method is used to investigate the robustness of the curing curve to changes in the assumed distribution of cell generation times. Matlab code is available for carrying out the calculations.

  15. Modelling wetting and drying effects over complex topography

    NASA Astrophysics Data System (ADS)

    Tchamen, G. W.; Kahawita, R. A.

    1998-06-01

    The numerical simulation of free surface flows that alternately flood and dry out over complex topography is a formidable task. The model equation set generally used for this purpose is the two-dimensional (2D) shallow water wave model (SWWM). Simplified forms of this system such as the zero inertia model (ZIM) can accommodate specific situations like slowly evolving floods over gentle slopes. Classical numerical techniques, such as finite differences (FD) and finite elements (FE), have been used for their integration over the last 20-30 years. Most of these schemes experience some kind of instability and usually fail when some particular domain under specific flow conditions is treated. The numerical instability generally manifests itself in the form of an unphysical negative depth that subsequently causes a run-time error at the computation of the celerity and/or the friction slope. The origins of this behaviour are diverse and may be generally attributed to:1. The use of a scheme that is inappropriate for such complex flow conditions (mixed regimes).2. Improper treatment of a friction source term or a large local curvature in topography.3. Mishandling of a cell that is partially wet/dry.In this paper, a tentative attempt has been made to gain a better understanding of the genesis of the instabilities, their implications and the limits to the proposed solutions. Frequently, the enforcement of robustness is made at the expense of accuracy. The need for a positive scheme, that is, a scheme that always predicts positive depths when run within the constraints of some practical stability limits, is fundamental. It is shown here how a carefully chosen scheme (in this case, an adaptation of the solver to the SWWM) can preserve positive values of water depth under both explicit and implicit time integration, high velocities and complex topography that may include dry areas. However, the treatment of the source terms: friction, Coriolis and particularly the bathymetry, are also of prime importance and must not be overlooked. Linearization with a combination of switching between explicit-implicit integration can overcome the stiffness of the friction and Coriolis terms and provide stable numerical integration. The treatment of the bathymetry source term is much more delicate. For cells undergoing a transient wet-dry process, the imposition of zero velocity stabilizes most of the approximations. However, this artificial zero velocity condition can be the cause of considerable error, especially when fast moving fronts are involved. Besides these difficulties linked with the internal position of the front within a cell versus the limited resolution of a numerical grid, it appears that the second derivative that defines whether the bed is locally convex or concave is a key indicator for stability. A convex bottom may lead to unbounded solutions. It appears that this behaviour is not linked to the numerics (numerical scheme) but rather to the mathematical theory of the SWWM. These concerns about stability have taken precedence, until now, over the crucial and related question of accuracy, especially near a moving front, and how these possible inaccuracies at the leading edge may affect the solution at interior points within the domain.This paper presents an in depth, fully two-dimensional space analysis of the aforementioned problem that has not been addressed before. The purpose of the present communication is not to propose what could be viewed as a final solution, but rather to provide some key considerations that may reveal the ingredients and insight necessary for the development of accurate and robust solutions in the future.

  16. Intelligent and robust optimization frameworks for smart grids

    NASA Astrophysics Data System (ADS)

    Dhansri, Naren Reddy

    A smart grid implies a cyberspace real-time distributed power control system to optimally deliver electricity based on varying consumer characteristics. Although smart grids solve many of the contemporary problems, they give rise to new control and optimization problems with the growing role of renewable energy sources such as wind or solar energy. Under highly dynamic nature of distributed power generation and the varying consumer demand and cost requirements, the total power output of the grid should be controlled such that the load demand is met by giving a higher priority to renewable energy sources. Hence, the power generated from renewable energy sources should be optimized while minimizing the generation from non renewable energy sources. This research develops a demand-based automatic generation control and optimization framework for real-time smart grid operations by integrating conventional and renewable energy sources under varying consumer demand and cost requirements. Focusing on the renewable energy sources, the intelligent and robust control frameworks optimize the power generation by tracking the consumer demand in a closed-loop control framework, yielding superior economic and ecological benefits and circumvent nonlinear model complexities and handles uncertainties for superior real-time operations. The proposed intelligent system framework optimizes the smart grid power generation for maximum economical and ecological benefits under an uncertain renewable wind energy source. The numerical results demonstrate that the proposed framework is a viable approach to integrate various energy sources for real-time smart grid implementations. The robust optimization framework results demonstrate the effectiveness of the robust controllers under bounded power plant model uncertainties and exogenous wind input excitation while maximizing economical and ecological performance objectives. Therefore, the proposed framework offers a new worst-case deterministic optimization algorithm for smart grid automatic generation control.

  17. Optimized pulses for the control of uncertain qubits

    DOE PAGES

    Grace, Matthew D.; Dominy, Jason M.; Witzel, Wayne M.; ...

    2012-05-18

    The construction of high-fidelity control fields that are robust to control, system, and/or surrounding environment uncertainties is a crucial objective for quantum information processing. Using the two-state Landau-Zener model for illustrative simulations of a controlled qubit, we generate optimal controls for π/2 and π pulses and investigate their inherent robustness to uncertainty in the magnitude of the drift Hamiltonian. Next, we construct a quantum-control protocol to improve system-drift robustness by combining environment-decoupling pulse criteria and optimal control theory for unitary operations. By perturbatively expanding the unitary time-evolution operator for an open quantum system, previous analysis of environment-decoupling control pulses hasmore » calculated explicit control-field criteria to suppress environment-induced errors up to (but not including) third order from π/2 and π pulses. We systematically integrate this criteria with optimal control theory, incorporating an estimate of the uncertain parameter to produce improvements in gate fidelity and robustness, demonstrated via a numerical example based on double quantum dot qubits. For the qubit model used in this work, postfacto analysis of the resulting controls suggests that realistic control-field fluctuations and noise may contribute just as significantly to gate errors as system and environment fluctuations.« less

  18. Parameter-tolerant design of high contrast gratings

    NASA Astrophysics Data System (ADS)

    Chevallier, Christyves; Fressengeas, Nicolas; Jacquet, Joel; Almuneau, Guilhem; Laaroussi, Youness; Gauthier-Lafaye, Olivier; Cerutti, Laurent; Genty, Frédéric

    2015-02-01

    This work is devoted to the design of high contrast grating mirrors taking into account the technological constraints and tolerance of fabrication. First, a global optimization algorithm has been combined to a numerical analysis of grating structures (RCWA) to automatically design HCG mirrors. Then, the tolerances of the grating dimensions have been precisely studied to develop a robust optimization algorithm with which high contrast gratings, exhibiting not only a high efficiency but also large tolerance values, could be designed. Finally, several structures integrating previously designed HCGs has been simulated to validate and illustrate the interest of such gratings.

  19. Robust rotation of rotor in a thermally driven nanomotor

    PubMed Central

    Cai, Kun; Yu, Jingzhou; Shi, Jiao; Qin, Qing-Hua

    2017-01-01

    In the fabrication of a thermally driven rotary nanomotor with the dimension of a few nanometers, fabrication and control precision may have great influence on rotor’s stability of rotational frequency (SRF). To investigate effects of uncertainty of some major factors including temperature, tube length, axial distance between tubes, diameter of tubes and the inward radial deviation (IRD) of atoms in stators on the frequency’s stability, theoretical analysis integrating with numerical experiments are carried out. From the results obtained via molecular dynamics simulation, some key points are illustrated for future fabrication of the thermal driven rotary nanomotor. PMID:28393898

  20. A simple analytical infiltration model for short-duration rainfall

    NASA Astrophysics Data System (ADS)

    Wang, Kaiwen; Yang, Xiaohua; Liu, Xiaomang; Liu, Changming

    2017-12-01

    Many infiltration models have been proposed to simulate infiltration process. Different initial soil conditions and non-uniform initial water content can lead to infiltration simulation errors, especially for short-duration rainfall (SHR). Few infiltration models are specifically derived to eliminate the errors caused by the complex initial soil conditions. We present a simple analytical infiltration model for SHR infiltration simulation, i.e., Short-duration Infiltration Process model (SHIP model). The infiltration simulated by 5 models (i.e., SHIP (high) model, SHIP (middle) model, SHIP (low) model, Philip model and Parlange model) were compared based on numerical experiments and soil column experiments. In numerical experiments, SHIP (middle) and Parlange models had robust solutions for SHR infiltration simulation of 12 typical soils under different initial soil conditions. The absolute values of percent bias were less than 12% and the values of Nash and Sutcliffe efficiency were greater than 0.83. Additionally, in soil column experiments, infiltration rate fluctuated in a range because of non-uniform initial water content. SHIP (high) and SHIP (low) models can simulate an infiltration range, which successfully covered the fluctuation range of the observed infiltration rate. According to the robustness of solutions and the coverage of fluctuation range of infiltration rate, SHIP model can be integrated into hydrologic models to simulate SHR infiltration process and benefit the flood forecast.

  1. A robust, efficient equidistribution 2D grid generation method

    NASA Astrophysics Data System (ADS)

    Chacon, Luis; Delzanno, Gian Luca; Finn, John; Chung, Jeojin; Lapenta, Giovanni

    2007-11-01

    We present a new cell-area equidistribution method for two- dimensional grid adaptation [1]. The method is able to satisfy the equidistribution constraint to arbitrary precision while optimizing desired grid properties (such as isotropy and smoothness). The method is based on the minimization of the grid smoothness integral, constrained to producing a given positive-definite cell volume distribution. The procedure gives rise to a single, non-linear scalar equation with no free-parameters. We solve this equation numerically with the Newton-Krylov technique. The ellipticity property of the linearized scalar equation allows multigrid preconditioning techniques to be effectively used. We demonstrate a solution exists and is unique. Therefore, once the solution is found, the adapted grid cannot be folded due to the positivity of the constraint on the cell volumes. We present several challenging tests to show that our new method produces optimal grids in which the constraint is satisfied numerically to arbitrary precision. We also compare the new method to the deformation method [2] and show that our new method produces better quality grids. [1] G.L. Delzanno, L. Chac'on, J.M. Finn, Y. Chung, G. Lapenta, A new, robust equidistribution method for two-dimensional grid generation, in preparation. [2] G. Liao and D. Anderson, A new approach to grid generation, Appl. Anal. 44, 285--297 (1992).

  2. Gene ARMADA: an integrated multi-analysis platform for microarray data implemented in MATLAB.

    PubMed

    Chatziioannou, Aristotelis; Moulos, Panagiotis; Kolisis, Fragiskos N

    2009-10-27

    The microarray data analysis realm is ever growing through the development of various tools, open source and commercial. However there is absence of predefined rational algorithmic analysis workflows or batch standardized processing to incorporate all steps, from raw data import up to the derivation of significantly differentially expressed gene lists. This absence obfuscates the analytical procedure and obstructs the massive comparative processing of genomic microarray datasets. Moreover, the solutions provided, heavily depend on the programming skills of the user, whereas in the case of GUI embedded solutions, they do not provide direct support of various raw image analysis formats or a versatile and simultaneously flexible combination of signal processing methods. We describe here Gene ARMADA (Automated Robust MicroArray Data Analysis), a MATLAB implemented platform with a Graphical User Interface. This suite integrates all steps of microarray data analysis including automated data import, noise correction and filtering, normalization, statistical selection of differentially expressed genes, clustering, classification and annotation. In its current version, Gene ARMADA fully supports 2 coloured cDNA and Affymetrix oligonucleotide arrays, plus custom arrays for which experimental details are given in tabular form (Excel spreadsheet, comma separated values, tab-delimited text formats). It also supports the analysis of already processed results through its versatile import editor. Besides being fully automated, Gene ARMADA incorporates numerous functionalities of the Statistics and Bioinformatics Toolboxes of MATLAB. In addition, it provides numerous visualization and exploration tools plus customizable export data formats for seamless integration by other analysis tools or MATLAB, for further processing. Gene ARMADA requires MATLAB 7.4 (R2007a) or higher and is also distributed as a stand-alone application with MATLAB Component Runtime. Gene ARMADA provides a highly adaptable, integrative, yet flexible tool which can be used for automated quality control, analysis, annotation and visualization of microarray data, constituting a starting point for further data interpretation and integration with numerous other tools.

  3. Forward Bay Cover Separation Modeling and Testing for the Orion Multi-Purpose Crew Vehicle

    NASA Technical Reports Server (NTRS)

    Ali, Yasmin; Chuhta, Jesse D.; Hughes, Michael P.; Radke, Tara S.

    2015-01-01

    Spacecraft multi-body separation events during atmospheric descent require complex testing and analysis to validate the flight separation dynamics models used to verify no re-contact. The NASA Orion Multi-Purpose Crew Vehicle (MPCV) architecture includes a highly-integrated Forward Bay Cover (FBC) jettison assembly design that combines parachutes and piston thrusters to separate the FBC from the Crew Module (CM) and avoid re-contact. A multi-disciplinary team across numerous organizations examined key model parameters and risk areas to develop a robust but affordable test campaign in order to validate and verify the FBC separation event for Exploration Flight Test-1 (EFT-1). The FBC jettison simulation model is highly complex, consisting of dozens of parameters varied simultaneously, with numerous multi-parameter interactions (coupling and feedback) among the various model elements, and encompassing distinct near-field, mid-field, and far-field regimes. The test campaign was composed of component-level testing (for example gas-piston thrusters and parachute mortars), ground FBC jettison tests, and FBC jettison air-drop tests that were accomplished by a highly multi-disciplinary team. Three ground jettison tests isolated the testing of mechanisms and structures to anchor the simulation models excluding aerodynamic effects. Subsequently, two air-drop tests added aerodynamic and parachute elements, and served as integrated system demonstrations, which had been preliminarily explored during the Orion Pad Abort-1 (PA-1) flight test in May 2010. Both ground and drop tests provided extensive data to validate analytical models and to verify the FBC jettison event for EFT-1. Additional testing will be required to support human certification of this separation event, for which NASA and Lockheed Martin are applying knowledge from Apollo and EFT-1 testing and modeling to develop a robust human-rated FBC separation event.

  4. Continuous state-space representation of a bucket-type rainfall-runoff model: a case study with the GR4 model using state-space GR4 (version 1.0)

    NASA Astrophysics Data System (ADS)

    Santos, Léonard; Thirel, Guillaume; Perrin, Charles

    2018-04-01

    In many conceptual rainfall-runoff models, the water balance differential equations are not explicitly formulated. These differential equations are solved sequentially by splitting the equations into terms that can be solved analytically with a technique called operator splitting. As a result, only the solutions of the split equations are used to present the different models. This article provides a methodology to make the governing water balance equations of a bucket-type rainfall-runoff model explicit and to solve them continuously. This is done by setting up a comprehensive state-space representation of the model. By representing it in this way, the operator splitting, which makes the structural analysis of the model more complex, could be removed. In this state-space representation, the lag functions (unit hydrographs), which are frequent in rainfall-runoff models and make the resolution of the representation difficult, are first replaced by a so-called Nash cascade and then solved with a robust numerical integration technique. To illustrate this methodology, the GR4J model is taken as an example. The substitution of the unit hydrographs with a Nash cascade, even if it modifies the model behaviour when solved using operator splitting, does not modify it when the state-space representation is solved using an implicit integration technique. Indeed, the flow time series simulated by the new representation of the model are very similar to those simulated by the classic model. The use of a robust numerical technique that approximates a continuous-time model also improves the lag parameter consistency across time steps and provides a more time-consistent model with time-independent parameters.

  5. Multiple-correction hybrid k-exact schemes for high-order compressible RANS-LES simulations on fully unstructured grids

    NASA Astrophysics Data System (ADS)

    Pont, Grégoire; Brenner, Pierre; Cinnella, Paola; Maugars, Bruno; Robinet, Jean-Christophe

    2017-12-01

    A Godunov's type unstructured finite volume method suitable for highly compressible turbulent scale-resolving simulations around complex geometries is constructed by using a successive correction technique. First, a family of k-exact Godunov schemes is developed by recursively correcting the truncation error of the piecewise polynomial representation of the primitive variables. The keystone of the proposed approach is a quasi-Green gradient operator which ensures consistency on general meshes. In addition, a high-order single-point quadrature formula, based on high-order approximations of the successive derivatives of the solution, is developed for flux integration along cell faces. The proposed family of schemes is compact in the algorithmic sense, since it only involves communications between direct neighbors of the mesh cells. The numerical properties of the schemes up to fifth-order are investigated, with focus on their resolvability in terms of number of mesh points required to resolve a given wavelength accurately. Afterwards, in the aim of achieving the best possible trade-off between accuracy, computational cost and robustness in view of industrial flow computations, we focus more specifically on the third-order accurate scheme of the family, and modify locally its numerical flux in order to reduce the amount of numerical dissipation in vortex-dominated regions. This is achieved by switching from the upwind scheme, mostly applied in highly compressible regions, to a fourth-order centered one in vortex-dominated regions. An analytical switch function based on the local grid Reynolds number is adopted in order to warrant numerical stability of the recentering process. Numerical applications demonstrate the accuracy and robustness of the proposed methodology for compressible scale-resolving computations. In particular, supersonic RANS/LES computations of the flow over a cavity are presented to show the capability of the scheme to predict flows with shocks, vortical structures and complex geometries.

  6. Physically based modeling in catchment hydrology at 50: Survey and outlook

    NASA Astrophysics Data System (ADS)

    Paniconi, Claudio; Putti, Mario

    2015-09-01

    Integrated, process-based numerical models in hydrology are rapidly evolving, spurred by novel theories in mathematical physics, advances in computational methods, insights from laboratory and field experiments, and the need to better understand and predict the potential impacts of population, land use, and climate change on our water resources. At the catchment scale, these simulation models are commonly based on conservation principles for surface and subsurface water flow and solute transport (e.g., the Richards, shallow water, and advection-dispersion equations), and they require robust numerical techniques for their resolution. Traditional (and still open) challenges in developing reliable and efficient models are associated with heterogeneity and variability in parameters and state variables; nonlinearities and scale effects in process dynamics; and complex or poorly known boundary conditions and initial system states. As catchment modeling enters a highly interdisciplinary era, new challenges arise from the need to maintain physical and numerical consistency in the description of multiple processes that interact over a range of scales and across different compartments of an overall system. This paper first gives an historical overview (past 50 years) of some of the key developments in physically based hydrological modeling, emphasizing how the interplay between theory, experiments, and modeling has contributed to advancing the state of the art. The second part of the paper examines some outstanding problems in integrated catchment modeling from the perspective of recent developments in mathematical and computational science.

  7. Attractive electron-electron interactions within robust local fitting approximations.

    PubMed

    Merlot, Patrick; Kjærgaard, Thomas; Helgaker, Trygve; Lindh, Roland; Aquilante, Francesco; Reine, Simen; Pedersen, Thomas Bondo

    2013-06-30

    An analysis of Dunlap's robust fitting approach reveals that the resulting two-electron integral matrix is not manifestly positive semidefinite when local fitting domains or non-Coulomb fitting metrics are used. We present a highly local approximate method for evaluating four-center two-electron integrals based on the resolution-of-the-identity (RI) approximation and apply it to the construction of the Coulomb and exchange contributions to the Fock matrix. In this pair-atomic resolution-of-the-identity (PARI) approach, atomic-orbital (AO) products are expanded in auxiliary functions centered on the two atoms associated with each product. Numerical tests indicate that in 1% or less of all Hartree-Fock and Kohn-Sham calculations, the indefinite integral matrix causes nonconvergence in the self-consistent-field iterations. In these cases, the two-electron contribution to the total energy becomes negative, meaning that the electronic interaction is effectively attractive, and the total energy is dramatically lower than that obtained with exact integrals. In the vast majority of our test cases, however, the indefiniteness does not interfere with convergence. The total energy accuracy is comparable to that of the standard Coulomb-metric RI method. The speed-up compared with conventional algorithms is similar to the RI method for Coulomb contributions; exchange contributions are accelerated by a factor of up to eight with a triple-zeta quality basis set. A positive semidefinite integral matrix is recovered within PARI by introducing local auxiliary basis functions spanning the full AO product space, as may be achieved by using Cholesky-decomposition techniques. Local completion, however, slows down the algorithm to a level comparable with or below conventional calculations. Copyright © 2013 Wiley Periodicals, Inc.

  8. Finite Element Simulation of Articular Contact Mechanics with Quadratic Tetrahedral Elements

    PubMed Central

    Maas, Steve A.; Ellis, Benjamin J.; Rawlins, David S.; Weiss, Jeffrey A.

    2016-01-01

    Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. PMID:26900037

  9. An exact general remeshing scheme applied to physically conservative voxelization

    DOE PAGES

    Powell, Devon; Abel, Tom

    2015-05-21

    We present an exact general remeshing scheme to compute analytic integrals of polynomial functions over the intersections between convex polyhedral cells of old and new meshes. In physics applications this allows one to ensure global mass, momentum, and energy conservation while applying higher-order polynomial interpolation. We elaborate on applications of our algorithm arising in the analysis of cosmological N-body data, computer graphics, and continuum mechanics problems. We focus on the particular case of remeshing tetrahedral cells onto a Cartesian grid such that the volume integral of the polynomial density function given on the input mesh is guaranteed to equal themore » corresponding integral over the output mesh. We refer to this as “physically conservative voxelization.” At the core of our method is an algorithm for intersecting two convex polyhedra by successively clipping one against the faces of the other. This algorithm is an implementation of the ideas presented abstractly by Sugihara [48], who suggests using the planar graph representations of convex polyhedra to ensure topological consistency of the output. This makes our implementation robust to geometric degeneracy in the input. We employ a simplicial decomposition to calculate moment integrals up to quadratic order over the resulting intersection domain. We also address practical issues arising in a software implementation, including numerical stability in geometric calculations, management of cancellation errors, and extension to two dimensions. In a comparison to recent work, we show substantial performance gains. We provide a C implementation intended to be a fast, accurate, and robust tool for geometric calculations on polyhedral mesh elements.« less

  10. Slow dynamics in translation-invariant quantum lattice models

    NASA Astrophysics Data System (ADS)

    Michailidis, Alexios A.; Žnidarič, Marko; Medvedyeva, Mariya; Abanin, Dmitry A.; Prosen, Tomaž; Papić, Z.

    2018-03-01

    Many-body quantum systems typically display fast dynamics and ballistic spreading of information. Here we address the open problem of how slow the dynamics can be after a generic breaking of integrability by local interactions. We develop a method based on degenerate perturbation theory that reveals slow dynamical regimes and delocalization processes in general translation invariant models, along with accurate estimates of their delocalization time scales. Our results shed light on the fundamental questions of the robustness of quantum integrable systems and the possibility of many-body localization without disorder. As an example, we construct a large class of one-dimensional lattice models where, despite the absence of asymptotic localization, the transient dynamics is exceptionally slow, i.e., the dynamics is indistinguishable from that of many-body localized systems for the system sizes and time scales accessible in experiments and numerical simulations.

  11. Disentangling Complexity in Bayesian Automatic Adaptive Quadrature

    NASA Astrophysics Data System (ADS)

    Adam, Gheorghe; Adam, Sanda

    2018-02-01

    The paper describes a Bayesian automatic adaptive quadrature (BAAQ) solution for numerical integration which is simultaneously robust, reliable, and efficient. Detailed discussion is provided of three main factors which contribute to the enhancement of these features: (1) refinement of the m-panel automatic adaptive scheme through the use of integration-domain-length-scale-adapted quadrature sums; (2) fast early problem complexity assessment - enables the non-transitive choice among three execution paths: (i) immediate termination (exceptional cases); (ii) pessimistic - involves time and resource consuming Bayesian inference resulting in radical reformulation of the problem to be solved; (iii) optimistic - asks exclusively for subrange subdivision by bisection; (3) use of the weaker accuracy target from the two possible ones (the input accuracy specifications and the intrinsic integrand properties respectively) - results in maximum possible solution accuracy under minimum possible computing time.

  12. Neural integrators for decision making: a favorable tradeoff between robustness and sensitivity

    PubMed Central

    Cain, Nicholas; Barreiro, Andrea K.; Shadlen, Michael

    2013-01-01

    A key step in many perceptual decision tasks is the integration of sensory inputs over time, but a fundamental questions remain about how this is accomplished in neural circuits. One possibility is to balance decay modes of membranes and synapses with recurrent excitation. To allow integration over long timescales, however, this balance must be exceedingly precise. The need for fine tuning can be overcome via a “robust integrator” mechanism in which momentary inputs must be above a preset limit to be registered by the circuit. The degree of this limiting embodies a tradeoff between sensitivity to the input stream and robustness against parameter mistuning. Here, we analyze the consequences of this tradeoff for decision-making performance. For concreteness, we focus on the well-studied random dot motion discrimination task and constrain stimulus parameters by experimental data. We show that mistuning feedback in an integrator circuit decreases decision performance but that the robust integrator mechanism can limit this loss. Intriguingly, even for perfectly tuned circuits with no immediate need for a robustness mechanism, including one often does not impose a substantial penalty for decision-making performance. The implication is that robust integrators may be well suited to subserve the basic function of evidence integration in many cognitive tasks. We develop these ideas using simulations of coupled neural units and the mathematics of sequential analysis. PMID:23446688

  13. Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems.

    PubMed

    Elgendi, Mohamed; Eskofier, Björn; Dokos, Socrates; Abbott, Derek

    2014-01-01

    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.

  14. Revisiting QRS Detection Methodologies for Portable, Wearable, Battery-Operated, and Wireless ECG Systems

    PubMed Central

    Elgendi, Mohamed; Eskofier, Björn; Dokos, Socrates; Abbott, Derek

    2014-01-01

    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices. PMID:24409290

  15. Methods for compressible multiphase flows and their applications

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choe, Y.; Kim, H.; Min, D.; Kim, C.

    2018-06-01

    This paper presents an efficient and robust numerical framework to deal with multiphase real-fluid flows and their broad spectrum of engineering applications. A homogeneous mixture model incorporated with a real-fluid equation of state and a phase change model is considered to calculate complex multiphase problems. As robust and accurate numerical methods to handle multiphase shocks and phase interfaces over a wide range of flow speeds, the AUSMPW+_N and RoeM_N schemes with a system preconditioning method are presented. These methods are assessed by extensive validation problems with various types of equation of state and phase change models. Representative realistic multiphase phenomena, including the flow inside a thermal vapor compressor, pressurization in a cryogenic tank, and unsteady cavitating flow around a wedge, are then investigated as application problems. With appropriate physical modeling followed by robust and accurate numerical treatments, compressible multiphase flow physics such as phase changes, shock discontinuities, and their interactions are well captured, confirming the suitability of the proposed numerical framework to wide engineering applications.

  16. Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Zhongbao; Tseng, King Jet; Wai, Nyunt; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2016-11-01

    Reliable state estimate depends largely on an accurate battery model. However, the parameters of battery model are time varying with operating condition variation and battery aging. The existing co-estimation methods address the model uncertainty by integrating the online model identification with state estimate and have shown improved accuracy. However, the cross interference may arise from the integrated framework to compromise numerical stability and accuracy. Thus this paper proposes the decoupling of model identification and state estimate to eliminate the possibility of cross interference. The model parameters are online adapted with the recursive least squares (RLS) method, based on which a novel joint estimator based on extended Kalman Filter (EKF) is formulated to estimate the state of charge (SOC) and capacity concurrently. The proposed joint estimator effectively compresses the filter order which leads to substantial improvement in the computational efficiency and numerical stability. Lab scale experiment on vanadium redox flow battery shows that the proposed method is highly authentic with good robustness to varying operating conditions and battery aging. The proposed method is further compared with some existing methods and shown to be superior in terms of accuracy, convergence speed, and computational cost.

  17. A Green's function method for local and non-local parallel transport in general magnetic fields

    NASA Astrophysics Data System (ADS)

    Del-Castillo-Negrete, Diego; Chacón, Luis

    2009-11-01

    The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion and astrophysics research. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), χ, and the perpendicular, χ, conductivities (χ/χ may exceed 10^10 in fusion plasmas); (ii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates; and (iii) Nonlocal parallel transport in the limit of small collisionality. Motivated by these issues, we present a Lagrangian Green's function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields. The numerical implementation employs a volume-preserving field-line integrator [Finn and Chac'on, Phys. Plasmas, 12 (2005)] for an accurate representation of the magnetic field lines regardless of the level of stochasticity. The general formalism and its algorithmic properties are discussed along with illustrative analytical and numerical examples. Problems of particular interest include: the departures from the Rochester--Rosenbluth diffusive scaling in the weak magnetic chaos regime, the interplay between non-locality and chaos, and the robustness of transport barriers in reverse shear configurations.

  18. Numerical Study of Periodic Traveling Wave Solutions for the Predator-Prey Model with Landscape Features

    NASA Astrophysics Data System (ADS)

    Yun, Ana; Shin, Jaemin; Li, Yibao; Lee, Seunggyu; Kim, Junseok

    We numerically investigate periodic traveling wave solutions for a diffusive predator-prey system with landscape features. The landscape features are modeled through the homogeneous Dirichlet boundary condition which is imposed at the edge of the obstacle domain. To effectively treat the Dirichlet boundary condition, we employ a robust and accurate numerical technique by using a boundary control function. We also propose a robust algorithm for calculating the numerical periodicity of the traveling wave solution. In numerical experiments, we show that periodic traveling waves which move out and away from the obstacle are effectively generated. We explain the formation of the traveling waves by comparing the wavelengths. The spatial asynchrony has been shown in quantitative detail for various obstacles. Furthermore, we apply our numerical technique to the complicated real landscape features.

  19. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation

    PubMed Central

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-01-01

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms. PMID:27999361

  20. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation.

    PubMed

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-12-19

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms.

  1. Transient deformation of a droplet near a microfluidic constriction: A quantitative analysis

    NASA Astrophysics Data System (ADS)

    Trégouët, Corentin; Salez, Thomas; Monteux, Cécile; Reyssat, Mathilde

    2018-05-01

    We report on experiments that consist of deforming a collection of monodisperse droplets produced by a microfluidic chip through a flow-focusing device. We show that a proper numerical modeling of the flow is necessary to access the stress applied by the latter on the droplet along its trajectory through the chip. This crucial step enables the full integration of the differential equation governing the dynamical deformation, and consequently the robust measurement of the interfacial tension by fitting the experiments with the calculated deformation. Our study thus demonstrates the feasibility of quantitative in situ rheology in microfluidic flows involving, e.g., droplets, capsules, or cells.

  2. An exact solution for ideal dam-break floods on steep slopes

    USGS Publications Warehouse

    Ancey, C.; Iverson, R.M.; Rentschler, M.; Denlinger, R.P.

    2008-01-01

    The shallow-water equations are used to model the flow resulting from the sudden release of a finite volume of frictionless, incompressible fluid down a uniform slope of arbitrary inclination. The hodograph transformation and Riemann's method make it possible to transform the governing equations into a linear system and then deduce an exact analytical solution expressed in terms of readily evaluated integrals. Although the solution treats an idealized case never strictly realized in nature, it is uniquely well-suited for testing the robustness and accuracy of numerical models used to model shallow-water flows on steep slopes. Copyright 2008 by the American Geophysical Union.

  3. Semi-implicit integration factor methods on sparse grids for high-dimensional systems

    NASA Astrophysics Data System (ADS)

    Wang, Dongyong; Chen, Weitao; Nie, Qing

    2015-07-01

    Numerical methods for partial differential equations in high-dimensional spaces are often limited by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional hierarchical basis through tensor products, is popular for handling challenges such as those associated with spatial discretization, the stability conditions on time step size due to temporal discretization, such as those associated with high-order derivatives in space and stiff reactions, remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that is advantageous in terms of stability conditions for systems containing stiff reactions and diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated explicitly and exactly, with various sparse grid techniques based on the finite element and finite difference methods and a multi-level combination approach. The overall method is found to be efficient in terms of both storage and computational time for solving a wide range of PDEs in high dimensions. In particular, the IIF with the sparse grid combination technique is flexible and effective in solving systems that may include cross-derivatives and non-constant diffusion coefficients. Extensive numerical simulations in both linear and nonlinear systems in high dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential broad applications of the sparse grid-based integration factor method.

  4. Enhanced robust fractional order proportional-plus-integral controller based on neural network for velocity control of permanent magnet synchronous motor.

    PubMed

    Zhang, Bitao; Pi, YouGuo

    2013-07-01

    The traditional integer order proportional-integral-differential (IO-PID) controller is sensitive to the parameter variation or/and external load disturbance of permanent magnet synchronous motor (PMSM). And the fractional order proportional-integral-differential (FO-PID) control scheme based on robustness tuning method is proposed to enhance the robustness. But the robustness focuses on the open-loop gain variation of controlled plant. In this paper, an enhanced robust fractional order proportional-plus-integral (ERFOPI) controller based on neural network is proposed. The control law of the ERFOPI controller is acted on a fractional order implement function (FOIF) of tracking error but not tracking error directly, which, according to theory analysis, can enhance the robust performance of system. Tuning rules and approaches, based on phase margin, crossover frequency specification and robustness rejecting gain variation, are introduced to obtain the parameters of ERFOPI controller. And the neural network algorithm is used to adjust the parameter of FOIF. Simulation and experimental results show that the method proposed in this paper not only achieve favorable tracking performance, but also is robust with regard to external load disturbance and parameter variation. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Integrating laboratory creep compaction data with numerical fault models: A Bayesian framework

    USGS Publications Warehouse

    Fitzenz, D.D.; Jalobeanu, A.; Hickman, S.H.

    2007-01-01

    We developed a robust Bayesian inversion scheme to plan and analyze laboratory creep compaction experiments. We chose a simple creep law that features the main parameters of interest when trying to identify rate-controlling mechanisms from experimental data. By integrating the chosen creep law or an approximation thereof, one can use all the data, either simultaneously or in overlapping subsets, thus making more complete use of the experiment data and propagating statistical variations in the data through to the final rate constants. Despite the nonlinearity of the problem, with this technique one can retrieve accurate estimates of both the stress exponent and the activation energy, even when the porosity time series data are noisy. Whereas adding observation points and/or experiments reduces the uncertainty on all parameters, enlarging the range of temperature or effective stress significantly reduces the covariance between stress exponent and activation energy. We apply this methodology to hydrothermal creep compaction data on quartz to obtain a quantitative, semiempirical law for fault zone compaction in the interseismic period. Incorporating this law into a simple direct rupture model, we find marginal distributions of the time to failure that are robust with respect to errors in the initial fault zone porosity. Copyright 2007 by the American Geophysical Union.

  6. Gradient-based Electrical Properties Tomography (gEPT): a Robust Method for Mapping Electrical Properties of Biological Tissues In Vivo Using Magnetic Resonance Imaging

    PubMed Central

    Liu, Jiaen; Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortele, Pierre-Francois; He, Bin

    2014-01-01

    Purpose To develop high-resolution electrical properties tomography (EPT) methods and investigate a gradient-based EPT (gEPT) approach which aims to reconstruct the electrical properties (EP), including conductivity and permittivity, of an imaged sample from experimentally measured B1 maps with improved boundary reconstruction and robustness against measurement noise. Theory and Methods Using a multi-channel transmit/receive stripline head coil, with acquired B1 maps for each coil element, by assuming negligible Bz component compared to transverse B1 components, a theory describing the relationship between B1 field, EP value and their spatial gradient has been proposed. The final EP images were obtained through spatial integration over the reconstructed EP gradient. Numerical simulation, physical phantom and in vivo human experiments at 7 T have been conducted to evaluate the performance of the proposed methods. Results Reconstruction results were compared with target EP values in both simulations and phantom experiments. Human experimental results were compared with EP values in literature. Satisfactory agreement was observed with improved boundary reconstruction. Importantly, the proposed gEPT method proved to be more robust against noise when compared to previously described non-gradient-based EPT approaches. Conclusion The proposed gEPT approach holds promises to improve EP mapping quality by recovering the boundary information and enhancing robustness against noise. PMID:25213371

  7. Study of the interplay between magnetic shear and resonances using Hamiltonian models for the magnetic field lines

    NASA Astrophysics Data System (ADS)

    Firpo, M.-C.; Constantinescu, D.

    2011-03-01

    The issue of magnetic confinement in magnetic fusion devices is addressed within a purely magnetic approach. Using some Hamiltonian models for the magnetic field lines, the dual impact of low magnetic shear is shown in a unified way. Away from resonances, it induces a drastic enhancement of magnetic confinement that favors robust internal transport barriers (ITBs) and stochastic transport reduction. When low shear occurs for values of the winding of the magnetic field lines close to low-order rationals, the amplitude thresholds of the resonant modes that break internal transport barriers by allowing a radial stochastic transport of the magnetic field lines may be quite low. The approach can be applied to assess the robustness versus magnetic perturbations of general (almost) integrable magnetic steady states, including nonaxisymmetric ones such as the important single-helicity steady states. This analysis puts a constraint on the tolerable mode amplitudes compatible with ITBs and may be proposed as a possible explanation of diverse experimental and numerical signatures of their collapses.

  8. The Superior Lambert Algorithm

    NASA Astrophysics Data System (ADS)

    der, G.

    2011-09-01

    Lambert algorithms are used extensively for initial orbit determination, mission planning, space debris correlation, and missile targeting, just to name a few applications. Due to the significance of the Lambert problem in Astrodynamics, Gauss, Battin, Godal, Lancaster, Gooding, Sun and many others (References 1 to 15) have provided numerous formulations leading to various analytic solutions and iterative methods. Most Lambert algorithms and their computer programs can only work within one revolution, break down or converge slowly when the transfer angle is near zero or 180 degrees, and their multi-revolution limitations are either ignored or barely addressed. Despite claims of robustness, many Lambert algorithms fail without notice, and the users seldom have a clue why. The DerAstrodynamics lambert2 algorithm, which is based on the analytic solution formulated by Sun, works for any number of revolutions and converges rapidly at any transfer angle. It provides significant capability enhancements over every other Lambert algorithm in use today. These include improved speed, accuracy, robustness, and multirevolution capabilities as well as implementation simplicity. Additionally, the lambert2 algorithm provides a powerful tool for solving the angles-only problem without artificial singularities (pointed out by Gooding in Reference 16), which involves 3 lines of sight captured by optical sensors, or systems such as the Air Force Space Surveillance System (AFSSS). The analytic solution is derived from the extended Godal’s time equation by Sun, while the iterative method of solution is that of Laguerre, modified for robustness. The Keplerian solution of a Lambert algorithm can be extended to include the non-Keplerian terms of the Vinti algorithm via a simple targeting technique (References 17 to 19). Accurate analytic non-Keplerian trajectories can be predicted for satellites and ballistic missiles, while performing at least 100 times faster in speed than most numerical integration methods.

  9. Robustness of high-fidelity Rydberg gates with single-site addressability

    NASA Astrophysics Data System (ADS)

    Goerz, Michael H.; Halperin, Eli J.; Aytac, Jon M.; Koch, Christiane P.; Whaley, K. Birgitta

    2014-09-01

    Controlled-phase (cphase) gates can be realized with trapped neutral atoms by making use of the Rydberg blockade. Achieving the ultrahigh fidelities required for quantum computation with such Rydberg gates, however, is compromised by experimental inaccuracies in pulse amplitudes and timings, as well as by stray fields that cause fluctuations of the Rydberg levels. We report here a comparative study of analytic and numerical pulse sequences for the Rydberg cphase gate that specifically examines the robustness of the gate fidelity with respect to such experimental perturbations. Analytical pulse sequences of both simultaneous and stimulated Raman adiabatic passage (STIRAP) are found to be at best moderately robust under these perturbations. In contrast, optimal control theory is seen to allow generation of numerical pulses that are inherently robust within a predefined tolerance window. The resulting numerical pulse shapes display simple modulation patterns and can be rationalized in terms of an interference between distinct two-photon Rydberg excitation pathways. Pulses of such low complexity should be experimentally feasible, allowing gate fidelities of order 99.90-99.99% to be achievable under realistic experimental conditions.

  10. A novel method for calculating relative free energy of similar molecules in two environments

    NASA Astrophysics Data System (ADS)

    Farhi, Asaf; Singh, Bipin

    2017-03-01

    Calculating relative free energies is a topic of substantial interest and has many applications including solvation and binding free energies, which are used in computational drug discovery. However, there remain the challenges of accuracy, simple implementation, robustness and efficiency, which prevent the calculations from being automated and limit their use. Here we present an exact and complete decoupling analysis in which the partition functions of the compared systems decompose into the partition functions of the common and different subsystems. This decoupling analysis is applicable to submolecules with coupled degrees of freedom such as the methyl group and to any potential function (including the typical dihedral potentials), enabling to remove less terms in the transformation which results in a more efficient calculation. Then we show mathematically, in the context of partition function decoupling, that the two compared systems can be simulated separately, eliminating the need to design a composite system. We demonstrate the decoupling analysis and the separate transformations in a relative free energy calculation using MD simulations for a general force field and compare to another calculation and to experimental results. We present a unified soft-core technique that ensures the monotonicity of the numerically integrated function (analytical proof) which is important for the selection of intermediates. We show mathematically that in this soft-core technique the numerically integrated function can be non-steep only when we transform the systems separately, which can simplify the numerical integration. Finally, we show that when the systems have rugged energy landscape they can be equilibrated without introducing another sampling dimension which can also enable to use the simulation results for other free energy calculations.

  11. GWAR: robust analysis and meta-analysis of genome-wide association studies.

    PubMed

    Dimou, Niki L; Tsirigos, Konstantinos D; Elofsson, Arne; Bagos, Pantelis G

    2017-05-15

    In the context of genome-wide association studies (GWAS), there is a variety of statistical techniques in order to conduct the analysis, but, in most cases, the underlying genetic model is usually unknown. Under these circumstances, the classical Cochran-Armitage trend test (CATT) is suboptimal. Robust procedures that maximize the power and preserve the nominal type I error rate are preferable. Moreover, performing a meta-analysis using robust procedures is of great interest and has never been addressed in the past. The primary goal of this work is to implement several robust methods for analysis and meta-analysis in the statistical package Stata and subsequently to make the software available to the scientific community. The CATT under a recessive, additive and dominant model of inheritance as well as robust methods based on the Maximum Efficiency Robust Test statistic, the MAX statistic and the MIN2 were implemented in Stata. Concerning MAX and MIN2, we calculated their asymptotic null distributions relying on numerical integration resulting in a great gain in computational time without losing accuracy. All the aforementioned approaches were employed in a fixed or a random effects meta-analysis setting using summary data with weights equal to the reciprocal of the combined cases and controls. Overall, this is the first complete effort to implement procedures for analysis and meta-analysis in GWAS using Stata. A Stata program and a web-server are freely available for academic users at http://www.compgen.org/tools/GWAR. pbagos@compgen.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  12. Robust Decision-making Applied to Model Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemez, Francois M.

    2012-08-06

    The scientific and engineering communities are relying more and more on numerical models to simulate ever-increasingly complex phenomena. Selecting a model, from among a family of models that meets the simulation requirements, presents a challenge to modern-day analysts. To address this concern, a framework is adopted anchored in info-gap decision theory. The framework proposes to select models by examining the trade-offs between prediction accuracy and sensitivity to epistemic uncertainty. The framework is demonstrated on two structural engineering applications by asking the following question: Which model, of several numerical models, approximates the behavior of a structure when parameters that define eachmore » of those models are unknown? One observation is that models that are nominally more accurate are not necessarily more robust, and their accuracy can deteriorate greatly depending upon the assumptions made. It is posited that, as reliance on numerical models increases, establishing robustness will become as important as demonstrating accuracy.« less

  13. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  14. Strategic Technology Investment Analysis: An Integrated System Approach

    NASA Technical Reports Server (NTRS)

    Adumitroaie, V.; Weisbin, C. R.

    2010-01-01

    Complex technology investment decisions within NASA are increasingly difficult to make such that the end results are satisfying the technical objectives and all the organizational constraints. Due to a restricted science budget environment and numerous required technology developments, the investment decisions need to take into account not only the functional impact on the program goals, but also development uncertainties and cost variations along with maintaining a healthy workforce. This paper describes an approach for optimizing and qualifying technology investment portfolios from the perspective of an integrated system model. The methodology encompasses multi-attribute decision theory elements and sensitivity analysis. The evaluation of the degree of robustness of the recommended portfolio provides the decision-maker with an array of viable selection alternatives, which take into account input uncertainties and possibly satisfy nontechnical constraints. The methodology is presented in the context of assessing capability development portfolios for NASA technology programs.

  15. A novel sliding mode guidance law without line-of-sight angular rate information accounting for autopilot lag

    NASA Astrophysics Data System (ADS)

    He, Shaoming; Wang, Jiang; Wang, Wei

    2017-12-01

    This paper proposes a new composite guidance law to intercept manoeuvring targets without line-of-sight (LOS) angular rate information in the presence of autopilot lag. The presented formulation is obtained via a combination of homogeneous theory and sliding mode control approach. Different from some existing observers, the proposed homogeneous observer can estimate the lumped uncertainty and the LOS angular rate in an integrated manner. To reject the mismatched lumped uncertainty in the integrated guidance and autopilot system, a sliding surface, which consists of the system states and the estimated states, is proposed and a robust guidance law is then synthesised. Stability analysis shows that the LOS angular rate can be stabilised in a small region around zero asymptotically and the upper bound can be lowered by appropriate parameter choice. Numerical simulations with some comparisons are carried out to demonstrate the superiority of the proposed method.

  16. Shock and vibration effects on performance reliability and mechanical integrity of proton exchange membrane fuel cells: A critical review and discussion

    NASA Astrophysics Data System (ADS)

    Haji Hosseinloo, Ashkan; Ehteshami, Mohsen Mousavi

    2017-10-01

    Performance reliability and mechanical integrity are the main bottlenecks in mass commercialization of PEMFCs for applications with inherent harsh environment such as automotive and aerospace applications. Imparted shock and vibration to the fuel cell in such applications could bring about numerous issues including clamping torque loosening, gas leakage, increased electrical resistance, and structural damage and breakage. Here, we provide a comprehensive review and critique of the literature focusing on the effects of mechanically harsh environment on PEMFCs, and at the end, we suggest two main future directions in FC technology research that need immediate attention: (i) developing a generic and adequately accurate dynamic model of PEMFCs to assess the dynamic response of FC devices, and (ii) designing effective and robust shock and vibration protection systems based on the developed models in (i).

  17. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  18. A flux splitting scheme with high-resolution and robustness for discontinuities

    NASA Technical Reports Server (NTRS)

    Wada, Yasuhiro; Liou, Meng-Sing

    1994-01-01

    A flux splitting scheme is proposed for the general nonequilibrium flow equations with an aim at removing numerical dissipation of Van-Leer-type flux-vector splittings on a contact discontinuity. The scheme obtained is also recognized as an improved Advection Upwind Splitting Method (AUSM) where a slight numerical overshoot immediately behind the shock is eliminated. The proposed scheme has favorable properties: high-resolution for contact discontinuities; conservation of enthalpy for steady flows; numerical efficiency; applicability to chemically reacting flows. In fact, for a single contact discontinuity, even if it is moving, this scheme gives the numerical flux of the exact solution of the Riemann problem. Various numerical experiments including that of a thermo-chemical nonequilibrium flow were performed, which indicate no oscillation and robustness of the scheme for shock/expansion waves. A cure for carbuncle phenomenon is discussed as well.

  19. Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.

    PubMed

    Maas, Steve A; Ellis, Benjamin J; Rawlins, David S; Weiss, Jeffrey A

    2016-03-21

    Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Integrated Demonstration of Instrument Placement , Robust Execution and Contingent Planning

    NASA Technical Reports Server (NTRS)

    Pedersen, L.; Bualat, M.; Lees, D.; Smith, D. E.; Korsmeyer, David (Technical Monitor); Washington, R.

    2003-01-01

    This paper describes an integrated demonstration of ground-based contingent planning, robust execution and autonomous instrument placement for the efficient exploration of a site by a prototype Mars rover.

  1. Efficient uncertainty quantification in fully-integrated surface and subsurface hydrologic simulations

    NASA Astrophysics Data System (ADS)

    Miller, K. L.; Berg, S. J.; Davison, J. H.; Sudicky, E. A.; Forsyth, P. A.

    2018-01-01

    Although high performance computers and advanced numerical methods have made the application of fully-integrated surface and subsurface flow and transport models such as HydroGeoSphere common place, run times for large complex basin models can still be on the order of days to weeks, thus, limiting the usefulness of traditional workhorse algorithms for uncertainty quantification (UQ) such as Latin Hypercube simulation (LHS) or Monte Carlo simulation (MCS), which generally require thousands of simulations to achieve an acceptable level of accuracy. In this paper we investigate non-intrusive polynomial chaos for uncertainty quantification, which in contrast to random sampling methods (e.g., LHS and MCS), represents a model response of interest as a weighted sum of polynomials over the random inputs. Once a chaos expansion has been constructed, approximating the mean, covariance, probability density function, cumulative distribution function, and other common statistics as well as local and global sensitivity measures is straightforward and computationally inexpensive, thus making PCE an attractive UQ method for hydrologic models with long run times. Our polynomial chaos implementation was validated through comparison with analytical solutions as well as solutions obtained via LHS for simple numerical problems. It was then used to quantify parametric uncertainty in a series of numerical problems with increasing complexity, including a two-dimensional fully-saturated, steady flow and transient transport problem with six uncertain parameters and one quantity of interest; a one-dimensional variably-saturated column test involving transient flow and transport, four uncertain parameters, and two quantities of interest at 101 spatial locations and five different times each (1010 total); and a three-dimensional fully-integrated surface and subsurface flow and transport problem for a small test catchment involving seven uncertain parameters and three quantities of interest at 241 different times each. Numerical experiments show that polynomial chaos is an effective and robust method for quantifying uncertainty in fully-integrated hydrologic simulations, which provides a rich set of features and is computationally efficient. Our approach has the potential for significant speedup over existing sampling based methods when the number of uncertain model parameters is modest ( ≤ 20). To our knowledge, this is the first implementation of the algorithm in a comprehensive, fully-integrated, physically-based three-dimensional hydrosystem model.

  2. Jenkins-CI, an Open-Source Continuous Integration System, as a Scientific Data and Image-Processing Platform.

    PubMed

    Moutsatsos, Ioannis K; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J; Jenkins, Jeremy L; Holway, Nicholas; Tallarico, John; Parker, Christian N

    2017-03-01

    High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an "off-the-shelf," open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community.

  3. Jenkins-CI, an Open-Source Continuous Integration System, as a Scientific Data and Image-Processing Platform

    PubMed Central

    Moutsatsos, Ioannis K.; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J.; Jenkins, Jeremy L.; Holway, Nicholas; Tallarico, John; Parker, Christian N.

    2016-01-01

    High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an “off-the-shelf,” open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community. PMID:27899692

  4. COMPARISON OF NUMERICAL SCHEMES FOR SOLVING A SPHERICAL PARTICLE DIFFUSION EQUATION

    EPA Science Inventory

    A new robust iterative numerical scheme was developed for a nonlinear diffusive model that described sorption dynamics in spherical particle suspensions. he numerical scheme had been applied to finite difference and finite element models that showed rapid convergence and stabilit...

  5. An efficient multi-dimensional implementation of VSIAM3 and its applications to free surface flows

    NASA Astrophysics Data System (ADS)

    Yokoi, Kensuke; Furuichi, Mikito; Sakai, Mikio

    2017-12-01

    We propose an efficient multidimensional implementation of VSIAM3 (volume/surface integrated average-based multi-moment method). Although VSIAM3 is a highly capable fluid solver based on a multi-moment concept and has been used for a wide variety of fluid problems, VSIAM3 could not simulate some simple benchmark problems well (for instance, lid-driven cavity flows) due to relatively high numerical viscosity. In this paper, we resolve the issue by using the efficient multidimensional approach. The proposed VSIAM3 is shown to capture lid-driven cavity flows of the Reynolds number up to Re = 7500 with a Cartesian grid of 128 × 128, which was not capable for the original VSIAM3. We also tested the proposed framework in free surface flow problems (droplet collision and separation of We = 40 and droplet splashing on a superhydrophobic substrate). The numerical results by the proposed VSIAM3 showed reasonable agreements with these experiments. The proposed VSIAM3 could capture droplet collision and separation of We = 40 with a low numerical resolution (8 meshes for the initial diameter of droplets). We also simulated free surface flows including particles toward non-Newtonian flow applications. These numerical results have showed that the proposed VSIAM3 can robustly simulate interactions among air, particles (solid), and liquid.

  6. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.

    PubMed

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B

    2007-06-16

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  7. Numerical Computation of a Continuous-thrust State Transition Matrix Incorporating Accurate Hardware and Ephemeris Models

    NASA Technical Reports Server (NTRS)

    Ellison, Donald; Conway, Bruce; Englander, Jacob

    2015-01-01

    A significant body of work exists showing that providing a nonlinear programming (NLP) solver with expressions for the problem constraint gradient substantially increases the speed of program execution and can also improve the robustness of convergence, especially for local optimizers. Calculation of these derivatives is often accomplished through the computation of spacecraft's state transition matrix (STM). If the two-body gravitational model is employed as is often done in the context of preliminary design, closed form expressions for these derivatives may be provided. If a high fidelity dynamics model, that might include perturbing forces such as the gravitational effect from multiple third bodies and solar radiation pressure is used then these STM's must be computed numerically. We present a method for the power hardward model and a full ephemeris model. An adaptive-step embedded eight order Dormand-Prince numerical integrator is discussed and a method for the computation of the time of flight derivatives in this framework is presented. The use of these numerically calculated derivatieves offer a substantial improvement over finite differencing in the context of a global optimizer. Specifically the inclusion of these STM's into the low thrust missiondesign tool chain in use at NASA Goddard Spaceflight Center allows for an increased preliminary mission design cadence.

  8. The Influence of Assortativity on the Robustness of Signal-Integration Logic in Gene Regulatory Networks

    PubMed Central

    Pechenick, Dov A.; Payne, Joshua L.; Moore, Jason H.

    2011-01-01

    Gene regulatory networks (GRNs) drive the cellular processes that sustain life. To do so reliably, GRNs must be robust to perturbations, such as gene deletion and the addition or removal of regulatory interactions. GRNs must also be robust to genetic changes in regulatory regions that define the logic of signal-integration, as these changes can affect how specific combinations of regulatory signals are mapped to particular gene expression states. Previous theoretical analyses have demonstrated that the robustness of a GRN is influenced by its underlying topological properties, such as degree distribution and modularity. Another important topological property is assortativity, which measures the propensity with which nodes of similar connectivity are connected to one another. How assortativity influences the robustness of the signal-integration logic of GRNs remains an open question. Here, we use computational models of GRNs to investigate this relationship. We separately consider each of the three dynamical regimes of this model for a variety of degree distributions. We find that in the chaotic regime, robustness exhibits a pronounced increase as assortativity becomes more positive, while in the critical and ordered regimes, robustness is generally less sensitive to changes in assortativity. We attribute the increased robustness to a decrease in the duration of the gene expression pattern, which is caused by a reduction in the average size of a GRN’s in-components. This study provides the first direct evidence that assortativity influences the robustness of the signal-integration logic of computational models of GRNs, illuminates a mechanistic explanation for this influence, and furthers our understanding of the relationship between topology and robustness in complex biological systems. PMID:22155134

  9. Reliable numerical computation in an optimal output-feedback design

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm is presented for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters. The algorithm is a part of a design algorithm for optimal linear dynamic output-feedback controller that minimizes a finite-time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control-law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed-loop eigensystem. This approach through the use of an accurate Pade series approximation does not require the closed-loop system matrix to be diagonalizable. The algorithm was included in a control design package for optimal robust low-order controllers. Usefulness of the proposed numerical algorithm was demonstrated using numerous practical design cases where degeneracies occur frequently in the closed-loop system under an arbitrary controller design initialization and during the numerical search.

  10. Attitude/attitude-rate estimation from GPS differential phase measurements using integrated-rate parameters

    NASA Technical Reports Server (NTRS)

    Oshman, Yaakov; Markley, Landis

    1998-01-01

    A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.

  11. Nonparametric probability density estimation by optimization theoretic techniques

    NASA Technical Reports Server (NTRS)

    Scott, D. W.

    1976-01-01

    Two nonparametric probability density estimators are considered. The first is the kernel estimator. The problem of choosing the kernel scaling factor based solely on a random sample is addressed. An interactive mode is discussed and an algorithm proposed to choose the scaling factor automatically. The second nonparametric probability estimate uses penalty function techniques with the maximum likelihood criterion. A discrete maximum penalized likelihood estimator is proposed and is shown to be consistent in the mean square error. A numerical implementation technique for the discrete solution is discussed and examples displayed. An extensive simulation study compares the integrated mean square error of the discrete and kernel estimators. The robustness of the discrete estimator is demonstrated graphically.

  12. Conversion of Component-Based Point Definition to VSP Model and Higher Order Meshing

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian

    2011-01-01

    Vehicle Sketch Pad (VSP) has become a powerful conceptual and parametric geometry tool with numerous export capabilities for third-party analysis codes as well as robust surface meshing capabilities for computational fluid dynamics (CFD) analysis. However, a capability gap currently exists for reconstructing a fully parametric VSP model of a geometry generated by third-party software. A computer code called GEO2VSP has been developed to close this gap and to allow the integration of VSP into a closed-loop geometry design process with other third-party design tools. Furthermore, the automated CFD surface meshing capability of VSP are demonstrated for component-based point definition geometries in a conceptual analysis and design framework.

  13. Robust, Reliable Low Emission Gas Turbine Combustion of High Hydrogen Content Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooldridge, Margaret Stacy; Im, Hong Geum

    2016-12-16

    The effects of high hydrogen content fuels were studied using experimental, computational and theoretical approaches to understand the effects of mixture and state conditions on the ignition behavior of the fuels. A rapid compression facility (RCF) was used to measure the ignition delay time of hydrogen and carbon monoxide mixtures. The data were combined with results of previous studies to develop ignition regime criteria. Analytical theory and direct numerical simulation were used to validate and interpret the RCF ignition data. Based on the integrated information the ignition regime criteria were extended to non-dimensional metrics which enable application of the resultsmore » to practical gas turbine combustion systems.« less

  14. A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF

    PubMed Central

    Ali, Nouman; Bajwa, Khalid Bashir; Sablatnig, Robert; Chatzichristofis, Savvas A.; Iqbal, Zeshan; Rashid, Muhammad; Habib, Hafiz Adnan

    2016-01-01

    With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR), high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration. PMID:27315101

  15. Robust averaging protects decisions from noise in neural computations

    PubMed Central

    Herce Castañón, Santiago; Solomon, Joshua A.; Vandormael, Hildward

    2017-01-01

    An ideal observer will give equivalent weight to sources of information that are equally reliable. However, when averaging visual information, human observers tend to downweight or discount features that are relatively outlying or deviant (‘robust averaging’). Why humans adopt an integration policy that discards important decision information remains unknown. Here, observers were asked to judge the average tilt in a circular array of high-contrast gratings, relative to an orientation boundary defined by a central reference grating. Observers showed robust averaging of orientation, but the extent to which they did so was a positive predictor of their overall performance. Using computational simulations, we show that although robust averaging is suboptimal for a perfect integrator, it paradoxically enhances performance in the presence of “late” noise, i.e. which corrupts decisions during integration. In other words, robust decision strategies increase the brain’s resilience to noise arising in neural computations during decision-making. PMID:28841644

  16. The CE/SE Method: a CFD Framework for the Challenges of the New Millennium

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Yu, Sheng-Tao

    2001-01-01

    The space-time conservation element and solution element (CE/SE) method, which was originated and is continuously being developed at NASA Glenn Research Center, is a high-resolution, genuinely multidimensional and unstructured-mesh compatible numerical method for solving conservation laws. Since its inception in 1991, the CE/SE method has been used to obtain highly accurate numerical solutions for 1D, 2D and 3D flow problems involving shocks, contact discontinuities, acoustic waves, vortices, shock/acoustic waves/vortices interactions, shock/boundary layers interactions and chemical reactions. Without the aid of preconditioning or other special techniques, it has been applied to both steady and unsteady flows with speeds ranging from Mach number = 0.00288 to 10. In addition, the method has unique features that allow for (i) the use of very simple non-reflecting boundary conditions, and (ii) a unified wall boundary treatment for viscous and inviscid flows. The CE/SE method was developed with the conviction that, with a solid foundation in physics, a robust, coherent and accurate numerical framework can be built without involving overly complex mathematics. As a result, the method was constructed using a set of design principles that facilitate simplicity, robustness and accuracy. The most important among them are: (i) enforcing both local and global flux conservation in space and time, with flux evaluation at an interface being an integral part of the solution procedure and requiring no interpolation or extrapolation; (ii) unifying space and time and treating them as a single entity; and (iii) requiring that a numerical scheme be built from a nondissipative core scheme such that the numerical dissipation can be effectively controlled and, as a result, will not overwhelm the physical dissipation. Part I of the workshop will be devoted to a discussion of these principles along with a description of how the ID, 2D and 3D CE/SE schemes are constructed. In Part II, various applications of the CE/SE method, particularly those involving chemical reactions and acoustics, will be presented. The workshop will be concluded with a sketch of the future research directions.

  17. Robust Integration Schemes for Generalized Viscoplasticity with Internal-State Variables

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Li, W.; Wilt, Thomas E.

    1997-01-01

    The scope of the work in this presentation focuses on the development of algorithms for the integration of rate dependent constitutive equations. In view of their robustness; i.e., their superior stability and convergence properties for isotropic and anisotropic coupled viscoplastic-damage models, implicit integration schemes have been selected. This is the simplest in its class and is one of the most widely used implicit integrators at present.

  18. Meshfree and efficient modeling of swimming cells

    NASA Astrophysics Data System (ADS)

    Gallagher, Meurig T.; Smith, David J.

    2018-05-01

    Locomotion in Stokes flow is an intensively studied problem because it describes important biological phenomena such as the motility of many species' sperm, bacteria, algae, and protozoa. Numerical computations can be challenging, particularly in three dimensions, due to the presence of moving boundaries and complex geometries; methods which combine ease of implementation and computational efficiency are therefore needed. A recently proposed method to discretize the regularized Stokeslet boundary integral equation without the need for a connected mesh is applied to the inertialess locomotion problem in Stokes flow. The mathematical formulation and key aspects of the computational implementation in matlab® or GNU Octave are described, followed by numerical experiments with biflagellate algae and multiple uniflagellate sperm swimming between no-slip surfaces, for which both swimming trajectories and flow fields are calculated. These computational experiments required minutes of time on modest hardware; an extensible implementation is provided in a GitHub repository. The nearest-neighbor discretization dramatically improves convergence and robustness, a key challenge in extending the regularized Stokeslet method to complicated three-dimensional biological fluid problems.

  19. Long-time stability effects of quadrature and artificial viscosity on nodal discontinuous Galerkin methods for gas dynamics

    NASA Astrophysics Data System (ADS)

    Durant, Bradford; Hackl, Jason; Balachandar, Sivaramakrishnan

    2017-11-01

    Nodal discontinuous Galerkin schemes present an attractive approach to robust high-order solution of the equations of fluid mechanics, but remain accompanied by subtle challenges in their consistent stabilization. The effect of quadrature choices (full mass matrix vs spectral elements), over-integration to manage aliasing errors, and explicit artificial viscosity on the numerical solution of a steady homentropic vortex are assessed over a wide range of resolutions and polynomial orders using quadrilateral elements. In both stagnant and advected vortices in periodic and non-periodic domains the need arises for explicit stabilization beyond the numerical surface fluxes of discontinuous Galerkin spectral elements. Artificial viscosity via the entropy viscosity method is assessed as a stabilizing mechanism. It is shown that the regularity of the artificial viscosity field is essential to its use for long-time stabilization of small-scale features in nodal discontinuous Galerkin solutions of the Euler equations of gas dynamics. Supported by the Department of Energy Predictive Science Academic Alliance Program Contract DE-NA0002378.

  20. Optimal reorientation of asymmetric underactuated spacecraft using differential flatness and receding horizon control

    NASA Astrophysics Data System (ADS)

    Cai, Wei-wei; Yang, Le-ping; Zhu, Yan-wei

    2015-01-01

    This paper presents a novel method integrating nominal trajectory optimization and tracking for the reorientation control of an underactuated spacecraft with only two available control torque inputs. By employing a pseudo input along the uncontrolled axis, the flatness property of a general underactuated spacecraft is extended explicitly, by which the reorientation trajectory optimization problem is formulated into the flat output space with all the differential constraints eliminated. Ultimately, the flat output optimization problem is transformed into a nonlinear programming problem via the Chebyshev pseudospectral method, which is improved by the conformal map and barycentric rational interpolation techniques to overcome the side effects of the differential matrix's ill-conditions on numerical accuracy. Treating the trajectory tracking control as a state regulation problem, we develop a robust closed-loop tracking control law using the receding-horizon control method, and compute the feedback control at each control cycle rapidly via the differential transformation method. Numerical simulation results show that the proposed control scheme is feasible and effective for the reorientation maneuver.

  1. Using multi-disciplinary optimization and numerical simulation on the transiting exoplanet survey satellite

    NASA Astrophysics Data System (ADS)

    Stoeckel, Gerhard P.; Doyle, Keith B.

    2017-08-01

    The Transiting Exoplanet Survey Satellite (TESS) is an instrument consisting of four, wide fieldof- view CCD cameras dedicated to the discovery of exoplanets around the brightest stars, and understanding the diversity of planets and planetary systems in our galaxy. Each camera utilizes a seven-element lens assembly with low-power and low-noise CCD electronics. Advanced multivariable optimization and numerical simulation capabilities accommodating arbitrarily complex objective functions have been added to the internally developed Lincoln Laboratory Integrated Modeling and Analysis Software (LLIMAS) and used to assess system performance. Various optical phenomena are accounted for in these analyses including full dn/dT spatial distributions in lenses and charge diffusion in the CCD electronics. These capabilities are utilized to design CCD shims for thermal vacuum chamber testing and flight, and verify comparable performance in both environments across a range of wavelengths, field points and temperature distributions. Additionally, optimizations and simulations are used for model correlation and robustness optimizations.

  2. An integrated dispersion preparation, characterization and in vitro dosimetry methodology for engineered nanomaterials

    PubMed Central

    DeLoid, Glen M.; Cohen, Joel M.; Pyrgiotakis, Georgios; Demokritou, Philip

    2018-01-01

    Summary Evidence continues to grow of the importance of in vitro and in vivo dosimetry in the hazard assessment and ranking of engineered nanomaterials (ENMs). Accurate dose metrics are particularly important for in vitro cellular screening to assess the potential health risks or bioactivity of ENMs. In order to ensure meaningful and reproducible quantification of in vitro dose, with consistent measurement and reporting between laboratories, it is necessary to adopt standardized and integrated methodologies for 1) generation of stable ENM suspensions in cell culture media, 2) colloidal characterization of suspended ENMs, particularly properties that determine particle kinetics in an in vitro system (size distribution and formed agglomerate effective density), and 3) robust numerical fate and transport modeling for accurate determination of ENM dose delivered to cells over the course of the in vitro exposure. Here we present such an integrated comprehensive protocol based on such a methodology for in vitro dosimetry, including detailed standardized procedures for each of these three critical steps. The entire protocol requires approximately 6-12 hours to complete. PMID:28102836

  3. Numerical analysis of behaviour of cross laminated timber (CLT) in blast loading

    NASA Astrophysics Data System (ADS)

    Šliseris, J.; Gaile, L.; Pakrastiņš, L.

    2017-10-01

    A non-linear computation model for CLT wall element that includes explicit dynamics and composite damage constitutive model was developed. The numerical model was compared with classical beam theory and it turned out that shear wood layer has significant shear deformations that must be taken into account when designing CLT. It turned out that impulse duration time has a major effect on the strength of CLT. Special attention must be payed when designing CLT wall, window and door architectural system in order to guarantee the robustness of structure. The proposed numerical modelling framework can be used when designing CLT buildings that can be affected by blast loading, whilst structural robustness must be guaranteed.

  4. A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state

    NASA Astrophysics Data System (ADS)

    Kawai, Soshi; Terashima, Hiroshi; Negishi, Hideyo

    2015-11-01

    This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture the steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier-Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.

  5. A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, Soshi, E-mail: kawai@cfd.mech.tohoku.ac.jp; Terashima, Hiroshi; Negishi, Hideyo

    2015-11-01

    This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture themore » steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier–Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.« less

  6. Increasing Model Complexity: Unit Testing and Validation of a Coupled Electrical Resistive Heating and Macroscopic Invasion Percolation Model

    NASA Astrophysics Data System (ADS)

    Molnar, I. L.; Krol, M.; Mumford, K. G.

    2016-12-01

    Geoenvironmental models are becoming increasingly sophisticated as they incorporate rising numbers of mechanisms and process couplings to describe environmental scenarios. When combined with advances in computing and numerical techniques, these already complicated models are experiencing large increases in code complexity and simulation time. Although, this complexity has enabled breakthroughs in the ability to describe environmental problems, it is difficult to ensure that complex models are sufficiently robust and behave as intended. Many development tools used for testing software robustness have not seen widespread use in geoenvironmental sciences despite an increasing reliance on complex numerical models, leaving many models at risk of undiscovered errors and potentially improper validations. This study explores the use of unit testing, which independently examines small code elements to ensure each unit is working as intended as well as their integrated behaviour, to test the functionality and robustness of a coupled Electrical Resistive Heating (ERH) - Macroscopic Invasion Percolation (MIP) model. ERH is a thermal remediation technique where the soil is heated until boiling and volatile contaminants are stripped from the soil. There is significant interest in improving the efficiency of ERH, including taking advantage of low-temperature co-boiling behaviour which may reduce energy consumption. However, at lower co-boiling temperatures gas bubbles can form, mobilize and collapse in cooler areas, potentially contaminating previously clean zones. The ERH-MIP model was created to simulate the behaviour of gas bubbles in the subsurface and to evaluate ERH during co-boiling1. This study demonstrates how unit testing ensures that the model behaves in an expected manner and examines the robustness of every component within the ERH-MIP model. Once unit testing is established, the MIP module (a discrete gas transport algorithm for gas expansion, mobilization and fragmentation2) was validated against a two-dimensional light transmission visualization experiment 3. 1. Krol, M. M., et al. (2011), Adv. Water Resour. 2011, 34 (4), 537-549. 2. Mumford, K. G., et al. (2010), Adv. Water Resour. 2010, 33 (4), 504-513. 3. Hegele, P. R. and Mumford, K. G. Journal of Contaminant Hydrology 2014, 165, 24-36.

  7. The Robust Learning Model with a Spiral Curriculum: Implications for the Educational Effectiveness of Online Master Degree Programs

    ERIC Educational Resources Information Center

    Neumann, Yoram; Neumann, Edith; Lewis, Shelia

    2017-01-01

    This study integrated the Spiral Curriculum approach into the Robust Learning Model as part of a continuous improvement process that was designed to improve educational effectiveness and then assessed the differences between the initial and integrated models as well as the predictability of the first course in the integrated learning model on a…

  8. On the stability of projection methods for the incompressible Navier-Stokes equations based on high-order discontinuous Galerkin discretizations

    NASA Astrophysics Data System (ADS)

    Fehn, Niklas; Wall, Wolfgang A.; Kronbichler, Martin

    2017-12-01

    The present paper deals with the numerical solution of the incompressible Navier-Stokes equations using high-order discontinuous Galerkin (DG) methods for discretization in space. For DG methods applied to the dual splitting projection method, instabilities have recently been reported that occur for small time step sizes. Since the critical time step size depends on the viscosity and the spatial resolution, these instabilities limit the robustness of the Navier-Stokes solver in case of complex engineering applications characterized by coarse spatial resolutions and small viscosities. By means of numerical investigation we give evidence that these instabilities are related to the discontinuous Galerkin formulation of the velocity divergence term and the pressure gradient term that couple velocity and pressure. Integration by parts of these terms with a suitable definition of boundary conditions is required in order to obtain a stable and robust method. Since the intermediate velocity field does not fulfill the boundary conditions prescribed for the velocity, a consistent boundary condition is derived from the convective step of the dual splitting scheme to ensure high-order accuracy with respect to the temporal discretization. This new formulation is stable in the limit of small time steps for both equal-order and mixed-order polynomial approximations. Although the dual splitting scheme itself includes inf-sup stabilizing contributions, we demonstrate that spurious pressure oscillations appear for equal-order polynomials and small time steps highlighting the necessity to consider inf-sup stability explicitly.

  9. Single photon emission from plasma treated 2D hexagonal boron nitride.

    PubMed

    Xu, Zai-Quan; Elbadawi, Christopher; Tran, Toan Trong; Kianinia, Mehran; Li, Xiuling; Liu, Daobin; Hoffman, Timothy B; Nguyen, Minh; Kim, Sejeong; Edgar, James H; Wu, Xiaojun; Song, Li; Ali, Sajid; Ford, Mike; Toth, Milos; Aharonovich, Igor

    2018-05-03

    Artificial atomic systems in solids are becoming increasingly important building blocks in quantum information processing and scalable quantum nanophotonic networks. Amongst numerous candidates, 2D hexagonal boron nitride has recently emerged as a promising platform hosting single photon emitters. Here, we report a number of robust plasma and thermal annealing methods for fabrication of emitters in tape-exfoliated hexagonal boron nitride (hBN) crystals. A two-step process comprising Ar plasma etching and subsequent annealing in Ar is highly robust, and yields an eight-fold increase in the concentration of emitters in hBN. The initial plasma-etching step generates emitters that suffer from blinking and bleaching, whereas the two-step process yields emitters that are photostable at room temperature with emission wavelengths greater than ∼700 nm. Density functional theory modeling suggests that the emitters might be associated with defect complexes that contain oxygen. This is further confirmed by generating the emitters via annealing hBN in air. Our findings advance the present understanding of the structure of quantum emitters in hBN and enhance the nanofabrication toolkit needed to realize integrated quantum nanophotonic circuits.

  10. Optimizing Data Management in Grid Environments

    NASA Astrophysics Data System (ADS)

    Zissimos, Antonis; Doka, Katerina; Chazapis, Antony; Tsoumakos, Dimitrios; Koziris, Nectarios

    Grids currently serve as platforms for numerous scientific as well as business applications that generate and access vast amounts of data. In this paper, we address the need for efficient, scalable and robust data management in Grid environments. We propose a fully decentralized and adaptive mechanism comprising of two components: A Distributed Replica Location Service (DRLS) and a data transfer mechanism called GridTorrent. They both adopt Peer-to-Peer techniques in order to overcome performance bottlenecks and single points of failure. On one hand, DRLS ensures resilience by relying on a Byzantine-tolerant protocol and is able to handle massive concurrent requests even during node churn. On the other hand, GridTorrent allows for maximum bandwidth utilization through collaborative sharing among the various data providers and consumers. The proposed integrated architecture is completely backwards-compatible with already deployed Grids. To demonstrate these points, experiments have been conducted in LAN as well as WAN environments under various workloads. The evaluation shows that our scheme vastly outperforms the conventional mechanisms in both efficiency (up to 10 times faster) and robustness in case of failures and flash crowd instances.

  11. Extended state observer based robust adaptive control on SE(3) for coupled spacecraft tracking maneuver with actuator saturation and misalignment

    NASA Astrophysics Data System (ADS)

    Zhang, Jianqiao; Ye, Dong; Sun, Zhaowei; Liu, Chuang

    2018-02-01

    This paper presents a robust adaptive controller integrated with an extended state observer (ESO) to solve coupled spacecraft tracking maneuver in the presence of model uncertainties, external disturbances, actuator uncertainties including magnitude deviation and misalignment, and even actuator saturation. More specifically, employing the exponential coordinates on the Lie group SE(3) to describe configuration tracking errors, the coupled six-degrees-of-freedom (6-DOF) dynamics are developed for spacecraft relative motion, in which a generic fully actuated thruster distribution is considered and the lumped disturbances are reconstructed by using anti-windup technique. Then, a novel ESO, developed via second order sliding mode (SOSM) technique and adding linear correction terms to improve the performance, is designed firstly to estimate the disturbances in finite time. Based on the estimated information, an adaptive fast terminal sliding mode (AFTSM) controller is developed to guarantee the almost global asymptotic stability of the resulting closed-loop system such that the trajectory can be tracked with all the aforementioned drawbacks addressed simultaneously. Finally, the effectiveness of the controller is illustrated through numerical examples.

  12. Digital robust control law synthesis using constrained optimization

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivekananda

    1989-01-01

    Development of digital robust control laws for active control of high performance flexible aircraft and large space structures is a research area of significant practical importance. The flexible system is typically modeled by a large order state space system of equations in order to accurately represent the dynamics. The active control law must satisy multiple conflicting design requirements and maintain certain stability margins, yet should be simple enough to be implementable on an onboard digital computer. Described here is an application of a generic digital control law synthesis procedure for such a system, using optimal control theory and constrained optimization technique. A linear quadratic Gaussian type cost function is minimized by updating the free parameters of the digital control law, while trying to satisfy a set of constraints on the design loads, responses and stability margins. Analytical expressions for the gradients of the cost function and the constraints with respect to the control law design variables are used to facilitate rapid numerical convergence. These gradients can be used for sensitivity study and may be integrated into a simultaneous structure and control optimization scheme.

  13. Vehicle System Integration, Optimization, and Robustness

    Science.gov Websites

    Operations Technology Exchange Initiating Partnerships University Partners Government Partners Industry Contacts Researchers Thrust Area 5: Vehicle System Integration, Optimization, and Robustness Thrust Area only optimal design of the vehicle components, but also an optimization of the interactions between

  14. Robustness, evolvability, and the logic of genetic regulation.

    PubMed

    Payne, Joshua L; Moore, Jason H; Wagner, Andreas

    2014-01-01

    In gene regulatory circuits, the expression of individual genes is commonly modulated by a set of regulating gene products, which bind to a gene's cis-regulatory region. This region encodes an input-output function, referred to as signal-integration logic, that maps a specific combination of regulatory signals (inputs) to a particular expression state (output) of a gene. The space of all possible signal-integration functions is vast and the mapping from input to output is many-to-one: For the same set of inputs, many functions (genotypes) yield the same expression output (phenotype). Here, we exhaustively enumerate the set of signal-integration functions that yield identical gene expression patterns within a computational model of gene regulatory circuits. Our goal is to characterize the relationship between robustness and evolvability in the signal-integration space of regulatory circuits, and to understand how these properties vary between the genotypic and phenotypic scales. Among other results, we find that the distributions of genotypic robustness are skewed, so that the majority of signal-integration functions are robust to perturbation. We show that the connected set of genotypes that make up a given phenotype are constrained to specific regions of the space of all possible signal-integration functions, but that as the distance between genotypes increases, so does their capacity for unique innovations. In addition, we find that robust phenotypes are (i) evolvable, (ii) easily identified by random mutation, and (iii) mutationally biased toward other robust phenotypes. We explore the implications of these latter observations for mutation-based evolution by conducting random walks between randomly chosen source and target phenotypes. We demonstrate that the time required to identify the target phenotype is independent of the properties of the source phenotype.

  15. Robustness, Evolvability, and the Logic of Genetic Regulation

    PubMed Central

    Moore, Jason H.; Wagner, Andreas

    2014-01-01

    In gene regulatory circuits, the expression of individual genes is commonly modulated by a set of regulating gene products, which bind to a gene’s cis-regulatory region. This region encodes an input-output function, referred to as signal-integration logic, that maps a specific combination of regulatory signals (inputs) to a particular expression state (output) of a gene. The space of all possible signal-integration functions is vast and the mapping from input to output is many-to-one: for the same set of inputs, many functions (genotypes) yield the same expression output (phenotype). Here, we exhaustively enumerate the set of signal-integration functions that yield idential gene expression patterns within a computational model of gene regulatory circuits. Our goal is to characterize the relationship between robustness and evolvability in the signal-integration space of regulatory circuits, and to understand how these properties vary between the genotypic and phenotypic scales. Among other results, we find that the distributions of genotypic robustness are skewed, such that the majority of signal-integration functions are robust to perturbation. We show that the connected set of genotypes that make up a given phenotype are constrained to specific regions of the space of all possible signal-integration functions, but that as the distance between genotypes increases, so does their capacity for unique innovations. In addition, we find that robust phenotypes are (i) evolvable, (ii) easily identified by random mutation, and (iii) mutationally biased toward other robust phenotypes. We explore the implications of these latter observations for mutation-based evolution by conducting random walks between randomly chosen source and target phenotypes. We demonstrate that the time required to identify the target phenotype is independent of the properties of the source phenotype. PMID:23373974

  16. ACOSS Six (Active Control of Space Structures)

    DTIC Science & Technology

    1981-10-01

    modes, specially useful simpler conditions for ensuring closed-loop asymptotic stability are also derived. In addition, conditions for robustness of...in this initial study of FOCL stability and robustness . Such a condition is strong but not unreasonable nor unrealistic. Many useful simple in- sights...smallest possible feedback gains) and many interesting numerical results on closed-loop stability and robustness of the modal-dashpot designs. The

  17. Deep Neural Networks for Speech Separation With Application to Robust Speech Recognition

    DTIC Science & Technology

    acoustic -phonetic features. The second objective is integration of spectrotemporal context for improved separation performance. Conditional random fields...will be used to encode contextual constraints. The third objective is to achieve robust ASR in the DNN framework through integrated acoustic modeling

  18. Design of robust systems by means of the numerical optimization with harmonic changing of the model parameters

    NASA Astrophysics Data System (ADS)

    Zhmud, V. A.; Reva, I. L.; Dimitrov, L. V.

    2017-01-01

    The design of robust feedback systems by means of the numerical optimization method is mostly accomplished with modeling of the several systems simultaneously. In each such system, regulators are similar. But the object models are different. It includes all edge values from the possible variants of the object model parameters. With all this, not all possible sets of model parameters are taken into account. Hence, the regulator can be not robust, i. e. it can not provide system stability in some cases, which were not tested during the optimization procedure. The paper proposes an alternative method. It consists in sequent changing of all parameters according to harmonic low. The frequencies of changing of each parameter are aliquant. It provides full covering of the parameters space.

  19. Low cost and efficient kurtosis-based deflationary ICA method: application to MRS sources separation problem.

    PubMed

    Saleh, M; Karfoul, A; Kachenoura, A; Senhadji, L; Albera, L

    2016-08-01

    Improving the execution time and the numerical complexity of the well-known kurtosis-based maximization method, the RobustICA, is investigated in this paper. A Newton-based scheme is proposed and compared to the conventional RobustICA method. A new implementation using the nonlinear Conjugate Gradient one is investigated also. Regarding the Newton approach, an exact computation of the Hessian of the considered cost function is provided. The proposed approaches and the considered implementations inherit the global plane search of the initial RobustICA method for which a better convergence speed for a given direction is still guaranteed. Numerical results on Magnetic Resonance Spectroscopy (MRS) source separation show the efficiency of the proposed approaches notably the quasi-Newton one using the BFGS method.

  20. PAKDD Data Mining Competition 2009: New Ways of Using Known Methods

    NASA Astrophysics Data System (ADS)

    Linhart, Chaim; Harari, Guy; Abramovich, Sharon; Buchris, Altina

    The PAKDD 2009 competition focuses on the problem of credit risk assessment. As required, we had to confront the problem of the robustness of the credit-scoring model against performance degradation caused by gradual market changes along a few years of business operation. We utilized the following standard models: logistic regression, KNN, SVM, GBM and decision tree. The novelty of our approach is two-fold: the integration of existing models, namely feeding the results of KNN as an input variable to the logistic regression, and re-coding categorical variables as numerical values that represent each category's statistical impact on the target label. The best solution we obtained reached 3rd place in the competition, with an AUC score of 0.655.

  1. Compact beam splitters in coupled waveguides using shortcuts to adiabaticity

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Wen, Rui-Dan; Shi, Jie-Long; Tseng, Shuo-Yen

    2018-04-01

    There are various works on adiabatic (three) waveguide coupler devices but most are focused on the quantum optical analogies and the physics itself. We successfully apply shortcuts to adiabaticity techniques to the coupled waveguide system with a suitable length for integrated optics devices. Especially, the counter-diabatic driving protocol followed by unitary transformation overcomes the previously unrealistic implemention, and is used to design feasible and robust 1 × 2 and 1 × 3 beam splitters for symmetric and asymmetric three waveguide couplers. Numerical simulations with the beam propagation method demonstrate that these shortcut designs for beam splitters are shorter than the adiabatic ones, and also have a better tolerance than parallel waveguides resonant beam splitters with respect to spacing errors and wavelength variation.

  2. Desmosomes in acquired disease

    PubMed Central

    Stahley, Sara N.; Kowalczyk, Andrew P.

    2015-01-01

    Desmosomes are cell-cell junctions that mediate adhesion and couple the intermediate filament cytoskeleton to sites of cell-cell contact. This architectural arrangement functions to integrate adhesion and cytoskeletal elements of adjacent cells. The importance of this robust adhesion system is evident in numerous human diseases, both inherited and acquired, that occur when desmosome function is compromised. This review focuses on autoimmune and infectious diseases that impair desmosome function. In addition, we discuss emerging evidence that desmosomal genes are often misregulated in cancer. The emphasis of our discussion is placed on how human diseases inform our understanding of basic desmosome biology, and in turn, how fundamental advances in the cell biology of desmosomes may lead to new treatments for acquired diseases of the desmosome. PMID:25795143

  3. Adaptive PID formation control of nonholonomic robots without leader's velocity information.

    PubMed

    Shen, Dongbin; Sun, Weijie; Sun, Zhendong

    2014-03-01

    This paper proposes an adaptive proportional integral derivative (PID) algorithm to solve a formation control problem in the leader-follower framework where the leader robot's velocities are unknown for the follower robots. The main idea is first to design some proper ideal control law for the formation system to obtain a required performance, and then to propose the adaptive PID methodology to approach the ideal controller. As a result, the formation is achieved with much more enhanced robust formation performance. The stability of the closed-loop system is theoretically proved by Lyapunov method. Both numerical simulations and physical vehicle experiments are presented to verify the effectiveness of the proposed adaptive PID algorithm. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  4. One-Shot Decoupling and Page Curves from a Dynamical Model for Black Hole Evaporation.

    PubMed

    Brádler, Kamil; Adami, Christoph

    2016-03-11

    One-shot decoupling is a powerful primitive in quantum information theory and was hypothesized to play a role in the black hole information paradox. We study black hole dynamics modeled by a trilinear Hamiltonian whose semiclassical limit gives rise to Hawking radiation. An explicit numerical calculation of the discretized path integral of the S matrix shows that decoupling is exact in the continuous limit, implying that quantum information is perfectly transferred from the black hole to radiation. A striking consequence of decoupling is the emergence of an output radiation entropy profile that follows Page's prediction. We argue that information transfer and the emergence of Page curves is a robust feature of any multilinear interaction Hamiltonian with a bounded spectrum.

  5. Non-robust numerical simulations of analogue extension experiments

    NASA Astrophysics Data System (ADS)

    Naliboff, John; Buiter, Susanne

    2016-04-01

    Numerical and analogue models of lithospheric deformation provide significant insight into the tectonic processes that lead to specific structural and geophysical observations. As these two types of models contain distinct assumptions and tradeoffs, investigations drawing conclusions from both can reveal robust links between first-order processes and observations. Recent studies have focused on detailed comparisons between numerical and analogue experiments in both compressional and extensional tectonics, sometimes involving multiple lithospheric deformation codes and analogue setups. While such comparisons often show good agreement on first-order deformation styles, results frequently diverge on second-order structures, such as shear zone dip angles or spacing, and in certain cases even on first-order structures. Here, we present finite-element experiments that are designed to directly reproduce analogue "sandbox" extension experiments at the cm-scale. We use material properties and boundary conditions that are directly taken from analogue experiments and use a Drucker-Prager failure model to simulate shear zone formation in sand. We find that our numerical experiments are highly sensitive to numerous numerical parameters. For example, changes to the numerical resolution, velocity convergence parameters and elemental viscosity averaging commonly produce significant changes in first- and second-order structures accommodating deformation. The sensitivity of the numerical simulations to small parameter changes likely reflects a number of factors, including, but not limited to, high angles of internal friction assigned to sand, complex, unknown interactions between the brittle sand (used as an upper crust equivalent) and viscous silicone (lower crust), highly non-linear strain weakening processes and poor constraints on the cohesion of sand. Our numerical-analogue comparison is hampered by (a) an incomplete knowledge of the fine details of sand failure and sand properties, and (b) likely limitations to the use of a continuum Drucker-Prager model for representing shear zone formation in sand. In some cases our numerical experiments provide reasonable fits to first-order structures observed in the analogue experiments, but the numerical sensitivity to small parameter variations leads us to conclude that the numerical experiments are not robust.

  6. Advanced rotorcraft control using parameter optimization

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.

  7. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders

    NASA Astrophysics Data System (ADS)

    Meng, Deyuan; Tao, Guoliang; Zhu, Xiaocong

    2013-09-01

    This paper studies the precision motion trajectory tracking control of a pneumatic cylinder driven by a proportional-directional control valve. An integrated direct/indirect adaptive robust controller is proposed. The controller employs a physical model based indirect-type parameter estimation to obtain reliable estimates of unknown model parameters, and utilises a robust control method with dynamic compensation type fast adaptation to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Due to the use of projection mapping, the robust control law and the parameter adaption algorithm can be designed separately. Since the system model uncertainties are unmatched, the recursive backstepping technology is adopted to design the robust control law. Extensive comparative experimental results are presented to illustrate the effectiveness of the proposed controller and its performance robustness to parameter variations and sudden disturbances.

  8. A Low Cost Approach to the Design of Autopilot for Hypersonic Glider

    NASA Astrophysics Data System (ADS)

    Liang, Wang; Weihua, Zhang; Ke, Peng; Donghui, Wang

    2017-12-01

    This paper proposes a novel integrated guidance and control (IGC) approach to improve the autopilot design with low cost for hypersonic glider in dive and pull-up phase. The main objective is robust and adaptive tracking of flight path angle (FPA) under severe flight scenarios. Firstly, the nonlinear IGC model is developed with a second order actuator dynamics. Then the adaptive command filtered back-stepping control is implemented to deal with the large aerodynamics coefficient uncertainties, control surface uncertainties and unmatched time-varying disturbances. For the autopilot, a back-stepping sliding mode control is designed to track the control surface deflection, and a nonlinear differentiator is used to avoid direct differentiating the control input. Through a series of 6-DOF numerical simulations, it’s shown that the proposed scheme successfully cancels out the large uncertainties and disturbances in tracking different kinds of FPA trajectory. The contribution of this paper lies in the application and determination of nonlinear integrated design of guidance and control system for hypersonic glider.

  9. Fluid-structure interaction of turbulent boundary layer over a compliant surface

    NASA Astrophysics Data System (ADS)

    Anantharamu, Sreevatsa; Mahesh, Krishnan

    2016-11-01

    Turbulent flows induce unsteady loads on surfaces in contact with them, which affect material stresses, surface vibrations and far-field acoustics. We are developing a numerical methodology to study the coupled interaction of a turbulent boundary layer with the underlying surface. The surface is modeled as a linear elastic solid, while the fluid follows the spatially filtered incompressible Navier-Stokes equations. An incompressible Large Eddy Simulation finite volume flow approach based on the algorithm of Mahesh et al. is used in the fluid domain. The discrete kinetic energy conserving property of the method ensures robustness at high Reynolds number. The linear elastic model in the solid domain is integrated in space using finite element method and in time using the Newmark time integration method. The fluid and solid domain solvers are coupled using both weak and strong coupling methods. Details of the algorithm, validation, and relevant results will be presented. This work is supported by NSWCCD, ONR.

  10. Robustness of assembly supply chain networks by considering risk propagation and cascading failure

    NASA Astrophysics Data System (ADS)

    Tang, Liang; Jing, Ke; He, Jie; Stanley, H. Eugene

    2016-10-01

    An assembly supply chain network (ASCN) is composed of manufacturers located in different geographical regions. To analyze the robustness of this ASCN when it suffers from catastrophe disruption events, we construct a cascading failure model of risk propagation. In our model, different disruption scenarios s are considered and the probability equation of all disruption scenarios is developed. Using production capability loss as the robustness index (RI) of an ASCN, we conduct a numerical simulation to assess its robustness. Through simulation, we compare the network robustness at different values of linking intensity and node threshold and find that weak linking intensity or high node threshold increases the robustness of the ASCN. We also compare network robustness levels under different disruption scenarios.

  11. Robust multivariate nonparametric tests for detection of two-sample location shift in clinical trials

    PubMed Central

    Jiang, Xuejun; Guo, Xu; Zhang, Ning; Wang, Bo

    2018-01-01

    This article presents and investigates performance of a series of robust multivariate nonparametric tests for detection of location shift between two multivariate samples in randomized controlled trials. The tests are built upon robust estimators of distribution locations (medians, Hodges-Lehmann estimators, and an extended U statistic) with both unscaled and scaled versions. The nonparametric tests are robust to outliers and do not assume that the two samples are drawn from multivariate normal distributions. Bootstrap and permutation approaches are introduced for determining the p-values of the proposed test statistics. Simulation studies are conducted and numerical results are reported to examine performance of the proposed statistical tests. The numerical results demonstrate that the robust multivariate nonparametric tests constructed from the Hodges-Lehmann estimators are more efficient than those based on medians and the extended U statistic. The permutation approach can provide a more stringent control of Type I error and is generally more powerful than the bootstrap procedure. The proposed robust nonparametric tests are applied to detect multivariate distributional difference between the intervention and control groups in the Thai Healthy Choices study and examine the intervention effect of a four-session motivational interviewing-based intervention developed in the study to reduce risk behaviors among youth living with HIV. PMID:29672555

  12. Displacement Fields and Self-Energies of Circular and Polygonal Dislocation Loops in Homogeneous and Layered Anisotropic Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yanfei; Larson, Ben C.

    There are large classes of materials problems that involve the solutions of stress, displacement, and strain energy of dislocation loops in elastically anisotropic solids, including increasingly detailed investigations of the generation and evolution of irradiation induced defect clusters ranging in sizes from the micro- to meso-scopic length scales. Based on a two-dimensional Fourier transform and Stroh formalism that are ideal for homogeneous and layered anisotropic solids, we have developed robust and computationally efficient methods to calculate the displacement fields for circular and polygonal dislocation loops. Using the homogeneous nature of the Green tensor of order -1, we have shown thatmore » the displacement and stress fields of dislocation loops can be obtained by numerical quadrature of a line integral. In addition, it is shown that the sextuple integrals associated with the strain energy of loops can be represented by the product of a pre-factor containing elastic anisotropy effects and a universal term that is singular and equal to that for elastic isotropic case. Furthermore, we have found that the self-energy pre-factor of prismatic loops is identical to the effective modulus of normal contact, and the pre-factor of shear loops differs from the effective indentation modulus in shear by only a few percent. These results provide a convenient method for examining dislocation reaction energetic and efficient procedures for numerical computation of local displacements and stresses of dislocation loops, both of which play integral roles in quantitative defect analyses within combined experimental–theoretical investigations.« less

  13. Displacement Fields and Self-Energies of Circular and Polygonal Dislocation Loops in Homogeneous and Layered Anisotropic Solids

    DOE PAGES

    Gao, Yanfei; Larson, Ben C.

    2015-06-19

    There are large classes of materials problems that involve the solutions of stress, displacement, and strain energy of dislocation loops in elastically anisotropic solids, including increasingly detailed investigations of the generation and evolution of irradiation induced defect clusters ranging in sizes from the micro- to meso-scopic length scales. Based on a two-dimensional Fourier transform and Stroh formalism that are ideal for homogeneous and layered anisotropic solids, we have developed robust and computationally efficient methods to calculate the displacement fields for circular and polygonal dislocation loops. Using the homogeneous nature of the Green tensor of order -1, we have shown thatmore » the displacement and stress fields of dislocation loops can be obtained by numerical quadrature of a line integral. In addition, it is shown that the sextuple integrals associated with the strain energy of loops can be represented by the product of a pre-factor containing elastic anisotropy effects and a universal term that is singular and equal to that for elastic isotropic case. Furthermore, we have found that the self-energy pre-factor of prismatic loops is identical to the effective modulus of normal contact, and the pre-factor of shear loops differs from the effective indentation modulus in shear by only a few percent. These results provide a convenient method for examining dislocation reaction energetic and efficient procedures for numerical computation of local displacements and stresses of dislocation loops, both of which play integral roles in quantitative defect analyses within combined experimental–theoretical investigations.« less

  14. Dynamic one-dimensional modeling of secondary settling tanks and design impacts of sizing decisions.

    PubMed

    Li, Ben; Stenstrom, Michael K

    2014-03-01

    As one of the most significant components in the activated sludge process (ASP), secondary settling tanks (SSTs) can be investigated with mathematical models to optimize design and operation. This paper takes a new look at the one-dimensional (1-D) SST model by analyzing and considering the impacts of numerical problems, especially the process robustness. An improved SST model with Yee-Roe-Davis technique as the PDE solver is proposed and compared with the widely used Takács model to show its improvement in numerical solution quality. The improved and Takács models are coupled with a bioreactor model to reevaluate ASP design basis and several popular control strategies for economic plausibility, contaminant removal efficiency and system robustness. The time-to-failure due to rising sludge blanket during overloading, as a key robustness indicator, is analyzed to demonstrate the differences caused by numerical issues in SST models. The calculated results indicate that the Takács model significantly underestimates time to failure, thus leading to a conservative design. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Robust multiscale field-only formulation of electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y. C.

    2017-01-01

    We present a boundary integral formulation of electromagnetic scattering by homogeneous bodies that are characterized by linear constitutive equations in the frequency domain. By working with the Cartesian components of the electric E and magnetic H fields and with the scalar functions (r .E ) and (r .H ) where r is a position vector, the problem can be cast as having to solve a set of scalar Helmholtz equations for the field components that are coupled by the usual electromagnetic boundary conditions at material boundaries. This facilitates a direct solution for the surface values of E and H rather than having to work with surface currents or surface charge densities as intermediate quantities in existing methods. Consequently, our formulation is free of the well-known numerical instability that occurs in the zero-frequency or long-wavelength limit in traditional surface integral solutions of Maxwell's equations and our numerical results converge uniformly to the static results in the long-wavelength limit. Furthermore, we use a formulation of the scalar Helmholtz equation that is expressed as classically convergent integrals and does not require the evaluation of principal value integrals or any knowledge of the solid angle. Therefore, standard quadrature and higher order surface elements can readily be used to improve numerical precision for the same number of degrees of freedom. In addition, near and far field values can be calculated with equal precision, and multiscale problems in which the scatterers possess characteristic length scales that are both large and small relative to the wavelength can be easily accommodated. From this we obtain results for the scattering and transmission of electromagnetic waves at dielectric boundaries that are valid for any ratio of the local surface curvature to the wave number. This is a generalization of the familiar Fresnel formula and Snell's law, valid at planar dielectric boundaries, for the scattering and transmission of electromagnetic waves at surfaces of arbitrary curvature. Implementation details are illustrated with scattering by multiple perfect electric conductors as well as dielectric bodies with complex geometries and composition.

  16. A new way to improve the robustness of complex communication networks by allocating redundancy links

    NASA Astrophysics Data System (ADS)

    Shi, Chunhui; Peng, Yunfeng; Zhuo, Yue; Tang, Jieying; Long, Keping

    2012-03-01

    We investigate the robustness of complex communication networks on allocating redundancy links. The protecting key nodes (PKN) strategy is proposed to improve the robustness of complex communication networks against intentional attack. Our numerical simulations show that allocating a few redundant links among key nodes using the PKN strategy will significantly increase the robustness of scale-free complex networks. We have also theoretically proved and demonstrated the effectiveness of the PKN strategy. We expect that our work will help achieve a better understanding of communication networks.

  17. Fully-relativistic full-potential multiple scattering theory: A pathology-free scheme

    NASA Astrophysics Data System (ADS)

    Liu, Xianglin; Wang, Yang; Eisenbach, Markus; Stocks, G. Malcolm

    2018-03-01

    The Green function plays an essential role in the Korringa-Kohn-Rostoker(KKR) multiple scattering method. In practice, it is constructed from the regular and irregular solutions of the local Kohn-Sham equation and robust methods exist for spherical potentials. However, when applied to a non-spherical potential, numerical errors from the irregular solutions give rise to pathological behaviors of the charge density at small radius. Here we present a full-potential implementation of the fully-relativistic KKR method to perform ab initio self-consistent calculation by directly solving the Dirac differential equations using the generalized variable phase (sine and cosine matrices) formalism Liu et al. (2016). The pathology around the origin is completely eliminated by carrying out the energy integration of the single-site Green function along the real axis. By using an efficient pole-searching technique to identify the zeros of the well-behaved Jost matrices, we demonstrated that this scheme is numerically stable and computationally efficient, with speed comparable to the conventional contour energy integration method, while free of the pathology problem of the charge density. As an application, this method is utilized to investigate the crystal structures of polonium and their bulk properties, which is challenging for a conventional real-energy scheme. The noble metals are also calculated, both as a test of our method and to study the relativistic effects.

  18. Integrated analysis of numerous heterogeneous gene expression profiles for detecting robust disease-specific biomarkers and proposing drug targets.

    PubMed

    Amar, David; Hait, Tom; Izraeli, Shai; Shamir, Ron

    2015-09-18

    Genome-wide expression profiling has revolutionized biomedical research; vast amounts of expression data from numerous studies of many diseases are now available. Making the best use of this resource in order to better understand disease processes and treatment remains an open challenge. In particular, disease biomarkers detected in case-control studies suffer from low reliability and are only weakly reproducible. Here, we present a systematic integrative analysis methodology to overcome these shortcomings. We assembled and manually curated more than 14,000 expression profiles spanning 48 diseases and 18 expression platforms. We show that when studying a particular disease, judicious utilization of profiles from other diseases and information on disease hierarchy improves classification quality, avoids overoptimistic evaluation of that quality, and enhances disease-specific biomarker discovery. This approach yielded specific biomarkers for 24 of the analyzed diseases. We demonstrate how to combine these biomarkers with large-scale interaction, mutation and drug target data, forming a highly valuable disease summary that suggests novel directions in disease understanding and drug repurposing. Our analysis also estimates the number of samples required to reach a desired level of biomarker stability. This methodology can greatly improve the exploitation of the mountain of expression profiles for better disease analysis. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Fully-relativistic full-potential multiple scattering theory: A pathology-free scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xianglin; Wang, Yang; Eisenbach, Markus

    The Green function plays an essential role in the Korringa–Kohn–Rostoker(KKR) multiple scattering method. In practice, it is constructed from the regular and irregular solutions of the local Kohn–Sham equation and robust methods exist for spherical potentials. However, when applied to a non-spherical potential, numerical errors from the irregular solutions give rise to pathological behaviors of the charge density at small radius. Here we present a full-potential implementation of the fully-relativistic KKR method to perform ab initio self-consistent calculation by directly solving the Dirac differential equations using the generalized variable phase (sine and cosine matrices) formalism Liu et al. (2016). Themore » pathology around the origin is completely eliminated by carrying out the energy integration of the single-site Green function along the real axis. Here, by using an efficient pole-searching technique to identify the zeros of the well-behaved Jost matrices, we demonstrated that this scheme is numerically stable and computationally efficient, with speed comparable to the conventional contour energy integration method, while free of the pathology problem of the charge density. As an application, this method is utilized to investigate the crystal structures of polonium and their bulk properties, which is challenging for a conventional real-energy scheme. The noble metals are also calculated, both as a test of our method and to study the relativistic effects.« less

  20. Finite Volume Methods: Foundation and Analysis

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Ohlberger, Mario

    2003-01-01

    Finite volume methods are a class of discretization schemes that have proven highly successful in approximating the solution of a wide variety of conservation law systems. They are extensively used in fluid mechanics, porous media flow, meteorology, electromagnetics, models of biological processes, semi-conductor device simulation and many other engineering areas governed by conservative systems that can be written in integral control volume form. This article reviews elements of the foundation and analysis of modern finite volume methods. The primary advantages of these methods are numerical robustness through the obtention of discrete maximum (minimum) principles, applicability on very general unstructured meshes, and the intrinsic local conservation properties of the resulting schemes. Throughout this article, specific attention is given to scalar nonlinear hyperbolic conservation laws and the development of high order accurate schemes for discretizing them. A key tool in the design and analysis of finite volume schemes suitable for non-oscillatory discontinuity capturing is discrete maximum principle analysis. A number of building blocks used in the development of numerical schemes possessing local discrete maximum principles are reviewed in one and several space dimensions, e.g. monotone fluxes, E-fluxes, TVD discretization, non-oscillatory reconstruction, slope limiters, positive coefficient schemes, etc. When available, theoretical results concerning a priori and a posteriori error estimates are given. Further advanced topics are then considered such as high order time integration, discretization of diffusion terms and the extension to systems of nonlinear conservation laws.

  1. Fully-relativistic full-potential multiple scattering theory: A pathology-free scheme

    DOE PAGES

    Liu, Xianglin; Wang, Yang; Eisenbach, Markus; ...

    2017-10-28

    The Green function plays an essential role in the Korringa–Kohn–Rostoker(KKR) multiple scattering method. In practice, it is constructed from the regular and irregular solutions of the local Kohn–Sham equation and robust methods exist for spherical potentials. However, when applied to a non-spherical potential, numerical errors from the irregular solutions give rise to pathological behaviors of the charge density at small radius. Here we present a full-potential implementation of the fully-relativistic KKR method to perform ab initio self-consistent calculation by directly solving the Dirac differential equations using the generalized variable phase (sine and cosine matrices) formalism Liu et al. (2016). Themore » pathology around the origin is completely eliminated by carrying out the energy integration of the single-site Green function along the real axis. Here, by using an efficient pole-searching technique to identify the zeros of the well-behaved Jost matrices, we demonstrated that this scheme is numerically stable and computationally efficient, with speed comparable to the conventional contour energy integration method, while free of the pathology problem of the charge density. As an application, this method is utilized to investigate the crystal structures of polonium and their bulk properties, which is challenging for a conventional real-energy scheme. The noble metals are also calculated, both as a test of our method and to study the relativistic effects.« less

  2. A robust and hierarchical approach for the automatic co-registration of intensity and visible images

    NASA Astrophysics Data System (ADS)

    González-Aguilera, Diego; Rodríguez-Gonzálvez, Pablo; Hernández-López, David; Luis Lerma, José

    2012-09-01

    This paper presents a new robust approach to integrate intensity and visible images which have been acquired with a terrestrial laser scanner and a calibrated digital camera, respectively. In particular, an automatic and hierarchical method for the co-registration of both sensors is developed. The approach integrates several existing solutions to improve the performance of the co-registration between range-based and visible images: the Affine Scale-Invariant Feature Transform (A-SIFT), the epipolar geometry, the collinearity equations, the Groebner basis solution and the RANdom SAmple Consensus (RANSAC), integrating a voting scheme. The approach presented herein improves the existing co-registration approaches in automation, robustness, reliability and accuracy.

  3. Robust high-performance control for robotic manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1989-01-01

    A robust control scheme to accomplish accurate trajectory tracking for an integrated system of manipulator-plus-actuators is proposed. The control scheme comprises a feedforward and a feedback controller. The feedforward controller contains any known part of the manipulator dynamics that can be used for online control. The feedback controller consists of adaptive position and velocity feedback gains and an auxiliary signal which is simply generated by a fixed-gain proportional/integral/derivative controller. The feedback controller is updated by very simple adaptation laws which contain both proportional and integral adaptation terms. By introduction of a simple sigma modification to the adaptation laws, robustness is guaranteed in the presence of unmodeled dynamics and disturbances.

  4. Numerical integration of asymptotic solutions of ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Thurston, Gaylen A.

    1989-01-01

    Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.

  5. Research in robust control for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.

    1994-01-01

    The research during the third reporting period focused on fixed order robust control design for hypersonic vehicles. A new technique was developed to synthesize fixed order H(sub infinity) controllers. A controller canonical form is imposed on the compensator structure and a homotopy algorithm is employed to perform the controller design. Various reduced order controllers are designed for a simplified version of the hypersonic vehicle model used in our previous studies to demonstrate the capabilities of the code. However, further work is needed to investigate the issue of numerical ill-conditioning for large order systems and to make the numerical approach more reliable.

  6. Importance of the cutoff value in the quadratic adaptive integrate-and-fire model.

    PubMed

    Touboul, Jonathan

    2009-08-01

    The quadratic adaptive integrate-and-fire model (Izhikevich, 2003 , 2007 ) is able to reproduce various firing patterns of cortical neurons and is widely used in large-scale simulations of neural networks. This model describes the dynamics of the membrane potential by a differential equation that is quadratic in the voltage, coupled to a second equation for adaptation. Integration is stopped during the rise phase of a spike at a voltage cutoff value V(c) or when it blows up. Subsequently the membrane potential is reset, and the adaptation variable is increased by a fixed amount. We show in this note that in the absence of a cutoff value, not only the voltage but also the adaptation variable diverges in finite time during spike generation in the quadratic model. The divergence of the adaptation variable makes the system very sensitive to the cutoff: changing V(c) can dramatically alter the spike patterns. Furthermore, from a computational viewpoint, the divergence of the adaptation variable implies that the time steps for numerical simulation need to be small and adaptive. However, divergence of the adaptation variable does not occur for the quartic model (Touboul, 2008 ) and the adaptive exponential integrate-and-fire model (Brette & Gerstner, 2005 ). Hence, these models are robust to changes in the cutoff value.

  7. Dynamic coupling of subsurface and seepage flows solved within a regularized partition formulation

    NASA Astrophysics Data System (ADS)

    Marçais, J.; de Dreuzy, J.-R.; Erhel, J.

    2017-11-01

    Hillslope response to precipitations is characterized by sharp transitions from purely subsurface flow dynamics to simultaneous surface and subsurface flows. Locally, the transition between these two regimes is triggered by soil saturation. Here we develop an integrative approach to simultaneously solve the subsurface flow, locate the potential fully saturated areas and deduce the generated saturation excess overland flow. This approach combines the different dynamics and transitions in a single partition formulation using discontinuous functions. We propose to regularize the system of partial differential equations and to use classic spatial and temporal discretization schemes. We illustrate our methodology on the 1D hillslope storage Boussinesq equations (Troch et al., 2003). We first validate the numerical scheme on previous numerical experiments without saturation excess overland flow. Then we apply our model to a test case with dynamic transitions from purely subsurface flow dynamics to simultaneous surface and subsurface flows. Our results show that discretization respects mass balance both locally and globally, converges when the mesh or time step are refined. Moreover the regularization parameter can be taken small enough to ensure accuracy without suffering of numerical artefacts. Applied to some hundreds of realistic hillslope cases taken from Western side of France (Brittany), the developed method appears to be robust and efficient.

  8. Modification of near-wall coherent structures in polymer drag reduced flow: simulation

    NASA Astrophysics Data System (ADS)

    Dubief, Yves; White, Christopher; Shaqfeh, Eric; Moin, Parviz; Lele, Sanjiva

    2002-11-01

    Polymer drag reduced flows are investigated through direct numerical simulations of viscoelastic flows. The solver for the viscoelastic model (FENE-P) is based on higher-order finite difference schemes and a novel implicit time integration method. Its robustness allows the simulation of all drag reduction (DR) regimes from the onset to the maximum drag reduction (MDR). It also permits the use of realistic polymer length and concentration. The maximum polymer extension in our simulation matches that of a polystyrene molecule of 10^6 molecular weight. Two distinct regimes of polymer drag reduced flows are observed: at low drag reduction (LDR, DR< 40-50%), the near-wall structure is essentially similar to Newtonian wall turbulence whereas the high drag reduction regime (HDR, DR from 40-50% to MDR) shows significant differences in the organization of the coherent structures. The 3D information provided by numerical simulations allows the determination of the interaction of polymers and near-wall coherent structures. To isolate the contribution of polymers in the viscous sublayer, the buffer and the outer region of the flow, numerical experiments are performed where the polymer concentration is varied in the wall-normal direction. Finally a mechanism of polymer drag reduction derived from our results and PIV measurements is discussed.

  9. Application of Jacobian-free Newton–Krylov method in implicitly solving two-fluid six-equation two-phase flow problems: Implementation, validation and benchmark

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-03-09

    This work represents a first-of-its-kind successful application to employ advanced numerical methods in solving realistic two-phase flow problems with two-fluid six-equation two-phase flow model. These advanced numerical methods include high-resolution spatial discretization scheme with staggered grids (high-order) fully implicit time integration schemes, and Jacobian-free Newton–Krylov (JFNK) method as the nonlinear solver. The computer code developed in this work has been extensively validated with existing experimental flow boiling data in vertical pipes and rod bundles, which cover wide ranges of experimental conditions, such as pressure, inlet mass flux, wall heat flux and exit void fraction. Additional code-to-code benchmark with the RELAP5-3Dmore » code further verifies the correct code implementation. The combined methods employed in this work exhibit strong robustness in solving two-phase flow problems even when phase appearance (boiling) and realistic discrete flow regimes are considered. Transitional flow regimes used in existing system analysis codes, normally introduced to overcome numerical difficulty, were completely removed in this work. As a result, this in turn provides the possibility to utilize more sophisticated flow regime maps in the future to further improve simulation accuracy.« less

  10. Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction

    NASA Astrophysics Data System (ADS)

    Kavetski, Dmitri; Clark, Martyn P.

    2010-10-01

    Despite the widespread use of conceptual hydrological models in environmental research and operations, they remain frequently implemented using numerically unreliable methods. This paper considers the impact of the time stepping scheme on model analysis (sensitivity analysis, parameter optimization, and Markov chain Monte Carlo-based uncertainty estimation) and prediction. It builds on the companion paper (Clark and Kavetski, 2010), which focused on numerical accuracy, fidelity, and computational efficiency. Empirical and theoretical analysis of eight distinct time stepping schemes for six different hydrological models in 13 diverse basins demonstrates several critical conclusions. (1) Unreliable time stepping schemes, in particular, fixed-step explicit methods, suffer from troublesome numerical artifacts that severely deform the objective function of the model. These deformations are not rare isolated instances but can arise in any model structure, in any catchment, and under common hydroclimatic conditions. (2) Sensitivity analysis can be severely contaminated by numerical errors, often to the extent that it becomes dominated by the sensitivity of truncation errors rather than the model equations. (3) Robust time stepping schemes generally produce "better behaved" objective functions, free of spurious local optima, and with sufficient numerical continuity to permit parameter optimization using efficient quasi Newton methods. When implemented within a multistart framework, modern Newton-type optimizers are robust even when started far from the optima and provide valuable diagnostic insights not directly available from evolutionary global optimizers. (4) Unreliable time stepping schemes lead to inconsistent and biased inferences of the model parameters and internal states. (5) Even when interactions between hydrological parameters and numerical errors provide "the right result for the wrong reason" and the calibrated model performance appears adequate, unreliable time stepping schemes make the model unnecessarily fragile in predictive mode, undermining validation assessments and operational use. Erroneous or misleading conclusions of model analysis and prediction arising from numerical artifacts in hydrological models are intolerable, especially given that robust numerics are accepted as mainstream in other areas of science and engineering. We hope that the vivid empirical findings will encourage the conceptual hydrological community to close its Pandora's box of numerical problems, paving the way for more meaningful model application and interpretation.

  11. Self-aligned quadruple patterning using spacer on spacer integration optimization for N5

    NASA Astrophysics Data System (ADS)

    Thibaut, Sophie; Raley, Angélique; Mohanty, Nihar; Kal, Subhadeep; Liu, Eric; Ko, Akiteru; O'Meara, David; Tapily, Kandabara; Biolsi, Peter

    2017-04-01

    To meet scaling requirements, the semiconductor industry has extended 193nm immersion lithography beyond its minimum pitch limitation using multiple patterning schemes such as self-aligned double patterning, self-aligned quadruple patterning and litho-etch / litho etch iterations. Those techniques have been declined in numerous options in the last few years. Spacer on spacer pitch splitting integration has been proven to show multiple advantages compared to conventional pitch splitting approach. Reducing the number of pattern transfer steps associated with sacrificial layers resulted in significant decrease of cost and an overall simplification of the double pitch split technique. While demonstrating attractive aspects, SAQP spacer on spacer flow brings challenges of its own. Namely, material set selections and etch chemistry development for adequate selectivities, mandrel shape and spacer shape engineering to improve edge placement error (EPE). In this paper we follow up and extend upon our previous learning and proceed into more details on the robustness of the integration in regards to final pattern transfer and full wafer critical dimension uniformity. Furthermore, since the number of intermediate steps is reduced, one will expect improved uniformity and pitch walking control. This assertion will be verified through a thorough pitch walking analysis.

  12. Nonlinear robust control of hypersonic aircrafts with interactions between flight dynamics and propulsion systems.

    PubMed

    Li, Zhaoying; Zhou, Wenjie; Liu, Hao

    2016-09-01

    This paper addresses the nonlinear robust tracking controller design problem for hypersonic vehicles. This problem is challenging due to strong coupling between the aerodynamics and the propulsion system, and the uncertainties involved in the vehicle dynamics including parametric uncertainties, unmodeled model uncertainties, and external disturbances. By utilizing the feedback linearization technique, a linear tracking error system is established with prescribed references. For the linear model, a robust controller is proposed based on the signal compensation theory to guarantee that the tracking error dynamics is robustly stable. Numerical simulation results are given to show the advantages of the proposed nonlinear robust control method, compared to the robust loop-shaping control approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Computational Aeroacoustics by the Space-time CE/SE Method

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.

    2001-01-01

    In recent years, a new numerical methodology for conservation laws-the Space-Time Conservation Element and Solution Element Method (CE/SE), was developed by Dr. Chang of NASA Glenn Research Center and collaborators. In nature, the new method may be categorized as a finite volume method, where the conservation element (CE) is equivalent to a finite control volume (or cell) and the solution element (SE) can be understood as the cell interface. However, due to its rigorous treatment of the fluxes and geometry, it is different from the existing schemes. The CE/SE scheme features: (1) space and time treated on the same footing, the integral equations of conservation laws are solve( for with second order accuracy, (2) high resolution, low dispersion and low dissipation, (3) novel, truly multi-dimensional, simple but effective non-reflecting boundary condition, (4) effortless implementation of computation, no numerical fix or parameter choice is needed, an( (5) robust enough to cover a wide spectrum of compressible flow: from weak linear acoustic waves to strong, discontinuous waves (shocks) appropriate for linear and nonlinear aeroacoustics. Currently, the CE/SE scheme has been developed to such a stage that a 3-13 unstructured CE/SE Navier-Stokes solver is already available. However, in the present paper, as a general introduction to the CE/SE method, only the 2-D unstructured Euler CE/SE solver is chosen as a prototype and is sketched in Section 2. Then applications of the CE/SE scheme to linear, nonlinear aeroacoustics and airframe noise are depicted in Sections 3, 4, and 5 respectively to demonstrate its robustness and capability.

  14. Design of robust reliable control for T-S fuzzy Markovian jumping delayed neutral type neural networks with probabilistic actuator faults and leakage delays: An event-triggered communication scheme.

    PubMed

    Syed Ali, M; Vadivel, R; Saravanakumar, R

    2018-06-01

    This study examines the problem of robust reliable control for Takagi-Sugeno (T-S) fuzzy Markovian jumping delayed neural networks with probabilistic actuator faults and leakage terms. An event-triggered communication scheme. First, the randomly occurring actuator faults and their failures rates are governed by two sets of unrelated random variables satisfying certain probabilistic failures of every actuator, new type of distribution based event triggered fault model is proposed, which utilize the effect of transmission delay. Second, Takagi-Sugeno (T-S) fuzzy model is adopted for the neural networks and the randomness of actuators failures is modeled in a Markov jump model framework. Third, to guarantee the considered closed-loop system is exponential mean square stable with a prescribed reliable control performance, a Markov jump event-triggered scheme is designed in this paper, which is the main purpose of our study. Fourth, by constructing appropriate Lyapunov-Krasovskii functional, employing Newton-Leibniz formulation and integral inequalities, several delay-dependent criteria for the solvability of the addressed problem are derived. The obtained stability criteria are stated in terms of linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Finally, numerical examples are given to illustrate the effectiveness and reduced conservatism of the proposed results over the existing ones, among them one example was supported by real-life application of the benchmark problem. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Computation of three-dimensional three-phase flow of carbon dioxide using a high-order WENO scheme

    NASA Astrophysics Data System (ADS)

    Gjennestad, Magnus Aa.; Gruber, Andrea; Lervåg, Karl Yngve; Johansen, Øyvind; Ervik, Åsmund; Hammer, Morten; Munkejord, Svend Tollak

    2017-11-01

    We have developed a high-order numerical method for the 3D simulation of viscous and inviscid multiphase flow described by a homogeneous equilibrium model and a general equation of state. Here we focus on single-phase, two-phase (gas-liquid or gas-solid) and three-phase (gas-liquid-solid) flow of CO2 whose thermodynamic properties are calculated using the Span-Wagner reference equation of state. The governing equations are spatially discretized on a uniform Cartesian grid using the finite-volume method with a fifth-order weighted essentially non-oscillatory (WENO) scheme and the robust first-order centered (FORCE) flux. The solution is integrated in time using a third-order strong-stability-preserving Runge-Kutta method. We demonstrate close to fifth-order convergence for advection-diffusion and for smooth single- and two-phase flows. Quantitative agreement with experimental data is obtained for a direct numerical simulation of an air jet flowing from a rectangular nozzle. Quantitative agreement is also obtained for the shape and dimensions of the barrel shock in two highly underexpanded CO2 jets.

  16. A positivity-preserving, implicit defect-correction multigrid method for turbulent combustion

    NASA Astrophysics Data System (ADS)

    Wasserman, M.; Mor-Yossef, Y.; Greenberg, J. B.

    2016-07-01

    A novel, robust multigrid method for the simulation of turbulent and chemically reacting flows is developed. A survey of previous attempts at implementing multigrid for the problems at hand indicated extensive use of artificial stabilization to overcome numerical instability arising from non-linearity of turbulence and chemistry model source-terms, small-scale physics of combustion, and loss of positivity. These issues are addressed in the current work. The highly stiff Reynolds-averaged Navier-Stokes (RANS) equations, coupled with turbulence and finite-rate chemical kinetics models, are integrated in time using the unconditionally positive-convergent (UPC) implicit method. The scheme is successfully extended in this work for use with chemical kinetics models, in a fully-coupled multigrid (FC-MG) framework. To tackle the degraded performance of multigrid methods for chemically reacting flows, two major modifications are introduced with respect to the basic, Full Approximation Storage (FAS) approach. First, a novel prolongation operator that is based on logarithmic variables is proposed to prevent loss of positivity due to coarse-grid corrections. Together with the extended UPC implicit scheme, the positivity-preserving prolongation operator guarantees unconditional positivity of turbulence quantities and species mass fractions throughout the multigrid cycle. Second, to improve the coarse-grid-correction obtained in localized regions of high chemical activity, a modified defect correction procedure is devised, and successfully applied for the first time to simulate turbulent, combusting flows. The proposed modifications to the standard multigrid algorithm create a well-rounded and robust numerical method that provides accelerated convergence, while unconditionally preserving the positivity of model equation variables. Numerical simulations of various flows involving premixed combustion demonstrate that the proposed MG method increases the efficiency by a factor of up to eight times with respect to an equivalent single-grid method, and by two times with respect to an artificially-stabilized MG method.

  17. Efficient Computation of Info-Gap Robustness for Finite Element Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stull, Christopher J.; Hemez, Francois M.; Williams, Brian J.

    2012-07-05

    A recent research effort at LANL proposed info-gap decision theory as a framework by which to measure the predictive maturity of numerical models. Info-gap theory explores the trade-offs between accuracy, that is, the extent to which predictions reproduce the physical measurements, and robustness, that is, the extent to which predictions are insensitive to modeling assumptions. Both accuracy and robustness are necessary to demonstrate predictive maturity. However, conducting an info-gap analysis can present a formidable challenge, from the standpoint of the required computational resources. This is because a robustness function requires the resolution of multiple optimization problems. This report offers anmore » alternative, adjoint methodology to assess the info-gap robustness of Ax = b-like numerical models solved for a solution x. Two situations that can arise in structural analysis and design are briefly described and contextualized within the info-gap decision theory framework. The treatments of the info-gap problems, using the adjoint methodology are outlined in detail, and the latter problem is solved for four separate finite element models. As compared to statistical sampling, the proposed methodology offers highly accurate approximations of info-gap robustness functions for the finite element models considered in the report, at a small fraction of the computational cost. It is noted that this report considers only linear systems; a natural follow-on study would extend the methodologies described herein to include nonlinear systems.« less

  18. Optimization of the interplanetary trajectories of spacecraft with a solar electric propulsion power plant of minimal power

    NASA Astrophysics Data System (ADS)

    Ivanyukhin, A. V.; Petukhov, V. G.

    2016-12-01

    The problem of optimizing the interplanetary trajectories of a spacecraft (SC) with a solar electric propulsion system (SEPS) is examined. The problem of investigating the permissible power minimum of the solar electric propulsion power plant required for a successful flight is studied. Permissible ranges of thrust and exhaust velocity are analyzed for the given range of flight time and final mass of the spacecraft. The optimization is performed according to Portnyagin's maximum principle, and the continuation method is used for reducing the boundary problem of maximal principle to the Cauchy problem and to study the solution/ parameters dependence. Such a combination results in the robust algorithm that reduces the problem of trajectory optimization to the numerical integration of differential equations by the continuation method.

  19. Autonomous intelligent assembly systems LDRD 105746 final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert J.

    2013-04-01

    This report documents a three-year to develop technology that enables mobile robots to perform autonomous assembly tasks in unstructured outdoor environments. This is a multi-tier problem that requires an integration of a large number of different software technologies including: command and control, estimation and localization, distributed communications, object recognition, pose estimation, real-time scanning, and scene interpretation. Although ultimately unsuccessful in achieving a target brick stacking task autonomously, numerous important component technologies were nevertheless developed. Such technologies include: a patent-pending polygon snake algorithm for robust feature tracking, a color grid algorithm for uniquely identification and calibration, a command and control frameworkmore » for abstracting robot commands, a scanning capability that utilizes a compact robot portable scanner, and more. This report describes this project and these developed technologies.« less

  20. Measure of robustness for complex networks

    NASA Astrophysics Data System (ADS)

    Youssef, Mina Nabil

    Critical infrastructures are repeatedly attacked by external triggers causing tremendous amount of damages. Any infrastructure can be studied using the powerful theory of complex networks. A complex network is composed of extremely large number of different elements that exchange commodities providing significant services. The main functions of complex networks can be damaged by different types of attacks and failures that degrade the network performance. These attacks and failures are considered as disturbing dynamics, such as the spread of viruses in computer networks, the spread of epidemics in social networks, and the cascading failures in power grids. Depending on the network structure and the attack strength, every network differently suffers damages and performance degradation. Hence, quantifying the robustness of complex networks becomes an essential task. In this dissertation, new metrics are introduced to measure the robustness of technological and social networks with respect to the spread of epidemics, and the robustness of power grids with respect to cascading failures. First, we introduce a new metric called the Viral Conductance (VCSIS ) to assess the robustness of networks with respect to the spread of epidemics that are modeled through the susceptible/infected/susceptible (SIS) epidemic approach. In contrast to assessing the robustness of networks based on a classical metric, the epidemic threshold, the new metric integrates the fraction of infected nodes at steady state for all possible effective infection strengths. Through examples, VCSIS provides more insights about the robustness of networks than the epidemic threshold. In addition, both the paradoxical robustness of Barabasi-Albert preferential attachment networks and the effect of the topology on the steady state infection are studied, to show the importance of quantifying the robustness of networks. Second, a new metric VCSIR is introduced to assess the robustness of networks with respect to the spread of susceptible/infected/recovered (SIR) epidemics. To compute VCSIR, we propose a novel individual-based approach to model the spread of SIR epidemics in networks, which captures the infection size for a given effective infection rate. Thus, VCSIR quantitatively integrates the infection strength with the corresponding infection size. To optimize the VCSIR metric, a new mitigation strategy is proposed, based on a temporary reduction of contacts in social networks. The social contact network is modeled as a weighted graph that describes the frequency of contacts among the individuals. Thus, we consider the spread of an epidemic as a dynamical system, and the total number of infection cases as the state of the system, while the weight reduction in the social network is the controller variable leading to slow/reduce the spread of epidemics. Using optimal control theory, the obtained solution represents an optimal adaptive weighted network defined over a finite time interval. Moreover, given the high complexity of the optimization problem, we propose two heuristics to find the near optimal solutions by reducing the contacts among the individuals in a decentralized way. Finally, the cascading failures that can take place in power grids and have recently caused several blackouts are studied. We propose a new metric to assess the robustness of the power grid with respect to the cascading failures. The power grid topology is modeled as a network, which consists of nodes and links representing power substations and transmission lines, respectively. We also propose an optimal islanding strategy to protect the power grid when a cascading failure event takes place in the grid. The robustness metrics are numerically evaluated using real and synthetic networks to quantify their robustness with respect to disturbing dynamics. We show that the proposed metrics outperform the classical metrics in quantifying the robustness of networks and the efficiency of the mitigation strategies. In summary, our work advances the network science field in assessing the robustness of complex networks with respect to various disturbing dynamics.

  1. Robust numerical simulation of porosity evolution in chemical vapor infiltration III: three space dimension

    NASA Astrophysics Data System (ADS)

    Jin, Shi; Wang, Xuelei

    2003-04-01

    Chemical vapor infiltration (CVI) process is an important technology to fabricate ceramic matrix composites (CMC's). In this paper, a three-dimension numerical model is presented to describe pore microstructure evolution during the CVI process. We extend the two-dimension model proposed in [S. Jin, X.L. Wang, T.L. Starr, J. Mater. Res. 14 (1999) 3829; S. Jin. X.L. Wang, T.L. Starr, X.F. Chen, J. Comp. Phys. 162 (2000) 467], where the fiber surface is modeled as an evolving interface, to the three space dimension. The 3D method keeps all the virtue of the 2D model: robust numerical capturing of topological changes of the interface such as the merging, and fast detection of the inaccessible pores. For models in the kinetic limit, where the moving speed of the interface is constant, some numerical examples are presented to show that this three-dimension model will effectively track the change of porosity, close-off time, location and shape of all pores.

  2. Robust Control Design for Systems With Probabilistic Uncertainty

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.

    2005-01-01

    This paper presents a reliability- and robustness-based formulation for robust control synthesis for systems with probabilistic uncertainty. In a reliability-based formulation, the probability of violating design requirements prescribed by inequality constraints is minimized. In a robustness-based formulation, a metric which measures the tendency of a random variable/process to cluster close to a target scalar/function is minimized. A multi-objective optimization procedure, which combines stability and performance requirements in time and frequency domains, is used to search for robustly optimal compensators. Some of the fundamental differences between the proposed strategy and conventional robust control methods are: (i) unnecessary conservatism is eliminated since there is not need for convex supports, (ii) the most likely plants are favored during synthesis allowing for probabilistic robust optimality, (iii) the tradeoff between robust stability and robust performance can be explored numerically, (iv) the uncertainty set is closely related to parameters with clear physical meaning, and (v) compensators with improved robust characteristics for a given control structure can be synthesized.

  3. Robust and Simple Non-Reflecting Boundary Conditions for the Euler Equations: A New Approach Based on the Space-Time CE/SE Method

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Himansu, Ananda; Loh, Ching-Yuen; Wang, Xiao-Yen; Yu, Shang-Tao

    2003-01-01

    This paper reports on a significant advance in the area of non-reflecting boundary conditions (NRBCs) for unsteady flow computations. As a part of the development of the space-time conservation element and solution element (CE/SE) method, sets of NRBCs for 1D Euler problems are developed without using any characteristics-based techniques. These conditions are much simpler than those commonly reported in the literature, yet so robust that they are applicable to subsonic, transonic and supersonic flows even in the presence of discontinuities. In addition, the straightforward multidimensional extensions of the present 1D NRBCs have been shown numerically to be equally simple and robust. The paper details the theoretical underpinning of these NRBCs, and explains their unique robustness and accuracy in terms of the conservation of space-time fluxes. Some numerical results for an extended Sod's shock-tube problem, illustrating the effectiveness of the present NRBCs are included, together with an associated simple Fortran computer program. As a preliminary to the present development, a review of the basic CE/SE schemes is also included.

  4. Efficient and Robust Optimization for Building Energy Simulation

    PubMed Central

    Pourarian, Shokouh; Kearsley, Anthony; Wen, Jin; Pertzborn, Amanda

    2016-01-01

    Efficiently, robustly and accurately solving large sets of structured, non-linear algebraic and differential equations is one of the most computationally expensive steps in the dynamic simulation of building energy systems. Here, the efficiency, robustness and accuracy of two commonly employed solution methods are compared. The comparison is conducted using the HVACSIM+ software package, a component based building system simulation tool. The HVACSIM+ software presently employs Powell’s Hybrid method to solve systems of nonlinear algebraic equations that model the dynamics of energy states and interactions within buildings. It is shown here that the Powell’s method does not always converge to a solution. Since a myriad of other numerical methods are available, the question arises as to which method is most appropriate for building energy simulation. This paper finds considerable computational benefits result from replacing the Powell’s Hybrid method solver in HVACSIM+ with a solver more appropriate for the challenges particular to numerical simulations of buildings. Evidence is provided that a variant of the Levenberg-Marquardt solver has superior accuracy and robustness compared to the Powell’s Hybrid method presently used in HVACSIM+. PMID:27325907

  5. Efficient and Robust Optimization for Building Energy Simulation.

    PubMed

    Pourarian, Shokouh; Kearsley, Anthony; Wen, Jin; Pertzborn, Amanda

    2016-06-15

    Efficiently, robustly and accurately solving large sets of structured, non-linear algebraic and differential equations is one of the most computationally expensive steps in the dynamic simulation of building energy systems. Here, the efficiency, robustness and accuracy of two commonly employed solution methods are compared. The comparison is conducted using the HVACSIM+ software package, a component based building system simulation tool. The HVACSIM+ software presently employs Powell's Hybrid method to solve systems of nonlinear algebraic equations that model the dynamics of energy states and interactions within buildings. It is shown here that the Powell's method does not always converge to a solution. Since a myriad of other numerical methods are available, the question arises as to which method is most appropriate for building energy simulation. This paper finds considerable computational benefits result from replacing the Powell's Hybrid method solver in HVACSIM+ with a solver more appropriate for the challenges particular to numerical simulations of buildings. Evidence is provided that a variant of the Levenberg-Marquardt solver has superior accuracy and robustness compared to the Powell's Hybrid method presently used in HVACSIM+.

  6. Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system

    PubMed Central

    Bai, Cheng-Hua; Wang, Dong-Yang; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2016-01-01

    We propose a scheme for the creation of robust entanglement between a movable mirror and atomic ensemble at the macroscopic level in coupled optomechanical system. We numerically simulate the degree of entanglement of the bipartite macroscopic entanglement and show that it depends on the coupling strength between the cavities and is robust with respect to the certain environment temperature. Inspiringly and surprisingly, according to the reported relation between the mechanical damping rate and the mechanical frequency of the movable mirror, the numerical simulation result shows that such bipartite macroscopic entanglement persists for environment temperature up to 170 K, which breaks the liquid nitrogen cooling and liquid helium cooling and largely lowers down the experiment cost. We also investigate the entanglement transfer based on this coupled system. The scheme can be used for the realization of quantum memories for continuous variable quantum information processing and quantum-limited displacement measurements. PMID:27624534

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebenga, J. H.; Atzema, E. H.; Boogaard, A. H. van den

    Robust design of forming processes using numerical simulations is gaining attention throughout the industry. In this work, it is demonstrated how robust optimization can assist in further stretching the limits of metal forming processes. A deterministic and a robust optimization study are performed, considering a stretch-drawing process of a hemispherical cup product. For the robust optimization study, both the effect of material and process scatter are taken into account. For quantifying the material scatter, samples of 41 coils of a drawing quality forming steel have been collected. The stochastic material behavior is obtained by a hybrid approach, combining mechanical testingmore » and texture analysis, and efficiently implemented in a metamodel based optimization strategy. The deterministic and robust optimization results are subsequently presented and compared, demonstrating an increased process robustness and decreased number of product rejects by application of the robust optimization approach.« less

  8. Integrating prior knowledge in multiple testing under dependence with applications to detecting differential DNA methylation.

    PubMed

    Kuan, Pei Fen; Chiang, Derek Y

    2012-09-01

    DNA methylation has emerged as an important hallmark of epigenetics. Numerous platforms including tiling arrays and next generation sequencing, and experimental protocols are available for profiling DNA methylation. Similar to other tiling array data, DNA methylation data shares the characteristics of inherent correlation structure among nearby probes. However, unlike gene expression or protein DNA binding data, the varying CpG density which gives rise to CpG island, shore and shelf definition provides exogenous information in detecting differential methylation. This article aims to introduce a robust testing and probe ranking procedure based on a nonhomogeneous hidden Markov model that incorporates the above-mentioned features for detecting differential methylation. We revisit the seminal work of Sun and Cai (2009, Journal of the Royal Statistical Society: Series B (Statistical Methodology)71, 393-424) and propose modeling the nonnull using a nonparametric symmetric distribution in two-sided hypothesis testing. We show that this model improves probe ranking and is robust to model misspecification based on extensive simulation studies. We further illustrate that our proposed framework achieves good operating characteristics as compared to commonly used methods in real DNA methylation data that aims to detect differential methylation sites. © 2012, The International Biometric Society.

  9. Model Checking Techniques for Assessing Functional Form Specifications in Censored Linear Regression Models.

    PubMed

    León, Larry F; Cai, Tianxi

    2012-04-01

    In this paper we develop model checking techniques for assessing functional form specifications of covariates in censored linear regression models. These procedures are based on a censored data analog to taking cumulative sums of "robust" residuals over the space of the covariate under investigation. These cumulative sums are formed by integrating certain Kaplan-Meier estimators and may be viewed as "robust" censored data analogs to the processes considered by Lin, Wei & Ying (2002). The null distributions of these stochastic processes can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be generated by computer simulation. Each observed process can then be graphically compared with a few realizations from the Gaussian process. We also develop formal test statistics for numerical comparison. Such comparisons enable one to assess objectively whether an apparent trend seen in a residual plot reects model misspecification or natural variation. We illustrate the methods with a well known dataset. In addition, we examine the finite sample performance of the proposed test statistics in simulation experiments. In our simulation experiments, the proposed test statistics have good power of detecting misspecification while at the same time controlling the size of the test.

  10. Benefits and drawbacks of low magnetic shears on the confinement in magnetic fusion toroidal devices

    NASA Astrophysics Data System (ADS)

    Firpo, Marie-Christine; Constantinescu, Dana

    2012-10-01

    The issue of confinement in magnetic fusion devices is addressed within a purely magnetic approach. As it is well known, the magnetic field being divergence-free, the equations of its field lines can be cast in Hamiltonian form. Using then some Hamiltonian models for the magnetic field lines, the dual impact of low magnetic shear is demonstrated. Away from resonances, it induces a drastic enhancement of magnetic confinement that favors robust internal transport barriers (ITBs) and turbulence reduction. However, when low-shear occurs for values of the winding of the magnetic field lines close to low-order rationals, the amplitude thresholds of the resonant modes that break internal transport barriers by allowing a radial stochastic transport of the magnetic field lines may be much lower than the ones obtained for strong shear profiles. The approach can be applied to assess the robustness versus magnetic perturbations of general almost-integrable magnetic steady states, including non-axisymmetric ones such as the important single helicity steady states. This analysis puts a constraint on the tolerable mode amplitudes compatible with ITBs and may be proposed as a possible explanation of diverse experimental and numerical signatures of their collapses.

  11. Robustness-Based Simplification of 2D Steady and Unsteady Vector Fields.

    PubMed

    Skraba, Primoz; Bei Wang; Guoning Chen; Rosen, Paul

    2015-08-01

    Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification techniques based on the topological skeleton successively remove pairs of critical points connected by separatrices, using distance or area-based relevance measures. These methods rely on the stable extraction of the topological skeleton, which can be difficult due to instability in numerical integration, especially when processing highly rotational flows. In this paper, we propose a novel simplification scheme derived from the recently introduced topological notion of robustness which enables the pruning of sets of critical points according to a quantitative measure of their stability, that is, the minimum amount of vector field perturbation required to remove them. This leads to a hierarchical simplification scheme that encodes flow magnitude in its perturbation metric. Our novel simplification algorithm is based on degree theory and has minimal boundary restrictions. Finally, we provide an implementation under the piecewise-linear setting and apply it to both synthetic and real-world datasets. We show local and complete hierarchical simplifications for steady as well as unsteady vector fields.

  12. Neural-Network-Based Robust Optimal Tracking Control for MIMO Discrete-Time Systems With Unknown Uncertainty Using Adaptive Critic Design.

    PubMed

    Liu, Lei; Wang, Zhanshan; Zhang, Huaguang

    2018-04-01

    This paper is concerned with the robust optimal tracking control strategy for a class of nonlinear multi-input multi-output discrete-time systems with unknown uncertainty via adaptive critic design (ACD) scheme. The main purpose is to establish an adaptive actor-critic control method, so that the cost function in the procedure of dealing with uncertainty is minimum and the closed-loop system is stable. Based on the neural network approximator, an action network is applied to generate the optimal control signal and a critic network is used to approximate the cost function, respectively. In contrast to the previous methods, the main features of this paper are: 1) the ACD scheme is integrated into the controllers to cope with the uncertainty and 2) a novel cost function, which is not in quadric form, is proposed so that the total cost in the design procedure is reduced. It is proved that the optimal control signals and the tracking errors are uniformly ultimately bounded even when the uncertainty exists. Finally, a numerical simulation is developed to show the effectiveness of the present approach.

  13. Numerical study of a multigrid method with four smoothing methods for the incompressible Navier-Stokes equations in general coordinates

    NASA Technical Reports Server (NTRS)

    Zeng, S.; Wesseling, P.

    1993-01-01

    The performance of a linear multigrid method using four smoothing methods, called SCGS (Symmetrical Coupled GauBeta-Seidel), CLGS (Collective Line GauBeta-Seidel), SILU (Scalar ILU), and CILU (Collective ILU), is investigated for the incompressible Navier-Stokes equations in general coordinates, in association with Galerkin coarse grid approximation. Robustness and efficiency are measured and compared by application to test problems. The numerical results show that CILU is the most robust, SILU the least, with CLGS and SCGS in between. CLGS is the best in efficiency, SCGS and CILU follow, and SILU is the worst.

  14. Solving phase appearance/disappearance two-phase flow problems with high resolution staggered grid and fully implicit schemes by the Jacobian-free Newton–Krylov Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-04-01

    The phase appearance/disappearance issue presents serious numerical challenges in two-phase flow simulations. Many existing reactor safety analysis codes use different kinds of treatments for the phase appearance/disappearance problem. However, to our best knowledge, there are no fully satisfactory solutions. Additionally, the majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many situations, it is desirable to use high-resolution spatial discretization and fully implicit time integration schemes to reduce numerical errors. In this work, we adapted a high-resolution spatial discretization scheme on staggered grid mesh and fully implicit time integrationmore » methods (such as BDF1 and BDF2) to solve the two-phase flow problems. The discretized nonlinear system was solved by the Jacobian-free Newton Krylov (JFNK) method, which does not require the derivation and implementation of analytical Jacobian matrix. These methods were tested with a few two-phase flow problems with phase appearance/disappearance phenomena considered, such as a linear advection problem, an oscillating manometer problem, and a sedimentation problem. The JFNK method demonstrated extremely robust and stable behaviors in solving the two-phase flow problems with phase appearance/disappearance. No special treatments such as water level tracking or void fraction limiting were used. High-resolution spatial discretization and second- order fully implicit method also demonstrated their capabilities in significantly reducing numerical errors.« less

  15. Global robust stability of bidirectional associative memory neural networks with multiple time delays.

    PubMed

    Senan, Sibel; Arik, Sabri

    2007-10-01

    This correspondence presents a sufficient condition for the existence, uniqueness, and global robust asymptotic stability of the equilibrium point for bidirectional associative memory neural networks with discrete time delays. The results impose constraint conditions on the network parameters of the neural system independently of the delay parameter, and they are applicable to all bounded continuous nonmonotonic neuron activation functions. Some numerical examples are given to compare our results with the previous robust stability results derived in the literature.

  16. A conceptual lemon: theta burst stimulation to the left anterior temporal lobe untangles object representation and its canonical color.

    PubMed

    Chiou, Rocco; Sowman, Paul F; Etchell, Andrew C; Rich, Anina N

    2014-05-01

    Object recognition benefits greatly from our knowledge of typical color (e.g., a lemon is usually yellow). Most research on object color knowledge focuses on whether both knowledge and perception of object color recruit the well-established neural substrates of color vision (the V4 complex). Compared with the intensive investigation of the V4 complex, we know little about where and how neural mechanisms beyond V4 contribute to color knowledge. The anterior temporal lobe (ATL) is thought to act as a "hub" that supports semantic memory by integrating different modality-specific contents into a meaningful entity at a supramodal conceptual level, making it a good candidate zone for mediating the mappings between object attributes. Here, we explore whether the ATL is critical for integrating typical color with other object attributes (object shape and name), akin to its role in combining nonperceptual semantic representations. In separate experimental sessions, we applied TMS to disrupt neural processing in the left ATL and a control site (the occipital pole). Participants performed an object naming task that probes color knowledge and elicits a reliable color congruency effect as well as a control quantity naming task that also elicits a cognitive congruency effect but involves no conceptual integration. Critically, ATL stimulation eliminated the otherwise robust color congruency effect but had no impact on the numerical congruency effect, indicating a selective disruption of object color knowledge. Neither color nor numerical congruency effects were affected by stimulation at the control occipital site, ruling out nonspecific effects of cortical stimulation. Our findings suggest that the ATL is involved in the representation of object concepts that include their canonical colors.

  17. Simulations of photochemical smog formation in complex urban areas

    NASA Astrophysics Data System (ADS)

    Muilwijk, C.; Schrijvers, P. J. C.; Wuerz, S.; Kenjereš, S.

    2016-12-01

    In the present study we numerically investigated the dispersion of photochemical reactive pollutants in complex urban areas by applying an integrated Computational Fluid Dynamics (CFD) and Computational Reaction Dynamics (CRD) approach. To model chemical reactions involved in smog generation, the Generic Reaction Set (GRS) approach is used. The GRS model was selected since it does not require detailed modeling of a large set of reactive components. Smog formation is modeled first in the case of an intensive traffic emission, subjected to low to moderate wind conditions in an idealized two-dimensional street canyon with a building aspect ratio (height/width) of one. It is found that Reactive Organic Components (ROC) play an important role in the chemistry of smog formation. In contrast to the NOx/O3 photochemical steady state model that predicts a depletion of the (ground level) ozone, the GRS model predicts generation of ozone. Secondly, the effect of direct sunlight and shadow within the street canyon on the chemical reaction dynamics is investigated for three characteristic solar angles (morning, midday and afternoon). Large differences of up to one order of magnitude are found in the ozone production for different solar angles. As a proof of concept for real urban areas, the integrated CFD/CRD approach is applied for a real scale (1 × 1 km2) complex urban area (a district of the city of Rotterdam, The Netherlands) with high traffic emissions. The predicted pollutant concentration levels give realistic values that correspond to moderate to heavy smog. It is concluded that the integrated CFD/CRD method with the GRS model of chemical reactions is both accurate and numerically robust, and can be used for modeling of smog formation in complex urban areas.

  18. Multiple methods integration for structural mechanics analysis and design

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Aminpour, M. A.

    1991-01-01

    A new research area of multiple methods integration is proposed for joining diverse methods of structural mechanics analysis which interact with one another. Three categories of multiple methods are defined: those in which a physical interface are well defined; those in which a physical interface is not well-defined, but selected; and those in which the interface is a mathematical transformation. Two fundamental integration procedures are presented that can be extended to integrate various methods (e.g., finite elements, Rayleigh Ritz, Galerkin, and integral methods) with one another. Since the finite element method will likely be the major method to be integrated, its enhanced robustness under element distortion is also examined and a new robust shell element is demonstrated.

  19. Conceptual information processing: A robust approach to KBS-DBMS integration

    NASA Technical Reports Server (NTRS)

    Lazzara, Allen V.; Tepfenhart, William; White, Richard C.; Liuzzi, Raymond

    1987-01-01

    Integrating the respective functionality and architectural features of knowledge base and data base management systems is a topic of considerable interest. Several aspects of this topic and associated issues are addressed. The significance of integration and the problems associated with accomplishing that integration are discussed. The shortcomings of current approaches to integration and the need to fuse the capabilities of both knowledge base and data base management systems motivates the investigation of information processing paradigms. One such paradigm is concept based processing, i.e., processing based on concepts and conceptual relations. An approach to robust knowledge and data base system integration is discussed by addressing progress made in the development of an experimental model for conceptual information processing.

  20. Flood Catastrophe Model for Designing Optimal Flood Insurance Program: Estimating Location-Specific Premiums in the Netherlands.

    PubMed

    Ermolieva, T; Filatova, T; Ermoliev, Y; Obersteiner, M; de Bruijn, K M; Jeuken, A

    2017-01-01

    As flood risks grow worldwide, a well-designed insurance program engaging various stakeholders becomes a vital instrument in flood risk management. The main challenge concerns the applicability of standard approaches for calculating insurance premiums of rare catastrophic losses. This article focuses on the design of a flood-loss-sharing program involving private insurance based on location-specific exposures. The analysis is guided by a developed integrated catastrophe risk management (ICRM) model consisting of a GIS-based flood model and a stochastic optimization procedure with respect to location-specific risk exposures. To achieve the stability and robustness of the program towards floods with various recurrences, the ICRM uses stochastic optimization procedure, which relies on quantile-related risk functions of a systemic insolvency involving overpayments and underpayments of the stakeholders. Two alternative ways of calculating insurance premiums are compared: the robust derived with the ICRM and the traditional average annual loss approach. The applicability of the proposed model is illustrated in a case study of a Rotterdam area outside the main flood protection system in the Netherlands. Our numerical experiments demonstrate essential advantages of the robust premiums, namely, that they: (1) guarantee the program's solvency under all relevant flood scenarios rather than one average event; (2) establish a tradeoff between the security of the program and the welfare of locations; and (3) decrease the need for other risk transfer and risk reduction measures. © 2016 Society for Risk Analysis.

  1. AEGIS: a robust and scalable real-time public health surveillance system.

    PubMed

    Reis, Ben Y; Kirby, Chaim; Hadden, Lucy E; Olson, Karen; McMurry, Andrew J; Daniel, James B; Mandl, Kenneth D

    2007-01-01

    In this report, we describe the Automated Epidemiological Geotemporal Integrated Surveillance system (AEGIS), developed for real-time population health monitoring in the state of Massachusetts. AEGIS provides public health personnel with automated near-real-time situational awareness of utilization patterns at participating healthcare institutions, supporting surveillance of bioterrorism and naturally occurring outbreaks. As real-time public health surveillance systems become integrated into regional and national surveillance initiatives, the challenges of scalability, robustness, and data security become increasingly prominent. A modular and fault tolerant design helps AEGIS achieve scalability and robustness, while a distributed storage model with local autonomy helps to minimize risk of unauthorized disclosure. The report includes a description of the evolution of the design over time in response to the challenges of a regional and national integration environment.

  2. Study of the fractional order proportional integral controller for the permanent magnet synchronous motor based on the differential evolution algorithm.

    PubMed

    Zheng, Weijia; Pi, Youguo

    2016-07-01

    A tuning method of the fractional order proportional integral speed controller for a permanent magnet synchronous motor is proposed in this paper. Taking the combination of the integral of time and absolute error and the phase margin as the optimization index, the robustness specification as the constraint condition, the differential evolution algorithm is applied to search the optimal controller parameters. The dynamic response performance and robustness of the obtained optimal controller are verified by motor speed-tracking experiments on the motor speed control platform. Experimental results show that the proposed tuning method can enable the obtained control system to achieve both the optimal dynamic response performance and the robustness to gain variations. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Hybrid integral-differential simulator of EM force interactions/scenario-assessment tool with pre-computed influence matrix in applications to ITER

    NASA Astrophysics Data System (ADS)

    Rozov, V.; Alekseev, A.

    2015-08-01

    A necessity to address a wide spectrum of engineering problems in ITER determined the need for efficient tools for modeling of the magnetic environment and force interactions between the main components of the magnet system. The assessment of the operating window for the machine, determined by the electro-magnetic (EM) forces, and the check of feasibility of particular scenarios play an important role for ensuring the safety of exploitation. Such analysis-powered prevention of damages forms an element of the Machine Operations and Investment Protection strategy. The corresponding analysis is a necessary step in preparation of the commissioning, which finalizes the construction phase. It shall be supported by the development of the efficient and robust simulators and multi-physics/multi-system integration of models. The developed numerical model of interactions in the ITER magnetic system, based on the use of pre-computed influence matrices, facilitated immediate and complete assessment and systematic specification of EM loads on magnets in all foreseen operating regimes, their maximum values, envelopes and the most critical scenarios. The common principles of interaction in typical bilateral configurations have been generalized for asymmetry conditions, inspired by the plasma and by the hardware, including asymmetric plasma event and magnetic system fault cases. The specification of loads is supported by the technology of functional approximation of nodal and distributed data by continuous patterns/analytical interpolants. The global model of interactions together with the mesh-independent analytical format of output provides the source of self-consistent and transferable data on the spatial distribution of the system of forces for assessments of structural performance of the components, assemblies and supporting structures. The numerical model used is fully parametrized, which makes it very suitable for multi-variant and sensitivity studies (positioning, off-normal events, asymmetry, etc). The obtained results and matrices form a basis for a relatively simple and robust force processor as a specialized module of a global simulator for diagnostic, operational instrumentation, monitoring and control, as well as a scenario assessment tool. This paper gives an overview of the model, applied technique, assessed problems and obtained qualitative and quantitative results.

  4. Integrating numerical computation into the undergraduate education physics curriculum using spreadsheet excel

    NASA Astrophysics Data System (ADS)

    Fauzi, Ahmad

    2017-11-01

    Numerical computation has many pedagogical advantages: it develops analytical skills and problem-solving skills, helps to learn through visualization, and enhances physics education. Unfortunately, numerical computation is not taught to undergraduate education physics students in Indonesia. Incorporate numerical computation into the undergraduate education physics curriculum presents many challenges. The main challenges are the dense curriculum that makes difficult to put new numerical computation course and most students have no programming experience. In this research, we used case study to review how to integrate numerical computation into undergraduate education physics curriculum. The participants of this research were 54 students of the fourth semester of physics education department. As a result, we concluded that numerical computation could be integrated into undergraduate education physics curriculum using spreadsheet excel combined with another course. The results of this research become complements of the study on how to integrate numerical computation in learning physics using spreadsheet excel.

  5. The Robust Learning Model (RLM): A Comprehensive Approach to a New Online University

    ERIC Educational Resources Information Center

    Neumann, Yoram; Neumann, Edith F.

    2010-01-01

    This paper outlines the components of the Robust Learning Model (RLM) as a conceptual framework for creating a new online university offering numerous degree programs at all degree levels. The RLM is a multi-factorial model based on the basic belief that successful learning outcomes depend on multiple factors employed together in a holistic…

  6. Numerical integration for ab initio many-electron self energy calculations within the GW approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fang, E-mail: fliu@lsec.cc.ac.cn; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

    We present a numerical integration scheme for evaluating the convolution of a Green's function with a screened Coulomb potential on the real axis in the GW approximation of the self energy. Our scheme takes the zero broadening limit in Green's function first, replaces the numerator of the integrand with a piecewise polynomial approximation, and performs principal value integration on subintervals analytically. We give the error bound of our numerical integration scheme and show by numerical examples that it is more reliable and accurate than the standard quadrature rules such as the composite trapezoidal rule. We also discuss the benefit ofmore » using different self energy expressions to perform the numerical convolution at different frequencies.« less

  7. Milne, a routine for the numerical solution of Milne's problem

    NASA Astrophysics Data System (ADS)

    Rawat, Ajay; Mohankumar, N.

    2010-11-01

    The routine Milne provides accurate numerical values for the classical Milne's problem of neutron transport for the planar one speed and isotropic scattering case. The solution is based on the Case eigen-function formalism. The relevant X functions are evaluated accurately by the Double Exponential quadrature. The calculated quantities are the extrapolation distance and the scalar and the angular fluxes. Also, the H function needed in astrophysical calculations is evaluated as a byproduct. Program summaryProgram title: Milne Catalogue identifier: AEGS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 701 No. of bytes in distributed program, including test data, etc.: 6845 Distribution format: tar.gz Programming language: Fortran 77 Computer: PC under Linux or Windows Operating system: Ubuntu 8.04 (Kernel version 2.6.24-16-generic), Windows-XP Classification: 4.11, 21.1, 21.2 Nature of problem: The X functions are integral expressions. The convergence of these regular and Cauchy Principal Value integrals are impaired by the singularities of the integrand in the complex plane. The DE quadrature scheme tackles these singularities in a robust manner compared to the standard Gauss quadrature. Running time: The test included in the distribution takes a few seconds to run.

  8. A robust optimization methodology for preliminary aircraft design

    NASA Astrophysics Data System (ADS)

    Prigent, S.; Maréchal, P.; Rondepierre, A.; Druot, T.; Belleville, M.

    2016-05-01

    This article focuses on a robust optimization of an aircraft preliminary design under operational constraints. According to engineers' know-how, the aircraft preliminary design problem can be modelled as an uncertain optimization problem whose objective (the cost or the fuel consumption) is almost affine, and whose constraints are convex. It is shown that this uncertain optimization problem can be approximated in a conservative manner by an uncertain linear optimization program, which enables the use of the techniques of robust linear programming of Ben-Tal, El Ghaoui, and Nemirovski [Robust Optimization, Princeton University Press, 2009]. This methodology is then applied to two real cases of aircraft design and numerical results are presented.

  9. Robust Inference of Risks of Large Portfolios

    PubMed Central

    Fan, Jianqing; Han, Fang; Liu, Han; Vickers, Byron

    2016-01-01

    We propose a bootstrap-based robust high-confidence level upper bound (Robust H-CLUB) for assessing the risks of large portfolios. The proposed approach exploits rank-based and quantile-based estimators, and can be viewed as a robust extension of the H-CLUB procedure (Fan et al., 2015). Such an extension allows us to handle possibly misspecified models and heavy-tailed data, which are stylized features in financial returns. Under mixing conditions, we analyze the proposed approach and demonstrate its advantage over H-CLUB. We further provide thorough numerical results to back up the developed theory, and also apply the proposed method to analyze a stock market dataset. PMID:27818569

  10. Numerical Simulations of Self-Focused Pulses Using the Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations. Abstract of a proposed paper for presentation at the meeting NONLINEAR OPTICS: Materials, Fundamentals, and Applications, Hyatt Regency Waikaloa, Waikaloa, Hawaii, July 24-29, 1994, Cosponsored by IEEE/Lasers and Electro-Optics Society and Optical Society of America

  11. Multi-loop positivity of the planar $$ \\mathcal{N} $$ = 4 SYM six-point amplitude

    DOE PAGES

    Dixon, Lance J.; von Hippel, Matt; McLeod, Andrew J.; ...

    2017-02-22

    We study the six-point NMHV ratio function in planarmore » $$ \\mathcal{N} $$ = 4 SYM theory in the context of positive geometry. The Amplituhedron construction of the integrand for the amplitudes provides a kinematical region in which the integrand was observed to be positive. It is natural to conjecture that this property survives integration, i.e. that the final result for the ratio function is also positive in this region. Establishing such a result would imply that preserving positivity is a surprising property of the Minkowski contour of integration and it might indicate some deeper underlying structure. We find that the ratio function is positive everywhere we have tested it, including analytic results for special kinematical regions at one and two loops, as well as robust numerical evidence through five loops. There is also evidence for not just positivity, but monotonicity in a “radial” direction. We also investigate positivity of the MHV six-gluon amplitude. While the remainder function ceases to be positive at four loops, the BDS-like normalized MHV amplitude appears to be positive through five loops.« less

  12. The use of 2D and 3D WA-BPM models to analyze total-internal-reflection-based integrated optical switches

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Brambilla, Gilberto; Semenova, Yuliya; Wu, Qiang; Zheng, Jie; Farrell, Gerald

    2011-08-01

    The well known beam propagation method (BPM) has become one of the most useful, robust and effective numerical simulation tools for the investigation of guided-wave optics, for example integrated optical waveguides and fiber optic devices. In this paper we examine the use of the 2D and 3D wide angle-beam propagation method (WA-BPM) combined with the well known perfectly matched layer (PML) boundary conditions as a tool to analyze TIR based optical switches, in particular the relationship between light propagation and the geometrical parameters of a TIR based optical switch. To analyze the influence of the length and the width of the region in which the refractive index can be externally controlled, the 3D structure of a 2x2 TIR optical switch is firstly considered in 2D using the effective index method (EIM). Then the influence of the etching depth and the tilt angle of the reflection facet on the switch performance are investigated with a 3D model.

  13. A renormalization group approach to identifying the local quantum numbers in a many-body localized system

    NASA Astrophysics Data System (ADS)

    Pekker, David; Clark, Bryan K.; Oganesyan, Vadim; Refael, Gil; Tian, Binbin

    Many-body localization is a dynamical phase of matter that is characterized by the absence of thermalization. One of the key characteristics of many-body localized systems is the emergence of a large (possibly maximal) number of local integrals of motion (local quantum numbers) and corresponding conserved quantities. We formulate a robust algorithm for identifying these conserved quantities, based on Wegner's flow equations - a form of the renormalization group that works by disentangling the degrees of freedom of the system as opposed to integrating them out. We test our algorithm by explicit numerical comparison with more engineering based algorithms - Jacobi rotations and bi-partite matching. We find that the Wegner flow algorithm indeed produces the more local conserved quantities and is therefore more optimal. A preliminary analysis of the conserved quantities produced by the Wegner flow algorithm reveals the existence of at least two different localization lengthscales. Work was supported by AFOSR FA9550-10-1-0524 and FA9550-12-1-0057, the Kaufmann foundation, and SciDAC FG02-12ER46875.

  14. The Ndynamics package—Numerical analysis of dynamical systems and the fractal dimension of boundaries

    NASA Astrophysics Data System (ADS)

    Avellar, J.; Duarte, L. G. S.; da Mota, L. A. C. P.; de Melo, N.; Skea, J. E. F.

    2012-09-01

    A set of Maple routines is presented, fully compatible with the new releases of Maple (14 and higher). The package deals with the numerical evolution of dynamical systems and provide flexible plotting of the results. The package also brings an initial conditions generator, a numerical solver manager, and a focusing set of routines that allow for better analysis of the graphical display of the results. The novelty that the package presents an optional C interface is maintained. This allows for fast numerical integration, even for the totally inexperienced Maple user, without any C expertise being required. Finally, the package provides the routines to calculate the fractal dimension of boundaries (via box counting). New version program summary Program Title: Ndynamics Catalogue identifier: %Leave blank, supplied by Elsevier. Licensing provisions: no. Programming language: Maple, C. Computer: Intel(R) Core(TM) i3 CPU M330 @ 2.13 GHz. Operating system: Windows 7. RAM: 3.0 GB Keywords: Dynamical systems, Box counting, Fractal dimension, Symbolic computation, Differential equations, Maple. Classification: 4.3. Catalogue identifier of previous version: ADKH_v1_0. Journal reference of previous version: Comput. Phys. Commun. 119 (1999) 256. Does the new version supersede the previous version?: Yes. Nature of problem Computation and plotting of numerical solutions of dynamical systems and the determination of the fractal dimension of the boundaries. Solution method The default method of integration is a fifth-order Runge-Kutta scheme, but any method of integration present on the Maple system is available via an argument when calling the routine. A box counting [1] method is used to calculate the fractal dimension [2] of the boundaries. Reasons for the new version The Ndynamics package met a demand of our research community for a flexible and friendly environment for analyzing dynamical systems. All the user has to do is create his/her own Maple session, with the system to be studied, and use the commands on the package to (for instance) calculate the fractal dimension of a certain boundary, without knowing or worrying about a single line of C programming. So the package combines the flexibility and friendly aspect of Maple with the fast and robust numerical integration of the compiled (for example C) basin. The package is old, but the problems it was designed to dealt with are still there. Since Maple evolved, the package stopped working, and we felt compelled to produce this version, fully compatible with the latest version of Maple, to make it again available to the Maple user. Summary of revisions Deprecated Maple Packages and Commands: Paraphrasing the Maple in-built help files, "Some Maple commands and packages are deprecated. A command (or package) is deprecated when its functionality has been replaced by an improved implementation. The newer command is said to supersede the older one, and use of the newer command is strongly recommended". So, we have examined our code to see if some of these occurrences could be dangerous for it. For example, the "readlib" command is unnecessary, and we have removed its occurrences from our code. We have checked and changed all the necessary commands in order for us to be safe in respect to danger from this source. Another change we had to make was related to the tools we have implemented in order to use the interface for performing the numerical integration in C, externally, via the use of the Maple command "ssystem". In the past, we had used, for the external C integration, the DJGPP system. But now we present the package with (free) Borland distribution. The compilation and compiling commands are now slightly changed. For example, to compile only, we had used "gcc-c"; now, we use "bcc32-c", etc. All this installation (Borland) is explained on a "README" file we are submitting here to help the potential user. Restrictions Besides the inherent restrictions of numerical integration methods, this version of the package only deals with systems of first-order differential equations. Unusual features This package provides user-friendly software tools for analyzing the character of a dynamical system, whether it displays chaotic behaviour, and so on. Options within the package allow the user to specify characteristics that separate the trajectories into families of curves. In conjunction with the facilities for altering the user's viewpoint, this provides a graphical interface for the speedy and easy identification of regions with interesting dynamics. An unusual characteristic of the package is its interface for performing the numerical integrations in C using a fifth-order Runge-Kutta method (default). This potentially improves the speed of the numerical integration by some orders of magnitude and, in cases where it is necessary to calculate thousands of graphs in regions of difficult integration, this feature is very desirable. Besides that tool, somewhat more experienced users can produce their own C integrator and, by using the commands available in the package, use it as the C integrator provided with the package as long as the new integrator manages the input and output in the same format as the default one does. Running time This depends strongly on the dynamical system. With an Intel® Core™ i3 CPU M330 @ 2.13 GHz, the integration of 50 graphs, for a system of two first-order equations, typically takes less than a second to run (with the C integration interface). Without the C interface, it takes a few seconds. In order to calculate the fractal dimension, where we typically use 10,000 points to integrate, using the C interface it takes from 20 to 30 s. Without the C interface, it becomes really impractical, taking, sometimes, for the same case, almost an hour. For some cases, it takes many hours.

  15. Applying integrals of motion to the numerical solution of differential equations

    NASA Technical Reports Server (NTRS)

    Vezewski, D. J.

    1980-01-01

    A method is developed for using the integrals of systems of nonlinear, ordinary, differential equations in a numerical integration process to control the local errors in these integrals and reduce the global errors of the solution. The method is general and can be applied to either scalar or vector integrals. A number of example problems, with accompanying numerical results, are used to verify the analysis and support the conjecture of global error reduction.

  16. Applying integrals of motion to the numerical solution of differential equations

    NASA Technical Reports Server (NTRS)

    Jezewski, D. J.

    1979-01-01

    A method is developed for using the integrals of systems of nonlinear, ordinary differential equations in a numerical integration process to control the local errors in these integrals and reduce the global errors of the solution. The method is general and can be applied to either scaler or vector integrals. A number of example problems, with accompanying numerical results, are used to verify the analysis and support the conjecture of global error reduction.

  17. Algebraic Construction of Exact Difference Equations from Symmetry of Equations

    NASA Astrophysics Data System (ADS)

    Itoh, Toshiaki

    2009-09-01

    Difference equations or exact numerical integrations, which have general solutions, are treated algebraically. Eliminating the symmetries of the equation, we can construct difference equations (DCE) or numerical integrations equivalent to some ODEs or PDEs that means both have the same solution functions. When arbitrary functions are given, whether we can construct numerical integrations that have solution functions equal to given function or not are treated in this work. Nowadays, Lie's symmetries solver for ODE and PDE has been implemented in many symbolic software. Using this solver we can construct algebraic DCEs or numerical integrations which are correspond to some ODEs or PDEs. In this work, we treated exact correspondence between ODE or PDE and DCE or numerical integration with Gröbner base and Janet base from the view of Lie's symmetries.

  18. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear Optimization and Robust Mixed Integer Linear Optimization

    PubMed Central

    Li, Zukui; Ding, Ran; Floudas, Christodoulos A.

    2011-01-01

    Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263

  19. A reliable algorithm for optimal control synthesis

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1992-01-01

    In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.

  20. Application of numerical grid generation for improved CFD analysis of multiphase screw machines

    NASA Astrophysics Data System (ADS)

    Rane, S.; Kovačević, A.

    2017-08-01

    Algebraic grid generation is widely used for discretization of the working domain of twin screw machines. Algebraic grid generation is fast and has good control over the placement of grid nodes. However, the desired qualities of grid which should be able to handle multiphase flows such as oil injection, may be difficult to achieve at times. In order to obtain fast solution of multiphase screw machines, it is important to further improve the quality and robustness of the computational grid. In this paper, a deforming grid of a twin screw machine is generated using algebraic transfinite interpolation to produce initial mesh upon which an elliptic partial differential equations (PDE) of the Poisson’s form is solved numerically to produce smooth final computational mesh. The quality of numerical cells and their distribution obtained by the differential method is greatly improved. In addition, a similar procedure was introduced to fully smoothen the transition of the partitioning rack curve between the rotors thus improving continuous movement of grid nodes and in turn improve robustness and speed of the Computational Fluid Dynamic (CFD) solver. Analysis of an oil injected twin screw compressor is presented to compare the improvements in grid quality factors in the regions of importance such as interlobe space, radial tip and the core of the rotor. The proposed method that combines algebraic and differential grid generation offer significant improvement in grid quality and robustness of numerical solution.

  1. Robust Operation of Soft Open Points in Active Distribution Networks with High Penetration of Photovoltaic Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Ji, Haoran; Wang, Chengshan

    Distributed generators (DGs) including photovoltaic panels (PVs) have been integrated dramatically in active distribution networks (ADNs). Due to the strong volatility and uncertainty, the high penetration of PV generation immensely exacerbates the conditions of voltage violation in ADNs. However, the emerging flexible interconnection technology based on soft open points (SOPs) provides increased controllability and flexibility to the system operation. For fully exploiting the regulation ability of SOPs to address the problems caused by PV, this paper proposes a robust optimization method to achieve the robust optimal operation of SOPs in ADNs. A two-stage adjustable robust optimization model is built tomore » tackle the uncertainties of PV outputs, in which robust operation strategies of SOPs are generated to eliminate the voltage violations and reduce the power losses of ADNs. A column-and-constraint generation (C&CG) algorithm is developed to solve the proposed robust optimization model, which are formulated as second-order cone program (SOCP) to facilitate the accuracy and computation efficiency. Case studies on the modified IEEE 33-node system and comparisons with the deterministic optimization approach are conducted to verify the effectiveness and robustness of the proposed method.« less

  2. Improved Uncertainty Quantification in Groundwater Flux Estimation Using GRACE

    NASA Astrophysics Data System (ADS)

    Reager, J. T., II; Rao, P.; Famiglietti, J. S.; Turmon, M.

    2015-12-01

    Groundwater change is difficult to monitor over large scales. One of the most successful approaches is in the remote sensing of time-variable gravity using NASA Gravity Recovery and Climate Experiment (GRACE) mission data, and successful case studies have created the opportunity to move towards a global groundwater monitoring framework for the world's largest aquifers. To achieve these estimates, several approximations are applied, including those in GRACE processing corrections, the formulation of the formal GRACE errors, destriping and signal recovery, and the numerical model estimation of snow water, surface water and soil moisture storage states used to isolate a groundwater component. A major weakness in these approaches is inconsistency: different studies have used different sources of primary and ancillary data, and may achieve different results based on alternative choices in these approximations. In this study, we present two cases of groundwater change estimation in California and the Colorado River basin, selected for their good data availability and varied climates. We achieve a robust numerical estimate of post-processing uncertainties resulting from land-surface model structural shortcomings and model resolution errors. Groundwater variations should demonstrate less variability than the overlying soil moisture state does, as groundwater has a longer memory of past events due to buffering by infiltration and drainage rate limits. We apply a model ensemble approach in a Bayesian framework constrained by the assumption of decreasing signal variability with depth in the soil column. We also discuss time variable errors vs. time constant errors, across-scale errors v. across-model errors, and error spectral content (across scales and across model). More robust uncertainty quantification for GRACE-based groundwater estimates would take all of these issues into account, allowing for more fair use in management applications and for better integration of GRACE-based measurements with observations from other sources.

  3. Robust and Simple Non-Reflecting Boundary Conditions for the Euler Equations - A New Approach based on the Space-Time CE/SE Method

    NASA Technical Reports Server (NTRS)

    Chang, S.-C.; Himansu, A.; Loh, C.-Y.; Wang, X.-Y.; Yu, S.-T.J.

    2005-01-01

    This paper reports on a significant advance in the area of nonreflecting boundary conditions (NRBCs) for unsteady flow computations. As a part of t he development of t he space-time conservation element and solution element (CE/SE) method, sets of NRBCs for 1D Euler problems are developed without using any characteristics- based techniques. These conditions are much simpler than those commonly reported in the literature, yet so robust that they are applicable to subsonic, transonic and supersonic flows even in the presence of discontinuities. In addition, the straightforward multidimensional extensions of the present 1D NRBCs have been shown numerically to be equally simple and robust. The paper details the theoretical underpinning of these NRBCs, and explains t heir unique robustness and accuracy in terms of t he conservation of space-time fluxes. Some numerical results for an extended Sod's shock-tube problem, illustrating the effectiveness of the present NRBCs are included, together with an associated simple Fortran computer program. As a preliminary to the present development, a review of the basic CE/SE schemes is also included.

  4. Log-Normal Turbulence Dissipation in Global Ocean Models

    NASA Astrophysics Data System (ADS)

    Pearson, Brodie; Fox-Kemper, Baylor

    2018-03-01

    Data from turbulent numerical simulations of the global ocean demonstrate that the dissipation of kinetic energy obeys a nearly log-normal distribution even at large horizontal scales O (10 km ) . As the horizontal scales of resolved turbulence are larger than the ocean is deep, the Kolmogorov-Yaglom theory for intermittency in 3D homogeneous, isotropic turbulence cannot apply; instead, the down-scale potential enstrophy cascade of quasigeostrophic turbulence should. Yet, energy dissipation obeys approximate log-normality—robustly across depths, seasons, regions, and subgrid schemes. The distribution parameters, skewness and kurtosis, show small systematic departures from log-normality with depth and subgrid friction schemes. Log-normality suggests that a few high-dissipation locations dominate the integrated energy and enstrophy budgets, which should be taken into account when making inferences from simplified models and inferring global energy budgets from sparse observations.

  5. Tuning the spectral emittance of α-SiC open-cell foams up to 1300 K with their macro porosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousseau, B., E-mail: benoit.rousseau@univ-nantes.fr; Guevelou, S.; Mekeze-Monthe, A.

    2016-06-15

    A simple and robust analytical model is used to finely predict the spectral emittance under air up to 1300 K of α-SiC open-cell foams constituted of optically thick struts. The model integrates both the chemical composition and the macro-porosity and is valid only if foams have volumes higher than their Representative Elementary Volumes required for determining their emittance. Infrared emission spectroscopy carried out on a doped silicon carbide single crystal associated to homemade numerical tools based on 3D meshed images (Monte Carlo Ray Tracing code, foam generator) make possible to understand the exact role of the cell network in emittance.more » Finally, one can tune the spectral emittance of α-SiC foams up to 1300 K by simply changing their porosity.« less

  6. Robust portfolio selection based on asymmetric measures of variability of stock returns

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Tan, Shaohua

    2009-10-01

    This paper addresses a new uncertainty set--interval random uncertainty set for robust optimization. The form of interval random uncertainty set makes it suitable for capturing the downside and upside deviations of real-world data. These deviation measures capture distributional asymmetry and lead to better optimization results. We also apply our interval random chance-constrained programming to robust mean-variance portfolio selection under interval random uncertainty sets in the elements of mean vector and covariance matrix. Numerical experiments with real market data indicate that our approach results in better portfolio performance.

  7. Robust stability of fractional order polynomials with complicated uncertainty structure

    PubMed Central

    Şenol, Bilal; Pekař, Libor

    2017-01-01

    The main aim of this article is to present a graphical approach to robust stability analysis for families of fractional order (quasi-)polynomials with complicated uncertainty structure. More specifically, the work emphasizes the multilinear, polynomial and general structures of uncertainty and, moreover, the retarded quasi-polynomials with parametric uncertainty are studied. Since the families with these complex uncertainty structures suffer from the lack of analytical tools, their robust stability is investigated by numerical calculation and depiction of the value sets and subsequent application of the zero exclusion condition. PMID:28662173

  8. Robust functional regression model for marginal mean and subject-specific inferences.

    PubMed

    Cao, Chunzheng; Shi, Jian Qing; Lee, Youngjo

    2017-01-01

    We introduce flexible robust functional regression models, using various heavy-tailed processes, including a Student t-process. We propose efficient algorithms in estimating parameters for the marginal mean inferences and in predicting conditional means as well as interpolation and extrapolation for the subject-specific inferences. We develop bootstrap prediction intervals (PIs) for conditional mean curves. Numerical studies show that the proposed model provides a robust approach against data contamination or distribution misspecification, and the proposed PIs maintain the nominal confidence levels. A real data application is presented as an illustrative example.

  9. A family of compact high order coupled time-space unconditionally stable vertical advection schemes

    NASA Astrophysics Data System (ADS)

    Lemarié, Florian; Debreu, Laurent

    2016-04-01

    Recent papers by Shchepetkin (2015) and Lemarié et al. (2015) have emphasized that the time-step of an oceanic model with an Eulerian vertical coordinate and an explicit time-stepping scheme is very often restricted by vertical advection in a few hot spots (i.e. most of the grid points are integrated with small Courant numbers, compared to the Courant-Friedrichs-Lewy (CFL) condition, except just few spots where numerical instability of the explicit scheme occurs first). The consequence is that the numerics for vertical advection must have good stability properties while being robust to changes in Courant number in terms of accuracy. An other constraint for oceanic models is the strict control of numerical mixing imposed by the highly adiabatic nature of the oceanic interior (i.e. mixing must be very small in the vertical direction below the boundary layer). We examine in this talk the possibility of mitigating vertical Courant-Friedrichs-Lewy (CFL) restriction, while avoiding numerical inaccuracies associated with standard implicit advection schemes (i.e. large sensitivity of the solution on Courant number, large phase delay, and possibly excess of numerical damping with unphysical orientation). Most regional oceanic models have been successfully using fourth order compact schemes for vertical advection. In this talk we present a new general framework to derive generic expressions for (one-step) coupled time and space high order compact schemes (see Daru & Tenaud (2004) for a thorough description of coupled time and space schemes). Among other properties, we show that those schemes are unconditionally stable and have very good accuracy properties even for large Courant numbers while having a very reasonable computational cost.

  10. Efficient Integration of Coupled Electrical-Chemical Systems in Multiscale Neuronal Simulations

    PubMed Central

    Brocke, Ekaterina; Bhalla, Upinder S.; Djurfeldt, Mikael; Hellgren Kotaleski, Jeanette; Hanke, Michael

    2016-01-01

    Multiscale modeling and simulations in neuroscience is gaining scientific attention due to its growing importance and unexplored capabilities. For instance, it can help to acquire better understanding of biological phenomena that have important features at multiple scales of time and space. This includes synaptic plasticity, memory formation and modulation, homeostasis. There are several ways to organize multiscale simulations depending on the scientific problem and the system to be modeled. One of the possibilities is to simulate different components of a multiscale system simultaneously and exchange data when required. The latter may become a challenging task for several reasons. First, the components of a multiscale system usually span different spatial and temporal scales, such that rigorous analysis of possible coupling solutions is required. Then, the components can be defined by different mathematical formalisms. For certain classes of problems a number of coupling mechanisms have been proposed and successfully used. However, a strict mathematical theory is missing in many cases. Recent work in the field has not so far investigated artifacts that may arise during coupled integration of different approximation methods. Moreover, in neuroscience, the coupling of widely used numerical fixed step size solvers may lead to unexpected inefficiency. In this paper we address the question of possible numerical artifacts that can arise during the integration of a coupled system. We develop an efficient strategy to couple the components comprising a multiscale test problem in neuroscience. We introduce an efficient coupling method based on the second-order backward differentiation formula (BDF2) numerical approximation. The method uses an adaptive step size integration with an error estimation proposed by Skelboe (2000). The method shows a significant advantage over conventional fixed step size solvers used in neuroscience for similar problems. We explore different coupling strategies that define the organization of computations between system components. We study the importance of an appropriate approximation of exchanged variables during the simulation. The analysis shows a substantial impact of these aspects on the solution accuracy in the application to our multiscale neuroscientific test problem. We believe that the ideas presented in the paper may essentially contribute to the development of a robust and efficient framework for multiscale brain modeling and simulations in neuroscience. PMID:27672364

  11. Efficient Integration of Coupled Electrical-Chemical Systems in Multiscale Neuronal Simulations.

    PubMed

    Brocke, Ekaterina; Bhalla, Upinder S; Djurfeldt, Mikael; Hellgren Kotaleski, Jeanette; Hanke, Michael

    2016-01-01

    Multiscale modeling and simulations in neuroscience is gaining scientific attention due to its growing importance and unexplored capabilities. For instance, it can help to acquire better understanding of biological phenomena that have important features at multiple scales of time and space. This includes synaptic plasticity, memory formation and modulation, homeostasis. There are several ways to organize multiscale simulations depending on the scientific problem and the system to be modeled. One of the possibilities is to simulate different components of a multiscale system simultaneously and exchange data when required. The latter may become a challenging task for several reasons. First, the components of a multiscale system usually span different spatial and temporal scales, such that rigorous analysis of possible coupling solutions is required. Then, the components can be defined by different mathematical formalisms. For certain classes of problems a number of coupling mechanisms have been proposed and successfully used. However, a strict mathematical theory is missing in many cases. Recent work in the field has not so far investigated artifacts that may arise during coupled integration of different approximation methods. Moreover, in neuroscience, the coupling of widely used numerical fixed step size solvers may lead to unexpected inefficiency. In this paper we address the question of possible numerical artifacts that can arise during the integration of a coupled system. We develop an efficient strategy to couple the components comprising a multiscale test problem in neuroscience. We introduce an efficient coupling method based on the second-order backward differentiation formula (BDF2) numerical approximation. The method uses an adaptive step size integration with an error estimation proposed by Skelboe (2000). The method shows a significant advantage over conventional fixed step size solvers used in neuroscience for similar problems. We explore different coupling strategies that define the organization of computations between system components. We study the importance of an appropriate approximation of exchanged variables during the simulation. The analysis shows a substantial impact of these aspects on the solution accuracy in the application to our multiscale neuroscientific test problem. We believe that the ideas presented in the paper may essentially contribute to the development of a robust and efficient framework for multiscale brain modeling and simulations in neuroscience.

  12. Insights into the Streaming Instability in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Youdin, Andrew N.; Lin, Min-Kai; Li, Rixin

    2017-10-01

    The streaming instability is a leading mechanism to concentrate particles in protoplanetary disks, thereby triggering planetesimal formation. I will present recent analytical and numerical work on the origin of the streaming instability and its robustness. Our recent analytic work examines the origin of, and relationship between, a variety of drag-induced instabilities, including the streaming instability as well as secular gravitational instabilities, a drag instability driven by self-gravity. We show that drag instabilities are powered by a specific phase relationship between gas pressure and particle concentrations, which power the instability via pressure work. This mechanism is analogous to pulsating instabilities in stars. This mechanism differs qualitatively from other leading particle concentration mechanisms in pressure bumps and vortices. Our recent numerical work investigates the numerical robustness of non-linear particle clumping by the streaming instability, especially with regard to the location and boundary condition of vertical boundaries. We find that particle clumping is robust to these choices in boxes that are not too short. However, hydrodynamic activity away from the particle-dominated midplane is significantly affected by vertical boundary conditions. This activity affects the observationally significant lofting of small dust grains. We thus emphasize the need for larger scale simulations which connect disk surface layers, including outflowing winds, to the planet-forming midplane.

  13. Robust and Accurate Shock Capturing Method for High-Order Discontinuous Galerkin Methods

    NASA Technical Reports Server (NTRS)

    Atkins, Harold L.; Pampell, Alyssa

    2011-01-01

    A simple yet robust and accurate approach for capturing shock waves using a high-order discontinuous Galerkin (DG) method is presented. The method uses the physical viscous terms of the Navier-Stokes equations as suggested by others; however, the proposed formulation of the numerical viscosity is continuous and compact by construction, and does not require the solution of an auxiliary diffusion equation. This work also presents two analyses that guided the formulation of the numerical viscosity and certain aspects of the DG implementation. A local eigenvalue analysis of the DG discretization applied to a shock containing element is used to evaluate the robustness of several Riemann flux functions, and to evaluate algorithm choices that exist within the underlying DG discretization. A second analysis examines exact solutions to the DG discretization in a shock containing element, and identifies a "model" instability that will inevitably arise when solving the Euler equations using the DG method. This analysis identifies the minimum viscosity required for stability. The shock capturing method is demonstrated for high-speed flow over an inviscid cylinder and for an unsteady disturbance in a hypersonic boundary layer. Numerical tests are presented that evaluate several aspects of the shock detection terms. The sensitivity of the results to model parameters is examined with grid and order refinement studies.

  14. Eyes of the Deep-sea Floor: The Integrative Taxonomy of the Foraminiferal Genus Vanhoeffenella.

    PubMed

    Voltski, Ivan; Gooday, Andrew J; Pawlowski, Jan

    2017-11-26

    Vanhoeffenella is a common deep-sea monothalamous foraminifer, some species of which have a unique eye-like test morphology. Owing to its world-wide distribution, it has been recorded numerous times since the "heroic age" of the deep-sea exploration in the early 20th century. So far, only 4 species have been described, and no attempts have been made to estimate the real diversity of this peculiar genus. Over the last fifteen years, we have collected specimens of Vanhoeffenella from various deep-sea areas, providing the basis for an integrative taxonomy and biogeography of this genus. Here, we clarify the phylogenetic position of Vanhoeffenella and give an account of its diversity in the Atlantic, Arctic and Southern Oceans (the Weddell Sea) as revealed by genetic marker (SSU rDNA) and morphology. Our study shows that Vanhoeffenella branches within Clade F of monothalamids and incorporates at least 10 putative species. Some could be distinguished by either morphological or molecular features, but only the integrative taxonomic approach provides a robust way to assess their diversity. We examine the new material of the type species (V. gaussi Rhumbler), redescribe the poorly-known V. oculus Earland and describe formally a fifth species, V. dilatata sp. nov. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Simulation of laser generated ultrasound with application to defect detection

    NASA Astrophysics Data System (ADS)

    Pantano, A.; Cerniglia, D.

    2008-06-01

    Laser generated ultrasound holds substantial promise for use as a tool for defect detection in remote inspection thanks to its ability to produce frequencies in the MHz range, enabling fine spatial resolution of defects. Despite the potential impact of laser generated ultrasound in many areas of science and industry, robust tools for studying the phenomenon are lacking and thus limit the design and optimization of non-destructive testing and evaluation techniques. The laser generated ultrasound propagation in complex structures is an intricate phenomenon and is extremely hard to analyze. Only simple geometries can be studied analytically. Numerical techniques found in the literature have proved to be limited in their applicability, by the frequencies in the MHz range and very short wavelengths. The objective of this research is to prove that by using an explicit integration rule together with diagonal element mass matrices, instead of the almost universally adopted implicit integration rule to integrate the equations of motion in a dynamic analysis, it is possible to efficiently and accurately solve ultrasound wave propagation problems with frequencies in the MHz range travelling in relatively large bodies. Presented results on NDE testing of rails demonstrate that the proposed FE technique can provide a valuable tool for studying the laser generated ultrasound propagation.

  16. Design optimization of a compact photonic crystal microcavity based on slow light and dispersion engineering for the miniaturization of integrated mode-locked lasers

    NASA Astrophysics Data System (ADS)

    Kemiche, Malik; Lhuillier, Jérémy; Callard, Ségolène; Monat, Christelle

    2018-01-01

    We exploit slow light (high ng) modes in planar photonic crystals in order to design a compact cavity, which provides an attractive path towards the miniaturization of near-infrared integrated fast pulsed lasers. By applying dispersion engineering techniques, we can design structures with a low dispersion, as needed by mode-locking operation. Our basic InP SiO2 heterostructure is robust and well suited to integrated laser applications. We show that an optimized 30 μm long cavity design yields 9 frequency-equidistant modes with a FSR of 178 GHz within a 11.5 nm bandwidth, which could potentially sustain the generation of optical pulses shorter than 700 fs. In addition, the numerically calculated quality factors of these modes are all above 10,000, making them suitable for reaching laser operation. Thanks to the use of a high group index (28), this cavity design is almost one order of magnitude shorter than standard rib-waveguide based mode-locked lasers. The use of slow light modes in planar photonic crystal based cavities thus relaxes the usual constraints that tightly link the device size and the quality (peak power, repetition rate) of the pulsed laser signal.

  17. Do the surface Fermi arcs in Weyl semimetals survive disorder?

    NASA Astrophysics Data System (ADS)

    Wilson, Justin H.; Pixley, J. H.; Huse, David A.; Refael, Gil; Das Sarma, S.

    2018-06-01

    We theoretically study the topological robustness of the surface physics induced by Weyl Fermi-arc surface states in the presence of short-ranged quenched disorder and surface-bulk hybridization. This is investigated with numerically exact calculations on a lattice model exhibiting Weyl Fermi arcs. We find that the Fermi-arc surface states, in addition to having a finite lifetime from disorder broadening, hybridize with nonperturbative bulk rare states making them no longer bound to the surface (i.e., they lose their purely surface spectral character). Thus, we provide strong numerical evidence that the Weyl Fermi arcs are not topologically protected from disorder. Nonetheless, the surface chiral velocity is robust and survives in the presence of strong disorder, persisting all the way to the Anderson-localized phase by forming localized current loops that live within the localization length of the surface. Thus, the Weyl semimetal is not topologically robust to the presence of disorder, but the surface chiral velocity is.

  18. Robust numerical solution of the reservoir routing equation

    NASA Astrophysics Data System (ADS)

    Fiorentini, Marcello; Orlandini, Stefano

    2013-09-01

    The robustness of numerical methods for the solution of the reservoir routing equation is evaluated. The methods considered in this study are: (1) the Laurenson-Pilgrim method, (2) the fourth-order Runge-Kutta method, and (3) the fixed order Cash-Karp method. Method (1) is unable to handle nonmonotonic outflow rating curves. Method (2) is found to fail under critical conditions occurring, especially at the end of inflow recession limbs, when large time steps (greater than 12 min in this application) are used. Method (3) is computationally intensive and it does not solve the limitations of method (2). The limitations of method (2) can be efficiently overcome by reducing the time step in the critical phases of the simulation so as to ensure that water level remains inside the domains of the storage function and the outflow rating curve. The incorporation of a simple backstepping procedure implementing this control into the method (2) yields a robust and accurate reservoir routing method that can be safely used in distributed time-continuous catchment models.

  19. Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less

  20. Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2017-08-07

    This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less

  1. Optimal and robust control of quantum state transfer by shaping the spectral phase of ultrafast laser pulses.

    PubMed

    Guo, Yu; Dong, Daoyi; Shu, Chuan-Cun

    2018-04-04

    Achieving fast and efficient quantum state transfer is a fundamental task in physics, chemistry and quantum information science. However, the successful implementation of the perfect quantum state transfer also requires robustness under practically inevitable perturbative defects. Here, we demonstrate how an optimal and robust quantum state transfer can be achieved by shaping the spectral phase of an ultrafast laser pulse in the framework of frequency domain quantum optimal control theory. Our numerical simulations of the single dibenzoterrylene molecule as well as in atomic rubidium show that optimal and robust quantum state transfer via spectral phase modulated laser pulses can be achieved by incorporating a filtering function of the frequency into the optimization algorithm, which in turn has potential applications for ultrafast robust control of photochemical reactions.

  2. Petroleum refinery operational planning using robust optimization

    NASA Astrophysics Data System (ADS)

    Leiras, A.; Hamacher, S.; Elkamel, A.

    2010-12-01

    In this article, the robust optimization methodology is applied to deal with uncertainties in the prices of saleable products, operating costs, product demand, and product yield in the context of refinery operational planning. A numerical study demonstrates the effectiveness of the proposed robust approach. The benefits of incorporating uncertainty in the different model parameters were evaluated in terms of the cost of ignoring uncertainty in the problem. The calculations suggest that this benefit is equivalent to 7.47% of the deterministic solution value, which indicates that the robust model may offer advantages to those involved with refinery operational planning. In addition, the probability bounds of constraint violation are calculated to help the decision-maker adopt a more appropriate parameter to control robustness and judge the tradeoff between conservatism and total profit.

  3. Info-gap robust-satisficing model of foraging behavior: do foragers optimize or satisfice?

    PubMed

    Carmel, Yohay; Ben-Haim, Yakov

    2005-11-01

    In this note we compare two mathematical models of foraging that reflect two competing theories of animal behavior: optimizing and robust satisficing. The optimal-foraging model is based on the marginal value theorem (MVT). The robust-satisficing model developed here is an application of info-gap decision theory. The info-gap robust-satisficing model relates to the same circumstances described by the MVT. We show how these two alternatives translate into specific predictions that at some points are quite disparate. We test these alternative predictions against available data collected in numerous field studies with a large number of species from diverse taxonomic groups. We show that a large majority of studies appear to support the robust-satisficing model and reject the optimal-foraging model.

  4. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: II. Probabilistic Guarantees on Constraint Satisfaction

    PubMed Central

    Li, Zukui; Floudas, Christodoulos A.

    2012-01-01

    Probabilistic guarantees on constraint satisfaction for robust counterpart optimization are studied in this paper. The robust counterpart optimization formulations studied are derived from box, ellipsoidal, polyhedral, “interval+ellipsoidal” and “interval+polyhedral” uncertainty sets (Li, Z., Ding, R., and Floudas, C.A., A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear and Robust Mixed Integer Linear Optimization, Ind. Eng. Chem. Res, 2011, 50, 10567). For those robust counterpart optimization formulations, their corresponding probability bounds on constraint satisfaction are derived for different types of uncertainty characteristic (i.e., bounded or unbounded uncertainty, with or without detailed probability distribution information). The findings of this work extend the results in the literature and provide greater flexibility for robust optimization practitioners in choosing tighter probability bounds so as to find less conservative robust solutions. Extensive numerical studies are performed to compare the tightness of the different probability bounds and the conservatism of different robust counterpart optimization formulations. Guiding rules for the selection of robust counterpart optimization models and for the determination of the size of the uncertainty set are discussed. Applications in production planning and process scheduling problems are presented. PMID:23329868

  5. Integration of the Response Surface Methodology with the Compromise Decision Support Problem in Developing a General Robust Design Procedure

    NASA Technical Reports Server (NTRS)

    Chen, Wei; Tsui, Kwok-Leung; Allen, Janet K.; Mistree, Farrokh

    1994-01-01

    In this paper we introduce a comprehensive and rigorous robust design procedure to overcome some limitations of the current approaches. A comprehensive approach is general enough to model the two major types of robust design applications, namely, robust design associated with the minimization of the deviation of performance caused by the deviation of noise factors (uncontrollable parameters), and robust design due to the minimization of the deviation of performance caused by the deviation of control factors (design variables). We achieve mathematical rigor by using, as a foundation, principles from the design of experiments and optimization. Specifically, we integrate the Response Surface Method (RSM) with the compromise Decision Support Problem (DSP). Our approach is especially useful for design problems where there are no closed-form solutions and system performance is computationally expensive to evaluate. The design of a solar powered irrigation system is used as an example. Our focus in this paper is on illustrating our approach rather than on the results per se.

  6. Efficient Robust Optimization of Metal Forming Processes using a Sequential Metamodel Based Strategy

    NASA Astrophysics Data System (ADS)

    Wiebenga, J. H.; Klaseboer, G.; van den Boogaard, A. H.

    2011-08-01

    The coupling of Finite Element (FE) simulations to mathematical optimization techniques has contributed significantly to product improvements and cost reductions in the metal forming industries. The next challenge is to bridge the gap between deterministic optimization techniques and the industrial need for robustness. This paper introduces a new and generally applicable structured methodology for modeling and solving robust optimization problems. Stochastic design variables or noise variables are taken into account explicitly in the optimization procedure. The metamodel-based strategy is combined with a sequential improvement algorithm to efficiently increase the accuracy of the objective function prediction. This is only done at regions of interest containing the optimal robust design. Application of the methodology to an industrial V-bending process resulted in valuable process insights and an improved robust process design. Moreover, a significant improvement of the robustness (>2σ) was obtained by minimizing the deteriorating effects of several noise variables. The robust optimization results demonstrate the general applicability of the robust optimization strategy and underline the importance of including uncertainty and robustness explicitly in the numerical optimization procedure.

  7. A new numerical approach for uniquely solvable exterior Riemann-Hilbert problem on region with corners

    NASA Astrophysics Data System (ADS)

    Zamzamir, Zamzana; Murid, Ali H. M.; Ismail, Munira

    2014-06-01

    Numerical solution for uniquely solvable exterior Riemann-Hilbert problem on region with corners at offcorner points has been explored by discretizing the related integral equation using Picard iteration method without any modifications to the left-hand side (LHS) and right-hand side (RHS) of the integral equation. Numerical errors for all iterations are converge to the required solution. However, for certain problems, it gives lower accuracy. Hence, this paper presents a new numerical approach for the problem by treating the generalized Neumann kernel at LHS and the function at RHS of the integral equation. Due to the existence of the corner points, Gaussian quadrature is employed which avoids the corner points during numerical integration. Numerical example on a test region is presented to demonstrate the effectiveness of this formulation.

  8. Boundedness and global robust stability analysis of delayed complex-valued neural networks with interval parameter uncertainties.

    PubMed

    Song, Qiankun; Yu, Qinqin; Zhao, Zhenjiang; Liu, Yurong; Alsaadi, Fuad E

    2018-07-01

    In this paper, the boundedness and robust stability for a class of delayed complex-valued neural networks with interval parameter uncertainties are investigated. By using Homomorphic mapping theorem, Lyapunov method and inequality techniques, sufficient condition to guarantee the boundedness of networks and the existence, uniqueness and global robust stability of equilibrium point is derived for the considered uncertain neural networks. The obtained robust stability criterion is expressed in complex-valued LMI, which can be calculated numerically using YALMIP with solver of SDPT3 in MATLAB. An example with simulations is supplied to show the applicability and advantages of the acquired result. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Robustness of Flexible Systems With Component-Level Uncertainties

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.

    2000-01-01

    Robustness of flexible systems in the presence of model uncertainties at the component level is considered. Specifically, an approach for formulating robustness of flexible systems in the presence of frequency and damping uncertainties at the component level is presented. The synthesis of the components is based on a modifications of a controls-based algorithm for component mode synthesis. The formulation deals first with robustness of synthesized flexible systems. It is then extended to deal with global (non-synthesized ) dynamic models with component-level uncertainties by projecting uncertainties from component levels to system level. A numerical example involving a two-dimensional simulated docking problem is worked out to demonstrate the feasibility of the proposed approach.

  10. Robust Learning Control Design for Quantum Unitary Transformations.

    PubMed

    Wu, Chengzhi; Qi, Bo; Chen, Chunlin; Dong, Daoyi

    2017-12-01

    Robust control design for quantum unitary transformations has been recognized as a fundamental and challenging task in the development of quantum information processing due to unavoidable decoherence or operational errors in the experimental implementation of quantum operations. In this paper, we extend the systematic methodology of sampling-based learning control (SLC) approach with a gradient flow algorithm for the design of robust quantum unitary transformations. The SLC approach first uses a "training" process to find an optimal control strategy robust against certain ranges of uncertainties. Then a number of randomly selected samples are tested and the performance is evaluated according to their average fidelity. The approach is applied to three typical examples of robust quantum transformation problems including robust quantum transformations in a three-level quantum system, in a superconducting quantum circuit, and in a spin chain system. Numerical results demonstrate the effectiveness of the SLC approach and show its potential applications in various implementation of quantum unitary transformations.

  11. Time-distance domain transformation for Acoustic Emission source localization in thin metallic plates.

    PubMed

    Grabowski, Krzysztof; Gawronski, Mateusz; Baran, Ireneusz; Spychalski, Wojciech; Staszewski, Wieslaw J; Uhl, Tadeusz; Kundu, Tribikram; Packo, Pawel

    2016-05-01

    Acoustic Emission used in Non-Destructive Testing is focused on analysis of elastic waves propagating in mechanical structures. Then any information carried by generated acoustic waves, further recorded by a set of transducers, allow to determine integrity of these structures. It is clear that material properties and geometry strongly impacts the result. In this paper a method for Acoustic Emission source localization in thin plates is presented. The approach is based on the Time-Distance Domain Transform, that is a wavenumber-frequency mapping technique for precise event localization. The major advantage of the technique is dispersion compensation through a phase-shifting of investigated waveforms in order to acquire the most accurate output, allowing for source-sensor distance estimation using a single transducer. The accuracy and robustness of the above process are also investigated. This includes the study of Young's modulus value and numerical parameters influence on damage detection. By merging the Time-Distance Domain Transform with an optimal distance selection technique, an identification-localization algorithm is achieved. The method is investigated analytically, numerically and experimentally. The latter involves both laboratory and large scale industrial tests. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Fly-by-feel aeroservoelasticity

    NASA Astrophysics Data System (ADS)

    Suryakumar, Vishvas Samuel

    Recent experiments have suggested a strong correlation between local flow features on the airfoil surface such as the leading edge stagnation point (LESP), transition or the flow separation point with global integrated quantities such as aerodynamic lift. "Fly-By-Feel" refers to a physics-based sensing and control framework where local flow features are tracked in real-time to determine aerodynamic loads. This formulation offers possibilities for the development of robust, low-order flight control architectures. An essential contribution towards this objective is the theoretical development showing the direct relationship of the LESP with circulation for small-amplitude, unsteady, airfoil maneuvers. The theory is validated through numerical simulations and wind tunnel tests. With the availability of an aerodynamic observable, a low-order, energy-based control formulation is derived for aeroelastic stabilization and gust load alleviation. The sensing and control framework is implemented on the Nonlinear Aeroelastic Test Apparatus at Texas A&M University. The LESP is located using hot-film sensors distributed around the wing leading edge. Stabilization of limit cycle oscillations exhibited by a nonlinear wing section is demonstrated in the presence of gusts. Aeroelastic stabilization is also demonstrated on a flying wing configuration exhibiting body freedom flutter through numerical simulations.

  13. A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Daude, F.; Galon, P.

    2018-06-01

    A Finite-Volume scheme for the numerical computations of compressible single- and two-phase flows in flexible pipelines is proposed based on an approximate Godunov-type approach. The spatial discretization is here obtained using the HLLC scheme. In addition, the numerical treatment of abrupt changes in area and network including several pipelines connected at junctions is also considered. The proposed approach is based on the integral form of the governing equations making it possible to tackle general equations of state. A coupled approach for the resolution of fluid-structure interaction of compressible fluid flowing in flexible pipes is considered. The structural problem is solved using Euler-Bernoulli beam finite elements. The present Finite-Volume method is applied to ideal gas and two-phase steam-water based on the Homogeneous Equilibrium Model (HEM) in conjunction with a tabulated equation of state in order to demonstrate its ability to tackle general equations of state. The extensive application of the scheme for both shock tube and other transient flow problems demonstrates its capability to resolve such problems accurately and robustly. Finally, the proposed 1-D fluid-structure interaction model appears to be computationally efficient.

  14. A fully-integrated aptamer-based affinity assay platform for monitoring astronaut health in space.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xianbin; Durland, Ross H.; Hecht, Ariel H.

    2010-07-01

    Here we demonstrate the suitability of robust nucleic acid affinity reagents in an integrated point-of-care diagnostic platform for monitoring proteomic biomarkers indicative of astronaut health in spaceflight applications. A model thioaptamer targeting nuclear factor-kappa B (NF-{kappa}B) is evaluated in an on-chip electrophoretic gel-shift assay for human serum. Key steps of (i) mixing sample with the aptamer, (ii) buffer exchange, and (iii) preconcentration of sample were successfully integrated upstream of fluorescence-based detection. Challenges due to (i) nonspecific interactions with serum, and (ii) preconcentration at a nanoporous membrane are discussed and successfully resolved to yield a robust, rapid, and fully-integrated diagnostic system.

  15. Permeability Sensitivity Functions and Rapid Simulation of Hydraulic-Testing Measurements Using Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Escobar Gómez, J. D.; Torres-Verdín, C.

    2018-03-01

    Single-well pressure-diffusion simulators enable improved quantitative understanding of hydraulic-testing measurements in the presence of arbitrary spatial variations of rock properties. Simulators of this type implement robust numerical algorithms which are often computationally expensive, thereby making the solution of the forward modeling problem onerous and inefficient. We introduce a time-domain perturbation theory for anisotropic permeable media to efficiently and accurately approximate the transient pressure response of spatially complex aquifers. Although theoretically valid for any spatially dependent rock/fluid property, our single-phase flow study emphasizes arbitrary spatial variations of permeability and anisotropy, which constitute key objectives of hydraulic-testing operations. Contrary to time-honored techniques, the perturbation method invokes pressure-flow deconvolution to compute the background medium's permeability sensitivity function (PSF) with a single numerical simulation run. Subsequently, the first-order term of the perturbed solution is obtained by solving an integral equation that weighs the spatial variations of permeability with the spatial-dependent and time-dependent PSF. Finally, discrete convolution transforms the constant-flow approximation to arbitrary multirate conditions. Multidimensional numerical simulation studies for a wide range of single-well field conditions indicate that perturbed solutions can be computed in less than a few CPU seconds with relative errors in pressure of <5%, corresponding to perturbations in background permeability of up to two orders of magnitude. Our work confirms that the proposed joint perturbation-convolution (JPC) method is an efficient alternative to analytical and numerical solutions for accurate modeling of pressure-diffusion phenomena induced by Neumann or Dirichlet boundary conditions.

  16. Distillability of Werner states using entanglement witnesses and robust semidefinite programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vianna, Reinaldo O.; Departamento de Fisica, ICEX, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais; Doherty, Andrew C.

    2006-11-15

    We use robust semidefinite programs and entanglement witnesses to study the distillability of Werner states. We perform exact numerical calculations that show two-undistillability in a region of the state space, which was previously conjectured to be undistillable. We also introduce bases that yield interesting expressions for the distillability witnesses and for a tensor product of Werner states with an arbitrary number of copies.

  17. A SINS/SRS/GNS Autonomous Integrated Navigation System Based on Spectral Redshift Velocity Measurements.

    PubMed

    Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke

    2018-04-09

    In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology.

  18. Robustness of Oscillatory Behavior in Correlated Networks

    PubMed Central

    Sasai, Takeyuki; Morino, Kai; Tanaka, Gouhei; Almendral, Juan A.; Aihara, Kazuyuki

    2015-01-01

    Understanding network robustness against failures of network units is useful for preventing large-scale breakdowns and damages in real-world networked systems. The tolerance of networked systems whose functions are maintained by collective dynamical behavior of the network units has recently been analyzed in the framework called dynamical robustness of complex networks. The effect of network structure on the dynamical robustness has been examined with various types of network topology, but the role of network assortativity, or degree–degree correlations, is still unclear. Here we study the dynamical robustness of correlated (assortative and disassortative) networks consisting of diffusively coupled oscillators. Numerical analyses for the correlated networks with Poisson and power-law degree distributions show that network assortativity enhances the dynamical robustness of the oscillator networks but the impact of network disassortativity depends on the detailed network connectivity. Furthermore, we theoretically analyze the dynamical robustness of correlated bimodal networks with two-peak degree distributions and show the positive impact of the network assortativity. PMID:25894574

  19. Novel Scalable 3-D MT Inverse Solver

    NASA Astrophysics Data System (ADS)

    Kuvshinov, A. V.; Kruglyakov, M.; Geraskin, A.

    2016-12-01

    We present a new, robust and fast, three-dimensional (3-D) magnetotelluric (MT) inverse solver. As a forward modelling engine a highly-scalable solver extrEMe [1] is used. The (regularized) inversion is based on an iterative gradient-type optimization (quasi-Newton method) and exploits adjoint sources approach for fast calculation of the gradient of the misfit. The inverse solver is able to deal with highly detailed and contrasting models, allows for working (separately or jointly) with any type of MT (single-site and/or inter-site) responses, and supports massive parallelization. Different parallelization strategies implemented in the code allow for optimal usage of available computational resources for a given problem set up. To parameterize an inverse domain a mask approach is implemented, which means that one can merge any subset of forward modelling cells in order to account for (usually) irregular distribution of observation sites. We report results of 3-D numerical experiments aimed at analysing the robustness, performance and scalability of the code. In particular, our computational experiments carried out at different platforms ranging from modern laptops to high-performance clusters demonstrate practically linear scalability of the code up to thousands of nodes. 1. Kruglyakov, M., A. Geraskin, A. Kuvshinov, 2016. Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method, Computers and Geosciences, in press.

  20. A numerical solution for two-dimensional Fredholm integral equations of the second kind with kernels of the logarithmic potential form

    NASA Technical Reports Server (NTRS)

    Gabrielsen, R. E.; Uenal, A.

    1981-01-01

    Two dimensional Fredholm integral equations with logarithmic potential kernels are numerically solved. The explicit consequence of these solutions to their true solutions is demonstrated. The results are based on a previous work in which numerical solutions were obtained for Fredholm integral equations of the second kind with continuous kernels.

  1. Nonlinear Internal Tide Generation at the Luzon Strait: Integrating Laboratory Data with Numerics and Observations

    DTIC Science & Technology

    2008-09-30

    Nonlinear Internal Tide Generation at the Luzon Strait: Integrating Laboratory Data with Numerics and...laboratory experimental techniques have greatly enhanced the ability to obtained detailed spatiotemporal data for internal waves in challenging regimes...a custom configured wave tank; and to integrate these results with data obtained from numerical simulations, theory and field studies. The principal

  2. Inducer analysis/pump model development

    NASA Astrophysics Data System (ADS)

    Cheng, Gary C.

    1994-03-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study was to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, three key components of the turbopump, the inducer, impeller, and diffuser, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne. For the numerical calculation of inducer flows with tip clearance, the turbulence model and grid spacing are very important. Meanwhile, the development of the cross-stream secondary flow, generated by curved blade passage and the flow through tip leakage, has a strong effect on the inducer flow. Hence, the prediction of the inducer performance critically depends on whether the numerical scheme of the pump model can simulate the secondary flow pattern accurately or not. The impeller and diffuser, however, are dominated by pressure-driven flows such that the effects of turbulence model and grid spacing (except near leading and trailing edges of blades) are less sensitive. The present CFD pump model has been proved to be an efficient and robust analytical tool for pump design due to its very compact numerical structure (requiring small memory), fast turnaround computing time, and versatility for different geometries.

  3. Inducer analysis/pump model development

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.

    1994-01-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study was to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, three key components of the turbopump, the inducer, impeller, and diffuser, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne. For the numerical calculation of inducer flows with tip clearance, the turbulence model and grid spacing are very important. Meanwhile, the development of the cross-stream secondary flow, generated by curved blade passage and the flow through tip leakage, has a strong effect on the inducer flow. Hence, the prediction of the inducer performance critically depends on whether the numerical scheme of the pump model can simulate the secondary flow pattern accurately or not. The impeller and diffuser, however, are dominated by pressure-driven flows such that the effects of turbulence model and grid spacing (except near leading and trailing edges of blades) are less sensitive. The present CFD pump model has been proved to be an efficient and robust analytical tool for pump design due to its very compact numerical structure (requiring small memory), fast turnaround computing time, and versatility for different geometries.

  4. Airborne Transducer Integrity under Operational Environment for Structural Health Monitoring

    PubMed Central

    Salmanpour, Mohammad Saleh; Sharif Khodaei, Zahra; Aliabadi, Mohammad Hossein

    2016-01-01

    This paper investigates the robustness of permanently mounted transducers used in airborne structural health monitoring systems, when exposed to the operational environment. Typical airliners operate in a range of conditions, hence, structural health monitoring (SHM) transducer robustness and integrity must be demonstrated for these environments. A set of extreme temperature, altitude and vibration environment test profiles are developed using the existing Radio Technical Commission for Aeronautics (RTCA)/DO-160 test methods. Commercially available transducers and manufactured versions bonded to carbon fibre reinforced polymer (CFRP) composite materials are tested. It was found that the DuraAct transducer is robust to environmental conditions tested, while the other transducer types degrade under the same conditions. PMID:27973450

  5. Stochastic simulation and robust design optimization of integrated photonic filters

    NASA Astrophysics Data System (ADS)

    Weng, Tsui-Wei; Melati, Daniele; Melloni, Andrea; Daniel, Luca

    2017-01-01

    Manufacturing variations are becoming an unavoidable issue in modern fabrication processes; therefore, it is crucial to be able to include stochastic uncertainties in the design phase. In this paper, integrated photonic coupled ring resonator filters are considered as an example of significant interest. The sparsity structure in photonic circuits is exploited to construct a sparse combined generalized polynomial chaos model, which is then used to analyze related statistics and perform robust design optimization. Simulation results show that the optimized circuits are more robust to fabrication process variations and achieve a reduction of 11%-35% in the mean square errors of the 3 dB bandwidth compared to unoptimized nominal designs.

  6. Simulation tools for guided wave based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Mesnil, Olivier; Imperiale, Alexandre; Demaldent, Edouard; Baronian, Vahan; Chapuis, Bastien

    2018-04-01

    Structural Health Monitoring (SHM) is a thematic derived from Non Destructive Evaluation (NDE) based on the integration of sensors onto or into a structure in order to monitor its health without disturbing its regular operating cycle. Guided wave based SHM relies on the propagation of guided waves in plate-like or extruded structures. Using piezoelectric transducers to generate and receive guided waves is one of the most widely accepted paradigms due to the low cost and low weight of those sensors. A wide range of techniques for flaw detection based on the aforementioned setup is available in the literature but very few of these techniques have found industrial applications yet. A major difficulty comes from the sensitivity of guided waves to a substantial number of parameters such as the temperature or geometrical singularities, making guided wave measurement difficult to analyze. In order to apply guided wave based SHM techniques to a wider spectrum of applications and to transfer those techniques to the industry, the CEA LIST develops novel numerical methods. These methods facilitate the evaluation of the robustness of SHM techniques for multiple applicative cases and ease the analysis of the influence of various parameters, such as sensors positioning or environmental conditions. The first numerical tool is the guided wave module integrated to the commercial software CIVA, relying on a hybrid modal-finite element formulation to compute the guided wave response of perturbations (cavities, flaws…) in extruded structures of arbitrary cross section such as rails or pipes. The second numerical tool is based on the spectral element method [2] and simulates guided waves in both isotropic (metals) and orthotropic (composites) plate like-structures. This tool is designed to match the widely accepted sparse piezoelectric transducer array SHM configuration in which each embedded sensor acts as both emitter and receiver of guided waves. This tool is under development and will be adapted to simulate complex real-life structures such as curved composite panels with stiffeners. This communication will present these numerical tools and their main functionalities.

  7. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures

    NASA Astrophysics Data System (ADS)

    Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto; Liu, Xinyue; Zhao, Xuanhe

    2016-06-01

    Inspired by mammalian skins, soft hybrids integrating the merits of elastomers and hydrogels have potential applications in diverse areas including stretchable and bio-integrated electronics, microfluidics, tissue engineering, soft robotics and biomedical devices. However, existing hydrogel-elastomer hybrids have limitations such as weak interfacial bonding, low robustness and difficulties in patterning microstructures. Here, we report a simple yet versatile method to assemble hydrogels and elastomers into hybrids with extremely robust interfaces (interfacial toughness over 1,000 Jm-2) and functional microstructures such as microfluidic channels and electrical circuits. The proposed method is generally applicable to various types of tough hydrogels and diverse commonly used elastomers including polydimethylsiloxane Sylgard 184, polyurethane, latex, VHB and Ecoflex. We further demonstrate applications enabled by the robust and microstructured hydrogel-elastomer hybrids including anti-dehydration hydrogel-elastomer hybrids, stretchable and reactive hydrogel-elastomer microfluidics, and stretchable hydrogel circuit boards patterned on elastomer.

  8. Robust performance of multiple tasks by a mobile robot

    NASA Technical Reports Server (NTRS)

    Beckerman, Martin; Barnett, Deanna L.; Dickens, Mike; Weisbin, Charles R.

    1989-01-01

    While there have been many successful mobile robot experiments, only a few papers have addressed issues pertaining to the range of applicability, or robustness, of robotic systems. The purpose of this paper is to report results of a series of benchmark experiments done to determine and quantify the robustness of an integrated hardware and software system of a mobile robot.

  9. Sliding mode control for generalized robust synchronization of mismatched fractional order dynamical systems and its application to secure transmission of voice messages.

    PubMed

    Muthukumar, P; Balasubramaniam, P; Ratnavelu, K

    2017-07-26

    This paper proposes a generalized robust synchronization method for different dimensional fractional order dynamical systems with mismatched fractional derivatives in the presence of function uncertainty and external disturbance by a designing sliding mode controller. Based on the proposed theory of generalized robust synchronization criterion, a novel audio cryptosystem is proposed for sending or sharing voice messages secretly via insecure channel. Numerical examples are given to verify the potency of the proposed theories. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Robust Selection Algorithm (RSA) for Multi-Omic Biomarker Discovery; Integration with Functional Network Analysis to Identify miRNA Regulated Pathways in Multiple Cancers.

    PubMed

    Sehgal, Vasudha; Seviour, Elena G; Moss, Tyler J; Mills, Gordon B; Azencott, Robert; Ram, Prahlad T

    2015-01-01

    MicroRNAs (miRNAs) play a crucial role in the maintenance of cellular homeostasis by regulating the expression of their target genes. As such, the dysregulation of miRNA expression has been frequently linked to cancer. With rapidly accumulating molecular data linked to patient outcome, the need for identification of robust multi-omic molecular markers is critical in order to provide clinical impact. While previous bioinformatic tools have been developed to identify potential biomarkers in cancer, these methods do not allow for rapid classification of oncogenes versus tumor suppressors taking into account robust differential expression, cutoffs, p-values and non-normality of the data. Here, we propose a methodology, Robust Selection Algorithm (RSA) that addresses these important problems in big data omics analysis. The robustness of the survival analysis is ensured by identification of optimal cutoff values of omics expression, strengthened by p-value computed through intensive random resampling taking into account any non-normality in the data and integration into multi-omic functional networks. Here we have analyzed pan-cancer miRNA patient data to identify functional pathways involved in cancer progression that are associated with selected miRNA identified by RSA. Our approach demonstrates the way in which existing survival analysis techniques can be integrated with a functional network analysis framework to efficiently identify promising biomarkers and novel therapeutic candidates across diseases.

  11. Spectral method for pricing options in illiquid markets

    NASA Astrophysics Data System (ADS)

    Pindza, Edson; Patidar, Kailash C.

    2012-09-01

    We present a robust numerical method to solve a problem of pricing options in illiquid markets. The governing equation is described by a nonlinear Black-Scholes partial differential equation (BS-PDE) of the reaction-diffusion-advection type. To discretise this BS-PDE numerically, we use a spectral method in the asset (spatial) direction and couple it with a fifth order RADAU method for the discretisation in the time direction. Numerical experiments illustrate that our approach is very efficient for pricing financial options in illiquid markets.

  12. A study of numerical methods of solution of the equations of motion of a controlled satellite under the influence of gravity gradient torque

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Mcwhorter, J. C.; Siddiqi, S. A.; Shanks, S. P.

    1973-01-01

    Numerical methods of integration of the equations of motion of a controlled satellite under the influence of gravity-gradient torque are considered. The results of computer experimentation using a number of Runge-Kutta, multi-step, and extrapolation methods for the numerical integration of this differential system are presented, and particularly efficient methods are noted. A large bibliography of numerical methods for initial value problems for ordinary differential equations is presented, and a compilation of Runge-Kutta and multistep formulas is given. Less common numerical integration techniques from the literature are noted for further consideration.

  13. Physics-model-based nonlinear actuator trajectory optimization and safety factor profile feedback control for advanced scenario development in DIII-D

    DOE PAGES

    Barton, Justin E.; Boyer, Mark D.; Shi, Wenyu; ...

    2015-07-30

    DIII-D experimental results are reported to demonstrate the potential of physics-model-based safety factor profile control for robust and reproducible sustainment of advanced scenarios. In the absence of feedback control, variability in wall conditions and plasma impurities, as well as drifts due to external disturbances, can limit the reproducibility of discharges with simple pre-programmed scenario trajectories. The control architecture utilized is a feedforward + feedback scheme where the feedforward commands are computed off-line and the feedback commands are computed on-line. In this work, firstly a first-principles-driven (FPD), physics-based model of the q profile and normalized beta (β N) dynamics is embeddedmore » into a numerical optimization algorithm to design feedforward actuator trajectories that sheer the plasma through the tokamak operating space to reach a desired stationary target state that is characterized by the achieved q profile and β N. Good agreement between experimental results and simulations demonstrates the accuracy of the models employed for physics-model-based control design. Secondly, a feedback algorithm for q profile control is designed following a FPD approach, and the ability of the controller to achieve and maintain a target q profile evolution is tested in DIII-D high confinement (H-mode) experiments. The controller is shown to be able to effectively control the q profile when β N is relatively close to the target, indicating the need for integrated q profile and β N control to further enhance the ability to achieve robust scenario execution. Furthermore, the ability of an integrated q profile + β N feedback controller to track a desired target is demonstrated through simulation.« less

  14. Percolation of localized attack on complex networks

    NASA Astrophysics Data System (ADS)

    Shao, Shuai; Huang, Xuqing; Stanley, H. Eugene; Havlin, Shlomo

    2015-02-01

    The robustness of complex networks against node failure and malicious attack has been of interest for decades, while most of the research has focused on random attack or hub-targeted attack. In many real-world scenarios, however, attacks are neither random nor hub-targeted, but localized, where a group of neighboring nodes in a network are attacked and fail. In this paper we develop a percolation framework to analytically and numerically study the robustness of complex networks against such localized attack. In particular, we investigate this robustness in Erdős-Rényi networks, random-regular networks, and scale-free networks. Our results provide insight into how to better protect networks, enhance cybersecurity, and facilitate the design of more robust infrastructures.

  15. Distribution-dependent robust linear optimization with applications to inventory control

    PubMed Central

    Kang, Seong-Cheol; Brisimi, Theodora S.

    2014-01-01

    This paper tackles linear programming problems with data uncertainty and applies it to an important inventory control problem. Each element of the constraint matrix is subject to uncertainty and is modeled as a random variable with a bounded support. The classical robust optimization approach to this problem yields a solution with guaranteed feasibility. As this approach tends to be too conservative when applications can tolerate a small chance of infeasibility, one would be interested in obtaining a less conservative solution with a certain probabilistic guarantee of feasibility. A robust formulation in the literature produces such a solution, but it does not use any distributional information on the uncertain data. In this work, we show that the use of distributional information leads to an equally robust solution (i.e., under the same probabilistic guarantee of feasibility) but with a better objective value. In particular, by exploiting distributional information, we establish stronger upper bounds on the constraint violation probability of a solution. These bounds enable us to “inject” less conservatism into the formulation, which in turn yields a more cost-effective solution (by 50% or more in some numerical instances). To illustrate the effectiveness of our methodology, we consider a discrete-time stochastic inventory control problem with certain quality of service constraints. Numerical tests demonstrate that the use of distributional information in the robust optimization of the inventory control problem results in 36%–54% cost savings, compared to the case where such information is not used. PMID:26347579

  16. Development on electromagnetic impedance function modeling and its estimation

    NASA Astrophysics Data System (ADS)

    Sutarno, D.

    2015-09-01

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition-as well as the far-field zones, and consequently the plane wave correction is no longer needed for the impedances. In the resulting robust impedance estimates, outlier contamination is removed and the self consistency between the real and imaginary parts of the impedance estimates is guaranteed. Using synthetic and real MT data, it is shown that the proposed robust estimation methods always yield impedance estimates which are better than the conventional least square (LS) estimation, even under condition of severe noise contamination. A recent development on the constrained robust CSAMT impedance estimation is also discussed. By using synthetic CSAMT data it is demonstrated that the proposed methods can produce usable CSAMT transfer functions for all measurement zones.

  17. Development on electromagnetic impedance function modeling and its estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutarno, D., E-mail: Sutarno@fi.itb.ac.id

    2015-09-30

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim atmore » reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition-as well as the far-field zones, and consequently the plane wave correction is no longer needed for the impedances. In the resulting robust impedance estimates, outlier contamination is removed and the self consistency between the real and imaginary parts of the impedance estimates is guaranteed. Using synthetic and real MT data, it is shown that the proposed robust estimation methods always yield impedance estimates which are better than the conventional least square (LS) estimation, even under condition of severe noise contamination. A recent development on the constrained robust CSAMT impedance estimation is also discussed. By using synthetic CSAMT data it is demonstrated that the proposed methods can produce usable CSAMT transfer functions for all measurement zones.« less

  18. Network-Cognizant Voltage Droop Control for Distribution Grids

    DOE PAGES

    Baker, Kyri; Bernstein, Andrey; Dall'Anese, Emiliano; ...

    2017-08-07

    Our paper examines distribution systems with a high integration of distributed energy resources (DERs) and addresses the design of local control methods for real-time voltage regulation. Particularly, the paper focuses on proportional control strategies where the active and reactive output-powers of DERs are adjusted in response to (and proportionally to) local changes in voltage levels. The design of the voltage-active power and voltage-reactive power characteristics leverages suitable linear approximation of the AC power-flow equations and is network-cognizant; that is, the coefficients of the controllers embed information on the location of the DERs and forecasted non-controllable loads/injections and, consequently, on themore » effect of DER power adjustments on the overall voltage profile. We pursued a robust approach to cope with uncertainty in the forecasted non-controllable loads/power injections. Stability of the proposed local controllers is analytically assessed and numerically corroborated.« less

  19. On Multifunctional Collaborative Methods in Engineering Science

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    2001-01-01

    Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized.

  20. Numerical simulations of electrohydrodynamic evolution of thin polymer films

    NASA Astrophysics Data System (ADS)

    Borglum, Joshua Christopher

    Recently developed needleless electrospinning and electrolithography are two successful techniques that have been utilized extensively for low-cost, scalable, and continuous nano-fabrication. Rational understanding of the electrohydrodynamic principles underneath these nano-manufacturing methods is crucial to fabrication of continuous nanofibers and patterned thin films. This research project is to formulate robust, high-efficiency finite-difference Fourier spectral methods to simulate the electrohydrodynamic evolution of thin polymer films. Two thin-film models were considered and refined. The first was based on reduced lubrication theory; the second further took into account the effect of solvent drying and dewetting of the substrate. Fast Fourier Transform (FFT) based spectral method was integrated into the finite-difference algorithms for fast, accurately solving the governing nonlinear partial differential equations. The present methods have been used to examine the dependencies of the evolving surface features of the thin films upon the model parameters. The present study can be used for fast, controllable nanofabrication.

  1. A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zhang, Yang; Wong, Hau-San; Qin, Zhongfeng

    2009-11-01

    Portfolio selection theory with fuzzy returns has been well developed and widely applied. Within the framework of credibility theory, several fuzzy portfolio selection models have been proposed such as mean-variance model, entropy optimization model, chance constrained programming model and so on. In order to solve these nonlinear optimization models, a hybrid intelligent algorithm is designed by integrating simulated annealing algorithm, neural network and fuzzy simulation techniques, where the neural network is used to approximate the expected value and variance for fuzzy returns and the fuzzy simulation is used to generate the training data for neural network. Since these models are used to be solved by genetic algorithm, some comparisons between the hybrid intelligent algorithm and genetic algorithm are given in terms of numerical examples, which imply that the hybrid intelligent algorithm is robust and more effective. In particular, it reduces the running time significantly for large size problems.

  2. A new computational method for reacting hypersonic flows

    NASA Astrophysics Data System (ADS)

    Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Fadgyas, M. C.; Pepelea, D.; Stoican, M. G.

    2017-07-01

    Hypersonic gas dynamics computations are challenging due to the difficulties to have reliable and robust chemistry models that are usually added to Navier-Stokes equations. From the numerical point of view, it is very difficult to integrate together Navier-Stokes equations and chemistry model equations because these partial differential equations have different specific time scales. For these reasons, almost all known finite volume methods fail shortly to solve this second order partial differential system. Unfortunately, the heating of Earth reentry vehicles such as space shuttles and capsules is very close linked to endothermic chemical reactions. A better prediction of wall heat flux leads to smaller safety coefficient for thermal shield of space reentry vehicle; therefore, the size of thermal shield decreases and the payload increases. For these reasons, the present paper proposes a new computational method based on chemical equilibrium, which gives accurate prediction of hypersonic heating in order to support the Earth reentry capsule design.

  3. Electrically-Assisted Turbocharger Development for Performance and Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Milton

    2000-08-20

    Turbocharger transient lag inherently imposes a tradeoff between a robust engine response to transient load shifts and exhaust emissions. By itself, a well matched turbocharger for an engine has limited flexibility in improving this transient response. Electrically-assisted turbocharging has been seen as an attractive option to improve response and lower transient emissions. This paper presents the results of a multi-year joint CRADA between DDC and ORNL. Virtual lab diesel simulation models characterized the performance improvement potential of an electrically assisted turbocharger technology. Operating requirements to reduce transient duration between load shift time by up to 50% were determined. A turbomachinemore » has been conceptualized with an integrated motor-generator, providing transient burst boost plus energy recovery capability. Numerous electric motor designs were considered, and a prototype motor was developed, fabricated, and is undergoing tests. Power controls have been designed and fabricated.« less

  4. Network-Cognizant Voltage Droop Control for Distribution Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kyri; Bernstein, Andrey; Dall'Anese, Emiliano

    Our paper examines distribution systems with a high integration of distributed energy resources (DERs) and addresses the design of local control methods for real-time voltage regulation. Particularly, the paper focuses on proportional control strategies where the active and reactive output-powers of DERs are adjusted in response to (and proportionally to) local changes in voltage levels. The design of the voltage-active power and voltage-reactive power characteristics leverages suitable linear approximation of the AC power-flow equations and is network-cognizant; that is, the coefficients of the controllers embed information on the location of the DERs and forecasted non-controllable loads/injections and, consequently, on themore » effect of DER power adjustments on the overall voltage profile. We pursued a robust approach to cope with uncertainty in the forecasted non-controllable loads/power injections. Stability of the proposed local controllers is analytically assessed and numerically corroborated.« less

  5. A numerical relativity scheme for cosmological simulations

    NASA Astrophysics Data System (ADS)

    Daverio, David; Dirian, Yves; Mitsou, Ermis

    2017-12-01

    Cosmological simulations involving the fully covariant gravitational dynamics may prove relevant in understanding relativistic/non-linear features and, therefore, in taking better advantage of the upcoming large scale structure survey data. We propose a new 3  +  1 integration scheme for general relativity in the case where the matter sector contains a minimally-coupled perfect fluid field. The original feature is that we completely eliminate the fluid components through the constraint equations, thus remaining with a set of unconstrained evolution equations for the rest of the fields. This procedure does not constrain the lapse function and shift vector, so it holds in arbitrary gauge and also works for arbitrary equation of state. An important advantage of this scheme is that it allows one to define and pass an adaptation of the robustness test to the cosmological context, at least in the case of pressureless perfect fluid matter, which is the relevant one for late-time cosmology.

  6. A mixability theory for the role of sex in evolution

    PubMed Central

    Livnat, Adi; Papadimitriou, Christos; Dushoff, Jonathan; Feldman, Marcus W.

    2008-01-01

    The question of what role sex plays in evolution is still open despite decades of research. It has often been assumed that sex should facilitate the increase in fitness. Hence, the fact that it may break down highly favorable genetic combinations has been seen as a problem. Here, we consider an alternative approach. We define a measure that represents the ability of alleles to perform well across different combinations and, using numerical iterations within a classical population-genetic framework, show that selection in the presence of sex favors this ability in a highly robust manner. We also show that the mechanism responsible for this effect has been out of the purview of previous theory, because it operates during the evolutionary transient, and that the breaking down of favorable genetic combinations is an integral part of it. Implications of these results and more to evolutionary theory are discussed. PMID:19073912

  7. A mixability theory for the role of sex in evolution.

    PubMed

    Livnat, Adi; Papadimitriou, Christos; Dushoff, Jonathan; Feldman, Marcus W

    2008-12-16

    The question of what role sex plays in evolution is still open despite decades of research. It has often been assumed that sex should facilitate the increase in fitness. Hence, the fact that it may break down highly favorable genetic combinations has been seen as a problem. Here, we consider an alternative approach. We define a measure that represents the ability of alleles to perform well across different combinations and, using numerical iterations within a classical population-genetic framework, show that selection in the presence of sex favors this ability in a highly robust manner. We also show that the mechanism responsible for this effect has been out of the purview of previous theory, because it operates during the evolutionary transient, and that the breaking down of favorable genetic combinations is an integral part of it. Implications of these results and more to evolutionary theory are discussed.

  8. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.

    PubMed

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-19

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  9. Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution.

    PubMed

    Yuan, Guanghui; Rogers, Edward T F; Roy, Tapashree; Shen, Zexiang; Zheludev, Nikolay I

    2014-03-24

    Heat-assisted magnetic recording (HAMR) is a future roadmap technology to overcome the superparamagnetic limit in high density magnetic recording. Existing HAMR schemes depend on a simultaneous magnetic stimulation and light-induced local heating of the information carrier. To achieve high-density recorded data, near-field plasmonic transducers have been proposed as light concentrators. Here we suggest and investigate in detail an alternative approach exploiting a far-field focusing device that can focus light into sub-50 nm hot-spots in the magnetic recording layer using a laser source operating at 473 nm. It is based on a recently introduced super-oscillatory flat lens improved with the use of solid immersion, giving an effective numerical aperture as high as 4.17. The proposed solution is robust and easy to integrate with the magnetic recording head thus offering a competitive advantage over plasmonic technology.

  10. Partitioned coupling of advection-diffusion-reaction systems and Brinkman flows

    NASA Astrophysics Data System (ADS)

    Lenarda, Pietro; Paggi, Marco; Ruiz Baier, Ricardo

    2017-09-01

    We present a partitioned algorithm aimed at extending the capabilities of existing solvers for the simulation of coupled advection-diffusion-reaction systems and incompressible, viscous flow. The space discretisation of the governing equations is based on mixed finite element methods defined on unstructured meshes, whereas the time integration hinges on an operator splitting strategy that exploits the differences in scales between the reaction, advection, and diffusion processes, considering the global system as a number of sequentially linked sets of partial differential, and algebraic equations. The flow solver presents the advantage that all unknowns in the system (here vorticity, velocity, and pressure) can be fully decoupled and thus turn the overall scheme very attractive from the computational perspective. The robustness of the proposed method is illustrated with a series of numerical tests in 2D and 3D, relevant in the modelling of bacterial bioconvection and Boussinesq systems.

  11. Biosimilars: The US Regulatory Framework.

    PubMed

    Christl, Leah A; Woodcock, Janet; Kozlowski, Steven

    2017-01-14

    With the passage of the Biologics Price Competition and Innovation Act of 2009, the US Food and Drug Administration established an abbreviated pathway for developing and licensing biosimilar and interchangeable biological products. The regulatory framework and the technical requirements of the US biosimilars program involve a stepwise approach that relies heavily on analytical methods to demonstrate through a "totality of the evidence" that a proposed product is biosimilar to its reference product. By integrating analytical, pharmacological, and clinical data, each of which has limitations, a high level of confidence can be reached regarding clinical performance. Although questions and concerns about the biosimilars pathway remain and may slow uptake, a robust scientific program has been put in place. With three biosimilars already licensed and numerous development programs under way, clinicians can expect to see many new biosimilars come onto the US market in the coming decade. [Note added in proof: Since the writing of this article, a fourth biosimilar has been approved.].

  12. A new technique for simulating composite material

    NASA Technical Reports Server (NTRS)

    Volakis, John L.

    1991-01-01

    This project dealt with the development on new methodologies and algorithms for the multi-spectrum electromagnetic characterization of large scale nonmetallic airborne vehicles and structures. A robust, low memory, and accurate methodology was developed which is particularly suited for modern machine architectures. This is a hybrid finite element method that combines two well known numerical solution approaches. That of the finite element method for modeling volumes and the boundary integral method which yields exact boundary conditions for terminating the finite element mesh. In addition, a variety of high frequency results were generated (such as diffraction coefficients for impedance surfaces and material layers) and a class of boundary conditions were developed which hold promise for more efficient simulations. During the course of this project, nearly 25 detailed research reports were generated along with an equal number of journal papers. The reports, papers, and journal articles are listed in the appendices along with their abstracts.

  13. Programmable and reversible plasmon mode engineering.

    PubMed

    Yang, Ankun; Hryn, Alexander J; Bourgeois, Marc R; Lee, Won-Kyu; Hu, Jingtian; Schatz, George C; Odom, Teri W

    2016-12-13

    Plasmonic nanostructures with enhanced localized optical fields as well as narrow linewidths have driven advances in numerous applications. However, the active engineering of ultranarrow resonances across the visible regime-and within a single system-has not yet been demonstrated. This paper describes how aluminum nanoparticle arrays embedded in an elastomeric slab may exhibit high-quality resonances with linewidths as narrow as 3 nm at wavelengths not accessible by conventional plasmonic materials. We exploited stretching to improve and tune simultaneously the optical response of as-fabricated nanoparticle arrays by shifting the diffraction mode relative to single-particle dipolar or quadrupolar resonances. This dynamic modulation of particle-particle spacing enabled either dipolar or quadrupolar lattice modes to be selectively accessed and individually optimized. Programmable plasmon modes offer a robust way to achieve real-time tunable materials for plasmon-enhanced molecular sensing and plasmonic nanolasers and opens new possibilities for integrating with flexible electronics.

  14. Metal hierarchical patterning by direct nanoimprint lithography

    PubMed Central

    Radha, Boya; Lim, Su Hui; Saifullah, Mohammad S. M.; Kulkarni, Giridhar U.

    2013-01-01

    Three-dimensional hierarchical patterning of metals is of paramount importance in diverse fields involving photonics, controlling surface wettability and wearable electronics. Conventionally, this type of structuring is tedious and usually involves layer-by-layer lithographic patterning. Here, we describe a simple process of direct nanoimprint lithography using palladium benzylthiolate, a versatile metal-organic ink, which not only leads to the formation of hierarchical patterns but also is amenable to layer-by-layer stacking of the metal over large areas. The key to achieving such multi-faceted patterning is hysteretic melting of ink, enabling its shaping. It undergoes transformation to metallic palladium under gentle thermal conditions without affecting the integrity of the hierarchical patterns on micro- as well as nanoscale. A metallic rice leaf structure showing anisotropic wetting behavior and woodpile-like structures were thus fabricated. Furthermore, this method is extendable for transferring imprinted structures to a flexible substrate to make them robust enough to sustain numerous bending cycles. PMID:23446801

  15. Reliable method for generating double-stranded DNA vectors containing site-specific base modifications.

    PubMed

    Brégeon, Damien; Doetsch, Paul W

    2004-11-01

    Cells of all living organisms are continuously exposed to physical and chemical agents that damage DNA and alter the integrity of their genomes. Despite the relatively high efficiency of the different repair pathways, some lesions remain in DNA when it is replicated or transcribed. Lesion bypass by DNA and RNA polymerases has been the subject of numerous investigations. However, knowledge of the in vivo mechanism of transcription lesion bypass is very limited because no robust methodology is available. Here we describe a protocol based on the synthesis of a complementary strand of a circular, single-stranded DNA molecule, which allows for the production of large amounts of double-stranded DNA containing a lesion at a specific position in a transcribed sequence. Such constructs can subsequently be used for lesion bypass studies in vivo by RNA polymerase and to ascertain how these events can be affected by the genetic background of the cells.

  16. Nonlinear Adaptive PID Control for Greenhouse Environment Based on RBF Network

    PubMed Central

    Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui

    2012-01-01

    This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production. PMID:22778587

  17. Reverse-engineering of gene networks for regulating early blood development from single-cell measurements.

    PubMed

    Wei, Jiangyong; Hu, Xiaohua; Zou, Xiufen; Tian, Tianhai

    2017-12-28

    Recent advances in omics technologies have raised great opportunities to study large-scale regulatory networks inside the cell. In addition, single-cell experiments have measured the gene and protein activities in a large number of cells under the same experimental conditions. However, a significant challenge in computational biology and bioinformatics is how to derive quantitative information from the single-cell observations and how to develop sophisticated mathematical models to describe the dynamic properties of regulatory networks using the derived quantitative information. This work designs an integrated approach to reverse-engineer gene networks for regulating early blood development based on singel-cell experimental observations. The wanderlust algorithm is initially used to develop the pseudo-trajectory for the activities of a number of genes. Since the gene expression data in the developed pseudo-trajectory show large fluctuations, we then use Gaussian process regression methods to smooth the gene express data in order to obtain pseudo-trajectories with much less fluctuations. The proposed integrated framework consists of both bioinformatics algorithms to reconstruct the regulatory network and mathematical models using differential equations to describe the dynamics of gene expression. The developed approach is applied to study the network regulating early blood cell development. A graphic model is constructed for a regulatory network with forty genes and a dynamic model using differential equations is developed for a network of nine genes. Numerical results suggests that the proposed model is able to match experimental data very well. We also examine the networks with more regulatory relations and numerical results show that more regulations may exist. We test the possibility of auto-regulation but numerical simulations do not support the positive auto-regulation. In addition, robustness is used as an importantly additional criterion to select candidate networks. The research results in this work shows that the developed approach is an efficient and effective method to reverse-engineer gene networks using single-cell experimental observations.

  18. A Numerical Study of Three Moving-Grid Methods for One-Dimensional Partial Differential Equations Which Are Based on the Method of Lines

    NASA Astrophysics Data System (ADS)

    Furzeland, R. M.; Verwer, J. G.; Zegeling, P. A.

    1990-08-01

    In recent years, several sophisticated packages based on the method of lines (MOL) have been developed for the automatic numerical integration of time-dependent problems in partial differential equations (PDEs), notably for problems in one space dimension. These packages greatly benefit from the very successful developments of automatic stiff ordinary differential equation solvers. However, from the PDE point of view, they integrate only in a semiautomatic way in the sense that they automatically adjust the time step sizes, but use just a fixed space grid, chosen a priori, for the entire calculation. For solutions possessing sharp spatial transitions that move, e.g., travelling wave fronts or emerging boundary and interior layers, a grid held fixed for the entire calculation is computationally inefficient, since for a good solution this grid often must contain a very large number of nodes. In such cases methods which attempt automatically to adjust the sizes of both the space and the time steps are likely to be more successful in efficiently resolving critical regions of high spatial and temporal activity. Methods and codes that operate this way belong to the realm of adaptive or moving-grid methods. Following the MOL approach, this paper is devoted to an evaluation and comparison, mainly based on extensive numerical tests, of three moving-grid methods for 1D problems, viz., the finite-element method of Miller and co-workers, the method published by Petzold, and a method based on ideas adopted from Dorfi and Drury. Our examination of these three methods is aimed at assessing which is the most suitable from the point of view of retaining the acknowledged features of reliability, robustness, and efficiency of the conventional MOL approach. Therefore, considerable attention is paid to the temporal performance of the methods.

  19. Numerical Order Processing in Children: From Reversing the Distance-Effect to Predicting Arithmetic

    ERIC Educational Resources Information Center

    Lyons, Ian M.; Ansari, Daniel

    2015-01-01

    Recent work has demonstrated that how we process the relative order--ordinality--of numbers may be key to understanding how we represent numbers symbolically, and has proven to be a robust predictor of more sophisticated math skills in both children and adults. However, it remains unclear whether numerical ordinality is primarily a by-product of…

  20. An efficient fully-implicit multislope MUSCL method for multiphase flow with gravity in discrete fractured media

    NASA Astrophysics Data System (ADS)

    Jiang, Jiamin; Younis, Rami M.

    2017-06-01

    The first-order methods commonly employed in reservoir simulation for computing the convective fluxes introduce excessive numerical diffusion leading to severe smoothing of displacement fronts. We present a fully-implicit cell-centered finite-volume (CCFV) framework that can achieve second-order spatial accuracy on smooth solutions, while at the same time maintain robustness and nonlinear convergence performance. A novel multislope MUSCL method is proposed to construct the required values at edge centroids in a straightforward and effective way by taking advantage of the triangular mesh geometry. In contrast to the monoslope methods in which a unique limited gradient is used, the multislope concept constructs specific scalar slopes for the interpolations on each edge of a given element. Through the edge centroids, the numerical diffusion caused by mesh skewness is reduced, and optimal second order accuracy can be achieved. Moreover, an improved smooth flux-limiter is introduced to ensure monotonicity on non-uniform meshes. The flux-limiter provides high accuracy without degrading nonlinear convergence performance. The CCFV framework is adapted to accommodate a lower-dimensional discrete fracture-matrix (DFM) model. Several numerical tests with discrete fractured system are carried out to demonstrate the efficiency and robustness of the numerical model.

  1. An improved 3D MoF method based on analytical partial derivatives

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Zhang, Xiong

    2016-12-01

    MoF (Moment of Fluid) method is one of the most accurate approaches among various surface reconstruction algorithms. As other second order methods, MoF method needs to solve an implicit optimization problem to obtain the optimal approximate surface. Therefore, the partial derivatives of the objective function have to be involved during the iteration for efficiency and accuracy. However, to the best of our knowledge, the derivatives are currently estimated numerically by finite difference approximation because it is very difficult to obtain the analytical derivatives of the object function for an implicit optimization problem. Employing numerical derivatives in an iteration not only increase the computational cost, but also deteriorate the convergence rate and robustness of the iteration due to their numerical error. In this paper, the analytical first order partial derivatives of the objective function are deduced for 3D problems. The analytical derivatives can be calculated accurately, so they are incorporated into the MoF method to improve its accuracy, efficiency and robustness. Numerical studies show that by using the analytical derivatives the iterations are converged in all mixed cells with the efficiency improvement of 3 to 4 times.

  2. On numerical instabilities of Godunov-type schemes for strong shocks

    NASA Astrophysics Data System (ADS)

    Xie, Wenjia; Li, Wei; Li, Hua; Tian, Zhengyu; Pan, Sha

    2017-12-01

    It is well known that low diffusion Riemann solvers with minimal smearing on contact and shear waves are vulnerable to shock instability problems, including the carbuncle phenomenon. In the present study, we concentrate on exploring where the instability grows out and how the dissipation inherent in Riemann solvers affects the unstable behaviors. With the help of numerical experiments and a linearized analysis method, it has been found that the shock instability is strongly related to the unstable modes of intermediate states inside the shock structure. The consistency of mass flux across the normal shock is needed for a Riemann solver to capture strong shocks stably. The famous carbuncle phenomenon is interpreted as the consequence of the inconsistency of mass flux across the normal shock for a low diffusion Riemann solver. Based on the results of numerical experiments and the linearized analysis, a robust Godunov-type scheme with a simple cure for the shock instability is suggested. With only the dissipation corresponding to shear waves introduced in the vicinity of strong shocks, the instability problem is circumvented. Numerical results of several carefully chosen strong shock wave problems are investigated to demonstrate the robustness of the proposed scheme.

  3. A SINS/SRS/GNS Autonomous Integrated Navigation System Based on Spectral Redshift Velocity Measurements

    PubMed Central

    Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke

    2018-01-01

    In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology. PMID:29642549

  4. Robust Prediction for Stationary Processes. 2D Enriched Version.

    DTIC Science & Technology

    1987-11-24

    the absence of data outliers. Important performance characteristics studied include the breakdown point and the influence function . Included are numerical results, for some autoregressive nominal processes.

  5. TALEN/CRISPR-mediated engineering of a promoterless anti-viral RNAi hairpin into an endogenous miRNA locus

    PubMed Central

    Senís, Elena; Mockenhaupt, Stefan; Rupp, Daniel; Bauer, Tobias; Paramasivam, Nagarajan; Knapp, Bettina; Gronych, Jan; Grosse, Stefanie; Windisch, Marc P.; Schmidt, Florian; Theis, Fabian J.; Eils, Roland; Lichter, Peter; Schlesner, Matthias; Bartenschlager, Ralf; Grimm, Dirk

    2017-01-01

    Successful RNAi applications depend on strategies allowing robust and persistent expression of minimal gene silencing triggers without perturbing endogenous gene expression. Here, we propose a novel avenue which is integration of a promoterless shmiRNA, i.e. a shRNA embedded in a micro-RNA (miRNA) scaffold, into an engineered genomic miRNA locus. For proof-of-concept, we used TALE or CRISPR/Cas9 nucleases to site-specifically integrate an anti-hepatitis C virus (HCV) shmiRNA into the liver-specific miR-122/hcr locus in hepatoma cells, with the aim to obtain cellular clones that are genetically protected against HCV infection. Using reporter assays, Northern blotting and qRT-PCR, we confirmed anti-HCV shmiRNA expression as well as miR-122 integrity and functionality in selected cellular progeny. Moreover, we employed a comprehensive battery of PCR, cDNA/miRNA profiling and whole genome sequencing analyses to validate targeted integration of a single shmiRNA molecule at the expected position, and to rule out deleterious effects on the genomes or transcriptomes of the engineered cells. Importantly, a subgenomic HCV replicon and a full-length reporter virus, but not a Dengue virus control, were significantly impaired in the modified cells. Our original combination of DNA engineering and RNAi expression technologies benefits numerous applications, from miRNA, genome and transgenesis research, to human gene therapy. PMID:27614072

  6. (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis.

    PubMed

    He, Fei; Fromion, Vincent; Westerhoff, Hans V

    2013-11-21

    Metabolic control analysis (MCA) and supply-demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply-demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. This study integrates control engineering and classical MCA augmented with supply-demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the 'integral control' (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of 'integral control' should rarely be expected to lead to the 'perfect adaptation': although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and are being identified by genomics and systems biology, correspond to the 'perfect' regulatory structures designed by control engineering vis-à-vis optimal functions such as robustness. To the extent that they are not, the analyses suggest how they may become so and this in turn should facilitate synthetic biology and metabolic engineering.

  7. (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis

    PubMed Central

    2013-01-01

    Background Metabolic control analysis (MCA) and supply–demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply–demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. Results This study integrates control engineering and classical MCA augmented with supply–demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the ‘integral control’ (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of ‘integral control’ should rarely be expected to lead to the ‘perfect adaptation’: although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. Conclusions A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and are being identified by genomics and systems biology, correspond to the ‘perfect’ regulatory structures designed by control engineering vis-à-vis optimal functions such as robustness. To the extent that they are not, the analyses suggest how they may become so and this in turn should facilitate synthetic biology and metabolic engineering. PMID:24261908

  8. A robust nonparametric framework for reconstruction of stochastic differential equation models

    NASA Astrophysics Data System (ADS)

    Rajabzadeh, Yalda; Rezaie, Amir Hossein; Amindavar, Hamidreza

    2016-05-01

    In this paper, we employ a nonparametric framework to robustly estimate the functional forms of drift and diffusion terms from discrete stationary time series. The proposed method significantly improves the accuracy of the parameter estimation. In this framework, drift and diffusion coefficients are modeled through orthogonal Legendre polynomials. We employ the least squares regression approach along with the Euler-Maruyama approximation method to learn coefficients of stochastic model. Next, a numerical discrete construction of mean squared prediction error (MSPE) is established to calculate the order of Legendre polynomials in drift and diffusion terms. We show numerically that the new method is robust against the variation in sample size and sampling rate. The performance of our method in comparison with the kernel-based regression (KBR) method is demonstrated through simulation and real data. In case of real dataset, we test our method for discriminating healthy electroencephalogram (EEG) signals from epilepsy ones. We also demonstrate the efficiency of the method through prediction in the financial data. In both simulation and real data, our algorithm outperforms the KBR method.

  9. Dynamical Chaos in the Wisdom-Holman Integrator: Origins and Solutions

    NASA Technical Reports Server (NTRS)

    Rauch, Kevin P.; Holman, Matthew

    1999-01-01

    We examine the nonlinear stability of the Wisdom-Holman (WH) symplectic mapping applied to the integration of perturbed, highly eccentric (e-0.9) two-body orbits. We find that the method is unstable and introduces artificial chaos into the computed trajectories for this class of problems, unless the step size chosen 1s small enough that PeriaPse is always resolved, in which case the method is generically stable. This 'radial orbit instability' persists even for weakly perturbed systems. Using the Stark problem as a fiducial test case, we investigate the dynamical origin of this instability and argue that the numerical chaos results from the overlap of step-size resonances; interestingly, for the Stark-problem many of these resonances appear to be absolutely stable. We similarly examine the robustness of several alternative integration methods: a time-regularized version of the WH mapping suggested by Mikkola; the potential-splitting (PS) method of Duncan, Levison, Lee; and two original methods incorporating approximations based on Stark motion instead of Keplerian motion. The two fixed point problem and a related, more general problem are used to conduct a comparative test of the various methods for several types of motion. Among the algorithms tested, the time-transformed WH mapping is clearly the most efficient and stable method of integrating eccentric, nearly Keplerian orbits in the absence of close encounters. For test particles subject to both high eccentricities and very close encounters, we find an enhanced version of the PS method-incorporating time regularization, force-center switching, and an improved kernel function-to be both economical and highly versatile. We conclude that Stark-based methods are of marginal utility in N-body type integrations. Additional implications for the symplectic integration of N-body systems are discussed.

  10. An Advanced N -body Model for Interacting Multiple Stellar Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brož, Miroslav

    We construct an advanced model for interacting multiple stellar systems in which we compute all trajectories with a numerical N -body integrator, namely the Bulirsch–Stoer from the SWIFT package. We can then derive various observables: astrometric positions, radial velocities, minima timings (TTVs), eclipse durations, interferometric visibilities, closure phases, synthetic spectra, spectral energy distribution, and even complete light curves. We use a modified version of the Wilson–Devinney code for the latter, in which the instantaneous true phase and inclination of the eclipsing binary are governed by the N -body integration. If all of these types of observations are at one’s disposal,more » a joint χ {sup 2} metric and an optimization algorithm (a simplex or simulated annealing) allow one to search for a global minimum and construct very robust models of stellar systems. At the same time, our N -body model is free from artifacts that may arise if mutual gravitational interactions among all components are not self-consistently accounted for. Finally, we present a number of examples showing dynamical effects that can be studied with our code and we discuss how systematic errors may affect the results (and how to prevent this from happening).« less

  11. An improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling

    NASA Astrophysics Data System (ADS)

    Dao, Son Duy; Abhary, Kazem; Marian, Romeo

    2017-06-01

    Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial, NP-hard problem, for which no polynomial time algorithm is known to produce an optimal result on a random graph. In this paper, the further development of Genetic Algorithm (GA) for this integrated optimization is presented. Because of the dynamic nature of the problem, the size of its solution is variable. To deal with this variability and find an optimal solution to the problem, GA with new features in chromosome encoding, crossover, mutation, selection as well as algorithm structure is developed herein. With the proposed structure, the proposed GA is able to "learn" from its experience. Robustness of the proposed GA is demonstrated by a complex numerical example in which performance of the proposed GA is compared with those of three commercial optimization solvers.

  12. Disruption of diphthamide synthesis genes and resulting toxin resistance as a robust technology for quantifying and optimizing CRISPR/Cas9-mediated gene editing.

    PubMed

    Killian, Tobias; Dickopf, Steffen; Haas, Alexander K; Kirstenpfad, Claudia; Mayer, Klaus; Brinkmann, Ulrich

    2017-11-13

    We have devised an effective and robust method for the characterization of gene-editing events. The efficacy of editing-mediated mono- and bi-allelic gene inactivation and integration events is quantified based on colony counts. The combination of diphtheria toxin (DT) and puromycin (PM) selection enables analyses of 10,000-100,000 individual cells, assessing hundreds of clones with inactivated genes per experiment. Mono- and bi-allelic gene inactivation is differentiated by DT resistance, which occurs only upon bi-allelic inactivation. PM resistance indicates integration. The robustness and generalizability of the method were demonstrated by quantifying the frequency of gene inactivation and cassette integration under different editing approaches: CRISPR/Cas9-mediated complete inactivation was ~30-50-fold more frequent than cassette integration. Mono-allelic inactivation without integration occurred >100-fold more frequently than integration. Assessment of gRNA length confirmed 20mers to be most effective length for inactivation, while 16-18mers provided the highest overall integration efficacy. The overall efficacy was ~2-fold higher for CRISPR/Cas9 than for zinc-finger nuclease and was significantly increased upon modulation of non-homologous end joining or homology-directed repair. The frequencies and ratios of editing events were similar for two different DPH genes (independent of the target sequence or chromosomal location), which indicates that the optimization parameters identified with this method can be generalized.

  13. Horsetail matching: a flexible approach to optimization under uncertainty

    NASA Astrophysics Data System (ADS)

    Cook, L. W.; Jarrett, J. P.

    2018-04-01

    It is important to design engineering systems to be robust with respect to uncertainties in the design process. Often, this is done by considering statistical moments, but over-reliance on statistical moments when formulating a robust optimization can produce designs that are stochastically dominated by other feasible designs. This article instead proposes a formulation for optimization under uncertainty that minimizes the difference between a design's cumulative distribution function and a target. A standard target is proposed that produces stochastically non-dominated designs, but the formulation also offers enough flexibility to recover existing approaches for robust optimization. A numerical implementation is developed that employs kernels to give a differentiable objective function. The method is applied to algebraic test problems and a robust transonic airfoil design problem where it is compared to multi-objective, weighted-sum and density matching approaches to robust optimization; several advantages over these existing methods are demonstrated.

  14. Feedback Robust Cubature Kalman Filter for Target Tracking Using an Angle Sensor.

    PubMed

    Wu, Hao; Chen, Shuxin; Yang, Binfeng; Chen, Kun

    2016-05-09

    The direction of arrival (DOA) tracking problem based on an angle sensor is an important topic in many fields. In this paper, a nonlinear filter named the feedback M-estimation based robust cubature Kalman filter (FMR-CKF) is proposed to deal with measurement outliers from the angle sensor. The filter designs a new equivalent weight function with the Mahalanobis distance to combine the cubature Kalman filter (CKF) with the M-estimation method. Moreover, by embedding a feedback strategy which consists of a splitting and merging procedure, the proper sub-filter (the standard CKF or the robust CKF) can be chosen in each time index. Hence, the probability of the outliers' misjudgment can be reduced. Numerical experiments show that the FMR-CKF performs better than the CKF and conventional robust filters in terms of accuracy and robustness with good computational efficiency. Additionally, the filter can be extended to the nonlinear applications using other types of sensors.

  15. GPS baseline configuration design based on robustness analysis

    NASA Astrophysics Data System (ADS)

    Yetkin, M.; Berber, M.

    2012-11-01

    The robustness analysis results obtained from a Global Positioning System (GPS) network are dramatically influenced by the configurationof the observed baselines. The selection of optimal GPS baselines may allow for a cost effective survey campaign and a sufficiently robustnetwork. Furthermore, using the approach described in this paper, the required number of sessions, the baselines to be observed, and thesignificance levels for statistical testing and robustness analysis can be determined even before the GPS campaign starts. In this study, wepropose a robustness criterion for the optimal design of geodetic networks, and present a very simple and efficient algorithm based on thiscriterion for the selection of optimal GPS baselines. We also show the relationship between the number of sessions and the non-centralityparameter. Finally, a numerical example is given to verify the efficacy of the proposed approach.

  16. Incorporating root hydraulic redistribution in CLM4.5: Effects on predicted site and global evapotranspiration, soil moisture, and water storage

    NASA Astrophysics Data System (ADS)

    Tang, Jinyun; Riley, William J.; Niu, Jie

    2015-12-01

    We implemented the Amenu-Kumar model in the Community Land Model (CLM4.5) to simulate plant Root Hydraulic Redistribution (RHR) and analyzed its influence on CLM hydrology from site to global scales. We evaluated two numerical implementations: the first solved the coupled equations of root and soil water transport concurrently, while the second solved the two equations sequentially. Through sensitivity analysis, we demonstrate that the sequentially coupled implementation (SCI) is numerically incorrect, whereas the tightly coupled implementation (TCI) is numerically robust with numerical time steps varying from 1 to 30 min. At the site-level, we found the SCI approach resulted in better agreement with measured evapotranspiration (ET) at the AmeriFlux Blodgett Forest site, California, whereas the two approaches resulted in equally poor agreement between predicted and measured ET at the LBA Tapajos KM67 Mature Forest site in Amazon, Brazil. Globally, the SCI approach overestimated annual land ET by as much as 3.5 mm d-1 in some grid cells when compared to the TCI estimates. These comparisons demonstrate that TCI is a more robust numerical implementation of RHR. However, we found, even with TCI, that incorporating RHR resulted in worse agreement with measured soil moisture at both the Blodgett Forest and Tapajos sites and degraded the agreement between simulated terrestrial water storage anomaly and Gravity Recovery and Climate Experiment (GRACE) observations. We find including RHR in CLM4.5 improved ET predictions compared with the FLUXNET-MTE estimates north of 20° N but led to poorer predictions in the tropics. The biases in ET were robust and significant regardless of the four different pedotransfer functions or of the two meteorological forcing data sets we applied. We also found that the simulated water table was unrealistically sensitive to RHR. Therefore, we contend that further structural and data improvements are warranted to improve the hydrological dynamics in CLM4.5.

  17. Incorporating root hydraulic redistribution in CLM4.5: Effects on predicted site and global evapotranspiration, soil moisture, and water storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Jinyun; Riley, William J.; Niu, Jie

    We implemented the Amenu-Kumar model in the Community Land Model (CLM4.5) to simulate plant Root Hydraulic Redistribution (RHR) and analyzed its influence on CLM hydrology from site to global scales. We evaluated two numerical implementations: the first solved the coupled equations of root and soil water transport concurrently, while the second solved the two equations sequentially. Through sensitivity analysis, we demonstrate that the sequentially coupled implementation (SCI) is numerically incorrect, whereas the tightly coupled implementation (TCI) is numerically robust with numerical time steps varying from 1 to 30 min. At the site-level, we found the SCI approach resulted in bettermore » agreement with measured evapotranspiration (ET) at the AmeriFlux Blodgett Forest site, California, whereas the two approaches resulted in equally poor agreement between predicted and measured ET at the LBA Tapajos KM67 Mature Forest site in Amazon, Brazil. Globally, the SCI approach overestimated annual land ET by as much as 3.5 mm d -1 in some grid cells when compared to the TCI estimates. These comparisons demonstrate that TCI is a more robust numerical implementation of RHR. However, we found, even with TCI, that incorporating RHR resulted in worse agreement with measured soil moisture at both the Blodgett Forest and Tapajos sites and degraded the agreement between simulated terrestrial water storage anomaly and Gravity Recovery and Climate Experiment (GRACE) observations. We find including RHR in CLM4.5 improved ET predictions compared with the FLUXNET-MTE estimates north of 20° N but led to poorer predictions in the tropics. The biases in ET were robust and significant regardless of the four different pedotransfer functions or of the two meteorological forcing data sets we applied. We also found that the simulated water table was unrealistically sensitive to RHR. Therefore, we contend that further structural and data improvements are warranted to improve the hydrological dynamics in CLM4.5.« less

  18. Incorporating root hydraulic redistribution in CLM4.5: Effects on predicted site and global evapotranspiration, soil moisture, and water storage

    DOE PAGES

    Tang, Jinyun; Riley, William J.; Niu, Jie

    2015-11-12

    We implemented the Amenu-Kumar model in the Community Land Model (CLM4.5) to simulate plant Root Hydraulic Redistribution (RHR) and analyzed its influence on CLM hydrology from site to global scales. We evaluated two numerical implementations: the first solved the coupled equations of root and soil water transport concurrently, while the second solved the two equations sequentially. Through sensitivity analysis, we demonstrate that the sequentially coupled implementation (SCI) is numerically incorrect, whereas the tightly coupled implementation (TCI) is numerically robust with numerical time steps varying from 1 to 30 min. At the site-level, we found the SCI approach resulted in bettermore » agreement with measured evapotranspiration (ET) at the AmeriFlux Blodgett Forest site, California, whereas the two approaches resulted in equally poor agreement between predicted and measured ET at the LBA Tapajos KM67 Mature Forest site in Amazon, Brazil. Globally, the SCI approach overestimated annual land ET by as much as 3.5 mm d -1 in some grid cells when compared to the TCI estimates. These comparisons demonstrate that TCI is a more robust numerical implementation of RHR. However, we found, even with TCI, that incorporating RHR resulted in worse agreement with measured soil moisture at both the Blodgett Forest and Tapajos sites and degraded the agreement between simulated terrestrial water storage anomaly and Gravity Recovery and Climate Experiment (GRACE) observations. We find including RHR in CLM4.5 improved ET predictions compared with the FLUXNET-MTE estimates north of 20° N but led to poorer predictions in the tropics. The biases in ET were robust and significant regardless of the four different pedotransfer functions or of the two meteorological forcing data sets we applied. We also found that the simulated water table was unrealistically sensitive to RHR. Therefore, we contend that further structural and data improvements are warranted to improve the hydrological dynamics in CLM4.5.« less

  19. A kriging metamodel-assisted robust optimization method based on a reverse model

    NASA Astrophysics Data System (ADS)

    Zhou, Hui; Zhou, Qi; Liu, Congwei; Zhou, Taotao

    2018-02-01

    The goal of robust optimization methods is to obtain a solution that is both optimum and relatively insensitive to uncertainty factors. Most existing robust optimization approaches use outer-inner nested optimization structures where a large amount of computational effort is required because the robustness of each candidate solution delivered from the outer level should be evaluated in the inner level. In this article, a kriging metamodel-assisted robust optimization method based on a reverse model (K-RMRO) is first proposed, in which the nested optimization structure is reduced into a single-loop optimization structure to ease the computational burden. Ignoring the interpolation uncertainties from kriging, K-RMRO may yield non-robust optima. Hence, an improved kriging-assisted robust optimization method based on a reverse model (IK-RMRO) is presented to take the interpolation uncertainty of kriging metamodel into consideration. In IK-RMRO, an objective switching criterion is introduced to determine whether the inner level robust optimization or the kriging metamodel replacement should be used to evaluate the robustness of design alternatives. The proposed criterion is developed according to whether or not the robust status of the individual can be changed because of the interpolation uncertainties from the kriging metamodel. Numerical and engineering cases are used to demonstrate the applicability and efficiency of the proposed approach.

  20. Davidenko’s Method for the Solution of Nonlinear Operator Equations.

    DTIC Science & Technology

    NONLINEAR DIFFERENTIAL EQUATIONS, NUMERICAL INTEGRATION), OPERATORS(MATHEMATICS), BANACH SPACE , MAPPING (TRANSFORMATIONS), NUMERICAL METHODS AND PROCEDURES, INTEGRALS, SET THEORY, CONVERGENCE, MATRICES(MATHEMATICS)

  1. Variable fidelity robust optimization of pulsed laser orbital debris removal under epistemic uncertainty

    NASA Astrophysics Data System (ADS)

    Hou, Liqiang; Cai, Yuanli; Liu, Jin; Hou, Chongyuan

    2016-04-01

    A variable fidelity robust optimization method for pulsed laser orbital debris removal (LODR) under uncertainty is proposed. Dempster-shafer theory of evidence (DST), which merges interval-based and probabilistic uncertainty modeling, is used in the robust optimization. The robust optimization method optimizes the performance while at the same time maximizing its belief value. A population based multi-objective optimization (MOO) algorithm based on a steepest descent like strategy with proper orthogonal decomposition (POD) is used to search robust Pareto solutions. Analytical and numerical lifetime predictors are used to evaluate the debris lifetime after the laser pulses. Trust region based fidelity management is designed to reduce the computational cost caused by the expensive model. When the solutions fall into the trust region, the analytical model is used to reduce the computational cost. The proposed robust optimization method is first tested on a set of standard problems and then applied to the removal of Iridium 33 with pulsed lasers. It will be shown that the proposed approach can identify the most robust solutions with minimum lifetime under uncertainty.

  2. Entropy-Based Approach To Nonlinear Stability

    NASA Technical Reports Server (NTRS)

    Merriam, Marshal L.

    1991-01-01

    NASA technical memorandum suggests schemes for numerical solution of differential equations of flow made more accurate and robust by invoking second law of thermodynamics. Proposes instead of using artificial viscosity to suppress such unphysical solutions as spurious numerical oscillations and nonlinear instabilities, one should formulate equations so that rate of production of entropy within each cell of computational grid be nonnegative, as required by second law.

  3. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity

    NASA Astrophysics Data System (ADS)

    Bridges, Thomas J.; Reich, Sebastian

    2001-06-01

    The symplectic numerical integration of finite-dimensional Hamiltonian systems is a well established subject and has led to a deeper understanding of existing methods as well as to the development of new very efficient and accurate schemes, e.g., for rigid body, constrained, and molecular dynamics. The numerical integration of infinite-dimensional Hamiltonian systems or Hamiltonian PDEs is much less explored. In this Letter, we suggest a new theoretical framework for generalizing symplectic numerical integrators for ODEs to Hamiltonian PDEs in R2: time plus one space dimension. The central idea is that symplecticity for Hamiltonian PDEs is directional: the symplectic structure of the PDE is decomposed into distinct components representing space and time independently. In this setting PDE integrators can be constructed by concatenating uni-directional ODE symplectic integrators. This suggests a natural definition of multi-symplectic integrator as a discretization that conserves a discrete version of the conservation of symplecticity for Hamiltonian PDEs. We show that this approach leads to a general framework for geometric numerical schemes for Hamiltonian PDEs, which have remarkable energy and momentum conservation properties. Generalizations, including development of higher-order methods, application to the Euler equations in fluid mechanics, application to perturbed systems, and extension to more than one space dimension are also discussed.

  4. Crypto-Watermarking of Transmitted Medical Images.

    PubMed

    Al-Haj, Ali; Mohammad, Ahmad; Amer, Alaa'

    2017-02-01

    Telemedicine is a booming healthcare practice that has facilitated the exchange of medical data and expertise between healthcare entities. However, the widespread use of telemedicine applications requires a secured scheme to guarantee confidentiality and verify authenticity and integrity of exchanged medical data. In this paper, we describe a region-based, crypto-watermarking algorithm capable of providing confidentiality, authenticity, and integrity for medical images of different modalities. The proposed algorithm provides authenticity by embedding robust watermarks in images' region of non-interest using SVD in the DWT domain. Integrity is provided in two levels: strict integrity implemented by a cryptographic hash watermark, and content-based integrity implemented by a symmetric encryption-based tamper localization scheme. Confidentiality is achieved as a byproduct of hiding patient's data in the image. Performance of the algorithm was evaluated with respect to imperceptibility, robustness, capacity, and tamper localization, using different medical images. The results showed the effectiveness of the algorithm in providing security for telemedicine applications.

  5. Robust Stabilization of T-S Fuzzy Stochastic Descriptor Systems via Integral Sliding Modes.

    PubMed

    Li, Jinghao; Zhang, Qingling; Yan, Xing-Gang; Spurgeon, Sarah K

    2017-09-19

    This paper addresses the robust stabilization problem for T-S fuzzy stochastic descriptor systems using an integral sliding mode control paradigm. A classical integral sliding mode control scheme and a nonparallel distributed compensation (Non-PDC) integral sliding mode control scheme are presented. It is shown that two restrictive assumptions previously adopted developing sliding mode controllers for Takagi-Sugeno (T-S) fuzzy stochastic systems are not required with the proposed framework. A unified framework for sliding mode control of T-S fuzzy systems is formulated. The proposed Non-PDC integral sliding mode control scheme encompasses existing schemes when the previously imposed assumptions hold. Stability of the sliding motion is analyzed and the sliding mode controller is parameterized in terms of the solutions of a set of linear matrix inequalities which facilitates design. The methodology is applied to an inverted pendulum model to validate the effectiveness of the results presented.

  6. Real-time simulation of large-scale floods

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  7. Neuromandibular integration in humans and chimpanzees: Implications for dental and mandibular reduction in Homo.

    PubMed

    Veneziano, Alessio; Meloro, Carlo; Irish, Joel D; Stringer, Chris; Profico, Antonio; De Groote, Isabelle

    2018-05-08

    Although the evolution of the hominin masticatory apparatus has been linked to diet and food processing, the physical connection between neurocranium and lower jaw suggests a role of encephalization in the trend of dental and mandibular reduction. Here, the hypothesis that tooth size and mandibular robusticity are influenced by morphological changes in the neurocranium was tested. Three-dimensional landmarks, alveolar lengths, and mandibular robusticity data were recorded on a sample of chimpanzee and human skulls. The morphological integration between the neurocranium and the lower jaw was analyzed by means of Singular Warps Analysis. Redundancy Analysis was performed to understand if the pattern of neuromandibular integration affects tooth size and mandibular robusticity. There is significant morphological covariation between neurocranium and lower jaw in both chimpanzees and humans. In humans, changes in the temporal fossa seem to produce alterations of the relative orientation of jaw parts, while the influence of similar neurocranial changes in chimpanzees are more localized. In both species, postcanine alveolar lengths and mandibular robusticity are associated with shape changes of the temporal fossa. The results of this study support the hypothesis that the neurocranium is able to affect the evolution and development of the lower jaw, although most likely through functional integration of mandible, teeth, and muscles within the masticatory apparatus. This study highlights the relative influence of structural constraints and adaptive factors in the evolution of the human skull. © 2018 Wiley Periodicals, Inc.

  8. Robust multiperson detection and tracking for mobile service and social robots.

    PubMed

    Li, Liyuan; Yan, Shuicheng; Yu, Xinguo; Tan, Yeow Kee; Li, Haizhou

    2012-10-01

    This paper proposes an efficient system which integrates multiple vision models for robust multiperson detection and tracking for mobile service and social robots in public environments. The core technique is a novel maximum likelihood (ML)-based algorithm which combines the multimodel detections in mean-shift tracking. First, a likelihood probability which integrates detections and similarity to local appearance is defined. Then, an expectation-maximization (EM)-like mean-shift algorithm is derived under the ML framework. In each iteration, the E-step estimates the associations to the detections, and the M-step locates the new position according to the ML criterion. To be robust to the complex crowded scenarios for multiperson tracking, an improved sequential strategy to perform the mean-shift tracking is proposed. Under this strategy, human objects are tracked sequentially according to their priority order. To balance the efficiency and robustness for real-time performance, at each stage, the first two objects from the list of the priority order are tested, and the one with the higher score is selected. The proposed method has been successfully implemented on real-world service and social robots. The vision system integrates stereo-based and histograms-of-oriented-gradients-based human detections, occlusion reasoning, and sequential mean-shift tracking. Various examples to show the advantages and robustness of the proposed system for multiperson tracking from mobile robots are presented. Quantitative evaluations on the performance of multiperson tracking are also performed. Experimental results indicate that significant improvements have been achieved by using the proposed method.

  9. The Living Heart Project: A robust and integrative simulator for human heart function.

    PubMed

    Baillargeon, Brian; Rebelo, Nuno; Fox, David D; Taylor, Robert L; Kuhl, Ellen

    2014-11-01

    The heart is not only our most vital, but also our most complex organ: Precisely controlled by the interplay of electrical and mechanical fields, it consists of four chambers and four valves, which act in concert to regulate its filling, ejection, and overall pump function. While numerous computational models exist to study either the electrical or the mechanical response of its individual chambers, the integrative electro-mechanical response of the whole heart remains poorly understood. Here we present a proof-of-concept simulator for a four-chamber human heart model created from computer topography and magnetic resonance images. We illustrate the governing equations of excitation-contraction coupling and discretize them using a single, unified finite element environment. To illustrate the basic features of our model, we visualize the electrical potential and the mechanical deformation across the human heart throughout its cardiac cycle. To compare our simulation against common metrics of cardiac function, we extract the pressure-volume relationship and show that it agrees well with clinical observations. Our prototype model allows us to explore and understand the key features, physics, and technologies to create an integrative, predictive model of the living human heart. Ultimately, our simulator will open opportunities to probe landscapes of clinical parameters, and guide device design and treatment planning in cardiac diseases such as stenosis, regurgitation, or prolapse of the aortic, pulmonary, tricuspid, or mitral valve.

  10. Tabu Search enhances network robustness under targeted attacks

    NASA Astrophysics Data System (ADS)

    Sun, Shi-wen; Ma, Yi-lin; Li, Rui-qi; Wang, Li; Xia, Cheng-yi

    2016-03-01

    We focus on the optimization of network robustness with respect to intentional attacks on high-degree nodes. Given an existing network, this problem can be considered as a typical single-objective combinatorial optimization problem. Based on the heuristic Tabu Search optimization algorithm, a link-rewiring method is applied to reconstruct the network while keeping the degree of every node unchanged. Through numerical simulations, BA scale-free network and two real-world networks are investigated to verify the effectiveness of the proposed optimization method. Meanwhile, we analyze how the optimization affects other topological properties of the networks, including natural connectivity, clustering coefficient and degree-degree correlation. The current results can help to improve the robustness of existing complex real-world systems, as well as to provide some insights into the design of robust networks.

  11. Aperiodic Robust Model Predictive Control for Constrained Continuous-Time Nonlinear Systems: An Event-Triggered Approach.

    PubMed

    Liu, Changxin; Gao, Jian; Li, Huiping; Xu, Demin

    2018-05-01

    The event-triggered control is a promising solution to cyber-physical systems, such as networked control systems, multiagent systems, and large-scale intelligent systems. In this paper, we propose an event-triggered model predictive control (MPC) scheme for constrained continuous-time nonlinear systems with bounded disturbances. First, a time-varying tightened state constraint is computed to achieve robust constraint satisfaction, and an event-triggered scheduling strategy is designed in the framework of dual-mode MPC. Second, the sufficient conditions for ensuring feasibility and closed-loop robust stability are developed, respectively. We show that robust stability can be ensured and communication load can be reduced with the proposed MPC algorithm. Finally, numerical simulations and comparison studies are performed to verify the theoretical results.

  12. An Integrative Theory of Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert; Lortie-Forgues, Hugues

    2014-01-01

    Understanding of numerical development is growing rapidly, but the volume and diversity of findings can make it difficult to perceive any coherence in the process. The integrative theory of numerical development posits that a coherent theme is present, however--progressive broadening of the set of numbers whose magnitudes can be accurately…

  13. Entropy Splitting for High Order Numerical Simulation of Compressible Turbulence

    NASA Technical Reports Server (NTRS)

    Sandham, N. D.; Yee, H. C.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    A stable high order numerical scheme for direct numerical simulation (DNS) of shock-free compressible turbulence is presented. The method is applicable to general geometries. It contains no upwinding, artificial dissipation, or filtering. Instead the method relies on the stabilizing mechanisms of an appropriate conditioning of the governing equations and the use of compatible spatial difference operators for the interior points (interior scheme) as well as the boundary points (boundary scheme). An entropy splitting approach splits the inviscid flux derivatives into conservative and non-conservative portions. The spatial difference operators satisfy a summation by parts condition leading to a stable scheme (combined interior and boundary schemes) for the initial boundary value problem using a generalized energy estimate. A Laplacian formulation of the viscous and heat conduction terms on the right hand side of the Navier-Stokes equations is used to ensure that any tendency to odd-even decoupling associated with central schemes can be countered by the fluid viscosity. A special formulation of the continuity equation is used, based on similar arguments. The resulting methods are able to minimize spurious high frequency oscillation producing nonlinear instability associated with pure central schemes, especially for long time integration simulation such as DNS. For validation purposes, the methods are tested in a DNS of compressible turbulent plane channel flow at a friction Mach number of 0.1 where a very accurate turbulence data base exists. It is demonstrated that the methods are robust in terms of grid resolution, and in good agreement with incompressible channel data, as expected at this Mach number. Accurate turbulence statistics can be obtained with moderate grid sizes. Stability limits on the range of the splitting parameter are determined from numerical tests.

  14. An optimal modeling of multidimensional wave digital filtering network for free vibration analysis of symmetrically laminated composite FSDT plates

    NASA Astrophysics Data System (ADS)

    Tseng, Chien-Hsun

    2015-02-01

    The technique of multidimensional wave digital filtering (MDWDF) that builds on traveling wave formulation of lumped electrical elements, is successfully implemented on the study of dynamic responses of symmetrically laminated composite plate based on the first order shear deformation theory. The philosophy applied for the first time in this laminate mechanics relies on integration of certain principles involving modeling and simulation, circuit theory, and MD digital signal processing to provide a great variety of outstanding features. Especially benefited by the conservation of passivity gives rise to a nonlinear programming problem (NLP) for the issue of numerical stability of a MD discrete system. Adopting the augmented Lagrangian genetic algorithm, an effective optimization technique for rapidly achieving solution spaces of NLP models, numerical stability of the MDWDF network is well received at all time by the satisfaction of the Courant-Friedrichs-Levy stability criterion with the least restriction. In particular, optimum of the NLP has led to the optimality of the network in terms of effectively and accurately predicting the desired fundamental frequency, and thus to give an insight into the robustness of the network by looking at the distribution of system energies. To further explore the application of the optimum network, more numerical examples are engaged in efforts to achieve a qualitative understanding of the behavior of the laminar system. These are carried out by investigating various effects based on different stacking sequences, stiffness and span-to-thickness ratios, mode shapes and boundary conditions. Results are scrupulously validated by cross referencing with early published works, which show that the present method is in excellent agreement with other numerical and analytical methods.

  15. Robust Fixed-Structure Controller Synthesis

    NASA Technical Reports Server (NTRS)

    Corrado, Joseph R.; Haddad, Wassim M.; Gupta, Kajal (Technical Monitor)

    2000-01-01

    The ability to develop an integrated control system design methodology for robust high performance controllers satisfying multiple design criteria and real world hardware constraints constitutes a challenging task. The increasingly stringent performance specifications required for controlling such systems necessitates a trade-off between controller complexity and robustness. The principle challenge of the minimal complexity robust control design is to arrive at a tractable control design formulation in spite of the extreme complexity of such systems. Hence, design of minimal complexitY robust controllers for systems in the face of modeling errors has been a major preoccupation of system and control theorists and practitioners for the past several decades.

  16. RSRE: RNA structural robustness evaluator

    PubMed Central

    Shu, Wenjie; Zheng, Zhiqiang; Wang, Shengqi

    2007-01-01

    Biological robustness, defined as the ability to maintain stable functioning in the face of various perturbations, is an important and fundamental topic in current biology, and has become a focus of numerous studies in recent years. Although structural robustness has been explored in several types of RNA molecules, the origins of robustness are still controversial. Computational analysis results are needed to make up for the lack of evidence of robustness in natural biological systems. The RNA structural robustness evaluator (RSRE) web server presented here provides a freely available online tool to quantitatively evaluate the structural robustness of RNA based on the widely accepted definition of neutrality. Several classical structure comparison methods are employed; five randomization methods are implemented to generate control sequences; sub-optimal predicted structures can be optionally utilized to mitigate the uncertainty of secondary structure prediction. With a user-friendly interface, the web application is easy to use. Intuitive illustrations are provided along with the original computational results to facilitate analysis. The RSRE will be helpful in the wide exploration of RNA structural robustness and will catalyze our understanding of RNA evolution. The RSRE web server is freely available at http://biosrv1.bmi.ac.cn/RSRE/ or http://biotech.bmi.ac.cn/RSRE/. PMID:17567615

  17. Robust integration schemes for junction-based modulators in a 200mm CMOS compatible silicon photonic platform (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Szelag, Bertrand; Abraham, Alexis; Brision, Stéphane; Gindre, Paul; Blampey, Benjamin; Myko, André; Olivier, Segolene; Kopp, Christophe

    2017-05-01

    Silicon photonic is becoming a reality for next generation communication system addressing the increasing needs of HPC (High Performance Computing) systems and datacenters. CMOS compatible photonic platforms are developed in many foundries integrating passive and active devices. The use of existing and qualified microelectronics process guarantees cost efficient and mature photonic technologies. Meanwhile, photonic devices have their own fabrication constraints, not similar to those of cmos devices, which can affect their performances. In this paper, we are addressing the integration of PN junction Mach Zehnder modulator in a 200mm CMOS compatible photonic platform. Implantation based device characteristics are impacted by many process variations among which screening layer thickness, dopant diffusion, implantation mask overlay. CMOS devices are generally quite robust with respect to these processes thanks to dedicated design rules. For photonic devices, the situation is different since, most of the time, doped areas must be carefully located within waveguides and CMOS solutions like self-alignment to the gate cannot be applied. In this work, we present different robust integration solutions for junction-based modulators. A simulation setup has been built in order to optimize of the process conditions. It consist in a Mathlab interface coupling process and device electro-optic simulators in order to run many iterations. Illustrations of modulator characteristic variations with process parameters are done using this simulation setup. Parameters under study are, for instance, X and Y direction lithography shifts, screening oxide and slab thicknesses. A robust process and design approach leading to a pn junction Mach Zehnder modulator insensitive to lithography misalignment is then proposed. Simulation results are compared with experimental datas. Indeed, various modulators have been fabricated with different process conditions and integration schemes. Extensive electro-optic characterization of these components will be presented.

  18. MPLEx: a Robust and Universal Protocol for Single-Sample Integrative Proteomic, Metabolomic, and Lipidomic Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayasu, Ernesto S.; Nicora, Carrie D.; Sims, Amy C.

    2016-05-03

    ABSTRACT Integrative multi-omics analyses can empower more effective investigation and complete understanding of complex biological systems. Despite recent advances in a range of omics analyses, multi-omic measurements of the same sample are still challenging and current methods have not been well evaluated in terms of reproducibility and broad applicability. Here we adapted a solvent-based method, widely applied for extracting lipids and metabolites, to add proteomics to mass spectrometry-based multi-omics measurements. Themetabolite,protein, andlipidextraction (MPLEx) protocol proved to be robust and applicable to a diverse set of sample types, including cell cultures, microbial communities, and tissues. To illustrate the utility of thismore » protocol, an integrative multi-omics analysis was performed using a lung epithelial cell line infected with Middle East respiratory syndrome coronavirus, which showed the impact of this virus on the host glycolytic pathway and also suggested a role for lipids during infection. The MPLEx method is a simple, fast, and robust protocol that can be applied for integrative multi-omic measurements from diverse sample types (e.g., environmental,in vitro, and clinical). IMPORTANCEIn systems biology studies, the integration of multiple omics measurements (i.e., genomics, transcriptomics, proteomics, metabolomics, and lipidomics) has been shown to provide a more complete and informative view of biological pathways. Thus, the prospect of extracting different types of molecules (e.g., DNAs, RNAs, proteins, and metabolites) and performing multiple omics measurements on single samples is very attractive, but such studies are challenging due to the fact that the extraction conditions differ according to the molecule type. Here, we adapted an organic solvent-based extraction method that demonstrated broad applicability and robustness, which enabled comprehensive proteomics, metabolomics, and lipidomics analyses from the same sample.« less

  19. On the numeric integration of dynamic attitude equations

    NASA Technical Reports Server (NTRS)

    Crouch, P. E.; Yan, Y.; Grossman, Robert

    1992-01-01

    We describe new types of numerical integration algorithms developed by the authors. The main aim of the algorithms is to numerically integrate differential equations which evolve on geometric objects, such as the rotation group. The algorithms provide iterates which lie on the prescribed geometric object, either exactly, or to some prescribed accuracy, independent of the order of the algorithm. This paper describes applications of these algorithms to the evolution of the attitude of a rigid body.

  20. Numerical quadrature methods for integrals of singular periodic functions and their application to singular and weakly singular integral equations

    NASA Technical Reports Server (NTRS)

    Sidi, A.; Israeli, M.

    1986-01-01

    High accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Such periodic equations are used in the solution of planar elliptic boundary value problems, elasticity, potential theory, conformal mapping, boundary element methods, free surface flows, etc. The use of the quadrature methods is demonstrated with numerical examples.

  1. The robust corrective action priority-an improved approach for selecting competing corrective actions in FMEA based on principle of robust design

    NASA Astrophysics Data System (ADS)

    Sutrisno, Agung; Gunawan, Indra; Vanany, Iwan

    2017-11-01

    In spite of being integral part in risk - based quality improvement effort, studies improving quality of selection of corrective action priority using FMEA technique are still limited in literature. If any, none is considering robustness and risk in selecting competing improvement initiatives. This study proposed a theoretical model to select risk - based competing corrective action by considering robustness and risk of competing corrective actions. We incorporated the principle of robust design in counting the preference score among corrective action candidates. Along with considering cost and benefit of competing corrective actions, we also incorporate the risk and robustness of corrective actions. An example is provided to represent the applicability of the proposed model.

  2. Asymptotic integration algorithms for first-order ODEs with application to viscoplasticity

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Yao, Minwu; Walker, Kevin P.

    1992-01-01

    When constructing an algorithm for the numerical integration of a differential equation, one must first convert the known ordinary differential equation (ODE), which is defined at a point, into an ordinary difference equation (O(delta)E), which is defined over an interval. Asymptotic, generalized, midpoint, and trapezoidal, O(delta)E algorithms are derived for a nonlinear first order ODE written in the form of a linear ODE. The asymptotic forward (typically underdamped) and backward (typically overdamped) integrators bound these midpoint and trapezoidal integrators, which tend to cancel out unwanted numerical damping by averaging, in some sense, the forward and backward integrations. Viscoplasticity presents itself as a system of nonlinear, coupled first-ordered ODE's that are mathematically stiff, and therefore, difficult to numerically integrate. They are an excellent application for the asymptotic integrators. Considering a general viscoplastic structure, it is demonstrated that one can either integrate the viscoplastic stresses or their associated eigenstrains.

  3. Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking.

    PubMed

    Chen, Wen-Jie; Hang, Zhi Hong; Dong, Jian-Wen; Xiao, Xiao; Wang, He-Zhou; Chan, C T

    2011-07-08

    A strategy is proposed to realize robust transport in a time reversal invariant photonic system. Using numerical simulation and a microwave experiment, we demonstrate that a chiral guided mode in the channel of a three-dimensional dielectric layer-by-layer photonic crystal is immune to the scattering of a square patch of metal or dielectric inserted to block the channel. The chirality based robust transport can be realized in nonmagnetic dielectric materials without any external field.

  4. Reframing measurement for structural health monitoring: a full-field strategy for structural identification

    NASA Astrophysics Data System (ADS)

    Dizaji, Mehrdad S.; Harris, Devin K.; Alipour, Mohamad; Ozbulut, Osman E.

    2018-03-01

    Structural health monitoring (SHM) describes a decision-making framework that is fundamentally guided by state change detection of structural systems. This framework typically relies on the use of continuous or semi-continuous monitoring of measured response to quantify this state change in structural system behavior, which is often related to the initiation of some form of damage. Measurement approaches used for traditional SHM are numerous, but most are limited to either describing localized or global phenomena, making it challenging to characterize operational structural systems which exhibit both. In addition to these limitations in sensing, SHM has also suffered from the inherent robustness inherent to most full-scale structural systems, making it challenging to identify local damage. These challenges highlight the opportunity for alternative strategies for SHM, strategies that are able to provide data suitable to translate into rich information. This paper describes preliminary results from a refined structural identification (St-ID) approach using fullfield measurements derived from high-speed 3D Digital Image Correlation (HSDIC) to characterize uncertain parameters (i.e. boundary and constitutive properties) of a laboratory scale structural component. The St-ID approach builds from prior work by supplementing full-field deflection and strain response with vibration response derived from HSDIC. Inclusion of the modal characteristics within a hybrid-genetic algorithm optimization scheme allowed for simultaneous integration of mechanical and modal response, thus enabling a more robust St-ID strategy than could be achieved with traditional sensing techniques. The use of full-field data is shown to provide a more comprehensive representation of the global and local behavior, which in turn increases the robustness of the St-Id framework. This work serves as the foundation for a new paradigm in SHM that emphasizes characterizing structural performance using a smaller number, but richer set of measurements.

  5. Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Hai; Tsai, Hai-Lung; Dong, Junhang

    2014-09-30

    This is the final report for the program “Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments”, funded by NETL, and performed by Missouri University of Science and Technology, Clemson University and University of Cincinnati from October 1, 2009 to September 30, 2014. Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is a central element to the mission of The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensor technologiesmore » that can function under the extreme operating conditions often found in advanced power systems. The main objective of this research program is to conduct fundamental and applied research that will lead to successful development and demonstration of robust, multiplexed, microstructured silica and single-crystal sapphire fiber sensors to be deployed into the hot zones of advanced power and fuel systems for simultaneous measurements of high temperature and gas pressure. The specific objectives of this research program include: 1) Design, fabrication and demonstration of multiplexed, robust silica and sapphire fiber temperature and dynamic gas pressure sensors that can survive and maintain fully operational in high-temperature harsh environments. 2) Development and demonstration of a novel method to demodulate the multiplexed interferograms for simultaneous measurements of temperature and gas pressure in harsh environments. 3) Development and demonstration of novel sapphire fiber cladding and low numerical aperture (NA) excitation techniques to assure high signal integrity and sensor robustness.« less

  6. Robust Nonrigid Multimodal Image Registration using Local Frequency Maps*

    PubMed Central

    Jian, Bing; Vemuri, Baba C.; Marroquin, José L.

    2008-01-01

    Automatic multi-modal image registration is central to numerous tasks in medical imaging today and has a vast range of applications e.g., image guidance, atlas construction, etc. In this paper, we present a novel multi-modal 3D non-rigid registration algorithm where in 3D images to be registered are represented by their corresponding local frequency maps efficiently computed using the Riesz transform as opposed to the popularly used Gabor filters. The non-rigid registration between these local frequency maps is formulated in a statistically robust framework involving the minimization of the integral squared error a.k.a. L2E (L2 error). This error is expressed as the squared difference between the true density of the residual (which is the squared difference between the non-rigidly transformed reference and the target local frequency representations) and a Gaussian or mixture of Gaussians density approximation of the same. The non-rigid transformation is expressed in a B-spline basis to achieve the desired smoothness in the transformation as well as computational efficiency. The key contributions of this work are (i) the use of Riesz transform to achieve better efficiency in computing the local frequency representation in comparison to Gabor filter-based approaches, (ii) new mathematical model for local-frequency based non-rigid registration, (iii) analytic computation of the gradient of the robust non-rigid registration cost function to achieve efficient and accurate registration. The proposed non-rigid L2E-based registration is a significant extension of research reported in literature to date. We present experimental results for registering several real data sets with synthetic and real non-rigid misalignments. PMID:17354721

  7. A Robust and Efficient Method for Steady State Patterns in Reaction-Diffusion Systems

    PubMed Central

    Lo, Wing-Cheong; Chen, Long; Wang, Ming; Nie, Qing

    2012-01-01

    An inhomogeneous steady state pattern of nonlinear reaction-diffusion equations with no-flux boundary conditions is usually computed by solving the corresponding time-dependent reaction-diffusion equations using temporal schemes. Nonlinear solvers (e.g., Newton’s method) take less CPU time in direct computation for the steady state; however, their convergence is sensitive to the initial guess, often leading to divergence or convergence to spatially homogeneous solution. Systematically numerical exploration of spatial patterns of reaction-diffusion equations under different parameter regimes requires that the numerical method be efficient and robust to initial condition or initial guess, with better likelihood of convergence to an inhomogeneous pattern. Here, a new approach that combines the advantages of temporal schemes in robustness and Newton’s method in fast convergence in solving steady states of reaction-diffusion equations is proposed. In particular, an adaptive implicit Euler with inexact solver (AIIE) method is found to be much more efficient than temporal schemes and more robust in convergence than typical nonlinear solvers (e.g., Newton’s method) in finding the inhomogeneous pattern. Application of this new approach to two reaction-diffusion equations in one, two, and three spatial dimensions, along with direct comparisons to several other existing methods, demonstrates that AIIE is a more desirable method for searching inhomogeneous spatial patterns of reaction-diffusion equations in a large parameter space. PMID:22773849

  8. A two-layer model for buoyant inertial displacement flows in inclined pipes

    NASA Astrophysics Data System (ADS)

    Etrati, Ali; Frigaard, Ian A.

    2018-02-01

    We investigate the inertial flows found in buoyant miscible displacements using a two-layer model. From displacement flow experiments in inclined pipes, it has been observed that for significant ranges of Fr and Re cos β/Fr, a two-layer, stratified flow develops with the heavier fluid moving at the bottom of the pipe. Due to significant inertial effects, thin-film/lubrication models developed for laminar, viscous flows are not effective for predicting these flows. Here we develop a displacement model that addresses this shortcoming. The complete model for the displacement flow consists of mass and momentum equations for each fluid, resulting in a set of four non-linear equations. By integrating over each layer and eliminating the pressure gradient, we reduce the system to two equations for the area and mean velocity of the heavy fluid layer. The wall and interfacial stresses appear as source terms in the reduced system. The final system of equations is solved numerically using a robust, shock-capturing scheme. The equations are stabilized to remove non-physical instabilities. A linear stability analysis is able to predict the onset of instabilities at the interface and together with numerical solution, is used to study displacement effectiveness over different parametric regimes. Backflow and instability onset predictions are made for different viscosity ratios.

  9. Density reconstruction in multiparameter elastic full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Sun, Min'ao; Yang, Jizhong; Dong, Liangguo; Liu, Yuzhu; Huang, Chao

    2017-12-01

    Elastic full-waveform inversion (EFWI) is a quantitative data fitting procedure that recovers multiple subsurface parameters from multicomponent seismic data. As density is involved in addition to P- and S-wave velocities, the multiparameter EFWI suffers from more serious tradeoffs. In addition, compared with P- and S-wave velocities, the misfit function is less sensitive to density perturbation. Thus, a robust density reconstruction remains a difficult problem in multiparameter EFWI. In this paper, we develop an improved scattering-integral-based truncated Gauss-Newton method to simultaneously recover P- and S-wave velocities and density in EFWI. In this method, the inverse Gauss-Newton Hessian has been estimated by iteratively solving the Gauss-Newton equation with a matrix-free conjugate gradient algorithm. Therefore, it is able to properly handle the parameter tradeoffs. To give a detailed illustration of the tradeoffs between P- and S-wave velocities and density in EFWI, wavefield-separated sensitivity kernels and the Gauss-Newton Hessian are numerically computed, and their distribution characteristics are analyzed. Numerical experiments on a canonical inclusion model and a modified SEG/EAGE Overthrust model have demonstrated that the proposed method can effectively mitigate the tradeoff effects, and improve multiparameter gradients. Thus, a high convergence rate and an accurate density reconstruction can be achieved.

  10. On the implementation of the spherical collapse model for dark energy models

    NASA Astrophysics Data System (ADS)

    Pace, Francesco; Meyer, Sven; Bartelmann, Matthias

    2017-10-01

    In this work we review the theory of the spherical collapse model and critically analyse the aspects of the numerical implementation of its fundamental equations. By extending a recent work by [1], we show how different aspects, such as the initial integration time, the definition of constant infinity and the criterion for the extrapolation method (how close the inverse of the overdensity has to be to zero at the collapse time) can lead to an erroneous estimation (a few per mill error which translates to a few percent in the mass function) of the key quantity in the spherical collapse model: the linear critical overdensity δc, which plays a crucial role for the mass function of halos. We provide a better recipe to adopt in designing a code suitable to a generic smooth dark energy model and we compare our numerical results with analytic predictions for the EdS and the ΛCDM models. We further discuss the evolution of δc for selected classes of dark energy models as a general test of the robustness of our implementation. We finally outline which modifications need to be taken into account to extend the code to more general classes of models, such as clustering dark energy models and non-minimally coupled models.

  11. On the implementation of the spherical collapse model for dark energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, Francesco; Meyer, Sven; Bartelmann, Matthias, E-mail: francesco.pace@manchester.ac.uk, E-mail: sven.meyer@uni-heidelberg.de, E-mail: bartelmann@uni-heidelberg.de

    In this work we review the theory of the spherical collapse model and critically analyse the aspects of the numerical implementation of its fundamental equations. By extending a recent work by [1], we show how different aspects, such as the initial integration time, the definition of constant infinity and the criterion for the extrapolation method (how close the inverse of the overdensity has to be to zero at the collapse time) can lead to an erroneous estimation (a few per mill error which translates to a few percent in the mass function) of the key quantity in the spherical collapsemore » model: the linear critical overdensity δ{sub c}, which plays a crucial role for the mass function of halos. We provide a better recipe to adopt in designing a code suitable to a generic smooth dark energy model and we compare our numerical results with analytic predictions for the EdS and the ΛCDM models. We further discuss the evolution of δ{sub c} for selected classes of dark energy models as a general test of the robustness of our implementation. We finally outline which modifications need to be taken into account to extend the code to more general classes of models, such as clustering dark energy models and non-minimally coupled models.« less

  12. Bandwidth-limited control and ringdown suppression in high-Q resonators.

    PubMed

    Borneman, Troy W; Cory, David G

    2012-12-01

    We describe how the transient behavior of a tuned and matched resonator circuit and a ringdown suppression pulse may be integrated into an optimal control theory (OCT) pulse-design algorithm to derive control sequences with limited ringdown that perform a desired quantum operation in the presence of resonator distortions of the ideal waveform. Inclusion of ringdown suppression in numerical pulse optimizations significantly reduces spectrometer deadtime when using high quality factor (high-Q) resonators, leading to increased signal-to-noise ratio (SNR) and sensitivity of inductive measurements. To demonstrate the method, we experimentally measure the free-induction decay of an inhomogeneously broadened solid-state free radical spin system at high Q. The measurement is enabled by using a numerically optimized bandwidth-limited OCT pulse, including ringdown suppression, robust to variations in static and microwave field strengths. We also discuss the applications of pulse design in high-Q resonators to universal control of anisotropic-hyperfine coupled electron-nuclear spin systems via electron-only modulation even when the bandwidth of the resonator is significantly smaller than the hyperfine coupling strength. These results demonstrate how limitations imposed by linear response theory may be vastly exceeded when using a sufficiently accurate system model to optimize pulses of high complexity. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. An integrated approach to flood hazard assessment on alluvial fans using numerical modeling, field mapping, and remote sensing

    USGS Publications Warehouse

    Pelletier, J.D.; Mayer, L.; Pearthree, P.A.; House, P.K.; Demsey, K.A.; Klawon, J.K.; Vincent, K.R.

    2005-01-01

    Millions of people in the western United States live near the dynamic, distributary channel networks of alluvial fans where flood behavior is complex and poorly constrained. Here we test a new comprehensive approach to alluvial-fan flood hazard assessment that uses four complementary methods: two-dimensional raster-based hydraulic modeling, satellite-image change detection, fieldbased mapping of recent flood inundation, and surficial geologic mapping. Each of these methods provides spatial detail lacking in the standard method and each provides critical information for a comprehensive assessment. Our numerical model simultaneously solves the continuity equation and Manning's equation (Chow, 1959) using an implicit numerical method. It provides a robust numerical tool for predicting flood flows using the large, high-resolution Digital Elevation Models (DEMs) necessary to resolve the numerous small channels on the typical alluvial fan. Inundation extents and flow depths of historic floods can be reconstructed with the numerical model and validated against field- and satellite-based flood maps. A probabilistic flood hazard map can also be constructed by modeling multiple flood events with a range of specified discharges. This map can be used in conjunction with a surficial geologic map to further refine floodplain delineation on fans. To test the accuracy of the numerical model, we compared model predictions of flood inundation and flow depths against field- and satellite-based flood maps for two recent extreme events on the southern Tortolita and Harquahala piedmonts in Arizona. Model predictions match the field- and satellite-based maps closely. Probabilistic flood hazard maps based on the 10 yr, 100 yr, and maximum floods were also constructed for the study areas using stream gage records and paleoflood deposits. The resulting maps predict spatially complex flood hazards that strongly reflect small-scale topography and are consistent with surficial geology. In contrast, FEMA Flood Insurance Rate Maps (FIRMs) based on the FAN model predict uniformly high flood risk across the study areas without regard for small-scale topography and surficial geology. ?? 2005 Geological Society of America.

  14. Designing Phononic Crystals with Wide and Robust Band Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang

    Here, phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with widemore » and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.« less

  15. Designing Phononic Crystals with Wide and Robust Band Gaps

    DOE PAGES

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; ...

    2018-04-16

    Here, phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with widemore » and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.« less

  16. Designing Phononic Crystals with Wide and Robust Band Gaps

    NASA Astrophysics Data System (ADS)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; Wang, Lifeng

    2018-04-01

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  17. Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits

    NASA Technical Reports Server (NTRS)

    Gong, J.; Volakis, John L.

    1996-01-01

    One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.

  18. A simple, robust and efficient high-order accurate shock-capturing scheme for compressible flows: Towards minimalism

    NASA Astrophysics Data System (ADS)

    Ohwada, Taku; Shibata, Yuki; Kato, Takuma; Nakamura, Taichi

    2018-06-01

    Developed is a high-order accurate shock-capturing scheme for the compressible Euler/Navier-Stokes equations; the formal accuracy is 5th order in space and 4th order in time. The performance and efficiency of the scheme are validated in various numerical tests. The main ingredients of the scheme are nothing special; they are variants of the standard numerical flux, MUSCL, the usual Lagrange's polynomial and the conventional Runge-Kutta method. The scheme can compute a boundary layer accurately with a rational resolution and capture a stationary contact discontinuity sharply without inner points. And yet it is endowed with high resistance against shock anomalies (carbuncle phenomenon, post-shock oscillations, etc.). A good balance between high robustness and low dissipation is achieved by blending three types of numerical fluxes according to physical situation in an intuitively easy-to-understand way. The performance of the scheme is largely comparable to that of WENO5-Rusanov, while its computational cost is 30-40% less than of that of the advanced scheme.

  19. DNS of Supersonic Turbulent Flows in a DLR Scramjet Intake

    NASA Astrophysics Data System (ADS)

    Li, Xinliang; Yu, Changping

    2014-11-01

    Direct numerical simulation (DNS) of supersonic/hypersonic flow through a DLR scramjet intake GK01 is performed. The free stream Mach numbers are 3, 5 and 7, and the angle of attack is zero degree. The DNS cases are performed by using an optimized MP scheme with adaptive dissipation (OMP-AD) developed by the authors, and the blow-and-suction perturbations near the leading edge are used to trigger the transition. To stabilize the simulation, locally non-linear flittering is used in high-Mach-number case. The transition, separation, and shock-turbulent boundary layer interaction are studied by using both flow visualization and statistical analysis. A new method, OMP-AD, is also addressed in this paper. The OMP-AD scheme is developed by using joint MP method and optimized technique, and the coefficients in the scheme are flexible to show low dissipation in the smoothing region, and to show high robust (but high dissipation) in the large gradient region. Numerical tests show that the OMP-AD is more robust than the original MP schemes, and the numerical dissipation of OMP-AD is very low.

  20. A second-order cell-centered Lagrangian ADER-MOOD finite volume scheme on multidimensional unstructured meshes for hydrodynamics

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Dumbser, Michael; Loubère, Raphaël; Maire, Pierre-Henri

    2018-04-01

    In this paper we develop a conservative cell-centered Lagrangian finite volume scheme for the solution of the hydrodynamics equations on unstructured multidimensional grids. The method is derived from the Eucclhyd scheme discussed in [47,43,45]. It is second-order accurate in space and is combined with the a posteriori Multidimensional Optimal Order Detection (MOOD) limiting strategy to ensure robustness and stability at shock waves. Second-order of accuracy in time is achieved via the ADER (Arbitrary high order schemes using DERivatives) approach. A large set of numerical test cases is proposed to assess the ability of the method to achieve effective second order of accuracy on smooth flows, maintaining an essentially non-oscillatory behavior on discontinuous profiles, general robustness ensuring physical admissibility of the numerical solution, and precision where appropriate.

  1. Fredholm-Volterra Integral Equation with a Generalized Singular Kernel and its Numerical Solutions

    NASA Astrophysics Data System (ADS)

    El-Kalla, I. L.; Al-Bugami, A. M.

    2010-11-01

    In this paper, the existence and uniqueness of solution of the Fredholm-Volterra integral equation (F-VIE), with a generalized singular kernel, are discussed and proved in the spaceL2(Ω)×C(0,T). The Fredholm integral term (FIT) is considered in position while the Volterra integral term (VIT) is considered in time. Using a numerical technique we have a system of Fredholm integral equations (SFIEs). This system of integral equations can be reduced to a linear algebraic system (LAS) of equations by using two different methods. These methods are: Toeplitz matrix method and Product Nyström method. A numerical examples are considered when the generalized kernel takes the following forms: Carleman function, logarithmic form, Cauchy kernel, and Hilbert kernel.

  2. Evaluation of radiation loading on finite cylindrical shells using the fast Fourier transform: A comparison with direct numerical integration.

    PubMed

    Liu, S X; Zou, M S

    2018-03-01

    The radiation loading on a vibratory finite cylindrical shell is conventionally evaluated through the direct numerical integration (DNI) method. An alternative strategy via the fast Fourier transform algorithm is put forward in this work based on the general expression of radiation impedance. To check the feasibility and efficiency of the proposed method, a comparison with DNI is presented through numerical cases. The results obtained using the present method agree well with those calculated by DNI. More importantly, the proposed calculating strategy can significantly save the time cost compared with the conventional approach of straightforward numerical integration.

  3. Method for the numerical integration of equations of perturbed satellite motion in problems of space geodesy

    NASA Astrophysics Data System (ADS)

    Plakhov, Iu. V.; Mytsenko, A. V.; Shel'Pov, V. A.

    A numerical integration method is developed that is more accurate than Everhart's (1974) implicit single-sequence approach for integrating orbits. This method can be used to solve problems of space geodesy based on the use of highly precise laser observations.

  4. A Numerical Study of Hypersonic Forebody/Inlet Integration Problem

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay

    1991-01-01

    A numerical study of hypersonic forebody/inlet integration problem is presented in the form of the view-graphs. The following topics are covered: physical/chemical modeling; solution procedure; flow conditions; mass flow rate at inlet face; heating and skin friction loads; 3-D forebogy/inlet integration model; and sensitivity studies.

  5. Membrane Resonance Enables Stable and Robust Gamma Oscillations

    PubMed Central

    Moca, Vasile V.; Nikolić, Danko; Singer, Wolf; Mureşan, Raul C.

    2014-01-01

    Neuronal mechanisms underlying beta/gamma oscillations (20–80 Hz) are not completely understood. Here, we show that in vivo beta/gamma oscillations in the cat visual cortex sometimes exhibit remarkably stable frequency even when inputs fluctuate dramatically. Enhanced frequency stability is associated with stronger oscillations measured in individual units and larger power in the local field potential. Simulations of neuronal circuitry demonstrate that membrane properties of inhibitory interneurons strongly determine the characteristics of emergent oscillations. Exploration of networks containing either integrator or resonator inhibitory interneurons revealed that: (i) Resonance, as opposed to integration, promotes robust oscillations with large power and stable frequency via a mechanism called RING (Resonance INduced Gamma); resonance favors synchronization by reducing phase delays between interneurons and imposes bounds on oscillation cycle duration; (ii) Stability of frequency and robustness of the oscillation also depend on the relative timing of excitatory and inhibitory volleys within the oscillation cycle; (iii) RING can reproduce characteristics of both Pyramidal INterneuron Gamma (PING) and INterneuron Gamma (ING), transcending such classifications; (iv) In RING, robust gamma oscillations are promoted by slow but are impaired by fast inputs. Results suggest that interneuronal membrane resonance can be an important ingredient for generation of robust gamma oscillations having stable frequency. PMID:23042733

  6. High-order conservative finite difference GLM-MHD schemes for cell-centered MHD

    NASA Astrophysics Data System (ADS)

    Mignone, Andrea; Tzeferacos, Petros; Bodo, Gianluigi

    2010-08-01

    We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. [J. Comput. Phys. 175 (2002) 645-673]. The resulting family of schemes is robust, cost-effective and straightforward to implement. Compared to previous existing approaches, it completely avoids the CPU intensive workload associated with an elliptic divergence cleaning step and the additional complexities required by staggered mesh algorithms. Extensive numerical testing demonstrate the robustness and reliability of the proposed framework for computations involving both smooth and discontinuous features.

  7. The novel high-performance 3-D MT inverse solver

    NASA Astrophysics Data System (ADS)

    Kruglyakov, Mikhail; Geraskin, Alexey; Kuvshinov, Alexey

    2016-04-01

    We present novel, robust, scalable, and fast 3-D magnetotelluric (MT) inverse solver. The solver is written in multi-language paradigm to make it as efficient, readable and maintainable as possible. Separation of concerns and single responsibility concepts go through implementation of the solver. As a forward modelling engine a modern scalable solver extrEMe, based on contracting integral equation approach, is used. Iterative gradient-type (quasi-Newton) optimization scheme is invoked to search for (regularized) inverse problem solution, and adjoint source approach is used to calculate efficiently the gradient of the misfit. The inverse solver is able to deal with highly detailed and contrasting models, allows for working (separately or jointly) with any type of MT responses, and supports massive parallelization. Moreover, different parallelization strategies implemented in the code allow optimal usage of available computational resources for a given problem statement. To parameterize an inverse domain the so-called mask parameterization is implemented, which means that one can merge any subset of forward modelling cells in order to account for (usually) irregular distribution of observation sites. We report results of 3-D numerical experiments aimed at analysing the robustness, performance and scalability of the code. In particular, our computational experiments carried out at different platforms ranging from modern laptops to HPC Piz Daint (6th supercomputer in the world) demonstrate practically linear scalability of the code up to thousands of nodes.

  8. Finite-Time Attitude Tracking Control for Spacecraft Using Terminal Sliding Mode and Chebyshev Neural Network.

    PubMed

    An-Min Zou; Kumar, K D; Zeng-Guang Hou; Xi Liu

    2011-08-01

    A finite-time attitude tracking control scheme is proposed for spacecraft using terminal sliding mode and Chebyshev neural network (NN) (CNN). The four-parameter representations (quaternion) are used to describe the spacecraft attitude for global representation without singularities. The attitude state (i.e., attitude and velocity) error dynamics is transformed to a double integrator dynamics with a constraint on the spacecraft attitude. With consideration of this constraint, a novel terminal sliding manifold is proposed for the spacecraft. In order to guarantee that the output of the NN used in the controller is bounded by the corresponding bound of the approximated unknown function, a switch function is applied to generate a switching between the adaptive NN control and the robust controller. Meanwhile, a CNN, whose basis functions are implemented using only desired signals, is introduced to approximate the desired nonlinear function and bounded external disturbances online, and the robust term based on the hyperbolic tangent function is applied to counteract NN approximation errors in the adaptive neural control scheme. Most importantly, the finite-time stability in both the reaching phase and the sliding phase can be guaranteed by a Lyapunov-based approach. Finally, numerical simulations on the attitude tracking control of spacecraft in the presence of an unknown mass moment of inertia matrix, bounded external disturbances, and control input constraints are presented to demonstrate the performance of the proposed controller.

  9. Robust RNAi enhancement via human Argonaute-2 overexpression from plasmids, viral vectors and cell lines

    PubMed Central

    Börner, Kathleen; Niopek, Dominik; Cotugno, Gabriella; Kaldenbach, Michaela; Pankert, Teresa; Willemsen, Joschka; Zhang, Xian; Schürmann, Nina; Mockenhaupt, Stefan; Serva, Andrius; Hiet, Marie-Sophie; Wiedtke, Ellen; Castoldi, Mirco; Starkuviene, Vytaute; Erfle, Holger; Gilbert, Daniel F.; Bartenschlager, Ralf; Boutros, Michael; Binder, Marco; Streetz, Konrad; Kräusslich, Hans-Georg; Grimm, Dirk

    2013-01-01

    As the only mammalian Argonaute protein capable of directly cleaving mRNAs in a small RNA-guided manner, Argonaute-2 (Ago2) is a keyplayer in RNA interference (RNAi) silencing via small interfering (si) or short hairpin (sh) RNAs. It is also a rate-limiting factor whose saturation by si/shRNAs limits RNAi efficiency and causes numerous adverse side effects. Here, we report a set of versatile tools and widely applicable strategies for transient or stable Ago2 co-expression, which overcome these concerns. Specifically, we engineered plasmids and viral vectors to co-encode a codon-optimized human Ago2 cDNA along with custom shRNAs. Furthermore, we stably integrated this Ago2 cDNA into a panel of standard human cell lines via plasmid transfection or lentiviral transduction. Using various endo- or exogenous targets, we demonstrate the potential of all three strategies to boost mRNA silencing efficiencies in cell culture by up to 10-fold, and to facilitate combinatorial knockdowns. Importantly, these robust improvements were reflected by augmented RNAi phenotypes and accompanied by reduced off-targeting effects. We moreover show that Ago2/shRNA-co-encoding vectors can enhance and prolong transgene silencing in livers of adult mice, while concurrently alleviating hepatotoxicity. Our customizable reagents and avenues should broadly improve future in vitro and in vivo RNAi experiments in mammalian systems. PMID:24049077

  10. PROPOSED SIAM PROBLEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAILEY, DAVID H.; BORWEIN, JONATHAN M.

    A recent paper by the present authors, together with mathematical physicists David Broadhurst and M. Larry Glasser, explored Bessel moment integrals, namely definite integrals of the general form {integral}{sub 0}{sup {infinity}} t{sup m}f{sup n}(t) dt, where the function f(t) is one of the classical Bessel functions. In that paper, numerous previously unknown analytic evaluations were obtained, using a combination of analytic methods together with some fairly high-powered numerical computations, often performed on highly parallel computers. In several instances, while we were able to numerically discover what appears to be a solid analytic identity, based on extremely high-precision numerical computations, wemore » were unable to find a rigorous proof. Thus we present here a brief list of some of these unproven but numerically confirmed identities.« less

  11. Calculating corner singularities by boundary integral equations.

    PubMed

    Shi, Hualiang; Lu, Ya Yan; Du, Qiang

    2017-06-01

    Accurate numerical solutions for electromagnetic fields near sharp corners and edges are important for nanophotonics applications that rely on strong near fields to enhance light-matter interactions. For cylindrical structures, the singularity exponents of electromagnetic fields near sharp edges can be solved analytically, but in general the actual fields can only be calculated numerically. In this paper, we use a boundary integral equation method to compute electromagnetic fields near sharp edges, and construct the leading terms in asymptotic expansions based on numerical solutions. Our integral equations are formulated for rescaled unknown functions to avoid unbounded field components, and are discretized with a graded mesh and properly chosen quadrature schemes. The numerically found singularity exponents agree well with the exact values in all the test cases presented here, indicating that the numerical solutions are accurate.

  12. Numerical integration of ordinary differential equations of various orders

    NASA Technical Reports Server (NTRS)

    Gear, C. W.

    1969-01-01

    Report describes techniques for the numerical integration of differential equations of various orders. Modified multistep predictor-corrector methods for general initial-value problems are discussed and new methods are introduced.

  13. A New Family of Compact High Order Coupled Time-Space Unconditionally Stable Vertical Advection Schemes

    NASA Astrophysics Data System (ADS)

    Lemarié, F.; Debreu, L.

    2016-02-01

    Recent papers by Shchepetkin (2015) and Lemarié et al. (2015) have emphasized that the time-step of an oceanic model with an Eulerian vertical coordinate and an explicit time-stepping scheme is very often restricted by vertical advection in a few hot spots (i.e. most of the grid points are integrated with small Courant numbers, compared to the Courant-Friedrichs-Lewy (CFL) condition, except just few spots where numerical instability of the explicit scheme occurs first). The consequence is that the numerics for vertical advection must have good stability properties while being robust to changes in Courant number in terms of accuracy. An other constraint for oceanic models is the strict control of numerical mixing imposed by the highly adiabatic nature of the oceanic interior (i.e. mixing must be very small in the vertical direction below the boundary layer). We examine in this talk the possibility of mitigating vertical Courant-Friedrichs-Lewy (CFL) restriction, while avoiding numerical inaccuracies associated with standard implicit advection schemes (i.e. large sensitivity of the solution on Courant number, large phase delay, and possibly excess of numerical damping with unphysical orientation). Most regional oceanic models have been successfully using fourth order compact schemes for vertical advection. In this talk we present a new general framework to derive generic expressions for (one-step) coupled time and space high order compact schemes (see Daru & Tenaud (2004) for a thorough description of coupled time and space schemes). Among other properties, we show that those schemes are unconditionally stable and have very good accuracy properties even for large Courant numbers while having a very reasonable computational cost. To our knowledge no unconditionally stable scheme with such high order accuracy in time and space have been presented so far in the literature. Furthermore, we show how those schemes can be made monotonic without compromising their stability properties.

  14. When good statistical models of aquifer heterogeneity go right: The impact of aquifer permeability structures on 3D flow and transport

    NASA Astrophysics Data System (ADS)

    Jankovic, I.; Maghrebi, M.; Fiori, A.; Dagan, G.

    2017-02-01

    Natural gradient steady flow of mean velocity U takes place in heterogeneous aquifers of random logconductivity Y = lnK , characterized by the univariate PDF f(Y) and autocorrelation ρY. Solute transport is analyzed through the Breakthrough Curve (BTC) at planes at distance x from the injection plane. The study examines the impact of permeability structures sharing same f(Y) and ρY, but differing in higher order statistics (integral scales of variograms of Y classes) upon the numerical solution of flow and transport. Flow and transport are solved for 3D structures, rather than the 2D models adopted in most of previous works. We considered a few permeability structures, including the widely employed multi-Gaussian, the connected and disconnected fields introduced by Zinn and Harvey [2003] and a model characterized by equipartition of the correlation scale among Y values. We also consider the impact of statistical anisotropy of Y, the shape of ρY and local diffusion. The main finding is that unlike 2D, the prediction of the BTC of ergodic plumes by numerical and analytical models for different structures is quite robust, displaying a seemingly universal behavior, and can be used with confidence in applications. However, as a prerequisite the basic parameters KG (the geometric mean), σY2 (the logconductivity variance) and I (the horizontal integral scale of ρY) have to be identified from field data. The results suggest that narrowing down the gap between the BTCs in applications can be achieved by obtaining Kef (the effective conductivity) or U independently (e.g. by pumping tests), rather than attempting to characterize the permeability structure beyond f(Y) and ρY.

  15. Numerical solution of boundary-integral equations for molecular electrostatics.

    PubMed

    Bardhan, Jaydeep P

    2009-03-07

    Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.

  16. Regularization with numerical extrapolation for finite and UV-divergent multi-loop integrals

    NASA Astrophysics Data System (ADS)

    de Doncker, E.; Yuasa, F.; Kato, K.; Ishikawa, T.; Kapenga, J.; Olagbemi, O.

    2018-03-01

    We give numerical integration results for Feynman loop diagrams such as those covered by Laporta (2000) and by Baikov and Chetyrkin (2010), and which may give rise to loop integrals with UV singularities. We explore automatic adaptive integration using multivariate techniques from the PARINT package for multivariate integration, as well as iterated integration with programs from the QUADPACK package, and a trapezoidal method based on a double exponential transformation. PARINT is layered over MPI (Message Passing Interface), and incorporates advanced parallel/distributed techniques including load balancing among processes that may be distributed over a cluster or a network/grid of nodes. Results are included for 2-loop vertex and box diagrams and for sets of 2-, 3- and 4-loop self-energy diagrams with or without UV terms. Numerical regularization of integrals with singular terms is achieved by linear and non-linear extrapolation methods.

  17. IMPLICATIONS OF USING ROBUST BAYESIAN ANALYSIS TO REPRESENT DIVERSE SOURCES OF UNCERTAINTY IN INTEGRATED ASSESSMENT

    EPA Science Inventory

    In our previous research, we showed that robust Bayesian methods can be used in environmental modeling to define a set of probability distributions for key parameters that captures the effects of expert disagreement, ambiguity, or ignorance. This entire set can then be update...

  18. 75 FR 26269 - Draft Programmatic Environmental Assessment for the Integrated Public Alert and Warning Program's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ...] Draft Programmatic Environmental Assessment for the Integrated Public Alert and Warning Program's... from construction- related actions taken under the Integrated Public Alert and Warning Program (IPAWS... Order 13407, Public Alert and Warning System, by providing robust and survivable power generation, fuel...

  19. Comparison of Artificial Compressibility Methods

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Housman, Jeffrey; Kwak, Dochan

    2004-01-01

    Various artificial compressibility methods for calculating the three-dimensional incompressible Navier-Stokes equations are compared. Each method is described and numerical solutions to test problems are conducted. A comparison based on convergence behavior, accuracy, and robustness is given.

  20. Heterodimer Autorepression Loop: A Robust and Flexible Pulse-Generating Genetic Module

    NASA Astrophysics Data System (ADS)

    Lannoo, B.; Carlon, E.; Lefranc, M.

    2016-07-01

    We investigate the dynamics of the heterodimer autorepression loop (HAL), a small genetic module in which a protein A acts as an autorepressor and binds to a second protein B to form an A B dimer. For suitable values of the rate constants, the HAL produces pulses of A alternating with pulses of B . By means of analytical and numerical calculations, we show that the duration of A pulses is extremely robust against variation of the rate constants while the duration of the B pulses can be flexibly adjusted. The HAL is thus a minimal genetic module generating robust pulses with a tunable duration, an interesting property for cellular signaling.

  1. Robust phase retrieval of complex-valued object in phase modulation by hybrid Wirtinger flow method

    NASA Astrophysics Data System (ADS)

    Wei, Zhun; Chen, Wen; Yin, Tiantian; Chen, Xudong

    2017-09-01

    This paper presents a robust iterative algorithm, known as hybrid Wirtinger flow (HWF), for phase retrieval (PR) of complex objects from noisy diffraction intensities. Numerical simulations indicate that the HWF method consistently outperforms conventional PR methods in terms of both accuracy and convergence rate in multiple phase modulations. The proposed algorithm is also more robust to low oversampling ratios, loose constraints, and noisy environments. Furthermore, compared with traditional Wirtinger flow, sample complexity is largely reduced. It is expected that the proposed HWF method will find applications in the rapidly growing coherent diffractive imaging field for high-quality image reconstruction with multiple modulations, as well as other disciplines where PR is needed.

  2. Adaptive GSA-based optimal tuning of PI controlled servo systems with reduced process parametric sensitivity, robust stability and controller robustness.

    PubMed

    Precup, Radu-Emil; David, Radu-Codrut; Petriu, Emil M; Radac, Mircea-Bogdan; Preitl, Stefan

    2014-11-01

    This paper suggests a new generation of optimal PI controllers for a class of servo systems characterized by saturation and dead zone static nonlinearities and second-order models with an integral component. The objective functions are expressed as the integral of time multiplied by absolute error plus the weighted sum of the integrals of output sensitivity functions of the state sensitivity models with respect to two process parametric variations. The PI controller tuning conditions applied to a simplified linear process model involve a single design parameter specific to the extended symmetrical optimum (ESO) method which offers the desired tradeoff to several control system performance indices. An original back-calculation and tracking anti-windup scheme is proposed in order to prevent the integrator wind-up and to compensate for the dead zone nonlinearity of the process. The minimization of the objective functions is carried out in the framework of optimization problems with inequality constraints which guarantee the robust stability with respect to the process parametric variations and the controller robustness. An adaptive gravitational search algorithm (GSA) solves the optimization problems focused on the optimal tuning of the design parameter specific to the ESO method and of the anti-windup tracking gain. A tuning method for PI controllers is proposed as an efficient approach to the design of resilient control systems. The tuning method and the PI controllers are experimentally validated by the adaptive GSA-based tuning of PI controllers for the angular position control of a laboratory servo system.

  3. On the robustness of complex heterogeneous gene expression networks.

    PubMed

    Gómez-Gardeñes, Jesús; Moreno, Yamir; Floría, Luis M

    2005-04-01

    We analyze a continuous gene expression model on the underlying topology of a complex heterogeneous network. Numerical simulations aimed at studying the chaotic and periodic dynamics of the model are performed. The results clearly indicate that there is a region in which the dynamical and structural complexity of the system avoid chaotic attractors. However, contrary to what has been reported for Random Boolean Networks, the chaotic phase cannot be completely suppressed, which has important bearings on network robustness and gene expression modeling.

  4. Computer program ETC improves computation of elastic transfer matrices of Legendre polynomials P/0/ and P/1/

    NASA Technical Reports Server (NTRS)

    Gibson, G.; Miller, M.

    1967-01-01

    Computer program ETC improves computation of elastic transfer matrices of Legendre polynomials P/0/ and P/1/. Rather than carrying out a double integration numerically, one of the integrations is accomplished analytically and the numerical integration need only be carried out over one variable.

  5. Emergence of robustness in networks of networks

    NASA Astrophysics Data System (ADS)

    Roth, Kevin; Morone, Flaviano; Min, Byungjoon; Makse, Hernán A.

    2017-06-01

    A model of interdependent networks of networks (NONs) was introduced recently [Proc. Natl. Acad. Sci. (USA) 114, 3849 (2017), 10.1073/pnas.1620808114] in the context of brain activation to identify the neural collective influencers in the brain NON. Here we investigate the emergence of robustness in such a model, and we develop an approach to derive an exact expression for the random percolation transition in Erdös-Rényi NONs of this kind. Analytical calculations are in agreement with numerical simulations, and highlight the robustness of the NON against random node failures, which thus presents a new robust universality class of NONs. The key aspect of this robust NON model is that a node can be activated even if it does not belong to the giant mutually connected component, thus allowing the NON to be built from below the percolation threshold, which is not possible in previous models of interdependent networks. Interestingly, the phase diagram of the model unveils particular patterns of interconnectivity for which the NON is most vulnerable, thereby marking the boundary above which the robustness of the system improves with increasing dependency connections.

  6. Doubly robust nonparametric inference on the average treatment effect.

    PubMed

    Benkeser, D; Carone, M; Laan, M J Van Der; Gilbert, P B

    2017-12-01

    Doubly robust estimators are widely used to draw inference about the average effect of a treatment. Such estimators are consistent for the effect of interest if either one of two nuisance parameters is consistently estimated. However, if flexible, data-adaptive estimators of these nuisance parameters are used, double robustness does not readily extend to inference. We present a general theoretical study of the behaviour of doubly robust estimators of an average treatment effect when one of the nuisance parameters is inconsistently estimated. We contrast different methods for constructing such estimators and investigate the extent to which they may be modified to also allow doubly robust inference. We find that while targeted minimum loss-based estimation can be used to solve this problem very naturally, common alternative frameworks appear to be inappropriate for this purpose. We provide a theoretical study and a numerical evaluation of the alternatives considered. Our simulations highlight the need for and usefulness of these approaches in practice, while our theoretical developments have broad implications for the construction of estimators that permit doubly robust inference in other problems.

  7. Robust control of combustion instabilities

    NASA Astrophysics Data System (ADS)

    Hong, Boe-Shong

    Several interactive dynamical subsystems, each of which has its own time-scale and physical significance, are decomposed to build a feedback-controlled combustion- fluid robust dynamics. On the fast-time scale, the phenomenon of combustion instability is corresponding to the internal feedback of two subsystems: acoustic dynamics and flame dynamics, which are parametrically dependent on the slow-time-scale mean-flow dynamics controlled for global performance by a mean-flow controller. This dissertation constructs such a control system, through modeling, analysis and synthesis, to deal with model uncertainties, environmental noises and time- varying mean-flow operation. Conservation law is decomposed as fast-time acoustic dynamics and slow-time mean-flow dynamics, served for synthesizing LPV (linear parameter varying)- L2-gain robust control law, in which a robust observer is embedded for estimating and controlling the internal status, while achieving trade- offs among robustness, performances and operation. The robust controller is formulated as two LPV-type Linear Matrix Inequalities (LMIs), whose numerical solver is developed by finite-element method. Some important issues related to physical understanding and engineering application are discussed in simulated results of the control system.

  8. Cell-Surface Bound Nonreceptors and Signaling Morphogen Gradients

    PubMed Central

    Wan, Frederic Y.M.

    2013-01-01

    The patterning of many developing tissues is orchestrated by gradients of signaling morphogens. Included among the molecular events that drive the formation of morphogen gradients are a variety of elaborate regulatory interactions. Such interactions are thought to make gradients robust, i.e. insensitive to change in the face of genetic or environmental perturbations. But just how this is accomplished is a major unanswered question. Recently extensive numerical simulations suggest that robustness of signaling gradients can be achieved through morphogen degradation mediated by cell surface bound non-signaling receptor molecules (or nonreceptors for short) such as heparan sulfate proteoglycans (HSPG). The present paper provides a mathematical validation of the results from the aforementioned numerical experiments. Extension of a basic extracellular model to include reversible binding with nonreceptors synthesized at a prescribed rate and mediated morphogen degradation shows that the signaling gradient diminishes with increasing concentration of cell-surface nonreceptors. Perturbation and asymptotic solutions obtained for i) low (receptor and nonreceptor) occupancy, and ii) high nonreceptor concntration permit more explicit delineation of the effects of nonreceptors on signaling gradients and facilitate the identification of scenarios in which the presence of nonreceptors may or may not be effective in promoting robustness. PMID:25232201

  9. Stability in skipping gaits

    NASA Astrophysics Data System (ADS)

    Andrada, Emanuel; Müller, Roy; Blickhan, Reinhard

    2016-11-01

    As an alternative to walking and running, humans are able to skip. However, adult humans avoid it. This fact seems to be related to the higher energetic costs associated with skipping. Still, children, some birds, lemurs and lizards use skipping gaits during daily locomotion. We combined experimental data on humans with numerical simulations to test whether stability and robustness motivate this choice. Parameters for modelling were obtained from 10 male subjects. They locomoted using unilateral skipping along a 12 m runway. We used a bipedal spring loaded inverted pendulum to model and to describe the dynamics of skipping. The subjects displayed higher peak ground reaction forces and leg stiffness in the first landing leg (trailing leg) compared to the second landing leg (leading leg). In numerical simulations, we found that skipping is stable across an amazing speed range from skipping on the spot to fast running speeds. Higher leg stiffness in the trailing leg permits longer strides at same system energy. However, this strategy is at the same time less robust to sudden drop perturbations than skipping with a stiffer leading leg. A slightly higher stiffness in the leading leg is most robust, but might be costlier.

  10. Some conservation issues for the dynamical cores of NWP and climate models

    NASA Astrophysics Data System (ADS)

    Thuburn, J.

    2008-03-01

    The rationale for designing atmospheric numerical model dynamical cores with certain conservation properties is reviewed. The conceptual difficulties associated with the multiscale nature of realistic atmospheric flow, and its lack of time-reversibility, are highlighted. A distinction is made between robust invariants, which are conserved or nearly conserved in the adiabatic and frictionless limit, and non-robust invariants, which are not conserved in the limit even though they are conserved by exactly adiabatic frictionless flow. For non-robust invariants, a further distinction is made between processes that directly transfer some quantity from large to small scales, and processes involving a cascade through a continuous range of scales; such cascades may either be explicitly parameterized, or handled implicitly by the dynamical core numerics, accepting the implied non-conservation. An attempt is made to estimate the relative importance of different conservation laws. It is argued that satisfactory model performance requires spurious sources of a conservable quantity to be much smaller than any true physical sources; for several conservable quantities the magnitudes of the physical sources are estimated in order to provide benchmarks against which any spurious sources may be measured.

  11. Robust integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    1993-01-01

    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic STOVL fighter aircraft in transition flight. The emphasis is on formulating the H-infinity optimal control synthesis problem such that the critical requirements for the flight and propulsion systems are adequately reflected within the linear, centralized control problem formulation and the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objective as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope.

  12. A numerical study of the axisymmetric Couette-Taylor problem using a fast high-resolution second-order central scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupferman, R.

    The author presents a numerical study of the axisymmetric Couette-Taylor problem using a finite difference scheme. The scheme is based on a staggered version of a second-order central-differencing method combined with a discrete Hodge projection. The use of central-differencing operators obviates the need to trace the characteristic flow associated with the hyperbolic terms. The result is a simple and efficient scheme which is readily adaptable to other geometries and to more complicated flows. The scheme exhibits competitive performance in terms of accuracy, resolution, and robustness. The numerical results agree accurately with linear stability theory and with previous numerical studies.

  13. Efficiency analysis of numerical integrations for finite element substructure in real-time hybrid simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jinting; Lu, Liqiao; Zhu, Fei

    2018-01-01

    Finite element (FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations (RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time (TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method (CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ (λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.

  14. Integrating spatial and numerical structure in mathematical patterning

    NASA Astrophysics Data System (ADS)

    Ni’mah, K.; Purwanto; Irawan, E. B.; Hidayanto, E.

    2018-03-01

    This paper reports a study monitoring the integrating spatial and numerical structure in mathematical patterning skills of 30 students grade 7th of junior high school. The purpose of this research is to clarify the processes by which learners construct new knowledge in mathematical patterning. Findings indicate that: (1) students are unable to organize the structure of spatial and numerical, (2) students were only able to organize the spatial structure, but the numerical structure is still incorrect, (3) students were only able to organize numerical structure, but its spatial structure is still incorrect, (4) students were able to organize both of the spatial and numerical structure.

  15. A Numerical Method for Integrating Orbits

    NASA Astrophysics Data System (ADS)

    Sahakyan, Karen P.; Melkonyan, Anahit A.; Hayrapetyan, S. R.

    2007-08-01

    A numerical method based of trigonometric polynomials for integrating of ordinary differential equations of first and second order is suggested. This method is a trigonometric analogue of Everhart's method and can be especially useful for periodical trajectories.

  16. How simple autonomous decisions evolve into robust behaviours? A review from neurorobotics, cognitive, self-organized and artificial immune systems fields.

    PubMed

    Fernandez-Leon, Jose A; Acosta, Gerardo G; Rozenfeld, Alejandro

    2014-10-01

    Researchers in diverse fields, such as in neuroscience, systems biology and autonomous robotics, have been intrigued by the origin and mechanisms for biological robustness. Darwinian evolution, in general, has suggested that adaptive mechanisms as a way of reaching robustness, could evolve by natural selection acting successively on numerous heritable variations. However, is this understanding enough for realizing how biological systems remain robust during their interactions with the surroundings? Here, we describe selected studies of bio-inspired systems that show behavioral robustness. From neurorobotics, cognitive, self-organizing and artificial immune system perspectives, our discussions focus mainly on how robust behaviors evolve or emerge in these systems, having the capacity of interacting with their surroundings. These descriptions are twofold. Initially, we introduce examples from autonomous robotics to illustrate how the process of designing robust control can be idealized in complex environments for autonomous navigation in terrain and underwater vehicles. We also include descriptions of bio-inspired self-organizing systems. Then, we introduce other studies that contextualize experimental evolution with simulated organisms and physical robots to exemplify how the process of natural selection can lead to the evolution of robustness by means of adaptive behaviors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Numerical Asymptotic Solutions Of Differential Equations

    NASA Technical Reports Server (NTRS)

    Thurston, Gaylen A.

    1992-01-01

    Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.

  18. New Langevin and gradient thermostats for rigid body dynamics.

    PubMed

    Davidchack, R L; Ouldridge, T E; Tretyakov, M V

    2015-04-14

    We introduce two new thermostats, one of Langevin type and one of gradient (Brownian) type, for rigid body dynamics. We formulate rotation using the quaternion representation of angular coordinates; both thermostats preserve the unit length of quaternions. The Langevin thermostat also ensures that the conjugate angular momenta stay within the tangent space of the quaternion coordinates, as required by the Hamiltonian dynamics of rigid bodies. We have constructed three geometric numerical integrators for the Langevin thermostat and one for the gradient thermostat. The numerical integrators reflect key properties of the thermostats themselves. Namely, they all preserve the unit length of quaternions, automatically, without the need of a projection onto the unit sphere. The Langevin integrators also ensure that the angular momenta remain within the tangent space of the quaternion coordinates. The Langevin integrators are quasi-symplectic and of weak order two. The numerical method for the gradient thermostat is of weak order one. Its construction exploits ideas of Lie-group type integrators for differential equations on manifolds. We numerically compare the discretization errors of the Langevin integrators, as well as the efficiency of the gradient integrator compared to the Langevin ones when used in the simulation of rigid TIP4P water model with smoothly truncated electrostatic interactions. We observe that the gradient integrator is computationally less efficient than the Langevin integrators. We also compare the relative accuracy of the Langevin integrators in evaluating various static quantities and give recommendations as to the choice of an appropriate integrator.

  19. Numerical evaluation of electromagnetic fields due to dipole antennas in the presence of stratified media

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Brown, R.; Kong, J. A.; Simmons, G.

    1974-01-01

    Two numerical methods are used to evaluate the integrals that express the em fields due to dipole antennas radiating in the presence of a stratified medium. The first method is a direct integration by means of Simpson's rule. The second method is indirect and approximates the kernel of the integral by means of the fast Fourier transform. In contrast to previous analytical methods that applied only to two-layer cases the numerical methods can be used for any arbitrary number of layers with general properties.

  20. State feedback integral control for a rotary direct drive servo valve using a Lyapunov function approach.

    PubMed

    Yu, Jue; Zhuang, Jian; Yu, Dehong

    2015-01-01

    This paper concerns a state feedback integral control using a Lyapunov function approach for a rotary direct drive servo valve (RDDV) while considering parameter uncertainties. Modeling of this RDDV servovalve reveals that its mechanical performance is deeply influenced by friction torques and flow torques; however, these torques are uncertain and mutable due to the nature of fluid flow. To eliminate load resistance and to achieve satisfactory position responses, this paper develops a state feedback control that integrates an integral action and a Lyapunov function. The integral action is introduced to address the nonzero steady-state error; in particular, the Lyapunov function is employed to improve control robustness by adjusting the varying parameters within their value ranges. This new controller also has the advantages of simple structure and ease of implementation. Simulation and experimental results demonstrate that the proposed controller can achieve higher control accuracy and stronger robustness. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.

    PubMed

    Ling, Hong; Luo, Ercang; Dai, Wei

    2006-12-22

    Thermoacoustic prime movers can generate pressure oscillation without any moving parts on self-excited thermoacoustic effect. The details of the numerical simulation methodology for thermoacoustic engines are presented in the paper. First, a four-port network method is used to build the transcendental equation of complex frequency as a criterion to judge if temperature distribution of the whole thermoacoustic system is correct for the case with given heating power. Then, the numerical simulation of a thermoacoustic-Stirling heat engine is carried out. It is proved that the numerical simulation code can run robustly and output what one is interested in. Finally, the calculated results are compared with the experiments of the thermoacoustic-Stirling heat engine (TASHE). It shows that the numerical simulation can agrees with the experimental results with acceptable accuracy.

  2. An impurity-induced gap system as a quantum data bus for quantum state transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bing, E-mail: chenbingphys@gmail.com; Li, Yong; Song, Z.

    2014-09-15

    We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness ofmore » this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.« less

  3. Inverse transport calculations in optical imaging with subspace optimization algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Tian, E-mail: tding@math.utexas.edu; Ren, Kui, E-mail: ren@math.utexas.edu

    2014-09-15

    Inverse boundary value problems for the radiative transport equation play an important role in optics-based medical imaging techniques such as diffuse optical tomography (DOT) and fluorescence optical tomography (FOT). Despite the rapid progress in the mathematical theory and numerical computation of these inverse problems in recent years, developing robust and efficient reconstruction algorithms remains a challenging task and an active research topic. We propose here a robust reconstruction method that is based on subspace minimization techniques. The method splits the unknown transport solution (or a functional of it) into low-frequency and high-frequency components, and uses singular value decomposition to analyticallymore » recover part of low-frequency information. Minimization is then applied to recover part of the high-frequency components of the unknowns. We present some numerical simulations with synthetic data to demonstrate the performance of the proposed algorithm.« less

  4. The role of 3D visualisation as an analytical tool preparatory to numerical modelling [rapid communication

    NASA Astrophysics Data System (ADS)

    Robins, N. S.; Rutter, H. K.; Dumpleton, S.; Peach, D. W.

    2005-01-01

    Groundwater investigation has long depended on the process of developing a conceptual flow model as a precursor to developing a mathematical model, which in turn may lead in complex aquifers to the development of a numerical approximation model. The assumptions made in the development of the conceptual model depend heavily on the geological framework defining the aquifer, and if the conceptual model is inappropriate then subsequent modelling will also be incorrect. Paradoxically, the development of a robust conceptual model remains difficult, not least because this 3D paradigm is usually reduced to 2D plans and sections. 3D visualisation software is now available to facilitate the development of the conceptual model, to make the model more robust and defensible and to assist in demonstrating the hydraulics of the aquifer system. Case studies are presented to demonstrate the role and cost-effectiveness of the visualisation process.

  5. Regularization Reconstruction Method for Imaging Problems in Electrical Capacitance Tomography

    NASA Astrophysics Data System (ADS)

    Chu, Pan; Lei, Jing

    2017-11-01

    The electrical capacitance tomography (ECT) is deemed to be a powerful visualization measurement technique for the parametric measurement in a multiphase flow system. The inversion task in the ECT technology is an ill-posed inverse problem, and seeking for an efficient numerical method to improve the precision of the reconstruction images is important for practical measurements. By the introduction of the Tikhonov regularization (TR) methodology, in this paper a loss function that emphasizes the robustness of the estimation and the low rank property of the imaging targets is put forward to convert the solution of the inverse problem in the ECT reconstruction task into a minimization problem. Inspired by the split Bregman (SB) algorithm, an iteration scheme is developed for solving the proposed loss function. Numerical experiment results validate that the proposed inversion method not only reconstructs the fine structures of the imaging targets, but also improves the robustness.

  6. Maze-solving by chemotaxis

    NASA Astrophysics Data System (ADS)

    Reynolds, A. M.

    2010-06-01

    Here, we report on numerical simulations showing that chemotaxis will take a body through a maze via the shortest possible route to the source of a chemoattractant. This is a robust finding that does not depend on the geometrical makeup of the maze. The predictions are supported by recent experimental studies which have shown that by moving down gradients in pH , a droplet of organic solvent can find the shortest of multiple possible paths through a maze to an acid-soaked exit. They are also consistent with numerical and experimental evidence that plant-parasitic nematodes take the shortest route through the labyrinth of air-filled pores within soil to preferred host plants that produce volatile chemoattractants. The predictions support the view that maze-solving is a robust property of chemotaxis and is not specific to particular kinds of maze or to the fractal structure of air-filled channels within soils.

  7. Development of Numerical Methods to Estimate the Ohmic Breakdown Scenarios of a Tokamak

    NASA Astrophysics Data System (ADS)

    Yoo, Min-Gu; Kim, Jayhyun; An, Younghwa; Hwang, Yong-Seok; Shim, Seung Bo; Lee, Hae June; Na, Yong-Su

    2011-10-01

    The ohmic breakdown is a fundamental method to initiate the plasma in a tokamak. For the robust breakdown, ohmic breakdown scenarios have to be carefully designed by optimizing the magnetic field configurations to minimize the stray magnetic fields. This research focuses on development of numerical methods to estimate the ohmic breakdown scenarios by precise analysis of the magnetic field configurations. This is essential for the robust and optimal breakdown and start-up of fusion devices especially for ITER and its beyond equipped with low toroidal electric field (ET <= 0.3 V/m). A field-line-following analysis code based on the Townsend avalanche theory and a particle simulation code are developed to analyze the breakdown characteristics of actual complex magnetic field configurations including the stray magnetic fields in tokamaks. They are applied to the ohmic breakdown scenarios of tokamaks such as KSTAR and VEST and compared with experiments.

  8. Brownian dynamics of confined rigid bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delong, Steven; Balboa Usabiaga, Florencio; Donev, Aleksandar, E-mail: donev@courant.nyu.edu

    2015-10-14

    We introduce numerical methods for simulating the diffusive motion of rigid bodies of arbitrary shape immersed in a viscous fluid. We parameterize the orientation of the bodies using normalized quaternions, which are numerically robust, space efficient, and easy to accumulate. We construct a system of overdamped Langevin equations in the quaternion representation that accounts for hydrodynamic effects, preserves the unit-norm constraint on the quaternion, and is time reversible with respect to the Gibbs-Boltzmann distribution at equilibrium. We introduce two schemes for temporal integration of the overdamped Langevin equations of motion, one based on the Fixman midpoint method and the othermore » based on a random finite difference approach, both of which ensure that the correct stochastic drift term is captured in a computationally efficient way. We study several examples of rigid colloidal particles diffusing near a no-slip boundary and demonstrate the importance of the choice of tracking point on the measured translational mean square displacement (MSD). We examine the average short-time as well as the long-time quasi-two-dimensional diffusion coefficient of a rigid particle sedimented near a bottom wall due to gravity. For several particle shapes, we find a choice of tracking point that makes the MSD essentially linear with time, allowing us to estimate the long-time diffusion coefficient efficiently using a Monte Carlo method. However, in general, such a special choice of tracking point does not exist, and numerical techniques for simulating long trajectories, such as the ones we introduce here, are necessary to study diffusion on long time scales.« less

  9. A novel approach to solve nonlinear Fredholm integral equations of the second kind.

    PubMed

    Li, Hu; Huang, Jin

    2016-01-01

    In this paper, we present a novel approach to solve nonlinear Fredholm integral equations of the second kind. This algorithm is constructed by the integral mean value theorem and Newton iteration. Convergence and error analysis of the numerical solutions are given. Moreover, Numerical examples show the algorithm is very effective and simple.

  10. On the use of the line integral in the numerical treatment of conservative problems

    NASA Astrophysics Data System (ADS)

    Brugnano, Luigi; Iavernaro, Felice

    2016-06-01

    We sketch out the use of the line integral as a tool to devise numerical methods suitable for conservative and, in particular, Hamiltonian problems. The monograph [3] presents the fundamental theory on line integral methods and this short note aims at exploring some aspects and results emerging from their study.

  11. Synchronised firing patterns in a random network of adaptive exponential integrate-and-fire neuron model.

    PubMed

    Borges, F S; Protachevicz, P R; Lameu, E L; Bonetti, R C; Iarosz, K C; Caldas, I L; Baptista, M S; Batista, A M

    2017-06-01

    We have studied neuronal synchronisation in a random network of adaptive exponential integrate-and-fire neurons. We study how spiking or bursting synchronous behaviour appears as a function of the coupling strength and the probability of connections, by constructing parameter spaces that identify these synchronous behaviours from measurements of the inter-spike interval and the calculation of the order parameter. Moreover, we verify the robustness of synchronisation by applying an external perturbation to each neuron. The simulations show that bursting synchronisation is more robust than spike synchronisation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Andean Mountain Building: An Integrated Topographic, GPS, Seismological and Numerical Study

    NASA Technical Reports Server (NTRS)

    Liu, Mian; Stein, Seth

    2003-01-01

    The main objective of this project was to better understand the geodynamics controlling the mountain building and topographic evolution in the central Andes using an integrated approach that combines GPS, seismological, and numerical studies.

  13. Numerical techniques in radiative heat transfer for general, scattering, plane-parallel media

    NASA Technical Reports Server (NTRS)

    Sharma, A.; Cogley, A. C.

    1982-01-01

    The study of radiative heat transfer with scattering usually leads to the solution of singular Fredholm integral equations. The present paper presents an accurate and efficient numerical method to solve certain integral equations that govern radiative equilibrium problems in plane-parallel geometry for both grey and nongrey, anisotropically scattering media. In particular, the nongrey problem is represented by a spectral integral of a system of nonlinear integral equations in space, which has not been solved previously. The numerical technique is constructed to handle this unique nongrey governing equation as well as the difficulties caused by singular kernels. Example problems are solved and the method's accuracy and computational speed are analyzed.

  14. An integrated guidance and control approach in three-dimensional space for hypersonic missile constrained by impact angles.

    PubMed

    Liu, Xiaodong; Huang, Wanwei; Du, Lifu

    2017-01-01

    A new robust three-dimensional integrated guidance and control (3D-IGC) approach is investigated for sliding-to-turn (STT) hypersonic missile, which encounters high uncertainties and strict impact angle constraints. First, a nonlinear state-space model with more generality is established facing to the design of 3D-IGC law. With regard to the as-built nonlinear system, a robust dynamic inversion control (RDIC) approach is proposed to overcome the robustness deficiency of traditional DIC, and then it is applied to construct the basic 3D-IGC law combining with backstepping method. In order to avoid the problems of "explosion of terms" and high-frequency chattering, an improved 3D-IGC law is further proposed by introducing dynamic surface control and continuous approximation approaches. From the computer simulation on a hypersonic missile, the proposed 3D-IGC law not only guarantees the stable flight, but also presents the precise control on terminal locations and impact angles. Moreover, it possesses smooth control output and strong robustness. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Active Fault Tolerant Control for Ultrasonic Piezoelectric Motor

    NASA Astrophysics Data System (ADS)

    Boukhnifer, Moussa

    2012-07-01

    Ultrasonic piezoelectric motor technology is an important system component in integrated mechatronics devices working on extreme operating conditions. Due to these constraints, robustness and performance of the control interfaces should be taken into account in the motor design. In this paper, we apply a new architecture for a fault tolerant control using Youla parameterization for an ultrasonic piezoelectric motor. The distinguished feature of proposed controller architecture is that it shows structurally how the controller design for performance and robustness may be done separately which has the potential to overcome the conflict between performance and robustness in the traditional feedback framework. A fault tolerant control architecture includes two parts: one part for performance and the other part for robustness. The controller design works in such a way that the feedback control system will be solely controlled by the proportional plus double-integral PI2 performance controller for a nominal model without disturbances and H∞ robustification controller will only be activated in the presence of the uncertainties or an external disturbances. The simulation results demonstrate the effectiveness of the proposed fault tolerant control architecture.

  16. Efficient and robust relaxation procedures for multi-component mixtures including phase transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Ee, E-mail: eehan@math.uni-bremen.de; Hantke, Maren, E-mail: maren.hantke@ovgu.de; Müller, Siegfried, E-mail: mueller@igpm.rwth-aachen.de

    We consider a thermodynamic consistent multi-component model in multi-dimensions that is a generalization of the classical two-phase flow model of Baer and Nunziato. The exchange of mass, momentum and energy between the phases is described by additional source terms. Typically these terms are handled by relaxation procedures. Available relaxation procedures suffer from efficiency and robustness resulting in very costly computations that in general only allow for one-dimensional computations. Therefore we focus on the development of new efficient and robust numerical methods for relaxation processes. We derive exact procedures to determine mechanical and thermal equilibrium states. Further we introduce a novelmore » iterative method to treat the mass transfer for a three component mixture. All new procedures can be extended to an arbitrary number of inert ideal gases. We prove existence, uniqueness and physical admissibility of the resulting states and convergence of our new procedures. Efficiency and robustness of the procedures are verified by means of numerical computations in one and two space dimensions. - Highlights: • We develop novel relaxation procedures for a generalized, thermodynamically consistent Baer–Nunziato type model. • Exact procedures for mechanical and thermal relaxation procedures avoid artificial parameters. • Existence, uniqueness and physical admissibility of the equilibrium states are proven for special mixtures. • A novel iterative method for mass transfer is introduced for a three component mixture providing a unique and admissible equilibrium state.« less

  17. Bending of Euler-Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach

    NASA Astrophysics Data System (ADS)

    Oskouie, M. Faraji; Ansari, R.; Rouhi, H.

    2018-04-01

    Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.

  18. WATSFAR: numerical simulation of soil WATer and Solute fluxes using a FAst and Robust method

    NASA Astrophysics Data System (ADS)

    Crevoisier, David; Voltz, Marc

    2013-04-01

    To simulate the evolution of hydro- and agro-systems, numerous spatialised models are based on a multi-local approach and improvement of simulation accuracy by data-assimilation techniques are now used in many application field. The latest acquisition techniques provide a large amount of experimental data, which increase the efficiency of parameters estimation and inverse modelling approaches. In turn simulations are often run on large temporal and spatial domains which requires a large number of model runs. Eventually, despite the regular increase in computing capacities, the development of fast and robust methods describing the evolution of saturated-unsaturated soil water and solute fluxes is still a challenge. Ross (2003, Agron J; 95:1352-1361) proposed a method, solving 1D Richards' and convection-diffusion equation, that fulfil these characteristics. The method is based on a non iterative approach which reduces the numerical divergence risks and allows the use of coarser spatial and temporal discretisations, while assuring a satisfying accuracy of the results. Crevoisier et al. (2009, Adv Wat Res; 32:936-947) proposed some technical improvements and validated this method on a wider range of agro- pedo- climatic situations. In this poster, we present the simulation code WATSFAR which generalises the Ross method to other mathematical representations of soil water retention curve (i.e. standard and modified van Genuchten model) and includes a dual permeability context (preferential fluxes) for both water and solute transfers. The situations tested are those known to be the less favourable when using standard numerical methods: fine textured and extremely dry soils, intense rainfall and solute fluxes, soils near saturation, ... The results of WATSFAR have been compared with the standard finite element model Hydrus. The analysis of these comparisons highlights two main advantages for WATSFAR, i) robustness: even on fine textured soil or high water and solute fluxes - where Hydrus simulations may fail to converge - no numerical problem appears, and ii) accuracy of simulations even for loose spatial domain discretisations, which can only be obtained by Hydrus with fine discretisations.

  19. Determining the transport mechanism of an enzyme-catalytic complex metabolic network based on biological robustness.

    PubMed

    Wang, Lei

    2013-04-01

    Understanding the transport mechanism of 1,3-propanediol (1,3-PD) is of critical importance to do further research on gene regulation. Due to the lack of intracellular information, on the basis of enzyme-catalytic system, using biological robustness as performance index, we present a system identification model to infer the most possible transport mechanism of 1,3-PD, in which the performance index consists of the relative error of the extracellular substance concentrations and biological robustness of the intracellular substance concentrations. We will not use a Boolean framework but prefer a model description based on ordinary differential equations. Among other advantages, this also facilitates the robustness analysis, which is the main goal of this paper. An algorithm is constructed to seek the solution of the identification model. Numerical results show that the most possible transport way is active transport coupled with passive diffusion.

  20. Effect of smoothing on robust chaos.

    PubMed

    Deshpande, Amogh; Chen, Qingfei; Wang, Yan; Lai, Ying-Cheng; Do, Younghae

    2010-08-01

    In piecewise-smooth dynamical systems, situations can arise where the asymptotic attractors of the system in an open parameter interval are all chaotic (e.g., no periodic windows). This is the phenomenon of robust chaos. Previous works have established that robust chaos can occur through the mechanism of border-collision bifurcation, where border is the phase-space region where discontinuities in the derivatives of the dynamical equations occur. We investigate the effect of smoothing on robust chaos and find that periodic windows can arise when a small amount of smoothness is present. We introduce a parameter of smoothing and find that the measure of the periodic windows in the parameter space scales linearly with the parameter, regardless of the details of the smoothing function. Numerical support and a heuristic theory are provided to establish the scaling relation. Experimental evidence of periodic windows in a supposedly piecewise linear dynamical system, which has been implemented as an electronic circuit, is also provided.

  1. The Robustness Analysis of Wireless Sensor Networks under Uncertain Interference

    PubMed Central

    Deng, Changjian

    2013-01-01

    Based on the complex network theory, robustness analysis of condition monitoring wireless sensor network under uncertain interference is present. In the evolution of the topology of sensor networks, the density weighted algebraic connectivity is taken into account, and the phenomenon of removing and repairing the link and node in the network is discussed. Numerical simulation is conducted to explore algebraic connectivity characteristics and network robustness performance. It is found that nodes density has the effect on algebraic connectivity distribution in the random graph model; high density nodes carry more connections, use more throughputs, and may be more unreliable. Moreover, the results show that, when network should be more error tolerant or robust by repairing nodes or adding new nodes, the network should be better clustered in median and high scale wireless sensor networks and be meshing topology in small scale networks. PMID:24363613

  2. Assessing the Robustness of Complete Bacterial Genome Segmentations

    NASA Astrophysics Data System (ADS)

    Devillers, Hugo; Chiapello, Hélène; Schbath, Sophie; El Karoui, Meriem

    Comparison of closely related bacterial genomes has revealed the presence of highly conserved sequences forming a "backbone" that is interrupted by numerous, less conserved, DNA fragments. Segmentation of bacterial genomes into backbone and variable regions is particularly useful to investigate bacterial genome evolution. Several software tools have been designed to compare complete bacterial chromosomes and a few online databases store pre-computed genome comparisons. However, very few statistical methods are available to evaluate the reliability of these software tools and to compare the results obtained with them. To fill this gap, we have developed two local scores to measure the robustness of bacterial genome segmentations. Our method uses a simulation procedure based on random perturbations of the compared genomes. The scores presented in this paper are simple to implement and our results show that they allow to discriminate easily between robust and non-robust bacterial genome segmentations when using aligners such as MAUVE and MGA.

  3. Robust design of (s, S) inventory policy parameters in supply chains with demand and lead time uncertainties

    NASA Astrophysics Data System (ADS)

    Karimi Movahed, Kamran; Zhang, Zhi-Hai

    2015-09-01

    Demand and lead time uncertainties have significant effects on supply chain behaviour. In this paper, we present a single-product three-level multi-period supply chain with uncertain demands and lead times by using robust techniques to study the managerial insights of the supply chain inventory system under uncertainty. We formulate this problem as a robust mixed-integer linear program with minimised expected cost and total cost variation to determine the optimal (s, S) values of the inventory parameters. Several numerical studies are performed to investigate the supply chain behaviour. Useful guidelines for the design of a robust supply chain are also provided. Results show that the order variance and the expected cost in a supply chain significantly increase when the manufacturer's review period is an integer ratio of the distributor's and the retailer's review periods.

  4. Robust fuzzy control subject to state variance and passivity constraints for perturbed nonlinear systems with multiplicative noises.

    PubMed

    Chang, Wen-Jer; Huang, Bo-Jyun

    2014-11-01

    The multi-constrained robust fuzzy control problem is investigated in this paper for perturbed continuous-time nonlinear stochastic systems. The nonlinear system considered in this paper is represented by a Takagi-Sugeno fuzzy model with perturbations and state multiplicative noises. The multiple performance constraints considered in this paper include stability, passivity and individual state variance constraints. The Lyapunov stability theory is employed to derive sufficient conditions to achieve the above performance constraints. By solving these sufficient conditions, the contribution of this paper is to develop a parallel distributed compensation based robust fuzzy control approach to satisfy multiple performance constraints for perturbed nonlinear systems with multiplicative noises. At last, a numerical example for the control of perturbed inverted pendulum system is provided to illustrate the applicability and effectiveness of the proposed multi-constrained robust fuzzy control method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Robust fast controller design via nonlinear fractional differential equations.

    PubMed

    Zhou, Xi; Wei, Yiheng; Liang, Shu; Wang, Yong

    2017-07-01

    A new method for linear system controller design is proposed whereby the closed-loop system achieves both robustness and fast response. The robustness performance considered here means the damping ratio of closed-loop system can keep its desired value under system parameter perturbation, while the fast response, represented by rise time of system output, can be improved by tuning the controller parameter. We exploit techniques from both the nonlinear systems control and the fractional order systems control to derive a novel nonlinear fractional order controller. For theoretical analysis of the closed-loop system performance, two comparison theorems are developed for a class of fractional differential equations. Moreover, the rise time of the closed-loop system can be estimated, which facilitates our controller design to satisfy the fast response performance and maintain the robustness. Finally, numerical examples are given to illustrate the effectiveness of our methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. An Integrated Environmental Assessment of Green and Gray Infrastructure Strategies for Robust Decision Making.

    PubMed

    Casal-Campos, Arturo; Fu, Guangtao; Butler, David; Moore, Andrew

    2015-07-21

    The robustness of a range of watershed-scale "green" and "gray" drainage strategies in the future is explored through comprehensive modeling of a fully integrated urban wastewater system case. Four socio-economic future scenarios, defined by parameters affecting the environmental performance of the system, are proposed to account for the uncertain variability of conditions in the year 2050. A regret-based approach is applied to assess the relative performance of strategies in multiple impact categories (environmental, economic, and social) as well as to evaluate their robustness across future scenarios. The concept of regret proves useful in identifying performance trade-offs and recognizing states of the world most critical to decisions. The study highlights the robustness of green strategies (particularly rain gardens, resulting in half the regret of most options) over end-of-pipe gray alternatives (surface water separation or sewer and storage rehabilitation), which may be costly (on average, 25% of the total regret of these options) and tend to focus on sewer flooding and CSO alleviation while compromising on downstream system performance (this accounts for around 50% of their total regret). Trade-offs and scenario regrets observed in the analysis suggest that the combination of green and gray strategies may still offer further potential for robustness.

  7. An accurate boundary element method for the exterior elastic scattering problem in two dimensions

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Xu, Liwei; Yin, Tao

    2017-11-01

    This paper is concerned with a Galerkin boundary element method solving the two dimensional exterior elastic wave scattering problem. The original problem is first reduced to the so-called Burton-Miller [1] boundary integral formulation, and essential mathematical features of its variational form are discussed. In numerical implementations, a newly-derived and analytically accurate regularization formula [2] is employed for the numerical evaluation of hyper-singular boundary integral operator. A new computational approach is employed based on the series expansions of Hankel functions for the computation of weakly-singular boundary integral operators during the reduction of corresponding Galerkin equations into a discrete linear system. The effectiveness of proposed numerical methods is demonstrated using several numerical examples.

  8. Functional integration of skeletal traits: an intraskeletal assessment of bone size, mineralization, and volume covariance.

    PubMed

    Schlecht, Stephen H; Jepsen, Karl J

    2013-09-01

    Understanding the functional integration of skeletal traits and how they naturally vary within and across populations will benefit assessments of functional adaptation directed towards interpreting bone stiffness in contemporary and past humans. Moreover, investigating how these traits intraskeletally vary will guide us closer towards predicting fragility from a single skeletal site. Using an osteological collection of 115 young adult male and female African-Americans, we assessed the functional relationship between bone robustness (i.e. total area/length), cortical tissue mineral density (Ct.TMD), and cortical area (Ct.Ar) for the upper and lower limbs. All long bones demonstrated significant trait covariance (p < 0.005) independent of body size, with slender bones having 25-50% less Ct.Ar and 5-8% higher Ct.TMD compared to robust bones. Robustness statistically explained 10.2-28% of Ct.TMD and 26.6-64.6% of Ct.Ar within male and female skeletal elements. This covariance is systemic throughout the skeleton, with either the slender or robust phenotype consistently represented within all long bones for each individual. These findings suggest that each person attains a unique trait set by adulthood that is both predictable by robustness and partially independent of environmental influences. The variation in these functionally integrated traits allows for the maximization of tissue stiffness and minimization of mass so that regardless of which phenotype is present, a given bone is reasonably stiff and strong, and sufficiently adapted to perform routine, habitual loading activities. Covariation intrinsic to functional adaptation suggests that whole bone stiffness depends upon particular sets of traits acquired during growth, presumably through differing levels of cellular activity, resulting in differing tissue morphology and composition. The outcomes of this intraskeletal examination of robustness and its correlates may have significant value in our progression towards improved clinical assessments of bone strength and fragility. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Progress in development of HEDP capabilities in FLASH's Unsplit Staggered Mesh MHD solver

    NASA Astrophysics Data System (ADS)

    Lee, D.; Xia, G.; Daley, C.; Dubey, A.; Gopal, S.; Graziani, C.; Lamb, D.; Weide, K.

    2011-11-01

    FLASH is a publicly available astrophysical community code designed to solve highly compressible multi-physics reactive flows. We are adding capabilities to FLASH that will make it an open science code for the academic HEDP community. Among many important numerical requirements, we consider the following features to be important components necessary to meet our goals for FLASH as an HEDP open toolset. First, we are developing computationally efficient time-stepping integration methods that overcome the stiffness that arises in the equations describing a physical problem when there are disparate time scales. To this end, we are adding two different time-stepping schemes to FLASH that relax the time step limit when diffusive effects are present: an explicit super-time-stepping algorithm (Alexiades et al. in Com. Num. Mech. Eng. 12:31-42, 1996) and a Jacobian-Free Newton-Krylov implicit formulation. These two methods will be integrated into a robust, efficient, and high-order accurate Unsplit Staggered Mesh MHD (USM) solver (Lee and Deane in J. Comput. Phys. 227, 2009). Second, we have implemented an anisotropic Spitzer-Braginskii conductivity model to treat thermal heat conduction along magnetic field lines. Finally, we are implementing the Biermann Battery term to account for spontaneous generation of magnetic fields in the presence of non-parallel temperature and density gradients.

  10. Unraveling Alzheimer's: Making Sense of the Relationship between Diabetes and Alzheimer's Disease1.

    PubMed

    Schilling, Melissa A

    2016-01-01

    Numerous studies have documented a strong association between diabetes and Alzheimer's disease (AD). The nature of the relationship, however, has remained a puzzle, in part because of seemingly incongruent findings. For example, some studies have concluded that insulin deficiency is primarily at fault, suggesting that intranasal insulin or inhibiting the insulin-degrading enzyme (IDE) could be beneficial. Other research has concluded that hyperinsulinemia is to blame, which implies that intranasal insulin or the inhibition of IDE would exacerbate the disease. Such antithetical conclusions pose a serious obstacle to making progress on treatments. However, careful integration of multiple strands of research, with attention to the methods used in different studies, makes it possible to disentangle the research on AD. This integration suggests that there is an important relationship between insulin, IDE, and AD that yields multiple pathways to AD depending on the where deficiency or excess in the cycle occurs. I review evidence for each of these pathways here. The results suggest that avoiding excess insulin, and supporting robust IDE levels, could be important ways of preventing and lessening the impact of AD. I also describe what further tests need to be conducted to verify the arguments made in the paper, and their implications for treating AD.

  11. Theoretical study and control optimization of an integrated pest management predator-prey model with power growth rate.

    PubMed

    Sun, Kaibiao; Zhang, Tonghua; Tian, Yuan

    2016-09-01

    This work presents a pest control predator-prey model, where rate of change in prey density follows a scaling law with exponent less than one and the control is by an integrated management strategy. The aim is to investigate the change in system dynamics and determine a pest control level with minimum control price. First, the dynamics of the proposed model without control is investigated by taking the exponent as an index parameter. And then, to determine the frequency of spraying chemical pesticide and yield releases of the predator, the existence of the order-1 periodic orbit of the control system is discussed in cases. Furthermore, to ensure a certain robustness of the adopted control, i.e., for an inaccurately detected species density or a deviation, the control system could be stabilized at the order-1 periodic orbit, the stability of the order-1 periodic orbit is verified by an stability criterion for a general semi-continuous dynamical system. In addition, to minimize the total cost input in pest control, an optimization problem is formulated and the optimum pest control level is obtained. At last, the numerical simulations with a specific model are carried out to complement the theoretical results. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. An iterated cubature unscented Kalman filter for large-DoF systems identification with noisy data

    NASA Astrophysics Data System (ADS)

    Ghorbani, Esmaeil; Cha, Young-Jin

    2018-04-01

    Structural and mechanical system identification under dynamic loading has been an important research topic over the last three or four decades. Many Kalman-filtering-based approaches have been developed for linear and nonlinear systems. For example, to predict nonlinear systems, an unscented Kalman filter was applied. However, from extensive literature reviews, the unscented Kalman filter still showed weak performance on systems with large degrees of freedom. In this research, a modified unscented Kalman filter is proposed by integration of a cubature Kalman filter to improve the system identification performance of systems with large degrees of freedom. The novelty of this work lies on conjugating the unscented transform with the cubature integration concept to find a more accurate output from the transformation of the state vector and its related covariance matrix. To evaluate the proposed method, three different numerical models (i.e., the single degree-of-freedom Bouc-Wen model, the linear 3-degrees-of-freedom system, and the 10-degrees-of-freedom system) are investigated. To evaluate the robustness of the proposed method, high levels of noise in the measured response data are considered. The results show that the proposed method is significantly superior to the traditional UKF for noisy measured data in systems with large degrees of freedom.

  13. Shape and Stress Sensing of Multilayered Composite and Sandwich Structures Using an Inverse Finite Element Method

    NASA Technical Reports Server (NTRS)

    Cerracchio, Priscilla; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander

    2013-01-01

    The marked increase in the use of composite and sandwich material systems in aerospace, civil, and marine structures leads to the need for integrated Structural Health Management systems. A key capability to enable such systems is the real-time reconstruction of structural deformations, stresses, and failure criteria that are inferred from in-situ, discrete-location strain measurements. This technology is commonly referred to as shape- and stress-sensing. Presented herein is a computationally efficient shape- and stress-sensing methodology that is ideally suited for applications to laminated composite and sandwich structures. The new approach employs the inverse Finite Element Method (iFEM) as a general framework and the Refined Zigzag Theory (RZT) as the underlying plate theory. A three-node inverse plate finite element is formulated. The element formulation enables robust and efficient modeling of plate structures instrumented with strain sensors that have arbitrary positions. The methodology leads to a set of linear algebraic equations that are solved efficiently for the unknown nodal displacements. These displacements are then used at the finite element level to compute full-field strains, stresses, and failure criteria that are in turn used to assess structural integrity. Numerical results for multilayered, highly heterogeneous laminates demonstrate the unique capability of this new formulation for shape- and stress-sensing.

  14. Modelling the Centers of Galaxies

    NASA Technical Reports Server (NTRS)

    Smith, B. F.; Miller, R. H.; Young, Richard E. (Technical Monitor)

    1997-01-01

    The key to studying central regions by means of nobody numerical experiments is to concentrate on the central few parsecs of a galaxy, replacing the remainder of the galaxy by a suitable boundary condition, rather after the manner in which stellar interiors can be studied without a detailed stellar atmosphere by replacing the atmosphere with a boundary condition. Replacements must be carefully designed because the long range gravitational force means that the core region is sensitive to mass outside that region and because particles can exchange between the outer galaxy and the core region. We use periodic boundary conditions, coupled with an iterative procedure to generate initial particle loads in isothermal equilibrium. Angular momentum conservation is ensured for problems including systematic rotation by a circular reflecting boundary and by integrating in a frame that rotates with the mean flow. Mass beyond the boundary contributes to the gravitational potential, but does not participate in the dynamics. A symplectic integration scheme has been developed for rotating coordinate systems. This combination works well, leading to robust configurations. Some preliminary results with this combination show that: (1) Rotating systems are extremely sensitive to non-axisymmetric external potentials, and (2) that a second core, orbiting near the main core (like the M31 second core system), shows extremely rapid orbital decay. The experimental setups will be discussed, along with preliminary results.

  15. Protons Trigger Mitochondrial Flashes.

    PubMed

    Wang, Xianhua; Zhang, Xing; Huang, Zhanglong; Wu, Di; Liu, Beibei; Zhang, Rufeng; Yin, Rongkang; Hou, Tingting; Jian, Chongshu; Xu, Jiejia; Zhao, Yan; Wang, Yanru; Gao, Feng; Cheng, Heping

    2016-07-26

    Emerging evidence indicates that mitochondrial flashes (mitoflashes) are highly conserved elemental mitochondrial signaling events. However, which signal controls their ignition and how they are integrated with other mitochondrial signals and functions remain elusive. In this study, we aimed to further delineate the signal components of the mitoflash and determine the mitoflash trigger mechanism. Using multiple biosensors and chemical probes as well as label-free autofluorescence, we found that the mitoflash reflects chemical and electrical excitation at the single-organelle level, comprising bursting superoxide production, oxidative redox shift, and matrix alkalinization as well as transient membrane depolarization. Both electroneutral H(+)/K(+) or H(+)/Na(+) antiport and matrix proton uncaging elicited immediate and robust mitoflash responses over a broad dynamic range in cardiomyocytes and HeLa cells. However, charge-uncompensated proton transport, which depolarizes mitochondria, caused the opposite effect, and steady matrix acidification mildly inhibited mitoflashes. Based on a numerical simulation, we estimated a mean proton lifetime of 1.42 ns and diffusion distance of 2.06 nm in the matrix. We conclude that nanodomain protons act as a novel, to our knowledge, trigger of mitoflashes in energized mitochondria. This finding suggests that mitoflash genesis is functionally and mechanistically integrated with mitochondrial energy metabolism. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Kinematics and Dynamics of Motion Control Based on Acceleration Control

    NASA Astrophysics Data System (ADS)

    Ohishi, Kiyoshi; Ohba, Yuzuru; Katsura, Seiichiro

    The first IEEE International Workshop on Advanced Motion Control was held in 1990 pointed out the importance of physical interpretation of motion control. The software servoing technology is now common in machine tools, robotics, and mechatronics. It has been intensively developed for the numerical control (NC) machines. Recently, motion control in unknown environment will be more and more important. Conventional motion control is not always suitable due to the lack of adaptive capability to the environment. A more sophisticated ability in motion control is necessary for compliant contact with environment. Acceleration control is the key technology of motion control in unknown environment. The acceleration control can make a motion system to be a zero control stiffness system without losing the robustness. Furthermore, a realization of multi-degree-of-freedom motion is necessary for future human assistance. A human assistant motion will require various control stiffness corresponding to the task. The review paper focuses on the modal coordinate system to integrate the various control stiffness in the virtual axes. A bilateral teleoperation is a good candidate to consider the future human assistant motion and integration of decentralized systems. Thus the paper reviews and discusses the bilateral teleoperation from the control stiffness and the modal control design points of view.

  17. Design, simulation and characterisation of integrated optics for a microfabricated flow cytometer

    NASA Astrophysics Data System (ADS)

    Barat, David; Benazzi, Giuseppe; Mowlem, Matthew Charles; Ruano, Jesus Miguel; Morgan, Hywel

    2010-05-01

    Flow cytometry is widely used for analyzing micro-particles such as cells and bacteria. Microfabricated flow cytometers promise reduced instrument size and cost with increased robustness and have application in medicine, life sciences and environmental metrology. Further miniaturisation and robustness can be achieved if integrated optics are used instead of traditional free space optics. We present designs simulation and experimental characterisation of integrated optics for a microfabricated cytometer made from SU-8 resin on a glass substrate. The optics constructed from combinations of optical fibres (positioned with microgrooves), waveguides, and microlenses enable analysis of scattered light and fluorescence from particles positioned near the centre of a microchannel using one dimensional sheath flow. Four different methods for directing the incident light onto the particles are examined and the optimum design discussed.

  18. Bike-Ped Portal : development of an online nonmotorized traffic count archive.

    DOT National Transportation Integrated Search

    2017-05-01

    Robust bicycle and pedestrian data on a national scale would serve numerous purposes. Access to a centralized nonmotorized traffic count : archive can open the door for innovation through research, design and planning; provide safety researchers with...

  19. Large-scale 3D inversion of marine controlled source electromagnetic data using the integral equation method

    NASA Astrophysics Data System (ADS)

    Zhdanov, M. S.; Cuma, M.; Black, N.; Wilson, G. A.

    2009-12-01

    The marine controlled source electromagnetic (MCSEM) method has become widely used in offshore oil and gas exploration. Interpretation of MCSEM data is still a very challenging problem, especially if one would like to take into account the realistic 3D structure of the subsurface. The inversion of MCSEM data is complicated by the fact that the EM response of a hydrocarbon-bearing reservoir is very weak in comparison with the background EM fields generated by an electric dipole transmitter in complex geoelectrical structures formed by a conductive sea-water layer and the terranes beneath it. In this paper, we present a review of the recent developments in the area of large-scale 3D EM forward modeling and inversion. Our approach is based on using a new integral form of Maxwell’s equations allowing for an inhomogeneous background conductivity, which results in a numerically effective integral representation for 3D EM field. This representation provides an efficient tool for the solution of 3D EM inverse problems. To obtain a robust inverse model of the conductivity distribution, we apply regularization based on a focusing stabilizing functional which allows for the recovery of models with both smooth and sharp geoelectrical boundaries. The method is implemented in a fully parallel computer code, which makes it possible to run large-scale 3D inversions on grids with millions of inversion cells. This new technique can be effectively used for active EM detection and monitoring of the subsurface targets.

  20. Model selection for integrated pest management with stochasticity.

    PubMed

    Akman, Olcay; Comar, Timothy D; Hrozencik, Daniel

    2018-04-07

    In Song and Xiang (2006), an integrated pest management model with periodically varying climatic conditions was introduced. In order to address a wider range of environmental effects, the authors here have embarked upon a series of studies resulting in a more flexible modeling approach. In Akman et al. (2013), the impact of randomly changing environmental conditions is examined by incorporating stochasticity into the birth pulse of the prey species. In Akman et al. (2014), the authors introduce a class of models via a mixture of two birth-pulse terms and determined conditions for the global and local asymptotic stability of the pest eradication solution. With this work, the authors unify the stochastic and mixture model components to create further flexibility in modeling the impacts of random environmental changes on an integrated pest management system. In particular, we first determine the conditions under which solutions of our deterministic mixture model are permanent. We then analyze the stochastic model to find the optimal value of the mixing parameter that minimizes the variance in the efficacy of the pesticide. Additionally, we perform a sensitivity analysis to show that the corresponding pesticide efficacy determined by this optimization technique is indeed robust. Through numerical simulations we show that permanence can be preserved in our stochastic model. Our study of the stochastic version of the model indicates that our results on the deterministic model provide informative conclusions about the behavior of the stochastic model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Evaluation of the accuracy of the Rotating Parallel Ray Omnidirectional Integration for instantaneous pressure reconstruction from the measured pressure gradient

    NASA Astrophysics Data System (ADS)

    Moreto, Jose; Liu, Xiaofeng

    2017-11-01

    The accuracy of the Rotating Parallel Ray omnidirectional integration for pressure reconstruction from the measured pressure gradient (Liu et al., AIAA paper 2016-1049) is evaluated against both the Circular Virtual Boundary omnidirectional integration (Liu and Katz, 2006 and 2013) and the conventional Poisson equation approach. Dirichlet condition at one boundary point and Neumann condition at all other boundary points are applied to the Poisson solver. A direct numerical simulation database of isotropic turbulence flow (JHTDB), with a homogeneously distributed random noise added to the entire field of DNS pressure gradient, is used to assess the performance of the methods. The random noise, generated by the Matlab function Rand, has a magnitude varying randomly within the range of +/-40% of the maximum DNS pressure gradient. To account for the effect of the noise distribution pattern on the reconstructed pressure accuracy, a total of 1000 different noise distributions achieved by using different random number seeds are involved in the evaluation. Final results after averaging the 1000 realizations show that the error of the reconstructed pressure normalized by the DNS pressure variation range is 0.15 +/-0.07 for the Poisson equation approach, 0.028 +/-0.003 for the Circular Virtual Boundary method and 0.027 +/-0.003 for the Rotating Parallel Ray method, indicating the robustness of the Rotating Parallel Ray method in pressure reconstruction. Sponsor: The San Diego State University UGP program.

  2. Agent independent task planning

    NASA Technical Reports Server (NTRS)

    Davis, William S.

    1990-01-01

    Agent-Independent Planning is a technique that allows the construction of activity plans without regard to the agent that will perform them. Once generated, a plan is then validated and translated into instructions for a particular agent, whether a robot, crewmember, or software-based control system. Because Space Station Freedom (SSF) is planned for orbital operations for approximately thirty years, it will almost certainly experience numerous enhancements and upgrades, including upgrades in robotic manipulators. Agent-Independent Planning provides the capability to construct plans for SSF operations, independent of specific robotic systems, by combining techniques of object oriented modeling, nonlinear planning and temporal logic. Since a plan is validated using the physical and functional models of a particular agent, new robotic systems can be developed and integrated with existing operations in a robust manner. This technique also provides the capability to generate plans for crewmembers with varying skill levels, and later apply these same plans to more sophisticated robotic manipulators made available by evolutions in technology.

  3. Facile in situ synthesis of hierarchical porous Ni/Ni(OH)₂ hybrid sponges with excellent electrochemical energy-storage performances for supercapacitors.

    PubMed

    Wang, Wanren; Wang, Wenhua; Wang, Mengjiao; Guo, Xiaohui

    2014-09-01

    Herein, we report the in situ growth of single-crystalline Ni(OH)2 nanoflakes on a Ni support by using facile hydrothermal processes. The as-prepared Ni/Ni(OH)2 sponges were well-characterized by using X-ray diffraction (XRD), SEM, TEM, and X-ray photoelectron spectroscopy (XPS) techniques. The results revealed that the nickel-skeleton-supported Ni(OH)2 rope-like aggregates were composed of numerous intercrossed single-crystal Ni(OH)2 flake-like units. The Ni/Ni(OH)2 hybrid sponges served as electrodes and displayed ultrahigh specific capacitance (SC=3247 F g(-1)) and excellent rate-capability performance, likely owing to fast electron and ion transport, sufficient Faradic redox reaction, and robust structural integrity of the Ni/Ni(OH)2 hybrid electrode. These results support the promising application of Ni(OH)2 nanoflakes as advanced pseudocapacitor materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Evaluation of the Revolver Ignition Design at the National Ignition Facility Using Polar-Direct-Drive Illumination

    NASA Astrophysics Data System (ADS)

    McKenty, P. W.; Collins, T. J. B.; Marozas, J. A.; Campbell, E. M.; Molvig, K.; Schmitt, M.

    2017-10-01

    The direct-drive ignition design Revolver employs a triple-shell target using a beryllium ablator, a copper driver, and an eventual gold pusher. Symmetric numerical calculations indicate that each of the three shells exhibit low convergence ( 3to 5) resulting in a modest gain (G 4) for 1.7 MJ of incident laser energy. Studies are now underway to evaluate the robustness of this design employing polar direct drive (PDD) at the National Ignition Facility. Integral to these calculations is the leveraging of illumination conditioning afforded by research done to demonstrate ignition for a traditional PDD hot-spot target design. Two-dimensional simulation results, employing nonlocal electron-thermal transport and cross-beam energy transport, will be presented that indicate ignition using PDD. A study of the allowed levels of long-wavelength perturbations (target offset and power imbalance) not precluding ignition will also be examined. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  5. Development of advanced Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan

    1994-01-01

    The objective of research was to develop and validate new computational algorithms for solving the steady and unsteady Euler and Navier-Stokes equations. The end-products are new three-dimensional Euler and Navier-Stokes codes that are faster, more reliable, more accurate, and easier to use. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible/incompressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. Convergence rates and the robustness of the codes are enhanced by the use of an implicit full approximation storage multigrid method.

  6. Performance improvement of an active vibration absorber subsystem for an aircraft model using a bees algorithm based on multi-objective intelligent optimization

    NASA Astrophysics Data System (ADS)

    Zarchi, Milad; Attaran, Behrooz

    2017-11-01

    This study develops a mathematical model to investigate the behaviour of adaptable shock absorber dynamics for the six-degree-of-freedom aircraft model in the taxiing phase. The purpose of this research is to design a proportional-integral-derivative technique for control of an active vibration absorber system using a hydraulic nonlinear actuator based on the bees algorithm. This optimization algorithm is inspired by the natural intelligent foraging behaviour of honey bees. The neighbourhood search strategy is used to find better solutions around the previous one. The parameters of the controller are adjusted by minimizing the aircraft's acceleration and impact force as the multi-objective function. The major advantages of this algorithm over other optimization algorithms are its simplicity, flexibility and robustness. The results of the numerical simulation indicate that the active suspension increases the comfort of the ride for passengers and the fatigue life of the structure. This is achieved by decreasing the impact force, displacement and acceleration significantly.

  7. Coupled attenuation and multiscale damage model for composite structures

    NASA Astrophysics Data System (ADS)

    Moncada, Albert M.; Chattopadhyay, Aditi; Bednarcyk, Brett; Arnold, Steven M.

    2011-04-01

    Composite materials are widely used in many applications for their high strength, low weight, and tailorability for specific applications. However, the development of robust and reliable methodologies to detect micro level damage in composite structures has been challenging. For composite materials, attenuation of ultrasonic waves propagating through the media can be used to determine damage within the material. Currently available numerical solutions for attenuation induce arbitrary damage, such as fiber-matrix debonding or inclusions, to show variations between healthy and damaged states. This paper addresses this issue by integrating a micromechanics analysis to simulate damage in the form of a fiber-matrix crack and an analytical model for calculating the attenuation of the waves when they pass through the damaged region. The hybrid analysis is validated by comparison with experimental stress-strain curves and piezoelectric sensing results for attenuation measurement. The results showed good agreement between the experimental stress-strain curves and the results from the micromechanics analysis. Wave propagation analysis also showed good correlation between simulation and experiment for the tested frequency range.

  8. Computer Aided Grid Interface: An Interactive CFD Pre-Processor

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.

    1997-01-01

    NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the CAGI: Computer Aided Grid Interface system. The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and/or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.

  9. Computer Aided Grid Interface: An Interactive CFD Pre-Processor

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.

    1996-01-01

    NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the Computer Aided Grid Interface system (CAGI). The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and / or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.

  10. SAFSIM theory manual: A computer program for the engineering simulation of flow systems

    NASA Astrophysics Data System (ADS)

    Dobranich, Dean

    1993-12-01

    SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program for simulating the integrated performance of complex flow systems. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a fluid mechanics module with flow network capability; (2) a structure heat transfer module with multiple convection and radiation exchange surface capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. Any or all of the physics modules can be implemented, as the problem dictates. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems. Both the fluid mechanics and structure heat transfer modules employ a one-dimensional finite element modeling approach. This document contains a description of the theory incorporated in SAFSIM, including the governing equations, the numerical methods, and the overall system solution strategies.

  11. Computation of the phase response curve: a direct numerical approach.

    PubMed

    Govaerts, W; Sautois, B

    2006-04-01

    Neurons are often modeled by dynamical systems--parameterized systems of differential equations. A typical behavioral pattern of neurons is periodic spiking; this corresponds to the presence of stable limit cycles in the dynamical systems model. The phase resetting and phase response curves (PRCs) describe the reaction of the spiking neuron to an input pulse at each point of the cycle. We develop a new method for computing these curves as a by-product of the solution of the boundary value problem for the stable limit cycle. The method is mathematically equivalent to the adjoint method, but our implementation is computationally much faster and more robust than any existing method. In fact, it can compute PRCs even where the limit cycle can hardly be found by time integration, for example, because it is close to another stable limit cycle. In addition, we obtain the discretized phase response curve in a form that is ideally suited for most applications. We present several examples and provide the implementation in a freely available Matlab code.

  12. Precise on-machine extraction of the surface normal vector using an eddy current sensor array

    NASA Astrophysics Data System (ADS)

    Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun

    2016-11-01

    To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.

  13. CosmosDG: An hp -adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anninos, Peter; Lau, Cheuk; Bryant, Colton

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge–Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performedmore » separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.« less

  14. Delivering Sound Energy along an Arbitrary Convex Trajectory

    PubMed Central

    Zhao, Sipei; Hu, Yuxiang; Lu, Jing; Qiu, Xiaojun; Cheng, Jianchun; Burnett, Ian

    2014-01-01

    Accelerating beams have attracted considerable research interest due to their peculiar properties and various applications. Although there have been numerous research on the generation and application of accelerating light beams, few results have been published on the generation of accelerating acoustic beams. Here we report on the experimental observation of accelerating acoustic beams along arbitrary convex trajectories. The desired trajectory is projected to the spatial phase profile on the boundary which is discretized and sampled spatially. The sound field distribution is formulated with the Green function and the integral equation method. Both the paraxial and the non-paraxial regimes are examined and observed in the experiments. The effect of obstacle scattering in the sound field is also investigated and the results demonstrate that the approach is robust against obstacle scattering. The realization of accelerating acoustic beams will have an impact on various applications where acoustic information and energy are required to be delivered along an arbitrary convex trajectory. PMID:25316353

  15. Current and future data assimilation development in the Copernicus Atmosphere Monitoring Service

    NASA Astrophysics Data System (ADS)

    Engelen, R. J.; Ades, M.; Agusti-panareda, A.; Flemming, J.; Inness, A.; Kipling, Z.; Parrington, M.; Peuch, V. H.

    2017-12-01

    The European Copernicus Atmosphere Monitoring Service (CAMS) operationally provides daily forecasts of global atmospheric composition and regional air quality. The global forecasting system is using ECMWF's Integrated Forecasting System (IFS), which is used for numerical weather prediction and which has been extended with modules for atmospheric chemistry, aerosols and greenhouse gases. The system assimilates observations from more than 60 satellite sensors to constrain both the meteorology and the atmospheric composition species. While an operational forecasting system needs to be robust and reliable, it also needs to stay state-of-the-art to provide the best possible forecasts. Continuous development is therefore an important component of the CAMS systems. We will present on-going efforts on improving the 4D-Var data assimilation system, such as using ensemble data assimilation to improve the background error covariances and more accurate use of satellite observations. We will also outline plans for including emissions in the daily CAMS analyses, which is an area where research activities have a large potential to feed into operational applications.

  16. CAGI: Computer Aided Grid Interface. A work in progress

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.; Yu, Tzu-Yi; Vaughn, David

    1992-01-01

    Progress realized in the development of a Computer Aided Grid Interface (CAGI) software system in integrating CAD/CAM geometric system output and/or Interactive Graphics Exchange Standard (IGES) files, geometry manipulations associated with grid generation, and robust grid generation methodologies is presented. CAGI is being developed in a modular fashion and will offer fast, efficient and economical response to geometry/grid preparation, allowing the ability to upgrade basic geometry in a step-by-step fashion interactively and under permanent visual control along with minimizing the differences between the actual hardware surface descriptions and corresponding numerical analog. The computer code GENIE is used as a basis. The Non-Uniform Rational B-Splines (NURBS) representation of sculptured surfaces is utilized for surface grid redistribution. The computer aided analysis system, PATRAN, is adapted as a CAD/CAM system. The progress realized in NURBS surface grid generation, the development of IGES transformer, and geometry adaption using PATRAN will be presented along with their applicability to grid generation associated with rocket propulsion applications.

  17. Probabilistic cost-benefit analysis of disaster risk management in a development context.

    PubMed

    Kull, Daniel; Mechler, Reinhard; Hochrainer-Stigler, Stefan

    2013-07-01

    Limited studies have shown that disaster risk management (DRM) can be cost-efficient in a development context. Cost-benefit analysis (CBA) is an evaluation tool to analyse economic efficiency. This research introduces quantitative, stochastic CBA frameworks and applies them in case studies of flood and drought risk reduction in India and Pakistan, while also incorporating projected climate change impacts. DRM interventions are shown to be economically efficient, with integrated approaches more cost-effective and robust than singular interventions. The paper highlights that CBA can be a useful tool if certain issues are considered properly, including: complexities in estimating risk; data dependency of results; negative effects of interventions; and distributional aspects. The design and process of CBA must take into account specific objectives, available information, resources, and the perceptions and needs of stakeholders as transparently as possible. Intervention design and uncertainties should be qualified through dialogue, indicating that process is as important as numerical results. © 2013 The Author(s). Journal compilation © Overseas Development Institute, 2013.

  18. Variational optical flow estimation based on stick tensor voting.

    PubMed

    Rashwan, Hatem A; Garcia, Miguel A; Puig, Domenec

    2013-07-01

    Variational optical flow techniques allow the estimation of flow fields from spatio-temporal derivatives. They are based on minimizing a functional that contains a data term and a regularization term. Recently, numerous approaches have been presented for improving the accuracy of the estimated flow fields. Among them, tensor voting has been shown to be particularly effective in the preservation of flow discontinuities. This paper presents an adaptation of the data term by using anisotropic stick tensor voting in order to gain robustness against noise and outliers with significantly lower computational cost than (full) tensor voting. In addition, an anisotropic complementary smoothness term depending on directional information estimated through stick tensor voting is utilized in order to preserve discontinuity capabilities of the estimated flow fields. Finally, a weighted non-local term that depends on both the estimated directional information and the occlusion state of pixels is integrated during the optimization process in order to denoise the final flow field. The proposed approach yields state-of-the-art results on the Middlebury benchmark.

  19. Orientation estimation algorithm applied to high-spin projectiles

    NASA Astrophysics Data System (ADS)

    Long, D. F.; Lin, J.; Zhang, X. M.; Li, J.

    2014-06-01

    High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm.

  20. Model reduction of multiscale chemical langevin equations: a numerical case study.

    PubMed

    Sotiropoulos, Vassilios; Contou-Carrere, Marie-Nathalie; Daoutidis, Prodromos; Kaznessis, Yiannis N

    2009-01-01

    Two very important characteristics of biological reaction networks need to be considered carefully when modeling these systems. First, models must account for the inherent probabilistic nature of systems far from the thermodynamic limit. Often, biological systems cannot be modeled with traditional continuous-deterministic models. Second, models must take into consideration the disparate spectrum of time scales observed in biological phenomena, such as slow transcription events and fast dimerization reactions. In the last decade, significant efforts have been expended on the development of stochastic chemical kinetics models to capture the dynamics of biomolecular systems, and on the development of robust multiscale algorithms, able to handle stiffness. In this paper, the focus is on the dynamics of reaction sets governed by stiff chemical Langevin equations, i.e., stiff stochastic differential equations. These are particularly challenging systems to model, requiring prohibitively small integration step sizes. We describe and illustrate the application of a semianalytical reduction framework for chemical Langevin equations that results in significant gains in computational cost.

Top