Sample records for robust performance analysis

  1. A comparative study of multivariable robustness analysis methods as applied to integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schierman, John D.; Lovell, T. A.; Schmidt, David K.

    1993-01-01

    Three multivariable robustness analysis methods are compared and contrasted. The focus of the analysis is on system stability and performance robustness to uncertainty in the coupling dynamics between two interacting subsystems. Of particular interest is interacting airframe and engine subsystems, and an example airframe/engine vehicle configuration is utilized in the demonstration of these approaches. The singular value (SV) and structured singular value (SSV) analysis methods are compared to a method especially well suited for analysis of robustness to uncertainties in subsystem interactions. This approach is referred to here as the interacting subsystem (IS) analysis method. This method has been used previously to analyze airframe/engine systems, emphasizing the study of stability robustness. However, performance robustness is also investigated here, and a new measure of allowable uncertainty for acceptable performance robustness is introduced. The IS methodology does not require plant uncertainty models to measure the robustness of the system, and is shown to yield valuable information regarding the effects of subsystem interactions. In contrast, the SV and SSV methods allow for the evaluation of the robustness of the system to particular models of uncertainty, and do not directly indicate how the airframe (engine) subsystem interacts with the engine (airframe) subsystem.

  2. Robust Control Systems.

    DTIC Science & Technology

    1981-12-01

    time control system algorithms that will perform adequately (i.e., at least maintain closed-loop system stability) when ucertain parameters in the...system design models vary significantly. Such a control algorithm is said to have stability robustness-or more simply is said to be "robust". This...cas6s above, the performance is analyzed using a covariance analysis. The development of all the controllers and the performance analysis algorithms is

  3. Robust tracking control of a magnetically suspended rigid body

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Cox, David E.

    1994-01-01

    This study is an application of H-infinity and micro-synthesis for designing robust tracking controllers for the Large Angle Magnetic Suspension Test Facility. The modeling, design, analysis, simulation, and testing of a control law that guarantees tracking performance under external disturbances and model uncertainties is investigated. The type of uncertainties considered and the tracking performance metric used is discussed. This study demonstrates the tradeoff between tracking performance at low frequencies and robustness at high frequencies. Two sets of controllers were designed and tested. The first set emphasized performance over robustness, while the second set traded off performance for robustness. Comparisons of simulation and test results are also included. Current simulation and experimental results indicate that reasonably good robust tracking performance can be attained for this system using multivariable robust control approach.

  4. How robust is a robust policy? A comparative analysis of alternative robustness metrics for supporting robust decision analysis.

    NASA Astrophysics Data System (ADS)

    Kwakkel, Jan; Haasnoot, Marjolijn

    2015-04-01

    In response to climate and socio-economic change, in various policy domains there is increasingly a call for robust plans or policies. That is, plans or policies that performs well in a very large range of plausible futures. In the literature, a wide range of alternative robustness metrics can be found. The relative merit of these alternative conceptualizations of robustness has, however, received less attention. Evidently, different robustness metrics can result in different plans or policies being adopted. This paper investigates the consequences of several robustness metrics on decision making, illustrated here by the design of a flood risk management plan. A fictitious case, inspired by a river reach in the Netherlands is used. The performance of this system in terms of casualties, damages, and costs for flood and damage mitigation actions is explored using a time horizon of 100 years, and accounting for uncertainties pertaining to climate change and land use change. A set of candidate policy options is specified up front. This set of options includes dike raising, dike strengthening, creating more space for the river, and flood proof building and evacuation options. The overarching aim is to design an effective flood risk mitigation strategy that is designed from the outset to be adapted over time in response to how the future actually unfolds. To this end, the plan will be based on the dynamic adaptive policy pathway approach (Haasnoot, Kwakkel et al. 2013) being used in the Dutch Delta Program. The policy problem is formulated as a multi-objective robust optimization problem (Kwakkel, Haasnoot et al. 2014). We solve the multi-objective robust optimization problem using several alternative robustness metrics, including both satisficing robustness metrics and regret based robustness metrics. Satisficing robustness metrics focus on the performance of candidate plans across a large ensemble of plausible futures. Regret based robustness metrics compare the performance of a candidate plan with the performance of other candidate plans across a large ensemble of plausible futures. Initial results suggest that the simplest satisficing metric, inspired by the signal to noise ratio, results in very risk averse solutions. Other satisficing metrics, which handle the average performance and the dispersion around the average separately, provide substantial additional insights into the trade off between the average performance, and the dispersion around this average. In contrast, the regret-based metrics enhance insight into the relative merits of candidate plans, while being less clear on the average performance or the dispersion around this performance. These results suggest that it is beneficial to use multiple robustness metrics when doing a robust decision analysis study. Haasnoot, M., J. H. Kwakkel, W. E. Walker and J. Ter Maat (2013). "Dynamic Adaptive Policy Pathways: A New Method for Crafting Robust Decisions for a Deeply Uncertain World." Global Environmental Change 23(2): 485-498. Kwakkel, J. H., M. Haasnoot and W. E. Walker (2014). "Developing Dynamic Adaptive Policy Pathways: A computer-assisted approach for developing adaptive strategies for a deeply uncertain world." Climatic Change.

  5. Gap-metric-based robustness analysis of nonlinear systems with full and partial feedback linearisation

    NASA Astrophysics Data System (ADS)

    Al-Gburi, A.; Freeman, C. T.; French, M. C.

    2018-06-01

    This paper uses gap metric analysis to derive robustness and performance margins for feedback linearising controllers. Distinct from previous robustness analysis, it incorporates the case of output unstructured uncertainties, and is shown to yield general stability conditions which can be applied to both stable and unstable plants. It then expands on existing feedback linearising control schemes by introducing a more general robust feedback linearising control design which classifies the system nonlinearity into stable and unstable components and cancels only the unstable plant nonlinearities. This is done in order to preserve the stabilising action of the inherently stabilising nonlinearities. Robustness and performance margins are derived for this control scheme, and are expressed in terms of bounds on the plant nonlinearities and the accuracy of the cancellation of the unstable plant nonlinearity by the controller. Case studies then confirm reduced conservatism compared with standard methods.

  6. Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations

    NASA Astrophysics Data System (ADS)

    Chiron, L.; Oger, G.; de Leffe, M.; Le Touzé, D.

    2018-02-01

    While smoothed-particle hydrodynamics (SPH) simulations are usually performed using uniform particle distributions, local particle refinement techniques have been developed to concentrate fine spatial resolutions in identified areas of interest. Although the formalism of this method is relatively easy to implement, its robustness at coarse/fine interfaces can be problematic. Analysis performed in [16] shows that the radius of refined particles should be greater than half the radius of unrefined particles to ensure robustness. In this article, the basics of an Adaptive Particle Refinement (APR) technique, inspired by AMR in mesh-based methods, are presented. This approach ensures robustness with alleviated constraints. Simulations applying the new formalism proposed achieve accuracy comparable to fully refined spatial resolutions, together with robustness, low CPU times and maintained parallel efficiency.

  7. Analysis and Design of Launch Vehicle Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Du, Wei; Whorton, Mark

    2008-01-01

    This paper describes the fundamental principles of launch vehicle flight control analysis and design. In particular, the classical concept of "drift-minimum" and "load-minimum" control principles is re-examined and its performance and stability robustness with respect to modeling uncertainties and a gimbal angle constraint is discussed. It is shown that an additional feedback of angle-of-attack or lateral acceleration can significantly improve the overall performance and robustness, especially in the presence of unexpected large wind disturbance. Non-minimum-phase structural filtering of "unstably interacting" bending modes of large flexible launch vehicles is also shown to be effective and robust.

  8. Robustness Analysis and Optimally Robust Control Design via Sum-of-Squares

    NASA Technical Reports Server (NTRS)

    Dorobantu, Andrei; Crespo, Luis G.; Seiler, Peter J.

    2012-01-01

    A control analysis and design framework is proposed for systems subject to parametric uncertainty. The underlying strategies are based on sum-of-squares (SOS) polynomial analysis and nonlinear optimization to design an optimally robust controller. The approach determines a maximum uncertainty range for which the closed-loop system satisfies a set of stability and performance requirements. These requirements, de ned as inequality constraints on several metrics, are restricted to polynomial functions of the uncertainty. To quantify robustness, SOS analysis is used to prove that the closed-loop system complies with the requirements for a given uncertainty range. The maximum uncertainty range, calculated by assessing a sequence of increasingly larger ranges, serves as a robustness metric for the closed-loop system. To optimize the control design, nonlinear optimization is used to enlarge the maximum uncertainty range by tuning the controller gains. Hence, the resulting controller is optimally robust to parametric uncertainty. This approach balances the robustness margins corresponding to each requirement in order to maximize the aggregate system robustness. The proposed framework is applied to a simple linear short-period aircraft model with uncertain aerodynamic coefficients.

  9. Robustness Analysis of Integrated LPV-FDI Filters and LTI-FTC System for a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Khong, Thuan H.; Shin, Jong-Yeob

    2007-01-01

    This paper proposes an analysis framework for robustness analysis of a nonlinear dynamics system that can be represented by a polynomial linear parameter varying (PLPV) system with constant bounded uncertainty. The proposed analysis framework contains three key tools: 1) a function substitution method which can convert a nonlinear system in polynomial form into a PLPV system, 2) a matrix-based linear fractional transformation (LFT) modeling approach, which can convert a PLPV system into an LFT system with the delta block that includes key uncertainty and scheduling parameters, 3) micro-analysis, which is a well known robust analysis tool for linear systems. The proposed analysis framework is applied to evaluating the performance of the LPV-fault detection and isolation (FDI) filters of the closed-loop system of a transport aircraft in the presence of unmodeled actuator dynamics and sensor gain uncertainty. The robustness analysis results are compared with nonlinear time simulations.

  10. Development of a Comprehensive Digital Avionics Curriculum for the Aeronautical Engineer

    DTIC Science & Technology

    2006-03-01

    able to analyze and design aircraft and missile guidance and control systems, including feedback stabilization schemes and stochastic processes, using ...Uncertainty modeling for robust control; Robust closed-loop stability and performance; Robust H- infinity control; Robustness check using mu-analysis...Controlled feedback (reduces noise) 3. Statistical group response (reduce pressure toward conformity) When used as a tool to study a complex problem

  11. Model reference tracking control of an aircraft: a robust adaptive approach

    NASA Astrophysics Data System (ADS)

    Tanyer, Ilker; Tatlicioglu, Enver; Zergeroglu, Erkan

    2017-05-01

    This work presents the design and the corresponding analysis of a nonlinear robust adaptive controller for model reference tracking of an aircraft that has parametric uncertainties in its system matrices and additive state- and/or time-dependent nonlinear disturbance-like terms in its dynamics. Specifically, robust integral of the sign of the error feedback term and an adaptive term is fused with a proportional integral controller. Lyapunov-based stability analysis techniques are utilised to prove global asymptotic convergence of the output tracking error. Extensive numerical simulations are presented to illustrate the performance of the proposed robust adaptive controller.

  12. Scaled test statistics and robust standard errors for non-normal data in covariance structure analysis: a Monte Carlo study.

    PubMed

    Chou, C P; Bentler, P M; Satorra, A

    1991-11-01

    Research studying robustness of maximum likelihood (ML) statistics in covariance structure analysis has concluded that test statistics and standard errors are biased under severe non-normality. An estimation procedure known as asymptotic distribution free (ADF), making no distributional assumption, has been suggested to avoid these biases. Corrections to the normal theory statistics to yield more adequate performance have also been proposed. This study compares the performance of a scaled test statistic and robust standard errors for two models under several non-normal conditions and also compares these with the results from ML and ADF methods. Both ML and ADF test statistics performed rather well in one model and considerably worse in the other. In general, the scaled test statistic seemed to behave better than the ML test statistic and the ADF statistic performed the worst. The robust and ADF standard errors yielded more appropriate estimates of sampling variability than the ML standard errors, which were usually downward biased, in both models under most of the non-normal conditions. ML test statistics and standard errors were found to be quite robust to the violation of the normality assumption when data had either symmetric and platykurtic distributions, or non-symmetric and zero kurtotic distributions.

  13. A comparative robustness evaluation of feedforward neurofilters

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Merrill, Walter

    1993-01-01

    A comparative performance and robustness analysis is provided for feedforward neurofilters trained with back propagation to filter additive white noise. The signals used in this analysis are simulated pitch rate responses to typical pilot command inputs for a modern fighter aircraft model. Various configurations of nonlinear and linear neurofilters are trained to estimate exact signal values from input sequences of noisy sampled signal values. In this application, nonlinear neurofiltering is found to be more efficient than linear neurofiltering in removing the noise from responses of the nominal vehicle model, whereas linear neurofiltering is found to be more robust in the presence of changes in the vehicle dynamics. The possibility of enhancing neurofiltering through hybrid architectures based on linear and nonlinear neuroprocessing is therefore suggested as a way of taking advantage of the robustness of linear neurofiltering, while maintaining the nominal performance advantage of nonlinear neurofiltering.

  14. Robust demarcation of basal cell carcinoma by dependent component analysis-based segmentation of multi-spectral fluorescence images.

    PubMed

    Kopriva, Ivica; Persin, Antun; Puizina-Ivić, Neira; Mirić, Lina

    2010-07-02

    This study was designed to demonstrate robust performance of the novel dependent component analysis (DCA)-based approach to demarcation of the basal cell carcinoma (BCC) through unsupervised decomposition of the red-green-blue (RGB) fluorescent image of the BCC. Robustness to intensity fluctuation is due to the scale invariance property of DCA algorithms, which exploit spectral and spatial diversities between the BCC and the surrounding tissue. Used filtering-based DCA approach represents an extension of the independent component analysis (ICA) and is necessary in order to account for statistical dependence that is induced by spectral similarity between the BCC and surrounding tissue. This generates weak edges what represents a challenge for other segmentation methods as well. By comparative performance analysis with state-of-the-art image segmentation methods such as active contours (level set), K-means clustering, non-negative matrix factorization, ICA and ratio imaging we experimentally demonstrate good performance of DCA-based BCC demarcation in two demanding scenarios where intensity of the fluorescent image has been varied almost two orders of magnitude. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Trading Robustness Requirements in Mars Entry Trajectory Design

    NASA Technical Reports Server (NTRS)

    Lafleur, Jarret M.

    2009-01-01

    One of the most important metrics characterizing an atmospheric entry trajectory in preliminary design is the size of its predicted landing ellipse. Often, requirements for this ellipse are set early in design and significantly influence both the expected scientific return from a particular mission and the cost of development. Requirements typically specify a certain probability level (6-level) for the prescribed ellipse, and frequently this latter requirement is taken at 36. However, searches for the justification of 36 as a robustness requirement suggest it is an empirical rule of thumb borrowed from non-aerospace fields. This paper presents an investigation into the sensitivity of trajectory performance to varying robustness (6-level) requirements. The treatment of robustness as a distinct objective is discussed, and an analysis framework is presented involving the manipulation of design variables to effect trades between performance and robustness objectives. The scenario for which this method is illustrated is the ballistic entry of an MSL-class Mars entry vehicle. Here, the design variable is entry flight path angle, and objectives are parachute deploy altitude performance and error ellipse robustness. Resulting plots show the sensitivities between these objectives and trends in the entry flight path angles required to design to these objectives. Relevance to the trajectory designer is discussed, as are potential steps for further development and use of this type of analysis.

  16. When Can Categorical Variables Be Treated as Continuous? A Comparison of Robust Continuous and Categorical SEM Estimation Methods under Suboptimal Conditions

    ERIC Educational Resources Information Center

    Rhemtulla, Mijke; Brosseau-Liard, Patricia E.; Savalei, Victoria

    2012-01-01

    A simulation study compared the performance of robust normal theory maximum likelihood (ML) and robust categorical least squares (cat-LS) methodology for estimating confirmatory factor analysis models with ordinal variables. Data were generated from 2 models with 2-7 categories, 4 sample sizes, 2 latent distributions, and 5 patterns of category…

  17. Robust dynamic inversion controller design and analysis (using the X-38 vehicle as a case study)

    NASA Astrophysics Data System (ADS)

    Ito, Daigoro

    A new way to approach robust Dynamic Inversion controller synthesis is addressed in this paper. A Linear Quadratic Gaussian outer-loop controller improves the robustness of a Dynamic Inversion inner-loop controller in the presence of uncertainties. Desired dynamics are given by the dynamic compensator, which shapes the loop. The selected dynamics are based on both performance and stability robustness requirements. These requirements are straightforwardly formulated as frequency-dependent singular value bounds during synthesis of the controller. Performance and robustness of the designed controller is tested using a worst case time domain quadratic index, which is a simple but effective way to measure robustness due to parameter variation. Using this approach, a lateral-directional controller for the X-38 vehicle is designed and its robustness to parameter variations and disturbances is analyzed. It is found that if full state measurements are available, the performance of the designed lateral-directional control system, measured by the chosen cost function, improves by approximately a factor of four. Also, it is found that the designed system is stable up to a parametric variation of 1.65 standard deviation with the set of uncertainty considered. The system robustness is determined to be highly sensitive to the dihedral derivative and the roll damping coefficients. The controller analysis is extended to the nonlinear system where both control input displacements and rates are bounded. In this case, the considered nonlinear system is stable up to 48.1° in bank angle and 1.59° in sideslip angle variations, indicating it is more sensitive to variations in sideslip angle than in bank angle. This nonlinear approach is further extended for the actuator failure mode analysis. The results suggest that the designed system maintains a high level of stability in the event of aileron failure. However, only 35% or less of the original stability range is maintained for the rudder failure case. Overall, this combination of controller synthesis and robustness criteria compares well with the mu-synthesis technique. It also is readily accessible to the practicing engineer, in terms of understanding and use.

  18. Position Accuracy Analysis of a Robust Vision-Based Navigation

    NASA Astrophysics Data System (ADS)

    Gaglione, S.; Del Pizzo, S.; Troisi, S.; Angrisano, A.

    2018-05-01

    Using images to determine camera position and attitude is a consolidated method, very widespread for application like UAV navigation. In harsh environment, where GNSS could be degraded or denied, image-based positioning could represent a possible candidate for an integrated or alternative system. In this paper, such method is investigated using a system based on single camera and 3D maps. A robust estimation method is proposed in order to limit the effect of blunders or noisy measurements on position solution. The proposed approach is tested using images collected in an urban canyon, where GNSS positioning is very unaccurate. A previous photogrammetry survey has been performed to build the 3D model of tested area. The position accuracy analysis is performed and the effect of the robust method proposed is validated.

  19. A New Approach to Aircraft Robust Performance Analysis

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Tierno, Jorge E.

    2004-01-01

    A recently developed algorithm for nonlinear system performance analysis has been applied to an F16 aircraft to begin evaluating the suitability of the method for aerospace problems. The algorithm has a potential to be much more efficient than the current methods in performance analysis for aircraft. This paper is the initial step in evaluating this potential.

  20. Robust linear discriminant models to solve financial crisis in banking sectors

    NASA Astrophysics Data System (ADS)

    Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Idris, Faoziah; Ali, Hazlina; Omar, Zurni

    2014-12-01

    Linear discriminant analysis (LDA) is a widely-used technique in patterns classification via an equation which will minimize the probability of misclassifying cases into their respective categories. However, the performance of classical estimators in LDA highly depends on the assumptions of normality and homoscedasticity. Several robust estimators in LDA such as Minimum Covariance Determinant (MCD), S-estimators and Minimum Volume Ellipsoid (MVE) are addressed by many authors to alleviate the problem of non-robustness of the classical estimates. In this paper, we investigate on the financial crisis of the Malaysian banking institutions using robust LDA and classical LDA methods. Our objective is to distinguish the "distress" and "non-distress" banks in Malaysia by using the LDA models. Hit ratio is used to validate the accuracy predictive of LDA models. The performance of LDA is evaluated by estimating the misclassification rate via apparent error rate. The results and comparisons show that the robust estimators provide a better performance than the classical estimators for LDA.

  1. Multiobjective robust design of the double wishbone suspension system based on particle swarm optimization.

    PubMed

    Cheng, Xianfu; Lin, Yuqun

    2014-01-01

    The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system.

  2. Guaranteeing robustness of structural condition monitoring to environmental variability

    NASA Astrophysics Data System (ADS)

    Van Buren, Kendra; Reilly, Jack; Neal, Kyle; Edwards, Harry; Hemez, François

    2017-01-01

    Advances in sensor deployment and computational modeling have allowed significant strides to be recently made in the field of Structural Health Monitoring (SHM). One widely used SHM strategy is to perform a vibration analysis where a model of the structure's pristine (undamaged) condition is compared with vibration response data collected from the physical structure. Discrepancies between model predictions and monitoring data can be interpreted as structural damage. Unfortunately, multiple sources of uncertainty must also be considered in the analysis, including environmental variability, unknown model functional forms, and unknown values of model parameters. Not accounting for these sources of uncertainty can lead to false-positives or false-negatives in the structural condition assessment. To manage the uncertainty, we propose a robust SHM methodology that combines three technologies. A time series algorithm is trained using "baseline" data to predict the vibration response, compare predictions to actual measurements collected on a potentially damaged structure, and calculate a user-defined damage indicator. The second technology handles the uncertainty present in the problem. An analysis of robustness is performed to propagate this uncertainty through the time series algorithm and obtain the corresponding bounds of variation of the damage indicator. The uncertainty description and robustness analysis are both inspired by the theory of info-gap decision-making. Lastly, an appropriate "size" of the uncertainty space is determined through physical experiments performed in laboratory conditions. Our hypothesis is that examining how the uncertainty space changes throughout time might lead to superior diagnostics of structural damage as compared to only monitoring the damage indicator. This methodology is applied to a portal frame structure to assess if the strategy holds promise for robust SHM. (Publication approved for unlimited, public release on October-28-2015, LA-UR-15-28442, unclassified.)

  3. Robustness analysis of superpixel algorithms to image blur, additive Gaussian noise, and impulse noise

    NASA Astrophysics Data System (ADS)

    Brekhna, Brekhna; Mahmood, Arif; Zhou, Yuanfeng; Zhang, Caiming

    2017-11-01

    Superpixels have gradually become popular in computer vision and image processing applications. However, no comprehensive study has been performed to evaluate the robustness of superpixel algorithms in regard to common forms of noise in natural images. We evaluated the robustness of 11 recently proposed algorithms to different types of noise. The images were corrupted with various degrees of Gaussian blur, additive white Gaussian noise, and impulse noise that either made the object boundaries weak or added extra information to it. We performed a robustness analysis of simple linear iterative clustering (SLIC), Voronoi Cells (VCells), flooding-based superpixel generation (FCCS), bilateral geodesic distance (Bilateral-G), superpixel via geodesic distance (SSS-G), manifold SLIC (M-SLIC), Turbopixels, superpixels extracted via energy-driven sampling (SEEDS), lazy random walk (LRW), real-time superpixel segmentation by DBSCAN clustering, and video supervoxels using partially absorbing random walks (PARW) algorithms. The evaluation process was carried out both qualitatively and quantitatively. For quantitative performance comparison, we used achievable segmentation accuracy (ASA), compactness, under-segmentation error (USE), and boundary recall (BR) on the Berkeley image database. The results demonstrated that all algorithms suffered performance degradation due to noise. For Gaussian blur, Bilateral-G exhibited optimal results for ASA and USE measures, SLIC yielded optimal compactness, whereas FCCS and DBSCAN remained optimal for BR. For the case of additive Gaussian and impulse noises, FCCS exhibited optimal results for ASA, USE, and BR, whereas Bilateral-G remained a close competitor in ASA and USE for Gaussian noise only. Additionally, Turbopixel demonstrated optimal performance for compactness for both types of noise. Thus, no single algorithm was able to yield optimal results for all three types of noise across all performance measures. Conclusively, to solve real-world problems effectively, more robust superpixel algorithms must be developed.

  4. Robust MOE Detector for DS-CDMA Systems with Signature Waveform Mismatch

    NASA Astrophysics Data System (ADS)

    Lin, Tsui-Tsai

    In this letter, a decision-directed MOE detector with excellent robustness against signature waveform mismatch is proposed for DS-CDMA systems. Both the theoretic analysis and computer simulation results demonstrate that the proposed detector can provide better SINR performance than that of conventional detectors.

  5. Robust fast controller design via nonlinear fractional differential equations.

    PubMed

    Zhou, Xi; Wei, Yiheng; Liang, Shu; Wang, Yong

    2017-07-01

    A new method for linear system controller design is proposed whereby the closed-loop system achieves both robustness and fast response. The robustness performance considered here means the damping ratio of closed-loop system can keep its desired value under system parameter perturbation, while the fast response, represented by rise time of system output, can be improved by tuning the controller parameter. We exploit techniques from both the nonlinear systems control and the fractional order systems control to derive a novel nonlinear fractional order controller. For theoretical analysis of the closed-loop system performance, two comparison theorems are developed for a class of fractional differential equations. Moreover, the rise time of the closed-loop system can be estimated, which facilitates our controller design to satisfy the fast response performance and maintain the robustness. Finally, numerical examples are given to illustrate the effectiveness of our methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Robust nonlinear canonical correlation analysis: application to seasonal climate forecasting

    NASA Astrophysics Data System (ADS)

    Cannon, A. J.; Hsieh, W. W.

    2008-02-01

    Robust variants of nonlinear canonical correlation analysis (NLCCA) are introduced to improve performance on datasets with low signal-to-noise ratios, for example those encountered when making seasonal climate forecasts. The neural network model architecture of standard NLCCA is kept intact, but the cost functions used to set the model parameters are replaced with more robust variants. The Pearson product-moment correlation in the double-barreled network is replaced by the biweight midcorrelation, and the mean squared error (mse) in the inverse mapping networks can be replaced by the mean absolute error (mae). Robust variants of NLCCA are demonstrated on a synthetic dataset and are used to forecast sea surface temperatures in the tropical Pacific Ocean based on the sea level pressure field. Results suggest that adoption of the biweight midcorrelation can lead to improved performance, especially when a strong, common event exists in both predictor/predictand datasets. Replacing the mse by the mae leads to improved performance on the synthetic dataset, but not on the climate dataset except at the longest lead time, which suggests that the appropriate cost function for the inverse mapping networks is more problem dependent.

  7. Robust control charts in industrial production of olive oil

    NASA Astrophysics Data System (ADS)

    Grilo, Luís M.; Mateus, Dina M. R.; Alves, Ana C.; Grilo, Helena L.

    2014-10-01

    Acidity is one of the most important variables in the quality analysis and characterization of olive oil. During the industrial production we use individuals and moving range charts to monitor this variable, which is not always normal distributed. After a brief exploratory data analysis, where we use the bootstrap method, we construct control charts, before and after a Box-Cox transformation, and compare their robustness and performance.

  8. Closed-Loop Evaluation of an Integrated Failure Identification and Fault Tolerant Control System for a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Belcastro, Christine; Khong, thuan

    2006-01-01

    Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. Such systems developed for failure detection, identification, and reconfiguration, as well as upset recovery, need to be evaluated over broad regions of the flight envelope or under extreme flight conditions, and should include various sources of uncertainty. To apply formal robustness analysis, formulation of linear fractional transformation (LFT) models of complex parameter-dependent systems is required, which represent system uncertainty due to parameter uncertainty and actuator faults. This paper describes a detailed LFT model formulation procedure from the nonlinear model of a transport aircraft by using a preliminary LFT modeling software tool developed at the NASA Langley Research Center, which utilizes a matrix-based computational approach. The closed-loop system is evaluated over the entire flight envelope based on the generated LFT model which can cover nonlinear dynamics. The robustness analysis results of the closed-loop fault tolerant control system of a transport aircraft are presented. A reliable flight envelope (safe flight regime) is also calculated from the robust performance analysis results, over which the closed-loop system can achieve the desired performance of command tracking and failure detection.

  9. Robust detection, isolation and accommodation for sensor failures

    NASA Technical Reports Server (NTRS)

    Emami-Naeini, A.; Akhter, M. M.; Rock, S. M.

    1986-01-01

    The objective is to extend the recent advances in robust control system design of multivariable systems to sensor failure detection, isolation, and accommodation (DIA), and estimator design. This effort provides analysis tools to quantify the trade-off between performance robustness and DIA sensitivity, which are to be used to achieve higher levels of performance robustness for given levels of DIA sensitivity. An innovations-based DIA scheme is used. Estimators, which depend upon a model of the process and process inputs and outputs, are used to generate these innovations. Thresholds used to determine failure detection are computed based on bounds on modeling errors, noise properties, and the class of failures. The applicability of the newly developed tools are demonstrated on a multivariable aircraft turbojet engine example. A new concept call the threshold selector was developed. It represents a significant and innovative tool for the analysis and synthesis of DiA algorithms. The estimators were made robust by introduction of an internal model and by frequency shaping. The internal mode provides asymptotically unbiased filter estimates.The incorporation of frequency shaping of the Linear Quadratic Gaussian cost functional modifies the estimator design to make it suitable for sensor failure DIA. The results are compared with previous studies which used thresholds that were selcted empirically. Comparison of these two techniques on a nonlinear dynamic engine simulation shows improved performance of the new method compared to previous techniques

  10. Analysis of airframe/engine interactions in integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schierman, John D.; Schmidt, David K.

    1991-01-01

    An analysis framework for the assessment of dynamic cross-coupling between airframe and engine systems from the perspective of integrated flight/propulsion control is presented. This analysis involves to determining the significance of the interactions with respect to deterioration in stability robustness and performance, as well as critical frequency ranges where problems may occur due to these interactions. The analysis illustrated here investigates both the airframe's effects on the engine control loops and the engine's effects on the airframe control loops in two case studies. The second case study involves a multi-input/multi-output analysis of the airframe. Sensitivity studies are performed on critical interactions to examine the degradations in the system's stability robustness and performance. Magnitudes of the interactions required to cause instabilities, as well as the frequencies at which the instabilities occur are recorded. Finally, the analysis framework is expanded to include control laws which contain cross-feeds between the airframe and engine systems.

  11. Multilayer Perceptron for Robust Nonlinear Interval Regression Analysis Using Genetic Algorithms

    PubMed Central

    2014-01-01

    On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets. PMID:25110755

  12. Multilayer perceptron for robust nonlinear interval regression analysis using genetic algorithms.

    PubMed

    Hu, Yi-Chung

    2014-01-01

    On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets.

  13. Reducing the overlay metrology sensitivity to perturbations of the measurement stack

    NASA Astrophysics Data System (ADS)

    Zhou, Yue; Park, DeNeil; Gutjahr, Karsten; Gottipati, Abhishek; Vuong, Tam; Bae, Sung Yong; Stokes, Nicholas; Jiang, Aiqin; Hsu, Po Ya; O'Mahony, Mark; Donini, Andrea; Visser, Bart; de Ruiter, Chris; Grzela, Grzegorz; van der Laan, Hans; Jak, Martin; Izikson, Pavel; Morgan, Stephen

    2017-03-01

    Overlay metrology setup today faces a continuously changing landscape of process steps. During Diffraction Based Overlay (DBO) metrology setup, many different metrology target designs are evaluated in order to cover the full process window. The standard method for overlay metrology setup consists of single-wafer optimization in which the performance of all available metrology targets is evaluated. Without the availability of external reference data or multiwafer measurements it is hard to predict the metrology accuracy and robustness against process variations which naturally occur from wafer-to-wafer and lot-to-lot. In this paper, the capabilities of the Holistic Metrology Qualification (HMQ) setup flow are outlined, in particular with respect to overlay metrology accuracy and process robustness. The significance of robustness and its impact on overlay measurements is discussed using multiple examples. Measurement differences caused by slight stack variations across the target area, called grating imbalance, are shown to cause significant errors in the overlay calculation in case the recipe and target have not been selected properly. To this point, an overlay sensitivity check on perturbations of the measurement stack is presented for improvement of the overlay metrology setup flow. An extensive analysis on Key Performance Indicators (KPIs) from HMQ recipe optimization is performed on µDBO measurements of product wafers. The key parameters describing the sensitivity to perturbations of the measurement stack are based on an intra-target analysis. Using advanced image analysis, which is only possible for image plane detection of μDBO instead of pupil plane detection of DBO, the process robustness performance of a recipe can be determined. Intra-target analysis can be applied for a wide range of applications, independent of layers and devices.

  14. Robustness analysis of non-ordinary Petri nets for flexible assembly systems

    NASA Astrophysics Data System (ADS)

    Hsieh, Fu-Shiung

    2010-05-01

    Non-ordinary controlled Petri nets (NCPNs) have the advantages to model flexible assembly systems in which multiple identical resources may be required to perform an operation. However, existing studies on NCPNs are still limited. For example, the robustness properties of NCPNs have not been studied. This motivates us to develop an analysis method for NCPNs. Robustness analysis concerns the ability for a system to maintain operation in the presence of uncertainties. It provides an alternative way to analyse a perturbed system without reanalysis. In our previous research, we have analysed the robustness properties of several subclasses of ordinary controlled Petri nets. To study the robustness properties of NCPNs, we augment NCPNs with an uncertainty model, which specifies an upper bound on the uncertainties for each reachable marking. The resulting PN models are called non-ordinary controlled Petri nets with uncertainties (NCPNU). Based on NCPNU, the problem is to characterise the maximal tolerable uncertainties for each reachable marking. The computational complexities to characterise maximal tolerable uncertainties for each reachable marking grow exponentially with the size of the nets. Instead of considering general NCPNU, we limit our scope to a subclass of PN models called non-ordinary controlled flexible assembly Petri net with uncertainties (NCFAPNU) for assembly systems and study its robustness. We will extend the robustness analysis to NCFAPNU. We identify two types of uncertainties under which the liveness of NCFAPNU can be maintained.

  15. Conflicts in Coalitions: A Stability Analysis of Robust Multi-City Regional Water Supply Portfolios

    NASA Astrophysics Data System (ADS)

    Gold, D.; Trindade, B. C.; Reed, P. M.; Characklis, G. W.

    2017-12-01

    Regional cooperation among water utilities can improve the robustness of urban water supply portfolios to deeply uncertain future conditions such as those caused by climate change or population growth. Coordination mechanisms such as water transfers, coordinated demand management, and shared infrastructure, can improve the efficiency of resource allocation and delay the need for new infrastructure investments. Regionalization does however come at a cost. Regionally coordinated water supply plans may be vulnerable to any emerging instabilities in the regional coalition. If one or more regional actors does not cooperate or follow the required regional actions in a time of crisis, the overall system performance may degrade. Furthermore, when crafting regional water supply portfolios, decision makers must choose a framework for measuring the performance of regional policies based on the evaluation of the objective values for each individual actor. Regional evaluations may inherently favor one actor's interests over those of another. This work focuses on four interconnected water utilities in the Research Triangle region of North Carolina for which robust regional water supply portfolios have previously been designed using multi-objective optimization to maximize the robustness of the worst performing utility across several objectives. This study 1) examines the sensitivity of portfolio performance to deviations from prescribed actions by individual utilities, 2) quantifies the implications of the regional formulation used to evaluate robustness for the portfolio performance of each individual utility and 3) elucidates the inherent regional tensions and conflicts that exist between utilities under this regionalization scheme through visual diagnostics of the system under simulated drought scenarios. Results of this analysis will help inform the creation of future regional water supply portfolios and provide insight into the nature of multi-actor water supply systems.

  16. An improved method for bivariate meta-analysis when within-study correlations are unknown.

    PubMed

    Hong, Chuan; D Riley, Richard; Chen, Yong

    2018-03-01

    Multivariate meta-analysis, which jointly analyzes multiple and possibly correlated outcomes in a single analysis, is becoming increasingly popular in recent years. An attractive feature of the multivariate meta-analysis is its ability to account for the dependence between multiple estimates from the same study. However, standard inference procedures for multivariate meta-analysis require the knowledge of within-study correlations, which are usually unavailable. This limits standard inference approaches in practice. Riley et al proposed a working model and an overall synthesis correlation parameter to account for the marginal correlation between outcomes, where the only data needed are those required for a separate univariate random-effects meta-analysis. As within-study correlations are not required, the Riley method is applicable to a wide variety of evidence synthesis situations. However, the standard variance estimator of the Riley method is not entirely correct under many important settings. As a consequence, the coverage of a function of pooled estimates may not reach the nominal level even when the number of studies in the multivariate meta-analysis is large. In this paper, we improve the Riley method by proposing a robust variance estimator, which is asymptotically correct even when the model is misspecified (ie, when the likelihood function is incorrect). Simulation studies of a bivariate meta-analysis, in a variety of settings, show a function of pooled estimates has improved performance when using the proposed robust variance estimator. In terms of individual pooled estimates themselves, the standard variance estimator and robust variance estimator give similar results to the original method, with appropriate coverage. The proposed robust variance estimator performs well when the number of studies is relatively large. Therefore, we recommend the use of the robust method for meta-analyses with a relatively large number of studies (eg, m≥50). When the sample size is relatively small, we recommend the use of the robust method under the working independence assumption. We illustrate the proposed method through 2 meta-analyses. Copyright © 2017 John Wiley & Sons, Ltd.

  17. A μ analysis-based, controller-synthesis framework for robust bioinspired visual navigation in less-structured environments.

    PubMed

    Keshavan, J; Gremillion, G; Escobar-Alvarez, H; Humbert, J S

    2014-06-01

    Safe, autonomous navigation by aerial microsystems in less-structured environments is a difficult challenge to overcome with current technology. This paper presents a novel visual-navigation approach that combines bioinspired wide-field processing of optic flow information with control-theoretic tools for synthesis of closed loop systems, resulting in robustness and performance guarantees. Structured singular value analysis is used to synthesize a dynamic controller that provides good tracking performance in uncertain environments without resorting to explicit pose estimation or extraction of a detailed environmental depth map. Experimental results with a quadrotor demonstrate the vehicle's robust obstacle-avoidance behaviour in a straight line corridor, an S-shaped corridor and a corridor with obstacles distributed in the vehicle's path. The computational efficiency and simplicity of the current approach offers a promising alternative to satisfying the payload, power and bandwidth constraints imposed by aerial microsystems.

  18. Robust Global Image Registration Based on a Hybrid Algorithm Combining Fourier and Spatial Domain Techniques

    DTIC Science & Technology

    2012-09-01

    Robust global image registration based on a hybrid algorithm combining Fourier and spatial domain techniques Peter N. Crabtree, Collin Seanor...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Robust global image registration based on a hybrid algorithm combining Fourier and spatial domain...demonstrate performance of a hybrid algorithm . These results are from analysis of a set of images of an ISO 12233 [12] resolution chart captured in the

  19. A Conceptual Methodology for Assessing Acquisition Requirements Robustness against Technology Uncertainties

    NASA Astrophysics Data System (ADS)

    Chou, Shuo-Ju

    2011-12-01

    In recent years the United States has shifted from a threat-based acquisition policy that developed systems for countering specific threats to a capabilities-based strategy that emphasizes the acquisition of systems that provide critical national defense capabilities. This shift in policy, in theory, allows for the creation of an "optimal force" that is robust against current and future threats regardless of the tactics and scenario involved. In broad terms, robustness can be defined as the insensitivity of an outcome to "noise" or non-controlled variables. Within this context, the outcome is the successful achievement of defense strategies and the noise variables are tactics and scenarios that will be associated with current and future enemies. Unfortunately, a lack of system capability, budget, and schedule robustness against technology performance and development uncertainties has led to major setbacks in recent acquisition programs. This lack of robustness stems from the fact that immature technologies have uncertainties in their expected performance, development cost, and schedule that cause to variations in system effectiveness and program development budget and schedule requirements. Unfortunately, the Technology Readiness Assessment process currently used by acquisition program managers and decision-makers to measure technology uncertainty during critical program decision junctions does not adequately capture the impact of technology performance and development uncertainty on program capability and development metrics. The Technology Readiness Level metric employed by the TRA to describe program technology elements uncertainties can only provide a qualitative and non-descript estimation of the technology uncertainties. In order to assess program robustness, specifically requirements robustness, against technology performance and development uncertainties, a new process is needed. This process should provide acquisition program managers and decision-makers with the ability to assess or measure the robustness of program requirements against such uncertainties. A literature review of techniques for forecasting technology performance and development uncertainties and subsequent impacts on capability, budget, and schedule requirements resulted in the conclusion that an analysis process that coupled a probabilistic analysis technique such as Monte Carlo Simulations with quantitative and parametric models of technology performance impact and technology development time and cost requirements would allow the probabilities of meeting specific constraints of these requirements to be established. These probabilities of requirements success metrics can then be used as a quantitative and probabilistic measure of program requirements robustness against technology uncertainties. Combined with a Multi-Objective Genetic Algorithm optimization process and computer-based Decision Support System, critical information regarding requirements robustness against technology uncertainties can be captured and quantified for acquisition decision-makers. This results in a more informed and justifiable selection of program technologies during initial program definition as well as formulation of program development and risk management strategies. To meet the stated research objective, the ENhanced TEchnology Robustness Prediction and RISk Evaluation (ENTERPRISE) methodology was formulated to provide a structured and transparent process for integrating these enabling techniques to provide a probabilistic and quantitative assessment of acquisition program requirements robustness against technology performance and development uncertainties. In order to demonstrate the capabilities of the ENTERPRISE method and test the research Hypotheses, an demonstration application of this method was performed on a notional program for acquiring the Carrier-based Suppression of Enemy Air Defenses (SEAD) using Unmanned Combat Aircraft Systems (UCAS) and their enabling technologies. The results of this implementation provided valuable insights regarding the benefits and inner workings of this methodology as well as its limitations that should be addressed in the future to narrow the gap between current state and the desired state.

  20. Beyond singular values and loop shapes

    NASA Technical Reports Server (NTRS)

    Stein, G.

    1985-01-01

    The status of singular value loop-shaping as a design paradigm for multivariable feedback systems is reviewed. It shows that this paradigm is an effective design tool whenever the problem specifications are spacially round. The tool can be arbitrarily conservative, however, when they are not. This happens because singular value conditions for robust performance are not tight (necessary and sufficient) and can severely overstate actual requirements. An alternate paradign is discussed which overcomes these limitations. The alternative includes a more general problem formulation, a new matrix function mu, and tight conditions for both robust stability and robust performance. The state of the art currently permits analysis of feedback systems within this new paradigm. Synthesis remains a subject of research.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebenga, J. H.; Atzema, E. H.; Boogaard, A. H. van den

    Robust design of forming processes using numerical simulations is gaining attention throughout the industry. In this work, it is demonstrated how robust optimization can assist in further stretching the limits of metal forming processes. A deterministic and a robust optimization study are performed, considering a stretch-drawing process of a hemispherical cup product. For the robust optimization study, both the effect of material and process scatter are taken into account. For quantifying the material scatter, samples of 41 coils of a drawing quality forming steel have been collected. The stochastic material behavior is obtained by a hybrid approach, combining mechanical testingmore » and texture analysis, and efficiently implemented in a metamodel based optimization strategy. The deterministic and robust optimization results are subsequently presented and compared, demonstrating an increased process robustness and decreased number of product rejects by application of the robust optimization approach.« less

  2. GWAR: robust analysis and meta-analysis of genome-wide association studies.

    PubMed

    Dimou, Niki L; Tsirigos, Konstantinos D; Elofsson, Arne; Bagos, Pantelis G

    2017-05-15

    In the context of genome-wide association studies (GWAS), there is a variety of statistical techniques in order to conduct the analysis, but, in most cases, the underlying genetic model is usually unknown. Under these circumstances, the classical Cochran-Armitage trend test (CATT) is suboptimal. Robust procedures that maximize the power and preserve the nominal type I error rate are preferable. Moreover, performing a meta-analysis using robust procedures is of great interest and has never been addressed in the past. The primary goal of this work is to implement several robust methods for analysis and meta-analysis in the statistical package Stata and subsequently to make the software available to the scientific community. The CATT under a recessive, additive and dominant model of inheritance as well as robust methods based on the Maximum Efficiency Robust Test statistic, the MAX statistic and the MIN2 were implemented in Stata. Concerning MAX and MIN2, we calculated their asymptotic null distributions relying on numerical integration resulting in a great gain in computational time without losing accuracy. All the aforementioned approaches were employed in a fixed or a random effects meta-analysis setting using summary data with weights equal to the reciprocal of the combined cases and controls. Overall, this is the first complete effort to implement procedures for analysis and meta-analysis in GWAS using Stata. A Stata program and a web-server are freely available for academic users at http://www.compgen.org/tools/GWAR. pbagos@compgen.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  3. Robust control of combustion instabilities

    NASA Astrophysics Data System (ADS)

    Hong, Boe-Shong

    Several interactive dynamical subsystems, each of which has its own time-scale and physical significance, are decomposed to build a feedback-controlled combustion- fluid robust dynamics. On the fast-time scale, the phenomenon of combustion instability is corresponding to the internal feedback of two subsystems: acoustic dynamics and flame dynamics, which are parametrically dependent on the slow-time-scale mean-flow dynamics controlled for global performance by a mean-flow controller. This dissertation constructs such a control system, through modeling, analysis and synthesis, to deal with model uncertainties, environmental noises and time- varying mean-flow operation. Conservation law is decomposed as fast-time acoustic dynamics and slow-time mean-flow dynamics, served for synthesizing LPV (linear parameter varying)- L2-gain robust control law, in which a robust observer is embedded for estimating and controlling the internal status, while achieving trade- offs among robustness, performances and operation. The robust controller is formulated as two LPV-type Linear Matrix Inequalities (LMIs), whose numerical solver is developed by finite-element method. Some important issues related to physical understanding and engineering application are discussed in simulated results of the control system.

  4. Robust L1-norm two-dimensional linear discriminant analysis.

    PubMed

    Li, Chun-Na; Shao, Yuan-Hai; Deng, Nai-Yang

    2015-05-01

    In this paper, we propose an L1-norm two-dimensional linear discriminant analysis (L1-2DLDA) with robust performance. Different from the conventional two-dimensional linear discriminant analysis with L2-norm (L2-2DLDA), where the optimization problem is transferred to a generalized eigenvalue problem, the optimization problem in our L1-2DLDA is solved by a simple justifiable iterative technique, and its convergence is guaranteed. Compared with L2-2DLDA, our L1-2DLDA is more robust to outliers and noises since the L1-norm is used. This is supported by our preliminary experiments on toy example and face datasets, which show the improvement of our L1-2DLDA over L2-2DLDA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Robust Variable Selection with Exponential Squared Loss.

    PubMed

    Wang, Xueqin; Jiang, Yunlu; Huang, Mian; Zhang, Heping

    2013-04-01

    Robust variable selection procedures through penalized regression have been gaining increased attention in the literature. They can be used to perform variable selection and are expected to yield robust estimates. However, to the best of our knowledge, the robustness of those penalized regression procedures has not been well characterized. In this paper, we propose a class of penalized robust regression estimators based on exponential squared loss. The motivation for this new procedure is that it enables us to characterize its robustness that has not been done for the existing procedures, while its performance is near optimal and superior to some recently developed methods. Specifically, under defined regularity conditions, our estimators are [Formula: see text] and possess the oracle property. Importantly, we show that our estimators can achieve the highest asymptotic breakdown point of 1/2 and that their influence functions are bounded with respect to the outliers in either the response or the covariate domain. We performed simulation studies to compare our proposed method with some recent methods, using the oracle method as the benchmark. We consider common sources of influential points. Our simulation studies reveal that our proposed method performs similarly to the oracle method in terms of the model error and the positive selection rate even in the presence of influential points. In contrast, other existing procedures have a much lower non-causal selection rate. Furthermore, we re-analyze the Boston Housing Price Dataset and the Plasma Beta-Carotene Level Dataset that are commonly used examples for regression diagnostics of influential points. Our analysis unravels the discrepancies of using our robust method versus the other penalized regression method, underscoring the importance of developing and applying robust penalized regression methods.

  6. Robust Variable Selection with Exponential Squared Loss

    PubMed Central

    Wang, Xueqin; Jiang, Yunlu; Huang, Mian; Zhang, Heping

    2013-01-01

    Robust variable selection procedures through penalized regression have been gaining increased attention in the literature. They can be used to perform variable selection and are expected to yield robust estimates. However, to the best of our knowledge, the robustness of those penalized regression procedures has not been well characterized. In this paper, we propose a class of penalized robust regression estimators based on exponential squared loss. The motivation for this new procedure is that it enables us to characterize its robustness that has not been done for the existing procedures, while its performance is near optimal and superior to some recently developed methods. Specifically, under defined regularity conditions, our estimators are n-consistent and possess the oracle property. Importantly, we show that our estimators can achieve the highest asymptotic breakdown point of 1/2 and that their influence functions are bounded with respect to the outliers in either the response or the covariate domain. We performed simulation studies to compare our proposed method with some recent methods, using the oracle method as the benchmark. We consider common sources of influential points. Our simulation studies reveal that our proposed method performs similarly to the oracle method in terms of the model error and the positive selection rate even in the presence of influential points. In contrast, other existing procedures have a much lower non-causal selection rate. Furthermore, we re-analyze the Boston Housing Price Dataset and the Plasma Beta-Carotene Level Dataset that are commonly used examples for regression diagnostics of influential points. Our analysis unravels the discrepancies of using our robust method versus the other penalized regression method, underscoring the importance of developing and applying robust penalized regression methods. PMID:23913996

  7. An Integrated Environmental Assessment of Green and Gray Infrastructure Strategies for Robust Decision Making.

    PubMed

    Casal-Campos, Arturo; Fu, Guangtao; Butler, David; Moore, Andrew

    2015-07-21

    The robustness of a range of watershed-scale "green" and "gray" drainage strategies in the future is explored through comprehensive modeling of a fully integrated urban wastewater system case. Four socio-economic future scenarios, defined by parameters affecting the environmental performance of the system, are proposed to account for the uncertain variability of conditions in the year 2050. A regret-based approach is applied to assess the relative performance of strategies in multiple impact categories (environmental, economic, and social) as well as to evaluate their robustness across future scenarios. The concept of regret proves useful in identifying performance trade-offs and recognizing states of the world most critical to decisions. The study highlights the robustness of green strategies (particularly rain gardens, resulting in half the regret of most options) over end-of-pipe gray alternatives (surface water separation or sewer and storage rehabilitation), which may be costly (on average, 25% of the total regret of these options) and tend to focus on sewer flooding and CSO alleviation while compromising on downstream system performance (this accounts for around 50% of their total regret). Trade-offs and scenario regrets observed in the analysis suggest that the combination of green and gray strategies may still offer further potential for robustness.

  8. Metabolic robustness in young roots underpins a predictive model of maize hybrid performance in the field.

    PubMed

    de Abreu E Lima, Francisco; Westhues, Matthias; Cuadros-Inostroza, Álvaro; Willmitzer, Lothar; Melchinger, Albrecht E; Nikoloski, Zoran

    2017-04-01

    Heterosis has been extensively exploited for yield gain in maize (Zea mays L.). Here we conducted a comparative metabolomics-based analysis of young roots from in vitro germinating seedlings and from leaves of field-grown plants in a panel of inbred lines from the Dent and Flint heterotic patterns as well as selected F 1 hybrids. We found that metabolite levels in hybrids were more robust than in inbred lines. Using state-of-the-art modeling techniques, the most robust metabolites from roots and leaves explained up to 37 and 44% of the variance in the biomass from plants grown in two distinct field trials. In addition, a correlation-based analysis highlighted the trade-off between defense-related metabolites and hybrid performance. Therefore, our findings demonstrated the potential of metabolic profiles from young maize roots grown under tightly controlled conditions to predict hybrid performance in multiple field trials, thus bridging the greenhouse-field gap. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  9. Robustness analysis of elastoplastic structure subjected to double impulse

    NASA Astrophysics Data System (ADS)

    Kanno, Yoshihiro; Takewaki, Izuru

    2016-11-01

    The double impulse has extensively been used to evaluate the critical response of an elastoplastic structure against a pulse-type input, including near-fault earthquake ground motions. In this paper, we propose a robustness assessment method for elastoplastic single-degree-of-freedom structures subjected to the double impulse input. Uncertainties in the initial velocity of the input, as well as the natural frequency and the strength of the structure, are considered. As fundamental properties of the structural robustness, we show monotonicity of the robustness measure with respect to the natural frequency. In contrast, we show that robustness is not necessarily improved even if the structural strength is increased. Moreover, the robustness preference between two structures with different values of structural strength can possibly reverse when the performance requirement is changed.

  10. Robust analysis of an underwater navigational strategy in electrically heterogeneous corridors.

    PubMed

    Dimble, Kedar D; Ranganathan, Badri N; Keshavan, Jishnu; Humbert, J Sean

    2016-08-01

    Obstacles and other global stimuli provide relevant navigational cues to a weakly electric fish. In this work, robust analysis of a control strategy based on electrolocation for performing obstacle avoidance in electrically heterogeneous corridors is presented and validated. Static output feedback control is shown to achieve the desired goal of reflexive obstacle avoidance in such environments in simulation and experimentation. The proposed approach is computationally inexpensive and readily implementable on a small scale underwater vehicle, making underwater autonomous navigation feasible in real-time.

  11. Enhanced robust fractional order proportional-plus-integral controller based on neural network for velocity control of permanent magnet synchronous motor.

    PubMed

    Zhang, Bitao; Pi, YouGuo

    2013-07-01

    The traditional integer order proportional-integral-differential (IO-PID) controller is sensitive to the parameter variation or/and external load disturbance of permanent magnet synchronous motor (PMSM). And the fractional order proportional-integral-differential (FO-PID) control scheme based on robustness tuning method is proposed to enhance the robustness. But the robustness focuses on the open-loop gain variation of controlled plant. In this paper, an enhanced robust fractional order proportional-plus-integral (ERFOPI) controller based on neural network is proposed. The control law of the ERFOPI controller is acted on a fractional order implement function (FOIF) of tracking error but not tracking error directly, which, according to theory analysis, can enhance the robust performance of system. Tuning rules and approaches, based on phase margin, crossover frequency specification and robustness rejecting gain variation, are introduced to obtain the parameters of ERFOPI controller. And the neural network algorithm is used to adjust the parameter of FOIF. Simulation and experimental results show that the method proposed in this paper not only achieve favorable tracking performance, but also is robust with regard to external load disturbance and parameter variation. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Robust gene selection methods using weighting schemes for microarray data analysis.

    PubMed

    Kang, Suyeon; Song, Jongwoo

    2017-09-02

    A common task in microarray data analysis is to identify informative genes that are differentially expressed between two different states. Owing to the high-dimensional nature of microarray data, identification of significant genes has been essential in analyzing the data. However, the performances of many gene selection techniques are highly dependent on the experimental conditions, such as the presence of measurement error or a limited number of sample replicates. We have proposed new filter-based gene selection techniques, by applying a simple modification to significance analysis of microarrays (SAM). To prove the effectiveness of the proposed method, we considered a series of synthetic datasets with different noise levels and sample sizes along with two real datasets. The following findings were made. First, our proposed methods outperform conventional methods for all simulation set-ups. In particular, our methods are much better when the given data are noisy and sample size is small. They showed relatively robust performance regardless of noise level and sample size, whereas the performance of SAM became significantly worse as the noise level became high or sample size decreased. When sufficient sample replicates were available, SAM and our methods showed similar performance. Finally, our proposed methods are competitive with traditional methods in classification tasks for microarrays. The results of simulation study and real data analysis have demonstrated that our proposed methods are effective for detecting significant genes and classification tasks, especially when the given data are noisy or have few sample replicates. By employing weighting schemes, we can obtain robust and reliable results for microarray data analysis.

  13. Iris recognition based on robust principal component analysis

    NASA Astrophysics Data System (ADS)

    Karn, Pradeep; He, Xiao Hai; Yang, Shuai; Wu, Xiao Hong

    2014-11-01

    Iris images acquired under different conditions often suffer from blur, occlusion due to eyelids and eyelashes, specular reflection, and other artifacts. Existing iris recognition systems do not perform well on these types of images. To overcome these problems, we propose an iris recognition method based on robust principal component analysis. The proposed method decomposes all training images into a low-rank matrix and a sparse error matrix, where the low-rank matrix is used for feature extraction. The sparsity concentration index approach is then applied to validate the recognition result. Experimental results using CASIA V4 and IIT Delhi V1iris image databases showed that the proposed method achieved competitive performances in both recognition accuracy and computational efficiency.

  14. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.

    PubMed

    Ge, Ruiyang; Wang, Yubao; Zhang, Jipeng; Yao, Li; Zhang, Hang; Long, Zhiying

    2016-04-01

    As a blind source separation technique, independent component analysis (ICA) has many applications in functional magnetic resonance imaging (fMRI). Although either temporal or spatial prior information has been introduced into the constrained ICA and semi-blind ICA methods to improve the performance of ICA in fMRI data analysis, certain types of additional prior information, such as the sparsity, has seldom been added to the ICA algorithms as constraints. In this study, we proposed a SparseFastICA method by adding the source sparsity as a constraint to the FastICA algorithm to improve the performance of the widely used FastICA. The source sparsity is estimated through a smoothed ℓ0 norm method. We performed experimental tests on both simulated data and real fMRI data to investigate the feasibility and robustness of SparseFastICA and made a performance comparison between SparseFastICA, FastICA and Infomax ICA. Results of the simulated and real fMRI data demonstrated the feasibility and robustness of SparseFastICA for the source separation in fMRI data. Both the simulated and real fMRI experimental results showed that SparseFastICA has better robustness to noise and better spatial detection power than FastICA. Although the spatial detection power of SparseFastICA and Infomax did not show significant difference, SparseFastICA had faster computation speed than Infomax. SparseFastICA was comparable to the Infomax algorithm with a faster computation speed. More importantly, SparseFastICA outperformed FastICA in robustness and spatial detection power and can be used to identify more accurate brain networks than FastICA algorithm. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Determining the transport mechanism of an enzyme-catalytic complex metabolic network based on biological robustness.

    PubMed

    Wang, Lei

    2013-04-01

    Understanding the transport mechanism of 1,3-propanediol (1,3-PD) is of critical importance to do further research on gene regulation. Due to the lack of intracellular information, on the basis of enzyme-catalytic system, using biological robustness as performance index, we present a system identification model to infer the most possible transport mechanism of 1,3-PD, in which the performance index consists of the relative error of the extracellular substance concentrations and biological robustness of the intracellular substance concentrations. We will not use a Boolean framework but prefer a model description based on ordinary differential equations. Among other advantages, this also facilitates the robustness analysis, which is the main goal of this paper. An algorithm is constructed to seek the solution of the identification model. Numerical results show that the most possible transport way is active transport coupled with passive diffusion.

  16. A Computational Framework to Control Verification and Robustness Analysis

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2010-01-01

    This paper presents a methodology for evaluating the robustness of a controller based on its ability to satisfy the design requirements. The framework proposed is generic since it allows for high-fidelity models, arbitrary control structures and arbitrary functional dependencies between the requirements and the uncertain parameters. The cornerstone of this contribution is the ability to bound the region of the uncertain parameter space where the degradation in closed-loop performance remains acceptable. The size of this bounding set, whose geometry can be prescribed according to deterministic or probabilistic uncertainty models, is a measure of robustness. The robustness metrics proposed herein are the parametric safety margin, the reliability index, the failure probability and upper bounds to this probability. The performance observed at the control verification setting, where the assumptions and approximations used for control design may no longer hold, will fully determine the proposed control assessment.

  17. Optimal design of loudspeaker arrays for robust cross-talk cancellation using the Taguchi method and the genetic algorithm.

    PubMed

    Bai, Mingsian R; Tung, Chih-Wei; Lee, Chih-Chung

    2005-05-01

    An optimal design technique of loudspeaker arrays for cross-talk cancellation with application in three-dimensional audio is presented. An array focusing scheme is presented on the basis of the inverse propagation that relates the transducers to a set of chosen control points. Tikhonov regularization is employed in designing the inverse cancellation filters. An extensive analysis is conducted to explore the cancellation performance and robustness issues. To best compromise the performance and robustness of the cross-talk cancellation system, optimal configurations are obtained with the aid of the Taguchi method and the genetic algorithm (GA). The proposed systems are further justified by physical as well as subjective experiments. The results reveal that large number of loudspeakers, closely spaced configuration, and optimal control point design all contribute to the robustness of cross-talk cancellation systems (CCS) against head misalignment.

  18. Quality by Design: Multidimensional exploration of the design space in high performance liquid chromatography method development for better robustness before validation.

    PubMed

    Monks, K; Molnár, I; Rieger, H-J; Bogáti, B; Szabó, E

    2012-04-06

    Robust HPLC separations lead to fewer analysis failures and better method transfer as well as providing an assurance of quality. This work presents the systematic development of an optimal, robust, fast UHPLC method for the simultaneous assay of two APIs of an eye drop sample and their impurities, in accordance with Quality by Design principles. Chromatography software is employed to effectively generate design spaces (Method Operable Design Regions), which are subsequently employed to determine the final method conditions and to evaluate robustness prior to validation. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. The Robustness Analysis of Wireless Sensor Networks under Uncertain Interference

    PubMed Central

    Deng, Changjian

    2013-01-01

    Based on the complex network theory, robustness analysis of condition monitoring wireless sensor network under uncertain interference is present. In the evolution of the topology of sensor networks, the density weighted algebraic connectivity is taken into account, and the phenomenon of removing and repairing the link and node in the network is discussed. Numerical simulation is conducted to explore algebraic connectivity characteristics and network robustness performance. It is found that nodes density has the effect on algebraic connectivity distribution in the random graph model; high density nodes carry more connections, use more throughputs, and may be more unreliable. Moreover, the results show that, when network should be more error tolerant or robust by repairing nodes or adding new nodes, the network should be better clustered in median and high scale wireless sensor networks and be meshing topology in small scale networks. PMID:24363613

  20. Identification and robust control of an experimental servo motor.

    PubMed

    Adam, E J; Guestrin, E D

    2002-04-01

    In this work, the design of a robust controller for an experimental laboratory-scale position control system based on a dc motor drive as well as the corresponding identification and robust stability analysis are presented. In order to carry out the robust design procedure, first, a classic closed-loop identification technique is applied and then, the parametrization by internal model control is used. The model uncertainty is evaluated under both parametric and global representation. For the latter case, an interesting discussion about the conservativeness of this description is presented by means of a comparison between the uncertainty disk and the critical perturbation radius approaches. Finally, conclusions about the performance of the experimental system with the robust controller are discussed using comparative graphics of the controlled variable and the Nyquist stability margin as a robustness measurement.

  1. The X-43A Six Degree of Freedom Monte Carlo Analysis

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Bahm, Catherine; Strovers, Brian; Beck, Roger

    2008-01-01

    This report provides an overview of the Hyper-X research vehicle Monte Carlo analysis conducted with the six-degree-of-freedom simulation. The methodology and model uncertainties used for the Monte Carlo analysis are presented as permitted. In addition, the process used to select hardware validation test cases from the Monte Carlo data is described. The preflight Monte Carlo analysis indicated that the X-43A control system was robust to the preflight uncertainties and provided the Hyper-X project an important indication that the vehicle would likely be successful in accomplishing the mission objectives. The X-43A inflight performance is compared to the preflight Monte Carlo predictions and shown to exceed the Monte Carlo bounds in several instances. Possible modeling shortfalls are presented that may account for these discrepancies. The flight control laws and guidance algorithms were robust enough as a result of the preflight Monte Carlo analysis that the unexpected in-flight performance did not have undue consequences. Modeling and Monte Carlo analysis lessons learned are presented.

  2. The X-43A Six Degree of Freedom Monte Carlo Analysis

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Bahm, Catherine; Strovers, Brian; Beck, Roger; Richard, Michael

    2007-01-01

    This report provides an overview of the Hyper-X research vehicle Monte Carlo analysis conducted with the six-degree-of-freedom simulation. The methodology and model uncertainties used for the Monte Carlo analysis are presented as permitted. In addition, the process used to select hardware validation test cases from the Monte Carlo data is described. The preflight Monte Carlo analysis indicated that the X-43A control system was robust to the preflight uncertainties and provided the Hyper-X project an important indication that the vehicle would likely be successful in accomplishing the mission objectives. The X-43A in-flight performance is compared to the preflight Monte Carlo predictions and shown to exceed the Monte Carlo bounds in several instances. Possible modeling shortfalls are presented that may account for these discrepancies. The flight control laws and guidance algorithms were robust enough as a result of the preflight Monte Carlo analysis that the unexpected in-flight performance did not have undue consequences. Modeling and Monte Carlo analysis lessons learned are presented.

  3. Robustness of statistical tests for multiplicative terms in the additive main effects and multiplicative interaction model for cultivar trials.

    PubMed

    Piepho, H P

    1995-03-01

    The additive main effects multiplicative interaction model is frequently used in the analysis of multilocation trials. In the analysis of such data it is of interest to decide how many of the multiplicative interaction terms are significant. Several tests for this task are available, all of which assume that errors are normally distributed with a common variance. This paper investigates the robustness of several tests (Gollob, F GH1, FGH2, FR)to departures from these assumptions. It is concluded that, because of its better robustness, the F Rtest is preferable. If the other tests are to be used, preliminary tests for the validity of assumptions should be performed.

  4. Neural integrators for decision making: a favorable tradeoff between robustness and sensitivity

    PubMed Central

    Cain, Nicholas; Barreiro, Andrea K.; Shadlen, Michael

    2013-01-01

    A key step in many perceptual decision tasks is the integration of sensory inputs over time, but a fundamental questions remain about how this is accomplished in neural circuits. One possibility is to balance decay modes of membranes and synapses with recurrent excitation. To allow integration over long timescales, however, this balance must be exceedingly precise. The need for fine tuning can be overcome via a “robust integrator” mechanism in which momentary inputs must be above a preset limit to be registered by the circuit. The degree of this limiting embodies a tradeoff between sensitivity to the input stream and robustness against parameter mistuning. Here, we analyze the consequences of this tradeoff for decision-making performance. For concreteness, we focus on the well-studied random dot motion discrimination task and constrain stimulus parameters by experimental data. We show that mistuning feedback in an integrator circuit decreases decision performance but that the robust integrator mechanism can limit this loss. Intriguingly, even for perfectly tuned circuits with no immediate need for a robustness mechanism, including one often does not impose a substantial penalty for decision-making performance. The implication is that robust integrators may be well suited to subserve the basic function of evidence integration in many cognitive tasks. We develop these ideas using simulations of coupled neural units and the mathematics of sequential analysis. PMID:23446688

  5. Robust, Causal, and Incremental Approaches to Investigating Linguistic Adaptation

    PubMed Central

    Roberts, Seán G.

    2018-01-01

    This paper discusses the maximum robustness approach for studying cases of adaptation in language. We live in an age where we have more data on more languages than ever before, and more data to link it with from other domains. This should make it easier to test hypotheses involving adaptation, and also to spot new patterns that might be explained by adaptation. However, there is not much discussion of the overall approach to research in this area. There are outstanding questions about how to formalize theories, what the criteria are for directing research and how to integrate results from different methods into a clear assessment of a hypothesis. This paper addresses some of those issues by suggesting an approach which is causal, incremental and robust. It illustrates the approach with reference to a recent claim that dry environments select against the use of precise contrasts in pitch. Study 1 replicates a previous analysis of the link between humidity and lexical tone with an alternative dataset and finds that it is not robust. Study 2 performs an analysis with a continuous measure of tone and finds no significant correlation. Study 3 addresses a more recent analysis of the link between humidity and vowel use and finds that it is robust, though the effect size is small and the robustness of the measurement of vowel use is low. Methodological robustness of the general theory is addressed by suggesting additional approaches including iterated learning, a historical case study, corpus studies, and studying individual speech. PMID:29515487

  6. Baby-MONITOR: A Composite Indicator of NICU Quality

    PubMed Central

    Kowalkowski, Marc A.; Zupancic, John A. F.; Pietz, Kenneth; Richardson, Peter; Draper, David; Hysong, Sylvia J.; Thomas, Eric J.; Petersen, Laura A.; Gould, Jeffrey B.

    2014-01-01

    BACKGROUND AND OBJECTIVES: NICUs vary in the quality of care delivered to very low birth weight (VLBW) infants. NICU performance on 1 measure of quality only modestly predicts performance on others. Composite measurement of quality of care delivery may provide a more comprehensive assessment of quality. The objective of our study was to develop a robust composite indicator of quality of NICU care provided to VLBW infants that accurately discriminates performance among NICUs. METHODS: We developed a composite indicator, Baby-MONITOR, based on 9 measures of quality chosen by a panel of experts. Measures were standardized, equally weighted, and averaged. We used the California Perinatal Quality Care Collaborative database to perform across-sectional analysis of care given to VLBW infants between 2004 and 2010. Performance on the Baby-MONITOR is not an absolute marker of quality but indicates overall performance relative to that of the other NICUs. We used sensitivity analyses to assess the robustness of the composite indicator, by varying assumptions and methods. RESULTS: Our sample included 9023 VLBW infants in 22 California regional NICUs. We found significant variations within and between NICUs on measured components of the Baby-MONITOR. Risk-adjusted composite scores discriminated performance among this sample of NICUs. Sensitivity analysis that included different approaches to normalization, weighting, and aggregation of individual measures showed the Baby-MONITOR to be robust (r = 0.89–0.99). CONCLUSIONS: The Baby-MONITOR may be a useful tool to comprehensively assess the quality of care delivered by NICUs. PMID:24918221

  7. Robust design optimization method for centrifugal impellers under surface roughness uncertainties due to blade fouling

    NASA Astrophysics Data System (ADS)

    Ju, Yaping; Zhang, Chuhua

    2016-03-01

    Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression (SVR) metamodel is combined with the Monte Carlo simulation (MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.

  8. Robust Magnetotelluric Impedance Estimation

    NASA Astrophysics Data System (ADS)

    Sutarno, D.

    2010-12-01

    Robust magnetotelluric (MT) response function estimators are now in standard use by the induction community. Properly devised and applied, these have ability to reduce the influence of unusual data (outliers). The estimators always yield impedance estimates which are better than the conventional least square (LS) estimation because the `real' MT data almost never satisfy the statistical assumptions of Gaussian distribution and stationary upon which normal spectral analysis is based. This paper discuses the development and application of robust estimation procedures which can be classified as M-estimators to MT data. Starting with the description of the estimators, special attention is addressed to the recent development of a bounded-influence robust estimation, including utilization of the Hilbert Transform (HT) operation on causal MT impedance functions. The resulting robust performances are illustrated using synthetic as well as real MT data.

  9. What Is Robustness?: Problem Framing Challenges for Water Systems Planning Under Change

    NASA Astrophysics Data System (ADS)

    Herman, J. D.; Reed, P. M.; Zeff, H. B.; Characklis, G. W.

    2014-12-01

    Water systems planners have long recognized the need for robust solutions capable of withstanding deviations from the conditions for which they were designed. Faced with a set of alternatives to choose from—for example, resulting from a multi-objective optimization—existing analysis frameworks offer competing definitions of robustness under change. Robustness analyses have moved from expected utility to exploratory "bottom-up" approaches in which vulnerable scenarios are identified prior to assigning likelihoods; examples include Robust Decision Making (RDM), Decision Scaling, Info-Gap, and Many-Objective Robust Decision Making (MORDM). We propose a taxonomy of robustness frameworks to compare and contrast these approaches, based on their methods of (1) alternative selection, (2) sampling of states of the world, (3) quantification of robustness measures, and (4) identification of key uncertainties using sensitivity analysis. Using model simulations from recent work in multi-objective urban water supply portfolio planning, we illustrate the decision-relevant consequences that emerge from each of these choices. Results indicate that the methodological choices in the taxonomy lead to substantially different planning alternatives, underscoring the importance of an informed definition of robustness. We conclude with a set of recommendations for problem framing: that alternatives should be searched rather than prespecified; dominant uncertainties should be discovered rather than assumed; and that a multivariate satisficing measure of robustness allows stakeholders to achieve their problem-specific performance requirements. This work highlights the importance of careful problem formulation, and provides a common vocabulary to link the robustness frameworks widely used in the field of water systems planning.

  10. Scalable Robust Principal Component Analysis Using Grassmann Averages.

    PubMed

    Hauberg, Sren; Feragen, Aasa; Enficiaud, Raffi; Black, Michael J

    2016-11-01

    In large datasets, manual data verification is impossible, and we must expect the number of outliers to increase with data size. While principal component analysis (PCA) can reduce data size, and scalable solutions exist, it is well-known that outliers can arbitrarily corrupt the results. Unfortunately, state-of-the-art approaches for robust PCA are not scalable. We note that in a zero-mean dataset, each observation spans a one-dimensional subspace, giving a point on the Grassmann manifold. We show that the average subspace corresponds to the leading principal component for Gaussian data. We provide a simple algorithm for computing this Grassmann Average ( GA), and show that the subspace estimate is less sensitive to outliers than PCA for general distributions. Because averages can be efficiently computed, we immediately gain scalability. We exploit robust averaging to formulate the Robust Grassmann Average (RGA) as a form of robust PCA. The resulting Trimmed Grassmann Average ( TGA) is appropriate for computer vision because it is robust to pixel outliers. The algorithm has linear computational complexity and minimal memory requirements. We demonstrate TGA for background modeling, video restoration, and shadow removal. We show scalability by performing robust PCA on the entire Star Wars IV movie; a task beyond any current method. Source code is available online.

  11. Orion Orbit Control Design and Analysis

    NASA Technical Reports Server (NTRS)

    Jackson, Mark; Gonzalez, Rodolfo; Sims, Christopher

    2007-01-01

    The analysis of candidate thruster configurations for the Crew Exploration Vehicle (CEV) is presented. Six candidate configurations were considered for the prime contractor baseline design. The analysis included analytical assessments of control authority, control precision, efficiency and robustness, as well as simulation assessments of control performance. The principles used in the analytic assessments of controllability, robustness and fuel performance are covered and results provided for the configurations assessed. Simulation analysis was conducted using a pulse width modulated, 6 DOF reaction system control law with a simplex-based thruster selection algorithm. Control laws were automatically derived from hardware configuration parameters including thruster locations, directions, magnitude and specific impulse, as well as vehicle mass properties. This parameterized controller allowed rapid assessment of multiple candidate layouts. Simulation results are presented for final phase rendezvous and docking, as well as low lunar orbit attitude hold. Finally, on-going analysis to consider alternate Service Module designs and to assess the pilot-ability of the baseline design are discussed to provide a status of orbit control design work to date.

  12. How Robust is Your System Resilience?

    NASA Astrophysics Data System (ADS)

    Homayounfar, M.; Muneepeerakul, R.

    2017-12-01

    Robustness and resilience are concepts in system thinking that have grown in importance and popularity. For many complex social-ecological systems, however, robustness and resilience are difficult to quantify and the connections and trade-offs between them difficult to study. Most studies have either focused on qualitative approaches to discuss their connections or considered only one of them under particular classes of disturbances. In this study, we present an analytical framework to address the linkage between robustness and resilience more systematically. Our analysis is based on a stylized dynamical model that operationalizes a widely used concept framework for social-ecological systems. The model enables us to rigorously define robustness and resilience and consequently investigate their connections. The results reveal the tradeoffs among performance, robustness, and resilience. They also show how the nature of the such tradeoffs varies with the choices of certain policies (e.g., taxation and investment in public infrastructure), internal stresses and external disturbances.

  13. Variable Neural Adaptive Robust Control: A Switched System Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.

    2015-05-01

    Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewisemore » quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.« less

  14. Gradient descent for robust kernel-based regression

    NASA Astrophysics Data System (ADS)

    Guo, Zheng-Chu; Hu, Ting; Shi, Lei

    2018-06-01

    In this paper, we study the gradient descent algorithm generated by a robust loss function over a reproducing kernel Hilbert space (RKHS). The loss function is defined by a windowing function G and a scale parameter σ, which can include a wide range of commonly used robust losses for regression. There is still a gap between theoretical analysis and optimization process of empirical risk minimization based on loss: the estimator needs to be global optimal in the theoretical analysis while the optimization method can not ensure the global optimality of its solutions. In this paper, we aim to fill this gap by developing a novel theoretical analysis on the performance of estimators generated by the gradient descent algorithm. We demonstrate that with an appropriately chosen scale parameter σ, the gradient update with early stopping rules can approximate the regression function. Our elegant error analysis can lead to convergence in the standard L 2 norm and the strong RKHS norm, both of which are optimal in the mini-max sense. We show that the scale parameter σ plays an important role in providing robustness as well as fast convergence. The numerical experiments implemented on synthetic examples and real data set also support our theoretical results.

  15. Uncertainty analysis and robust trajectory linearization control of a flexible air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Pu, Zhiqiang; Tan, Xiangmin; Fan, Guoliang; Yi, Jianqiang

    2014-08-01

    Flexible air-breathing hypersonic vehicles feature significant uncertainties which pose huge challenges to robust controller designs. In this paper, four major categories of uncertainties are analyzed, that is, uncertainties associated with flexible effects, aerodynamic parameter variations, external environmental disturbances, and control-oriented modeling errors. A uniform nonlinear uncertainty model is explored for the first three uncertainties which lumps all uncertainties together and consequently is beneficial for controller synthesis. The fourth uncertainty is additionally considered in stability analysis. Based on these analyses, the starting point of the control design is to decompose the vehicle dynamics into five functional subsystems. Then a robust trajectory linearization control (TLC) scheme consisting of five robust subsystem controllers is proposed. In each subsystem controller, TLC is combined with the extended state observer (ESO) technique for uncertainty compensation. The stability of the overall closed-loop system with the four aforementioned uncertainties and additional singular perturbations is analyzed. Particularly, the stability of nonlinear ESO is also discussed from a Liénard system perspective. At last, simulations demonstrate the great control performance and the uncertainty rejection ability of the robust scheme.

  16. Using Public Data for Comparative Proteome Analysis in Precision Medicine Programs.

    PubMed

    Hughes, Christopher S; Morin, Gregg B

    2018-03-01

    Maximizing the clinical utility of information obtained in longitudinal precision medicine programs would benefit from robust comparative analyses to known information to assess biological features of patient material toward identifying the underlying features driving their disease phenotype. Herein, the potential for utilizing publically deposited mass-spectrometry-based proteomics data to perform inter-study comparisons of cell-line or tumor-tissue materials is investigated. To investigate the robustness of comparison between MS-based proteomics studies carried out with different methodologies, deposited data representative of label-free (MS1) and isobaric tagging (MS2 and MS3 quantification) are utilized. In-depth quantitative proteomics data acquired from analysis of ovarian cancer cell lines revealed the robust recapitulation of observable gene expression dynamics between individual studies carried out using significantly different methodologies. The observed signatures enable robust inter-study clustering of cell line samples. In addition, the ability to classify and cluster tumor samples based on observed gene expression trends when using a single patient sample is established. With this analysis, relevant gene expression dynamics are obtained from a single patient tumor, in the context of a precision medicine analysis, by leveraging a large cohort of repository data as a comparator. Together, these data establish the potential for state-of-the-art MS-based proteomics data to serve as resources for robust comparative analyses in precision medicine applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Two-dimensional statistical linear discriminant analysis for real-time robust vehicle-type recognition

    NASA Astrophysics Data System (ADS)

    Zafar, I.; Edirisinghe, E. A.; Acar, S.; Bez, H. E.

    2007-02-01

    Automatic vehicle Make and Model Recognition (MMR) systems provide useful performance enhancements to vehicle recognitions systems that are solely based on Automatic License Plate Recognition (ALPR) systems. Several car MMR systems have been proposed in literature. However these approaches are based on feature detection algorithms that can perform sub-optimally under adverse lighting and/or occlusion conditions. In this paper we propose a real time, appearance based, car MMR approach using Two Dimensional Linear Discriminant Analysis that is capable of addressing this limitation. We provide experimental results to analyse the proposed algorithm's robustness under varying illumination and occlusions conditions. We have shown that the best performance with the proposed 2D-LDA based car MMR approach is obtained when the eigenvectors of lower significance are ignored. For the given database of 200 car images of 25 different make-model classifications, a best accuracy of 91% was obtained with the 2D-LDA approach. We use a direct Principle Component Analysis (PCA) based approach as a benchmark to compare and contrast the performance of the proposed 2D-LDA approach to car MMR. We conclude that in general the 2D-LDA based algorithm supersedes the performance of the PCA based approach.

  18. Robust QRS peak detection by multimodal information fusion of ECG and blood pressure signals.

    PubMed

    Ding, Quan; Bai, Yong; Erol, Yusuf Bugra; Salas-Boni, Rebeca; Zhang, Xiaorong; Hu, Xiao

    2016-11-01

    QRS peak detection is a challenging problem when ECG signal is corrupted. However, additional physiological signals may also provide information about the QRS position. In this study, we focus on a unique benchmark provided by PhysioNet/Computing in Cardiology Challenge 2014 and Physiological Measurement focus issue: robust detection of heart beats in multimodal data, which aimed to explore robust methods for QRS detection in multimodal physiological signals. A dataset of 200 training and 210 testing records are used, where the testing records are hidden for evaluating the performance only. An information fusion framework for robust QRS detection is proposed by leveraging existing ECG and ABP analysis tools and combining heart beats derived from different sources. Results show that our approach achieves an overall accuracy of 90.94% and 88.66% on the training and testing datasets, respectively. Furthermore, we observe expected performance at each step of the proposed approach, as an evidence of the effectiveness of our approach. Discussion on the limitations of our approach is also provided.

  19. Evaluation of prediction capability, robustness, and sensitivity in non-linear landslide susceptibility models, Guantánamo, Cuba

    NASA Astrophysics Data System (ADS)

    Melchiorre, C.; Castellanos Abella, E. A.; van Westen, C. J.; Matteucci, M.

    2011-04-01

    This paper describes a procedure for landslide susceptibility assessment based on artificial neural networks, and focuses on the estimation of the prediction capability, robustness, and sensitivity of susceptibility models. The study is carried out in the Guantanamo Province of Cuba, where 186 landslides were mapped using photo-interpretation. Twelve conditioning factors were mapped including geomorphology, geology, soils, landuse, slope angle, slope direction, internal relief, drainage density, distance from roads and faults, rainfall intensity, and ground peak acceleration. A methodology was used that subdivided the database in 3 subsets. A training set was used for updating the weights. A validation set was used to stop the training procedure when the network started losing generalization capability, and a test set was used to calculate the performance of the network. A 10-fold cross-validation was performed in order to show that the results are repeatable. The prediction capability, the robustness analysis, and the sensitivity analysis were tested on 10 mutually exclusive datasets. The results show that by means of artificial neural networks it is possible to obtain models with high prediction capability and high robustness, and that an exploration of the effect of the individual variables is possible, even if they are considered as a black-box model.

  20. Robust neural network with applications to credit portfolio data analysis.

    PubMed

    Feng, Yijia; Li, Runze; Sudjianto, Agus; Zhang, Yiyun

    2010-01-01

    In this article, we study nonparametric conditional quantile estimation via neural network structure. We proposed an estimation method that combines quantile regression and neural network (robust neural network, RNN). It provides good smoothing performance in the presence of outliers and can be used to construct prediction bands. A Majorization-Minimization (MM) algorithm was developed for optimization. Monte Carlo simulation study is conducted to assess the performance of RNN. Comparison with other nonparametric regression methods (e.g., local linear regression and regression splines) in real data application demonstrate the advantage of the newly proposed procedure.

  1. Linear, multivariable robust control with a mu perspective

    NASA Technical Reports Server (NTRS)

    Packard, Andy; Doyle, John; Balas, Gary

    1993-01-01

    The structured singular value is a linear algebra tool developed to study a particular class of matrix perturbation problems arising in robust feedback control of multivariable systems. These perturbations are called linear fractional, and are a natural way to model many types of uncertainty in linear systems, including state-space parameter uncertainty, multiplicative and additive unmodeled dynamics uncertainty, and coprime factor and gap metric uncertainty. The structured singular value theory provides a natural extension of classical SISO robustness measures and concepts to MIMO systems. The structured singular value analysis, coupled with approximate synthesis methods, make it possible to study the tradeoff between performance and uncertainty that occurs in all feedback systems. In MIMO systems, the complexity of the spatial interactions in the loop gains make it difficult to heuristically quantify the tradeoffs that must occur. This paper examines the role played by the structured singular value (and its computable bounds) in answering these questions, as well as its role in the general robust, multivariable control analysis and design problem.

  2. Microgravity isolation system design: A modern control analysis framework

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Many acceleration-sensitive, microgravity science experiments will require active vibration isolation from the manned orbiters on which they will be mounted. The isolation problem, especially in the case of a tethered payload, is a complex three-dimensional one that is best suited to modern-control design methods. These methods, although more powerful than their classical counterparts, can nonetheless go only so far in meeting the design requirements for practical systems. Once a tentative controller design is available, it must still be evaluated to determine whether or not it is fully acceptable, and to compare it with other possible design candidates. Realistically, such evaluation will be an inherent part of a necessary iterative design process. In this paper, an approach is presented for applying complex mu-analysis methods to a closed-loop vibration isolation system (experiment plus controller). An analysis framework is presented for evaluating nominal stability, nominal performance, robust stability, and robust performance of active microgravity isolation systems, with emphasis on the effective use of mu-analysis methods.

  3. Developments in Cylindrical Shell Stability Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Starnes, James H., Jr.

    1998-01-01

    Today high-performance computing systems and new analytical and numerical techniques enable engineers to explore the use of advanced materials for shell design. This paper reviews some of the historical developments of shell buckling analysis and design. The paper concludes by identifying key research directions for reliable and robust methods development in shell stability analysis and design.

  4. Design and Analysis of Morpheus Lander Flight Control System

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Yang, Lee; Fritz, Mathew; Nguyen, Louis H.; Johnson, Wyatt R.; Hart, Jeremy J.

    2014-01-01

    The Morpheus Lander is a vertical takeoff and landing test bed vehicle developed to demonstrate the system performance of the Guidance, Navigation and Control (GN&C) system capability for the integrated autonomous landing and hazard avoidance system hardware and software. The Morpheus flight control system design must be robust to various mission profiles. This paper presents a design methodology for employing numerical optimization to develop the Morpheus flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics and propellant slosh. Under the assumption that the Morpheus time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time control systems in the presence of parametric uncertainty. Both control gains in the inner attitude control loop and guidance gains in the outer position control loop are designed to maximize the vehicle performance while ensuring robustness. The flight control system designs provided herein have been demonstrated to provide stable control systems in both Draper Ares Stability Analysis Tool (ASAT) and the NASA/JSC Trick-based Morpheus time domain simulation.

  5. Performance analysis of robust road sign identification

    NASA Astrophysics Data System (ADS)

    Ali, Nursabillilah M.; Mustafah, Y. M.; Rashid, N. K. A. M.

    2013-12-01

    This study describes performance analysis of a robust system for road sign identification that incorporated two stages of different algorithms. The proposed algorithms consist of HSV color filtering and PCA techniques respectively in detection and recognition stages. The proposed algorithms are able to detect the three standard types of colored images namely Red, Yellow and Blue. The hypothesis of the study is that road sign images can be used to detect and identify signs that are involved with the existence of occlusions and rotational changes. PCA is known as feature extraction technique that reduces dimensional size. The sign image can be easily recognized and identified by the PCA method as is has been used in many application areas. Based on the experimental result, it shows that the HSV is robust in road sign detection with minimum of 88% and 77% successful rate for non-partial and partial occlusions images. For successful recognition rates using PCA can be achieved in the range of 94-98%. The occurrences of all classes are recognized successfully is between 5% and 10% level of occlusions.

  6. Non-negative Tensor Factorization for Robust Exploratory Big-Data Analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrov, Boian; Vesselinov, Velimir Valentinov; Djidjev, Hristo Nikolov

    Currently, large multidimensional datasets are being accumulated in almost every field. Data are: (1) collected by distributed sensor networks in real-time all over the globe, (2) produced by large-scale experimental measurements or engineering activities, (3) generated by high-performance simulations, and (4) gathered by electronic communications and socialnetwork activities, etc. Simultaneous analysis of these ultra-large heterogeneous multidimensional datasets is often critical for scientific discoveries, decision-making, emergency response, and national and global security. The importance of such analyses mandates the development of the next-generation of robust machine learning (ML) methods and tools for bigdata exploratory analysis.

  7. Benchmarking of a treatment planning system for spot scanning proton therapy: Comparison and analysis of robustness to setup errors of photon IMRT and proton SFUD treatment plans of base of skull meningioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, R., E-mail: ruth.harding2@wales.nhs.uk; Trnková, P.; Lomax, A. J.

    Purpose: Base of skull meningioma can be treated with both intensity modulated radiation therapy (IMRT) and spot scanned proton therapy (PT). One of the main benefits of PT is better sparing of organs at risk, but due to the physical and dosimetric characteristics of protons, spot scanned PT can be more sensitive to the uncertainties encountered in the treatment process compared with photon treatment. Therefore, robustness analysis should be part of a comprehensive comparison between these two treatment methods in order to quantify and understand the sensitivity of the treatment techniques to uncertainties. The aim of this work was tomore » benchmark a spot scanning treatment planning system for planning of base of skull meningioma and to compare the created plans and analyze their robustness to setup errors against the IMRT technique. Methods: Plans were produced for three base of skull meningioma cases: IMRT planned with a commercial TPS [Monaco (Elekta AB, Sweden)]; single field uniform dose (SFUD) spot scanning PT produced with an in-house TPS (PSI-plan); and SFUD spot scanning PT plan created with a commercial TPS [XiO (Elekta AB, Sweden)]. A tool for evaluating robustness to random setup errors was created and, for each plan, both a dosimetric evaluation and a robustness analysis to setup errors were performed. Results: It was possible to create clinically acceptable treatment plans for spot scanning proton therapy of meningioma with a commercially available TPS. However, since each treatment planning system uses different methods, this comparison showed different dosimetric results as well as different sensitivities to setup uncertainties. The results confirmed the necessity of an analysis tool for assessing plan robustness to provide a fair comparison of photon and proton plans. Conclusions: Robustness analysis is a critical part of plan evaluation when comparing IMRT plans with spot scanned proton therapy plans.« less

  8. Application of the LQG/LTR technique to robust controller synthesis for a large flexible space antenna

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.; Armstrong, E. S.; Sundararajan, N.

    1986-01-01

    The problem of synthesizing a robust controller is considered for a large, flexible space-based antenna by using the linear-quadratic-Gaussian (LQG)/loop transfer recovery (LTR) method. The study is based on a finite-element model of the 122-m hoop/column antenna, which consists of three rigid-body rotational modes and the first 10 elastic modes. A robust compensator design for achieving the required performance bandwidth in the presence of modeling uncertainties is obtained using the LQG/LTR method for loop-shaping in the frequency domain. Different sensor actuator locations are analyzed in terms of the pole/zero locations of the multivariable systems and possible best locations are indicated. The computations are performed by using the LQG design package ORACLS augmented with frequency domain singular value analysis software.

  9. The Performance of Methods to Test Upper-Level Mediation in the Presence of Nonnormal Data

    ERIC Educational Resources Information Center

    Pituch, Keenan A.; Stapleton, Laura M.

    2008-01-01

    A Monte Carlo study compared the statistical performance of standard and robust multilevel mediation analysis methods to test indirect effects for a cluster randomized experimental design under various departures from normality. The performance of these methods was examined for an upper-level mediation process, where the indirect effect is a fixed…

  10. Robust fusion-based processing for military polarimetric imaging systems

    NASA Astrophysics Data System (ADS)

    Hickman, Duncan L.; Smith, Moira I.; Kim, Kyung Su; Choi, Hyun-Jin

    2017-05-01

    Polarisation information within a scene can be exploited in military systems to give enhanced automatic target detection and recognition (ATD/R) performance. However, the performance gain achieved is highly dependent on factors such as the geometry, viewing conditions, and the surface finish of the target. Such performance sensitivities are highly undesirable in many tactical military systems where operational conditions can vary significantly and rapidly during a mission. Within this paper, a range of processing architectures and fusion methods is considered in terms of their practical viability and operational robustness for systems requiring ATD/R. It is shown that polarisation information can give useful performance gains but, to retained system robustness, the introduction of polarimetric processing should be done in such a way as to not compromise other discriminatory scene information in the spectral and spatial domains. The analysis concludes that polarimetric data can be effectively integrated with conventional intensity-based ATD/R by either adapting the ATD/R processing function based on the scene polarisation or else by detection-level fusion. Both of these approaches avoid the introduction of processing bottlenecks and limit the impact of processing on system latency.

  11. Vehicle active steering control research based on two-DOF robust internal model control

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Liu, Yahui; Wang, Fengbo; Bao, Chunjiang; Sun, Qun; Zhao, Youqun

    2016-07-01

    Because of vehicle's external disturbances and model uncertainties, robust control algorithms have obtained popularity in vehicle stability control. The robust control usually gives up performance in order to guarantee the robustness of the control algorithm, therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness. The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties. In order to separate the design process of model tracking from the robustness design process, the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization. Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm, on the basis of a nonlinear vehicle simulation model with a magic tyre model. Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance, which can enhance the vehicle stability and handling, regardless of variations of the vehicle model parameters and the external crosswind interferences. Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.

  12. Robust vortex lines, vortex rings, and hopfions in three-dimensional Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisset, R. N.; Wang, Wenlong; Ticknor, Christopher

    Performing a systematic Bogoliubov–de Gennes spectral analysis, we illustrate that stationary vortex lines, vortex rings, and more exotic states, such as hopfions, are robust in three-dimensional atomic Bose-Einstein condensates, for large parameter intervals. Importantly, we find that the hopfion can be stabilized in a simple parabolic trap, without the need for trap rotation or inhomogeneous interactions. We supplement our spectral analysis by studying the dynamics of such stationary states; we find them to be robust against significant perturbations of the initial state. In the unstable regimes, we not only identify the unstable mode, such as a quadrupolar or hexapolar mode,more » but we also observe the corresponding instability dynamics. Moreover, deep in the Thomas-Fermi regime, we investigate the particlelike behavior of vortex rings and hopfions.« less

  13. Robust vortex lines, vortex rings, and hopfions in three-dimensional Bose-Einstein condensates

    DOE PAGES

    Bisset, R. N.; Wang, Wenlong; Ticknor, Christopher; ...

    2015-12-07

    Performing a systematic Bogoliubov–de Gennes spectral analysis, we illustrate that stationary vortex lines, vortex rings, and more exotic states, such as hopfions, are robust in three-dimensional atomic Bose-Einstein condensates, for large parameter intervals. Importantly, we find that the hopfion can be stabilized in a simple parabolic trap, without the need for trap rotation or inhomogeneous interactions. We supplement our spectral analysis by studying the dynamics of such stationary states; we find them to be robust against significant perturbations of the initial state. In the unstable regimes, we not only identify the unstable mode, such as a quadrupolar or hexapolar mode,more » but we also observe the corresponding instability dynamics. Moreover, deep in the Thomas-Fermi regime, we investigate the particlelike behavior of vortex rings and hopfions.« less

  14. Predictive Validity of National Basketball Association Draft Combine on Future Performance.

    PubMed

    Teramoto, Masaru; Cross, Chad L; Rieger, Randall H; Maak, Travis G; Willick, Stuart E

    2018-02-01

    Teramoto, M, Cross, CL, Rieger, RH, Maak, TG, and Willick, SE. Predictive validity of national basketball association draft combine on future performance. J Strength Cond Res 32(2): 396-408, 2018-The National Basketball Association (NBA) Draft Combine is an annual event where prospective players are evaluated in terms of their athletic abilities and basketball skills. Data collected at the Combine should help NBA teams select right the players for the upcoming NBA draft; however, its value for predicting future performance of players has not been examined. This study investigated predictive validity of the NBA Draft Combine on future performance of basketball players. We performed a principal component analysis (PCA) on the 2010-2015 Combine data to reduce correlated variables (N = 234), a correlation analysis on the Combine data and future on-court performance to examine relationships (maximum pairwise N = 217), and a robust principal component regression (PCR) analysis to predict first-year and 3-year on-court performance from the Combine measures (N = 148 and 127, respectively). Three components were identified within the Combine data through PCA (= Combine subscales): length-size, power-quickness, and upper-body strength. As per the correlation analysis, the individual Combine items for anthropometrics, including height without shoes, standing reach, weight, wingspan, and hand length, as well as the Combine subscale of length-size, had positive, medium-to-large-sized correlations (r = 0.313-0.545) with defensive performance quantified by Defensive Box Plus/Minus. The robust PCR analysis showed that the Combine subscale of length-size was a predictor most significantly associated with future on-court performance (p ≤ 0.05), including Win Shares, Box Plus/Minus, and Value Over Replacement Player, followed by upper-body strength. In conclusion, the NBA Draft Combine has value for predicting future performance of players.

  15. Improving Robustness of Hydrologic Ensemble Predictions Through Probabilistic Pre- and Post-Processing in Sequential Data Assimilation

    NASA Astrophysics Data System (ADS)

    Wang, S.; Ancell, B. C.; Huang, G. H.; Baetz, B. W.

    2018-03-01

    Data assimilation using the ensemble Kalman filter (EnKF) has been increasingly recognized as a promising tool for probabilistic hydrologic predictions. However, little effort has been made to conduct the pre- and post-processing of assimilation experiments, posing a significant challenge in achieving the best performance of hydrologic predictions. This paper presents a unified data assimilation framework for improving the robustness of hydrologic ensemble predictions. Statistical pre-processing of assimilation experiments is conducted through the factorial design and analysis to identify the best EnKF settings with maximized performance. After the data assimilation operation, statistical post-processing analysis is also performed through the factorial polynomial chaos expansion to efficiently address uncertainties in hydrologic predictions, as well as to explicitly reveal potential interactions among model parameters and their contributions to the predictive accuracy. In addition, the Gaussian anamorphosis is used to establish a seamless bridge between data assimilation and uncertainty quantification of hydrologic predictions. Both synthetic and real data assimilation experiments are carried out to demonstrate feasibility and applicability of the proposed methodology in the Guadalupe River basin, Texas. Results suggest that statistical pre- and post-processing of data assimilation experiments provide meaningful insights into the dynamic behavior of hydrologic systems and enhance robustness of hydrologic ensemble predictions.

  16. Learning and robustness to catch-and-release fishing in a shark social network

    PubMed Central

    Brown, Culum; Planes, Serge

    2017-01-01

    Individuals can play different roles in maintaining connectivity and social cohesion in animal populations and thereby influence population robustness to perturbations. We performed a social network analysis in a reef shark population to assess the vulnerability of the global network to node removal under different scenarios. We found that the network was generally robust to the removal of nodes with high centrality. The network appeared also highly robust to experimental fishing. Individual shark catchability decreased as a function of experience, as revealed by comparing capture frequency and site presence. Altogether, these features suggest that individuals learnt to avoid capture, which ultimately increased network robustness to experimental catch-and-release. Our results also suggest that some caution must be taken when using capture–recapture models often used to assess population size as assumptions (such as equal probabilities of capture and recapture) may be violated by individual learning to escape recapture. PMID:28298593

  17. Revisiting an old concept: the coupled oscillator model for VCD. Part 2: implications of the generalised coupled oscillator mechanism for the VCD robustness concept.

    PubMed

    Nicu, Valentin Paul

    2016-08-03

    Using two illustrative examples it is shown that the generalised coupled oscillator (GCO) mechanism implies that the stability of the VCD sign computed for a given normal mode is not reflected by the magnitude of the ratio ζ between the rotational strength and dipole strength of the respective mode, i.e., the VCD robustness criterium proposed by Góbi and Magyarfalvi. The performed VCD GCO analysis brings further insight into the GCO mechanism and also into the VCD robustness concept. First, it shows that the GCO mechanism can be interpreted as a VCD resonance enhancement mechanism, i.e. very large VCD signals can be observed when the interacting molecular fragments are in favourable orientation. Second, it shows that the uncertainties observed in the computed VCD signs are associated to uncertainties in the relative orientation of the coupled oscillator fragments and/or to uncertainties in the predicted nuclear displacement vectors, i.e. not uncertainties in the computed magnetic dipole transition moments as was originally assumed. Since it is able to identify such situations easily, the VCD GCO analysis can be used as a VCD robustness analysis.

  18. Performance of Modified Test Statistics in Covariance and Correlation Structure Analysis under Conditions of Multivariate Nonnormality.

    ERIC Educational Resources Information Center

    Fouladi, Rachel T.

    2000-01-01

    Provides an overview of standard and modified normal theory and asymptotically distribution-free covariance and correlation structure analysis techniques and details Monte Carlo simulation results on Type I and Type II error control. Demonstrates through the simulation that robustness and nonrobustness of structure analysis techniques vary as a…

  19. High-Throughput Histopathological Image Analysis via Robust Cell Segmentation and Hashing

    PubMed Central

    Zhang, Xiaofan; Xing, Fuyong; Su, Hai; Yang, Lin; Zhang, Shaoting

    2015-01-01

    Computer-aided diagnosis of histopathological images usually requires to examine all cells for accurate diagnosis. Traditional computational methods may have efficiency issues when performing cell-level analysis. In this paper, we propose a robust and scalable solution to enable such analysis in a real-time fashion. Specifically, a robust segmentation method is developed to delineate cells accurately using Gaussian-based hierarchical voting and repulsive balloon model. A large-scale image retrieval approach is also designed to examine and classify each cell of a testing image by comparing it with a massive database, e.g., half-million cells extracted from the training dataset. We evaluate this proposed framework on a challenging and important clinical use case, i.e., differentiation of two types of lung cancers (the adenocarcinoma and squamous carcinoma), using thousands of lung microscopic tissue images extracted from hundreds of patients. Our method has achieved promising accuracy and running time by searching among half-million cells. PMID:26599156

  20. Neural network robust tracking control with adaptive critic framework for uncertain nonlinear systems.

    PubMed

    Wang, Ding; Liu, Derong; Zhang, Yun; Li, Hongyi

    2018-01-01

    In this paper, we aim to tackle the neural robust tracking control problem for a class of nonlinear systems using the adaptive critic technique. The main contribution is that a neural-network-based robust tracking control scheme is established for nonlinear systems involving matched uncertainties. The augmented system considering the tracking error and the reference trajectory is formulated and then addressed under adaptive critic optimal control formulation, where the initial stabilizing controller is not needed. The approximate control law is derived via solving the Hamilton-Jacobi-Bellman equation related to the nominal augmented system, followed by closed-loop stability analysis. The robust tracking control performance is guaranteed theoretically via Lyapunov approach and also verified through simulation illustration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Robustness Metrics: How Are They Calculated, When Should They Be Used and Why Do They Give Different Results?

    NASA Astrophysics Data System (ADS)

    McPhail, C.; Maier, H. R.; Kwakkel, J. H.; Giuliani, M.; Castelletti, A.; Westra, S.

    2018-02-01

    Robustness is being used increasingly for decision analysis in relation to deep uncertainty and many metrics have been proposed for its quantification. Recent studies have shown that the application of different robustness metrics can result in different rankings of decision alternatives, but there has been little discussion of what potential causes for this might be. To shed some light on this issue, we present a unifying framework for the calculation of robustness metrics, which assists with understanding how robustness metrics work, when they should be used, and why they sometimes disagree. The framework categorizes the suitability of metrics to a decision-maker based on (1) the decision-context (i.e., the suitability of using absolute performance or regret), (2) the decision-maker's preferred level of risk aversion, and (3) the decision-maker's preference toward maximizing performance, minimizing variance, or some higher-order moment. This article also introduces a conceptual framework describing when relative robustness values of decision alternatives obtained using different metrics are likely to agree and disagree. This is used as a measure of how "stable" the ranking of decision alternatives is when determined using different robustness metrics. The framework is tested on three case studies, including water supply augmentation in Adelaide, Australia, the operation of a multipurpose regulated lake in Italy, and flood protection for a hypothetical river based on a reach of the river Rhine in the Netherlands. The proposed conceptual framework is confirmed by the case study results, providing insight into the reasons for disagreements between rankings obtained using different robustness metrics.

  2. Design of a robust control law for the Vega launcher ballistic phase

    NASA Astrophysics Data System (ADS)

    Valli, Monica; Lavagna, Michèle R.; Panozzo, Thomas

    2012-02-01

    This work presents the design of a robust control law, and the related control system architecture, for the Vega launcher ballistic phase, taking into account the complete six degrees of freedom dynamics. To gain robustness a non-linear control approach has been preferred: more specifically the Lyapunov's second stability theorem has been exploited, being a very powerful tool to guarantee asymptotic stability of the controlled dynamics. The dynamics of Vega's actuators has also been taken into account. The system performance has been checked and analyzed by numerical simulations run on real mission data for different operational and configuration scenarios, and the effectiveness of the synthesized control highlighted: in particular scenarios including a wide range of composite's inertial configurations performing various typologies of maneuvers have been run. The robustness of the controlled dynamics has been validated by 100 cases Monte Carlo analysis campaign: the containment of the dispersion for the controlled variables - say the composite roll, yaw and pitch angles - confirmed the wide validity and generality of the proposed control law. This paper will show the theoretical approach and discuss the obtained results.

  3. An LMI approach to design H(infinity) controllers for discrete-time nonlinear systems based on unified models.

    PubMed

    Liu, Meiqin; Zhang, Senlin

    2008-10-01

    A unified neural network model termed standard neural network model (SNNM) is advanced. Based on the robust L(2) gain (i.e. robust H(infinity) performance) analysis of the SNNM with external disturbances, a state-feedback control law is designed for the SNNM to stabilize the closed-loop system and eliminate the effect of external disturbances. The control design constraints are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms (e.g. interior-point algorithms) to determine the control law. Most discrete-time recurrent neural network (RNNs) and discrete-time nonlinear systems modelled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be robust H(infinity) performance analyzed or robust H(infinity) controller synthesized in a unified SNNM's framework. Finally, some examples are presented to illustrate the wide application of the SNNMs to the nonlinear systems, and the proposed approach is compared with related methods reported in the literature.

  4. Robust Maneuvering Envelope Estimation Based on Reachability Analysis in an Optimal Control Formulation

    NASA Technical Reports Server (NTRS)

    Lombaerts, Thomas; Schuet, Stefan R.; Wheeler, Kevin; Acosta, Diana; Kaneshige, John

    2013-01-01

    This paper discusses an algorithm for estimating the safe maneuvering envelope of damaged aircraft. The algorithm performs a robust reachability analysis through an optimal control formulation while making use of time scale separation and taking into account uncertainties in the aerodynamic derivatives. Starting with an optimal control formulation, the optimization problem can be rewritten as a Hamilton- Jacobi-Bellman equation. This equation can be solved by level set methods. This approach has been applied on an aircraft example involving structural airframe damage. Monte Carlo validation tests have confirmed that this approach is successful in estimating the safe maneuvering envelope for damaged aircraft.

  5. Comparison between two methodologies for urban drainage decision aid.

    PubMed

    Moura, P M; Baptista, M B; Barraud, S

    2006-01-01

    The objective of the present work is to compare two methodologies based on multicriteria analysis for the evaluation of stormwater systems. The first methodology was developed in Brazil and is based on performance-cost analysis, the second one is ELECTRE III. Both methodologies were applied to a case study. Sensitivity and robustness analyses were then carried out. These analyses demonstrate that both methodologies have equivalent results, and present low sensitivity and high robustness. These results prove that the Brazilian methodology is consistent and can be used safely in order to select a good solution or a small set of good solutions that could be compared with more detailed methods afterwards.

  6. Robust Crossfeed Design for Hovering Rotorcraft

    NASA Technical Reports Server (NTRS)

    Catapang, David R.

    1993-01-01

    Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust'. A new low-order matching method is presented here to design robust crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.

  7. A comprehensive company database analysis of biological assay variability.

    PubMed

    Kramer, Christian; Dahl, Göran; Tyrchan, Christian; Ulander, Johan

    2016-08-01

    Analysis of data from various compounds measured in diverse biological assays is a central part of drug discovery research projects. However, no systematic overview of the variability in biological assays has been published and judgments on assay quality and robustness of data are often based on personal belief and experience within the drug discovery community. To address this we performed a reproducibility analysis of all biological assays at AstraZeneca between 2005 and 2014. We found an average experimental uncertainty of less than a twofold difference and no technologies or assay types had higher variability than others. This work suggests that robust data can be obtained from the most commonly applied biological assays. Copyright © 2016. Published by Elsevier Ltd.

  8. Analysis and design of gain scheduled control systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Shamma, Jeff S.

    1988-01-01

    Gain scheduling, as an idea, is to construct a global feedback control system for a time varying and/or nonlinear plant from a collection of local time invariant designs. However in the absence of a sound analysis, these designs come with no guarantees on the robustness, performance, or even nominal stability of the overall gain schedule design. Such an analysis is presented for three types of gain scheduling situations: (1) a linear parameter varying plant scheduling on its exogenous parameters, (2) a nonlinear plant scheduling on a prescribed reference trajectory, and (3) a nonlinear plant scheduling on the current plant output. Conditions are given which guarantee that the stability, robustness, and performance properties of the fixed operating point designs carry over to the global gain scheduled designs, such as the scheduling variable should vary slowly and capture the plants nonlinearities. Finally, an alternate design framework is proposed which removes the slowing varying restriction or gain scheduled systems. This framework addresses some fundamental feedback issues previously ignored in standard gain.

  9. Robust artifactual independent component classification for BCI practitioners.

    PubMed

    Winkler, Irene; Brandl, Stephanie; Horn, Franziska; Waldburger, Eric; Allefeld, Carsten; Tangermann, Michael

    2014-06-01

    EEG artifacts of non-neural origin can be separated from neural signals by independent component analysis (ICA). It is unclear (1) how robustly recently proposed artifact classifiers transfer to novel users, novel paradigms or changed electrode setups, and (2) how artifact cleaning by a machine learning classifier impacts the performance of brain-computer interfaces (BCIs). Addressing (1), the robustness of different strategies with respect to the transfer between paradigms and electrode setups of a recently proposed classifier is investigated on offline data from 35 users and 3 EEG paradigms, which contain 6303 expert-labeled components from two ICA and preprocessing variants. Addressing (2), the effect of artifact removal on single-trial BCI classification is estimated on BCI trials from 101 users and 3 paradigms. We show that (1) the proposed artifact classifier generalizes to completely different EEG paradigms. To obtain similar results under massively reduced electrode setups, a proposed novel strategy improves artifact classification. Addressing (2), ICA artifact cleaning has little influence on average BCI performance when analyzed by state-of-the-art BCI methods. When slow motor-related features are exploited, performance varies strongly between individuals, as artifacts may obstruct relevant neural activity or are inadvertently used for BCI control. Robustness of the proposed strategies can be reproduced by EEG practitioners as the method is made available as an EEGLAB plug-in.

  10. Robust linear discriminant analysis with distance based estimators

    NASA Astrophysics Data System (ADS)

    Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Ali, Hazlina

    2017-11-01

    Linear discriminant analysis (LDA) is one of the supervised classification techniques concerning relationship between a categorical variable and a set of continuous variables. The main objective of LDA is to create a function to distinguish between populations and allocating future observations to previously defined populations. Under the assumptions of normality and homoscedasticity, the LDA yields optimal linear discriminant rule (LDR) between two or more groups. However, the optimality of LDA highly relies on the sample mean and pooled sample covariance matrix which are known to be sensitive to outliers. To alleviate these conflicts, a new robust LDA using distance based estimators known as minimum variance vector (MVV) has been proposed in this study. The MVV estimators were used to substitute the classical sample mean and classical sample covariance to form a robust linear discriminant rule (RLDR). Simulation and real data study were conducted to examine on the performance of the proposed RLDR measured in terms of misclassification error rates. The computational result showed that the proposed RLDR is better than the classical LDR and was comparable with the existing robust LDR.

  11. Robustness and Actuator Bandwidth of MRP-Based Sliding Mode Control for Spacecraft Attitude Control Problems

    NASA Astrophysics Data System (ADS)

    Keum, Jung-Hoon; Ra, Sung-Woong

    2009-12-01

    Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

  12. Evolutionary computing for the design search and optimization of space vehicle power subsystems

    NASA Technical Reports Server (NTRS)

    Kordon, M.; Klimeck, G.; Hanks, D.

    2004-01-01

    Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment.

  13. Efficiency in the Community College Sector: Stochastic Frontier Analysis

    ERIC Educational Resources Information Center

    Agasisti, Tommaso; Belfield, Clive

    2017-01-01

    This paper estimates technical efficiency scores across the community college sector in the United States. Using stochastic frontier analysis and data from the Integrated Postsecondary Education Data System for 2003-2010, we estimate efficiency scores for 950 community colleges and perform a series of sensitivity tests to check for robustness. We…

  14. A Robust Kalman Framework with Resampling and Optimal Smoothing

    PubMed Central

    Kautz, Thomas; Eskofier, Bjoern M.

    2015-01-01

    The Kalman filter (KF) is an extremely powerful and versatile tool for signal processing that has been applied extensively in various fields. We introduce a novel Kalman-based analysis procedure that encompasses robustness towards outliers, Kalman smoothing and real-time conversion from non-uniformly sampled inputs to a constant output rate. These features have been mostly treated independently, so that not all of their benefits could be exploited at the same time. Here, we present a coherent analysis procedure that combines the aforementioned features and their benefits. To facilitate utilization of the proposed methodology and to ensure optimal performance, we also introduce a procedure to calculate all necessary parameters. Thereby, we substantially expand the versatility of one of the most widely-used filtering approaches, taking full advantage of its most prevalent extensions. The applicability and superior performance of the proposed methods are demonstrated using simulated and real data. The possible areas of applications for the presented analysis procedure range from movement analysis over medical imaging, brain-computer interfaces to robot navigation or meteorological studies. PMID:25734647

  15. Enhanced H-filter based on Fåhræus-Lindqvist effect for efficient and robust dialysis without membrane

    PubMed Central

    Zheng, Wei-Chao; Xie, Rui; He, Li-Qun; Xi, Yue-Heng; Liu, Ying-Mei; Meng, Zhi-Jun; Wang, Wei; Ju, Xiao-Jie; Chen, Gang; Chu, Liang-Yin

    2015-01-01

    A novel microfluidic device for highly efficient and robust dialysis without membrane is highly desired for the development of portable or wearable microdialyzer. Here we report an enhanced H-filter with pillar array based on Fåhræus-Lindqvist effect (F-L effect) for highly efficient and robust membraneless dialysis of simplified blood for the first time. The H-filter employs two fluids laminarly flowing in the microchannel for continuously membraneless dialysis. With pillar array in the microchannel, the two laminar flows, with one containing blood cells and small molecules and another containing dialyzate solution, can form a cell-free layer at the interface as selective zones for separation. This provides enhanced mixing yet extremely low shear for extraction of small molecules from the blood-cell-containing flow into the dialyzate flow, resulting in robust separation with reduced cell loss and improved efficiency. We demonstrate this by first using Chlorella pyrenoidosa as model cells to quantitatively study the separation performances, and then using simplified human blood for dialysis. The advanced H-filter, with highly efficient and robust performance for membraneless dialysis, shows great potential as promising candidate for rapid blood analysis/separation, and as fundamental structure for portable dialyzer. PMID:26339313

  16. Enhanced H-filter based on Fåhræus-Lindqvist effect for efficient and robust dialysis without membrane.

    PubMed

    Zheng, Wei-Chao; Xie, Rui; He, Li-Qun; Xi, Yue-Heng; Liu, Ying-Mei; Meng, Zhi-Jun; Wang, Wei; Ju, Xiao-Jie; Chen, Gang; Chu, Liang-Yin

    2015-07-01

    A novel microfluidic device for highly efficient and robust dialysis without membrane is highly desired for the development of portable or wearable microdialyzer. Here we report an enhanced H-filter with pillar array based on Fåhræus-Lindqvist effect (F-L effect) for highly efficient and robust membraneless dialysis of simplified blood for the first time. The H-filter employs two fluids laminarly flowing in the microchannel for continuously membraneless dialysis. With pillar array in the microchannel, the two laminar flows, with one containing blood cells and small molecules and another containing dialyzate solution, can form a cell-free layer at the interface as selective zones for separation. This provides enhanced mixing yet extremely low shear for extraction of small molecules from the blood-cell-containing flow into the dialyzate flow, resulting in robust separation with reduced cell loss and improved efficiency. We demonstrate this by first using Chlorella pyrenoidosa as model cells to quantitatively study the separation performances, and then using simplified human blood for dialysis. The advanced H-filter, with highly efficient and robust performance for membraneless dialysis, shows great potential as promising candidate for rapid blood analysis/separation, and as fundamental structure for portable dialyzer.

  17. Microfluidic platform combining droplets and magnetic tweezers: application to HER2 expression in cancer diagnosis.

    PubMed

    Ferraro, Davide; Champ, Jérôme; Teste, Bruno; Serra, Marco; Malaquin, Laurent; Viovy, Jean-Louis; de Cremoux, Patricia; Descroix, Stephanie

    2016-05-09

    The development of precision medicine, together with the multiplication of targeted therapies and associated molecular biomarkers, call for major progress in genetic analysis methods, allowing increased multiplexing and the implementation of more complex decision trees, without cost increase or loss of robustness. We present a platform combining droplet microfluidics and magnetic tweezers, performing RNA purification, reverse transcription and amplification in a fully automated and programmable way, in droplets of 250nL directly sampled from a microtiter-plate. This platform decreases sample consumption about 100 fold as compared to current robotized platforms and it reduces human manipulations and contamination risk. The platform's performance was first evaluated on cell lines, showing robust operation on RNA quantities corresponding to less than one cell, and then clinically validated with a cohort of 21 breast cancer samples, for the determination of their HER2 expression status, in a blind comparison with an established routine clinical analysis.

  18. Analysis of metro network performance from a complex network perspective

    NASA Astrophysics Data System (ADS)

    Wu, Xingtang; Dong, Hairong; Tse, Chi Kong; Ho, Ivan W. H.; Lau, Francis C. M.

    2018-02-01

    In this paper, the performance of metro networks is studied from a network science perspective. We review the structural efficiency of metro networks on the basis of a passenger's intuitive routing strategy that optimizes the number of transfers and the distance traveled.A new node centrality measure, called node occupying probability, is introduced for evaluating the level of utilization of stations. The robustness of a metro network is analyzed under several attack scenarios. Six metro networks (Beijing, London, Paris, Hong Kong, Tokyo and New York) are compared in terms of the node occupying probability and a few other performance parameters. Simulation results show that the New York metro system has better topological efficiency, the Tokyo and Hong Kong systems are the most robust under random attack and target attack, respectively.

  19. A Hybrid One-Way ANOVA Approach for the Robust and Efficient Estimation of Differential Gene Expression with Multiple Patterns

    PubMed Central

    Mollah, Mohammad Manir Hossain; Jamal, Rahman; Mokhtar, Norfilza Mohd; Harun, Roslan; Mollah, Md. Nurul Haque

    2015-01-01

    Background Identifying genes that are differentially expressed (DE) between two or more conditions with multiple patterns of expression is one of the primary objectives of gene expression data analysis. Several statistical approaches, including one-way analysis of variance (ANOVA), are used to identify DE genes. However, most of these methods provide misleading results for two or more conditions with multiple patterns of expression in the presence of outlying genes. In this paper, an attempt is made to develop a hybrid one-way ANOVA approach that unifies the robustness and efficiency of estimation using the minimum β-divergence method to overcome some problems that arise in the existing robust methods for both small- and large-sample cases with multiple patterns of expression. Results The proposed method relies on a β-weight function, which produces values between 0 and 1. The β-weight function with β = 0.2 is used as a measure of outlier detection. It assigns smaller weights (≥ 0) to outlying expressions and larger weights (≤ 1) to typical expressions. The distribution of the β-weights is used to calculate the cut-off point, which is compared to the observed β-weight of an expression to determine whether that gene expression is an outlier. This weight function plays a key role in unifying the robustness and efficiency of estimation in one-way ANOVA. Conclusion Analyses of simulated gene expression profiles revealed that all eight methods (ANOVA, SAM, LIMMA, EBarrays, eLNN, KW, robust BetaEB and proposed) perform almost identically for m = 2 conditions in the absence of outliers. However, the robust BetaEB method and the proposed method exhibited considerably better performance than the other six methods in the presence of outliers. In this case, the BetaEB method exhibited slightly better performance than the proposed method for the small-sample cases, but the the proposed method exhibited much better performance than the BetaEB method for both the small- and large-sample cases in the presence of more than 50% outlying genes. The proposed method also exhibited better performance than the other methods for m > 2 conditions with multiple patterns of expression, where the BetaEB was not extended for this condition. Therefore, the proposed approach would be more suitable and reliable on average for the identification of DE genes between two or more conditions with multiple patterns of expression. PMID:26413858

  20. A robust internal control for high-precision DNA methylation analyses by droplet digital PCR.

    PubMed

    Pharo, Heidi D; Andresen, Kim; Berg, Kaja C G; Lothe, Ragnhild A; Jeanmougin, Marine; Lind, Guro E

    2018-01-01

    Droplet digital PCR (ddPCR) allows absolute quantification of nucleic acids and has potential for improved non-invasive detection of DNA methylation. For increased precision of the methylation analysis, we aimed to develop a robust internal control for use in methylation-specific ddPCR. Two control design approaches were tested: (a) targeting a genomic region shared across members of a gene family and (b) combining multiple assays targeting different pericentromeric loci on different chromosomes. Through analyses of 34 colorectal cancer cell lines, the performance of the control assay candidates was optimized and evaluated, both individually and in various combinations, using the QX200™ droplet digital PCR platform (Bio-Rad). The best-performing control was tested in combination with assays targeting methylated CDO1 , SEPT9 , and VIM . A 4Plex panel consisting of EPHA3 , KBTBD4 , PLEKHF1 , and SYT10 was identified as the best-performing control. The use of the 4Plex for normalization reduced the variability in methylation values, corrected for differences in template amount, and diminished the effect of chromosomal aberrations. Positive Droplet Calling (PoDCall), an R-based algorithm for standardized threshold determination, was developed, ensuring consistency of the ddPCR results. Implementation of a robust internal control, i.e., the 4Plex, and an algorithm for automated threshold determination, PoDCall, in methylation-specific ddPCR increase the precision of DNA methylation analysis.

  1. Adaptive cancellation of motion artifact in wearable biosensors.

    PubMed

    Yousefi, Rasoul; Nourani, Mehrdad; Panahi, Issa

    2012-01-01

    The performance of wearable biosensors is highly influenced by motion artifact. In this paper, a model is proposed for analysis of motion artifact in wearable photoplethysmography (PPG) sensors. Using this model, we proposed a robust real-time technique to estimate fundamental frequency and generate a noise reference signal. A Least Mean Square (LMS) adaptive noise canceler is then designed and validated using our synthetic noise generator. The analysis and results on proposed technique for noise cancellation shows promising performance.

  2. Performance Analysis of HF Band FB-MC-SS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussein Moradi; Stephen Andrew Laraway; Behrouz Farhang-Boroujeny

    Abstract—In a recent paper [1] the filter bank multicarrier spread spectrum (FB-MC-SS) waveform was proposed for wideband spread spectrum HF communications. A significant benefit of this waveform is robustness against narrow and partial band interference. Simulation results in [1] demonstrated good performance in a wideband HF channel over a wide range of conditions. In this paper we present a theoretical analysis of the bit error probably for this system. Our analysis tailors the results from [2] where BER performance was analyzed for maximum ration combining systems that accounted for correlation between subcarriers and channel estimation error. Equations are give formore » BER that closely match the simulated performance in most situations.« less

  3. Parenchymal texture analysis in digital mammography: robust texture feature identification and equivalence across devices.

    PubMed

    Keller, Brad M; Oustimov, Andrew; Wang, Yan; Chen, Jinbo; Acciavatti, Raymond J; Zheng, Yuanjie; Ray, Shonket; Gee, James C; Maidment, Andrew D A; Kontos, Despina

    2015-04-01

    An analytical framework is presented for evaluating the equivalence of parenchymal texture features across different full-field digital mammography (FFDM) systems using a physical breast phantom. Phantom images (FOR PROCESSING) are acquired from three FFDM systems using their automated exposure control setting. A panel of texture features, including gray-level histogram, co-occurrence, run length, and structural descriptors, are extracted. To identify features that are robust across imaging systems, a series of equivalence tests are performed on the feature distributions, in which the extent of their intersystem variation is compared to their intrasystem variation via the Hodges-Lehmann test statistic. Overall, histogram and structural features tend to be most robust across all systems, and certain features, such as edge enhancement, tend to be more robust to intergenerational differences between detectors of a single vendor than to intervendor differences. Texture features extracted from larger regions of interest (i.e., [Formula: see text]) and with a larger offset length (i.e., [Formula: see text]), when applicable, also appear to be more robust across imaging systems. This framework and observations from our experiments may benefit applications utilizing mammographic texture analysis on images acquired in multivendor settings, such as in multicenter studies of computer-aided detection and breast cancer risk assessment.

  4. A robust detector for rolling element bearing condition monitoring based on the modulation signal bispectrum and its performance evaluation against the Kurtogram

    NASA Astrophysics Data System (ADS)

    Tian, Xiange; Xi Gu, James; Rehab, Ibrahim; Abdalla, Gaballa M.; Gu, Fengshou; Ball, A. D.

    2018-02-01

    Envelope analysis is a widely used method for rolling element bearing fault detection. To obtain high detection accuracy, it is critical to determine an optimal frequency narrowband for the envelope demodulation. However, many of the schemes which are used for the narrowband selection, such as the Kurtogram, can produce poor detection results because they are sensitive to random noise and aperiodic impulses which normally occur in practical applications. To achieve the purposes of denoising and frequency band optimisation, this paper proposes a novel modulation signal bispectrum (MSB) based robust detector for bearing fault detection. Because of its inherent noise suppression capability, the MSB allows effective suppression of both stationary random noise and discrete aperiodic noise. The high magnitude features that result from the use of the MSB also enhance the modulation effects of a bearing fault and can be used to provide optimal frequency bands for fault detection. The Kurtogram is generally accepted as a powerful means of selecting the most appropriate frequency band for envelope analysis, and as such it has been used as the benchmark comparator for performance evaluation in this paper. Both simulated and experimental data analysis results show that the proposed method produces more accurate and robust detection results than Kurtogram based approaches for common bearing faults under a range of representative scenarios.

  5. A H∞/μ solution for microvibration mitigation in satellites: A case study

    NASA Astrophysics Data System (ADS)

    Preda, Valentin; Cieslak, Jérôme; Henry, David; Bennani, Samir; Falcoz, Alexandre

    2017-07-01

    The research work presented in this paper focuses on the development of a mixed active-passive microvibration mitigation solution capable of attenuating the transmitted vibrations generated by reaction wheels to a satellite structure. A representative benchmark provided by the European Space Agency (ESA) and Airbus Defence and Space, serves as a support for testing the proposed solution. The paper also covers modeling and design issues as well as a deep analysis of the solution within the H∞ / μ setting. Especially, an uncertainty modeling strategy is proposed to extract a Linear Fractional Transformation (LFT) model. Insight is naturally provided into various dynamical interactions between the plant elements such as bearing and isolator flexibility, gyroscopic effects, actuator dynamics and feedback-loop delays. The design of the mitigation solution is formulated into the H∞ / μ framework leading to a robust H∞ control strategy capable of achieving exemplary active attenuation performance across a wide range of reaction wheel speeds. A systematic analysis procedure based on the structured singular value μ is used to assess and demonstrate the robust stability and robust performance of the microvibration mitigation strategy. The proposed analysis method is also shown to be a powerful and reliable solution to identify worst-case scenarios without relying on traditional Monte Carlo campaigns. Time domain simulations based on a nonlinear high-fidelity industrial simulator are included as a validation step.

  6. Nontargeted metabolomic analysis and "commercial-homophyletic" comparison-induced biomarkers verification for the systematic chemical differentiation of five different parts of Panax ginseng.

    PubMed

    Qiu, Shi; Yang, Wen-Zhi; Yao, Chang-Liang; Qiu, Zhi-Dong; Shi, Xiao-Jian; Zhang, Jing-Xian; Hou, Jin-Jun; Wang, Qiu-Rong; Wu, Wan-Ying; Guo, De-An

    2016-07-01

    A key segment in authentication of herbal medicines is the establishment of robust biomarkers that embody the intrinsic metabolites difference independent of the growing environment or processing technics. We present a strategy by nontargeted metabolomics and "Commercial-homophyletic" comparison-induced biomarkers verification with new bioinformatic vehicles, to improve the efficiency and reliability in authentication of herbal medicines. The chemical differentiation of five different parts (root, leaf, flower bud, berry, and seed) of Panax ginseng was illustrated as a case study. First, an optimized ultra-performance liquid chromatography/quadrupole time-of-flight-MS(E) (UPLC/QTOF-MS(E)) approach was established for global metabolites profiling. Second, UNIFI™ combined with search of an in-house library was employed to automatically characterize the metabolites. Third, pattern recognition multivariate statistical analysis of the MS(E) data of different parts of commercial and homophyletic samples were separately performed to explore potential biomarkers. Fourth, potential biomarkers deduced from commercial and homophyletic root and leaf samples were cross-compared to infer robust biomarkers. Fifth, discriminating models by artificial neutral network (ANN) were established to identify different parts of P. ginseng. Consequently, 164 compounds were characterized, and 11 robust biomarkers enabling the differentiation among root, leaf, flower bud, and berry, were discovered by removing those structurally unstable and possibly processing-related ones. The ANN models using the robust biomarkers managed to exactly discriminate four different parts and root adulterant with leaf as well. Conclusively, biomarkers verification using homophyletic samples conduces to the discovery of robust biomarkers. The integrated strategy facilitates authentication of herbal medicines in a more efficient and more intelligent manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Multi-criteria robustness analysis of metro networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiangrong; Koç, Yakup; Derrible, Sybil; Ahmad, Sk Nasir; Pino, Willem J. A.; Kooij, Robert E.

    2017-05-01

    Metros (heavy rail transit systems) are integral parts of urban transportation systems. Failures in their operations can have serious impacts on urban mobility, and measuring their robustness is therefore critical. Moreover, as physical networks, metros can be viewed as topological entities, and as such they possess measurable network properties. In this article, by using network science and graph theory, we investigate ten theoretical and four numerical robustness metrics and their performance in quantifying the robustness of 33 metro networks under random failures or targeted attacks. We find that the ten theoretical metrics capture two distinct aspects of robustness of metro networks. First, several metrics place an emphasis on alternative paths. Second, other metrics place an emphasis on the length of the paths. To account for all aspects, we standardize all ten indicators and plot them on radar diagrams to assess the overall robustness for metro networks. Overall, we find that Tokyo and Rome are the most robust networks. Rome benefits from short transferring and Tokyo has a significant number of transfer stations, both in the city center and in the peripheral area of the city, promoting both a higher number of alternative paths and overall relatively short path-lengths.

  8. Dynamic robustness of knowledge collaboration network of open source product development community

    NASA Astrophysics Data System (ADS)

    Zhou, Hong-Li; Zhang, Xiao-Dong

    2018-01-01

    As an emergent innovative design style, open source product development communities are characterized by a self-organizing, mass collaborative, networked structure. The robustness of the community is critical to its performance. Using the complex network modeling method, the knowledge collaboration network of the community is formulated, and the robustness of the network is systematically and dynamically studied. The characteristics of the network along the development period determine that its robustness should be studied from three time stages: the start-up, development and mature stages of the network. Five kinds of user-loss pattern are designed, to assess the network's robustness under different situations in each of these three time stages. Two indexes - the largest connected component and the network efficiency - are used to evaluate the robustness of the community. The proposed approach is applied in an existing open source car design community. The results indicate that the knowledge collaboration networks show different levels of robustness in different stages and different user loss patterns. Such analysis can be applied to provide protection strategies for the key users involved in knowledge dissemination and knowledge contribution at different stages of the network, thereby promoting the sustainable and stable development of the open source community.

  9. Using expert judgments to explore robust alternatives for forest management under climate change.

    PubMed

    McDaniels, Timothy; Mills, Tamsin; Gregory, Robin; Ohlson, Dan

    2012-12-01

    We develop and apply a judgment-based approach to selecting robust alternatives, which are defined here as reasonably likely to achieve objectives, over a range of uncertainties. The intent is to develop an approach that is more practical in terms of data and analysis requirements than current approaches, informed by the literature and experience with probability elicitation and judgmental forecasting. The context involves decisions about managing forest lands that have been severely affected by mountain pine beetles in British Columbia, a pest infestation that is climate-exacerbated. A forest management decision was developed as the basis for the context, objectives, and alternatives for land management actions, to frame and condition the judgments. A wide range of climate forecasts, taken to represent the 10-90% levels on cumulative distributions for future climate, were developed to condition judgments. An elicitation instrument was developed, tested, and revised to serve as the basis for eliciting probabilistic three-point distributions regarding the performance of selected alternatives, over a set of relevant objectives, in the short and long term. The elicitations were conducted in a workshop comprising 14 regional forest management specialists. We employed the concept of stochastic dominance to help identify robust alternatives. We used extensive sensitivity analysis to explore the patterns in the judgments, and also considered the preferred alternatives for each individual expert. The results show that two alternatives that are more flexible than the current policies are judged more likely to perform better than the current alternatives on average in terms of stochastic dominance. The results suggest judgmental approaches to robust decision making deserve greater attention and testing. © 2012 Society for Risk Analysis.

  10. Robust LS-SVM-based adaptive constrained control for a class of uncertain nonlinear systems with time-varying predefined performance

    NASA Astrophysics Data System (ADS)

    Luo, Jianjun; Wei, Caisheng; Dai, Honghua; Yuan, Jianping

    2018-03-01

    This paper focuses on robust adaptive control for a class of uncertain nonlinear systems subject to input saturation and external disturbance with guaranteed predefined tracking performance. To reduce the limitations of classical predefined performance control method in the presence of unknown initial tracking errors, a novel predefined performance function with time-varying design parameters is first proposed. Then, aiming at reducing the complexity of nonlinear approximations, only two least-square-support-vector-machine-based (LS-SVM-based) approximators with two design parameters are required through norm form transformation of the original system. Further, a novel LS-SVM-based adaptive constrained control scheme is developed under the time-vary predefined performance using backstepping technique. Wherein, to avoid the tedious analysis and repeated differentiations of virtual control laws in the backstepping technique, a simple and robust finite-time-convergent differentiator is devised to only extract its first-order derivative at each step in the presence of external disturbance. In this sense, the inherent demerit of backstepping technique-;explosion of terms; brought by the recursive virtual controller design is conquered. Moreover, an auxiliary system is designed to compensate the control saturation. Finally, three groups of numerical simulations are employed to validate the effectiveness of the newly developed differentiator and the proposed adaptive constrained control scheme.

  11. Robustness Analysis and Reliable Flight Regime Estimation of an Integrated Resilent Control System for a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Belcastro, Christine

    2008-01-01

    Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. As a part of the validation process, this paper describes an analysis method for determining a reliable flight regime in the flight envelope within which an integrated resilent control system can achieve the desired performance of tracking command signals and detecting additive faults in the presence of parameter uncertainty and unmodeled dynamics. To calculate a reliable flight regime, a structured singular value analysis method is applied to analyze the closed-loop system over the entire flight envelope. To use the structured singular value analysis method, a linear fractional transform (LFT) model of a transport aircraft longitudinal dynamics is developed over the flight envelope by using a preliminary LFT modeling software tool developed at the NASA Langley Research Center, which utilizes a matrix-based computational approach. The developed LFT model can capture original nonlinear dynamics over the flight envelope with the ! block which contains key varying parameters: angle of attack and velocity, and real parameter uncertainty: aerodynamic coefficient uncertainty and moment of inertia uncertainty. Using the developed LFT model and a formal robustness analysis method, a reliable flight regime is calculated for a transport aircraft closed-loop system.

  12. Robust decentralized controller for minimizing coupling effect in single inductor multiple output DC-DC converter operating in continuous conduction mode.

    PubMed

    Medeiros, Renan Landau Paiva de; Barra, Walter; Bessa, Iury Valente de; Chaves Filho, João Edgar; Ayres, Florindo Antonio de Cavalho; Neves, Cleonor Crescêncio das

    2018-02-01

    This paper describes a novel robust decentralized control design methodology for a single inductor multiple output (SIMO) DC-DC converter. Based on a nominal multiple input multiple output (MIMO) plant model and performance requirements, a pairing input-output analysis is performed to select the suitable input to control each output aiming to attenuate the loop coupling. Thus, the plant uncertainty limits are selected and expressed in interval form with parameter values of the plant model. A single inductor dual output (SIDO) DC-DC buck converter board is developed for experimental tests. The experimental results show that the proposed methodology can maintain a desirable performance even in the presence of parametric uncertainties. Furthermore, the performance indexes calculated from experimental data show that the proposed methodology outperforms classical MIMO control techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. A robust optimization model for distribution and evacuation in the disaster response phase

    NASA Astrophysics Data System (ADS)

    Fereiduni, Meysam; Shahanaghi, Kamran

    2017-03-01

    Natural disasters, such as earthquakes, affect thousands of people and can cause enormous financial loss. Therefore, an efficient response immediately following a natural disaster is vital to minimize the aforementioned negative effects. This research paper presents a network design model for humanitarian logistics which will assist in location and allocation decisions for multiple disaster periods. At first, a single-objective optimization model is presented that addresses the response phase of disaster management. This model will help the decision makers to make the most optimal choices in regard to location, allocation, and evacuation simultaneously. The proposed model also considers emergency tents as temporary medical centers. To cope with the uncertainty and dynamic nature of disasters, and their consequences, our multi-period robust model considers the values of critical input data in a set of various scenarios. Second, because of probable disruption in the distribution infrastructure (such as bridges), the Monte Carlo simulation is used for generating related random numbers and different scenarios; the p-robust approach is utilized to formulate the new network. The p-robust approach can predict possible damages along pathways and among relief bases. We render a case study of our robust optimization approach for Tehran's plausible earthquake in region 1. Sensitivity analysis' experiments are proposed to explore the effects of various problem parameters. These experiments will give managerial insights and can guide DMs under a variety of conditions. Then, the performances of the "robust optimization" approach and the "p-robust optimization" approach are evaluated. Intriguing results and practical insights are demonstrated by our analysis on this comparison.

  14. The comparison of robust partial least squares regression with robust principal component regression on a real

    NASA Astrophysics Data System (ADS)

    Polat, Esra; Gunay, Suleyman

    2013-10-01

    One of the problems encountered in Multiple Linear Regression (MLR) is multicollinearity, which causes the overestimation of the regression parameters and increase of the variance of these parameters. Hence, in case of multicollinearity presents, biased estimation procedures such as classical Principal Component Regression (CPCR) and Partial Least Squares Regression (PLSR) are then performed. SIMPLS algorithm is the leading PLSR algorithm because of its speed, efficiency and results are easier to interpret. However, both of the CPCR and SIMPLS yield very unreliable results when the data set contains outlying observations. Therefore, Hubert and Vanden Branden (2003) have been presented a robust PCR (RPCR) method and a robust PLSR (RPLSR) method called RSIMPLS. In RPCR, firstly, a robust Principal Component Analysis (PCA) method for high-dimensional data on the independent variables is applied, then, the dependent variables are regressed on the scores using a robust regression method. RSIMPLS has been constructed from a robust covariance matrix for high-dimensional data and robust linear regression. The purpose of this study is to show the usage of RPCR and RSIMPLS methods on an econometric data set, hence, making a comparison of two methods on an inflation model of Turkey. The considered methods have been compared in terms of predictive ability and goodness of fit by using a robust Root Mean Squared Error of Cross-validation (R-RMSECV), a robust R2 value and Robust Component Selection (RCS) statistic.

  15. A Fast and Robust UHPLC-MRM-MS Method to Characterize and Quantify Grape Skin Tannins after Chemical Depolymerization.

    PubMed

    Pinasseau, Lucie; Verbaere, Arnaud; Roques, Maryline; Meudec, Emmanuelle; Vallverdú-Queralt, Anna; Terrier, Nancy; Boulet, Jean-Claude; Cheynier, Véronique; Sommerer, Nicolas

    2016-10-21

    A rapid, sensitive, and selective analysis method using ultra high performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-QqQ-MS) has been developed for the characterization and quantification of grape skin flavan-3-ols after acid-catalysed depolymerization in the presence of phloroglucinol (phloroglucinolysis). The compound detection being based on specific MS transitions in Multiple Reaction Monitoring (MRM) mode, this fast gradient robust method allows analysis of constitutive units of grape skin proanthocyanidins, including some present in trace amounts, in a single injection, with a throughput of 6 samples per hour. This method was applied to a set of 214 grape skin samples from 107 different red and white grape cultivars grown under two conditions in the vineyard, irrigated or non-irrigated. The results of triplicate analyses confirmed the robustness of the method, which was thus proven to be suitable for high-throughput and large-scale metabolomics studies. Moreover, these preliminary results suggest that analysis of tannin composition is relevant to investigate the genetic bases of grape response to drought.

  16. Using robust principal component analysis to alleviate day-to-day variability in EEG based emotion classification.

    PubMed

    Ping-Keng Jao; Yuan-Pin Lin; Yi-Hsuan Yang; Tzyy-Ping Jung

    2015-08-01

    An emerging challenge for emotion classification using electroencephalography (EEG) is how to effectively alleviate day-to-day variability in raw data. This study employed the robust principal component analysis (RPCA) to address the problem with a posed hypothesis that background or emotion-irrelevant EEG perturbations lead to certain variability across days and somehow submerge emotion-related EEG dynamics. The empirical results of this study evidently validated our hypothesis and demonstrated the RPCA's feasibility through the analysis of a five-day dataset of 12 subjects. The RPCA allowed tackling the sparse emotion-relevant EEG dynamics from the accompanied background perturbations across days. Sequentially, leveraging the RPCA-purified EEG trials from more days appeared to improve the emotion-classification performance steadily, which was not found in the case using the raw EEG features. Therefore, incorporating the RPCA with existing emotion-aware machine-learning frameworks on a longitudinal dataset of each individual may shed light on the development of a robust affective brain-computer interface (ABCI) that can alleviate ecological inter-day variability.

  17. A Study on the Requirements for Fast Active Turbine Tip Clearance Control Systems

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.; Melcher, Kevin J.

    2004-01-01

    This paper addresses the requirements of a control system for active turbine tip clearance control in a generic commercial turbofan engine through design and analysis. The control objective is to articulate the shroud in the high pressure turbine section in order to maintain a certain clearance set point given several possible engine transient events. The system must also exhibit reasonable robustness to modeling uncertainties and reasonable noise rejection properties. Two actuators were chosen to fulfill such a requirement, both of which possess different levels of technological readiness: electrohydraulic servovalves and piezoelectric stacks. Identification of design constraints, desired actuator parameters, and actuator limitations are addressed in depth; all of which are intimately tied with the hardware and controller design process. Analytical demonstrations of the performance and robustness characteristics of the two axisymmetric LQG clearance control systems are presented. Takeoff simulation results show that both actuators are capable of maintaining the clearance within acceptable bounds and demonstrate robustness to parameter uncertainty. The present model-based control strategy was employed to demonstrate the tradeoff between performance, control effort, and robustness and to implement optimal state estimation in a noisy engine environment with intent to eliminate ad hoc methods for designing reliable control systems.

  18. Robust, nonlinear, high angle-of-attack control design for a supermaneuverable vehicle

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.

    1993-01-01

    High angle-of-attack flight control laws are developed for a supermaneuverable fighter aircraft. The methods of dynamic inversion and structured singular value synthesis are combined into an approach which addresses both the nonlinearity and robustness problems of flight at extreme operating conditions. The primary purpose of the dynamic inversion control elements is to linearize the vehicle response across the flight envelope. Structured singular value synthesis is used to design a dynamic controller which provides robust tracking to pilot commands. The resulting control system achieves desired flying qualities and guarantees a large margin of robustness to uncertainties for high angle-of-attack flight conditions. The results of linear simulation and structured singular value stability analysis are presented to demonstrate satisfaction of the design criteria. High fidelity nonlinear simulation results show that the combined dynamics inversion/structured singular value synthesis control law achieves a high level of performance in a realistic environment.

  19. Robust failure detection filters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Sanmartin, A. M.

    1985-01-01

    The robustness of detection filters applied to the detection of actuator failures on a free-free beam is analyzed. This analysis is based on computer simulation tests of the detection filters in the presence of different types of model mismatch, and on frequency response functions of the transfers corresponding to the model mismatch. The robustness of detection filters based on a model of the beam containing a large number of structural modes varied dramatically with the placement of some of the filter poles. The dynamics of these filters were very hard to analyze. The design of detection filters with a number of modes equal to the number of sensors was trivial. They can be configured to detect any number of actuator failure events. The dynamics of these filters were very easy to analyze and their robustness properties were much improved. A change of the output transformation allowed the filter to perform satisfactorily with realistic levels of model mismatch.

  20. Smoothing effect for spatially distributed renewable resources and its impact on power grid robustness.

    PubMed

    Nagata, Motoki; Hirata, Yoshito; Fujiwara, Naoya; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2017-03-01

    In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of the power grids against large fluctuations of the effective power. First, we evaluate the spatial correlation among renewable energy outputs. We find that the spatial correlation of renewable energy outputs depends on the locations, while the influence of the spatial correlation of renewable energy outputs on power grids is not well known. Thus, second, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model. The results show that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our results suggest that we should consider the spatial correlation of the renewable energy outputs when estimating the stability of power grids.

  1. A robust ridge regression approach in the presence of both multicollinearity and outliers in the data

    NASA Astrophysics Data System (ADS)

    Shariff, Nurul Sima Mohamad; Ferdaos, Nur Aqilah

    2017-08-01

    Multicollinearity often leads to inconsistent and unreliable parameter estimates in regression analysis. This situation will be more severe in the presence of outliers it will cause fatter tails in the error distributions than the normal distributions. The well-known procedure that is robust to multicollinearity problem is the ridge regression method. This method however is expected to be affected by the presence of outliers due to some assumptions imposed in the modeling procedure. Thus, the robust version of existing ridge method with some modification in the inverse matrix and the estimated response value is introduced. The performance of the proposed method is discussed and comparisons are made with several existing estimators namely, Ordinary Least Squares (OLS), ridge regression and robust ridge regression based on GM-estimates. The finding of this study is able to produce reliable parameter estimates in the presence of both multicollinearity and outliers in the data.

  2. Robust control of electrostatic torsional micromirrors using adaptive sliding-mode control

    NASA Astrophysics Data System (ADS)

    Sane, Harshad S.; Yazdi, Navid; Mastrangelo, Carlos H.

    2005-01-01

    This paper presents high-resolution control of torsional electrostatic micromirrors beyond their inherent pull-in instability using robust sliding-mode control (SMC). The objectives of this paper are two-fold - firstly, to demonstrate the applicability of SMC for MEMS devices; secondly - to present a modified SMC algorithm that yields improved control accuracy. SMC enables compact realization of a robust controller tolerant of device characteristic variations and nonlinearities. Robustness of the control loop is demonstrated through extensive simulations and measurements on MEMS with a wide range in their characteristics. Control of two-axis gimbaled micromirrors beyond their pull-in instability with overall 10-bit pointing accuracy is confirmed experimentally. In addition, this paper presents an analysis of the sources of errors in discrete-time implementation of the control algorithm. To minimize these errors, we present an adaptive version of the SMC algorithm that yields substantial performance improvement without considerably increasing implementation complexity.

  3. Reliability of simulated robustness testing in fast liquid chromatography, using state-of-the-art column technology, instrumentation and modelling software.

    PubMed

    Kormány, Róbert; Fekete, Jenő; Guillarme, Davy; Fekete, Szabolcs

    2014-02-01

    The goal of this study was to evaluate the accuracy of simulated robustness testing using commercial modelling software (DryLab) and state-of-the-art stationary phases. For this purpose, a mixture of amlodipine and its seven related impurities was analyzed on short narrow bore columns (50×2.1mm, packed with sub-2μm particles) providing short analysis times. The performance of commercial modelling software for robustness testing was systematically compared to experimental measurements and DoE based predictions. We have demonstrated that the reliability of predictions was good, since the predicted retention times and resolutions were in good agreement with the experimental ones at the edges of the design space. In average, the retention time relative errors were <1.0%, while the predicted critical resolution errors were comprised between 6.9 and 17.2%. Because the simulated robustness testing requires significantly less experimental work than the DoE based predictions, we think that robustness could now be investigated in the early stage of method development. Moreover, the column interchangeability, which is also an important part of robustness testing, was investigated considering five different C8 and C18 columns packed with sub-2μm particles. Again, thanks to modelling software, we proved that the separation was feasible on all columns within the same analysis time (less than 4min), by proper adjustments of variables. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Design of Robust Adaptive Unbalance Response Controllers for Rotors with Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Knospe, Carl R.; Tamer, Samir M.; Fedigan, Stephen J.

    1996-01-01

    Experimental results have recently demonstrated that an adaptive open loop control strategy can be highly effective in the suppression of unbalance induced vibration on rotors supported in active magnetic bearings. This algorithm, however, relies upon a predetermined gain matrix. Typically, this matrix is determined by an optimal control formulation resulting in the choice of the pseudo-inverse of the nominal influence coefficient matrix as the gain matrix. This solution may result in problems with stability and performance robustness since the estimated influence coefficient matrix is not equal to the actual influence coefficient matrix. Recently, analysis tools have been developed to examine the robustness of this control algorithm with respect to structured uncertainty. Herein, these tools are extended to produce a design procedure for determining the adaptive law's gain matrix. The resulting control algorithm has a guaranteed convergence rate and steady state performance in spite of the uncertainty in the rotor system. Several examples are presented which demonstrate the effectiveness of this approach and its advantages over the standard optimal control formulation.

  5. Robust Nonlinear Feedback Control of Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.; Litt, Jonathan (Technical Monitor)

    2001-01-01

    This is the final report on the research performed under NASA Glen grant NASA/NAG-3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool, mixed flow, after burning turbofan engine. The research focussed on the design of linear and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using H-infinity and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine simulation was provided by PW within the NASA Rocket Engine Transient Simulator (ROCETS) simulation software environment. ROCETS was used to generate linearized models of the turbofan engine for control design and analysis as well as the simulation environment to evaluate the performance and robustness of the controllers. Comparison between the H-infinity, and LPV controllers are made with the baseline multivariable controller and developed by Pratt & Whitney engineers included in the ROCETS simulation. Simulation results indicate that H-infinity and LPV techniques effectively achieve desired response characteristics with minimal cross coupling between commanded values and are very robust to unmodeled dynamics and sensor noise.

  6. Robustness study of the pseudo open-loop controller for multiconjugate adaptive optics.

    PubMed

    Piatrou, Piotr; Gilles, Luc

    2005-02-20

    Robustness of the recently proposed "pseudo open-loop control" algorithm against various system errors has been investigated for the representative example of the Gemini-South 8-m telescope multiconjugate adaptive-optics system. The existing model to represent the adaptive-optics system with pseudo open-loop control has been modified to account for misalignments, noise and calibration errors in deformable mirrors, and wave-front sensors. Comparison with the conventional least-squares control model has been done. We show with the aid of both transfer-function pole-placement analysis and Monte Carlo simulations that POLC remains remarkably stable and robust against very large levels of system errors and outperforms in this respect least-squares control. Approximate stability margins as well as performance metrics such as Strehl ratios and rms wave-front residuals averaged over a 1-arc min field of view have been computed for different types and levels of system errors to quantify the expected performance degradation.

  7. Robust evaluation of time series classification algorithms for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Worden, Keith; Todd, Michael D.

    2014-03-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and mechanical infrastructure through analysis of structural response measurements. The supervised learning methodology for data-driven SHM involves computation of low-dimensional, damage-sensitive features from raw measurement data that are then used in conjunction with machine learning algorithms to detect, classify, and quantify damage states. However, these systems often suffer from performance degradation in real-world applications due to varying operational and environmental conditions. Probabilistic approaches to robust SHM system design suffer from incomplete knowledge of all conditions a system will experience over its lifetime. Info-gap decision theory enables nonprobabilistic evaluation of the robustness of competing models and systems in a variety of decision making applications. Previous work employed info-gap models to handle feature uncertainty when selecting various components of a supervised learning system, namely features from a pre-selected family and classifiers. In this work, the info-gap framework is extended to robust feature design and classifier selection for general time series classification through an efficient, interval arithmetic implementation of an info-gap data model. Experimental results are presented for a damage type classification problem on a ball bearing in a rotating machine. The info-gap framework in conjunction with an evolutionary feature design system allows for fully automated design of a time series classifier to meet performance requirements under maximum allowable uncertainty.

  8. Computational methods of robust controller design for aerodynamic flutter suppression

    NASA Technical Reports Server (NTRS)

    Anderson, L. R.

    1981-01-01

    The development of Riccati iteration, a tool for the design and analysis of linear control systems is examined. First, Riccati iteration is applied to the problem of pole placement and order reduction in two-time scale control systems. Order reduction, yielding a good approximation to the original system, is demonstrated using a 16th order linear model of a turbofan engine. Next, a numerical method for solving the Riccati equation is presented and demonstrated for a set of eighth order random examples. A literature review of robust controller design methods follows which includes a number of methods for reducing the trajectory and performance index sensitivity in linear regulators. Lastly, robust controller design for large parameter variations is discussed.

  9. Directions of arrival estimation with planar antenna arrays in the presence of mutual coupling

    NASA Astrophysics Data System (ADS)

    Akkar, Salem; Harabi, Ferid; Gharsallah, Ali

    2013-06-01

    Directions of arrival (DoAs) estimation of multiple sources using an antenna array is a challenging topic in wireless communication. The DoAs estimation accuracy depends not only on the selected technique and algorithm, but also on the geometrical configuration of the antenna array used during the estimation. In this article the robustness of common planar antenna arrays against unaccounted mutual coupling is examined and their DoAs estimation capabilities are compared and analysed through computer simulations using the well-known MUltiple SIgnal Classification (MUSIC) algorithm. Our analysis is based on an electromagnetic concept to calculate an approximation of the impedance matrices that define the mutual coupling matrix (MCM). Furthermore, a CRB analysis is presented and used as an asymptotic performance benchmark of the studied antenna arrays. The impact of the studied antenna arrays geometry on the MCM structure is also investigated. Simulation results show that the UCCA has more robustness against unaccounted mutual coupling and performs better results than both UCA and URA geometries. The performed simulations confirm also that, although the UCCA achieves better performance under complicated scenarios, the URA shows better asymptotic (CRB) behaviour which promises more accuracy on DoAs estimation.

  10. Interlaboratory Comparison Test as an Evaluation of Applicability of an Alternative Edible Oil Analysis by 1H NMR Spectroscopy.

    PubMed

    Zailer, Elina; Holzgrabe, Ulrike; Diehl, Bernd W K

    2017-11-01

    A proton (1H) NMR spectroscopic method was established for the quality assessment of vegetable oils. To date, several research studies have been published demonstrating the high potential of the NMR technique in lipid analysis. An interlaboratory comparison was organized with the following main objectives: (1) to evaluate an alternative analysis of edible oils by using 1H NMR spectroscopy; and (2) to determine the robustness and reproducibility of the method. Five different edible oil samples were analyzed by evaluating 15 signals (free fatty acids, peroxides, aldehydes, double bonds, and linoleic and linolenic acids) in each spectrum. A total of 21 NMR data sets were obtained from 17 international participant laboratories. The performance of each laboratory was assessed by their z-scores. The test was successfully passed by 90.5% of the participants. Results showed that NMR spectroscopy is a robust alternative method for edible oil analysis.

  11. Increased robustness of single-molecule counting with microfluidics, digital isothermal amplification, and a mobile phone versus real-time kinetic measurements.

    PubMed

    Selck, David A; Karymov, Mikhail A; Sun, Bing; Ismagilov, Rustem F

    2013-11-19

    Quantitative bioanalytical measurements are commonly performed in a kinetic format and are known to not be robust to perturbation that affects the kinetics itself or the measurement of kinetics. We hypothesized that the same measurements performed in a "digital" (single-molecule) format would show increased robustness to such perturbations. Here, we investigated the robustness of an amplification reaction (reverse-transcription loop-mediated amplification, RT-LAMP) in the context of fluctuations in temperature and time when this reaction is used for quantitative measurements of HIV-1 RNA molecules under limited-resource settings (LRS). The digital format that counts molecules using dRT-LAMP chemistry detected a 2-fold change in concentration of HIV-1 RNA despite a 6 °C temperature variation (p-value = 6.7 × 10(-7)), whereas the traditional kinetic (real-time) format did not (p-value = 0.25). Digital analysis was also robust to a 20 min change in reaction time, to poor imaging conditions obtained with a consumer cell-phone camera, and to automated cloud-based processing of these images (R(2) = 0.9997 vs true counts over a 100-fold dynamic range). Fluorescent output of multiplexed PCR amplification could also be imaged with the cell phone camera using flash as the excitation source. Many nonlinear amplification schemes based on organic, inorganic, and biochemical reactions have been developed, but their robustness is not well understood. This work implies that these chemistries may be significantly more robust in the digital, rather than kinetic, format. It also calls for theoretical studies to predict robustness of these chemistries and, more generally, to design robust reaction architectures. The SlipChip that we used here and other digital microfluidic technologies already exist to enable testing of these predictions. Such work may lead to identification or creation of robust amplification chemistries that enable rapid and precise quantitative molecular measurements under LRS. Furthermore, it may provide more general principles describing robustness of chemical and biological networks in digital formats.

  12. Multiframe video coding for improved performance over wireless channels.

    PubMed

    Budagavi, M; Gibson, J D

    2001-01-01

    We propose and evaluate a multi-frame extension to block motion compensation (BMC) coding of videoconferencing-type video signals for wireless channels. The multi-frame BMC (MF-BMC) coder makes use of the redundancy that exists across multiple frames in typical videoconferencing sequences to achieve additional compression over that obtained by using the single frame BMC (SF-BMC) approach, such as in the base-level H.263 codec. The MF-BMC approach also has an inherent ability of overcoming some transmission errors and is thus more robust when compared to the SF-BMC approach. We model the error propagation process in MF-BMC coding as a multiple Markov chain and use Markov chain analysis to infer that the use of multiple frames in motion compensation increases robustness. The Markov chain analysis is also used to devise a simple scheme which randomizes the selection of the frame (amongst the multiple previous frames) used in BMC to achieve additional robustness. The MF-BMC coders proposed are a multi-frame extension of the base level H.263 coder and are found to be more robust than the base level H.263 coder when subjected to simulated errors commonly encountered on wireless channels.

  13. Synchrony and entrainment properties of robust circadian oscillators

    PubMed Central

    Bagheri, Neda; Taylor, Stephanie R.; Meeker, Kirsten; Petzold, Linda R.; Doyle, Francis J.

    2008-01-01

    Systems theoretic tools (i.e. mathematical modelling, control, and feedback design) advance the understanding of robust performance in complex biological networks. We highlight phase entrainment as a key performance measure used to investigate dynamics of a single deterministic circadian oscillator for the purpose of generating insight into the behaviour of a population of (synchronized) oscillators. More specifically, the analysis of phase characteristics may facilitate the identification of appropriate coupling mechanisms for the ensemble of noisy (stochastic) circadian clocks. Phase also serves as a critical control objective to correct mismatch between the biological clock and its environment. Thus, we introduce methods of investigating synchrony and entrainment in both stochastic and deterministic frameworks, and as a property of a single oscillator or population of coupled oscillators. PMID:18426774

  14. Evolutionary computing for the design search and optimization of space vehicle power subsystems

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Klimeck, Gerhard; Hanks, David; Hua, Hook

    2004-01-01

    Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment. Out preliminary results demonstrate that this approach has the potential to improve the space system trade study process by allowing engineers to statistically weight subsystem goals of mass, cost and performance then automatically size power elements based on anticipated performance of the subsystem rather than on worst-case estimates.

  15. Robustness analysis of bogie suspension components Pareto optimised values

    NASA Astrophysics Data System (ADS)

    Mousavi Bideleh, Seyed Milad

    2017-08-01

    Bogie suspension system of high speed trains can significantly affect vehicle performance. Multiobjective optimisation problems are often formulated and solved to find the Pareto optimised values of the suspension components and improve cost efficiency in railway operations from different perspectives. Uncertainties in the design parameters of suspension system can negatively influence the dynamics behaviour of railway vehicles. In this regard, robustness analysis of a bogie dynamics response with respect to uncertainties in the suspension design parameters is considered. A one-car railway vehicle model with 50 degrees of freedom and wear/comfort Pareto optimised values of bogie suspension components is chosen for the analysis. Longitudinal and lateral primary stiffnesses, longitudinal and vertical secondary stiffnesses, as well as yaw damping are considered as five design parameters. The effects of parameter uncertainties on wear, ride comfort, track shift force, stability, and risk of derailment are studied by varying the design parameters around their respective Pareto optimised values according to a lognormal distribution with different coefficient of variations (COVs). The robustness analysis is carried out based on the maximum entropy concept. The multiplicative dimensional reduction method is utilised to simplify the calculation of fractional moments and improve the computational efficiency. The results showed that the dynamics response of the vehicle with wear/comfort Pareto optimised values of bogie suspension is robust against uncertainties in the design parameters and the probability of failure is small for parameter uncertainties with COV up to 0.1.

  16. Robust Methods for Moderation Analysis with a Two-Level Regression Model.

    PubMed

    Yang, Miao; Yuan, Ke-Hai

    2016-01-01

    Moderation analysis has many applications in social sciences. Most widely used estimation methods for moderation analysis assume that errors are normally distributed and homoscedastic. When these assumptions are not met, the results from a classical moderation analysis can be misleading. For more reliable moderation analysis, this article proposes two robust methods with a two-level regression model when the predictors do not contain measurement error. One method is based on maximum likelihood with Student's t distribution and the other is based on M-estimators with Huber-type weights. An algorithm for obtaining the robust estimators is developed. Consistent estimates of standard errors of the robust estimators are provided. The robust approaches are compared against normal-distribution-based maximum likelihood (NML) with respect to power and accuracy of parameter estimates through a simulation study. Results show that the robust approaches outperform NML under various distributional conditions. Application of the robust methods is illustrated through a real data example. An R program is developed and documented to facilitate the application of the robust methods.

  17. Consequences of Assumption Violations Revisited: A Quantitative Review of Alternatives to the One-Way Analysis of Variance "F" Test.

    ERIC Educational Resources Information Center

    Lix, Lisa M.; And Others

    1996-01-01

    Meta-analytic techniques were used to summarize the statistical robustness literature on Type I error properties of alternatives to the one-way analysis of variance "F" test. The James (1951) and Welch (1951) tests performed best under violations of the variance homogeneity assumption, although their use is not always appropriate. (SLD)

  18. A Finite Mixture Method for Outlier Detection and Robustness in Meta-Analysis

    ERIC Educational Resources Information Center

    Beath, Ken J.

    2014-01-01

    When performing a meta-analysis unexplained variation above that predicted by within study variation is usually modeled by a random effect. However, in some cases, this is not sufficient to explain all the variation because of outlier or unusual studies. A previously described method is to define an outlier as a study requiring a higher random…

  19. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Ammazzalorso, F.; Bednarz, T.; Jelen, U.

    2014-03-01

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  20. Is the Speech Transmission Index (STI) a robust measure of sound system speech intelligibility performance?

    NASA Astrophysics Data System (ADS)

    Mapp, Peter

    2002-11-01

    Although RaSTI is a good indicator of the speech intelligibility capability of auditoria and similar spaces, during the past 2-3 years it has been shown that RaSTI is not a robust predictor of sound system intelligibility performance. Instead, it is now recommended, within both national and international codes and standards, that full STI measurement and analysis be employed. However, new research is reported, that indicates that STI is not as flawless, nor robust as many believe. The paper highlights a number of potential error mechanisms. It is shown that the measurement technique and signal excitation stimulus can have a significant effect on the overall result and accuracy, particularly where DSP-based equipment is employed. It is also shown that in its current state of development, STI is not capable of appropriately accounting for a number of fundamental speech and system attributes, including typical sound system frequency response variations and anomalies. This is particularly shown to be the case when a system is operating under reverberant conditions. Comparisons between actual system measurements and corresponding word score data are reported where errors of up to 50 implications for VA and PA system performance verification will be discussed.

  1. An effective content-based image retrieval technique for image visuals representation based on the bag-of-visual-words model

    PubMed Central

    Jabeen, Safia; Mehmood, Zahid; Mahmood, Toqeer; Saba, Tanzila; Rehman, Amjad; Mahmood, Muhammad Tariq

    2018-01-01

    For the last three decades, content-based image retrieval (CBIR) has been an active research area, representing a viable solution for retrieving similar images from an image repository. In this article, we propose a novel CBIR technique based on the visual words fusion of speeded-up robust features (SURF) and fast retina keypoint (FREAK) feature descriptors. SURF is a sparse descriptor whereas FREAK is a dense descriptor. Moreover, SURF is a scale and rotation-invariant descriptor that performs better in the case of repeatability, distinctiveness, and robustness. It is robust to noise, detection errors, geometric, and photometric deformations. It also performs better at low illumination within an image as compared to the FREAK descriptor. In contrast, FREAK is a retina-inspired speedy descriptor that performs better for classification-based problems as compared to the SURF descriptor. Experimental results show that the proposed technique based on the visual words fusion of SURF-FREAK descriptors combines the features of both descriptors and resolves the aforementioned issues. The qualitative and quantitative analysis performed on three image collections, namely Corel-1000, Corel-1500, and Caltech-256, shows that proposed technique based on visual words fusion significantly improved the performance of the CBIR as compared to the feature fusion of both descriptors and state-of-the-art image retrieval techniques. PMID:29694429

  2. An effective content-based image retrieval technique for image visuals representation based on the bag-of-visual-words model.

    PubMed

    Jabeen, Safia; Mehmood, Zahid; Mahmood, Toqeer; Saba, Tanzila; Rehman, Amjad; Mahmood, Muhammad Tariq

    2018-01-01

    For the last three decades, content-based image retrieval (CBIR) has been an active research area, representing a viable solution for retrieving similar images from an image repository. In this article, we propose a novel CBIR technique based on the visual words fusion of speeded-up robust features (SURF) and fast retina keypoint (FREAK) feature descriptors. SURF is a sparse descriptor whereas FREAK is a dense descriptor. Moreover, SURF is a scale and rotation-invariant descriptor that performs better in the case of repeatability, distinctiveness, and robustness. It is robust to noise, detection errors, geometric, and photometric deformations. It also performs better at low illumination within an image as compared to the FREAK descriptor. In contrast, FREAK is a retina-inspired speedy descriptor that performs better for classification-based problems as compared to the SURF descriptor. Experimental results show that the proposed technique based on the visual words fusion of SURF-FREAK descriptors combines the features of both descriptors and resolves the aforementioned issues. The qualitative and quantitative analysis performed on three image collections, namely Corel-1000, Corel-1500, and Caltech-256, shows that proposed technique based on visual words fusion significantly improved the performance of the CBIR as compared to the feature fusion of both descriptors and state-of-the-art image retrieval techniques.

  3. Assessing the Liquidity of Firms: Robust Neural Network Regression as an Alternative to the Current Ratio

    NASA Astrophysics Data System (ADS)

    de Andrés, Javier; Landajo, Manuel; Lorca, Pedro; Labra, Jose; Ordóñez, Patricia

    Artificial neural networks have proven to be useful tools for solving financial analysis problems such as financial distress prediction and audit risk assessment. In this paper we focus on the performance of robust (least absolute deviation-based) neural networks on measuring liquidity of firms. The problem of learning the bivariate relationship between the components (namely, current liabilities and current assets) of the so-called current ratio is analyzed, and the predictive performance of several modelling paradigms (namely, linear and log-linear regressions, classical ratios and neural networks) is compared. An empirical analysis is conducted on a representative data base from the Spanish economy. Results indicate that classical ratio models are largely inadequate as a realistic description of the studied relationship, especially when used for predictive purposes. In a number of cases, especially when the analyzed firms are microenterprises, the linear specification is improved by considering the flexible non-linear structures provided by neural networks.

  4. Microfluidic platform combining droplets and magnetic tweezers: application to HER2 expression in cancer diagnosis

    PubMed Central

    Ferraro, Davide; Champ, Jérôme; Teste, Bruno; Serra, Marco; Malaquin, Laurent; Viovy, Jean-Louis; de Cremoux, Patricia; Descroix, Stephanie

    2016-01-01

    The development of precision medicine, together with the multiplication of targeted therapies and associated molecular biomarkers, call for major progress in genetic analysis methods, allowing increased multiplexing and the implementation of more complex decision trees, without cost increase or loss of robustness. We present a platform combining droplet microfluidics and magnetic tweezers, performing RNA purification, reverse transcription and amplification in a fully automated and programmable way, in droplets of 250nL directly sampled from a microtiter-plate. This platform decreases sample consumption about 100 fold as compared to current robotized platforms and it reduces human manipulations and contamination risk. The platform’s performance was first evaluated on cell lines, showing robust operation on RNA quantities corresponding to less than one cell, and then clinically validated with a cohort of 21 breast cancer samples, for the determination of their HER2 expression status, in a blind comparison with an established routine clinical analysis. PMID:27157697

  5. Rare earth elements minimal harvest year variation facilitates robust geographical origin discrimination: The case of PDO "Fava Santorinis".

    PubMed

    Drivelos, Spiros A; Danezis, Georgios P; Haroutounian, Serkos A; Georgiou, Constantinos A

    2016-12-15

    This study examines the trace and rare earth elemental (REE) fingerprint variations of PDO (Protected Designation of Origin) "Fava Santorinis" over three consecutive harvesting years (2011-2013). Classification of samples in harvesting years was studied by performing discriminant analysis (DA), k nearest neighbours (κ-NN), partial least squares (PLS) analysis and probabilistic neural networks (PNN) using rare earth elements and trace metals determined using ICP-MS. DA performed better than κ-NN, producing 100% discrimination using trace elements and 79% using REEs. PLS was found to be superior to PNN, achieving 99% and 90% classification for trace and REEs, respectively, while PNN achieved 96% and 71% classification for trace and REEs, respectively. The information obtained using REEs did not enhance classification, indicating that REEs vary minimally per harvesting year, providing robust geographical origin discrimination. The results show that seasonal patterns can occur in the elemental composition of "Fava Santorinis", probably reflecting seasonality of climate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Microfluidic platform combining droplets and magnetic tweezers: application to HER2 expression in cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Ferraro, Davide; Champ, Jérôme; Teste, Bruno; Serra, Marco; Malaquin, Laurent; Viovy, Jean-Louis; de Cremoux, Patricia; Descroix, Stephanie

    2016-05-01

    The development of precision medicine, together with the multiplication of targeted therapies and associated molecular biomarkers, call for major progress in genetic analysis methods, allowing increased multiplexing and the implementation of more complex decision trees, without cost increase or loss of robustness. We present a platform combining droplet microfluidics and magnetic tweezers, performing RNA purification, reverse transcription and amplification in a fully automated and programmable way, in droplets of 250nL directly sampled from a microtiter-plate. This platform decreases sample consumption about 100 fold as compared to current robotized platforms and it reduces human manipulations and contamination risk. The platform’s performance was first evaluated on cell lines, showing robust operation on RNA quantities corresponding to less than one cell, and then clinically validated with a cohort of 21 breast cancer samples, for the determination of their HER2 expression status, in a blind comparison with an established routine clinical analysis.

  7. Computing by robust transience: How the fronto-parietal network performs sequential category-based decisions

    PubMed Central

    Chaisangmongkon, Warasinee; Swaminathan, Sruthi K.; Freedman, David J.; Wang, Xiao-Jing

    2017-01-01

    Summary Decision making involves dynamic interplay between internal judgements and external perception, which has been investigated in delayed match-to-category (DMC) experiments. Our analysis of neural recordings shows that, during DMC tasks, LIP and PFC neurons demonstrate mixed, time-varying, and heterogeneous selectivity, but previous theoretical work has not established the link between these neural characteristics and population-level computations. We trained a recurrent network model to perform DMC tasks and found that the model can remarkably reproduce key features of neuronal selectivity at the single-neuron and population levels. Analysis of the trained networks elucidates that robust transient trajectories of the neural population are the key driver of sequential categorical decisions. The directions of trajectories are governed by network self-organized connectivity, defining a ‘neural landscape’, consisting of a task-tailored arrangement of slow states and dynamical tunnels. With this model, we can identify functionally-relevant circuit motifs and generalize the framework to solve other categorization tasks. PMID:28334612

  8. Lean and Efficient Software: Whole-Program Optimization of Executables

    DTIC Science & Technology

    2015-09-30

    libraries. Many levels of library interfaces—where some libraries are dynamically linked and some are provided in binary form only—significantly limit...software at build time. The opportunity: Our objective in this project is to substantially improve the performance, size, and robustness of binary ...executables by using static and dynamic binary program analysis techniques to perform whole-program optimization directly on compiled programs

  9. Neural robust stabilization via event-triggering mechanism and adaptive learning technique.

    PubMed

    Wang, Ding; Liu, Derong

    2018-06-01

    The robust control synthesis of continuous-time nonlinear systems with uncertain term is investigated via event-triggering mechanism and adaptive critic learning technique. We mainly focus on combining the event-triggering mechanism with adaptive critic designs, so as to solve the nonlinear robust control problem. This can not only make better use of computation and communication resources, but also conduct controller design from the view of intelligent optimization. Through theoretical analysis, the nonlinear robust stabilization can be achieved by obtaining an event-triggered optimal control law of the nominal system with a newly defined cost function and a certain triggering condition. The adaptive critic technique is employed to facilitate the event-triggered control design, where a neural network is introduced as an approximator of the learning phase. The performance of the event-triggered robust control scheme is validated via simulation studies and comparisons. The present method extends the application domain of both event-triggered control and adaptive critic control to nonlinear systems possessing dynamical uncertainties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Robust and sparse correlation matrix estimation for the analysis of high-dimensional genomics data.

    PubMed

    Serra, Angela; Coretto, Pietro; Fratello, Michele; Tagliaferri, Roberto; Stegle, Oliver

    2018-02-15

    Microarray technology can be used to study the expression of thousands of genes across a number of different experimental conditions, usually hundreds. The underlying principle is that genes sharing similar expression patterns, across different samples, can be part of the same co-expression system, or they may share the same biological functions. Groups of genes are usually identified based on cluster analysis. Clustering methods rely on the similarity matrix between genes. A common choice to measure similarity is to compute the sample correlation matrix. Dimensionality reduction is another popular data analysis task which is also based on covariance/correlation matrix estimates. Unfortunately, covariance/correlation matrix estimation suffers from the intrinsic noise present in high-dimensional data. Sources of noise are: sampling variations, presents of outlying sample units, and the fact that in most cases the number of units is much larger than the number of genes. In this paper, we propose a robust correlation matrix estimator that is regularized based on adaptive thresholding. The resulting method jointly tames the effects of the high-dimensionality, and data contamination. Computations are easy to implement and do not require hand tunings. Both simulated and real data are analyzed. A Monte Carlo experiment shows that the proposed method is capable of remarkable performances. Our correlation metric is more robust to outliers compared with the existing alternatives in two gene expression datasets. It is also shown how the regularization allows to automatically detect and filter spurious correlations. The same regularization is also extended to other less robust correlation measures. Finally, we apply the ARACNE algorithm on the SyNTreN gene expression data. Sensitivity and specificity of the reconstructed network is compared with the gold standard. We show that ARACNE performs better when it takes the proposed correlation matrix estimator as input. The R software is available at https://github.com/angy89/RobustSparseCorrelation. aserra@unisa.it or robtag@unisa.it. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  11. Formulation of an integrated robust design and tactics optimization process for undersea weapon systems

    NASA Astrophysics Data System (ADS)

    Frits, Andrew P.

    In the current Navy environment of undersea weapons development, the engineering aspect of design is decoupled from the development of the tactics with which the weapon is employed. Tactics are developed by intelligence experts, warfighters, and wargamers, while torpedo design is handled by engineers and contractors. This dissertation examines methods by which the conceptual design process of undersea weapon systems, including both torpedo systems and mine counter-measure systems, can be improved. It is shown that by simultaneously designing the torpedo and the tactics with which undersea weapons are used, a more effective overall weapon system can be created. In addition to integrating torpedo tactics with design, the thesis also looks at design methods to account for uncertainty. The uncertainty is attributable to multiple sources, including: lack of detailed analysis tools early in the design process, incomplete knowledge of the operational environments, and uncertainty in the performance of potential technologies. A robust design process is introduced to account for this uncertainty in the analysis and optimization of torpedo systems through the combination of Monte Carlo simulation with response surface methodology and metamodeling techniques. Additionally, various other methods that are appropriate to uncertainty analysis are discussed and analyzed. The thesis also advances a new approach towards examining robustness and risk: the treatment of probability of success (POS) as an independent variable. Examining the cost and performance tradeoffs between high and low probability of success designs, the decision-maker can make better informed decisions as to what designs are most promising and determine the optimal balance of risk, cost, and performance. Finally, the thesis examines the use of non-dimensionalization of parameters for torpedo design. The thesis shows that the use of non-dimensional torpedo parameters leads to increased knowledge about the scaleability of torpedo systems and increased performance of Designs of Experiments.

  12. Factors influencing the robustness of P-value measurements in CT texture prognosis studies

    NASA Astrophysics Data System (ADS)

    McQuaid, Sarah; Scuffham, James; Alobaidli, Sheaka; Prakash, Vineet; Ezhil, Veni; Nisbet, Andrew; South, Christopher; Evans, Philip

    2017-07-01

    Several studies have recently reported on the value of CT texture analysis in predicting survival, although the topic remains controversial, with further validation needed in order to consolidate the evidence base. The aim of this study was to investigate the effect of varying the input parameters in the Kaplan-Meier analysis, to determine whether the resulting P-value can be considered to be a robust indicator of the parameter’s prognostic potential. A retrospective analysis of the CT-based normalised entropy of 51 patients with lung cancer was performed and overall survival data for these patients were collected. A normalised entropy cut-off was chosen to split the patient cohort into two groups and log-rank testing was performed to assess the survival difference of the two groups. This was repeated for varying normalised entropy cut-offs and varying follow-up periods. Our findings were also compared with previously published results to assess robustness of this parameter in a multi-centre patient cohort. The P-value was found to be highly sensitive to the choice of cut-off value, with small changes in cut-off producing substantial changes in P. The P-value was also sensitive to follow-up period, with particularly noisy results at short follow-up periods. Using matched conditions to previously published results, a P-value of 0.162 was obtained. Survival analysis results can be highly sensitive to the choice in texture cut-off value in dichotomising patients, which should be taken into account when performing such studies to avoid reporting false positive results. Short follow-up periods also produce unstable results and should therefore be avoided to ensure the results produced are reproducible. Previously published findings that indicated the prognostic value of normalised entropy were not replicated here, but further studies with larger patient numbers would be required to determine the cause of the different outcomes.

  13. Development of An Intelligent Flight Propulsion Control System

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Rysdyk, R. T.; Leonhardt, B. K.

    1999-01-01

    The initial design and demonstration of an Intelligent Flight Propulsion and Control System (IFPCS) is documented. The design is based on the implementation of a nonlinear adaptive flight control architecture. This initial design of the IFPCS enhances flight safety by using propulsion sources to provide redundancy in flight control. The IFPCS enhances the conventional gain scheduled approach in significant ways: (1) The IFPCS provides a back up flight control system that results in consistent responses over a wide range of unanticipated failures. (2) The IFPCS is applicable to a variety of aircraft models without redesign and,(3) significantly reduces the laborious research and design necessary in a gain scheduled approach. The control augmentation is detailed within an approximate Input-Output Linearization setting. The availability of propulsion only provides two control inputs, symmetric and differential thrust. Earlier Propulsion Control Augmentation (PCA) work performed by NASA provided for a trajectory controller with pilot command input of glidepath and heading. This work is aimed at demonstrating the flexibility of the IFPCS in providing consistency in flying qualities under a variety of failure scenarios. This report documents the initial design phase where propulsion only is used. Results confirm that the engine dynamics and associated hard nonlineaaities result in poor handling qualities at best. However, as demonstrated in simulation, the IFPCS is capable of results similar to the gain scheduled designs of the NASA PCA work. The IFPCS design uses crude estimates of aircraft behaviour. The adaptive control architecture demonstrates robust stability and provides robust performance. In this work, robust stability means that all states, errors, and adaptive parameters remain bounded under a wide class of uncertainties and input and output disturbances. Robust performance is measured in the quality of the tracking. The results demonstrate the flexibility of the IFPCS architecture and the ability to provide robust performance under a broad range of uncertainty. Robust stability is proved using Lyapunov like analysis. Future development of the IFPCS will include integration of conventional control surfaces with the use of propulsion augmentation, and utilization of available lift and drag devices, to demonstrate adaptive control capability under a greater variety of failure scenarios. Further work will specifically address the effects of actuator saturation.

  14. Free wake analysis of hover performance using a new influence coefficient method

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.; Ong, Ching Cho; Ching, Cho Ong

    1990-01-01

    A new approach to the prediction of helicopter rotor performance using a free wake analysis was developed. This new method uses a relaxation process that does not suffer from the convergence problems associated with previous time marching simulations. This wake relaxation procedure was coupled to a vortex-lattice, lifting surface loads analysis to produce a novel, self contained performance prediction code: EHPIC (Evaluation of Helicopter Performance using Influence Coefficients). The major technical features of the EHPIC code are described and a substantial amount of background information on the capabilities and proper operation of the code is supplied. Sample problems were undertaken to demonstrate the robustness and flexibility of the basic approach. Also, a performance correlation study was carried out to establish the breadth of applicability of the code, with very favorable results.

  15. Reliability- and performance-based robust design optimization of MEMS structures considering technological uncertainties

    NASA Astrophysics Data System (ADS)

    Martowicz, Adam; Uhl, Tadeusz

    2012-10-01

    The paper discusses the applicability of a reliability- and performance-based multi-criteria robust design optimization technique for micro-electromechanical systems, considering their technological uncertainties. Nowadays, micro-devices are commonly applied systems, especially in the automotive industry, taking advantage of utilizing both the mechanical structure and electronic control circuit on one board. Their frequent use motivates the elaboration of virtual prototyping tools that can be applied in design optimization with the introduction of technological uncertainties and reliability. The authors present a procedure for the optimization of micro-devices, which is based on the theory of reliability-based robust design optimization. This takes into consideration the performance of a micro-device and its reliability assessed by means of uncertainty analysis. The procedure assumes that, for each checked design configuration, the assessment of uncertainty propagation is performed with the meta-modeling technique. The described procedure is illustrated with an example of the optimization carried out for a finite element model of a micro-mirror. The multi-physics approach allowed the introduction of several physical phenomena to correctly model the electrostatic actuation and the squeezing effect present between electrodes. The optimization was preceded by sensitivity analysis to establish the design and uncertain domains. The genetic algorithms fulfilled the defined optimization task effectively. The best discovered individuals are characterized by a minimized value of the multi-criteria objective function, simultaneously satisfying the constraint on material strength. The restriction of the maximum equivalent stresses was introduced with the conditionally formulated objective function with a penalty component. The yielded results were successfully verified with a global uniform search through the input design domain.

  16. Self-synchronization for spread spectrum audio watermarks after time scale modification

    NASA Astrophysics Data System (ADS)

    Nadeau, Andrew; Sharma, Gaurav

    2014-02-01

    De-synchronizing operations such as insertion, deletion, and warping pose significant challenges for watermarking. Because these operations are not typical for classical communications, watermarking techniques such as spread spectrum can perform poorly. Conversely, specialized synchronization solutions can be challenging to analyze/ optimize. This paper addresses desynchronization for blind spread spectrum watermarks, detected without reference to any unmodified signal, using the robustness properties of short blocks. Synchronization relies on dynamic time warping to search over block alignments to find a sequence with maximum correlation to the watermark. This differs from synchronization schemes that must first locate invariant features of the original signal, or estimate and reverse desynchronization before detection. Without these extra synchronization steps, analysis for the proposed scheme builds on classical SS concepts and allows characterizes the relationship between the size of search space (number of detection alignment tests) and intrinsic robustness (continuous search space region covered by each individual detection test). The critical metrics that determine the search space, robustness, and performance are: time-frequency resolution of the watermarking transform, and blocklength resolution of the alignment. Simultaneous robustness to (a) MP3 compression, (b) insertion/deletion, and (c) time-scale modification is also demonstrated for a practical audio watermarking scheme developed in the proposed framework.

  17. Automated robust registration of grossly misregistered whole-slide images with varying stains

    NASA Astrophysics Data System (ADS)

    Litjens, G.; Safferling, K.; Grabe, N.

    2016-03-01

    Cancer diagnosis and pharmaceutical research increasingly depend on the accurate quantification of cancer biomarkers. Identification of biomarkers is usually performed through immunohistochemical staining of cancer sections on glass slides. However, combination of multiple biomarkers from a wide variety of immunohistochemically stained slides is a tedious process in traditional histopathology due to the switching of glass slides and re-identification of regions of interest by pathologists. Digital pathology now allows us to apply image registration algorithms to digitized whole-slides to align the differing immunohistochemical stains automatically. However, registration algorithms need to be robust to changes in color due to differing stains and severe changes in tissue content between slides. In this work we developed a robust registration methodology to allow for fast coarse alignment of multiple immunohistochemical stains to the base hematyoxylin and eosin stained image. We applied HSD color model conversion to obtain a less stain color dependent representation of the whole-slide images. Subsequently, optical density thresholding and connected component analysis were used to identify the relevant regions for registration. Template matching using normalized mutual information was applied to provide initial translation and rotation parameters, after which a cost function-driven affine registration was performed. The algorithm was validated using 40 slides from 10 prostate cancer patients, with landmark registration error as a metric. Median landmark registration error was around 180 microns, which indicates performance is adequate for practical application. None of the registrations failed, indicating the robustness of the algorithm.

  18. Robust control of flexible space vehicles with minimum structural excitation: On-off pulse control of flexible space vehicles

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Liu, Qiang

    1992-01-01

    Both feedback and feedforward control approaches for uncertain dynamical systems (in particular, with uncertainty in structural mode frequency) are investigated. The control objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant uncertainty. Preshaping of an ideal, time optimal control input using a tapped-delay filter is shown to provide a fast settling time with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. It is shown that a properly designed, feedback controller performs well, as compared with a time optimal open loop controller with special preshaping for performance robustness. Also included are two separate papers by the same authors on this subject.

  19. Generalized internal model robust control for active front steering intervention

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Zhao, Youqun; Ji, Xuewu; Liu, Yahui; Zhang, Lipeng

    2015-03-01

    Because of the tire nonlinearity and vehicle's parameters' uncertainties, robust control methods based on the worst cases, such as H ∞, µ synthesis, have been widely used in active front steering control, however, in order to guarantee the stability of active front steering system (AFS) controller, the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control. In this paper, a generalized internal model robust control (GIMC) that can overcome the contradiction between performance and stability is used in the AFS control. In GIMC, the Youla parameterization is used in an improved way. And GIMC controller includes two sections: a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters' uncertainties and some external disturbances. Simulations of double lane change (DLC) maneuver and that of braking on split- µ road are conducted to compare the performance and stability of the GIMC control, the nominal performance PID controller and the H ∞ controller. Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations, H ∞ controller is conservative so that the performance is a little low, and only the GIMC controller overcomes the contradiction between performance and robustness, which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller. Therefore, the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system, that is, can solve the instability of PID or LQP control methods and the low performance of the standard H ∞ controller.

  20. Robust and accurate vectorization of line drawings.

    PubMed

    Hilaire, Xavier; Tombre, Karl

    2006-06-01

    This paper presents a method for vectorizing the graphical parts of paper-based line drawings. The method consists of separating the input binary image into layers of homogeneous thickness, skeletonizing each layer, segmenting the skeleton by a method based on random sampling, and simplifying the result. The segmentation method is robust with a best bound of 50 percent noise reached for indefinitely long primitives. Accurate estimation of the recognized vector's parameters is enabled by explicitly computing their feasibility domains. Theoretical performance analysis and expression of the complexity of the segmentation method are derived. Experimental results and comparisons with other vectorization systems are also provided.

  1. Robust crossfeed design for hovering rotorcraft. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Catapang, David R.

    1993-01-01

    Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust.' A new low-order matching method is presented here to design robost crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw, and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily-used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.

  2. Integration of Off-Track Sonic Boom Analysis in Conceptual Design of Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu

    2011-01-01

    A highly desired capability for the conceptual design of aircraft is the ability to rapidly and accurately evaluate new concepts to avoid adverse trade decisions that may hinder the development process in the later stages of design. Evaluating the robustness of new low-boom concepts is important for the conceptual design of supersonic aircraft. Here, robustness means that the aircraft configuration has a low-boom ground signature at both under- and off-track locations. An integrated process for off-track boom analysis is developed to facilitate the design of robust low-boom supersonic aircraft. The integrated off-track analysis can also be used to study the sonic boom impact and to plan future flight trajectories where flight conditions and ground elevation might have a significant effect on ground signatures. The key enabler for off-track sonic boom analysis is accurate computational fluid dynamics (CFD) solutions for off-body pressure distributions. To ensure the numerical accuracy of the off-body pressure distributions, a mesh study is performed with Cart3D to determine the mesh requirements for off- body CFD analysis and comparisons are made between the Cart3D and USM3D results. The variations in ground signatures that result from changes in the initial location of the near-field waveform are also examined. Finally, a complete under- and off-track sonic boom analysis is presented for two distinct supersonic concepts to demonstrate the capability of the integrated analysis process.

  3. Order Under Uncertainty: Robust Differential Expression Analysis Using Probabilistic Models for Pseudotime Inference

    PubMed Central

    Campbell, Kieran R.

    2016-01-01

    Single cell gene expression profiling can be used to quantify transcriptional dynamics in temporal processes, such as cell differentiation, using computational methods to label each cell with a ‘pseudotime’ where true time series experimentation is too difficult to perform. However, owing to the high variability in gene expression between individual cells, there is an inherent uncertainty in the precise temporal ordering of the cells. Pre-existing methods for pseudotime estimation have predominantly given point estimates precluding a rigorous analysis of the implications of uncertainty. We use probabilistic modelling techniques to quantify pseudotime uncertainty and propagate this into downstream differential expression analysis. We demonstrate that reliance on a point estimate of pseudotime can lead to inflated false discovery rates and that probabilistic approaches provide greater robustness and measures of the temporal resolution that can be obtained from pseudotime inference. PMID:27870852

  4. Stochastic Simulation Tool for Aerospace Structural Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F.; Moore, David F.

    2006-01-01

    Stochastic simulation refers to incorporating the effects of design tolerances and uncertainties into the design analysis model and then determining their influence on the design. A high-level evaluation of one such stochastic simulation tool, the MSC.Robust Design tool by MSC.Software Corporation, has been conducted. This stochastic simulation tool provides structural analysts with a tool to interrogate their structural design based on their mathematical description of the design problem using finite element analysis methods. This tool leverages the analyst's prior investment in finite element model development of a particular design. The original finite element model is treated as the baseline structural analysis model for the stochastic simulations that are to be performed. A Monte Carlo approach is used by MSC.Robust Design to determine the effects of scatter in design input variables on response output parameters. The tool was not designed to provide a probabilistic assessment, but to assist engineers in understanding cause and effect. It is driven by a graphical-user interface and retains the engineer-in-the-loop strategy for design evaluation and improvement. The application problem for the evaluation is chosen to be a two-dimensional shell finite element model of a Space Shuttle wing leading-edge panel under re-entry aerodynamic loading. MSC.Robust Design adds value to the analysis effort by rapidly being able to identify design input variables whose variability causes the most influence in response output parameters.

  5. Adaptive integral robust control and application to electromechanical servo systems.

    PubMed

    Deng, Wenxiang; Yao, Jianyong

    2017-03-01

    This paper proposes a continuous adaptive integral robust control with robust integral of the sign of the error (RISE) feedback for a class of uncertain nonlinear systems, in which the RISE feedback gain is adapted online to ensure the robustness against disturbances without the prior bound knowledge of the additive disturbances. In addition, an adaptive compensation integrated with the proposed adaptive RISE feedback term is also constructed to further reduce design conservatism when the system also exists parametric uncertainties. Lyapunov analysis reveals the proposed controllers could guarantee the tracking errors are asymptotically converging to zero with continuous control efforts. To illustrate the high performance nature of the developed controllers, numerical simulations are provided. At the end, an application case of an actual electromechanical servo system driven by motor is also studied, with some specific design consideration, and comparative experimental results are obtained to verify the effectiveness of the proposed controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Stochastic Control Synthesis of Systems with Structured Uncertainty

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L. (Technical Monitor); Crespo, Luis G.

    2003-01-01

    This paper presents a study on the design of robust controllers by using random variables to model structured uncertainty for both SISO and MIMO feedback systems. Once the parameter uncertainty is prescribed with probability density functions, its effects are propagated through the analysis leading to stochastic metrics for the system's output. Control designs that aim for satisfactory performances while guaranteeing robust closed loop stability are attained by solving constrained non-linear optimization problems in the frequency domain. This approach permits not only to quantify the probability of having unstable and unfavorable responses for a particular control design but also to search for controls while favoring the values of the parameters with higher chance of occurrence. In this manner, robust optimality is achieved while the characteristic conservatism of conventional robust control methods is eliminated. Examples that admit closed form expressions for the probabilistic metrics of the output are used to elucidate the nature of the problem at hand and validate the proposed formulations.

  7. Robust Frequency-Domain Constrained Feedback Design via a Two-Stage Heuristic Approach.

    PubMed

    Li, Xianwei; Gao, Huijun

    2015-10-01

    Based on a two-stage heuristic method, this paper is concerned with the design of robust feedback controllers with restricted frequency-domain specifications (RFDSs) for uncertain linear discrete-time systems. Polytopic uncertainties are assumed to enter all the system matrices, while RFDSs are motivated by the fact that practical design specifications are often described in restricted finite frequency ranges. Dilated multipliers are first introduced to relax the generalized Kalman-Yakubovich-Popov lemma for output feedback controller synthesis and robust performance analysis. Then a two-stage approach to output feedback controller synthesis is proposed: at the first stage, a robust full-information (FI) controller is designed, which is used to construct a required output feedback controller at the second stage. To improve the solvability of the synthesis method, heuristic iterative algorithms are further formulated for exploring the feedback gain and optimizing the initial FI controller at the individual stage. The effectiveness of the proposed design method is finally demonstrated by the application to active control of suspension systems.

  8. Exploiting structure: Introduction and motivation

    NASA Technical Reports Server (NTRS)

    Xu, Zhong Ling

    1993-01-01

    Research activities performed during the period of 29 June 1993 through 31 Aug. 1993 are summarized. The Robust Stability of Systems where transfer function or characteristic polynomial are multilinear affine functions of parameters of interest in two directions, Algorithmic and Theoretical, was developed. In the algorithmic direction, a new approach that reduces the computational burden of checking the robust stability of the system with multilinear uncertainty is found. This technique is called 'Stability by linear process.' In fact, the 'Stability by linear process' described gives an algorithm. In analysis, we obtained a robustness criterion for the family of polynomials with coefficients of multilinear affine function in the coefficient space and obtained the result for the robust stability of diamond families of polynomials with complex coefficients also. We obtained the limited results for SPR design and we provide a framework for solving ACS. Finally, copies of the outline of our results are provided in the appendix. Also, there is an administration issue in the appendix.

  9. Optimal strategy analysis based on robust predictive control for inventory system with random demand

    NASA Astrophysics Data System (ADS)

    Saputra, Aditya; Widowati, Sutrisno

    2017-12-01

    In this paper, the optimal strategy for a single product single supplier inventory system with random demand is analyzed by using robust predictive control with additive random parameter. We formulate the dynamical system of this system as a linear state space with additive random parameter. To determine and analyze the optimal strategy for the given inventory system, we use robust predictive control approach which gives the optimal strategy i.e. the optimal product volume that should be purchased from the supplier for each time period so that the expected cost is minimal. A numerical simulation is performed with some generated random inventory data. We simulate in MATLAB software where the inventory level must be controlled as close as possible to a set point decided by us. From the results, robust predictive control model provides the optimal strategy i.e. the optimal product volume that should be purchased and the inventory level was followed the given set point.

  10. Statistical analysis of RHIC beam position monitors performance

    NASA Astrophysics Data System (ADS)

    Calaga, R.; Tomás, R.

    2004-04-01

    A detailed statistical analysis of beam position monitors (BPM) performance at RHIC is a critical factor in improving regular operations and future runs. Robust identification of malfunctioning BPMs plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition and Fourier transform methods, which have evolved as powerful numerical techniques in signal processing, will aid in such identification from BPM data. This is the first attempt at RHIC to use a large set of data to statistically enhance the capability of these two techniques and determine BPM performance. A comparison from run 2003 data shows striking agreement between the two methods and hence can be used to improve BPM functioning at RHIC and possibly other accelerators.

  11. Feedforward/feedback control synthesis for performance and robustness

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Liu, Qiang

    1990-01-01

    Both feedforward and feedback control approaches for uncertain dynamical systems are investigated. The control design objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant modeling uncertainty. Preshapong of an ideal, time-optimal control input using a 'tapped-delay' filter is shown to provide a rapid maneuver with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. The proposed feedforward/feedback control approach is robust for a certain class of uncertain dynamical systems, since the control input command computed for a given desired output does not depend on the plant parameters.

  12. Deep and Structured Robust Information Theoretic Learning for Image Analysis.

    PubMed

    Deng, Yue; Bao, Feng; Deng, Xuesong; Wang, Ruiping; Kong, Youyong; Dai, Qionghai

    2016-07-07

    This paper presents a robust information theoretic (RIT) model to reduce the uncertainties, i.e. missing and noisy labels, in general discriminative data representation tasks. The fundamental pursuit of our model is to simultaneously learn a transformation function and a discriminative classifier that maximize the mutual information of data and their labels in the latent space. In this general paradigm, we respectively discuss three types of the RIT implementations with linear subspace embedding, deep transformation and structured sparse learning. In practice, the RIT and deep RIT are exploited to solve the image categorization task whose performances will be verified on various benchmark datasets. The structured sparse RIT is further applied to a medical image analysis task for brain MRI segmentation that allows group-level feature selections on the brain tissues.

  13. Thermodynamic limitations on the temperature sensitivity of cell-membrane ion channels: Trouble with enthalpy uncertainty

    NASA Astrophysics Data System (ADS)

    Zheltikov, A. M.

    2018-06-01

    Energy exchange between a thermodynamic ensemble of heat- and cold-activated cell-membrane ion channels and the surrounding heat reservoir is shown to impose fundamental limitations on the performance of such channels as temperature-controlled gates for thermal cell activation. Analysis of unavoidable thermodynamic internal-energy fluctuations caused by energy exchange between the ion channels and the heat bath suggests that the resulting enthalpy uncertainty is too high for a robust ion-current gating by a single ion channel, implying that large ensembles of ion channels are needed for thermal cell activation. We argue, based on this thermodynamic analysis, that, had thermosensitive cell-membrane ion channels operated individually, rather than as large ensembles, robust thermal cell activation would have been impossible because of thermodynamic fluctuations.

  14. Illumination robust face recognition using spatial adaptive shadow compensation based on face intensity prior

    NASA Astrophysics Data System (ADS)

    Hsieh, Cheng-Ta; Huang, Kae-Horng; Lee, Chang-Hsing; Han, Chin-Chuan; Fan, Kuo-Chin

    2017-12-01

    Robust face recognition under illumination variations is an important and challenging task in a face recognition system, particularly for face recognition in the wild. In this paper, a face image preprocessing approach, called spatial adaptive shadow compensation (SASC), is proposed to eliminate shadows in the face image due to different lighting directions. First, spatial adaptive histogram equalization (SAHE), which uses face intensity prior model, is proposed to enhance the contrast of each local face region without generating visible noises in smooth face areas. Adaptive shadow compensation (ASC), which performs shadow compensation in each local image block, is then used to produce a wellcompensated face image appropriate for face feature extraction and recognition. Finally, null-space linear discriminant analysis (NLDA) is employed to extract discriminant features from SASC compensated images. Experiments performed on the Yale B, Yale B extended, and CMU PIE face databases have shown that the proposed SASC always yields the best face recognition accuracy. That is, SASC is more robust to face recognition under illumination variations than other shadow compensation approaches.

  15. Robust Detection of Examinees with Aberrant Answer Changes

    ERIC Educational Resources Information Center

    Belov, Dmitry I.

    2015-01-01

    The statistical analysis of answer changes (ACs) has uncovered multiple testing irregularities on large-scale assessments and is now routinely performed at testing organizations. However, AC data has an uncertainty caused by technological or human factors. Therefore, existing statistics (e.g., number of wrong-to-right ACs) used to detect examinees…

  16. The Cluster Sensitivity Index: A Basic Measure of Classification Robustness

    ERIC Educational Resources Information Center

    Hom, Willard C.

    2010-01-01

    Analysts of institutional performance have occasionally used a peer grouping approach in which they compared institutions only to other institutions with similar characteristics. Because analysts historically have used cluster analysis to define peer groups (i.e., the group of comparable institutions), the author proposes and demonstrates with…

  17. Robust Control for Microgravity Vibration Isolation using Fixed Order, Mixed H2/Mu Design

    NASA Technical Reports Server (NTRS)

    Whorton, Mark

    2003-01-01

    Many space-science experiments need an active isolation system to provide a sufficiently quiescent microgravity environment. Modern control methods provide the potential for both high-performance and robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H(infinity) methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/H(infinity), controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure, for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared.

  18. Analysis of gene network robustness based on saturated fixed point attractors

    PubMed Central

    2014-01-01

    The analysis of gene network robustness to noise and mutation is important for fundamental and practical reasons. Robustness refers to the stability of the equilibrium expression state of a gene network to variations of the initial expression state and network topology. Numerical simulation of these variations is commonly used for the assessment of robustness. Since there exists a great number of possible gene network topologies and initial states, even millions of simulations may be still too small to give reliable results. When the initial and equilibrium expression states are restricted to being saturated (i.e., their elements can only take values 1 or −1 corresponding to maximum activation and maximum repression of genes), an analytical gene network robustness assessment is possible. We present this analytical treatment based on determination of the saturated fixed point attractors for sigmoidal function models. The analysis can determine (a) for a given network, which and how many saturated equilibrium states exist and which and how many saturated initial states converge to each of these saturated equilibrium states and (b) for a given saturated equilibrium state or a given pair of saturated equilibrium and initial states, which and how many gene networks, referred to as viable, share this saturated equilibrium state or the pair of saturated equilibrium and initial states. We also show that the viable networks sharing a given saturated equilibrium state must follow certain patterns. These capabilities of the analytical treatment make it possible to properly define and accurately determine robustness to noise and mutation for gene networks. Previous network research conclusions drawn from performing millions of simulations follow directly from the results of our analytical treatment. Furthermore, the analytical results provide criteria for the identification of model validity and suggest modified models of gene network dynamics. The yeast cell-cycle network is used as an illustration of the practical application of this analytical treatment. PMID:24650364

  19. THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures

    PubMed Central

    Theobald, Douglas L.; Wuttke, Deborah S.

    2008-01-01

    Summary THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. PMID:16777907

  20. Robust control of systems with real parameter uncertainty and unmodelled dynamics

    NASA Technical Reports Server (NTRS)

    Chang, Bor-Chin; Fischl, Robert

    1991-01-01

    During this research period we have made significant progress in the four proposed areas: (1) design of robust controllers via H infinity optimization; (2) design of robust controllers via mixed H2/H infinity optimization; (3) M-delta structure and robust stability analysis for structured uncertainties; and (4) a study on controllability and observability of perturbed plant. It is well known now that the two-Riccati-equation solution to the H infinity control problem can be used to characterize all possible stabilizing optimal or suboptimal H infinity controllers if the optimal H infinity norm or gamma, an upper bound of a suboptimal H infinity norm, is given. In this research, we discovered some useful properties of these H infinity Riccati solutions. Among them, the most prominent one is that the spectral radius of the product of these two Riccati solutions is a continuous, nonincreasing, convex function of gamma in the domain of interest. Based on these properties, quadratically convergent algorithms are developed to compute the optimal H infinity norm. We also set up a detailed procedure for applying the H infinity theory to robust control systems design. The desire to design controllers with H infinity robustness but H(exp 2) performance has recently resulted in mixed H(exp 2) and H infinity control problem formulation. The mixed H(exp 2)/H infinity problem have drawn the attention of many investigators. However, solution is only available for special cases of this problem. We formulated a relatively realistic control problem with H(exp 2) performance index and H infinity robustness constraint into a more general mixed H(exp 2)/H infinity problem. No optimal solution yet is available for this more general mixed H(exp 2)/H infinity problem. Although the optimal solution for this mixed H(exp 2)/H infinity control has not yet been found, we proposed a design approach which can be used through proper choice of the available design parameters to influence both robustness and performance. For a large class of linear time-invariant systems with real parametric perturbations, the coefficient vector of the characteristic polynomial is a multilinear function of the real parameter vector. Based on this multilinear mapping relationship together with the recent developments for polytopic polynomials and parameter domain partition technique, we proposed an iterative algorithm for coupling the real structured singular value.

  1. Comparative analysis of different weight matrices in subspace system identification for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Shokravi, H.; Bakhary, NH

    2017-11-01

    Subspace System Identification (SSI) is considered as one of the most reliable tools for identification of system parameters. Performance of a SSI scheme is considerably affected by the structure of the associated identification algorithm. Weight matrix is a variable in SSI that is used to reduce the dimensionality of the state-space equation. Generally one of the weight matrices of Principle Component (PC), Unweighted Principle Component (UPC) and Canonical Variate Analysis (CVA) are used in the structure of a SSI algorithm. An increasing number of studies in the field of structural health monitoring are using SSI for damage identification. However, studies that evaluate the performance of the weight matrices particularly in association with accuracy, noise resistance, and time complexity properties are very limited. In this study, the accuracy, noise-robustness, and time-efficiency of the weight matrices are compared using different qualitative and quantitative metrics. Three evaluation metrics of pole analysis, fit values and elapsed time are used in the assessment process. A numerical model of a mass-spring-dashpot and operational data is used in this research paper. It is observed that the principal components obtained using PC algorithms are more robust against noise uncertainty and give more stable results for the pole distribution. Furthermore, higher estimation accuracy is achieved using UPC algorithm. CVA had the worst performance for pole analysis and time efficiency analysis. The superior performance of the UPC algorithm in the elapsed time is attributed to using unit weight matrices. The obtained results demonstrated that the process of reducing dimensionality in CVA and PC has not enhanced the time efficiency but yield an improved modal identification in PC.

  2. A probabilistic approach to aircraft design emphasizing stability and control uncertainties

    NASA Astrophysics Data System (ADS)

    Delaurentis, Daniel Andrew

    In order to address identified deficiencies in current approaches to aerospace systems design, a new method has been developed. This new method for design is based on the premise that design is a decision making activity, and that deterministic analysis and synthesis can lead to poor, or misguided decision making. This is due to a lack of disciplinary knowledge of sufficient fidelity about the product, to the presence of uncertainty at multiple levels of the aircraft design hierarchy, and to a failure to focus on overall affordability metrics as measures of goodness. Design solutions are desired which are robust to uncertainty and are based on the maximum knowledge possible. The new method represents advances in the two following general areas. 1. Design models and uncertainty. The research performed completes a transition from a deterministic design representation to a probabilistic one through a modeling of design uncertainty at multiple levels of the aircraft design hierarchy, including: (1) Consistent, traceable uncertainty classification and representation; (2) Concise mathematical statement of the Probabilistic Robust Design problem; (3) Variants of the Cumulative Distribution Functions (CDFs) as decision functions for Robust Design; (4) Probabilistic Sensitivities which identify the most influential sources of variability. 2. Multidisciplinary analysis and design. Imbedded in the probabilistic methodology is a new approach for multidisciplinary design analysis and optimization (MDA/O), employing disciplinary analysis approximations formed through statistical experimentation and regression. These approximation models are a function of design variables common to the system level as well as other disciplines. For aircraft, it is proposed that synthesis/sizing is the proper avenue for integrating multiple disciplines. Research hypotheses are translated into a structured method, which is subsequently tested for validity. Specifically, the implementation involves the study of the relaxed static stability technology for a supersonic commercial transport aircraft. The probabilistic robust design method is exercised resulting in a series of robust design solutions based on different interpretations of "robustness". Insightful results are obtained and the ability of the method to expose trends in the design space are noted as a key advantage.

  3. Robust Planning for Effects-Based Operations

    DTIC Science & Technology

    2006-06-01

    Algorithm ......................................... 34 2.6 Robust Optimization Literature ..................................... 36 2.6.1 Protecting Against...Model Formulation ...................... 55 3.1.5 Deterministic EBO Model Example and Performance ............. 59 3.1.6 Greedy Algorithm ...111 4.1.9 Conclusions on Robust EBO Model Performance .................... 116 4.2 Greedy Algorithm versus EBO Models

  4. A framework for sensitivity analysis of decision trees.

    PubMed

    Kamiński, Bogumił; Jakubczyk, Michał; Szufel, Przemysław

    2018-01-01

    In the paper, we consider sequential decision problems with uncertainty, represented as decision trees. Sensitivity analysis is always a crucial element of decision making and in decision trees it often focuses on probabilities. In the stochastic model considered, the user often has only limited information about the true values of probabilities. We develop a framework for performing sensitivity analysis of optimal strategies accounting for this distributional uncertainty. We design this robust optimization approach in an intuitive and not overly technical way, to make it simple to apply in daily managerial practice. The proposed framework allows for (1) analysis of the stability of the expected-value-maximizing strategy and (2) identification of strategies which are robust with respect to pessimistic/optimistic/mode-favoring perturbations of probabilities. We verify the properties of our approach in two cases: (a) probabilities in a tree are the primitives of the model and can be modified independently; (b) probabilities in a tree reflect some underlying, structural probabilities, and are interrelated. We provide a free software tool implementing the methods described.

  5. A new robust adaptive controller for vibration control of active engine mount subjected to large uncertainties

    NASA Astrophysics Data System (ADS)

    Fakhari, Vahid; Choi, Seung-Bok; Cho, Chang-Hyun

    2015-04-01

    This work presents a new robust model reference adaptive control (MRAC) for vibration control caused from vehicle engine using an electromagnetic type of active engine mount. Vibration isolation performances of the active mount associated with the robust controller are evaluated in the presence of large uncertainties. As a first step, an active mount with linear solenoid actuator is prepared and its dynamic model is identified via experimental test. Subsequently, a new robust MRAC based on the gradient method with σ-modification is designed by selecting a proper reference model. In designing the robust adaptive control, structured (parametric) uncertainties in the stiffness of the passive part of the mount and in damping ratio of the active part of the mount are considered to investigate the robustness of the proposed controller. Experimental and simulation results are presented to evaluate performance focusing on the robustness behavior of the controller in the face of large uncertainties. The obtained results show that the proposed controller can sufficiently provide the robust vibration control performance even in the presence of large uncertainties showing an effective vibration isolation.

  6. Perchlorate in Fertilizers

    DTIC Science & Technology

    1999-09-01

    Harrington , showed that with respect to mixed water analysis containing TDS at greater 1,000 ppm, the performance of the AS-5 column is not as robust...to note, these raw test materials were heterogeneous. Regardless of mixing time and mesh quality, dividing the raw test materials for laboratory...raw test material was prepared and shipped to seven laboratories for blind analysis. The suspension was prepared by 4 mixing the solid sample with

  7. A simultaneous determination of related substances by high performance liquid chromatography in a drug product using quality by design approach.

    PubMed

    Tol, Trupti; Kadam, Nilesh; Raotole, Nilesh; Desai, Anita; Samanta, Gautam

    2016-02-05

    The combination of Abacavir, Lamivudine and Dolutegravir is an anti-retroviral formulation that displays high efficacy and superiority in comparison to other anti-retroviral combinations. Analysis of related substances in this combination drug product was very challenging due to the presence of nearly thirty peaks including the three active pharmaceutical ingredients (APIs), eleven known impurities and other pharmaceutical excipients. Objective of this study was to develop a single, selective, and robust high performance liquid chromatography method for the efficient separation of all peaks. Initially, one-factor-at-a-time (OFAT) approach was adopted to develop the method. But, it could not resolve all the critical peaks in such complex matrix. This led to the advent of two different HPLC methods for the determination of related substances, one for Abacavir and Lamivudine and the other for Dolutegravir. But, since analysis of a single sample using two methods instead of one is time and resource consuming and thus expensive, an attempt was made to develop a single and robust method by adopting quality by design (QbD) principles. Design of Experiments (DoE) was applied as a tool to achieve the optimum conditions through Response surface methodology with three method variables, pH, temperature, and mobile phase composition. As the study progressed, it was discovered that establishment of the design space was not viable due to the completely distant pH requirements of the two responses, i.e. (i) retention time for Lamivudine carboxylic acid and (ii) resolution between Abacavir impurity B and unknown impurity. Eventually, neglecting one of these two responses each time, two distinguished design spaces have been established and verified. Edge of failures at both design spaces indicate high probability of failure. It therefore, becomes very important to identify the most robust zone or normal operating range (NOR) within the design space with low risk of failure and high quality assurance. For NOR establishment, Monte Carlo simulation was performed on the basis of which process capability index (Cpk) was derived. Finally, the selectivity issue problem faced due to the pH dependency and the dissimilar pH needs of the two critical responses was resolved by introducing pH gradient into the program. This new ternary gradient program has provided a single robust method. Thus, two HPLC methods for the analysis of the combination drug product have been replaced with a selective, robust, and cost effective single method. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Quality Control and Reproducibility in M-mode, Two-dimensional, and Speckle Tracking Echocardiography Acquisition and Analysis: The CARDIA Study, Year-25 Examination Experience

    PubMed Central

    Armstrong, Anderson C.; Ricketts, Erin P.; Cox, Christopher; Adler, Paul; Arynchyn, Alexander; Liu, Kiang; Stengel, Ellen; RDCS; Sidney, Stephen; Lewis, Cora E.; Schreiner, Pamela J.; Shikany, James M.; Keck, Kimberly; Merlo, Jamie; Gidding, Samuel S.; Lima, João A. C.

    2014-01-01

    Introduction Few large studies describe quality control procedures and reproducibility findings in cardiovascular ultra-sound, particularly in novel techniques such as Speckle Tracking (STE). We evaluate the echocardiography assessment performance in the CARDIA study Y25 examination (2010-2011) and report findings from a quality control and reproducibility program conducted to assess Field Center image acquisition and Reading Center (RC) accuracy. Methods The CARDIA Y25 examination had 3,475 echocardiograms performed in 4 US Field Centers and analyzed in a Reading Center, assessing standard echocardiography (LA dimension, aortic root, LV mass, LV end-diastolic volume [LVEDV], ejection fraction [LVEF]), and STE (2- and 4-chamber longitudinal, circumferential, and radial strains). Reproducibility was assessed using intra-class correlation coefficients (ICC), coefficients of variation (CV), and Bland-Altman plots. Results For standard echocardiography reproducibility, LV mass and LVEDV consistently had CV above 10% and aortic root below 6%. Intra-sonographer aortic root and LV mass had the most robust values of ICC in standard echocardiography. For STE, the number of properly tracking segments was above 80% in short-axis and 4-chamber and 58% in 2-chamber. Longitudinal strain parameters were the most robust and radial strain showed the highest variation. Comparing Field Centers with Echo RC STE readings, mean differences ranged from 0.4% to 4.1% and ICC from 0.37 to 0.66, with robust results for longitudinal strains. Conclusion Echocardiography image acquisition and reading processes in the CARDIA study were highly reproducible, including robust results for STE analysis. Consistent quality control may increase the reliability of echocardiography measurements in large cohort studies. PMID:25382818

  9. Quality Control and Reproducibility in M-Mode, Two-Dimensional, and Speckle Tracking Echocardiography Acquisition and Analysis: The CARDIA Study, Year 25 Examination Experience.

    PubMed

    Armstrong, Anderson C; Ricketts, Erin P; Cox, Christopher; Adler, Paul; Arynchyn, Alexander; Liu, Kiang; Stengel, Ellen; Sidney, Stephen; Lewis, Cora E; Schreiner, Pamela J; Shikany, James M; Keck, Kimberly; Merlo, Jamie; Gidding, Samuel S; Lima, João A C

    2015-08-01

    Few large studies describe quality control procedures and reproducibility findings in cardiovascular ultrasound, particularly in novel techniques such as speckle tracking echocardiography (STE). We evaluate the echocardiography assessment performance in the Coronary Artery Risk Development in Young Adults (CARDIA) study Year 25 (Y25) examination (2010-2011) and report findings from a quality control and reproducibility program conducted to assess Field Center image acquisition and reading center (RC) accuracy. The CARDIA Y25 examination had 3475 echocardiograms performed in 4 US Field Centers and analyzed in a RC, assessing standard echocardiography (LA dimension, aortic root, LV mass, LV end-diastolic volume [LVEDV], ejection fraction [LVEF]), and STE (two- and four-chamber longitudinal, circumferential, and radial strains). Reproducibility was assessed using intraclass correlation coefficients (ICC), coefficients of variation (CV), and Bland-Altman plots. For standard echocardiography reproducibility, LV mass and LVEDV consistently had CV above 10% and aortic root below 6%. Intra-sonographer aortic root and LV mass had the most robust values of ICC in standard echocardiography. For STE, the number of properly tracking segments was above 80% in short-axis and four-chamber and 58% in two-chamber views. Longitudinal strain parameters were the most robust and radial strain showed the highest variation. Comparing Field Centers with echocardiography RC STE readings, mean differences ranged from 0.4% to 4.1% and ICC from 0.37 to 0.66, with robust results for longitudinal strains. Echocardiography image acquisition and reading processes in the CARDIA study were highly reproducible, including robust results for STE analysis. Consistent quality control may increase the reliability of echocardiography measurements in large cohort studies. © 2014, Wiley Periodicals, Inc.

  10. A note on variance estimation in random effects meta-regression.

    PubMed

    Sidik, Kurex; Jonkman, Jeffrey N

    2005-01-01

    For random effects meta-regression inference, variance estimation for the parameter estimates is discussed. Because estimated weights are used for meta-regression analysis in practice, the assumed or estimated covariance matrix used in meta-regression is not strictly correct, due to possible errors in estimating the weights. Therefore, this note investigates the use of a robust variance estimation approach for obtaining variances of the parameter estimates in random effects meta-regression inference. This method treats the assumed covariance matrix of the effect measure variables as a working covariance matrix. Using an example of meta-analysis data from clinical trials of a vaccine, the robust variance estimation approach is illustrated in comparison with two other methods of variance estimation. A simulation study is presented, comparing the three methods of variance estimation in terms of bias and coverage probability. We find that, despite the seeming suitability of the robust estimator for random effects meta-regression, the improved variance estimator of Knapp and Hartung (2003) yields the best performance among the three estimators, and thus may provide the best protection against errors in the estimated weights.

  11. Robust climate policies under uncertainty: a comparison of robust decision making and info-gap methods.

    PubMed

    Hall, Jim W; Lempert, Robert J; Keller, Klaus; Hackbarth, Andrew; Mijere, Christophe; McInerney, David J

    2012-10-01

    This study compares two widely used approaches for robustness analysis of decision problems: the info-gap method originally developed by Ben-Haim and the robust decision making (RDM) approach originally developed by Lempert, Popper, and Bankes. The study uses each approach to evaluate alternative paths for climate-altering greenhouse gas emissions given the potential for nonlinear threshold responses in the climate system, significant uncertainty about such a threshold response and a variety of other key parameters, as well as the ability to learn about any threshold responses over time. Info-gap and RDM share many similarities. Both represent uncertainty as sets of multiple plausible futures, and both seek to identify robust strategies whose performance is insensitive to uncertainties. Yet they also exhibit important differences, as they arrange their analyses in different orders, treat losses and gains in different ways, and take different approaches to imprecise probabilistic information. The study finds that the two approaches reach similar but not identical policy recommendations and that their differing attributes raise important questions about their appropriate roles in decision support applications. The comparison not only improves understanding of these specific methods, it also suggests some broader insights into robustness approaches and a framework for comparing them. © 2012 RAND Corporation.

  12. TH-EF-207A-04: A Dynamic Contrast Enhanced Cone Beam CT Technique for Evaluation of Renal Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Z; Shi, J; Yang, Y

    Purpose: To develop a simple but robust method for the early detection and evaluation of renal functions using dynamic contrast enhanced cone beam CT technique. Methods: Experiments were performed on an integrated imaging and radiation research platform developed by our lab. Animals (n=3) were anesthetized with 20uL Ketamine/Xylazine cocktail, and then received 200uL injection of iodinated contrast agent Iopamidol via tail vein. Cone beam CT was acquired following contrast injection once per minute and up to 25 minutes. The cone beam CT was reconstructed with a dimension of 300×300×800 voxels of 130×130×130um voxel resolution. The middle kidney slices in themore » transvers and coronal planes were selected for image analysis. A double exponential function was used to fit the contrast enhanced signal intensity versus the time after contrast injection. Both pixel-based and region of interest (ROI)-based curve fitting were performed. Four parameters obtained from the curve fitting, namely the amplitude and flow constant for both contrast wash in and wash out phases, were investigated for further analysis. Results: Robust curve fitting was demonstrated for both pixel based (with R{sup 2}>0.8 for >85% pixels within the kidney contour) and ROI based (R{sup 2}>0.9 for all regions) analysis. Three different functional regions: renal pelvis, medulla and cortex, were clearly differentiated in the functional parameter map in the pixel based analysis. ROI based analysis showed the half-life T1/2 for contrast wash in and wash out phases were 0.98±0.15 and 17.04±7.16, 0.63±0.07 and 17.88±4.51, and 1.48±0.40 and 10.79±3.88 minutes for the renal pelvis, medulla and cortex, respectively. Conclusion: A robust method based on dynamic contrast enhanced cone beam CT and double exponential curve fitting has been developed to analyze the renal functions for different functional regions. Future study will be performed to investigate the sensitivity of this technique in the detection of radiation induced kidney dysfunction.« less

  13. Evaluation of Ares-I Control System Robustness to Uncertain Aerodynamics and Flex Dynamics

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; VanTassel, Chris; Bedrossian, Nazareth; Hall, Charles; Spanos, Pol

    2008-01-01

    This paper discusses the application of robust control theory to evaluate robustness of the Ares-I control systems. Three techniques for estimating upper and lower bounds of uncertain parameters which yield stable closed-loop response are used here: (1) Monte Carlo analysis, (2) mu analysis, and (3) characteristic frequency response analysis. All three methods are used to evaluate stability envelopes of the Ares-I control systems with uncertain aerodynamics and flex dynamics. The results show that characteristic frequency response analysis is the most effective of these methods for assessing robustness.

  14. Robust optimization of front members in a full frontal car impact

    NASA Astrophysics Data System (ADS)

    Aspenberg (né Lönn), David; Jergeus, Johan; Nilsson, Larsgunnar

    2013-03-01

    In the search for lightweight automobile designs, it is necessary to assure that robust crashworthiness performance is achieved. Structures that are optimized to handle a finite number of load cases may perform poorly when subjected to various dispersions. Thus, uncertainties must be accounted for in the optimization process. This article presents an approach to optimization where all design evaluations include an evaluation of the robustness. Metamodel approximations are applied both to the design space and the robustness evaluations, using artifical neural networks and polynomials, respectively. The features of the robust optimization approach are displayed in an analytical example, and further demonstrated in a large-scale design example of front side members of a car. Different optimization formulations are applied and it is shown that the proposed approach works well. It is also concluded that a robust optimization puts higher demands on the finite element model performance than normally.

  15. Robust Control Design for Systems With Probabilistic Uncertainty

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.

    2005-01-01

    This paper presents a reliability- and robustness-based formulation for robust control synthesis for systems with probabilistic uncertainty. In a reliability-based formulation, the probability of violating design requirements prescribed by inequality constraints is minimized. In a robustness-based formulation, a metric which measures the tendency of a random variable/process to cluster close to a target scalar/function is minimized. A multi-objective optimization procedure, which combines stability and performance requirements in time and frequency domains, is used to search for robustly optimal compensators. Some of the fundamental differences between the proposed strategy and conventional robust control methods are: (i) unnecessary conservatism is eliminated since there is not need for convex supports, (ii) the most likely plants are favored during synthesis allowing for probabilistic robust optimality, (iii) the tradeoff between robust stability and robust performance can be explored numerically, (iv) the uncertainty set is closely related to parameters with clear physical meaning, and (v) compensators with improved robust characteristics for a given control structure can be synthesized.

  16. Quantitative local analysis of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Topcu, Ufuk

    This thesis investigates quantitative methods for local robustness and performance analysis of nonlinear dynamical systems with polynomial vector fields. We propose measures to quantify systems' robustness against uncertainties in initial conditions (regions-of-attraction) and external disturbances (local reachability/gain analysis). S-procedure and sum-of-squares relaxations are used to translate Lyapunov-type characterizations to sum-of-squares optimization problems. These problems are typically bilinear/nonconvex (due to local analysis rather than global) and their size grows rapidly with state/uncertainty space dimension. Our approach is based on exploiting system theoretic interpretations of these optimization problems to reduce their complexity. We propose a methodology incorporating simulation data in formal proof construction enabling more reliable and efficient search for robustness and performance certificates compared to the direct use of general purpose solvers. This technique is adapted both to region-of-attraction and reachability analysis. We extend the analysis to uncertain systems by taking an intentionally simplistic and potentially conservative route, namely employing parameter-independent rather than parameter-dependent certificates. The conservatism is simply reduced by a branch-and-hound type refinement procedure. The main thrust of these methods is their suitability for parallel computing achieved by decomposing otherwise challenging problems into relatively tractable smaller ones. We demonstrate proposed methods on several small/medium size examples in each chapter and apply each method to a benchmark example with an uncertain short period pitch axis model of an aircraft. Additional practical issues leading to a more rigorous basis for the proposed methodology as well as promising further research topics are also addressed. We show that stability of linearized dynamics is not only necessary but also sufficient for the feasibility of the formulations in region-of-attraction analysis. Furthermore, we generalize an upper bound refinement procedure in local reachability/gain analysis which effectively generates non-polynomial certificates from polynomial ones. Finally, broader applicability of optimization-based tools stringently depends on the availability of scalable/hierarchial algorithms. As an initial step toward this direction, we propose a local small-gain theorem and apply to stability region analysis in the presence of unmodeled dynamics.

  17. Design and analysis of a model predictive controller for active queue management.

    PubMed

    Wang, Ping; Chen, Hong; Yang, Xiaoping; Ma, Yan

    2012-01-01

    Model predictive (MP) control as a novel active queue management (AQM) algorithm in dynamic computer networks is proposed. According to the predicted future queue length in the data buffer, early packets at the router are dropped reasonably by the MPAQM controller so that the queue length reaches the desired value with minimal tracking error. The drop probability is obtained by optimizing the network performance. Further, randomized algorithms are applied to analyze the robustness of MPAQM successfully, and also to provide the stability domain of systems with uncertain network parameters. The performances of MPAQM are evaluated through a series of simulations in NS2. The simulation results show that the MPAQM algorithm outperforms RED, PI, and REM algorithms in terms of stability, disturbance rejection, and robustness. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Doing our best: optimization and the management of risk.

    PubMed

    Ben-Haim, Yakov

    2012-08-01

    Tools and concepts of optimization are widespread in decision-making, design, and planning. There is a moral imperative to "do our best." Optimization underlies theories in physics and biology, and economic theories often presume that economic agents are optimizers. We argue that in decisions under uncertainty, what should be optimized is robustness rather than performance. We discuss the equity premium puzzle from financial economics, and explain that the puzzle can be resolved by using the strategy of satisficing rather than optimizing. We discuss design of critical technological infrastructure, showing that satisficing of performance requirements--rather than optimizing them--is a preferable design concept. We explore the need for disaster recovery capability and its methodological dilemma. The disparate domains--economics and engineering--illuminate different aspects of the challenge of uncertainty and of the significance of robust-satisficing. © 2012 Society for Risk Analysis.

  19. Posture recognition based on fuzzy logic for home monitoring of the elderly.

    PubMed

    Brulin, Damien; Benezeth, Yannick; Courtial, Estelle

    2012-09-01

    We propose in this paper a computer vision-based posture recognition method for home monitoring of the elderly. The proposed system performs human detection prior to the posture analysis; posture recognition is performed only on a human silhouette. The human detection approach has been designed to be robust to different environmental stimuli. Thus, posture is analyzed with simple and efficient features that are not designed to manage constraints related to the environment but only designed to describe human silhouettes. The posture recognition method, based on fuzzy logic, identifies four static postures and is robust to variation in the distance between the camera and the person, and to the person's morphology. With an accuracy of 74.29% of satisfactory posture recognition, this approach can detect emergency situations such as a fall within a health smart home.

  20. From linear to nonlinear control means: a practical progression.

    PubMed

    Gao, Zhiqiang

    2002-04-01

    With the rapid advance of digital control hardware, it is time to take the simple but effective proportional-integral-derivative (PID) control technology to the next level of performance and robustness. For this purpose, a nonlinear PID and active disturbance rejection framework are introduced in this paper. It complements the existing theory in that (1) it actively and systematically explores the use of nonlinear control mechanisms for better performance, even for linear plants; (2) it represents a control strategy that is rather independent of mathematical models of the plants, thus achieving inherent robustness and reducing design complexity. Stability analysis, as well as software/hardware test results, are presented. It is evident that the proposed framework lends itself well in seeking innovative solutions to practical problems while maintaining the simplicity and the intuitiveness of the existing technology.

  1. The Development of Dynamic Human Reliability Analysis Simulations for Inclusion in Risk Informed Safety Margin Characterization Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey C. Joe; Diego Mandelli; Ronald L. Boring

    2015-07-01

    The United States Department of Energy is sponsoring the Light Water Reactor Sustainability program, which has the overall objective of supporting the near-term and the extended operation of commercial nuclear power plants. One key research and development (R&D) area in this program is the Risk-Informed Safety Margin Characterization pathway, which combines probabilistic risk simulation with thermohydraulic simulation codes to define and manage safety margins. The R&D efforts to date, however, have not included robust simulations of human operators, and how the reliability of human performance or lack thereof (i.e., human errors) can affect risk-margins and plant performance. This paper describesmore » current and planned research efforts to address the absence of robust human reliability simulations and thereby increase the fidelity of simulated accident scenarios.« less

  2. Closed-loop, pilot/vehicle analysis of the approach and landing task

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.; Anderson, M. R.

    1985-01-01

    Optimal-control-theoretic modeling and frequency-domain analysis is the methodology proposed to evaluate analytically the handling qualities of higher-order manually controlled dynamic systems. Fundamental to the methodology is evaluating the interplay between pilot workload and closed-loop pilot/vehicle performance and stability robustness. The model-based metric for pilot workload is the required pilot phase compensation. Pilot/vehicle performance and loop stability is then evaluated using frequency-domain techniques. When these techniques were applied to the flight-test data for thirty-two highly-augmented fighter configurations, strong correlation was obtained between the analytical and experimental results.

  3. The robust model predictive control based on mixed H2/H∞ approach with separated performance formulations and its ISpS analysis

    NASA Astrophysics Data System (ADS)

    Li, Dewei; Li, Jiwei; Xi, Yugeng; Gao, Furong

    2017-12-01

    In practical applications, systems are always influenced by parameter uncertainties and external disturbance. Both the H2 performance and the H∞ performance are important for the real applications. For a constrained system, the previous designs of mixed H2/H∞ robust model predictive control (RMPC) optimise one performance with the other performance requirement as a constraint. But the two performances cannot be optimised at the same time. In this paper, an improved design of mixed H2/H∞ RMPC for polytopic uncertain systems with external disturbances is proposed to optimise them simultaneously. In the proposed design, the original uncertain system is decomposed into two subsystems by the additive character of linear systems. Two different Lyapunov functions are used to separately formulate the two performance indices for the two subsystems. Then, the proposed RMPC is designed to optimise both the two performances by the weighting method with the satisfaction of the H∞ performance requirement. Meanwhile, to make the design more practical, a simplified design is also developed. The recursive feasible conditions of the proposed RMPC are discussed and the closed-loop input state practical stable is proven. The numerical examples reflect the enlarged feasible region and the improved performance of the proposed design.

  4. Designing Flood Management Systems for Joint Economic and Ecological Robustness

    NASA Astrophysics Data System (ADS)

    Spence, C. M.; Grantham, T.; Brown, C. M.; Poff, N. L.

    2015-12-01

    Freshwater ecosystems across the United States are threatened by hydrologic change caused by water management operations and non-stationary climate trends. Nonstationary hydrology also threatens flood management systems' performance. Ecosystem managers and flood risk managers need tools to design systems that achieve flood risk reduction objectives while sustaining ecosystem functions and services in an uncertain hydrologic future. Robust optimization is used in water resources engineering to guide system design under climate change uncertainty. Using principles introduced by Eco-Engineering Decision Scaling (EEDS), we extend robust optimization techniques to design flood management systems that meet both economic and ecological goals simultaneously across a broad range of future climate conditions. We use three alternative robustness indices to identify flood risk management solutions that preserve critical ecosystem functions in a case study from the Iowa River, where recent severe flooding has tested the limits of the existing flood management system. We seek design modifications to the system that both reduce expected cost of flood damage while increasing ecologically beneficial inundation of riparian floodplains across a wide range of plausible climate futures. The first robustness index measures robustness as the fraction of potential climate scenarios in which both engineering and ecological performance goals are met, implicitly weighting each climate scenario equally. The second index builds on the first by using climate projections to weight each climate scenario, prioritizing acceptable performance in climate scenarios most consistent with climate projections. The last index measures robustness as mean performance across all climate scenarios, but penalizes scenarios with worse performance than average, rewarding consistency. Results stemming from alternate robustness indices reflect implicit assumptions about attitudes toward risk and reveal the tradeoffs between using structural and non-structural flood management strategies to ensure economic and ecological robustness.

  5. Whole genome structural analysis of Caribbean hair sheep reveals quantitative link to West African ancestry

    USDA-ARS?s Scientific Manuscript database

    Hair sheep of Caribbean origin have become an important part of the U.S. sheep industry. Lack of wool eliminates a number of health concerns and drastically reduces the cost of production. More importantly, Caribbean hair sheep demonstrate robust performance even in the presence of drug resistant ga...

  6. Experimental and analytical studies on multiple tuned mass dampers for seismic protection of porcelain electrical equipment

    NASA Astrophysics Data System (ADS)

    Bai, Wen; Dai, Junwu; Zhou, Huimeng; Yang, Yongqiang; Ning, Xiaoqing

    2017-10-01

    Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic performance of two typical types of PEE and proposes a damping method for PEE based on multiple tuned mass dampers (MTMD). An MTMD damping device involving three mass units, named a triple tuned mass damper (TTMD), is designed and manufactured. Through shake table tests and finite element analysis, the dynamic characteristics of the PEE are studied and the effectiveness of the MTMD damping method is verified. The adverse influence of MTMD redundant mass to damping efficiency is studied and relevant equations are derived. MTMD robustness is verified through adjusting TTMD control frequencies. The damping effectiveness of TTMD, when the peak ground acceleration far exceeds the design value, is studied. Both shake table tests and finite element analysis indicate that MTMD is effective and robust in attenuating PEE seismic responses. TTMD remains effective when the PGA far exceeds the design value and when control deviations are considered.

  7. Robust Control for The G-Limit Microgravity Vibration Isolation System

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.

    2004-01-01

    Many microgravity science experiments need an active isolation system to provide a sufficiently quiescent acceleration environment. The g-LIMIT vibration isolation system will provide isolation for Microgravity Science Glovebox experiments in the International Space Station. While standard control system technologies have been demonstrated for these applications, modern control methods have the potential for meeting performance requirements while providing robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H infinity methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/mu controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared.

  8. Incorporation of support vector machines in the LIBS toolbox for sensitive and robust classification amidst unexpected sample and system variability

    PubMed Central

    ChariDingari, Narahara; Barman, Ishan; Myakalwar, Ashwin Kumar; Tewari, Surya P.; Kumar, G. Manoj

    2012-01-01

    Despite the intrinsic elemental analysis capability and lack of sample preparation requirements, laser-induced breakdown spectroscopy (LIBS) has not been extensively used for real world applications, e.g. quality assurance and process monitoring. Specifically, variability in sample, system and experimental parameters in LIBS studies present a substantive hurdle for robust classification, even when standard multivariate chemometric techniques are used for analysis. Considering pharmaceutical sample investigation as an example, we propose the use of support vector machines (SVM) as a non-linear classification method over conventional linear techniques such as soft independent modeling of class analogy (SIMCA) and partial least-squares discriminant analysis (PLS-DA) for discrimination based on LIBS measurements. Using over-the-counter pharmaceutical samples, we demonstrate that application of SVM enables statistically significant improvements in prospective classification accuracy (sensitivity), due to its ability to address variability in LIBS sample ablation and plasma self-absorption behavior. Furthermore, our results reveal that SVM provides nearly 10% improvement in correct allocation rate and a concomitant reduction in misclassification rates of 75% (cf. PLS-DA) and 80% (cf. SIMCA)-when measurements from samples not included in the training set are incorporated in the test data – highlighting its robustness. While further studies on a wider matrix of sample types performed using different LIBS systems is needed to fully characterize the capability of SVM to provide superior predictions, we anticipate that the improved sensitivity and robustness observed here will facilitate application of the proposed LIBS-SVM toolbox for screening drugs and detecting counterfeit samples as well as in related areas of forensic and biological sample analysis. PMID:22292496

  9. Incorporation of support vector machines in the LIBS toolbox for sensitive and robust classification amidst unexpected sample and system variability.

    PubMed

    Dingari, Narahara Chari; Barman, Ishan; Myakalwar, Ashwin Kumar; Tewari, Surya P; Kumar Gundawar, Manoj

    2012-03-20

    Despite the intrinsic elemental analysis capability and lack of sample preparation requirements, laser-induced breakdown spectroscopy (LIBS) has not been extensively used for real-world applications, e.g., quality assurance and process monitoring. Specifically, variability in sample, system, and experimental parameters in LIBS studies present a substantive hurdle for robust classification, even when standard multivariate chemometric techniques are used for analysis. Considering pharmaceutical sample investigation as an example, we propose the use of support vector machines (SVM) as a nonlinear classification method over conventional linear techniques such as soft independent modeling of class analogy (SIMCA) and partial least-squares discriminant analysis (PLS-DA) for discrimination based on LIBS measurements. Using over-the-counter pharmaceutical samples, we demonstrate that the application of SVM enables statistically significant improvements in prospective classification accuracy (sensitivity), because of its ability to address variability in LIBS sample ablation and plasma self-absorption behavior. Furthermore, our results reveal that SVM provides nearly 10% improvement in correct allocation rate and a concomitant reduction in misclassification rates of 75% (cf. PLS-DA) and 80% (cf. SIMCA)-when measurements from samples not included in the training set are incorporated in the test data-highlighting its robustness. While further studies on a wider matrix of sample types performed using different LIBS systems is needed to fully characterize the capability of SVM to provide superior predictions, we anticipate that the improved sensitivity and robustness observed here will facilitate application of the proposed LIBS-SVM toolbox for screening drugs and detecting counterfeit samples, as well as in related areas of forensic and biological sample analysis.

  10. Manufacturing Execution Systems: Examples of Performance Indicator and Operational Robustness Tools.

    PubMed

    Gendre, Yannick; Waridel, Gérard; Guyon, Myrtille; Demuth, Jean-François; Guelpa, Hervé; Humbert, Thierry

    Manufacturing Execution Systems (MES) are computerized systems used to measure production performance in terms of productivity, yield, and quality. In the first part, performance indicator and overall equipment effectiveness (OEE), process robustness tools and statistical process control are described. The second part details some tools to help process robustness and control by operators by preventing deviations from target control charts. MES was developed by Syngenta together with CIMO for automation.

  11. SU-F-BRD-04: Robustness Analysis of Proton Breast Treatments Using An Alpha-Stable Distribution Parameterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van den Heuvel, F; Hackett, S; Fiorini, F

    Purpose: Currently, planning systems allow robustness calculations to be performed, but a generalized assessment methodology is not yet available. We introduce and evaluate a methodology to quantify the robustness of a plan on an individual patient basis. Methods: We introduce the notion of characterizing a treatment instance (i.e. one single fraction delivery) by describing the dose distribution within an organ as an alpha-stable distribution. The parameters of the distribution (shape(α), scale(γ), position(δ), and symmetry(β)), will vary continuously (in a mathematical sense) as the distributions change with the different positions. The rate of change of the parameters provides a measure ofmore » the robustness of the treatment. The methodology is tested in a planning study of 25 patients with known residual errors at each fraction. Each patient was planned using Eclipse with an IBA-proton beam model. The residual error space for every patient was sampled 30 times, yielding 31 treatment plans for each patient and dose distributions in 5 organs. The parameters’ change rate as a function of Euclidean distance from the original plan was analyzed. Results: More than 1,000 dose distributions were analyzed. For 4 of the 25 patients the change in scale rate (γ) was considerably higher than the lowest change rate, indicating a lack of robustness. The sign of the shape change rate (α) also seemed indicative but the experiment lacked the power to prove significance. Conclusion: There are indications that this robustness measure is a valuable tool to allow a more patient individualized approach to the determination of margins. In a further study we will also evaluate this robustness measure using photon treatments, and evaluate the impact of using breath hold techniques, and the a Monte Carlo based dose deposition calculation. A principle component analysis is also planned.« less

  12. The analysis of image feature robustness using cometcloud

    PubMed Central

    Qi, Xin; Kim, Hyunjoo; Xing, Fuyong; Parashar, Manish; Foran, David J.; Yang, Lin

    2012-01-01

    The robustness of image features is a very important consideration in quantitative image analysis. The objective of this paper is to investigate the robustness of a range of image texture features using hematoxylin stained breast tissue microarray slides which are assessed while simulating different imaging challenges including out of focus, changes in magnification and variations in illumination, noise, compression, distortion, and rotation. We employed five texture analysis methods and tested them while introducing all of the challenges listed above. The texture features that were evaluated include co-occurrence matrix, center-symmetric auto-correlation, texture feature coding method, local binary pattern, and texton. Due to the independence of each transformation and texture descriptor, a network structured combination was proposed and deployed on the Rutgers private cloud. The experiments utilized 20 randomly selected tissue microarray cores. All the combinations of the image transformations and deformations are calculated, and the whole feature extraction procedure was completed in 70 minutes using a cloud equipped with 20 nodes. Center-symmetric auto-correlation outperforms all the other four texture descriptors but also requires the longest computational time. It is roughly 10 times slower than local binary pattern and texton. From a speed perspective, both the local binary pattern and texton features provided excellent performance for classification and content-based image retrieval. PMID:23248759

  13. Integrative evaluation for sustainable decisions of urban wastewater system management under uncertainty

    NASA Astrophysics Data System (ADS)

    Hadjimichael, A.; Corominas, L.; Comas, J.

    2017-12-01

    With sustainable development as their overarching goal, urban wastewater system (UWS) managers need to take into account multiple social, economic, technical and environmental facets related to their decisions. In this complex decision-making environment, uncertainty can be formidable. It is present both in the ways the system is interpreted stochastically, but also in its natural ever-shifting behavior. This inherent uncertainty suggests that wiser decisions would be made under an adaptive and iterative decision-making regime. No decision-support framework has been presented in the literature to effectively addresses all these needs. The objective of this work is to describe such a conceptual framework to evaluate and compare alternative solutions for various UWS challenges within an adaptive management structure. Socio-economic aspects such as externalities are taken into account, along with other traditional criteria as necessary. Robustness, reliability and resilience analyses test the performance of the system against present and future variability. A valuation uncertainty analysis incorporates uncertain valuation assumptions in the decision-making process. The framework is demonstrated with an application to a case study presenting a typical problem often faced by managers: poor river water quality, increasing population, and more stringent water quality legislation. The application of the framework made use of: i) a cost-benefit analysis including monetized environmental benefits and damages; ii) a robustness analysis of system performance against future conditions; iii) reliability and resilience analyses of the system given contextual variability; and iv) a valuation uncertainty analysis of model parameters. The results suggest that the installation of bigger volumes would give rise to increased benefits despite larger capital costs, as well as increased robustness and resilience. Population numbers appear to affect the estimated benefits most, followed by electricity prices and climate change projections. The presented framework is expected to be a valuable tool for the next generation of UWS decision-making and the application demonstrates a novel and valuable integration of metrics and methods for UWS analysis.

  14. One-step solvothermal deposition of ZnO nanorod arrays on a wood surface for robust superamphiphobic performance and superior ultraviolet resistance

    PubMed Central

    Yao, Qiufang; Wang, Chao; Fan, Bitao; Wang, Hanwei; Sun, Qingfeng; Jin, Chunde; Zhang, Hong

    2016-01-01

    In the present paper, uniformly large-scale wurtzite-structured ZnO nanorod arrays (ZNAs) were deposited onto a wood surface through a one-step solvothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), and differential thermal analysis (DTA). ZNAs with a diameter of approximately 85 nm and a length of approximately 1.5 μm were chemically bonded onto the wood surface through hydrogen bonds. The superamphiphobic performance and ultraviolet resistance were measured and evaluated by water or oil contact angles (WCA or OCA) and roll-off angles, sand abrasion tests and an artificially accelerated ageing test. The results show that the ZNA-treated wood demonstrates a robust superamphiphobic performance under mechanical impact, corrosive liquids, intermittent and transpositional temperatures, and water spray. Additionally, the as-prepared wood sample shows superior ultraviolet resistance. PMID:27775091

  15. Performance analysis of visual tracking algorithms for motion-based user interfaces on mobile devices

    NASA Astrophysics Data System (ADS)

    Winkler, Stefan; Rangaswamy, Karthik; Tedjokusumo, Jefry; Zhou, ZhiYing

    2008-02-01

    Determining the self-motion of a camera is useful for many applications. A number of visual motion-tracking algorithms have been developed till date, each with their own advantages and restrictions. Some of them have also made their foray into the mobile world, powering augmented reality-based applications on phones with inbuilt cameras. In this paper, we compare the performances of three feature or landmark-guided motion tracking algorithms, namely marker-based tracking with MXRToolkit, face tracking based on CamShift, and MonoSLAM. We analyze and compare the complexity, accuracy, sensitivity, robustness and restrictions of each of the above methods. Our performance tests are conducted over two stages: The first stage of testing uses video sequences created with simulated camera movements along the six degrees of freedom in order to compare accuracy in tracking, while the second stage analyzes the robustness of the algorithms by testing for manipulative factors like image scaling and frame-skipping.

  16. A multi-center study benchmarks software tools for label-free proteome quantification

    PubMed Central

    Gillet, Ludovic C; Bernhardt, Oliver M.; MacLean, Brendan; Röst, Hannes L.; Tate, Stephen A.; Tsou, Chih-Chiang; Reiter, Lukas; Distler, Ute; Rosenberger, George; Perez-Riverol, Yasset; Nesvizhskii, Alexey I.; Aebersold, Ruedi; Tenzer, Stefan

    2016-01-01

    The consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for processing data from SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra), a method that uses data-independent acquisition (DIA) for label-free protein quantification. We analyzed high-complexity test datasets from hybrid proteome samples of defined quantitative composition acquired on two different MS instruments using different SWATH isolation windows setups. For consistent evaluation we developed LFQbench, an R-package to calculate metrics of precision and accuracy in label-free quantitative MS, and report the identification performance, robustness and specificity of each software tool. Our reference datasets enabled developers to improve their software tools. After optimization, all tools provided highly convergent identification and reliable quantification performance, underscoring their robustness for label-free quantitative proteomics. PMID:27701404

  17. A multicenter study benchmarks software tools for label-free proteome quantification.

    PubMed

    Navarro, Pedro; Kuharev, Jörg; Gillet, Ludovic C; Bernhardt, Oliver M; MacLean, Brendan; Röst, Hannes L; Tate, Stephen A; Tsou, Chih-Chiang; Reiter, Lukas; Distler, Ute; Rosenberger, George; Perez-Riverol, Yasset; Nesvizhskii, Alexey I; Aebersold, Ruedi; Tenzer, Stefan

    2016-11-01

    Consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH 2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for processing data from sequential window acquisition of all theoretical fragment-ion spectra (SWATH)-MS, which uses data-independent acquisition (DIA) for label-free protein quantification. We analyzed high-complexity test data sets from hybrid proteome samples of defined quantitative composition acquired on two different MS instruments using different SWATH isolation-window setups. For consistent evaluation, we developed LFQbench, an R package, to calculate metrics of precision and accuracy in label-free quantitative MS and report the identification performance, robustness and specificity of each software tool. Our reference data sets enabled developers to improve their software tools. After optimization, all tools provided highly convergent identification and reliable quantification performance, underscoring their robustness for label-free quantitative proteomics.

  18. One-step solvothermal deposition of ZnO nanorod arrays on a wood surface for robust superamphiphobic performance and superior ultraviolet resistance

    NASA Astrophysics Data System (ADS)

    Yao, Qiufang; Wang, Chao; Fan, Bitao; Wang, Hanwei; Sun, Qingfeng; Jin, Chunde; Zhang, Hong

    2016-10-01

    In the present paper, uniformly large-scale wurtzite-structured ZnO nanorod arrays (ZNAs) were deposited onto a wood surface through a one-step solvothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), and differential thermal analysis (DTA). ZNAs with a diameter of approximately 85 nm and a length of approximately 1.5 μm were chemically bonded onto the wood surface through hydrogen bonds. The superamphiphobic performance and ultraviolet resistance were measured and evaluated by water or oil contact angles (WCA or OCA) and roll-off angles, sand abrasion tests and an artificially accelerated ageing test. The results show that the ZNA-treated wood demonstrates a robust superamphiphobic performance under mechanical impact, corrosive liquids, intermittent and transpositional temperatures, and water spray. Additionally, the as-prepared wood sample shows superior ultraviolet resistance.

  19. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moro, Erik A.

    Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offeringmore » robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity-modulated interferometric sensor depends on an appropriate performance function (e.g., desired displacement range, accuracy, robustness, etc.). In this dissertation, the performance limitations of a bundled differential intensity-modulated displacement sensor are analyzed, where the bundling configuration has been designed to optimize performance. The performance limitations of a white light Fabry-Perot displacement sensor are also analyzed. Both these sensors are non-contacting, but they have access to different regions of the performance-space. Further, both these sensors have different degrees of sensitivity to experimental uncertainty. Made in conjunction with careful analysis, the decision of which sensor to deploy need not be an uninformed one.« less

  20. Development of robust building energy demand-side control strategy under uncertainty

    NASA Astrophysics Data System (ADS)

    Kim, Sean Hay

    The potential of carbon emission regulations applied to an individual building will encourage building owners to purchase utility-provided green power or to employ onsite renewable energy generation. As both cases are based on intermittent renewable energy sources, demand side control is a fundamental precondition for maximizing the effectiveness of using renewable energy sources. Such control leads to a reduction in peak demand and/or in energy demand variability, therefore, such reduction in the demand profile eventually enhances the efficiency of an erratic supply of renewable energy. The combined operation of active thermal energy storage and passive building thermal mass has shown substantial improvement in demand-side control performance when compared to current state-of-the-art demand-side control measures. Specifically, "model-based" optimal control for this operation has the potential to significantly increase performance and bring economic advantages. However, due to the uncertainty in certain operating conditions in the field its control effectiveness could be diminished and/or seriously damaged, which results in poor performance. This dissertation pursues improvements of current demand-side controls under uncertainty by proposing a robust supervisory demand-side control strategy that is designed to be immune from uncertainty and perform consistently under uncertain conditions. Uniqueness and superiority of the proposed robust demand-side controls are found as below: a. It is developed based on fundamental studies about uncertainty and a systematic approach to uncertainty analysis. b. It reduces variability of performance under varied conditions, and thus avoids the worst case scenario. c. It is reactive in cases of critical "discrepancies" observed caused by the unpredictable uncertainty that typically scenario uncertainty imposes, and thus it increases control efficiency. This is obtainable by means of i) multi-source composition of weather forecasts including both historical archive and online sources and ii) adaptive Multiple model-based controls (MMC) to mitigate detrimental impacts of varying scenario uncertainties. The proposed robust demand-side control strategy verifies its outstanding demand-side control performance in varied and non-indigenous conditions compared to the existing control strategies including deterministic optimal controls. This result reemphasizes importance of the demand-side control for a building in the global carbon economy. It also demonstrates a capability of risk management of the proposed robust demand-side controls in highly uncertain situations, which eventually attains the maximum benefit in both theoretical and practical perspectives.

  1. Importance analysis for Hudson River PCB transport and fate model parameters using robust sensitivity studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.; Toll, J.; Cothern, K.

    1995-12-31

    The authors have performed robust sensitivity studies of the physico-chemical Hudson River PCB model PCHEPM to identify the parameters and process uncertainties contributing the most to uncertainty in predictions of water column and sediment PCB concentrations, over the time period 1977--1991 in one segment of the lower Hudson River. The term ``robust sensitivity studies`` refers to the use of several sensitivity analysis techniques to obtain a more accurate depiction of the relative importance of different sources of uncertainty. Local sensitivity analysis provided data on the sensitivity of PCB concentration estimates to small perturbations in nominal parameter values. Range sensitivity analysismore » provided information about the magnitude of prediction uncertainty associated with each input uncertainty. Rank correlation analysis indicated which parameters had the most dominant influence on model predictions. Factorial analysis identified important interactions among model parameters. Finally, term analysis looked at the aggregate influence of combinations of parameters representing physico-chemical processes. The authors scored the results of the local and range sensitivity and rank correlation analyses. The authors considered parameters that scored high on two of the three analyses to be important contributors to PCB concentration prediction uncertainty, and treated them probabilistically in simulations. They also treated probabilistically parameters identified in the factorial analysis as interacting with important parameters. The authors used the term analysis to better understand how uncertain parameters were influencing the PCB concentration predictions. The importance analysis allowed us to reduce the number of parameters to be modeled probabilistically from 16 to 5. This reduced the computational complexity of Monte Carlo simulations, and more importantly, provided a more lucid depiction of prediction uncertainty and its causes.« less

  2. Efficient robust reconstruction of dynamic PET activity maps with radioisotope decay constraints.

    PubMed

    Gao, Fei; Liu, Huafeng; Shi, Pengcheng

    2010-01-01

    Dynamic PET imaging performs sequence of data acquisition in order to provide visualization and quantification of physiological changes in specific tissues and organs. The reconstruction of activity maps is generally the first step in dynamic PET. State space Hinfinity approaches have been proved to be a robust method for PET image reconstruction where, however, temporal constraints are not considered during the reconstruction process. In addition, the state space strategies for PET image reconstruction have been computationally prohibitive for practical usage because of the need for matrix inversion. In this paper, we present a minimax formulation of the dynamic PET imaging problem where a radioisotope decay model is employed as physics-based temporal constraints on the photon counts. Furthermore, a robust steady state Hinfinity filter is developed to significantly improve the computational efficiency with minimal loss of accuracy. Experiments are conducted on Monte Carlo simulated image sequences for quantitative analysis and validation.

  3. EVALUATION OF A NEW MEAN SCALED AND MOMENT ADJUSTED TEST STATISTIC FOR SEM.

    PubMed

    Tong, Xiaoxiao; Bentler, Peter M

    2013-01-01

    Recently a new mean scaled and skewness adjusted test statistic was developed for evaluating structural equation models in small samples and with potentially nonnormal data, but this statistic has received only limited evaluation. The performance of this statistic is compared to normal theory maximum likelihood and two well-known robust test statistics. A modification to the Satorra-Bentler scaled statistic is developed for the condition that sample size is smaller than degrees of freedom. The behavior of the four test statistics is evaluated with a Monte Carlo confirmatory factor analysis study that varies seven sample sizes and three distributional conditions obtained using Headrick's fifth-order transformation to nonnormality. The new statistic performs badly in most conditions except under the normal distribution. The goodness-of-fit χ(2) test based on maximum-likelihood estimation performed well under normal distributions as well as under a condition of asymptotic robustness. The Satorra-Bentler scaled test statistic performed best overall, while the mean scaled and variance adjusted test statistic outperformed the others at small and moderate sample sizes under certain distributional conditions.

  4. Towards Rocket Engine Components with Increased Strength and Robust Operating Characteristics

    NASA Technical Reports Server (NTRS)

    Marcu, Bogdan; Hadid, Ali; Lin, Pei; Balcazar, Daniel; Rai, Man Mohan; Dorney, Daniel J.

    2005-01-01

    High-energy rotating machines, powering liquid propellant rocket engines, are subject to various sources of high and low cycle fatigue generated by unsteady flow phenomena. Given the tremendous need for reliability in a sustainable space exploration program, a fundamental change in the design methodology for engine components is required for both launch and space based systems. A design optimization system based on neural-networks has been applied and demonstrated in the redesign of the Space Shuttle Main Engine (SSME) Low Pressure Oxidizer Turbo Pump (LPOTP) turbine nozzle. One objective of the redesign effort was to increase airfoil thickness and thus increase its strength while at the same time detuning the vane natural frequency modes from the vortex shedding frequency. The second objective was to reduce the vortex shedding amplitude. The third objective was to maintain this low shedding amplitude even in the presence of large manufacturing tolerances. All of these objectives were achieved without generating any detrimental effects on the downstream flow through the turbine, and without introducing any penalty in performance. The airfoil redesign and preliminary assessment was performed in the Exploration Technology Directorate at NASA ARC. Boeing/Rocketdyne and NASA MSFC independently performed final CFD assessments of the design. Four different CFD codes were used in this process. They include WIL DCA T/CORSAIR (NASA), FLUENT (commercial), TIDAL (Boeing Rocketdyne) and, a new family (AardvarWPhantom) of CFD analysis codes developed at NASA MSFC employing LOX fluid properties and a Generalized Equation Set formulation. Extensive aerodynamic performance analysis and stress analysis carried out at Boeing Rocketdyne and NASA MSFC indicate that the redesign objectives have been fully met. The paper presents the results of the assessment analysis and discusses the future potential of robust optimal design for rocket engine components.

  5. Strict Constraint Feasibility in Analysis and Design of Uncertain Systems

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Giesy, Daniel P.; Kenny, Sean P.

    2006-01-01

    This paper proposes a methodology for the analysis and design optimization of models subject to parametric uncertainty, where hard inequality constraints are present. Hard constraints are those that must be satisfied for all parameter realizations prescribed by the uncertainty model. Emphasis is given to uncertainty models prescribed by norm-bounded perturbations from a nominal parameter value, i.e., hyper-spheres, and by sets of independently bounded uncertain variables, i.e., hyper-rectangles. These models make it possible to consider sets of parameters having comparable as well as dissimilar levels of uncertainty. Two alternative formulations for hyper-rectangular sets are proposed, one based on a transformation of variables and another based on an infinity norm approach. The suite of tools developed enable us to determine if the satisfaction of hard constraints is feasible by identifying critical combinations of uncertain parameters. Since this practice is performed without sampling or partitioning the parameter space, the resulting assessments of robustness are analytically verifiable. Strategies that enable the comparison of the robustness of competing design alternatives, the approximation of the robust design space, and the systematic search for designs with improved robustness characteristics are also proposed. Since the problem formulation is generic and the solution methods only require standard optimization algorithms for their implementation, the tools developed are applicable to a broad range of problems in several disciplines.

  6. CFD Analysis of Turbo Expander for Cryogenic Refrigeration and Liquefaction Cycles

    NASA Astrophysics Data System (ADS)

    Verma, Rahul; Sam, Ashish Alex; Ghosh, Parthasarathi

    Computational Fluid Dynamics analysis has emerged as a necessary tool for designing of turbomachinery. It helps to understand the various sources of inefficiency through investigation of flow physics of the turbine. In this paper, 3D turbulent flow analysis of a cryogenic turboexpander for small scale air separation was performed using Ansys CFX®. The turboexpander has been designed following assumptions based on meanlineblade generation procedure provided in open literature and good engineering judgement. Through analysis of flow field, modifications and further analysis required to evolve a more robust design procedure, have been suggested.

  7. Gait Event Detection in Real-World Environment for Long-Term Applications: Incorporating Domain Knowledge Into Time-Frequency Analysis.

    PubMed

    Khandelwal, Siddhartha; Wickstrom, Nicholas

    2016-12-01

    Detecting gait events is the key to many gait analysis applications that would benefit from continuous monitoring or long-term analysis. Most gait event detection algorithms using wearable sensors that offer a potential for use in daily living have been developed from data collected in controlled indoor experiments. However, for real-word applications, it is essential that the analysis is carried out in humans' natural environment; that involves different gait speeds, changing walking terrains, varying surface inclinations and regular turns among other factors. Existing domain knowledge in the form of principles or underlying fundamental gait relationships can be utilized to drive and support the data analysis in order to develop robust algorithms that can tackle real-world challenges in gait analysis. This paper presents a novel approach that exhibits how domain knowledge about human gait can be incorporated into time-frequency analysis to detect gait events from long-term accelerometer signals. The accuracy and robustness of the proposed algorithm are validated by experiments done in indoor and outdoor environments with approximately 93 600 gait events in total. The proposed algorithm exhibits consistently high performance scores across all datasets in both, indoor and outdoor environments.

  8. Revisiting Robustness and Evolvability: Evolution in Weighted Genotype Spaces

    PubMed Central

    Partha, Raghavendran; Raman, Karthik

    2014-01-01

    Robustness and evolvability are highly intertwined properties of biological systems. The relationship between these properties determines how biological systems are able to withstand mutations and show variation in response to them. Computational studies have explored the relationship between these two properties using neutral networks of RNA sequences (genotype) and their secondary structures (phenotype) as a model system. However, these studies have assumed every mutation to a sequence to be equally likely; the differences in the likelihood of the occurrence of various mutations, and the consequence of probabilistic nature of the mutations in such a system have previously been ignored. Associating probabilities to mutations essentially results in the weighting of genotype space. We here perform a comparative analysis of weighted and unweighted neutral networks of RNA sequences, and subsequently explore the relationship between robustness and evolvability. We show that assuming an equal likelihood for all mutations (as in an unweighted network), underestimates robustness and overestimates evolvability of a system. In spite of discarding this assumption, we observe that a negative correlation between sequence (genotype) robustness and sequence evolvability persists, and also that structure (phenotype) robustness promotes structure evolvability, as observed in earlier studies using unweighted networks. We also study the effects of base composition bias on robustness and evolvability. Particularly, we explore the association between robustness and evolvability in a sequence space that is AU-rich – sequences with an AU content of 80% or higher, compared to a normal (unbiased) sequence space. We find that evolvability of both sequences and structures in an AU-rich space is lesser compared to the normal space, and robustness higher. We also observe that AU-rich populations evolving on neutral networks of phenotypes, can access less phenotypic variation compared to normal populations evolving on neutral networks. PMID:25390641

  9. Application of Dual-Tree Complex Wavelet Transforms to Burst Detection and RF Fingerprint Classification

    DTIC Science & Technology

    2009-09-01

    prior to Traditional VT pro- iv cessing. This proves to be effective and provides more robust burst detection for −3 ≤ SNR ≤ 10 dB. Performance of a...TD and WD Dimensionality . . . . . 74 4.4 Performance Sensitivity Analysis . . . . . . . . . . . . . 77 4.4.1 Effect of Burst Location Error...78 4.4.2 Effect of Dissimilar Signal SNRs . . . . . . . . . 84 4.4.3 Effect of Dissimilar Signal Types . . . . . . . . 86 V. Conclusion

  10. An analysis of the DuPage County Regional Office of Education physics exam

    NASA Astrophysics Data System (ADS)

    Muehsler, Hans

    In 2009, the DuPage County Regional Office of Education (ROE) tasked volunteer physics teachers with creating a basic skills physics exam reflecting what the participants valued and shared in common across curricula. Mechanics, electricity & magnetism (E&M), and wave phenomena emerged as the primary constructs. The resulting exam was intended for first-exposure physics students. The most recently completed version was psychometrically assessed for unidimensionality within the constructs using a robust WLS structural equation model and for reliability. An item analysis using a 3-PL IRT model was performed on the mechanics items and a 2-PL IRT model was performed on the E&M and waves items; a distractor analysis was also performed on all items. Lastly, differential item functioning (DIF) and differential test functioning (DTF) analyses, using the Mantel-Haenszel procedure, were performed using gender, ethnicity, year in school, ELL, physics level, and math level as groupings.

  11. Robust mislabel logistic regression without modeling mislabel probabilities.

    PubMed

    Hung, Hung; Jou, Zhi-Yu; Huang, Su-Yun

    2018-03-01

    Logistic regression is among the most widely used statistical methods for linear discriminant analysis. In many applications, we only observe possibly mislabeled responses. Fitting a conventional logistic regression can then lead to biased estimation. One common resolution is to fit a mislabel logistic regression model, which takes into consideration of mislabeled responses. Another common method is to adopt a robust M-estimation by down-weighting suspected instances. In this work, we propose a new robust mislabel logistic regression based on γ-divergence. Our proposal possesses two advantageous features: (1) It does not need to model the mislabel probabilities. (2) The minimum γ-divergence estimation leads to a weighted estimating equation without the need to include any bias correction term, that is, it is automatically bias-corrected. These features make the proposed γ-logistic regression more robust in model fitting and more intuitive for model interpretation through a simple weighting scheme. Our method is also easy to implement, and two types of algorithms are included. Simulation studies and the Pima data application are presented to demonstrate the performance of γ-logistic regression. © 2017, The International Biometric Society.

  12. Probabilistic performance-based design for high performance control systems

    NASA Astrophysics Data System (ADS)

    Micheli, Laura; Cao, Liang; Gong, Yongqiang; Cancelli, Alessandro; Laflamme, Simon; Alipour, Alice

    2017-04-01

    High performance control systems (HPCS) are advanced damping systems capable of high damping performance over a wide frequency bandwidth, ideal for mitigation of multi-hazards. They include active, semi-active, and hybrid damping systems. However, HPCS are more expensive than typical passive mitigation systems, rely on power and hardware (e.g., sensors, actuators) to operate, and require maintenance. In this paper, a life cycle cost analysis (LCA) approach is proposed to estimate the economic benefit these systems over the entire life of the structure. The novelty resides in the life cycle cost analysis in the performance based design (PBD) tailored to multi-level wind hazards. This yields a probabilistic performance-based design approach for HPCS. Numerical simulations are conducted on a building located in Boston, MA. LCA are conducted for passive control systems and HPCS, and the concept of controller robustness is demonstrated. Results highlight the promise of the proposed performance-based design procedure.

  13. Robust estimation for partially linear models with large-dimensional covariates

    PubMed Central

    Zhu, LiPing; Li, RunZe; Cui, HengJian

    2014-01-01

    We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon-cave regularization method in the robust estimation procedure to select important covariates from the linear component. We establish the consistency for both the linear and the nonlinear components when the covariate dimension diverges at the rate of o(n), where n is the sample size. We show that the robust estimate of linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate of nonlinear component performs asymptotically as well as if the linear component were known in advance. Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample performance of the proposed procedures. PMID:24955087

  14. Robust estimation for partially linear models with large-dimensional covariates.

    PubMed

    Zhu, LiPing; Li, RunZe; Cui, HengJian

    2013-10-01

    We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon-cave regularization method in the robust estimation procedure to select important covariates from the linear component. We establish the consistency for both the linear and the nonlinear components when the covariate dimension diverges at the rate of [Formula: see text], where n is the sample size. We show that the robust estimate of linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate of nonlinear component performs asymptotically as well as if the linear component were known in advance. Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample performance of the proposed procedures.

  15. Robust Fixed-Structure Controller Synthesis

    NASA Technical Reports Server (NTRS)

    Corrado, Joseph R.; Haddad, Wassim M.; Gupta, Kajal (Technical Monitor)

    2000-01-01

    The ability to develop an integrated control system design methodology for robust high performance controllers satisfying multiple design criteria and real world hardware constraints constitutes a challenging task. The increasingly stringent performance specifications required for controlling such systems necessitates a trade-off between controller complexity and robustness. The principle challenge of the minimal complexity robust control design is to arrive at a tractable control design formulation in spite of the extreme complexity of such systems. Hence, design of minimal complexitY robust controllers for systems in the face of modeling errors has been a major preoccupation of system and control theorists and practitioners for the past several decades.

  16. Mars Exploration Rover Six-Degree-Of-Freedom Entry Trajectory Analysis

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Schoenenberger, Mark; Cheatwood, F. M.

    2003-01-01

    The Mars Exploration Rover mission will be the next opportunity for surface exploration of Mars in January 2004. Two rovers will be delivered to the surface of Mars using the same entry, descent, and landing scenario that was developed and successfully implemented by Mars Pathfinder. This investigation describes the trajectory analysis that was performed for the hypersonic portion of the MER entry. In this analysis, a six-degree-of-freedom trajectory simulation of the entry is performed to determine the entry characteristics of the capsules. In addition, a Monte Carlo analysis is also performed to statistically assess the robustness of the entry design to off-nominal conditions to assure that all entry requirements are satisfied. The results show that the attitude at peak heating and parachute deployment are well within entry limits. In addition, the parachute deployment dynamics pressure and Mach number are also well within the design requirements.

  17. Randomized subspace-based robust principal component analysis for hyperspectral anomaly detection

    NASA Astrophysics Data System (ADS)

    Sun, Weiwei; Yang, Gang; Li, Jialin; Zhang, Dianfa

    2018-01-01

    A randomized subspace-based robust principal component analysis (RSRPCA) method for anomaly detection in hyperspectral imagery (HSI) is proposed. The RSRPCA combines advantages of randomized column subspace and robust principal component analysis (RPCA). It assumes that the background has low-rank properties, and the anomalies are sparse and do not lie in the column subspace of the background. First, RSRPCA implements random sampling to sketch the original HSI dataset from columns and to construct a randomized column subspace of the background. Structured random projections are also adopted to sketch the HSI dataset from rows. Sketching from columns and rows could greatly reduce the computational requirements of RSRPCA. Second, the RSRPCA adopts the columnwise RPCA (CWRPCA) to eliminate negative effects of sampled anomaly pixels and that purifies the previous randomized column subspace by removing sampled anomaly columns. The CWRPCA decomposes the submatrix of the HSI data into a low-rank matrix (i.e., background component), a noisy matrix (i.e., noise component), and a sparse anomaly matrix (i.e., anomaly component) with only a small proportion of nonzero columns. The algorithm of inexact augmented Lagrange multiplier is utilized to optimize the CWRPCA problem and estimate the sparse matrix. Nonzero columns of the sparse anomaly matrix point to sampled anomaly columns in the submatrix. Third, all the pixels are projected onto the complemental subspace of the purified randomized column subspace of the background and the anomaly pixels in the original HSI data are finally exactly located. Several experiments on three real hyperspectral images are carefully designed to investigate the detection performance of RSRPCA, and the results are compared with four state-of-the-art methods. Experimental results show that the proposed RSRPCA outperforms four comparison methods both in detection performance and in computational time.

  18. A newly validated high-performance liquid chromatography method with diode array ultraviolet detection for analysis of the antimalarial drug primaquine in the blood plasma.

    PubMed

    Carmo, Ana Paula Barbosa do; Borborema, Manoella; Ribeiro, Stephan; De-Oliveira, Ana Cecilia Xavier; Paumgartten, Francisco Jose Roma; Moreira, Davyson de Lima

    2017-01-01

    Primaquine (PQ) diphosphate is an 8-aminoquinoline antimalarial drug with unique therapeutic properties. It is the only drug that prevents relapses of Plasmodium vivax or Plasmodium ovale infections. In this study, a fast, sensitive, cost-effective, and robust method for the extraction and high-performance liquid chromatography with diode array ultraviolet detection (HPLC-DAD-UV ) analysis of PQ in the blood plasma was developed and validated. After plasma protein precipitation, PQ was obtained by liquid-liquid extraction and analyzed by HPLC-DAD-UV with a modified-silica cyanopropyl column (250mm × 4.6mm i.d. × 5μm) as the stationary phase and a mixture of acetonitrile and 10mM ammonium acetate buffer (pH = 3.80) (45:55) as the mobile phase. The flow rate was 1.0mL·min-1, the oven temperature was 50OC, and absorbance was measured at 264nm. The method was validated for linearity, intra-day and inter-day precision, accuracy, recovery, and robustness. The detection (LOD) and quantification (LOQ) limits were 1.0 and 3.5ng·mL-1, respectively. The method was used to analyze the plasma of female DBA-2 mice treated with 20mg.kg-1 (oral) PQ diphosphate. By combining a simple, low-cost extraction procedure with a sensitive, precise, accurate, and robust method, it was possible to analyze PQ in small volumes of plasma. The new method presents lower LOD and LOQ limits and requires a shorter analysis time and smaller plasma volumes than those of previously reported HPLC methods with DAD-UV detection. The new validated method is suitable for kinetic studies of PQ in small rodents, including mouse models for the study of malaria.

  19. Improved discrimination between monocotyledonous and dicotyledonous plants for weed control based on the blue-green region of ultraviolet-induced fluorescence spectra.

    PubMed

    Panneton, Bernard; Guillaume, Serge; Roger, Jean-Michel; Samson, Guy

    2010-01-01

    Precision weeding by spot spraying in real time requires sensors to discriminate between weeds and crop without contact. Among the optical based solutions, the ultraviolet (UV) induced fluorescence of the plants appears as a promising alternative. In a first paper, the feasibility of discriminating between corn hybrids, monocotyledonous, and dicotyledonous weeds was demonstrated on the basis of the complete spectra. Some considerations about the different sources of fluorescence oriented the focus to the blue-green fluorescence (BGF) part, ignoring the chlorophyll fluorescence that is inherently more variable in time. This paper investigates the potential of performing weed/crop discrimination on the basis of several large spectral bands in the BGF area. A partial least squares discriminant analysis (PLS-DA) was performed on a set of 1908 spectra of corn and weed plants over 3 years and various growing conditions. The discrimination between monocotyledonous and dicotyledonous plants based on the blue-green fluorescence yielded robust models (classification error between 1.3 and 4.6% for between-year validation). On the basis of the analysis of the PLS-DA model, two large bands were chosen in the blue-green fluorescence zone (400-425 nm and 425-490 nm). A linear discriminant analysis based on the signal from these two bands also provided very robust inter-year results (classification error from 1.5% to 5.2%). The same selection process was applied to discriminate between monocotyledonous weeds and maize but yielded no robust models (up to 50% inter-year error). Further work will be required to solve this problem and provide a complete UV fluorescence based sensor for weed-maize discrimination.

  20. Robust adaptive precision motion control of hydraulic actuators with valve dead-zone compensation.

    PubMed

    Deng, Wenxiang; Yao, Jianyong; Ma, Dawei

    2017-09-01

    This paper addresses the high performance motion control of hydraulic actuators with parametric uncertainties, unmodeled disturbances and unknown valve dead-zone. By constructing a smooth dead-zone inverse, a robust adaptive controller is proposed via backstepping method, in which adaptive law is synthesized to deal with parametric uncertainties and a continuous nonlinear robust control law to suppress unmodeled disturbances. Since the unknown dead-zone parameters can be estimated by adaptive law and then the effect of dead-zone can be compensated effectively via inverse operation, improved tracking performance can be expected. In addition, the disturbance upper bounds can also be updated online by adaptive laws, which increases the controller operability in practice. The Lyapunov based stability analysis shows that excellent asymptotic output tracking with zero steady-state error can be achieved by the developed controller even in the presence of unmodeled disturbance and unknown valve dead-zone. Finally, the proposed control strategy is experimentally tested on a servovalve controlled hydraulic actuation system subjected to an artificial valve dead-zone. Comparative experimental results are obtained to illustrate the effectiveness of the proposed control scheme. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Robust Constrained Optimization Approach to Control Design for International Space Station Centrifuge Rotor Auto Balancing Control System

    NASA Technical Reports Server (NTRS)

    Postma, Barry Dirk

    2005-01-01

    This thesis discusses application of a robust constrained optimization approach to control design to develop an Auto Balancing Controller (ABC) for a centrifuge rotor to be implemented on the International Space Station. The design goal is to minimize a performance objective of the system, while guaranteeing stability and proper performance for a range of uncertain plants. The Performance objective is to minimize the translational response of the centrifuge rotor due to a fixed worst-case rotor imbalance. The robustness constraints are posed with respect to parametric uncertainty in the plant. The proposed approach to control design allows for both of these objectives to be handled within the framework of constrained optimization. The resulting controller achieves acceptable performance and robustness characteristics.

  2. Liver DCE-MRI Registration in Manifold Space Based on Robust Principal Component Analysis.

    PubMed

    Feng, Qianjin; Zhou, Yujia; Li, Xueli; Mei, Yingjie; Lu, Zhentai; Zhang, Yu; Feng, Yanqiu; Liu, Yaqin; Yang, Wei; Chen, Wufan

    2016-09-29

    A technical challenge in the registration of dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging in the liver is intensity variations caused by contrast agents. Such variations lead to the failure of the traditional intensity-based registration method. To address this problem, a manifold-based registration framework for liver DCE-MR time series is proposed. We assume that liver DCE-MR time series are located on a low-dimensional manifold and determine intrinsic similarities between frames. Based on the obtained manifold, the large deformation of two dissimilar images can be decomposed into a series of small deformations between adjacent images on the manifold through gradual deformation of each frame to the template image along the geodesic path. Furthermore, manifold construction is important in automating the selection of the template image, which is an approximation of the geodesic mean. Robust principal component analysis is performed to separate motion components from intensity changes induced by contrast agents; the components caused by motion are used to guide registration in eliminating the effect of contrast enhancement. Visual inspection and quantitative assessment are further performed on clinical dataset registration. Experiments show that the proposed method effectively reduces movements while preserving the topology of contrast-enhancing structures and provides improved registration performance.

  3. Design and Analysis of Map Relative Localization for Access to Hazardous Landing Sites on Mars

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew E.; Aaron, Seth; Cheng, Yang; Montgomery, James; Trawny, Nikolas; Tweddle, Brent; Vaughan, Geoffrey; Zheng, Jason

    2016-01-01

    Human and robotic planetary lander missions require accurate surface relative position knowledge to land near science targets or next to pre-deployed assets. In the absence of GPS, accurate position estimates can be obtained by automatically matching sensor data collected during descent to an on-board map. The Lander Vision System (LVS) that is being developed for Mars landing applications generates landmark matches in descent imagery and combines these with inertial data to estimate vehicle position, velocity and attitude. This paper describes recent LVS design work focused on making the map relative localization algorithms robust to challenging environmental conditions like bland terrain, appearance differences between the map and image and initial input state errors. Improved results are shown using data from a recent LVS field test campaign. This paper also fills a gap in analysis to date by assessing the performance of the LVS with data sets containing significant vertical motion including a complete data set from the Mars Science Laboratory mission, a Mars landing simulation, and field test data taken over multiple altitudes above the same scene. Accurate and robust performance is achieved for all data sets indicating that vertical motion does not play a significant role in position estimation performance.

  4. Design for robustness of unique, multi-component engineering systems

    NASA Astrophysics Data System (ADS)

    Shelton, Kenneth A.

    2007-12-01

    The purpose of this research is to advance the science of conceptual designing for robustness in unique, multi-component engineering systems. Robustness is herein defined as the ability of an engineering system to operate within a desired performance range even if the actual configuration has differences from specifications within specified tolerances. These differences are caused by three sources, namely manufacturing errors, system degradation (operational wear and tear), and parts availability. Unique, multi-component engineering systems are defined as systems produced in unique or very small production numbers. They typically have design and manufacturing costs on the order of billions of dollars, and have multiple, competing performance objectives. Design time for these systems must be minimized due to competition, high manpower costs, long manufacturing times, technology obsolescence, and limited available manpower expertise. Most importantly, design mistakes cannot be easily corrected after the systems are operational. For all these reasons, robustness of these systems is absolutely critical. This research examines the space satellite industry in particular. Although inherent robustness assurance is absolutely critical, it is difficult to achieve in practice. The current state of the art for robustness in the industry is to overdesign components and subsystems with redundancy and margin. The shortfall is that it is not known if the added margins were either necessary or sufficient given the risk management preferences of the designer or engineering system customer. To address this shortcoming, new assessment criteria to evaluate robustness in design concepts have been developed. The criteria are comprised of the "Value Distance", addressing manufacturing errors and system degradation, and "Component Distance", addressing parts availability. They are based on an evolutionary computation format that uses a string of alleles to describe the components in the design concept. These allele values are unitless themselves, but map to both configuration descriptions and attribute values. The Value Distance and Component Distance are metrics that measure the relative differences between two design concepts using the allele values, and all differences in a population of design concepts are calculated relative to a reference design, called the "base design". The base design is the top-ranked member of the population in weighted terms of robustness and performance. Robustness is determined based on the change in multi-objective performance as Value Distance and Component Distance (and thus differences in design) increases. It is assessed as acceptable if differences in design configurations up to specified tolerances result in performance changes that remain within a specified performance range. The design configuration difference tolerances and performance range together define the designer's risk management preferences for the final design concepts. Additionally, a complementary visualization capability was developed, called the "Design Solution Topography". This concept allows the visualization of a population of design concepts, and is a 3-axis plot where each point represents an entire design concept. The axes are the Value Distance, Component Distance and Performance Objective. The key benefit of the Design Solution Topography is that it allows the designer to visually identify and interpret the overall robustness of the current population of design concepts for a particular performance objective. In a multi-objective problem, each performance objective has its own Design Solution Topography view. These new concepts are implemented in an evolutionary computation-based conceptual designing method called the "Design for Robustness Method" that produces robust design concepts. The design procedures associated with this method enable designers to evaluate and ensure robustness in selected designs that also perform within a desired performance range. The method uses an evolutionary computation-based procedure to generate populations of large numbers of alternative design concepts, which are assessed for robustness using the Value Distance, Component Distance and Design Solution Topography procedures. The Design for Robustness Method provides a working conceptual designing structure in which to implement and gain the benefits of these new concepts. In the included experiments, the method was used on several mathematical examples to demonstrate feasibility, which showed favorable results as compared to existing known methods. Furthermore, it was tested on a real-world satellite conceptual designing problem to illustrate the applicability and benefits to industry. Risk management insights were demonstrated for the robustness-related issues of manufacturing errors, operational degradation, parts availability, and impacts based on selections of particular types of components.

  5. Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis

    PubMed Central

    Dijkstra, Annereinou R.; Alkema, Wynand; Starrenburg, Marjo J. C.; van Hijum, Sacha A. F. T.; Bron, Peter A.

    2016-01-01

    Recently, we demonstrated that fermentation conditions have a strong impact on subsequent survival of Lactococcus lactis strain MG1363 during heat and oxidative stress, two important parameters during spray drying. Moreover, employment of a transcriptome-phenotype matching approach revealed groups of genes associated with robustness towards heat and/or oxidative stress. To investigate if other strains have similar or distinct transcriptome signatures for robustness, we applied an identical transcriptome-robustness phenotype matching approach on the L. lactis strains IL1403, KF147 and SK11, which have previously been demonstrated to display highly diverse robustness phenotypes. These strains were subjected to an identical fermentation regime as was performed earlier for strain MG1363 and consisted of twelve conditions, varying in the level of salt and/or oxygen, as well as fermentation temperature and pH. In the exponential phase of growth, cells were harvested for transcriptome analysis and assessment of heat and oxidative stress survival phenotypes. The variation in fermentation conditions resulted in differences in heat and oxidative stress survival of up to five 10-log units. Effects of the fermentation conditions on stress survival of the L. lactis strains were typically strain-dependent, although the fermentation conditions had mainly similar effects on the growth characteristics of the different strains. By association of the transcriptomes and robustness phenotypes highly strain-specific transcriptome signatures for robustness towards heat and oxidative stress were identified, indicating that multiple mechanisms exist to increase robustness and, as a consequence, robustness of each strain requires individual optimization. However, a relatively small overlap in the transcriptome responses of the strains was also identified and this generic transcriptome signature included genes previously associated with stress (ctsR and lplL) and novel genes, including nanE and genes encoding transport proteins. The transcript levels of these genes can function as indicators of robustness and could aid in selection of fermentation parameters, potentially resulting in more optimal robustness during spray drying. PMID:27973578

  6. Robust decentralized control laws for the ACES structure

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; Phillips, Douglas J.; Hyland, David C.

    1991-01-01

    Control system design for the Active Control Technique Evaluation for Spacecraft (ACES) structure at NASA Marshall Space Flight Center is discussed. The primary objective of this experiment is to design controllers that provide substantial reduction of the line-of-sight pointing errors. Satisfaction of this objective requires the controllers to attenuate beam vibration significantly. The primary method chosen for control design is the optimal projection approach for uncertain systems (OPUS). The OPUS design process allows the simultaneous tradeoff of five fundamental issues in control design: actuator sizing, sensor accuracy, controller order, robustness, and system performance. A brief description of the basic ACES configuration is given. The development of the models used for control design and control design for eight system loops that were selected by analysis of test data collected from the structure are discussed. Experimental results showing that very significant performance improvement is achieved when all eight feedback loops are closed are presented.

  7. DSP-based adaptive backstepping using the tracking errors for high-performance sensorless speed control of induction motor drive.

    PubMed

    Zaafouri, Abderrahmen; Regaya, Chiheb Ben; Azza, Hechmi Ben; Châari, Abdelkader

    2016-01-01

    This paper presents a modified structure of the backstepping nonlinear control of the induction motor (IM) fitted with an adaptive backstepping speed observer. The control design is based on the backstepping technique complemented by the introduction of integral tracking errors action to improve its robustness. Unlike other research performed on backstepping control with integral action, the control law developed in this paper does not propose the increase of the number of system state so as not increase the complexity of differential equations resolution. The digital simulation and experimental results show the effectiveness of the proposed control compared to the conventional PI control. The results analysis shows the characteristic robustness of the adaptive control to disturbances of the load, the speed variation and low speed. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Advances in Modal Analysis Using a Robust and Multiscale Method

    NASA Astrophysics Data System (ADS)

    Picard, Cécile; Frisson, Christian; Faure, François; Drettakis, George; Kry, Paul G.

    2010-12-01

    This paper presents a new approach to modal synthesis for rendering sounds of virtual objects. We propose a generic method that preserves sound variety across the surface of an object at different scales of resolution and for a variety of complex geometries. The technique performs automatic voxelization of a surface model and automatic tuning of the parameters of hexahedral finite elements, based on the distribution of material in each cell. The voxelization is performed using a sparse regular grid embedding of the object, which permits the construction of plausible lower resolution approximations of the modal model. We can compute the audible impulse response of a variety of objects. Our solution is robust and can handle nonmanifold geometries that include both volumetric and surface parts. We present a system which allows us to manipulate and tune sounding objects in an appropriate way for games, training simulations, and other interactive virtual environments.

  9. Autonomous facial recognition system inspired by human visual system based logarithmical image visualization technique

    NASA Astrophysics Data System (ADS)

    Wan, Qianwen; Panetta, Karen; Agaian, Sos

    2017-05-01

    Autonomous facial recognition system is widely used in real-life applications, such as homeland border security, law enforcement identification and authentication, and video-based surveillance analysis. Issues like low image quality, non-uniform illumination as well as variations in poses and facial expressions can impair the performance of recognition systems. To address the non-uniform illumination challenge, we present a novel robust autonomous facial recognition system inspired by the human visual system based, so called, logarithmical image visualization technique. In this paper, the proposed method, for the first time, utilizes the logarithmical image visualization technique coupled with the local binary pattern to perform discriminative feature extraction for facial recognition system. The Yale database, the Yale-B database and the ATT database are used for computer simulation accuracy and efficiency testing. The extensive computer simulation demonstrates the method's efficiency, accuracy, and robustness of illumination invariance for facial recognition.

  10. RootGraph: a graphic optimization tool for automated image analysis of plant roots

    PubMed Central

    Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N.; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J.

    2015-01-01

    This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions. PMID:26224880

  11. Input-output Transfer Function Analysis of a Photometer Circuit Based on an Operational Amplifier.

    PubMed

    Hernandez, Wilmar

    2008-01-09

    In this paper an input-output transfer function analysis based on the frequencyresponse of a photometer circuit based on operational amplifier (op amp) is carried out. Opamps are universally used in monitoring photodetectors and there are a variety of amplifierconnections for this purpose. However, the electronic circuits that are usually used to carryout the signal treatment in photometer circuits introduce some limitations in theperformance of the photometers that influence the selection of the op amps and otherelectronic devices. For example, the bandwidth, slew-rate, noise, input impedance and gain,among other characteristics of the op amp, are often the performance limiting factors ofphotometer circuits. For this reason, in this paper a comparative analysis between twophotodiode amplifier circuits is carried out. One circuit is based on a conventional currentto-voltage converter connection and the other circuit is based on a robust current-to-voltageconverter connection. The results are satisfactory and show that the photodiode amplifierperformance can be improved by using robust control techniques.

  12. Robust analysis method for acoustic properties of biological specimens measured by acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Arakawa, Mototaka; Mori, Shohei; Kanai, Hiroshi; Nagaoka, Ryo; Horie, Miki; Kobayashi, Kazuto; Saijo, Yoshifumi

    2018-07-01

    We proposed a robust analysis method for the acoustic properties of biological specimens measured by acoustic microscopy. Reflected pulse signals from the substrate and specimen were converted into frequency domains to obtain sound speed and thickness. To obtain the average acoustic properties of the specimen, parabolic approximation was performed to determine the frequency at which the amplitude of the normalized spectrum became maximum or minimum, considering the sound speed and thickness of the specimens and the operating frequency of the ultrasonic device used. The proposed method was demonstrated for a specimen of malignant melanoma of the skin by using acoustic microscopy attaching a concave transducer with a center frequency of 80 MHz. The variations in sound speed and thickness analyzed by the proposed method were markedly smaller than those analyzed by the method based on an autoregressive model. The proposed method is useful for the analysis of the acoustic properties of bilogical tissues or cells.

  13. Design optimization for cost and quality: The robust design approach

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1990-01-01

    Designing reliable, low cost, and operable space systems has become the key to future space operations. Designing high quality space systems at low cost is an economic and technological challenge to the designer. A systematic and efficient way to meet this challenge is a new method of design optimization for performance, quality, and cost, called Robust Design. Robust Design is an approach for design optimization. It consists of: making system performance insensitive to material and subsystem variation, thus allowing the use of less costly materials and components; making designs less sensitive to the variations in the operating environment, thus improving reliability and reducing operating costs; and using a new structured development process so that engineering time is used most productively. The objective in Robust Design is to select the best combination of controllable design parameters so that the system is most robust to uncontrollable noise factors. The robust design methodology uses a mathematical tool called an orthogonal array, from design of experiments theory, to study a large number of decision variables with a significantly small number of experiments. Robust design also uses a statistical measure of performance, called a signal-to-noise ratio, from electrical control theory, to evaluate the level of performance and the effect of noise factors. The purpose is to investigate the Robust Design methodology for improving quality and cost, demonstrate its application by the use of an example, and suggest its use as an integral part of space system design process.

  14. Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline

    PubMed Central

    Rahmatallah, Yasir; Emmert-Streib, Frank

    2016-01-01

    Transcriptome sequencing (RNA-seq) is gradually replacing microarrays for high-throughput studies of gene expression. The main challenge of analyzing microarray data is not in finding differentially expressed genes, but in gaining insights into the biological processes underlying phenotypic differences. To interpret experimental results from microarrays, gene set analysis (GSA) has become the method of choice, in particular because it incorporates pre-existing biological knowledge (in a form of functionally related gene sets) into the analysis. Here we provide a brief review of several statistically different GSA approaches (competitive and self-contained) that can be adapted from microarrays practice as well as those specifically designed for RNA-seq. We evaluate their performance (in terms of Type I error rate, power, robustness to the sample size and heterogeneity, as well as the sensitivity to different types of selection biases) on simulated and real RNA-seq data. Not surprisingly, the performance of various GSA approaches depends only on the statistical hypothesis they test and does not depend on whether the test was developed for microarrays or RNA-seq data. Interestingly, we found that competitive methods have lower power as well as robustness to the samples heterogeneity than self-contained methods, leading to poor results reproducibility. We also found that the power of unsupervised competitive methods depends on the balance between up- and down-regulated genes in tested gene sets. These properties of competitive methods have been overlooked before. Our evaluation provides a concise guideline for selecting GSA approaches, best performing under particular experimental settings in the context of RNA-seq. PMID:26342128

  15. Using SEM to Analyze Complex Survey Data: A Comparison between Design-Based Single-Level and Model-Based Multilevel Approaches

    ERIC Educational Resources Information Center

    Wu, Jiun-Yu; Kwok, Oi-man

    2012-01-01

    Both ad-hoc robust sandwich standard error estimators (design-based approach) and multilevel analysis (model-based approach) are commonly used for analyzing complex survey data with nonindependent observations. Although these 2 approaches perform equally well on analyzing complex survey data with equal between- and within-level model structures…

  16. Behavior analysis of CMOS D flip-flops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, H.J.; Johnston, C.A.

    1989-10-01

    In this paper, the authors analyze two {ital D} flip-flops (DFF's) generally considered to be the fastest (and most widely used), and compare their speed performance and their robustness against clock skew when a two-phase clocking scheme is applied. The effect of clock skew on their speed and proper logic operation is analyzed and verified with SPICE simulation.

  17. Ceramic Integration Technologies for Energy and Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Asthana, Ralph N.

    2007-01-01

    Robust and affordable integration technologies for advanced ceramics are required to improve the performance, reliability, efficiency, and durability of components, devices, and systems based on them in a wide variety of energy, aerospace, and environmental applications. Many thermochemical and thermomechanical factors including joint design, analysis, and optimization must be considered in integration of similar and dissimilar material systems.

  18. Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes.

    PubMed

    Cook, James P; Mahajan, Anubha; Morris, Andrew P

    2017-02-01

    Linear mixed models are increasingly used for the analysis of genome-wide association studies (GWAS) of binary phenotypes because they can efficiently and robustly account for population stratification and relatedness through inclusion of random effects for a genetic relationship matrix. However, the utility of linear (mixed) models in the context of meta-analysis of GWAS of binary phenotypes has not been previously explored. In this investigation, we present simulations to compare the performance of linear and logistic regression models under alternative weighting schemes in a fixed-effects meta-analysis framework, considering designs that incorporate variable case-control imbalance, confounding factors and population stratification. Our results demonstrate that linear models can be used for meta-analysis of GWAS of binary phenotypes, without loss of power, even in the presence of extreme case-control imbalance, provided that one of the following schemes is used: (i) effective sample size weighting of Z-scores or (ii) inverse-variance weighting of allelic effect sizes after conversion onto the log-odds scale. Our conclusions thus provide essential recommendations for the development of robust protocols for meta-analysis of binary phenotypes with linear models.

  19. Multivariable control of the Space Shuttle remote manipulator system using H2 and H(infinity) optimization. M.S. Thesis - Massachusetts Inst. of Tech.

    NASA Technical Reports Server (NTRS)

    Prakash, OM, II

    1991-01-01

    Three linear controllers are desiged to regulate the end effector of the Space Shuttle Remote Manipulator System (SRMS) operating in Position Hold Mode. In this mode of operation, jet firings of the Orbiter can be treated as disturbances while the controller tries to keep the end effector stationary in an orbiter-fixed reference frame. The three design techniques used include: the Linear Quadratic Regulator (LQR), H2 optimization, and H-infinity optimization. The nonlinear SRMS is linearized by modelling the effects of the significant nonlinearities as uncertain parameters. Each regulator design is evaluated for robust stability in light of the parametric uncertanties using both the small gain theorem with an H-infinity norm and the less conservative micro-analysis test. All three regulator designs offer significant improvement over the current system on the nominal plant. Unfortunately, even after dropping performance requirements and designing exclusively for robust stability, robust stability cannot be achieved. The SRMS suffers from lightly damped poles with real parametric uncertainties. Such a system renders the micro-analysis test, which allows for complex peturbations, too conservative.

  20. Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory

    PubMed Central

    Tao, Qing

    2017-01-01

    Online time series prediction is the mainstream method in a wide range of fields, ranging from speech analysis and noise cancelation to stock market analysis. However, the data often contains many outliers with the increasing length of time series in real world. These outliers can mislead the learned model if treated as normal points in the process of prediction. To address this issue, in this paper, we propose a robust and adaptive online gradient learning method, RoAdam (Robust Adam), for long short-term memory (LSTM) to predict time series with outliers. This method tunes the learning rate of the stochastic gradient algorithm adaptively in the process of prediction, which reduces the adverse effect of outliers. It tracks the relative prediction error of the loss function with a weighted average through modifying Adam, a popular stochastic gradient method algorithm for training deep neural networks. In our algorithm, the large value of the relative prediction error corresponds to a small learning rate, and vice versa. The experiments on both synthetic data and real time series show that our method achieves better performance compared to the existing methods based on LSTM. PMID:29391864

  1. Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory.

    PubMed

    Yang, Haimin; Pan, Zhisong; Tao, Qing

    2017-01-01

    Online time series prediction is the mainstream method in a wide range of fields, ranging from speech analysis and noise cancelation to stock market analysis. However, the data often contains many outliers with the increasing length of time series in real world. These outliers can mislead the learned model if treated as normal points in the process of prediction. To address this issue, in this paper, we propose a robust and adaptive online gradient learning method, RoAdam (Robust Adam), for long short-term memory (LSTM) to predict time series with outliers. This method tunes the learning rate of the stochastic gradient algorithm adaptively in the process of prediction, which reduces the adverse effect of outliers. It tracks the relative prediction error of the loss function with a weighted average through modifying Adam, a popular stochastic gradient method algorithm for training deep neural networks. In our algorithm, the large value of the relative prediction error corresponds to a small learning rate, and vice versa. The experiments on both synthetic data and real time series show that our method achieves better performance compared to the existing methods based on LSTM.

  2. Systems design analysis applied to launch vehicle configuration

    NASA Technical Reports Server (NTRS)

    Ryan, R.; Verderaime, V.

    1993-01-01

    As emphasis shifts from optimum-performance aerospace systems to least lift-cycle costs, systems designs must seek, adapt, and innovate cost improvement techniques in design through operations. The systems design process of concept, definition, and design was assessed for the types and flow of total quality management techniques that may be applicable in a launch vehicle systems design analysis. Techniques discussed are task ordering, quality leverage, concurrent engineering, Pareto's principle, robustness, quality function deployment, criteria, and others. These cost oriented techniques are as applicable to aerospace systems design analysis as to any large commercial system.

  3. Analysis of polonium-210 in food products and bioassay samples by isotope-dilution alpha spectrometry.

    PubMed

    Lin, Zhichao; Wu, Zhongyu

    2009-05-01

    A rapid and reliable radiochemical method coupled with a simple and compact plating apparatus was developed, validated, and applied for the analysis of (210)Po in variety of food products and bioassay samples. The method performance characteristics, including accuracy, precision, robustness, and specificity, were evaluated along with a detailed measurement uncertainty analysis. With high Po recovery, improved energy resolution, and effective removal of interfering elements by chromatographic extraction, the overall method accuracy was determined to be better than 5% with measurement precision of 10%, at 95% confidence level.

  4. Correcting systematic inflation in genetic association tests that consider interaction effects: application to a genome-wide association study of posttraumatic stress disorder.

    PubMed

    Almli, Lynn M; Duncan, Richard; Feng, Hao; Ghosh, Debashis; Binder, Elisabeth B; Bradley, Bekh; Ressler, Kerry J; Conneely, Karen N; Epstein, Michael P

    2014-12-01

    Genetic association studies of psychiatric outcomes often consider interactions with environmental exposures and, in particular, apply tests that jointly consider gene and gene-environment interaction effects for analysis. Using a genome-wide association study (GWAS) of posttraumatic stress disorder (PTSD), we report that heteroscedasticity (defined as variability in outcome that differs by the value of the environmental exposure) can invalidate traditional joint tests of gene and gene-environment interaction. To identify the cause of bias in traditional joint tests of gene and gene-environment interaction in a PTSD GWAS and determine whether proposed robust joint tests are insensitive to this problem. The PTSD GWAS data set consisted of 3359 individuals (978 men and 2381 women) from the Grady Trauma Project (GTP), a cohort study from Atlanta, Georgia. The GTP performed genome-wide genotyping of participants and collected environmental exposures using the Childhood Trauma Questionnaire and Trauma Experiences Inventory. We performed joint interaction testing of the Beck Depression Inventory and modified PTSD Symptom Scale in the GTP GWAS. We assessed systematic bias in our interaction analyses using quantile-quantile plots and genome-wide inflation factors. Application of the traditional joint interaction test to the GTP GWAS yielded systematic inflation across different outcomes and environmental exposures (inflation-factor estimates ranging from 1.07 to 1.21), whereas application of the robust joint test to the same data set yielded no such inflation (inflation-factor estimates ranging from 1.01 to 1.02). Simulated data further revealed that the robust joint test is valid in different heteroscedasticity models, whereas the traditional joint test is invalid. The robust joint test also has power similar to the traditional joint test when heteroscedasticity is not an issue. We believe the robust joint test should be used in candidate-gene studies and GWASs of psychiatric outcomes that consider environmental interactions. To make the procedure useful for applied investigators, we created a software tool that can be called from the popular PLINK package for analysis.

  5. Correcting Systematic Inflation in Genetic Association Tests That Consider Interaction Effects

    PubMed Central

    Almli, Lynn M.; Duncan, Richard; Feng, Hao; Ghosh, Debashis; Binder, Elisabeth B.; Bradley, Bekh; Ressler, Kerry J.; Conneely, Karen N.; Epstein, Michael P.

    2015-01-01

    IMPORTANCE Genetic association studies of psychiatric outcomes often consider interactions with environmental exposures and, in particular, apply tests that jointly consider gene and gene-environment interaction effects for analysis. Using a genome-wide association study (GWAS) of posttraumatic stress disorder (PTSD), we report that heteroscedasticity (defined as variability in outcome that differs by the value of the environmental exposure) can invalidate traditional joint tests of gene and gene-environment interaction. OBJECTIVES To identify the cause of bias in traditional joint tests of gene and gene-environment interaction in a PTSD GWAS and determine whether proposed robust joint tests are insensitive to this problem. DESIGN, SETTING, AND PARTICIPANTS The PTSD GWAS data set consisted of 3359 individuals (978 men and 2381 women) from the Grady Trauma Project (GTP), a cohort study from Atlanta, Georgia. The GTP performed genome-wide genotyping of participants and collected environmental exposures using the Childhood Trauma Questionnaire and Trauma Experiences Inventory. MAIN OUTCOMES AND MEASURES We performed joint interaction testing of the Beck Depression Inventory and modified PTSD Symptom Scale in the GTP GWAS. We assessed systematic bias in our interaction analyses using quantile-quantile plots and genome-wide inflation factors. RESULTS Application of the traditional joint interaction test to the GTP GWAS yielded systematic inflation across different outcomes and environmental exposures (inflation-factor estimates ranging from 1.07 to 1.21), whereas application of the robust joint test to the same data set yielded no such inflation (inflation-factor estimates ranging from 1.01 to 1.02). Simulated data further revealed that the robust joint test is valid in different heteroscedasticity models, whereas the traditional joint test is invalid. The robust joint test also has power similar to the traditional joint test when heteroscedasticity is not an issue. CONCLUSIONS AND RELEVANCE We believe the robust joint test should be used in candidate-gene studies and GWASs of psychiatric outcomes that consider environmental interactions. To make the procedure useful for applied investigators, we created a software tool that can be called from the popular PLINK package for analysis. PMID:25354142

  6. A robust anonymous biometric-based authenticated key agreement scheme for multi-server environments

    PubMed Central

    Huang, Yuanfei; Ma, Fangchao

    2017-01-01

    In order to improve the security in remote authentication systems, numerous biometric-based authentication schemes using smart cards have been proposed. Recently, Moon et al. presented an authentication scheme to remedy the flaws of Lu et al.’s scheme, and claimed that their improved protocol supports the required security properties. Unfortunately, we found that Moon et al.’s scheme still has weaknesses. In this paper, we show that Moon et al.’s scheme is vulnerable to insider attack, server spoofing attack, user impersonation attack and guessing attack. Furthermore, we propose a robust anonymous multi-server authentication scheme using public key encryption to remove the aforementioned problems. From the subsequent formal and informal security analysis, we demonstrate that our proposed scheme provides strong mutual authentication and satisfies the desirable security requirements. The functional and performance analysis shows that the improved scheme has the best secure functionality and is computational efficient. PMID:29121050

  7. A robust anonymous biometric-based authenticated key agreement scheme for multi-server environments.

    PubMed

    Guo, Hua; Wang, Pei; Zhang, Xiyong; Huang, Yuanfei; Ma, Fangchao

    2017-01-01

    In order to improve the security in remote authentication systems, numerous biometric-based authentication schemes using smart cards have been proposed. Recently, Moon et al. presented an authentication scheme to remedy the flaws of Lu et al.'s scheme, and claimed that their improved protocol supports the required security properties. Unfortunately, we found that Moon et al.'s scheme still has weaknesses. In this paper, we show that Moon et al.'s scheme is vulnerable to insider attack, server spoofing attack, user impersonation attack and guessing attack. Furthermore, we propose a robust anonymous multi-server authentication scheme using public key encryption to remove the aforementioned problems. From the subsequent formal and informal security analysis, we demonstrate that our proposed scheme provides strong mutual authentication and satisfies the desirable security requirements. The functional and performance analysis shows that the improved scheme has the best secure functionality and is computational efficient.

  8. Structural design considerations for micromachined solid-oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Srikar, V. T.; Turner, Kevin T.; Andrew Ie, Tze Yung; Spearing, S. Mark

    Micromachined solid-oxide fuel cells (μSOFCs) are among a class of devices being investigated for portable power generation. Optimization of the performance and reliability of such devices requires robust, scale-dependent, design methodologies. In this first analysis, we consider the structural design of planar, electrolyte-supported, μSOFCs from the viewpoints of electrochemical performance, mechanical stability and reliability, and thermal behavior. The effect of electrolyte thickness on fuel cell performance is evaluated using a simple analytical model. Design diagrams that account explicitly for thermal and intrinsic residual stresses are presented to identify geometries that are resistant to fracture and buckling. Analysis of energy loss due to in-plane heat conduction highlights the importance of efficient thermal isolation in microscale fuel cell design.

  9. Advancements in robust algorithm formulation for speaker identification of whispered speech

    NASA Astrophysics Data System (ADS)

    Fan, Xing

    Whispered speech is an alternative speech production mode from neutral speech, which is used by talkers intentionally in natural conversational scenarios to protect privacy and to avoid certain content from being overheard/made public. Due to the profound differences between whispered and neutral speech in production mechanism and the absence of whispered adaptation data, the performance of speaker identification systems trained with neutral speech degrades significantly. This dissertation therefore focuses on developing a robust closed-set speaker recognition system for whispered speech by using no or limited whispered adaptation data from non-target speakers. This dissertation proposes the concept of "High''/"Low'' performance whispered data for the purpose of speaker identification. A variety of acoustic properties are identified that contribute to the quality of whispered data. An acoustic analysis is also conducted to compare the phoneme/speaker dependency of the differences between whispered and neutral data in the feature domain. The observations from those acoustic analysis are new in this area and also serve as a guidance for developing robust speaker identification systems for whispered speech. This dissertation further proposes two systems for speaker identification of whispered speech. One system focuses on front-end processing. A two-dimensional feature space is proposed to search for "Low''-quality performance based whispered utterances and separate feature mapping functions are applied to vowels and consonants respectively in order to retain the speaker's information shared between whispered and neutral speech. The other system focuses on speech-mode-independent model training. The proposed method generates pseudo whispered features from neutral features by using the statistical information contained in a whispered Universal Background model (UBM) trained from extra collected whispered data from non-target speakers. Four modeling methods are proposed for the transformation estimation in order to generate the pseudo whispered features. Both of the above two systems demonstrate a significant improvement over the baseline system on the evaluation data. This dissertation has therefore contributed to providing a scientific understanding of the differences between whispered and neutral speech as well as improved front-end processing and modeling method for speaker identification of whispered speech. Such advancements will ultimately contribute to improve the robustness of speech processing systems.

  10. Orion Rendezvous, Proximity Operations, and Docking Design and Analysis

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Hanak, F. Chad; Spehar, Pete; Clark, Fred D.; Jackson, Mark

    2007-01-01

    The Orion vehicle will be required to perform rendezvous, proximity operations, and docking with the International Space Station (ISS) and the Earth Departure Stage (EDS)/Lunar Landing Vehicle (LLV) stack in Low Earth Orbit (LEO) as well as with the Lunar Landing Vehicle in Low Lunar Orbit (LLO). The RPOD system, which consists of sensors, actuators, and software is being designed to be flexible and robust enough to perform RPOD with different vehicles in different environments. This paper will describe the design and the analysis which has been performed to date to allow the vehicle to perform its mission. Since the RPOD design touches on many areas such as sensors selection and placement, trajectory design, navigation performance, and effector performance, it is inherently a systems design problem. This paper will address each of these issues in order to demonstrate how the Orion RPOD has been designed to accommodate and meet all the requirements levied on the system.

  11. Developing appropriate methods for cost-effectiveness analysis of cluster randomized trials.

    PubMed

    Gomes, Manuel; Ng, Edmond S-W; Grieve, Richard; Nixon, Richard; Carpenter, James; Thompson, Simon G

    2012-01-01

    Cost-effectiveness analyses (CEAs) may use data from cluster randomized trials (CRTs), where the unit of randomization is the cluster, not the individual. However, most studies use analytical methods that ignore clustering. This article compares alternative statistical methods for accommodating clustering in CEAs of CRTs. Our simulation study compared the performance of statistical methods for CEAs of CRTs with 2 treatment arms. The study considered a method that ignored clustering--seemingly unrelated regression (SUR) without a robust standard error (SE)--and 4 methods that recognized clustering--SUR and generalized estimating equations (GEEs), both with robust SE, a "2-stage" nonparametric bootstrap (TSB) with shrinkage correction, and a multilevel model (MLM). The base case assumed CRTs with moderate numbers of balanced clusters (20 per arm) and normally distributed costs. Other scenarios included CRTs with few clusters, imbalanced cluster sizes, and skewed costs. Performance was reported as bias, root mean squared error (rMSE), and confidence interval (CI) coverage for estimating incremental net benefits (INBs). We also compared the methods in a case study. Each method reported low levels of bias. Without the robust SE, SUR gave poor CI coverage (base case: 0.89 v. nominal level: 0.95). The MLM and TSB performed well in each scenario (CI coverage, 0.92-0.95). With few clusters, the GEE and SUR (with robust SE) had coverage below 0.90. In the case study, the mean INBs were similar across all methods, but ignoring clustering underestimated statistical uncertainty and the value of further research. MLMs and the TSB are appropriate analytical methods for CEAs of CRTs with the characteristics described. SUR and GEE are not recommended for studies with few clusters.

  12. Developing Appropriate Methods for Cost-Effectiveness Analysis of Cluster Randomized Trials

    PubMed Central

    Gomes, Manuel; Ng, Edmond S.-W.; Nixon, Richard; Carpenter, James; Thompson, Simon G.

    2012-01-01

    Aim. Cost-effectiveness analyses (CEAs) may use data from cluster randomized trials (CRTs), where the unit of randomization is the cluster, not the individual. However, most studies use analytical methods that ignore clustering. This article compares alternative statistical methods for accommodating clustering in CEAs of CRTs. Methods. Our simulation study compared the performance of statistical methods for CEAs of CRTs with 2 treatment arms. The study considered a method that ignored clustering—seemingly unrelated regression (SUR) without a robust standard error (SE)—and 4 methods that recognized clustering—SUR and generalized estimating equations (GEEs), both with robust SE, a “2-stage” nonparametric bootstrap (TSB) with shrinkage correction, and a multilevel model (MLM). The base case assumed CRTs with moderate numbers of balanced clusters (20 per arm) and normally distributed costs. Other scenarios included CRTs with few clusters, imbalanced cluster sizes, and skewed costs. Performance was reported as bias, root mean squared error (rMSE), and confidence interval (CI) coverage for estimating incremental net benefits (INBs). We also compared the methods in a case study. Results. Each method reported low levels of bias. Without the robust SE, SUR gave poor CI coverage (base case: 0.89 v. nominal level: 0.95). The MLM and TSB performed well in each scenario (CI coverage, 0.92–0.95). With few clusters, the GEE and SUR (with robust SE) had coverage below 0.90. In the case study, the mean INBs were similar across all methods, but ignoring clustering underestimated statistical uncertainty and the value of further research. Conclusions. MLMs and the TSB are appropriate analytical methods for CEAs of CRTs with the characteristics described. SUR and GEE are not recommended for studies with few clusters. PMID:22016450

  13. Preliminary assessment of the robustness of dynamic inversion based flight control laws

    NASA Technical Reports Server (NTRS)

    Snell, S. A.

    1992-01-01

    Dynamic-inversion-based flight control laws present an attractive alternative to conventional gain-scheduled designs for high angle-of-attack maneuvering, where nonlinearities dominate the dynamics. Dynamic inversion is easily applied to the aircraft dynamics requiring a knowledge of the nonlinear equations of motion alone, rather than an extensive set of linearizations. However, the robustness properties of the dynamic inversion are questionable especially when considering the uncertainties involved with the aerodynamic database during post-stall flight. This paper presents a simple analysis and some preliminary results of simulations with a perturbed database. It is shown that incorporating integrators into the control loops helps to improve the performance in the presence of these perturbations.

  14. Robustness for slope stability modelling under deep uncertainty

    NASA Astrophysics Data System (ADS)

    Almeida, Susana; Holcombe, Liz; Pianosi, Francesca; Wagener, Thorsten

    2015-04-01

    Landslides can have large negative societal and economic impacts, such as loss of life and damage to infrastructure. However, the ability of slope stability assessment to guide management is limited by high levels of uncertainty in model predictions. Many of these uncertainties cannot be easily quantified, such as those linked to climate change and other future socio-economic conditions, restricting the usefulness of traditional decision analysis tools. Deep uncertainty can be managed more effectively by developing robust, but not necessarily optimal, policies that are expected to perform adequately under a wide range of future conditions. Robust strategies are particularly valuable when the consequences of taking a wrong decision are high as is often the case of when managing natural hazard risks such as landslides. In our work a physically based numerical model of hydrologically induced slope instability (the Combined Hydrology and Stability Model - CHASM) is applied together with robust decision making to evaluate the most important uncertainties (storm events, groundwater conditions, surface cover, slope geometry, material strata and geotechnical properties) affecting slope stability. Specifically, impacts of climate change on long-term slope stability are incorporated, accounting for the deep uncertainty in future climate projections. Our findings highlight the potential of robust decision making to aid decision support for landslide hazard reduction and risk management under conditions of deep uncertainty.

  15. On Statistical Analysis of Neuroimages with Imperfect Registration

    PubMed Central

    Kim, Won Hwa; Ravi, Sathya N.; Johnson, Sterling C.; Okonkwo, Ozioma C.; Singh, Vikas

    2016-01-01

    A variety of studies in neuroscience/neuroimaging seek to perform statistical inference on the acquired brain image scans for diagnosis as well as understanding the pathological manifestation of diseases. To do so, an important first step is to register (or co-register) all of the image data into a common coordinate system. This permits meaningful comparison of the intensities at each voxel across groups (e.g., diseased versus healthy) to evaluate the effects of the disease and/or use machine learning algorithms in a subsequent step. But errors in the underlying registration make this problematic, they either decrease the statistical power or make the follow-up inference tasks less effective/accurate. In this paper, we derive a novel algorithm which offers immunity to local errors in the underlying deformation field obtained from registration procedures. By deriving a deformation invariant representation of the image, the downstream analysis can be made more robust as if one had access to a (hypothetical) far superior registration procedure. Our algorithm is based on recent work on scattering transform. Using this as a starting point, we show how results from harmonic analysis (especially, non-Euclidean wavelets) yields strategies for designing deformation and additive noise invariant representations of large 3-D brain image volumes. We present a set of results on synthetic and real brain images where we achieve robust statistical analysis even in the presence of substantial deformation errors; here, standard analysis procedures significantly under-perform and fail to identify the true signal. PMID:27042168

  16. A robust functional-data-analysis method for data recovery in multichannel sensor systems.

    PubMed

    Sun, Jian; Liao, Haitao; Upadhyaya, Belle R

    2014-08-01

    Multichannel sensor systems are widely used in condition monitoring for effective failure prevention of critical equipment or processes. However, loss of sensor readings due to malfunctions of sensors and/or communication has long been a hurdle to reliable operations of such integrated systems. Moreover, asynchronous data sampling and/or limited data transmission are usually seen in multiple sensor channels. To reliably perform fault diagnosis and prognosis in such operating environments, a data recovery method based on functional principal component analysis (FPCA) can be utilized. However, traditional FPCA methods are not robust to outliers and their capabilities are limited in recovering signals with strongly skewed distributions (i.e., lack of symmetry). This paper provides a robust data-recovery method based on functional data analysis to enhance the reliability of multichannel sensor systems. The method not only considers the possibly skewed distribution of each channel of signal trajectories, but is also capable of recovering missing data for both individual and correlated sensor channels with asynchronous data that may be sparse as well. In particular, grand median functions, rather than classical grand mean functions, are utilized for robust smoothing of sensor signals. Furthermore, the relationship between the functional scores of two correlated signals is modeled using multivariate functional regression to enhance the overall data-recovery capability. An experimental flow-control loop that mimics the operation of coolant-flow loop in a multimodular integral pressurized water reactor is used to demonstrate the effectiveness and adaptability of the proposed data-recovery method. The computational results illustrate that the proposed method is robust to outliers and more capable than the existing FPCA-based method in terms of the accuracy in recovering strongly skewed signals. In addition, turbofan engine data are also analyzed to verify the capability of the proposed method in recovering non-skewed signals.

  17. Ultralow chirp photonic crystal fiber Mach-Zehnder interferometer.

    PubMed

    Carvalho, William O F; Spadoti, Danilo H; Silvestre, Enrique; Beltran-Mejia, Felipe

    2018-05-20

    A photonic crystal fiber Mach-Zehnder interferometer design was optimized to obtain high performance and ultralow chirp. Two long-period gratings were used to excite the cladding modes, and the rich structure of the cladding was tailored to obtain a slightly chirped free spectral range, as required by the Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T) Norm G.694.1. Finally, a fabrication tolerance analysis was performed. The advantages of the proposed device are an ultralow chirp, high bandwidth, and fabrication robustness tolerance.

  18. A Robust Design Methodology for Optimal Microscale Secondary Flow Control in Compact Inlet Diffusers

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Keller, Dennis J.

    2001-01-01

    It is the purpose of this study to develop an economical Robust design methodology for microscale secondary flow control in compact inlet diffusers. To illustrate the potential of economical Robust Design methodology, two different mission strategies were considered for the subject inlet, namely Maximum Performance and Maximum HCF Life Expectancy. The Maximum Performance mission maximized total pressure recovery while the Maximum HCF Life Expectancy mission minimized the mean of the first five Fourier harmonic amplitudes, i.e., 'collectively' reduced all the harmonic 1/2 amplitudes of engine face distortion. Each of the mission strategies was subject to a low engine face distortion constraint, i.e., DC60<0.10, which is a level acceptable for commercial engines. For each of these missions strategies, an 'Optimal Robust' (open loop control) and an 'Optimal Adaptive' (closed loop control) installation was designed over a twenty degree angle-of-incidence range. The Optimal Robust installation used economical Robust Design methodology to arrive at a single design which operated over the entire angle-of-incident range (open loop control). The Optimal Adaptive installation optimized all the design parameters at each angle-of-incidence. Thus, the Optimal Adaptive installation would require a closed loop control system to sense a proper signal for each effector and modify that effector device, whether mechanical or fluidic, for optimal inlet performance. In general, the performance differences between the Optimal Adaptive and Optimal Robust installation designs were found to be marginal. This suggests, however, that Optimal Robust open loop installation designs can be very competitive with Optimal Adaptive close loop designs. Secondary flow control in inlets is inherently robust, provided it is optimally designed. Therefore, the new methodology presented in this paper, combined array 'Lower Order' approach to Robust DOE, offers the aerodynamicist a very viable and economical way of exploring the concept of Robust inlet design, where the mission variables are brought directly into the inlet design process and insensitivity or robustness to the mission variables becomes a design objective.

  19. Robust spike classification based on frequency domain neural waveform features.

    PubMed

    Yang, Chenhui; Yuan, Yuan; Si, Jennie

    2013-12-01

    We introduce a new spike classification algorithm based on frequency domain features of the spike snippets. The goal for the algorithm is to provide high classification accuracy, low false misclassification, ease of implementation, robustness to signal degradation, and objectivity in classification outcomes. In this paper, we propose a spike classification algorithm based on frequency domain features (CFDF). It makes use of frequency domain contents of the recorded neural waveforms for spike classification. The self-organizing map (SOM) is used as a tool to determine the cluster number intuitively and directly by viewing the SOM output map. After that, spike classification can be easily performed using clustering algorithms such as the k-Means. In conjunction with our previously developed multiscale correlation of wavelet coefficient (MCWC) spike detection algorithm, we show that the MCWC and CFDF detection and classification system is robust when tested on several sets of artificial and real neural waveforms. The CFDF is comparable to or outperforms some popular automatic spike classification algorithms with artificial and real neural data. The detection and classification of neural action potentials or neural spikes is an important step in single-unit-based neuroscientific studies and applications. After the detection of neural snippets potentially containing neural spikes, a robust classification algorithm is applied for the analysis of the snippets to (1) extract similar waveforms into one class for them to be considered coming from one unit, and to (2) remove noise snippets if they do not contain any features of an action potential. Usually, a snippet is a small 2 or 3 ms segment of the recorded waveform, and differences in neural action potentials can be subtle from one unit to another. Therefore, a robust, high performance classification system like the CFDF is necessary. In addition, the proposed algorithm does not require any assumptions on statistical properties of the noise and proves to be robust under noise contamination.

  20. Modern CACSD using the Robust-Control Toolbox

    NASA Technical Reports Server (NTRS)

    Chiang, Richard Y.; Safonov, Michael G.

    1989-01-01

    The Robust-Control Toolbox is a collection of 40 M-files which extend the capability of PC/PRO-MATLAB to do modern multivariable robust control system design. Included are robust analysis tools like singular values and structured singular values, robust synthesis tools like continuous/discrete H(exp 2)/H infinity synthesis and Linear Quadratic Gaussian Loop Transfer Recovery methods and a variety of robust model reduction tools such as Hankel approximation, balanced truncation and balanced stochastic truncation, etc. The capabilities of the toolbox are described and illustated with examples to show how easily they can be used in practice. Examples include structured singular value analysis, H infinity loop-shaping and large space structure model reduction.

  1. Robust control design with real parameter uncertainty using absolute stability theory. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Hall, Steven R.

    1993-01-01

    The purpose of this thesis is to investigate an extension of mu theory for robust control design by considering systems with linear and nonlinear real parameter uncertainties. In the process, explicit connections are made between mixed mu and absolute stability theory. In particular, it is shown that the upper bounds for mixed mu are a generalization of results from absolute stability theory. Both state space and frequency domain criteria are developed for several nonlinearities and stability multipliers using the wealth of literature on absolute stability theory and the concepts of supply rates and storage functions. The state space conditions are expressed in terms of Riccati equations and parameter-dependent Lyapunov functions. For controller synthesis, these stability conditions are used to form an overbound of the H2 performance objective. A geometric interpretation of the equivalent frequency domain criteria in terms of off-axis circles clarifies the important role of the multiplier and shows that both the magnitude and phase of the uncertainty are considered. A numerical algorithm is developed to design robust controllers that minimize the bound on an H2 cost functional and satisfy an analysis test based on the Popov stability multiplier. The controller and multiplier coefficients are optimized simultaneously, which avoids the iteration and curve-fitting procedures required by the D-K procedure of mu synthesis. Several benchmark problems and experiments on the Middeck Active Control Experiment at M.I.T. demonstrate that these controllers achieve good robust performance and guaranteed stability bounds.

  2. Reducing regional drought vulnerabilities and multi-city robustness conflicts using many-objective optimization under deep uncertainty

    NASA Astrophysics Data System (ADS)

    Trindade, B. C.; Reed, P. M.; Herman, J. D.; Zeff, H. B.; Characklis, G. W.

    2017-06-01

    Emerging water scarcity concerns in many urban regions are associated with several deeply uncertain factors, including rapid population growth, limited coordination across adjacent municipalities and the increasing risks for sustained regional droughts. Managing these uncertainties will require that regional water utilities identify coordinated, scarcity-mitigating strategies that trigger the appropriate actions needed to avoid water shortages and financial instabilities. This research focuses on the Research Triangle area of North Carolina, seeking to engage the water utilities within Raleigh, Durham, Cary and Chapel Hill in cooperative and robust regional water portfolio planning. Prior analysis of this region through the year 2025 has identified significant regional vulnerabilities to volumetric shortfalls and financial losses. Moreover, efforts to maximize the individual robustness of any of the mentioned utilities also have the potential to strongly degrade the robustness of the others. This research advances a multi-stakeholder Many-Objective Robust Decision Making (MORDM) framework to better account for deeply uncertain factors when identifying cooperative drought management strategies. Our results show that appropriately designing adaptive risk-of-failure action triggers required stressing them with a comprehensive sample of deeply uncertain factors in the computational search phase of MORDM. Search under the new ensemble of states-of-the-world is shown to fundamentally change perceived performance tradeoffs and substantially improve the robustness of individual utilities as well as the overall region to water scarcity. Search under deep uncertainty enhanced the discovery of how cooperative water transfers, financial risk mitigation tools, and coordinated regional demand management must be employed jointly to improve regional robustness and decrease robustness conflicts between the utilities. Insights from this work have general merit for regions where adjacent municipalities can benefit from cooperative regional water portfolio planning.

  3. Computer models and the evidence of anthropogenic climate change: An epistemology of variety-of-evidence inferences and robustness analysis.

    PubMed

    Vezér, Martin A

    2016-04-01

    To study climate change, scientists employ computer models, which approximate target systems with various levels of skill. Given the imperfection of climate models, how do scientists use simulations to generate knowledge about the causes of observed climate change? Addressing a similar question in the context of biological modelling, Levins (1966) proposed an account grounded in robustness analysis. Recent philosophical discussions dispute the confirmatory power of robustness, raising the question of how the results of computer modelling studies contribute to the body of evidence supporting hypotheses about climate change. Expanding on Staley's (2004) distinction between evidential strength and security, and Lloyd's (2015) argument connecting variety-of-evidence inferences and robustness analysis, I address this question with respect to recent challenges to the epistemology robustness analysis. Applying this epistemology to case studies of climate change, I argue that, despite imperfections in climate models, and epistemic constraints on variety-of-evidence reasoning and robustness analysis, this framework accounts for the strength and security of evidence supporting climatological inferences, including the finding that global warming is occurring and its primary causes are anthropogenic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Robust Mediation Analysis Based on Median Regression

    PubMed Central

    Yuan, Ying; MacKinnon, David P.

    2014-01-01

    Mediation analysis has many applications in psychology and the social sciences. The most prevalent methods typically assume that the error distribution is normal and homoscedastic. However, this assumption may rarely be met in practice, which can affect the validity of the mediation analysis. To address this problem, we propose robust mediation analysis based on median regression. Our approach is robust to various departures from the assumption of homoscedasticity and normality, including heavy-tailed, skewed, contaminated, and heteroscedastic distributions. Simulation studies show that under these circumstances, the proposed method is more efficient and powerful than standard mediation analysis. We further extend the proposed robust method to multilevel mediation analysis, and demonstrate through simulation studies that the new approach outperforms the standard multilevel mediation analysis. We illustrate the proposed method using data from a program designed to increase reemployment and enhance mental health of job seekers. PMID:24079925

  5. Achieving Robustness to Uncertainty for Financial Decision-making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnum, George M.; Van Buren, Kendra L.; Hemez, Francois M.

    2014-01-10

    This report investigates the concept of robustness analysis to support financial decision-making. Financial models, that forecast future stock returns or market conditions, depend on assumptions that might be unwarranted and variables that might exhibit large fluctuations from their last-known values. The analysis of robustness explores these sources of uncertainty, and recommends model settings such that the forecasts used for decision-making are as insensitive as possible to the uncertainty. A proof-of-concept is presented with the Capital Asset Pricing Model. The robustness of model predictions is assessed using info-gap decision theory. Info-gaps are models of uncertainty that express the “distance,” or gapmore » of information, between what is known and what needs to be known in order to support the decision. The analysis yields a description of worst-case stock returns as a function of increasing gaps in our knowledge. The analyst can then decide on the best course of action by trading-off worst-case performance with “risk”, which is how much uncertainty they think needs to be accommodated in the future. The report also discusses the Graphical User Interface, developed using the MATLAB® programming environment, such that the user can control the analysis through an easy-to-navigate interface. Three directions of future work are identified to enhance the present software. First, the code should be re-written using the Python scientific programming software. This change will achieve greater cross-platform compatibility, better portability, allow for a more professional appearance, and render it independent from a commercial license, which MATLAB® requires. Second, a capability should be developed to allow users to quickly implement and analyze their own models. This will facilitate application of the software to the evaluation of proprietary financial models. The third enhancement proposed is to add the ability to evaluate multiple models simultaneously. When two models reflect past data with similar accuracy, the more robust of the two is preferable for decision-making because its predictions are, by definition, less sensitive to the uncertainty.« less

  6. Robust control for uncertain structures

    NASA Technical Reports Server (NTRS)

    Douglas, Joel; Athans, Michael

    1991-01-01

    Viewgraphs on robust control for uncertain structures are presented. Topics covered include: robust linear quadratic regulator (RLQR) formulas; mismatched LQR design; RLQR design; interpretations of RLQR design; disturbance rejection; and performance comparisons: RLQR vs. mismatched LQR.

  7. Launch vehicle systems design analysis

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Verderaime, V.

    1993-01-01

    Current launch vehicle design emphasis is on low life-cycle cost. This paper applies total quality management (TQM) principles to a conventional systems design analysis process to provide low-cost, high-reliability designs. Suggested TQM techniques include Steward's systems information flow matrix method, quality leverage principle, quality through robustness and function deployment, Pareto's principle, Pugh's selection and enhancement criteria, and other design process procedures. TQM quality performance at least-cost can be realized through competent concurrent engineering teams and brilliance of their technical leadership.

  8. TU-H-CAMPUS-JeP1-04: Deformable Image Registration Performances in Pelvis Patients: Impact of CBCT Image Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fusella, M; Loi, G; Fiandra, C

    Purpose: To investigate the accuracy and robustness, against image noise and artifacts (typical of CBCT images), of a commercial algorithm for deformable image registration (DIR), to propagate regions of interest (ROIs) in computational phantoms based on real prostate patient images. Methods: The Anaconda DIR algorithm, implemented in RayStation was tested. Two specific Deformation Vector Fields (DVFs) were applied to the reference data set (CTref) using the ImSimQA software, obtaining two deformed CTs. For each dataset twenty-four different level of noise and/or capping artifacts were applied to simulate CBCT images. DIR was performed between CTref and each deformed CTs and CBCTs.more » In order to investigate the relationship between image quality parameters and the DIR results (expressed by a logit transform of the Dice Index) a bilinear regression was defined. Results: More than 550 DIR-mapped ROIs were analyzed. The Statistical analysis states that deformation strenght and artifacts were significant prognostic factors of DIR performances, while noise appeared to have a minor role in DIR process as implemented in RayStation as expected by the image similarity metric built in the registration algorithm. Capping artifacts reveals a determinant role for the accuracy of DIR results. Two optimal values for capping artifacts were found to obtain acceptable DIR results (DICE> 075/ 0.85). Various clinical CBCT acquisition protocol were reported to evaluate the significance of the study. Conclusion: This work illustrates the impact of image quality on DIR performance. Clinical issues like Adaptive Radiation Therapy (ART) and Dose Accumulation need accurate and robust DIR software. The RayStation DIR algorithm resulted robust against noise, but sensitive to image artifacts. This result highlights the need of robustness quality assurance against image noise and artifacts in the commissioning of a DIR commercial system and underlines the importance to adopt optimized protocols for CBCT image acquisitions in ART clinical implementation.« less

  9. Rasch analysis indicates that the Simple Shoulder Test is robust, but minor item modifications and attention to gender differences should be considered.

    PubMed

    Raman, Jayaprakash; MacDermid, Joy C; Walton, David; Athwal, George S

    Repeated cross-sectional study. Multiple studies have evaluated the psychometric properties of the Simple Shoulder Test (SST) through traditional methods supporting it as valid and reliable. Since the evidentiary pool supporting the use of the SST has only partially addressed key measurement properties and the development of SST pre-dates the common use of Rasch model, validation of SST has become a necessity to establish as a reliable and valid PRO for shoulder conditions. To date, no study has analysed SST through Rasch, a modern method for analyzing properties of measurement tools. The purpose of this study was to perform a Rasch analysis of the SST to assess the overall fit to the Rasch model, individual item fit, gender-based DIF, local dependency of items and the unidimensionality of the scale. A secondary purpose was to determine the stability of fit to the Rasch model when captured pre-operatively or post-operatively. Patients completed SST before surgery and between 6 months and 1 year after surgery. Rasch analysis was performed to analyse the carious properties of SST through the Rasch model. SST appears to be robust when tested against the Rasch model. Rasch analysis has highlighted potential areas for to improve in the SST questionnaire. The potential areas to improve are to consider questions that measure the ability of a person to lift the arm above shoulder level and to consider gender differences when measuring the ability to carry weights with the affected arm. This study adds to previous body of empirical evidence arising classical measurement approaches that have suggested that the SST has robust measurement properties, by providing evidence of adequate fit to the Rasch model after minor adjustments. The results of this study should provide confidence to clinicians on SST who wish to use a brief shoulder-specific measure in their practice. The SST appears to be robust when tested against the Rasch model despite some potential areas for improvement. The potential areas that should be explored in future Rasch analyses are the questions that measure the ability of a person to lift the arm above shoulder level and the potential for gender differences when measuring the ability to carry weights with the affected arm. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  10. Visualization of the Invisible, Explanation of the Unknown, Ruggedization of the Unstable: Sensitivity Analysis, Virtual Tryout and Robust Design through Systematic Stochastic Simulation

    NASA Astrophysics Data System (ADS)

    Zwickl, Titus; Carleer, Bart; Kubli, Waldemar

    2005-08-01

    In the past decade, sheet metal forming simulation became a well established tool to predict the formability of parts. In the automotive industry, this has enabled significant reduction in the cost and time for vehicle design and development, and has helped to improve the quality and performance of vehicle parts. However, production stoppages for troubleshooting and unplanned die maintenance, as well as production quality fluctuations continue to plague manufacturing cost and time. The focus therefore has shifted in recent times beyond mere feasibility to robustness of the product and process being engineered. Ensuring robustness is the next big challenge for the virtual tryout / simulation technology. We introduce new methods, based on systematic stochastic simulations, to visualize the behavior of the part during the whole forming process — in simulation as well as in production. Sensitivity analysis explains the response of the part to changes in influencing parameters. Virtual tryout allows quick exploration of changed designs and conditions. Robust design and manufacturing guarantees quality and process capability for the production process. While conventional simulations helped to reduce development time and cost by ensuring feasible processes, robustness engineering tools have the potential for far greater cost and time savings. Through examples we illustrate how expected and unexpected behavior of deep drawing parts may be tracked down, identified and assigned to the influential parameters. With this knowledge, defects can be eliminated or springback can be compensated e.g.; the response of the part to uncontrollable noise can be predicted and minimized. The newly introduced methods enable more reliable and predictable stamping processes in general.

  11. Glomerular structural-functional relationship models of diabetic nephropathy are robust in type 1 diabetic patients.

    PubMed

    Mauer, Michael; Caramori, Maria Luiza; Fioretto, Paola; Najafian, Behzad

    2015-06-01

    Studies of structural-functional relationships have improved understanding of the natural history of diabetic nephropathy (DN). However, in order to consider structural end points for clinical trials, the robustness of the resultant models needs to be verified. This study examined whether structural-functional relationship models derived from a large cohort of type 1 diabetic (T1D) patients with a wide range of renal function are robust. The predictability of models derived from multiple regression analysis and piecewise linear regression analysis was also compared. T1D patients (n = 161) with research renal biopsies were divided into two equal groups matched for albumin excretion rate (AER). Models to explain AER and glomerular filtration rate (GFR) by classical DN lesions in one group (T1D-model, or T1D-M) were applied to the other group (T1D-test, or T1D-T) and regression analyses were performed. T1D-M-derived models explained 70 and 63% of AER variance and 32 and 21% of GFR variance in T1D-M and T1D-T, respectively, supporting the substantial robustness of the models. Piecewise linear regression analyses substantially improved predictability of the models with 83% of AER variance and 66% of GFR variance explained by classical DN glomerular lesions alone. These studies demonstrate that DN structural-functional relationship models are robust, and if appropriate models are used, glomerular lesions alone explain a major proportion of AER and GFR variance in T1D patients. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  12. Bayesian Inference and Application of Robust Growth Curve Models Using Student's "t" Distribution

    ERIC Educational Resources Information Center

    Zhang, Zhiyong; Lai, Keke; Lu, Zhenqiu; Tong, Xin

    2013-01-01

    Despite the widespread popularity of growth curve analysis, few studies have investigated robust growth curve models. In this article, the "t" distribution is applied to model heavy-tailed data and contaminated normal data with outliers for growth curve analysis. The derived robust growth curve models are estimated through Bayesian…

  13. Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm

    PubMed Central

    Svečko, Rajko

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749

  14. Maximum Constrained Directivity of Oversteered End-Fire Sensor Arrays

    PubMed Central

    Trucco, Andrea; Traverso, Federico; Crocco, Marco

    2015-01-01

    For linear arrays with fixed steering and an inter-element spacing smaller than one half of the wavelength, end-fire steering of a data-independent beamformer offers better directivity than broadside steering. The introduction of a lower bound on the white noise gain ensures the necessary robustness against random array errors and sensor mismatches. However, the optimum broadside performance can be obtained using a simple processing architecture, whereas the optimum end-fire performance requires a more complicated system (because complex weight coefficients are needed). In this paper, we reconsider the oversteering technique as a possible way to simplify the processing architecture of equally spaced end-fire arrays. We propose a method for computing the amount of oversteering and the related real-valued weight vector that allows the constrained directivity to be maximized for a given inter-element spacing. Moreover, we verify that the maximized oversteering performance is very close to the optimum end-fire performance. We conclude that optimized oversteering is a viable method for designing end-fire arrays that have better constrained directivity than broadside arrays but with a similar implementation complexity. A numerical simulation is used to perform a statistical analysis, which confirms that the maximized oversteering performance is robust against sensor mismatches. PMID:26066987

  15. Robustness of controllers designed using Galerkin type approximations

    NASA Technical Reports Server (NTRS)

    Morris, K. A.

    1990-01-01

    One of the difficulties in designing controllers for infinite-dimensional systems arises from attempting to calculate a state for the system. It is shown that Galerkin type approximations can be used to design controllers which will perform as designed when implemented on the original infinite-dimensional system. No assumptions, other than those typically employed in numerical analysis, are made on the approximating scheme.

  16. An Advanced Computational Approach to System of Systems Analysis & Architecting Using Agent-Based Behavioral Model

    DTIC Science & Technology

    2013-03-29

    Assessor that is in the SoS agent. Figure 31. Fuzzy Assessor for the SoS Agent for Assessment of SoS Architecture «subsystem» Fuzzy Rules « datatype ...Affordability « datatype » Flexibility « datatype » Performance « datatype » Robustness Input Input Input Input « datatype » Architecture QualityOutput Fuzzy

  17. Robust variance estimation with dependent effect sizes: practical considerations including a software tutorial in Stata and spss.

    PubMed

    Tanner-Smith, Emily E; Tipton, Elizabeth

    2014-03-01

    Methodologists have recently proposed robust variance estimation as one way to handle dependent effect sizes in meta-analysis. Software macros for robust variance estimation in meta-analysis are currently available for Stata (StataCorp LP, College Station, TX, USA) and spss (IBM, Armonk, NY, USA), yet there is little guidance for authors regarding the practical application and implementation of those macros. This paper provides a brief tutorial on the implementation of the Stata and spss macros and discusses practical issues meta-analysts should consider when estimating meta-regression models with robust variance estimates. Two example databases are used in the tutorial to illustrate the use of meta-analysis with robust variance estimates. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Temporal assessment of radiomic features on clinical mammography in a high-risk population

    NASA Astrophysics Data System (ADS)

    Mendel, Kayla R.; Li, Hui; Lan, Li; Chan, Chun-Wai; King, Lauren M.; Tayob, Nabihah; Whitman, Gary; El-Zein, Randa; Bedrosian, Isabelle; Giger, Maryellen L.

    2018-02-01

    Extraction of high-dimensional quantitative data from medical images has become necessary in disease risk assessment, diagnostics and prognostics. Radiomic workflows for mammography typically involve a single medical image for each patient although medical images may exist for multiple imaging exams, especially in screening protocols. Our study takes advantage of the availability of mammograms acquired over multiple years for the prediction of cancer onset. This study included 841 images from 328 patients who developed subsequent mammographic abnormalities, which were confirmed as either cancer (n=173) or non-cancer (n=155) through diagnostic core needle biopsy. Quantitative radiomic analysis was conducted on antecedent FFDMs acquired a year or more prior to diagnostic biopsy. Analysis was limited to the breast contralateral to that in which the abnormality arose. Novel metrics were used to identify robust radiomic features. The most robust features were evaluated in the task of predicting future malignancies on a subset of 72 subjects (23 cancer cases and 49 non-cancer controls) with mammograms over multiple years. Using linear discriminant analysis, the robust radiomic features were merged into predictive signatures by: (i) using features from only the most recent contralateral mammogram, (ii) change in feature values between mammograms, and (iii) ratio of feature values over time, yielding AUCs of 0.57 (SE=0.07), 0.63 (SE=0.06), and 0.66 (SE=0.06), respectively. The AUCs for temporal radiomics (ratio) statistically differed from chance, suggesting that changes in radiomics over time may be critical for risk assessment. Overall, we found that our two-stage process of robustness assessment followed by performance evaluation served well in our investigation on the role of temporal radiomics in risk assessment.

  19. Ecological network analysis for a virtual water network.

    PubMed

    Fang, Delin; Chen, Bin

    2015-06-02

    The notions of virtual water flows provide important indicators to manifest the water consumption and allocation between different sectors via product transactions. However, the configuration of virtual water network (VWN) still needs further investigation to identify the water interdependency among different sectors as well as the network efficiency and stability in a socio-economic system. Ecological network analysis is chosen as a useful tool to examine the structure and function of VWN and the interactions among its sectors. A balance analysis of efficiency and redundancy is also conducted to describe the robustness (RVWN) of VWN. Then, network control analysis and network utility analysis are performed to investigate the dominant sectors and pathways for virtual water circulation and the mutual relationships between pairwise sectors. A case study of the Heihe River Basin in China shows that the balance between efficiency and redundancy is situated on the left side of the robustness curve with less efficiency and higher redundancy. The forestation, herding and fishing sectors and industrial sectors are found to be the main controllers. The network tends to be more mutualistic and synergic, though some competitive relationships that weaken the virtual water circulation still exist.

  20. Economic Justification Of Robust Or Adaptive Planning And Design Of Resilient Water Resources Systems Under Deep Uncertainty: A Case Study In The Iolanda Water Treatment Plant Of Lusaka, Zambia

    NASA Astrophysics Data System (ADS)

    Mendoza, G.; Tkach, M.; Kucharski, J.; Chaudhry, R.

    2017-12-01

    This discussion is focused around the application of a bottom-up vulnerability assessment procedure for planning of climate resilience to a water treament plant for teh city of Iolanda, Zambia. This project is a Millennium Challenge Corporation (MCC) innitiaive with technical support by the UNESCO category II, International Center for Integrated Water Resources Management (ICIWaRM) with secretariat at the US Army Corps of Engineers Institute for Water Resources. The MCC is an innovative and independent U.S. foreign aid agency that is helping lead the fight against global poverty. The bottom-up vulnerability assessmentt framework examines critical performance thresholds, examines the external drivers that would lead to failure, establishes plausibility and analytical uncertainty that would lead to failure, and provides the economic justification for robustness or adaptability. This presentation will showcase the experiences in the application of the bottom-up framework to a region that is very vulnerable to climate variability, has poor instituional capacities, and has very limited data. It will illustrate the technical analysis and a decision process that led to a non-obvious climate robust solution. Most importantly it will highlight the challenges of utilizing discounted cash flow analysis (DCFA), such as net present value, in justifying robust or adaptive solutions, i.e. comparing solution under different future risks. We highlight a solution to manage the potential biases these DCFA procedures can incur.

  1. Neuromandibular integration in humans and chimpanzees: Implications for dental and mandibular reduction in Homo.

    PubMed

    Veneziano, Alessio; Meloro, Carlo; Irish, Joel D; Stringer, Chris; Profico, Antonio; De Groote, Isabelle

    2018-05-08

    Although the evolution of the hominin masticatory apparatus has been linked to diet and food processing, the physical connection between neurocranium and lower jaw suggests a role of encephalization in the trend of dental and mandibular reduction. Here, the hypothesis that tooth size and mandibular robusticity are influenced by morphological changes in the neurocranium was tested. Three-dimensional landmarks, alveolar lengths, and mandibular robusticity data were recorded on a sample of chimpanzee and human skulls. The morphological integration between the neurocranium and the lower jaw was analyzed by means of Singular Warps Analysis. Redundancy Analysis was performed to understand if the pattern of neuromandibular integration affects tooth size and mandibular robusticity. There is significant morphological covariation between neurocranium and lower jaw in both chimpanzees and humans. In humans, changes in the temporal fossa seem to produce alterations of the relative orientation of jaw parts, while the influence of similar neurocranial changes in chimpanzees are more localized. In both species, postcanine alveolar lengths and mandibular robusticity are associated with shape changes of the temporal fossa. The results of this study support the hypothesis that the neurocranium is able to affect the evolution and development of the lower jaw, although most likely through functional integration of mandible, teeth, and muscles within the masticatory apparatus. This study highlights the relative influence of structural constraints and adaptive factors in the evolution of the human skull. © 2018 Wiley Periodicals, Inc.

  2. Virtual DRI dataset development

    NASA Astrophysics Data System (ADS)

    Hixson, Jonathan G.; Teaney, Brian P.; May, Christopher; Maurer, Tana; Nelson, Michael B.; Pham, Justin R.

    2017-05-01

    The U.S. Army RDECOM CERDEC NVESD MSD's target acquisition models have been used for many years by the military analysis community for sensor design, trade studies, and field performance prediction. This paper analyzes the results of perception tests performed to compare the results of a field DRI (Detection, Recognition, and Identification Test) performed in 2009 to current Soldier performance viewing the same imagery in a laboratory environment and simulated imagery of the same data set. The purpose of the experiment is to build a robust data set for use in the virtual prototyping of infrared sensors. This data set will provide a strong foundation relating, model predictions, field DRI results and simulated imagery.

  3. Advanced Engineering Technology for Measuring Performance.

    PubMed

    Rutherford, Drew N; D'Angelo, Anne-Lise D; Law, Katherine E; Pugh, Carla M

    2015-08-01

    The demand for competency-based assessments in surgical training is growing. Use of advanced engineering technology for clinical skills assessment allows for objective measures of hands-on performance. Clinical performance can be assessed in several ways via quantification of an assessee's hand movements (motion tracking), direction of visual attention (eye tracking), levels of stress (physiologic marker measurements), and location and pressure of palpation (force measurements). Innovations in video recording technology and qualitative analysis tools allow for a combination of observer- and technology-based assessments. Overall the goal is to create better assessments of surgical performance with robust validity evidence. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Inducer analysis/pump model development

    NASA Astrophysics Data System (ADS)

    Cheng, Gary C.

    1994-03-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study was to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, three key components of the turbopump, the inducer, impeller, and diffuser, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne. For the numerical calculation of inducer flows with tip clearance, the turbulence model and grid spacing are very important. Meanwhile, the development of the cross-stream secondary flow, generated by curved blade passage and the flow through tip leakage, has a strong effect on the inducer flow. Hence, the prediction of the inducer performance critically depends on whether the numerical scheme of the pump model can simulate the secondary flow pattern accurately or not. The impeller and diffuser, however, are dominated by pressure-driven flows such that the effects of turbulence model and grid spacing (except near leading and trailing edges of blades) are less sensitive. The present CFD pump model has been proved to be an efficient and robust analytical tool for pump design due to its very compact numerical structure (requiring small memory), fast turnaround computing time, and versatility for different geometries.

  5. A robust two-way semi-linear model for normalization of cDNA microarray data

    PubMed Central

    Wang, Deli; Huang, Jian; Xie, Hehuang; Manzella, Liliana; Soares, Marcelo Bento

    2005-01-01

    Background Normalization is a basic step in microarray data analysis. A proper normalization procedure ensures that the intensity ratios provide meaningful measures of relative expression values. Methods We propose a robust semiparametric method in a two-way semi-linear model (TW-SLM) for normalization of cDNA microarray data. This method does not make the usual assumptions underlying some of the existing methods. For example, it does not assume that: (i) the percentage of differentially expressed genes is small; or (ii) the numbers of up- and down-regulated genes are about the same, as required in the LOWESS normalization method. We conduct simulation studies to evaluate the proposed method and use a real data set from a specially designed microarray experiment to compare the performance of the proposed method with that of the LOWESS normalization approach. Results The simulation results show that the proposed method performs better than the LOWESS normalization method in terms of mean square errors for estimated gene effects. The results of analysis of the real data set also show that the proposed method yields more consistent results between the direct and the indirect comparisons and also can detect more differentially expressed genes than the LOWESS method. Conclusions Our simulation studies and the real data example indicate that the proposed robust TW-SLM method works at least as well as the LOWESS method and works better when the underlying assumptions for the LOWESS method are not satisfied. Therefore, it is a powerful alternative to the existing normalization methods. PMID:15663789

  6. Inducer analysis/pump model development

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.

    1994-01-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study was to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, three key components of the turbopump, the inducer, impeller, and diffuser, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne. For the numerical calculation of inducer flows with tip clearance, the turbulence model and grid spacing are very important. Meanwhile, the development of the cross-stream secondary flow, generated by curved blade passage and the flow through tip leakage, has a strong effect on the inducer flow. Hence, the prediction of the inducer performance critically depends on whether the numerical scheme of the pump model can simulate the secondary flow pattern accurately or not. The impeller and diffuser, however, are dominated by pressure-driven flows such that the effects of turbulence model and grid spacing (except near leading and trailing edges of blades) are less sensitive. The present CFD pump model has been proved to be an efficient and robust analytical tool for pump design due to its very compact numerical structure (requiring small memory), fast turnaround computing time, and versatility for different geometries.

  7. Analysis of a front suspension system for UniART FSAE car using FEA

    NASA Astrophysics Data System (ADS)

    Zaidie, M. N. A.; Hashim, M. S. M.; Tasyrif, M.; Basha, M. H.; Ibrahim, I.; Kamaruddin, N. S.; Shahriman, A. B.

    2017-10-01

    In recent years, many research works from institutions that participated in Formula SAE had highlighted on suspension systems. The aim is to improve the system in term of performance and robustness. However, every suspension system for a racing car is tailored to the car itself. Thus, this paper proposes a new design for front suspension system for UniART FSAE car. The new design was than being compared to the previous suspension system for enhancement. The analysis covered in this paper based on several conditions such as braking, cornering and bumping condition and was carried out using finite element analysis. Each main component for the suspension system such as lower arm, upper arm and knuckle has been analysed in term of strength and performance. From the results, the proposed new design of the suspension system has improved in term of strength and performance compared to the previous suspension system.

  8. Analysis of System Margins on Missions Utilizing Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Oh, David Y.; Landau, Damon; Randolph, Thomas; Timmerman, Paul; Chase, James; Sims, Jon; Kowalkowski, Theresa

    2008-01-01

    NASA's Jet Propulsion Laboratory has conducted a study focused on the analysis of appropriate margins for deep space missions using solar electric propulsion (SEP). The purpose of this study is to understand the links between disparate system margins (power, mass, thermal, etc.) and their impact on overall mission performance and robustness. It is determined that the various sources of uncertainty and risk associated with electric propulsion mission design can be summarized into three relatively independent parameters 1) EP Power Margin, 2) Propellant Margin and 3) Duty Cycle Margin. The overall relationship between these parameters and other major sources of uncertainty is presented. A detailed trajectory analysis is conducted to examine the impact that various assumptions related to power, duty cycle, destination, and thruster performance including missed thrust periods have on overall performance. Recommendations are presented for system margins for deep space missions utilizing solar electric propulsion.

  9. Tuning and Robustness Analysis for the Orion Absolute Navigation System

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; Zanetti, Renato; D'Souza, Christopher

    2013-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) is currently under development as NASA's next-generation spacecraft for exploration missions beyond Low Earth Orbit. The MPCV is set to perform an orbital test flight, termed Exploration Flight Test 1 (EFT-1), some time in late 2014. The navigation system for the Orion spacecraft is being designed in a Multi-Organizational Design Environment (MODE) team including contractor and NASA personnel. The system uses an Extended Kalman Filter to process measurements and determine the state. The design of the navigation system has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to show the efforts made to-date in tuning the filter for the EFT-1 mission and instilling appropriate robustness into the system to meet the requirements of manned space ight. Filter performance is affected by many factors: data rates, sensor measurement errors, tuning, and others. This paper focuses mainly on the error characterization and tuning portion. Traditional efforts at tuning a navigation filter have centered around the observation/measurement noise and Gaussian process noise of the Extended Kalman Filter. While the Orion MODE team must certainly address those factors, the team is also looking at residual edit thresholds and measurement underweighting as tuning tools. Tuning analysis is presented with open loop Monte-Carlo simulation results showing statistical errors bounded by the 3-sigma filter uncertainty covariance. The Orion filter design uses 24 Exponentially Correlated Random Variable (ECRV) parameters to estimate the accel/gyro misalignment and nonorthogonality. By design, the time constant and noise terms of these ECRV parameters were set to manufacturer specifications and not used as tuning parameters. They are included in the filter as a more analytically correct method of modeling uncertainties than ad-hoc tuning of the process noise. Tuning is explored for the powered-flight ascent phase, where measurements are scarce and unmodelled vehicle accelerations dominate. On orbit, there are important trade-off cases between process and measurement noise. On entry, there are considerations about trading performance accuracy for robustness. Process Noise is divided into powered flight and coasting ight and can be adjusted for each phase and mode of the Orion EFT-1 mission. Measurement noise is used for the integrated velocity measurements during pad alignment. It is also used for Global Positioning System (GPS) pseudorange and delta- range measurements during the rest of the flight. The robustness effort has been focused on maintaining filter convergence and performance in the presence of unmodeled error sources. These include unmodeled forces on the vehicle and uncorrected errors on the sensor measurements. Orion uses a single-frequency, non-keyed GPS receiver, so the effects due to signal distortion in Earth's ionosphere and troposphere are present in the raw measurements. Results are presented showing the efforts to compensate for these errors as well as characterize the residual effect for measurement noise tuning. Another robustness tool in use is tuning the residual edit thresholds. The trade-off between noise tuning and edit thresholds is explored in the context of robustness to errors in dynamics models and sensor measurements. Measurement underweighting is also presented as a method of additional robustness when processing highly accurate measurements in the presence of large filter uncertainties.

  10. Intelligent robust control for uncertain nonlinear time-varying systems and its application to robotic systems.

    PubMed

    Chang, Yeong-Chan

    2005-12-01

    This paper addresses the problem of designing adaptive fuzzy-based (or neural network-based) robust controls for a large class of uncertain nonlinear time-varying systems. This class of systems can be perturbed by plant uncertainties, unmodeled perturbations, and external disturbances. Nonlinear H(infinity) control technique incorporated with adaptive control technique and VSC technique is employed to construct the intelligent robust stabilization controller such that an H(infinity) control is achieved. The problem of the robust tracking control design for uncertain robotic systems is employed to demonstrate the effectiveness of the developed robust stabilization control scheme. Therefore, an intelligent robust tracking controller for uncertain robotic systems in the presence of high-degree uncertainties can easily be implemented. Its solution requires only to solve a linear algebraic matrix inequality and a satisfactorily transient and asymptotical tracking performance is guaranteed. A simulation example is made to confirm the performance of the developed control algorithms.

  11. Hand-Based Biometric Analysis

    NASA Technical Reports Server (NTRS)

    Bebis, George (Inventor); Amayeh, Gholamreza (Inventor)

    2015-01-01

    Hand-based biometric analysis systems and techniques are described which provide robust hand-based identification and verification. An image of a hand is obtained, which is then segmented into a palm region and separate finger regions. Acquisition of the image is performed without requiring particular orientation or placement restrictions. Segmentation is performed without the use of reference points on the images. Each segment is analyzed by calculating a set of Zernike moment descriptors for the segment. The feature parameters thus obtained are then fused and compared to stored sets of descriptors in enrollment templates to arrive at an identity decision. By using Zernike moments, and through additional manipulation, the biometric analysis is invariant to rotation, scale, or translation or an in put image. Additionally, the analysis utilizes re-use of commonly-seen terms in Zernike calculations to achieve additional efficiencies over traditional Zernike moment calculation.

  12. Hand-Based Biometric Analysis

    NASA Technical Reports Server (NTRS)

    Bebis, George

    2013-01-01

    Hand-based biometric analysis systems and techniques provide robust hand-based identification and verification. An image of a hand is obtained, which is then segmented into a palm region and separate finger regions. Acquisition of the image is performed without requiring particular orientation or placement restrictions. Segmentation is performed without the use of reference points on the images. Each segment is analyzed by calculating a set of Zernike moment descriptors for the segment. The feature parameters thus obtained are then fused and compared to stored sets of descriptors in enrollment templates to arrive at an identity decision. By using Zernike moments, and through additional manipulation, the biometric analysis is invariant to rotation, scale, or translation or an input image. Additionally, the analysis uses re-use of commonly seen terms in Zernike calculations to achieve additional efficiencies over traditional Zernike moment calculation.

  13. Morphofunctional diversity of equine of varied genetic compositions raised in the Pantanal biome of Brazil.

    PubMed

    de Rezende, Marcos Paulo Gonçalves; de Souza, Julio Cesar; Carneiro, Paulo Luiz Souza; Bozzi, Riccardo; Jardim, Rodrigo Jose Delgado; Malhado, Carlos Henrique Mendes

    2018-06-01

    Evaluating phenotypic diversity makes it possible to identify discrepancies in aptitudes among animals of different genetic bases, which is an indicator of adaptive or selective differences between populations. The objective of this work was to evaluate the morphofunctional diversity of 452 male and female adult equines (Arabian, Quarter Mile, Pantaneiro, and Criollo breeds, and undefined crossbreeds of horses and mules) raised in the Pantanal biome (Brazil). Linear measurements were performed to estimate conformation indexes. Initially, a discriminant analysis was performed, regardless of the animal's size, followed by factor analysis. The factors were characterized and used as new variables. The diversity among equines and their relationship with the factors were evaluated using multivariate analysis. The factors were classified according to their decreasing importance: balance, rusticity, and robustness for the measurement factors; and load, ability, conformation, and equilibrium for the index factors. The genetic groups of equines have well-defined morphofunctional characteristics. The main differences are based on the rusticity and ability typologies in relation to those based on performance. Equines introduced to the Pantanal biome presented a more robust and compact body with good conformation. As a result, these horses may have superior athletic performance during equestrian activities when compared to the Pantaneiro local breed. However, this biotype may represent less rusticity (less adaptive capacity). Therefore, the regional breed can be equal or better in equestrian activities than breeds introduced to the Pantanal biome. Thus, breeders may cross horses from local breeds as an alternative to those introduced. Undefined crossbred male equines presented a different profile from the Pantaneiro breed, which may indicate little use of crossbreeds in breeding.

  14. Performance of CMIP3 and CMIP5 GCMs to simulate observed rainfall characteristics over the Western Himalayan region

    NASA Astrophysics Data System (ADS)

    Meher, J. K.; Das, L.

    2017-12-01

    The Western Himalayan Region (WHR) was subject to a significant negative trend in the annual and monsoon rainfall during 1902-2005. Annual and seasonal rainfall change over WHR of India was estimated using 22 rain gauge station rainfall data from the India Meteorological Department. The performance of 13 global climate models (GCMs) from the coupled model intercomparison project phase 3 (CMIP3) and 42 GCMs from CMIP5 was evaluated through multiple analysis: the evaluation of the mean annual cycle, annual cycles of interannual variability, spatial patterns, trends and signal-to-noise ratio. In general, CMIP5 GCMs were more skillful in terms of simulating the annual cycle of interannual variability compared to CMIP3 GCMs. The CMIP3 GCMs failed to reproduce the observed trend whereas 50% of the CMIP5 GCMs reproduced the statistical distribution of short-term (30-years) trend-estimates than for the longer term (99-years). GCMs from both CMIP3 and CMIP5 were able to simulate the spatial distribution of observed rainfall in pre-monsoon and winter months. Based on performance, each model of CMIP3 and CMIP5 was given an overall rank, which puts the high resolution version of the MIROC3.2 model (MIROC3.2 hires) and MIROC5 at the top in CMIP3 and CMIP5 respectively. Robustness of the ranking was judged through a sensitivity analysis, which indicated that ranks were independent during the process of adding or removing any individual method. It also revealed that trend analysis was not a robust method of judging performances of the model as compared to other methods.

  15. Robust non-parametric one-sample tests for the analysis of recurrent events.

    PubMed

    Rebora, Paola; Galimberti, Stefania; Valsecchi, Maria Grazia

    2010-12-30

    One-sample non-parametric tests are proposed here for inference on recurring events. The focus is on the marginal mean function of events and the basis for inference is the standardized distance between the observed and the expected number of events under a specified reference rate. Different weights are considered in order to account for various types of alternative hypotheses on the mean function of the recurrent events process. A robust version and a stratified version of the test are also proposed. The performance of these tests was investigated through simulation studies under various underlying event generation processes, such as homogeneous and nonhomogeneous Poisson processes, autoregressive and renewal processes, with and without frailty effects. The robust versions of the test have been shown to be suitable in a wide variety of event generating processes. The motivating context is a study on gene therapy in a very rare immunodeficiency in children, where a major end-point is the recurrence of severe infections. Robust non-parametric one-sample tests for recurrent events can be useful to assess efficacy and especially safety in non-randomized studies or in epidemiological studies for comparison with a standard population. Copyright © 2010 John Wiley & Sons, Ltd.

  16. Evaluation of Structural Robustness against Column Loss: Methodology and Application to RC Frame Buildings.

    PubMed

    Bao, Yihai; Main, Joseph A; Noh, Sam-Young

    2017-08-01

    A computational methodology is presented for evaluating structural robustness against column loss. The methodology is illustrated through application to reinforced concrete (RC) frame buildings, using a reduced-order modeling approach for three-dimensional RC framing systems that includes the floor slabs. Comparisons with high-fidelity finite-element model results are presented to verify the approach. Pushdown analyses of prototype buildings under column loss scenarios are performed using the reduced-order modeling approach, and an energy-based procedure is employed to account for the dynamic effects associated with sudden column loss. Results obtained using the energy-based approach are found to be in good agreement with results from direct dynamic analysis of sudden column loss. A metric for structural robustness is proposed, calculated by normalizing the ultimate capacities of the structural system under sudden column loss by the applicable service-level gravity loading and by evaluating the minimum value of this normalized ultimate capacity over all column removal scenarios. The procedure is applied to two prototype 10-story RC buildings, one employing intermediate moment frames (IMFs) and the other employing special moment frames (SMFs). The SMF building, with its more stringent seismic design and detailing, is found to have greater robustness.

  17. A model to assess the Mars Telecommunications Network relay robustness

    NASA Technical Reports Server (NTRS)

    Girerd, Andre R.; Meshkat, Leila; Edwards, Charles D., Jr.; Lee, Charles H.

    2005-01-01

    The relatively long mission durations and compatible radio protocols of current and projected Mars orbiters have enabled the gradual development of a heterogeneous constellation providing proximity communication services for surface assets. The current and forecasted capability of this evolving network has reached the point that designers of future surface missions consider complete dependence on it. Such designers, along with those architecting network requirements, have a need to understand the robustness of projected communication service. A model has been created to identify the robustness of the Mars Network as a function of surface location and time. Due to the decade-plus time horizon considered, the network will evolve, with emerging productive nodes and nodes that cease or fail to contribute. The model is a flexible framework to holistically process node information into measures of capability robustness that can be visualized for maximum understanding. Outputs from JPL's Telecom Orbit Analysis Simulation Tool (TOAST) provide global telecom performance parameters for current and projected orbiters. Probabilistic estimates of orbiter fuel life are derived from orbit keeping burn rates, forecasted maneuver tasking, and anomaly resolution budgets. Orbiter reliability is estimated probabilistically. A flexible scheduling framework accommodates the projected mission queue as well as potential alterations.

  18. Robustness analysis of complex networks with power decentralization strategy via flow-sensitive centrality against cascading failures

    NASA Astrophysics Data System (ADS)

    Guo, Wenzhang; Wang, Hao; Wu, Zhengping

    2018-03-01

    Most existing cascading failure mitigation strategy of power grids based on complex network ignores the impact of electrical characteristics on dynamic performance. In this paper, the robustness of the power grid under a power decentralization strategy is analysed through cascading failure simulation based on AC flow theory. The flow-sensitive (FS) centrality is introduced by integrating topological features and electrical properties to help determine the siting of the generation nodes. The simulation results of the IEEE-bus systems show that the flow-sensitive centrality method is a more stable and accurate approach and can enhance the robustness of the network remarkably. Through the study of the optimal flow-sensitive centrality selection for different networks, we find that the robustness of the network with obvious small-world effect depends more on contribution of the generation nodes detected by community structure, otherwise, contribution of the generation nodes with important influence on power flow is more critical. In addition, community structure plays a significant role in balancing the power flow distribution and further slowing the propagation of failures. These results are useful in power grid planning and cascading failure prevention.

  19. THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures.

    PubMed

    Theobald, Douglas L; Wuttke, Deborah S

    2006-09-01

    THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. ANSI C source code and selected binaries for various computing platforms are available under the GNU open source license from http://monkshood.colorado.edu/theseus/ or http://www.theseus3d.org.

  20. Analysis of Logistics in Support of a Human Lunar Outpost

    NASA Technical Reports Server (NTRS)

    Cirillo, William; Earle, Kevin; Goodliff, Kandyce; Reeves, j. D.; Andrashko, Mark; Merrill, R. Gabe; Stromgren, Chel

    2008-01-01

    Strategic level analysis of the integrated behavior of lunar transportation system and lunar surface system architecture options is performed to inform NASA Constellation Program senior management on the benefit, viability, affordability, and robustness of system design choices. This paper presents an overview of the approach used to perform the campaign (strategic) analysis, with an emphasis on the logistics modeling and the impacts of logistics resupply on campaign behavior. An overview of deterministic and probabilistic analysis approaches is provided, with a discussion of the importance of each approach to understanding the integrated system behavior. The logistics required to support lunar surface habitation are analyzed from both 'macro-logistics' and 'micro-logistics' perspectives, where macro-logistics focuses on the delivery of goods to a destination and micro-logistics focuses on local handling of re-supply goods at a destination. An example campaign is provided to tie the theories of campaign analysis to results generation capabilities.

  1. Integration of the Response Surface Methodology with the Compromise Decision Support Problem in Developing a General Robust Design Procedure

    NASA Technical Reports Server (NTRS)

    Chen, Wei; Tsui, Kwok-Leung; Allen, Janet K.; Mistree, Farrokh

    1994-01-01

    In this paper we introduce a comprehensive and rigorous robust design procedure to overcome some limitations of the current approaches. A comprehensive approach is general enough to model the two major types of robust design applications, namely, robust design associated with the minimization of the deviation of performance caused by the deviation of noise factors (uncontrollable parameters), and robust design due to the minimization of the deviation of performance caused by the deviation of control factors (design variables). We achieve mathematical rigor by using, as a foundation, principles from the design of experiments and optimization. Specifically, we integrate the Response Surface Method (RSM) with the compromise Decision Support Problem (DSP). Our approach is especially useful for design problems where there are no closed-form solutions and system performance is computationally expensive to evaluate. The design of a solar powered irrigation system is used as an example. Our focus in this paper is on illustrating our approach rather than on the results per se.

  2. A new robust control scheme using second order sliding mode and fuzzy logic of a DFIM supplied by two five-level SVPWM inverters

    NASA Astrophysics Data System (ADS)

    Boudjema, Zinelaabidine; Taleb, Rachid; Bounadja, Elhadj

    2017-02-01

    Traditional filed oriented control strategy including proportional-integral (PI) regulator for the speed drive of the doubly fed induction motor (DFIM) have some drawbacks such as parameter tuning complications, mediocre dynamic performances and reduced robustness. Therefore, based on the analysis of the mathematical model of a DFIM supplied by two five-level SVPWM inverters, this paper proposes a new robust control scheme based on super twisting sliding mode and fuzzy logic. The conventional sliding mode control (SMC) has vast chattering effect on the electromagnetic torque developed by the DFIM. In order to resolve this problem, a second order sliding mode technique based on super twisting algorithm and fuzzy logic functions is employed. The validity of the employed approach was tested by using Matlab/Simulink software. Interesting simulation results were obtained and remarkable advantages of the proposed control scheme were exposed including simple design of the control system, reduced chattering as well as the other advantages.

  3. Application of a compact diode pumped solid-state laser source for quantitative laser-induced breakdown spectroscopy analysis of steel

    NASA Astrophysics Data System (ADS)

    Tortschanoff, Andreas; Baumgart, Marcus; Kroupa, Gerhard

    2017-12-01

    Laser-induced breakdown spectroscopy (LIBS) technology holds the potential for onsite real-time measurements of steel products. However, for a mobile and robust LIBS measurement system, an adequate small and ruggedized laser source is a key requirement. In this contribution, we present tests with our compact high-power laser source, which, initially, was developed for ignition applications. The CTR HiPoLas® laser is a robust diode pumped solid-state laser with a passive Q-switch with dimensions of less than 10 cm3. The laser generates 2.5-ns pulses with 30 mJ at a maximum continuous repetition rate of about 30 Hz. Feasibility of LIBS experiments with the laser source was experimentally verified with steel samples. The results show that the laser with its current optical output parameters is very well-suited for LIBS measurements. We believe that the miniaturized laser presented here will enable very compact and robust portable high-performance LIBS systems.

  4. Integrated Low-Rank-Based Discriminative Feature Learning for Recognition.

    PubMed

    Zhou, Pan; Lin, Zhouchen; Zhang, Chao

    2016-05-01

    Feature learning plays a central role in pattern recognition. In recent years, many representation-based feature learning methods have been proposed and have achieved great success in many applications. However, these methods perform feature learning and subsequent classification in two separate steps, which may not be optimal for recognition tasks. In this paper, we present a supervised low-rank-based approach for learning discriminative features. By integrating latent low-rank representation (LatLRR) with a ridge regression-based classifier, our approach combines feature learning with classification, so that the regulated classification error is minimized. In this way, the extracted features are more discriminative for the recognition tasks. Our approach benefits from a recent discovery on the closed-form solutions to noiseless LatLRR. When there is noise, a robust Principal Component Analysis (PCA)-based denoising step can be added as preprocessing. When the scale of a problem is large, we utilize a fast randomized algorithm to speed up the computation of robust PCA. Extensive experimental results demonstrate the effectiveness and robustness of our method.

  5. Cooperative vehicles for robust traffic congestion reduction: An analysis based on algorithmic, environmental and agent behavioral factors

    PubMed Central

    Desai, Prajakta; Desai, Aniruddha

    2017-01-01

    Traffic congestion continues to be a persistent problem throughout the world. As vehicle-to-vehicle communication develops, there is an opportunity of using cooperation among close proximity vehicles to tackle the congestion problem. The intuition is that if vehicles could cooperate opportunistically when they come close enough to each other, they could, in effect, spread themselves out among alternative routes so that vehicles do not all jam up on the same roads. Our previous work proposed a decentralized multiagent based vehicular congestion management algorithm entitled Congestion Avoidance and Route Allocation using Virtual Agent Negotiation (CARAVAN), wherein the vehicles acting as intelligent agents perform cooperative route allocation using inter-vehicular communication. This paper focuses on evaluating the practical applicability of this approach by testing its robustness and performance (in terms of travel time reduction), across variations in: (a) environmental parameters such as road network topology and configuration; (b) algorithmic parameters such as vehicle agent preferences and route cost/preference multipliers; and (c) agent-related parameters such as equipped/non-equipped vehicles and compliant/non-compliant agents. Overall, the results demonstrate the adaptability and robustness of the decentralized cooperative vehicles approach to providing global travel time reduction using simple local coordination strategies. PMID:28792513

  6. Cooperative vehicles for robust traffic congestion reduction: An analysis based on algorithmic, environmental and agent behavioral factors.

    PubMed

    Desai, Prajakta; Loke, Seng W; Desai, Aniruddha

    2017-01-01

    Traffic congestion continues to be a persistent problem throughout the world. As vehicle-to-vehicle communication develops, there is an opportunity of using cooperation among close proximity vehicles to tackle the congestion problem. The intuition is that if vehicles could cooperate opportunistically when they come close enough to each other, they could, in effect, spread themselves out among alternative routes so that vehicles do not all jam up on the same roads. Our previous work proposed a decentralized multiagent based vehicular congestion management algorithm entitled Congestion Avoidance and Route Allocation using Virtual Agent Negotiation (CARAVAN), wherein the vehicles acting as intelligent agents perform cooperative route allocation using inter-vehicular communication. This paper focuses on evaluating the practical applicability of this approach by testing its robustness and performance (in terms of travel time reduction), across variations in: (a) environmental parameters such as road network topology and configuration; (b) algorithmic parameters such as vehicle agent preferences and route cost/preference multipliers; and (c) agent-related parameters such as equipped/non-equipped vehicles and compliant/non-compliant agents. Overall, the results demonstrate the adaptability and robustness of the decentralized cooperative vehicles approach to providing global travel time reduction using simple local coordination strategies.

  7. The performance of trellis coded multilevel DPSK on a fading mobile satellite channel

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K.; Divsalar, Dariush

    1987-01-01

    The performance of trellis coded multilevel differential phase-shift-keying (MDPSK) over Rician and Rayleigh fading channels is discussed. For operation at L-Band, this signalling technique leads to a more robust system than the coherent system with dual pilot tone calibration previously proposed for UHF. The results are obtained using a combination of analysis and simulation. The analysis shows that the design criterion for trellis codes to be operated on fading channels with interleaving/deinterleaving is no longer free Euclidean distance. The correct design criterion for optimizing bit error probability of trellis coded MDPSK over fading channels will be presented along with examples illustrating its application.

  8. Improved robustness and performance of discrete time sliding mode control systems.

    PubMed

    Chakrabarty, Sohom; Bartoszewicz, Andrzej

    2016-11-01

    This paper presents a theoretical analysis along with simulations to show that increased robustness can be achieved for discrete time sliding mode control systems by choosing the sliding variable, or the output, to be of relative degree two instead of relative degree one. In other words it successfully reduces the ultimate bound of the sliding variable compared to the ultimate bound for standard discrete time sliding mode control systems. It is also found out that for such a selection of relative degree two output of the discrete time system, the reduced order system during sliding becomes finite time stable in absence of disturbance. With disturbance, it becomes finite time ultimately bounded. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  9. An image based vibration sensor for soft tissue modal analysis in a Digital Image Elasto Tomography (DIET) system.

    PubMed

    Feng, Sheng; Lotz, Thomas; Chase, J Geoffrey; Hann, Christopher E

    2010-01-01

    Digital Image Elasto Tomography (DIET) is a non-invasive elastographic breast cancer screening technology, based on image-based measurement of surface vibrations induced on a breast by mechanical actuation. Knowledge of frequency response characteristics of a breast prior to imaging is critical to maximize the imaging signal and diagnostic capability of the system. A feasibility analysis for a non-invasive image based modal analysis system is presented that is able to robustly and rapidly identify resonant frequencies in soft tissue. Three images per oscillation cycle are enough to capture the behavior at a given frequency. Thus, a sweep over critical frequency ranges can be performed prior to imaging to determine critical imaging settings of the DIET system to optimize its tumor detection performance.

  10. Aging analysis of high performance FinFET flip-flop under Dynamic NBTI simulation configuration

    NASA Astrophysics Data System (ADS)

    Zainudin, M. F.; Hussin, H.; Halim, A. K.; Karim, J.

    2018-03-01

    A mechanism known as Negative-bias Temperature Instability (NBTI) degrades a main electrical parameters of a circuit especially in terms of performance. So far, the circuit design available at present are only focussed on high performance circuit without considering the circuit reliability and robustness. In this paper, the main circuit performances of high performance FinFET flip-flop such as delay time, and power were studied with the presence of the NBTI degradation. The aging analysis was verified using a 16nm High Performance Predictive Technology Model (PTM) based on different commands available at Synopsys HSPICE. The results shown that the circuit under the longer dynamic NBTI simulation produces the highest impact in the increasing of gate delay and decrease in the average power reduction from a fresh simulation until the aged stress time under a nominal condition. In addition, the circuit performance under a varied stress condition such as temperature and negative stress gate bias were also studied.

  11. Verification and Tuning of an Adaptive Controller for an Unmanned Air Vehicle

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Matsutani, Megumi; Annaswamy, Anuradha M.

    2010-01-01

    This paper focuses on the analysis and tuning of a controller based on the Adaptive Control Technology for Safe Flight (ACTS) architecture. The ACTS architecture consists of a nominal, non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off-nominal ones. A framework unifying control verification and gain tuning is used to make the controller s ability to satisfy the closed-loop requirements more robust to uncertainty. In this paper we tune the gains of both controllers using this approach. Some advantages and drawbacks of adaptation are identified by performing a global robustness assessment of both the adaptive controller and its non-adaptive counterpart. The analyses used to determine these characteristics are based on evaluating the degradation in closed-loop performance resulting from uncertainties having increasing levels of severity. The specific adverse conditions considered can be grouped into three categories: aerodynamic uncertainties, structural damage, and actuator failures. These failures include partial and total loss of control effectiveness, locked-in-place control surface deflections, and engine out conditions. The requirements considered are the peak structural loading, the ability of the controller to track pilot commands, the ability of the controller to keep the aircraft s state within the reliable flight envelope, and the handling/riding qualities of the aircraft. The nominal controller resulting from these tuning strategies was successfully validated using the NASA GTM Flight Test Vehicle.

  12. Nonlinear stability and control study of highly maneuverable high performance aircraft, phase 2

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1992-01-01

    Research leading to the development of new nonlinear methodologies for the adaptive control and stability analysis of high angle of attack aircraft such as the F-18 is discussed. The emphasis has been on nonlinear adaptive control, but associated model development, system identification, stability analysis, and simulation were studied in some detail as well. Studies indicated that nonlinear adaptive control can outperform linear adaptive control for rapid maneuvers with large changes in angle of attack. Included here are studies on nonlinear model algorithmic controller design and an analysis of nonlinear system stability using robust stability analysis for linear systems.

  13. Robust Variance Estimation with Dependent Effect Sizes: Practical Considerations Including a Software Tutorial in Stata and SPSS

    ERIC Educational Resources Information Center

    Tanner-Smith, Emily E.; Tipton, Elizabeth

    2014-01-01

    Methodologists have recently proposed robust variance estimation as one way to handle dependent effect sizes in meta-analysis. Software macros for robust variance estimation in meta-analysis are currently available for Stata (StataCorp LP, College Station, TX, USA) and SPSS (IBM, Armonk, NY, USA), yet there is little guidance for authors regarding…

  14. The concept of antifragility and its implications for the practice of risk analysis.

    PubMed

    Aven, Terje

    2015-03-01

    Nassim Taleb's antifragile concept has been shown considerable interest in the media and on the Internet recently. For Taleb, the antifragile concept is a blueprint for living in a black swan world (where surprising extreme events may occur), the key being to love variation and uncertainty to some degree, and thus also errors. The antonym of "fragile" is not robustness or resilience, but "please mishandle" or "please handle carelessly," using an example from Taleb when referring to sending a package full of glasses by post. In this article, we perform a detailed analysis of this concept, having a special focus on how the antifragile concept relates to common ideas and principles of risk management. The article argues that Taleb's antifragile concept adds an important contribution to the current practice of risk analysis by its focus on the dynamic aspects of risk and performance, and the necessity of some variation, uncertainties, and risk to achieve improvements and high performance at later stages. © 2014 Society for Risk Analysis.

  15. Robust hopping based on virtual pendulum posture control.

    PubMed

    Sharbafi, Maziar A; Maufroy, Christophe; Ahmadabadi, Majid Nili; Yazdanpanah, Mohammad J; Seyfarth, Andre

    2013-09-01

    A new control approach to achieve robust hopping against perturbations in the sagittal plane is presented in this paper. In perturbed hopping, vertical body alignment has a significant role for stability. Our approach is based on the virtual pendulum concept, recently proposed, based on experimental findings in human and animal locomotion. In this concept, the ground reaction forces are pointed to a virtual support point, named virtual pivot point (VPP), during motion. This concept is employed in designing the controller to balance the trunk during the stance phase. New strategies for leg angle and length adjustment besides the virtual pendulum posture control are proposed as a unified controller. This method is investigated by applying it on an extension of the spring loaded inverted pendulum (SLIP) model. Trunk, leg mass and damping are added to the SLIP model in order to make the model more realistic. The stability is analyzed by Poincaré map analysis. With fixed VPP position, stability, disturbance rejection and moderate robustness are achieved, but with a low convergence speed. To improve the performance and attain higher robustness, an event-based control of the VPP position is introduced, using feedback of the system states at apexes. Discrete linear quartic regulator is used to design the feedback controller. Considerable enhancements with respect to stability, convergence speed and robustness against perturbations and parameter changes are achieved.

  16. A robust approach for ECG-based analysis of cardiopulmonary coupling.

    PubMed

    Zheng, Jiewen; Wang, Weidong; Zhang, Zhengbo; Wu, Dalei; Wu, Hao; Peng, Chung-Kang

    2016-07-01

    Deriving respiratory signal from a surface electrocardiogram (ECG) measurement has advantage of simultaneously monitoring of cardiac and respiratory activities. ECG-based cardiopulmonary coupling (CPC) analysis estimated by heart period variability and ECG-derived respiration (EDR) shows promising applications in medical field. The aim of this paper is to provide a quantitative analysis of the ECG-based CPC, and further improve its performance. Two conventional strategies were tested to obtain EDR signal: R-S wave amplitude and area of the QRS complex. An adaptive filter was utilized to extract the common component of inter-beat interval (RRI) and EDR, generating enhanced versions of EDR signal. CPC is assessed through probing the nonlinear phase interactions between RRI series and respiratory signal. Respiratory oscillations presented in both RRI series and respiratory signals were extracted by ensemble empirical mode decomposition for coupling analysis via phase synchronization index. The results demonstrated that CPC estimated from conventional EDR series exhibits constant and proportional biases, while that estimated from enhanced EDR series is more reliable. Adaptive filtering can improve the accuracy of the ECG-based CPC estimation significantly and achieve robust CPC analysis. The improved ECG-based CPC estimation may provide additional prognostic information for both sleep medicine and autonomic function analysis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Research in robust control for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.

    1993-01-01

    The research during the second reporting period has focused on robust control design for hypersonic vehicles. An already existing design for the Hypersonic Winged-Cone Configuration has been enhanced. Uncertainty models for the effects of propulsion system perturbations due to angle of attack variations, structural vibrations, and uncertainty in control effectiveness were developed. Using H(sub infinity) and mu-synthesis techniques, various control designs were performed in order to investigate the impact of these effects on achievable robust performance.

  18. Assessing climate change-robustness of protected area management plans-The case of Germany.

    PubMed

    Geyer, Juliane; Kreft, Stefan; Jeltsch, Florian; Ibisch, Pierre L

    2017-01-01

    Protected areas are arguably the most important instrument of biodiversity conservation. To keep them fit under climate change, their management needs to be adapted to address related direct and indirect changes. In our study we focus on the adaptation of conservation management planning, evaluating management plans of 60 protected areas throughout Germany with regard to their climate change-robustness. First, climate change-robust conservation management was defined using 11 principles and 44 criteria, which followed an approach similar to sustainability standards. We then evaluated the performance of individual management plans concerning the climate change-robustness framework. We found that climate change-robustness of protected areas hardly exceeded 50 percent of the potential performance, with most plans ranking in the lower quarter. Most Natura 2000 protected areas, established under conservation legislation of the European Union, belong to the sites with especially poor performance, with lower values in smaller areas. In general, the individual principles showed very different rates of accordance with our principles, but similarly low intensity. Principles with generally higher performance values included holistic knowledge management, public accountability and acceptance as well as systemic and strategic coherence. Deficiencies were connected to dealing with the future and uncertainty. Lastly, we recommended the presented principles and criteria as essential guideposts that can be used as a checklist for working towards more climate change-robust planning.

  19. Assessing climate change-robustness of protected area management plans—The case of Germany

    PubMed Central

    Geyer, Juliane; Kreft, Stefan; Jeltsch, Florian; Ibisch, Pierre L.

    2017-01-01

    Protected areas are arguably the most important instrument of biodiversity conservation. To keep them fit under climate change, their management needs to be adapted to address related direct and indirect changes. In our study we focus on the adaptation of conservation management planning, evaluating management plans of 60 protected areas throughout Germany with regard to their climate change-robustness. First, climate change-robust conservation management was defined using 11 principles and 44 criteria, which followed an approach similar to sustainability standards. We then evaluated the performance of individual management plans concerning the climate change-robustness framework. We found that climate change-robustness of protected areas hardly exceeded 50 percent of the potential performance, with most plans ranking in the lower quarter. Most Natura 2000 protected areas, established under conservation legislation of the European Union, belong to the sites with especially poor performance, with lower values in smaller areas. In general, the individual principles showed very different rates of accordance with our principles, but similarly low intensity. Principles with generally higher performance values included holistic knowledge management, public accountability and acceptance as well as systemic and strategic coherence. Deficiencies were connected to dealing with the future and uncertainty. Lastly, we recommended the presented principles and criteria as essential guideposts that can be used as a checklist for working towards more climate change-robust planning. PMID:28982187

  20. Robust Structural Analysis and Design of Distributed Control Systems to Prevent Zero Dynamics Attacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weerakkody, Sean; Liu, Xiaofei; Sinopoli, Bruno

    We consider the design and analysis of robust distributed control systems (DCSs) to ensure the detection of integrity attacks. DCSs are often managed by independent agents and are implemented using a diverse set of sensors and controllers. However, the heterogeneous nature of DCSs along with their scale leave such systems vulnerable to adversarial behavior. To mitigate this reality, we provide tools that allow operators to prevent zero dynamics attacks when as many as p agents and sensors are corrupted. Such a design ensures attack detectability in deterministic systems while removing the threat of a class of stealthy attacks in stochasticmore » systems. To achieve this goal, we use graph theory to obtain necessary and sufficient conditions for the presence of zero dynamics attacks in terms of the structural interactions between agents and sensors. We then formulate and solve optimization problems which minimize communication networks while also ensuring a resource limited adversary cannot perform a zero dynamics attacks. Polynomial time algorithms for design and analysis are provided.« less

  1. Standard cell electrical and physical variability analysis based on automatic physical measurement for design-for-manufacturing purposes

    NASA Astrophysics Data System (ADS)

    Shauly, Eitan; Parag, Allon; Khmaisy, Hafez; Krispil, Uri; Adan, Ofer; Levi, Shimon; Latinski, Sergey; Schwarzband, Ishai; Rotstein, Israel

    2011-04-01

    A fully automated system for process variability analysis of high density standard cell was developed. The system consists of layout analysis with device mapping: device type, location, configuration and more. The mapping step was created by a simple DRC run-set. This database was then used as an input for choosing locations for SEM images and for specific layout parameter extraction, used by SPICE simulation. This method was used to analyze large arrays of standard cell blocks, manufactured using Tower TS013LV (Low Voltage for high-speed applications) Platforms. Variability of different physical parameters like and like Lgate, Line-width-roughness and more as well as of electrical parameters like drive current (Ion), off current (Ioff) were calculated and statistically analyzed, in order to understand the variability root cause. Comparison between transistors having the same W/L but with different layout configurations and different layout environments (around the transistor) was made in terms of performances as well as process variability. We successfully defined "robust" and "less-robust" transistors configurations, and updated guidelines for Design-for-Manufacturing (DfM).

  2. X-Ray Phase Imaging for Breast Cancer Detection

    DTIC Science & Technology

    2012-09-01

    the Gerchberg-Saxton algorithm in the Fresnel diffraction regime, and is much more robust against image noise than the TIE-based method. For details...developed efficient coding with the software modules for the image registration, flat-filed correction , and phase retrievals. In addition, we...X, Liu H. 2010. Performance analysis of the attenuation-partition based iterative phase retrieval algorithm for in-line phase-contrast imaging

  3. Expendable launch vehicle studies

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Reiss, Robert

    1995-01-01

    Analytical support studies of expendable launch vehicles concentrate on the stability of the dynamics during launch especially during or near the region of maximum dynamic pressure. The in-plane dynamic equations of a generic launch vehicle with multiple flexible bending and fuel sloshing modes are developed and linearized. The information from LeRC about the grids, masses, and modes is incorporated into the model. The eigenvalues of the plant are analyzed for several modeling factors: utilizing diagonal mass matrix, uniform beam assumption, inclusion of aerodynamics, and the interaction between the aerodynamics and the flexible bending motion. Preliminary PID, LQR, and LQG control designs with sensor and actuator dynamics for this system and simulations are also conducted. The initial analysis for comparison of PD (proportional-derivative) and full state feedback LQR Linear quadratic regulator) shows that the split weighted LQR controller has better performance than that of the PD. In order to meet both the performance and robustness requirements, the H(sub infinity) robust controller for the expendable launch vehicle is developed. The simulation indicates that both the performance and robustness of the H(sub infinity) controller are better than that for the PID and LQG controllers. The modelling and analysis support studies team has continued development of methodology, using eigensensitivity analysis, to solve three classes of discrete eigenvalue equations. In the first class, the matrix elements are non-linear functions of the eigenvector. All non-linear periodic motion can be cast in this form. Here the eigenvector is comprised of the coefficients of complete basis functions spanning the response space and the eigenvalue is the frequency. The second class of eigenvalue problems studied is the quadratic eigenvalue problem. Solutions for linear viscously damped structures or viscoelastic structures can be reduced to this form. Particular attention is paid to Maxwell and Kelvin models. The third class of problems consists of linear eigenvalue problems in which the elements of the mass and stiffness matrices are stochastic. dynamic structural response for which the parameters are given by probabilistic distribution functions, rather than deterministic values, can be cast in this form. Solutions for several problems in each class will be presented.

  4. Iterative filtering decomposition based on local spectral evolution kernel

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    The synthesizing information, achieving understanding, and deriving insight from increasingly massive, time-varying, noisy and possibly conflicting data sets are some of most challenging tasks in the present information age. Traditional technologies, such as Fourier transform and wavelet multi-resolution analysis, are inadequate to handle all of the above-mentioned tasks. The empirical model decomposition (EMD) has emerged as a new powerful tool for resolving many challenging problems in data processing and analysis. Recently, an iterative filtering decomposition (IFD) has been introduced to address the stability and efficiency problems of the EMD. Another data analysis technique is the local spectral evolution kernel (LSEK), which provides a near prefect low pass filter with desirable time-frequency localizations. The present work utilizes the LSEK to further stabilize the IFD, and offers an efficient, flexible and robust scheme for information extraction, complexity reduction, and signal and image understanding. The performance of the present LSEK based IFD is intensively validated over a wide range of data processing tasks, including mode decomposition, analysis of time-varying data, information extraction from nonlinear dynamic systems, etc. The utility, robustness and usefulness of the proposed LESK based IFD are demonstrated via a large number of applications, such as the analysis of stock market data, the decomposition of ocean wave magnitudes, the understanding of physiologic signals and information recovery from noisy images. The performance of the proposed method is compared with that of existing methods in the literature. Our results indicate that the LSEK based IFD improves both the efficiency and the stability of conventional EMD algorithms. PMID:22350559

  5. Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods

    NASA Astrophysics Data System (ADS)

    Chen, Xue; Li, Xiaohui; Yu, Xin; Chen, Deying; Liu, Aichun

    2018-01-01

    Diagnosis of malignancies is a challenging clinical issue. In this work, we present quick and robust diagnosis and discrimination of lymphoma and multiple myeloma (MM) using laser-induced breakdown spectroscopy (LIBS) conducted on human serum samples, in combination with chemometric methods. The serum samples collected from lymphoma and MM cancer patients and healthy controls were deposited on filter papers and ablated with a pulsed 1064 nm Nd:YAG laser. 24 atomic lines of Ca, Na, K, H, O, and N were selected for malignancy diagnosis. Principal component analysis (PCA), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and k nearest neighbors (kNN) classification were applied to build the malignancy diagnosis and discrimination models. The performances of the models were evaluated using 10-fold cross validation. The discrimination accuracy, confusion matrix and receiver operating characteristic (ROC) curves were obtained. The values of area under the ROC curve (AUC), sensitivity and specificity at the cut-points were determined. The kNN model exhibits the best performances with overall discrimination accuracy of 96.0%. Distinct discrimination between malignancies and healthy controls has been achieved with AUC, sensitivity and specificity for healthy controls all approaching 1. For lymphoma, the best discrimination performance values are AUC = 0.990, sensitivity = 0.970 and specificity = 0.956. For MM, the corresponding values are AUC = 0.986, sensitivity = 0.892 and specificity = 0.994. The results show that the serum-LIBS technique can serve as a quick, less invasive and robust method for diagnosis and discrimination of human malignancies.

  6. Robust detection of EGFR copy number changes and EGFR variant III: technical aspects and relevance for glioma diagnostics.

    PubMed

    Jeuken, Judith; Sijben, Angelique; Alenda, Cristina; Rijntjes, Jos; Dekkers, Marieke; Boots-Sprenger, Sandra; McLendon, Roger; Wesseling, Pieter

    2009-10-01

    Epidermal growth factor receptor (EGFR) is commonly affected in cancer, generally in the form of an increase in DNA copy number and/or as mutation variants [e.g., EGFR variant III (EGFRvIII), an in-frame deletion of exons 2-7]. While detection of EGFR aberrations can be expected to be relevant for glioma patients, such analysis has not yet been implemented in a routine setting, also because feasible and robust assays were lacking. We evaluated multiplex ligation-dependent probe amplification (MLPA) for detection of EGFR amplification and EGFRvIII in DNA of a spectrum of 216 diffuse gliomas. EGFRvIII detection was verified at the protein level by immunohistochemistry and at the RNA level using the conventionally used endpoint RT-PCR as well as a newly developed quantitative RT-PCR. Compared to these techniques, the DNA-based MLPA assay for EGFR/EGFRvIII analysis tested showed 100% sensitivity and specificity. We conclude that MLPA is a robust assay for detection of EGFR/EGFRvIII aberrations. While the exact diagnostic, prognostic and predictive value of such EGFR testing remains to be seen, MLPA has great potential as it can reliably and relatively easily be performed on routinely processed (formalin-fixed, paraffin-embedded) tumor tissue in combination with testing for other relevant glioma markers.

  7. An effective and robust method for tracking multiple fish in video image based on fish head detection.

    PubMed

    Qian, Zhi-Ming; Wang, Shuo Hong; Cheng, Xi En; Chen, Yan Qiu

    2016-06-23

    Fish tracking is an important step for video based analysis of fish behavior. Due to severe body deformation and mutual occlusion of multiple swimming fish, accurate and robust fish tracking from video image sequence is a highly challenging problem. The current tracking methods based on motion information are not accurate and robust enough to track the waving body and handle occlusion. In order to better overcome these problems, we propose a multiple fish tracking method based on fish head detection. The shape and gray scale characteristics of the fish image are employed to locate the fish head position. For each detected fish head, we utilize the gray distribution of the head region to estimate the fish head direction. Both the position and direction information from fish detection are then combined to build a cost function of fish swimming. Based on the cost function, global optimization method can be applied to associate the target between consecutive frames. Results show that our method can accurately detect the position and direction information of fish head, and has a good tracking performance for dozens of fish. The proposed method can successfully obtain the motion trajectories for dozens of fish so as to provide more precise data to accommodate systematic analysis of fish behavior.

  8. Fiber optic sensor for continuous health monitoring in CFRP composite materials

    NASA Astrophysics Data System (ADS)

    Rippert, Laurent; Papy, Jean-Michel; Wevers, Martine; Van Huffel, Sabine

    2002-07-01

    An intensity modulated sensor, based on the microbending concept, has been incorporated in laminates produced from a C/epoxy prepreg. Pencil lead break tests (Hsu-Neilsen sources) and tensile tests have been performed on this material. In this research study, fibre optic sensors will be proven to offer an alternative for the robust piezoelectric transducers used for Acoustic Emission (AE) monitoring. The main emphasis has been put on the use of advanced signal processing techniques based on time-frequency analysis. The signal Short Time Fourier Transform (STFT) has been computed and several robust noise reduction algorithms, such as Wiener adaptive filtering, improved spectral subtraction filtering, and Singular Value Decomposition (SVD) -based filtering, have been applied. An energy and frequency -based detection criterion is put forward to detect transient signals that can be correlated with Modal Acoustic Emission (MAE) results and thus damage in the composite material. There is a strong indication that time-frequency analysis and the Hankel Total Least Squares (HTLS) method can also be used for damage characterization. This study shows that the signal from a quite simple microbend optical sensor contains information on the elastic energy released whenever damage is being introduced in the host material by mechanical loading. Robust algorithms can be used to retrieve and analyze this information.

  9. Ethics, Nanobiosensors and Elite Sport: The Need for a New Governance Framework.

    PubMed

    Evans, Robert; McNamee, Michael; Guy, Owen

    2017-12-01

    Individual athletes, coaches and sports teams seek continuously for ways to improve performance and accomplishment in elite competition. New techniques of performance analysis are a crucial part of the drive for athletic perfection. This paper discusses the ethical importance of one aspect of the future potential of performance analysis in sport, combining the field of biomedicine, sports engineering and nanotechnology in the form of 'Nanobiosensors'. This innovative technology has the potential to revolutionise sport, enabling real time biological data to be collected from athletes that can be electronically distributed. Enabling precise real time performance analysis is not without ethical problems. Arguments concerning (1) data ownership and privacy; (2) data confidentiality; and (3) athlete welfare are presented alongside a discussion of the use of the Precautionary Principle in making ethical evaluations. We conclude, that although the future potential use of Nanobiosensors in sports analysis offers many potential benefits, there is also a fear that it could be abused at a sporting system level. Hence, it is essential for sporting bodies to consider the development of a robust ethically informed governance framework in advance of their proliferated use.

  10. The analysis on nonlinear control of the aircraft arresting system

    NASA Astrophysics Data System (ADS)

    Song, Jinchun; Du, Tianrong

    2005-12-01

    The aircraft arresting system is a complicated nonlinear system. This paper analyzes the mechanical-hydraulic structure of aircraft arresting system composed of electro hydraulic valve and establishes the dynamic equation of the aircraft arresting system. Based on the state-feedback linearization of nonlinear system, a PD-based controller is synthesized. Simulation studies indicate, while arresting the different type aircraft, the proposed controller has fast response, good tracking performance and strong robustness. By tuning the parameters of the PD controller, a satisfactory control performance can be guaranteed.

  11. Comprehensive Profiling of Immune Responses in MARV Survivors Demonstrates Robust Th1-Skewing with Short Lived Neutralizing Antibody Responses

    DTIC Science & Technology

    2017-03-29

    Beyond IgG or IgM ELISAs performed for diagnostic purposes, virtually the entirety of the literature available regarding filovirus immune responses in...supernatants for an expanded cytokine analysis by ELISA . A representative set of flow plots for CD4 and CD8 T cell responses from a MARV survivor is shown in...performed a multiplex ELISA assay with the culture supernatants to analyze a broader range of cytokines. We focused on five cytokines that are germane

  12. Well-defined porous membranes for robust omniphobic surfaces via microfluidic emulsion templating

    NASA Astrophysics Data System (ADS)

    Zhu, Pingan; Kong, Tiantian; Tang, Xin; Wang, Liqiu

    2017-06-01

    Durability is a long-standing challenge in designing liquid-repellent surfaces. A high-performance omniphobic surface must robustly repel liquids, while maintaining mechanical/chemical stability. However, liquid repellency and mechanical durability are generally mutually exclusive properties for many omniphobic surfaces--improving one performance inevitably results in decreased performance in another. Here we report well-defined porous membranes for durable omniphobic surfaces inspired by the springtail cuticle. The omniphobicity is shown via an amphiphilic material micro-textured with re-entrant surface morphology; the mechanical durability arises from the interconnected microstructures. The innovative fabrication method--termed microfluidic emulsion templating--is facile, cost-effective, scalable and can precisely engineer the structural topographies. The robust omniphobic surface is expected to open up new avenues for diverse applications due to its mechanical and chemical robustness, transparency, reversible Cassie-Wenzel transition, transferability, flexibility and stretchability.

  13. Robust w-Estimators for Cryo-EM Class Means

    PubMed Central

    Huang, Chenxi; Tagare, Hemant D.

    2016-01-01

    A critical step in cryogenic electron microscopy (cryo-EM) image analysis is to calculate the average of all images aligned to a projection direction. This average, called the “class mean”, improves the signal-to-noise ratio in single particle reconstruction (SPR). The averaging step is often compromised because of outlier images of ice, contaminants, and particle fragments. Outlier detection and rejection in the majority of current cryo-EM methods is done using cross-correlation with a manually determined threshold. Empirical assessment shows that the performance of these methods is very sensitive to the threshold. This paper proposes an alternative: a “w-estimator” of the average image, which is robust to outliers and which does not use a threshold. Various properties of the estimator, such as consistency and influence function are investigated. An extension of the estimator to images with different contrast transfer functions (CTFs) is also provided. Experiments with simulated and real cryo-EM images show that the proposed estimator performs quite well in the presence of outliers. PMID:26841397

  14. Robust w-Estimators for Cryo-EM Class Means.

    PubMed

    Huang, Chenxi; Tagare, Hemant D

    2016-02-01

    A critical step in cryogenic electron microscopy (cryo-EM) image analysis is to calculate the average of all images aligned to a projection direction. This average, called the class mean, improves the signal-to-noise ratio in single-particle reconstruction. The averaging step is often compromised because of the outlier images of ice, contaminants, and particle fragments. Outlier detection and rejection in the majority of current cryo-EM methods are done using cross-correlation with a manually determined threshold. Empirical assessment shows that the performance of these methods is very sensitive to the threshold. This paper proposes an alternative: a w-estimator of the average image, which is robust to outliers and which does not use a threshold. Various properties of the estimator, such as consistency and influence function are investigated. An extension of the estimator to images with different contrast transfer functions is also provided. Experiments with simulated and real cryo-EM images show that the proposed estimator performs quite well in the presence of outliers.

  15. On-board orbit determination for low thrust LEO-MEO transfer by Consider Kalman Filtering and multi-constellation GNSS

    NASA Astrophysics Data System (ADS)

    Menzione, Francesco; Renga, Alfredo; Grassi, Michele

    2017-09-01

    In the framework of the novel navigation scenario offered by the next generation satellite low thrust autonomous LEO-to-MEO orbit transfer, this study proposes and tests a GNSS based navigation system aimed at providing on-board precise and robust orbit determination strategy to override rising criticalities. The analysis introduces the challenging design issues to simultaneously deal with the variable orbit regime, the electric thrust control and the high orbit GNSS visibility conditions. The Consider Kalman Filtering approach is here proposed as the filtering scheme to process the GNSS raw data provided by a multi-antenna/multi-constellation receiver in presence of uncertain parameters affecting measurements, actuation and spacecraft physical properties. Filter robustness and achievable navigation accuracy are verified using a high fidelity simulation of the low-thrust rising scenario and performance are compared with the one of a standard Extended Kalman Filtering approach to highlight the advantages of the proposed solution. Performance assessment of the developed navigation solution is accomplished for different transfer phases.

  16. Development of High Precision Metal Micro-Electro-Mechanical-Systems Column for Portable Surface Acoustic Wave Gas Chromatograph

    NASA Astrophysics Data System (ADS)

    Iwaya, Takamitsu; Akao, Shingo; Sakamoto, Toshihiro; Tsuji, Toshihiro; Nakaso, Noritaka; Yamanaka, Kazushi

    2012-07-01

    In the field of environmental measurement and security, a portable gas chromatograph (GC) is required for the on-site analysis of multiple hazardous gases. Although the gas separation column has been downsized using micro-electro-mechanical-systems (MEMS) technology, an MEMS column made of silicon and glass still does not have sufficient robustness and a sufficiently low fabrication cost for a portable GC. In this study, we fabricated a robust and inexpensive high-precision metal MEMS column by combining diffusion-bonded etched stainless-steel plates with alignment evaluation using acoustic microscopy. The separation performance was evaluated using a desktop GC with a flame ionization detector and we achieved the high separation performance comparable to the best silicon MEMS column fabricated using a dynamic coating method. As an application, we fabricated a palm-size surface acoustic wave (SAW) GC combining this column with a ball SAW sensor and succeeded in separating and detecting a mixture of volatile organic compounds.

  17. Developing the Next Generation Shell Buckling Design Factors and Technologies

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.

    2012-01-01

    NASA s Shell Buckling Knockdown Factor (SBKF) Project was established in the spring of 2007 by the NASA Engineering and Safety Center (NESC) in collaboration with the Constellation Program and Exploration Systems Mission Directorate. The SBKF project has the current goal of developing less-conservative, robust shell buckling design factors (a.k.a. knockdown factors) and design and analysis technologies for light-weight stiffened metallic launch vehicle (LV) structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles and can help mitigate some of NASA s LV development and performance risks. In particular, it is expected that the results from this project will help reduce the reliance on testing, provide high-fidelity estimates of structural performance, reliability, robustness, and enable increased payload capability. The SBKF project objectives and approach used to develop and validate new design technologies are presented, and provide a glimpse into the future of design of the next generation of buckling-critical launch vehicle structures.

  18. A Comprehensive review of group level model performance in the presence of heteroscedasticity: Can a single model control Type I errors in the presence of outliers?

    PubMed Central

    Mumford, Jeanette A.

    2017-01-01

    Even after thorough preprocessing and a careful time series analysis of functional magnetic resonance imaging (fMRI) data, artifact and other issues can lead to violations of the assumption that the variance is constant across subjects in the group level model. This is especially concerning when modeling a continuous covariate at the group level, as the slope is easily biased by outliers. Various models have been proposed to deal with outliers including models that use the first level variance or that use the group level residual magnitude to differentially weight subjects. The most typically used robust regression, implementing a robust estimator of the regression slope, has been previously studied in the context of fMRI studies and was found to perform well in some scenarios, but a loss of Type I error control can occur for some outlier settings. A second type of robust regression using a heteroscedastic autocorrelation consistent (HAC) estimator, which produces robust slope and variance estimates has been shown to perform well, with better Type I error control, but with large sample sizes (500–1000 subjects). The Type I error control with smaller sample sizes has not been studied in this model and has not been compared to other modeling approaches that handle outliers such as FSL’s Flame 1 and FSL’s outlier de-weighting. Focusing on group level inference with a continuous covariate over a range of sample sizes and degree of heteroscedasticity, which can be driven either by the within- or between-subject variability, both styles of robust regression are compared to ordinary least squares (OLS), FSL’s Flame 1, Flame 1 with outlier de-weighting algorithm and Kendall’s Tau. Additionally, subject omission using the Cook’s Distance measure with OLS and nonparametric inference with the OLS statistic are studied. Pros and cons of these models as well as general strategies for detecting outliers in data and taking precaution to avoid inflated Type I error rates are discussed. PMID:28030782

  19. Exploring critical pathways for urban water management to identify robust strategies under deep uncertainties.

    PubMed

    Urich, Christian; Rauch, Wolfgang

    2014-12-01

    Long-term projections for key drivers needed in urban water infrastructure planning such as climate change, population growth, and socio-economic changes are deeply uncertain. Traditional planning approaches heavily rely on these projections, which, if a projection stays unfulfilled, can lead to problematic infrastructure decisions causing high operational costs and/or lock-in effects. New approaches based on exploratory modelling take a fundamentally different view. Aim of these is, to identify an adaptation strategy that performs well under many future scenarios, instead of optimising a strategy for a handful. However, a modelling tool to support strategic planning to test the implication of adaptation strategies under deeply uncertain conditions for urban water management does not exist yet. This paper presents a first step towards a new generation of such strategic planning tools, by combing innovative modelling tools, which coevolve the urban environment and urban water infrastructure under many different future scenarios, with robust decision making. The developed approach is applied to the city of Innsbruck, Austria, which is spatially explicitly evolved 20 years into the future under 1000 scenarios to test the robustness of different adaptation strategies. Key findings of this paper show that: (1) Such an approach can be used to successfully identify parameter ranges of key drivers in which a desired performance criterion is not fulfilled, which is an important indicator for the robustness of an adaptation strategy; and (2) Analysis of the rich dataset gives new insights into the adaptive responses of agents to key drivers in the urban system by modifying a strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Robust Satisficing Decision Making for Unmanned Aerial Vehicle Complex Missions under Severe Uncertainty

    PubMed Central

    Ji, Xiaoting; Niu, Yifeng; Shen, Lincheng

    2016-01-01

    This paper presents a robust satisficing decision-making method for Unmanned Aerial Vehicles (UAVs) executing complex missions in an uncertain environment. Motivated by the info-gap decision theory, we formulate this problem as a novel robust satisficing optimization problem, of which the objective is to maximize the robustness while satisfying some desired mission requirements. Specifically, a new info-gap based Markov Decision Process (IMDP) is constructed to abstract the uncertain UAV system and specify the complex mission requirements with the Linear Temporal Logic (LTL). A robust satisficing policy is obtained to maximize the robustness to the uncertain IMDP while ensuring a desired probability of satisfying the LTL specifications. To this end, we propose a two-stage robust satisficing solution strategy which consists of the construction of a product IMDP and the generation of a robust satisficing policy. In the first stage, a product IMDP is constructed by combining the IMDP with an automaton representing the LTL specifications. In the second, an algorithm based on robust dynamic programming is proposed to generate a robust satisficing policy, while an associated robustness evaluation algorithm is presented to evaluate the robustness. Finally, through Monte Carlo simulation, the effectiveness of our algorithms is demonstrated on an UAV search mission under severe uncertainty so that the resulting policy can maximize the robustness while reaching the desired performance level. Furthermore, by comparing the proposed method with other robust decision-making methods, it can be concluded that our policy can tolerate higher uncertainty so that the desired performance level can be guaranteed, which indicates that the proposed method is much more effective in real applications. PMID:27835670

  1. Robust Satisficing Decision Making for Unmanned Aerial Vehicle Complex Missions under Severe Uncertainty.

    PubMed

    Ji, Xiaoting; Niu, Yifeng; Shen, Lincheng

    2016-01-01

    This paper presents a robust satisficing decision-making method for Unmanned Aerial Vehicles (UAVs) executing complex missions in an uncertain environment. Motivated by the info-gap decision theory, we formulate this problem as a novel robust satisficing optimization problem, of which the objective is to maximize the robustness while satisfying some desired mission requirements. Specifically, a new info-gap based Markov Decision Process (IMDP) is constructed to abstract the uncertain UAV system and specify the complex mission requirements with the Linear Temporal Logic (LTL). A robust satisficing policy is obtained to maximize the robustness to the uncertain IMDP while ensuring a desired probability of satisfying the LTL specifications. To this end, we propose a two-stage robust satisficing solution strategy which consists of the construction of a product IMDP and the generation of a robust satisficing policy. In the first stage, a product IMDP is constructed by combining the IMDP with an automaton representing the LTL specifications. In the second, an algorithm based on robust dynamic programming is proposed to generate a robust satisficing policy, while an associated robustness evaluation algorithm is presented to evaluate the robustness. Finally, through Monte Carlo simulation, the effectiveness of our algorithms is demonstrated on an UAV search mission under severe uncertainty so that the resulting policy can maximize the robustness while reaching the desired performance level. Furthermore, by comparing the proposed method with other robust decision-making methods, it can be concluded that our policy can tolerate higher uncertainty so that the desired performance level can be guaranteed, which indicates that the proposed method is much more effective in real applications.

  2. GPS baseline configuration design based on robustness analysis

    NASA Astrophysics Data System (ADS)

    Yetkin, M.; Berber, M.

    2012-11-01

    The robustness analysis results obtained from a Global Positioning System (GPS) network are dramatically influenced by the configurationof the observed baselines. The selection of optimal GPS baselines may allow for a cost effective survey campaign and a sufficiently robustnetwork. Furthermore, using the approach described in this paper, the required number of sessions, the baselines to be observed, and thesignificance levels for statistical testing and robustness analysis can be determined even before the GPS campaign starts. In this study, wepropose a robustness criterion for the optimal design of geodetic networks, and present a very simple and efficient algorithm based on thiscriterion for the selection of optimal GPS baselines. We also show the relationship between the number of sessions and the non-centralityparameter. Finally, a numerical example is given to verify the efficacy of the proposed approach.

  3. Robust inertia-free attitude takeover control of postcapture combined spacecraft with guaranteed prescribed performance.

    PubMed

    Luo, Jianjun; Wei, Caisheng; Dai, Honghua; Yin, Zeyang; Wei, Xing; Yuan, Jianping

    2018-03-01

    In this paper, a robust inertia-free attitude takeover control scheme with guaranteed prescribed performance is investigated for postcapture combined spacecraft with consideration of unmeasurable states, unknown inertial property and external disturbance torque. Firstly, to estimate the unavailable angular velocity of combination accurately, a novel finite-time-convergent tracking differentiator is developed with a quite computationally achievable structure free from the unknown nonlinear dynamics of combined spacecraft. Then, a robust inertia-free prescribed performance control scheme is proposed, wherein, the transient and steady-state performance of combined spacecraft is first quantitatively studied by stabilizing the filtered attitude tracking errors. Compared with the existing works, the prominent advantage is that no parameter identifications and no neural or fuzzy nonlinear approximations are needed, which decreases the complexity of robust controller design dramatically. Moreover, the prescribed performance of combined spacecraft is guaranteed a priori without resorting to repeated regulations of the controller parameters. Finally, four illustrative examples are employed to validate the effectiveness of the proposed control scheme and tracking differentiator. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Active Fault Tolerant Control for Ultrasonic Piezoelectric Motor

    NASA Astrophysics Data System (ADS)

    Boukhnifer, Moussa

    2012-07-01

    Ultrasonic piezoelectric motor technology is an important system component in integrated mechatronics devices working on extreme operating conditions. Due to these constraints, robustness and performance of the control interfaces should be taken into account in the motor design. In this paper, we apply a new architecture for a fault tolerant control using Youla parameterization for an ultrasonic piezoelectric motor. The distinguished feature of proposed controller architecture is that it shows structurally how the controller design for performance and robustness may be done separately which has the potential to overcome the conflict between performance and robustness in the traditional feedback framework. A fault tolerant control architecture includes two parts: one part for performance and the other part for robustness. The controller design works in such a way that the feedback control system will be solely controlled by the proportional plus double-integral PI2 performance controller for a nominal model without disturbances and H∞ robustification controller will only be activated in the presence of the uncertainties or an external disturbances. The simulation results demonstrate the effectiveness of the proposed fault tolerant control architecture.

  5. Characterizing metabolic pathway diversification in the context of perturbation size.

    PubMed

    Yang, Laurence; Srinivasan, Shyamsundhar; Mahadevan, Radhakrishnan; Cluett, William R

    2015-03-01

    Cell metabolism is an important platform for sustainable biofuel, chemical and pharmaceutical production but its complexity presents a major challenge for scientists and engineers. Although in silico strains have been designed in the past with predicted performances near the theoretical maximum, real-world performance is often sub-optimal. Here, we simulate how strain performance is impacted when subjected to many randomly varying perturbations, including discrepancies between gene expression and in vivo flux, osmotic stress, and substrate uptake perturbations due to concentration gradients in bioreactors. This computational study asks whether robust performance can be achieved by adopting robustness-enhancing mechanisms from naturally evolved organisms-in particular, redundancy. Our study shows that redundancy, typically perceived as a ubiquitous robustness-enhancing strategy in nature, can either improve or undermine robustness depending on the magnitude of the perturbations. We also show that the optimal number of redundant pathways used can be predicted for a given perturbation size. Copyright © 2015. Published by Elsevier Inc.

  6. Robust approximation-free prescribed performance control for nonlinear systems and its application

    NASA Astrophysics Data System (ADS)

    Sun, Ruisheng; Na, Jing; Zhu, Bin

    2018-02-01

    This paper presents a robust prescribed performance control approach and its application to nonlinear tail-controlled missile systems with unknown dynamics and uncertainties. The idea of prescribed performance function (PPF) is incorporated into the control design, such that both the steady-state and transient control performance can be strictly guaranteed. Unlike conventional PPF-based control methods, we further tailor a recently proposed systematic control design procedure (i.e. approximation-free control) using the transformed tracking error dynamics, which provides a proportional-like control action. Hence, the function approximators (e.g. neural networks, fuzzy systems) that are widely used to address the unknown nonlinearities in the nonlinear control designs are not needed. The proposed control design leads to a robust yet simplified function approximation-free control for nonlinear systems. The closed-loop system stability and the control error convergence are all rigorously proved. Finally, comparative simulations are conducted based on nonlinear missile systems to validate the improved response and the robustness of the proposed control method.

  7. Employment of telemedicine in emergency medicine. Clinical requirement analysis, system development and first test results.

    PubMed

    Czaplik, M; Bergrath, S; Rossaint, R; Thelen, S; Brodziak, T; Valentin, B; Hirsch, F; Beckers, S K; Brokmann, J C

    2014-01-01

    Demographic change, rising co-morbidity and an increasing number of emergencies are the main challenges that emergency medical services (EMS) in several countries worldwide are facing. In order to improve quality in EMS, highly trained personnel and well-equipped ambulances are essential. However several studies have shown a deficiency in qualified EMS physicians. Telemedicine emerges as a complementary system in EMS that may provide expertise and improve quality of medical treatment on the scene. Hence our aim is to develop and test a specific teleconsultation system. During the development process several use cases were defined and technically specified by medical experts and engineers in the areas of: system administration, start-up of EMS assistance systems, audio communication, data transfer, routine tele-EMS physician activities and research capabilities. Upon completion, technical field tests were performed under realistic conditions to test system properties such as robustness, feasibility and usability, providing end-to-end measurements. Six ambulances were equipped with telemedical facilities based on the results of the requirement analysis and 55 scenarios were tested under realistic conditions in one month. The results indicate that the developed system performed well in terms of usability and robustness. The major challenges were, as expected, mobile communication and data network availability. Third generation networks were only available in 76.4% of the cases. Although 3G (third generation), such as Universal Mobile Telecommunications System (UMTS), provides beneficial conditions for higher bandwidth, system performance for most features was also acceptable under adequate 2G (second generation) test conditions. An innovative concept for the use of telemedicine for medical consultations in EMS was developed. Organisational and technical aspects were considered and practical requirements specified. Since technical feasibility was demonstrated in these technical field tests, the next step would be to prove medical usefulness and technical robustness under real conditions in a clinical trial.

  8. Synaptic activation patterns of the perirhinal-entorhinal inter-connections.

    PubMed

    de Villers-Sidani, E; Tahvildari, B; Alonso, A

    2004-01-01

    Ample neuropsychological evidence supports the role of rhinal cortices in memory. The perirhinal cortex (PRC) represents one of the main conduits for the bi-directional flow of information between the entorhinal-hippocampal network and the cortical mantle, a process essential in memory formation. However, despite anatomical evidence for a robust reciprocal connectivity between the perirhinal and entorhinal cortices, neurophysiological understanding of this circuitry is lacking. We now present the results of a series of electrophysiological experiments in rats that demonstrate robust synaptic activation patterns of the perirhinal-entorhinal inter-connections. First, using silicon multi-electrode arrays placed under visual guidance in vivo we performed current source density (CSD) analysis of lateral entorhinal cortex (LEC) responses to PRC stimulation, which demonstrated a current sink in layers II-III of the LEC with a latency consistent with monosynaptic activation. To further substantiate and extend this conclusion, we developed a PRC-LEC slice preparation where CSD analysis also revealed a current sink in superficial LEC layers in response to PRC stimulation. Importantly, intracellular recording of superficial LEC layer neurons confirmed that they receive a major monosynaptic excitatory input from the PRC. Finally, CSD analysis of the LEC to PRC projection in vivo also allowed us to document robust feedback synaptic activation of PRC neurons to deep LEC layer activation. We conclude that a clear bidirectional pattern of synaptic interactions exists between the PRC and LEC that would support a dynamic flow of information subserving memory function in the temporal lobe.

  9. The holistic analysis of gamma-ray spectra in instrumental neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Blaauw, Menno

    1994-12-01

    A method for the interpretation of γ-ray spectra as obtained in INAA using linear least squares techniques is described. Results obtained using this technique and the traditional method previously in use at IRI are compared. It is concluded that the method presented performs better with respect to the number of detected elements, the resolution of interferences and the estimation of the accuracies of the reported element concentrations. It is also concluded that the technique is robust enough to obviate the deconvolution of multiplets.

  10. Biological robustness.

    PubMed

    Kitano, Hiroaki

    2004-11-01

    Robustness is a ubiquitously observed property of biological systems. It is considered to be a fundamental feature of complex evolvable systems. It is attained by several underlying principles that are universal to both biological organisms and sophisticated engineering systems. Robustness facilitates evolvability and robust traits are often selected by evolution. Such a mutually beneficial process is made possible by specific architectural features observed in robust systems. But there are trade-offs between robustness, fragility, performance and resource demands, which explain system behaviour, including the patterns of failure. Insights into inherent properties of robust systems will provide us with a better understanding of complex diseases and a guiding principle for therapy design.

  11. Robust adaptive vibration control of a flexible structure.

    PubMed

    Khoshnood, A M; Moradi, H M

    2014-07-01

    Different types of L1 adaptive control systems show that using robust theories with adaptive control approaches has produced high performance controllers. In this study, a model reference adaptive control scheme considering robust theories is used to propose a practical control system for vibration suppression of a flexible launch vehicle (FLV). In this method, control input of the system is shaped from the dynamic model of the vehicle and components of the control input are adaptively constructed by estimating the undesirable vibration frequencies. Robust stability of the adaptive vibration control system is guaranteed by using the L1 small gain theorem. Simulation results of the robust adaptive vibration control strategy confirm that the effects of vibration on the vehicle performance considerably decrease without the loss of the phase margin of the system. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  12. A Novel Approach to Noise-Filtering Based on a Gain-Scheduling Neural Network Architecture

    NASA Technical Reports Server (NTRS)

    Troudet, T.; Merrill, W.

    1994-01-01

    A gain-scheduling neural network architecture is proposed to enhance the noise-filtering efficiency of feedforward neural networks, in terms of both nominal performance and robustness. The synergistic benefits of the proposed architecture are demonstrated and discussed in the context of the noise-filtering of signals that are typically encountered in aerospace control systems. The synthesis of such a gain-scheduled neurofiltering provides the robustness of linear filtering, while preserving the nominal performance advantage of conventional nonlinear neurofiltering. Quantitative performance and robustness evaluations are provided for the signal processing of pitch rate responses to typical pilot command inputs for a modern fighter aircraft model.

  13. Fiction reading has a small positive impact on social cognition: A meta-analysis.

    PubMed

    Dodell-Feder, David; Tamir, Diana I

    2018-02-26

    Scholars from both the social sciences and the humanities have credited fiction reading with a range of positive real-world social effects. Research in psychology has suggested that readers may make good citizens because fiction reading is associated with better social cognition. But does fiction reading causally improve social cognition? Here, we meta-analyze extant published and unpublished experimental data to address this question. Multilevel random-effects meta-analysis of 53 effect sizes from 14 studies demonstrated that it does: compared to nonfiction reading and no reading, fiction reading leads to a small, statistically significant improvement in social-cognitive performance (g = .15-.16). This effect is robust across sensitivity analyses and does not appear to be the result of publication bias. We recommend that in future work, researchers use more robust reading manipulations, assess whether the effects transfer to improved real-world social functioning, and investigate mechanisms. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. Automated geospatial Web Services composition based on geodata quality requirements

    NASA Astrophysics Data System (ADS)

    Cruz, Sérgio A. B.; Monteiro, Antonio M. V.; Santos, Rafael

    2012-10-01

    Service-Oriented Architecture and Web Services technologies improve the performance of activities involved in geospatial analysis with a distributed computing architecture. However, the design of the geospatial analysis process on this platform, by combining component Web Services, presents some open issues. The automated construction of these compositions represents an important research topic. Some approaches to solving this problem are based on AI planning methods coupled with semantic service descriptions. This work presents a new approach using AI planning methods to improve the robustness of the produced geospatial Web Services composition. For this purpose, we use semantic descriptions of geospatial data quality requirements in a rule-based form. These rules allow the semantic annotation of geospatial data and, coupled with the conditional planning method, this approach represents more precisely the situations of nonconformities with geodata quality that may occur during the execution of the Web Service composition. The service compositions produced by this method are more robust, thus improving process reliability when working with a composition of chained geospatial Web Services.

  15. Topologies for three-phase wound-field salient rotor switched-flux machines for HEV applications

    NASA Astrophysics Data System (ADS)

    Khan, Faisal; Sulaiman, Erwan; Ahmad, Md Zarafi; Husin, Zhafir Aizat; Mazlan, Mohamed Mubin Aizat

    2015-05-01

    Wound-field switched-flux machines (WFSFM) have an intrinsic simplicity and high speed that make them well suited to many hybrid electric vehicle (HEV) applications. However, overlap armature and field windings raised the copper losses in these machines. Furthermore, in previous design segmented-rotor is used which made the rotor less robust. To overcome these problems, this paper presents novel topologies for three-phase wound-field switched-flux machines. Both armature and field winding are located on the stator and rotor is composed of only stack of iron. Non-overlap armature and field windings and toothed-rotor are the clear advantages of these topologies as the copper losses gets reduce and rotor becomes more robust. Design feasibility and performance analysis of 12 slots and different rotor pole numbers are examined on the basis of coil arrangement test, peak armature flux linkage, back emf, cogging torque and average torque by using Finite Element Analysis(FEA).

  16. Robust Least-Squares Support Vector Machine With Minimization of Mean and Variance of Modeling Error.

    PubMed

    Lu, Xinjiang; Liu, Wenbo; Zhou, Chuang; Huang, Minghui

    2017-06-13

    The least-squares support vector machine (LS-SVM) is a popular data-driven modeling method and has been successfully applied to a wide range of applications. However, it has some disadvantages, including being ineffective at handling non-Gaussian noise as well as being sensitive to outliers. In this paper, a robust LS-SVM method is proposed and is shown to have more reliable performance when modeling a nonlinear system under conditions where Gaussian or non-Gaussian noise is present. The construction of a new objective function allows for a reduction of the mean of the modeling error as well as the minimization of its variance, and it does not constrain the mean of the modeling error to zero. This differs from the traditional LS-SVM, which uses a worst-case scenario approach in order to minimize the modeling error and constrains the mean of the modeling error to zero. In doing so, the proposed method takes the modeling error distribution information into consideration and is thus less conservative and more robust in regards to random noise. A solving method is then developed in order to determine the optimal parameters for the proposed robust LS-SVM. An additional analysis indicates that the proposed LS-SVM gives a smaller weight to a large-error training sample and a larger weight to a small-error training sample, and is thus more robust than the traditional LS-SVM. The effectiveness of the proposed robust LS-SVM is demonstrated using both artificial and real life cases.

  17. Robust Classification and Segmentation of Planar and Linear Features for Construction Site Progress Monitoring and Structural Dimension Compliance Control

    NASA Astrophysics Data System (ADS)

    Maalek, R.; Lichti, D. D.; Ruwanpura, J.

    2015-08-01

    The application of terrestrial laser scanners (TLSs) on construction sites for automating construction progress monitoring and controlling structural dimension compliance is growing markedly. However, current research in construction management relies on the planned building information model (BIM) to assign the accumulated point clouds to their corresponding structural elements, which may not be reliable in cases where the dimensions of the as-built structure differ from those of the planned model and/or the planned model is not available with sufficient detail. In addition outliers exist in construction site datasets due to data artefacts caused by moving objects, occlusions and dust. In order to overcome the aforementioned limitations, a novel method for robust classification and segmentation of planar and linear features is proposed to reduce the effects of outliers present in the LiDAR data collected from construction sites. First, coplanar and collinear points are classified through a robust principal components analysis procedure. The classified points are then grouped using a robust clustering method. A method is also proposed to robustly extract the points belonging to the flat-slab floors and/or ceilings without performing the aforementioned stages in order to preserve computational efficiency. The applicability of the proposed method is investigated in two scenarios, namely, a laboratory with 30 million points and an actual construction site with over 150 million points. The results obtained by the two experiments validate the suitability of the proposed method for robust segmentation of planar and linear features in contaminated datasets, such as those collected from construction sites.

  18. Confirmatory Factor Analysis of the System for Evaluation of Teaching Qualities (SETQ) in Graduate Medical Training.

    PubMed

    Boerebach, Benjamin C M; Lombarts, Kiki M J M H; Arah, Onyebuchi A

    2016-03-01

    The System for Evaluation of Teaching Qualities (SETQ) was developed as a formative system for the continuous evaluation and development of physicians' teaching performance in graduate medical training. It has been seven years since the introduction and initial exploratory psychometric analysis of the SETQ questionnaires. This study investigates the validity and reliability of the SETQ questionnaires across hospitals and medical specialties using confirmatory factor analyses (CFAs), reliability analysis, and generalizability analysis. The SETQ questionnaires were tested in a sample of 3,025 physicians and 2,848 trainees in 46 hospitals. The CFA revealed acceptable fit of the data to the previously identified five-factor model. The high internal consistency estimates suggest satisfactory reliability of the subscales. These results provide robust evidence for the validity and reliability of the SETQ questionnaires for evaluating physicians' teaching performance. © The Author(s) 2014.

  19. How Reliable is Bayesian Model Averaging Under Noisy Data? Statistical Assessment and Implications for Robust Model Selection

    NASA Astrophysics Data System (ADS)

    Schöniger, Anneli; Wöhling, Thomas; Nowak, Wolfgang

    2014-05-01

    Bayesian model averaging ranks the predictive capabilities of alternative conceptual models based on Bayes' theorem. The individual models are weighted with their posterior probability to be the best one in the considered set of models. Finally, their predictions are combined into a robust weighted average and the predictive uncertainty can be quantified. This rigorous procedure does, however, not yet account for possible instabilities due to measurement noise in the calibration data set. This is a major drawback, since posterior model weights may suffer a lack of robustness related to the uncertainty in noisy data, which may compromise the reliability of model ranking. We present a new statistical concept to account for measurement noise as source of uncertainty for the weights in Bayesian model averaging. Our suggested upgrade reflects the limited information content of data for the purpose of model selection. It allows us to assess the significance of the determined posterior model weights, the confidence in model selection, and the accuracy of the quantified predictive uncertainty. Our approach rests on a brute-force Monte Carlo framework. We determine the robustness of model weights against measurement noise by repeatedly perturbing the observed data with random realizations of measurement error. Then, we analyze the induced variability in posterior model weights and introduce this "weighting variance" as an additional term into the overall prediction uncertainty analysis scheme. We further determine the theoretical upper limit in performance of the model set which is imposed by measurement noise. As an extension to the merely relative model ranking, this analysis provides a measure of absolute model performance. To finally decide, whether better data or longer time series are needed to ensure a robust basis for model selection, we resample the measurement time series and assess the convergence of model weights for increasing time series length. We illustrate our suggested approach with an application to model selection between different soil-plant models following up on a study by Wöhling et al. (2013). Results show that measurement noise compromises the reliability of model ranking and causes a significant amount of weighting uncertainty, if the calibration data time series is not long enough to compensate for its noisiness. This additional contribution to the overall predictive uncertainty is neglected without our approach. Thus, we strongly advertise to include our suggested upgrade in the Bayesian model averaging routine.

  20. Robust Flutter Margin Analysis that Incorporates Flight Data

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Brenner, Martin J.

    1998-01-01

    An approach for computing worst-case flutter margins has been formulated in a robust stability framework. Uncertainty operators are included with a linear model to describe modeling errors and flight variations. The structured singular value, mu, computes a stability margin that directly accounts for these uncertainties. This approach introduces a new method of computing flutter margins and an associated new parameter for describing these margins. The mu margins are robust margins that indicate worst-case stability estimates with respect to the defined uncertainty. Worst-case flutter margins are computed for the F/A-18 Systems Research Aircraft using uncertainty sets generated by flight data analysis. The robust margins demonstrate flight conditions for flutter may lie closer to the flight envelope than previously estimated by p-k analysis.

  1. Collateral missing value imputation: a new robust missing value estimation algorithm for microarray data.

    PubMed

    Sehgal, Muhammad Shoaib B; Gondal, Iqbal; Dooley, Laurence S

    2005-05-15

    Microarray data are used in a range of application areas in biology, although often it contains considerable numbers of missing values. These missing values can significantly affect subsequent statistical analysis and machine learning algorithms so there is a strong motivation to estimate these values as accurately as possible before using these algorithms. While many imputation algorithms have been proposed, more robust techniques need to be developed so that further analysis of biological data can be accurately undertaken. In this paper, an innovative missing value imputation algorithm called collateral missing value estimation (CMVE) is presented which uses multiple covariance-based imputation matrices for the final prediction of missing values. The matrices are computed and optimized using least square regression and linear programming methods. The new CMVE algorithm has been compared with existing estimation techniques including Bayesian principal component analysis imputation (BPCA), least square impute (LSImpute) and K-nearest neighbour (KNN). All these methods were rigorously tested to estimate missing values in three separate non-time series (ovarian cancer based) and one time series (yeast sporulation) dataset. Each method was quantitatively analyzed using the normalized root mean square (NRMS) error measure, covering a wide range of randomly introduced missing value probabilities from 0.01 to 0.2. Experiments were also undertaken on the yeast dataset, which comprised 1.7% actual missing values, to test the hypothesis that CMVE performed better not only for randomly occurring but also for a real distribution of missing values. The results confirmed that CMVE consistently demonstrated superior and robust estimation capability of missing values compared with other methods for both series types of data, for the same order of computational complexity. A concise theoretical framework has also been formulated to validate the improved performance of the CMVE algorithm. The CMVE software is available upon request from the authors.

  2. Rapid Development and Validation of Improved Reversed-Phase High-performance Liquid Chromatography Method for the Quantification of Mangiferin, a Polyphenol Xanthone Glycoside in Mangifera indica

    PubMed Central

    Naveen, P.; Lingaraju, H. B.; Prasad, K. Shyam

    2017-01-01

    Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica, is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica. RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed < 1% of relative standard deviation of peak area indicated high reliability and reproducibility of the method. The recovery values at three different levels (50%, 100%, and 150%) of spiked samples were found to be 100.47, 100.89, and 100.99, respectively, and low standard deviation value < 1% shows high accuracy of the method. In robustness, the results remain unaffected by small variation in the analytical parameters, which shows the robustness of the method. Liquid chromatography–mass spectrometry analysis confirmed the presence of mangiferin with M/Z value of 421. The assay developed by HPLC method is a simple, rapid, and reliable for the determination of mangiferin from M. indica. SUMMARY The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica. The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International Conference on Harmonization guidelines. This study proved that the developed assay by HPLC method is a simple, rapid and reliable for the quantification of the mangiferin from M. indica. Abbreviations Used: M. indica: Mangifera indica, RP-HPLC: Reversed-phase high-performance liquid chromatography, M/Z: Mass to charge ratio, ICH: International conference on harmonization, % RSD: Percentage of relative standard deviation, ppm: Parts per million, LOD: Limit of detection, LOQ: Limit of quantification. PMID:28539748

  3. Rapid Development and Validation of Improved Reversed-Phase High-performance Liquid Chromatography Method for the Quantification of Mangiferin, a Polyphenol Xanthone Glycoside in Mangifera indica.

    PubMed

    Naveen, P; Lingaraju, H B; Prasad, K Shyam

    2017-01-01

    Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica , is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica . RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed < 1% of relative standard deviation of peak area indicated high reliability and reproducibility of the method. The recovery values at three different levels (50%, 100%, and 150%) of spiked samples were found to be 100.47, 100.89, and 100.99, respectively, and low standard deviation value < 1% shows high accuracy of the method. In robustness, the results remain unaffected by small variation in the analytical parameters, which shows the robustness of the method. Liquid chromatography-mass spectrometry analysis confirmed the presence of mangiferin with M/Z value of 421. The assay developed by HPLC method is a simple, rapid, and reliable for the determination of mangiferin from M. indica . The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica . The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International Conference on Harmonization guidelines. This study proved that the developed assay by HPLC method is a simple, rapid and reliable for the quantification of the mangiferin from M. indica . Abbreviations Used: M. indica : Mangifera indica , RP-HPLC: Reversed-phase high-performance liquid chromatography, M/Z: Mass to charge ratio, ICH: International conference on harmonization, % RSD: Percentage of relative standard deviation, ppm: Parts per million, LOD: Limit of detection, LOQ: Limit of quantification.

  4. Robust Decision Making to Support Water Quality Climate Adaptation: a Case Study in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Fischbach, J. R.; Lempert, R. J.; Molina-Perez, E.

    2017-12-01

    The U.S. Environmental Protection Agency (USEPA), together with state and local partners, develops watershed implementation plans designed to meet water quality standards. Climate uncertainty, along with uncertainty about future land use changes or the performance of water quality best management practices (BMPs), may make it difficult for these implementation plans to meet water quality goals. In this effort, we explored how decision making under deep uncertainty (DMDU) methods such as Robust Decision Making (RDM) could help USEPA and its partners develop implementation plans that are more robust to future uncertainty. The study focuses on one part of the Chesapeake Bay watershed, the Patuxent River, which is 2,479 sq km in area, highly urbanized, and has a rapidly growing population. We simulated the contribution of stormwater contaminants from the Patuxent to the overall Total Maximum Daily Load (TMDL) for the Chesapeake Bay under multiple scenarios reflecting climate and other uncertainties. Contaminants considered included nitrogen, phosphorus, and sediment loads. The assessment included a large set of scenario simulations using the USEPA Chesapeake Bay Program's Phase V watershed model. Uncertainties represented in the analysis included 18 downscaled climate projections (based on 6 general circulation models and 3 emissions pathways), 12 land use scenarios with different population projections and development patterns, and alternative assumptions about BMP performance standards and efficiencies associated with different suites of stormwater BMPs. Finally, we developed cost estimates for each of the performance standards and compared cost to TMDL performance as a key tradeoff for future water quality management decisions. In this talk, we describe how this research can help inform climate-related decision support at USEPA's Chesapeake Bay Program, and more generally how RDM and other DMDU methods can support improved water quality management under climate uncertainty.

  5. On the role of budget sufficiency, cost efficiency, and uncertainty in species management

    USGS Publications Warehouse

    van der Burg, Max Post; Bly, Bartholomew B.; Vercauteren, Tammy; Grand, James B.; Tyre, Andrew J.

    2014-01-01

    Many conservation planning frameworks rely on the assumption that one should prioritize locations for management actions based on the highest predicted conservation value (i.e., abundance, occupancy). This strategy may underperform relative to the expected outcome if one is working with a limited budget or the predicted responses are uncertain. Yet, cost and tolerance to uncertainty rarely become part of species management plans. We used field data and predictive models to simulate a decision problem involving western burrowing owls (Athene cunicularia hypugaea) using prairie dog colonies (Cynomys ludovicianus) in western Nebraska. We considered 2 species management strategies: one maximized abundance and the other maximized abundance in a cost-efficient way. We then used heuristic decision algorithms to compare the 2 strategies in terms of how well they met a hypothetical conservation objective. Finally, we performed an info-gap decision analysis to determine how these strategies performed under different budget constraints and uncertainty about owl response. Our results suggested that when budgets were sufficient to manage all sites, the maximizing strategy was optimal and suggested investing more in expensive actions. This pattern persisted for restricted budgets up to approximately 50% of the sufficient budget. Below this budget, the cost-efficient strategy was optimal and suggested investing in cheaper actions. When uncertainty in the expected responses was introduced, the strategy that maximized abundance remained robust under a sufficient budget. Reducing the budget induced a slight trade-off between expected performance and robustness, which suggested that the most robust strategy depended both on one's budget and tolerance to uncertainty. Our results suggest that wildlife managers should explicitly account for budget limitations and be realistic about their expected levels of performance.

  6. Unobtrusive Biometric System Based on Electroencephalogram Analysis

    NASA Astrophysics Data System (ADS)

    Riera, A.; Soria-Frisch, A.; Caparrini, M.; Grau, C.; Ruffini, G.

    2007-12-01

    Features extracted from electroencephalogram (EEG) recordings have proved to be unique enough between subjects for biometric applications. We show here that biometry based on these recordings offers a novel way to robustly authenticate or identify subjects. In this paper, we present a rapid and unobtrusive authentication method that only uses 2 frontal electrodes referenced to another one placed at the ear lobe. Moreover, the system makes use of a multistage fusion architecture, which demonstrates to improve the system performance. The performance analysis of the system presented in this paper stems from an experiment with 51 subjects and 36 intruders, where an equal error rate (EER) of 3.4% is obtained, that is, true acceptance rate (TAR) of 96.6% and a false acceptance rate (FAR) of 3.4%. The obtained performance measures improve the results of similar systems presented in earlier work.

  7. Robust Temperature Control of a Thermoelectric Cooler via μ -Synthesis

    NASA Astrophysics Data System (ADS)

    Kürkçü, Burak; Kasnakoğlu, Coşku

    2018-02-01

    In this work robust temperature control of a thermoelectric cooler (TEC) via μ -synthesis is studied. An uncertain dynamical model for the TEC that is suitable for robust control methods is derived. The model captures variations in operating point due to current, load and temperature changes. A temperature controller is designed utilizing μ -synthesis, a powerful method guaranteeing robust stability and performance. For comparison two well-known control methods, namely proportional-integral-derivative (PID) and internal model control (IMC), are also realized to benchmark the proposed approach. It is observed that the stability and performance on the nominal model are satisfactory for all cases. On the other hand, under perturbations the responses of PID and IMC deteriorate and even become unstable. In contrast, the μ -synthesis controller succeeds in keeping system stability and achieving good performance under all perturbations within the operating range, while at the same time providing good disturbance rejection.

  8. Robust fuzzy control subject to state variance and passivity constraints for perturbed nonlinear systems with multiplicative noises.

    PubMed

    Chang, Wen-Jer; Huang, Bo-Jyun

    2014-11-01

    The multi-constrained robust fuzzy control problem is investigated in this paper for perturbed continuous-time nonlinear stochastic systems. The nonlinear system considered in this paper is represented by a Takagi-Sugeno fuzzy model with perturbations and state multiplicative noises. The multiple performance constraints considered in this paper include stability, passivity and individual state variance constraints. The Lyapunov stability theory is employed to derive sufficient conditions to achieve the above performance constraints. By solving these sufficient conditions, the contribution of this paper is to develop a parallel distributed compensation based robust fuzzy control approach to satisfy multiple performance constraints for perturbed nonlinear systems with multiplicative noises. At last, a numerical example for the control of perturbed inverted pendulum system is provided to illustrate the applicability and effectiveness of the proposed multi-constrained robust fuzzy control method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Well-defined porous membranes for robust omniphobic surfaces via microfluidic emulsion templating

    PubMed Central

    Zhu, Pingan; Kong, Tiantian; Tang, Xin; Wang, Liqiu

    2017-01-01

    Durability is a long-standing challenge in designing liquid-repellent surfaces. A high-performance omniphobic surface must robustly repel liquids, while maintaining mechanical/chemical stability. However, liquid repellency and mechanical durability are generally mutually exclusive properties for many omniphobic surfaces—improving one performance inevitably results in decreased performance in another. Here we report well-defined porous membranes for durable omniphobic surfaces inspired by the springtail cuticle. The omniphobicity is shown via an amphiphilic material micro-textured with re-entrant surface morphology; the mechanical durability arises from the interconnected microstructures. The innovative fabrication method—termed microfluidic emulsion templating—is facile, cost-effective, scalable and can precisely engineer the structural topographies. The robust omniphobic surface is expected to open up new avenues for diverse applications due to its mechanical and chemical robustness, transparency, reversible Cassie–Wenzel transition, transferability, flexibility and stretchability. PMID:28604698

  10. Overall uncertainty measurement for near infrared analysis of cryptotanshinone in tanshinone extract

    NASA Astrophysics Data System (ADS)

    Xue, Zhong; Xu, Bing; Shi, Xinyuan; Yang, Chan; Cui, Xianglong; Luo, Gan; Qiao, Yanjiang

    2017-01-01

    This study presented a new strategy of overall uncertainty measurement for near infrared (NIR) quantitative analysis of cryptotanshinone in tanshinone extract powders. The overall uncertainty of NIR analysis from validation data of precision, trueness and robustness study was fully investigated and discussed. Quality by design (QbD) elements, such as risk assessment and design of experiment (DOE) were utilized to organize the validation data. An "I × J × K" (series I, the number of repetitions J and level of concentrations K) full factorial design was used to calculate uncertainty from the precision and trueness data. And a 27-4 Plackett-Burmann matrix with four different influence factors resulted from the failure mode and effect analysis (FMEA) analysis was adapted for the robustness study. The overall uncertainty profile was introduced as a graphical decision making tool to evaluate the validity of NIR method over the predefined concentration range. In comparison with the T. Saffaj's method (Analyst, 2013, 138, 4677.) for overall uncertainty assessment, the proposed approach gave almost the same results, demonstrating that the proposed method was reasonable and valid. Moreover, the proposed method can help identify critical factors that influence the NIR prediction performance, which could be used for further optimization of the NIR analytical procedures in routine use.

  11. Robust-mode analysis of hydrodynamic flows

    NASA Astrophysics Data System (ADS)

    Roy, Sukesh; Gord, James R.; Hua, Jia-Chen; Gunaratne, Gemunu H.

    2017-04-01

    The emergence of techniques to extract high-frequency high-resolution data introduces a new avenue for modal decomposition to assess the underlying dynamics, especially of complex flows. However, this task requires the differentiation of robust, repeatable flow constituents from noise and other irregular features of a flow. Traditional approaches involving low-pass filtering and principle components analysis have shortcomings. The approach outlined here, referred to as robust-mode analysis, is based on Koopman decomposition. Three applications to (a) a counter-rotating cellular flame state, (b) variations in financial markets, and (c) turbulent injector flows are provided.

  12. Reliable quantification of BOLD fMRI cerebrovascular reactivity despite poor breath-hold performance.

    PubMed

    Bright, Molly G; Murphy, Kevin

    2013-12-01

    Cerebrovascular reactivity (CVR) can be mapped using BOLD fMRI to provide a clinical insight into vascular health that can be used to diagnose cerebrovascular disease. Breath-holds are a readily accessible method for producing the required arterial CO2 increases but their implementation into clinical studies is limited by concerns that patients will demonstrate highly variable performance of breath-hold challenges. This study assesses the repeatability of CVR measurements despite poor task performance, to determine if and how robust results could be achieved with breath-holds in patients. Twelve healthy volunteers were scanned at 3 T. Six functional scans were acquired, each consisting of 6 breath-hold challenges (10, 15, or 20 s duration) interleaved with periods of paced breathing. These scans simulated the varying breath-hold consistency and ability levels that may occur in patient data. Uniform ramps, time-scaled ramps, and end-tidal CO2 data were used as regressors in a general linear model in order to measure CVR at the grey matter, regional, and voxelwise level. The intraclass correlation coefficient (ICC) quantified the repeatability of the CVR measurement for each breath-hold regressor type and scale of interest across the variable task performances. The ramp regressors did not fully account for variability in breath-hold performance and did not achieve acceptable repeatability (ICC<0.4) in several regions analysed. In contrast, the end-tidal CO2 regressors resulted in "excellent" repeatability (ICC=0.82) in the average grey matter data, and resulted in acceptable repeatability in all smaller regions tested (ICC>0.4). Further analysis of intra-subject CVR variability across the brain (ICCspatial and voxelwise correlation) supported the use of end-tidal CO2 data to extract robust whole-brain CVR maps, despite variability in breath-hold performance. We conclude that the incorporation of end-tidal CO2 monitoring into scanning enables robust, repeatable measurement of CVR that makes breath-hold challenges suitable for routine clinical practice. © 2013.

  13. Assessing the Robustness of Graph Statistics for Network Analysis Under Incomplete Information

    DTIC Science & Technology

    strategy for dismantling these networks based on their network structure. However, these strategies typically assume complete information about the...combat them with missing information . This thesis analyzes the performance of a variety of network statistics in the context of incomplete information by...leveraging simulation to remove nodes and edges from networks and evaluating the effect this missing information has on our ability to accurately

  14. Design and analysis of tilt integral derivative controller with filter for load frequency control of multi-area interconnected power systems.

    PubMed

    Kumar Sahu, Rabindra; Panda, Sidhartha; Biswal, Ashutosh; Chandra Sekhar, G T

    2016-03-01

    In this paper, a novel Tilt Integral Derivative controller with Filter (TIDF) is proposed for Load Frequency Control (LFC) of multi-area power systems. Initially, a two-area power system is considered and the parameters of the TIDF controller are optimized using Differential Evolution (DE) algorithm employing an Integral of Time multiplied Absolute Error (ITAE) criterion. The superiority of the proposed approach is demonstrated by comparing the results with some recently published heuristic approaches such as Firefly Algorithm (FA), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) optimized PID controllers for the same interconnected power system. Investigations reveal that proposed TIDF controllers provide better dynamic response compared to PID controller in terms of minimum undershoots and settling times of frequency as well as tie-line power deviations following a disturbance. The proposed approach is also extended to two widely used three area test systems considering nonlinearities such as Generation Rate Constraint (GRC) and Governor Dead Band (GDB). To improve the performance of the system, a Thyristor Controlled Series Compensator (TCSC) is also considered and the performance of TIDF controller in presence of TCSC is investigated. It is observed that system performance improves with the inclusion of TCSC. Finally, sensitivity analysis is carried out to test the robustness of the proposed controller by varying the system parameters, operating condition and load pattern. It is observed that the proposed controllers are robust and perform satisfactorily with variations in operating condition, system parameters and load pattern. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Kennard-Stone combined with least square support vector machine method for noncontact discriminating human blood species

    NASA Astrophysics Data System (ADS)

    Zhang, Linna; Li, Gang; Sun, Meixiu; Li, Hongxiao; Wang, Zhennan; Li, Yingxin; Lin, Ling

    2017-11-01

    Identifying whole bloods to be either human or nonhuman is an important responsibility for import-export ports and inspection and quarantine departments. Analytical methods and DNA testing methods are usually destructive. Previous studies demonstrated that visible diffuse reflectance spectroscopy method can realize noncontact human and nonhuman blood discrimination. An appropriate method for calibration set selection was very important for a robust quantitative model. In this paper, Random Selection (RS) method and Kennard-Stone (KS) method was applied in selecting samples for calibration set. Moreover, proper stoichiometry method can be greatly beneficial for improving the performance of classification model or quantification model. Partial Least Square Discrimination Analysis (PLSDA) method was commonly used in identification of blood species with spectroscopy methods. Least Square Support Vector Machine (LSSVM) was proved to be perfect for discrimination analysis. In this research, PLSDA method and LSSVM method was used for human blood discrimination. Compared with the results of PLSDA method, this method could enhance the performance of identified models. The overall results convinced that LSSVM method was more feasible for identifying human and animal blood species, and sufficiently demonstrated LSSVM method was a reliable and robust method for human blood identification, and can be more effective and accurate.

  16. A Novel Locally Linear KNN Method With Applications to Visual Recognition.

    PubMed

    Liu, Qingfeng; Liu, Chengjun

    2017-09-01

    A locally linear K Nearest Neighbor (LLK) method is presented in this paper with applications to robust visual recognition. Specifically, the concept of an ideal representation is first presented, which improves upon the traditional sparse representation in many ways. The objective function based on a host of criteria for sparsity, locality, and reconstruction is then optimized to derive a novel representation, which is an approximation to the ideal representation. The novel representation is further processed by two classifiers, namely, an LLK-based classifier and a locally linear nearest mean-based classifier, for visual recognition. The proposed classifiers are shown to connect to the Bayes decision rule for minimum error. Additional new theoretical analysis is presented, such as the nonnegative constraint, the group regularization, and the computational efficiency of the proposed LLK method. New methods such as a shifted power transformation for improving reliability, a coefficients' truncating method for enhancing generalization, and an improved marginal Fisher analysis method for feature extraction are proposed to further improve visual recognition performance. Extensive experiments are implemented to evaluate the proposed LLK method for robust visual recognition. In particular, eight representative data sets are applied for assessing the performance of the LLK method for various visual recognition applications, such as action recognition, scene recognition, object recognition, and face recognition.

  17. A Third Moment Adjusted Test Statistic for Small Sample Factor Analysis.

    PubMed

    Lin, Johnny; Bentler, Peter M

    2012-01-01

    Goodness of fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square; but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne's asymptotically distribution-free method and Satorra Bentler's mean scaling statistic were developed under the presumption of non-normality in the factors and errors. This paper finds new application to the case where factors and errors are normally distributed in the population but the skewness of the obtained test statistic is still high due to sampling error in the observed indicators. An extension of Satorra Bentler's statistic is proposed that not only scales the mean but also adjusts the degrees of freedom based on the skewness of the obtained test statistic in order to improve its robustness under small samples. A simple simulation study shows that this third moment adjusted statistic asymptotically performs on par with previously proposed methods, and at a very small sample size offers superior Type I error rates under a properly specified model. Data from Mardia, Kent and Bibby's study of students tested for their ability in five content areas that were either open or closed book were used to illustrate the real-world performance of this statistic.

  18. A robust in-situ warp-correction algorithm for VISAR streak camera data at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.; Kalantar, Daniel H.

    2015-02-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high energy density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift over time affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.

  19. Development and Validation of RP-HPLC Method for the Estimation of Ivabradine Hydrochloride in Tablets

    PubMed Central

    Seerapu, Sunitha; Srinivasan, B. P.

    2010-01-01

    A simple, sensitive, precise and robust reverse–phase high-performance liquid chromatographic method for analysis of ivabradine hydrochloride in pharmaceutical formulations was developed and validated as per ICH guidelines. The separation was performed on SS Wakosil C18AR, 250×4.6 mm, 5 μm column with methanol:25 mM phosphate buffer (60:40 v/v), adjusted to pH 6.5 with orthophosphoric acid, added drop wise, as mobile phase. A well defined chromatographic peak of Ivabradine hydrochloride was exhibited with a retention time of 6.55±0.05 min and tailing factor of 1.14 at the flow rate of 0.8 ml/min and at ambient temperature, when monitored at 285 nm. The linear regression analysis data for calibration plots showed good linear relationship with R=0.9998 in the concentration range of 30-210 μg/ml. The method was validated for precision, recovery and robustness. Intra and Inter-day precision (% relative standard deviation) were always less than 2%. The method showed the mean % recovery of 99.00 and 98.55 % for Ivabrad and Inapure tablets, respectively. The proposed method has been successfully applied to the commercial tablets without any interference of excipients. PMID:21695008

  20. A Robust and Effective Smart-Card-Based Remote User Authentication Mechanism Using Hash Function

    PubMed Central

    Odelu, Vanga; Goswami, Adrijit

    2014-01-01

    In a remote user authentication scheme, a remote server verifies whether a login user is genuine and trustworthy, and also for mutual authentication purpose a login user validates whether the remote server is genuine and trustworthy. Several remote user authentication schemes using the password, the biometrics, and the smart card have been proposed in the literature. However, most schemes proposed in the literature are either computationally expensive or insecure against several known attacks. In this paper, we aim to propose a new robust and effective password-based remote user authentication scheme using smart card. Our scheme is efficient, because our scheme uses only efficient one-way hash function and bitwise XOR operations. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. We perform the simulation for the formal security analysis using the widely accepted AVISPA (Automated Validation Internet Security Protocols and Applications) tool to ensure that our scheme is secure against passive and active attacks. Furthermore, our scheme supports efficiently the password change phase always locally without contacting the remote server and correctly. In addition, our scheme performs significantly better than other existing schemes in terms of communication, computational overheads, security, and features provided by our scheme. PMID:24892078

  1. A robust and effective smart-card-based remote user authentication mechanism using hash function.

    PubMed

    Das, Ashok Kumar; Odelu, Vanga; Goswami, Adrijit

    2014-01-01

    In a remote user authentication scheme, a remote server verifies whether a login user is genuine and trustworthy, and also for mutual authentication purpose a login user validates whether the remote server is genuine and trustworthy. Several remote user authentication schemes using the password, the biometrics, and the smart card have been proposed in the literature. However, most schemes proposed in the literature are either computationally expensive or insecure against several known attacks. In this paper, we aim to propose a new robust and effective password-based remote user authentication scheme using smart card. Our scheme is efficient, because our scheme uses only efficient one-way hash function and bitwise XOR operations. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. We perform the simulation for the formal security analysis using the widely accepted AVISPA (Automated Validation Internet Security Protocols and Applications) tool to ensure that our scheme is secure against passive and active attacks. Furthermore, our scheme supports efficiently the password change phase always locally without contacting the remote server and correctly. In addition, our scheme performs significantly better than other existing schemes in terms of communication, computational overheads, security, and features provided by our scheme.

  2. Hypersonic vehicle control law development using H(infinity) and micron-synthesis

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Mcminn, John D.; Shaughnessy, John D.; Chowdhry, Rajiv S.

    1993-01-01

    Hypersonic vehicle control law development using H(infinity) and mu-synthesis is discussed. Airbreathing SSTO vehicles has a mutli-faceted mission that includes orbital operations, as well as re-entry and descent culminating in horizontal landing. However, the most challenging part of the operations is the ascent to orbit. The airbreathing propulsion requires lengthy atmospheric flight that may last as long as 30 minutes and take the vehicle half way around the globe. The vehicles's ascent is characterized by tight payload to orbit margins which translate into minimum fuel orbit as the performance criteria. Issues discussed include: SSTO airbreathing vehicle issues; control system performance requirements; robust control law framework; H(infinity) controller frequency analysis; and mu controller frequency analysis.

  3. Performance enhancement of optical code-division multiple-access systems using transposed modified Walsh code

    NASA Astrophysics Data System (ADS)

    Sikder, Somali; Ghosh, Shila

    2018-02-01

    This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.

  4. Random Bits Forest: a Strong Classifier/Regressor for Big Data

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Li, Yi; Pu, Weilin; Wen, Kathryn; Shugart, Yin Yao; Xiong, Momiao; Jin, Li

    2016-07-01

    Efficiency, memory consumption, and robustness are common problems with many popular methods for data analysis. As a solution, we present Random Bits Forest (RBF), a classification and regression algorithm that integrates neural networks (for depth), boosting (for width), and random forests (for prediction accuracy). Through a gradient boosting scheme, it first generates and selects ~10,000 small, 3-layer random neural networks. These networks are then fed into a modified random forest algorithm to obtain predictions. Testing with datasets from the UCI (University of California, Irvine) Machine Learning Repository shows that RBF outperforms other popular methods in both accuracy and robustness, especially with large datasets (N > 1000). The algorithm also performed highly in testing with an independent data set, a real psoriasis genome-wide association study (GWAS).

  5. Modification of computational auditory scene analysis (CASA) for noise-robust acoustic feature

    NASA Astrophysics Data System (ADS)

    Kwon, Minseok

    While there have been many attempts to mitigate interferences of background noise, the performance of automatic speech recognition (ASR) still can be deteriorated by various factors with ease. However, normal hearing listeners can accurately perceive sounds of their interests, which is believed to be a result of Auditory Scene Analysis (ASA). As a first attempt, the simulation of the human auditory processing, called computational auditory scene analysis (CASA), was fulfilled through physiological and psychological investigations of ASA. CASA comprised of Zilany-Bruce auditory model, followed by tracking fundamental frequency for voice segmentation and detecting pairs of onset/offset at each characteristic frequency (CF) for unvoiced segmentation. The resulting Time-Frequency (T-F) representation of acoustic stimulation was converted into acoustic feature, gammachirp-tone frequency cepstral coefficients (GFCC). 11 keywords with various environmental conditions are used and the robustness of GFCC was evaluated by spectral distance (SD) and dynamic time warping distance (DTW). In "clean" and "noisy" conditions, the application of CASA generally improved noise robustness of the acoustic feature compared to a conventional method with or without noise suppression using MMSE estimator. The intial study, however, not only showed the noise-type dependency at low SNR, but also called the evaluation methods in question. Some modifications were made to capture better spectral continuity from an acoustic feature matrix, to obtain faster processing speed, and to describe the human auditory system more precisely. The proposed framework includes: 1) multi-scale integration to capture more accurate continuity in feature extraction, 2) contrast enhancement (CE) of each CF by competition with neighboring frequency bands, and 3) auditory model modifications. The model modifications contain the introduction of higher Q factor, middle ear filter more analogous to human auditory system, the regulation of time constant update for filters in signal/control path as well as level-independent frequency glides with fixed frequency modulation. First, we scrutinized performance development in keyword recognition using the proposed methods in quiet and noise-corrupted environments. The results argue that multi-scale integration should be used along with CE in order to avoid ambiguous continuity in unvoiced segments. Moreover, the inclusion of the all modifications was observed to guarantee the noise-type-independent robustness particularly with severe interference. Moreover, the CASA with the auditory model was implemented into a single/dual-channel ASR using reference TIMIT corpus so as to get more general result. Hidden Markov model (HTK) toolkit was used for phone recognition in various environmental conditions. In a single-channel ASR, the results argue that unmasked acoustic features (unmasked GFCC) should combine with target estimates from the mask to compensate for missing information. From the observation of a dual-channel ASR, the combined GFCC guarantees the highest performance regardless of interferences within speech. Moreover, consistent improvement of noise robustness by GFCC (unmasked or combined) shows the validity of our proposed CASA implementation in dual microphone system. In conclusion, the proposed framework proves the robustness of the acoustic features in various background interferences via both direct distance evaluation and statistical assessment. In addition, the introduction of dual microphone system using the framework in this study shows the potential of the effective implementation of the auditory model-based CASA in ASR.

  6. Knowledge-Guided Robust MRI Brain Extraction for Diverse Large-Scale Neuroimaging Studies on Humans and Non-Human Primates

    PubMed Central

    Wang, Yaping; Nie, Jingxin; Yap, Pew-Thian; Li, Gang; Shi, Feng; Geng, Xiujuan; Guo, Lei; Shen, Dinggang

    2014-01-01

    Accurate and robust brain extraction is a critical step in most neuroimaging analysis pipelines. In particular, for the large-scale multi-site neuroimaging studies involving a significant number of subjects with diverse age and diagnostic groups, accurate and robust extraction of the brain automatically and consistently is highly desirable. In this paper, we introduce population-specific probability maps to guide the brain extraction of diverse subject groups, including both healthy and diseased adult human populations, both developing and aging human populations, as well as non-human primates. Specifically, the proposed method combines an atlas-based approach, for coarse skull-stripping, with a deformable-surface-based approach that is guided by local intensity information and population-specific prior information learned from a set of real brain images for more localized refinement. Comprehensive quantitative evaluations were performed on the diverse large-scale populations of ADNI dataset with over 800 subjects (55∼90 years of age, multi-site, various diagnosis groups), OASIS dataset with over 400 subjects (18∼96 years of age, wide age range, various diagnosis groups), and NIH pediatrics dataset with 150 subjects (5∼18 years of age, multi-site, wide age range as a complementary age group to the adult dataset). The results demonstrate that our method consistently yields the best overall results across almost the entire human life span, with only a single set of parameters. To demonstrate its capability to work on non-human primates, the proposed method is further evaluated using a rhesus macaque dataset with 20 subjects. Quantitative comparisons with popularly used state-of-the-art methods, including BET, Two-pass BET, BET-B, BSE, HWA, ROBEX and AFNI, demonstrate that the proposed method performs favorably with superior performance on all testing datasets, indicating its robustness and effectiveness. PMID:24489639

  7. MetaKTSP: a meta-analytic top scoring pair method for robust cross-study validation of omics prediction analysis.

    PubMed

    Kim, SungHwan; Lin, Chien-Wei; Tseng, George C

    2016-07-01

    Supervised machine learning is widely applied to transcriptomic data to predict disease diagnosis, prognosis or survival. Robust and interpretable classifiers with high accuracy are usually favored for their clinical and translational potential. The top scoring pair (TSP) algorithm is an example that applies a simple rank-based algorithm to identify rank-altered gene pairs for classifier construction. Although many classification methods perform well in cross-validation of single expression profile, the performance usually greatly reduces in cross-study validation (i.e. the prediction model is established in the training study and applied to an independent test study) for all machine learning methods, including TSP. The failure of cross-study validation has largely diminished the potential translational and clinical values of the models. The purpose of this article is to develop a meta-analytic top scoring pair (MetaKTSP) framework that combines multiple transcriptomic studies and generates a robust prediction model applicable to independent test studies. We proposed two frameworks, by averaging TSP scores or by combining P-values from individual studies, to select the top gene pairs for model construction. We applied the proposed methods in simulated data sets and three large-scale real applications in breast cancer, idiopathic pulmonary fibrosis and pan-cancer methylation. The result showed superior performance of cross-study validation accuracy and biomarker selection for the new meta-analytic framework. In conclusion, combining multiple omics data sets in the public domain increases robustness and accuracy of the classification model that will ultimately improve disease understanding and clinical treatment decisions to benefit patients. An R package MetaKTSP is available online. (http://tsenglab.biostat.pitt.edu/software.htm). ctseng@pitt.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Transportation Infrastructure Robustness : Joint Engineering and Economic Analysis

    DOT National Transportation Integrated Search

    2017-11-01

    The objectives of this study are to develop a methodology for assessing the robustness of transportation infrastructure facilities and assess the effect of damage to such facilities on travel demand and the facilities users welfare. The robustness...

  9. DARHT Multi-intelligence Seismic and Acoustic Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Garrison Nicole; Van Buren, Kendra Lu; Hemez, Francois M.

    The purpose of this report is to document the analysis of seismic and acoustic data collected at the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory for robust, multi-intelligence decision making. The data utilized herein is obtained from two tri-axial seismic sensors and three acoustic sensors, resulting in a total of nine data channels. The goal of this analysis is to develop a generalized, automated framework to determine internal operations at DARHT using informative features extracted from measurements collected external of the facility. Our framework involves four components: (1) feature extraction, (2) data fusion, (3) classification, andmore » finally (4) robustness analysis. Two approaches are taken for extracting features from the data. The first of these, generic feature extraction, involves extraction of statistical features from the nine data channels. The second approach, event detection, identifies specific events relevant to traffic entering and leaving the facility as well as explosive activities at DARHT and nearby explosive testing sites. Event detection is completed using a two stage method, first utilizing signatures in the frequency domain to identify outliers and second extracting short duration events of interest among these outliers by evaluating residuals of an autoregressive exogenous time series model. Features extracted from each data set are then fused to perform analysis with a multi-intelligence paradigm, where information from multiple data sets are combined to generate more information than available through analysis of each independently. The fused feature set is used to train a statistical classifier and predict the state of operations to inform a decision maker. We demonstrate this classification using both generic statistical features and event detection and provide a comparison of the two methods. Finally, the concept of decision robustness is presented through a preliminary analysis where uncertainty is added to the system through noise in the measurements.« less

  10. Resolving Multi-Stakeholder Robustness Asymmetries in Coupled Agricultural and Urban Systems

    NASA Astrophysics Data System (ADS)

    Li, Yu; Giuliani, Matteo; Castelletti, Andrea; Reed, Patrick

    2016-04-01

    The evolving pressures from a changing climate and society are increasingly motivating decision support frameworks that consider the robustness of management actions across many possible futures. Focusing on robustness is helpful for investigating key vulnerabilities within current water systems and for identifying potential tradeoffs across candidate adaptation responses. To date, most robustness studies assume a social planner perspective by evaluating highly aggregated measures of system performance. This aggregate treatment of stakeholders does not explore the equity or intrinsic multi-stakeholder conflicts implicit to the system-wide measures of performance benefits and costs. The commonly present heterogeneity across complex management interests, however, may produce strong asymmetries for alternative adaptation options, designed to satisfy system-level targets. In this work, we advance traditional robustness decision frameworks by replacing the centralized social planner with a bottom-up, agent-based approach, where stakeholders are modeled as individuals, and represented as potentially self-interested agents. This agent-based model enables a more explicit exploration of the potential inequities and asymmetries in the distribution of the system-wide benefit. The approach is demonstrated by exploring the potential conflicts between urban flooding and agricultural production in the Lake Como system (Italy). Lake Como is a regulated lake that is operated to supply water to the downstream agricultural district (Muzza as the pilot study area in this work) composed of a set of farmers with heterogeneous characteristics in terms of water allocation, cropping patterns, and land properties. Supplying water to farmers increases the risk of floods along the lakeshore and therefore the system is operated based on the tradeoff between these two objectives. We generated an ensemble of co-varying climate and socio-economic conditions and evaluated the robustness of the current Lake Como system management as well as of possible adaptation options (e.g., improved irrigation efficiency or changes in the dam operating rules). Numerical results show that crops prices and costs are the main drivers of the simulated system failures when evaluated in terms of system-level expected profitability. Analysis conducted at the farmer-agent scale highlights alternatively that temperature and inflows are the critical drivers leading to failures. Finally, we show that the robustness of the considered adaptation options varies spatially, strongly influenced by stakeholders' context, the metrics used to define success, and the assumed preferences for reservoir operations in balancing urban flooding and agricultural productivity.

  11. Enabling Rapid and Robust Structural Analysis During Conceptual Design

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu

    2015-01-01

    This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.

  12. Improved Doubly Robust Estimation when Data are Monotonely Coarsened, with Application to Longitudinal Studies with Dropout

    PubMed Central

    Tsiatis, Anastasios A.; Davidian, Marie; Cao, Weihua

    2010-01-01

    Summary A routine challenge is that of making inference on parameters in a statistical model of interest from longitudinal data subject to drop out, which are a special case of the more general setting of monotonely coarsened data. Considerable recent attention has focused on doubly robust estimators, which in this context involve positing models for both the missingness (more generally, coarsening) mechanism and aspects of the distribution of the full data, that have the appealing property of yielding consistent inferences if only one of these models is correctly specified. Doubly robust estimators have been criticized for potentially disastrous performance when both of these models are even only mildly misspecified. We propose a doubly robust estimator applicable in general monotone coarsening problems that achieves comparable or improved performance relative to existing doubly robust methods, which we demonstrate via simulation studies and by application to data from an AIDS clinical trial. PMID:20731640

  13. Robust averaging protects decisions from noise in neural computations

    PubMed Central

    Herce Castañón, Santiago; Solomon, Joshua A.; Vandormael, Hildward

    2017-01-01

    An ideal observer will give equivalent weight to sources of information that are equally reliable. However, when averaging visual information, human observers tend to downweight or discount features that are relatively outlying or deviant (‘robust averaging’). Why humans adopt an integration policy that discards important decision information remains unknown. Here, observers were asked to judge the average tilt in a circular array of high-contrast gratings, relative to an orientation boundary defined by a central reference grating. Observers showed robust averaging of orientation, but the extent to which they did so was a positive predictor of their overall performance. Using computational simulations, we show that although robust averaging is suboptimal for a perfect integrator, it paradoxically enhances performance in the presence of “late” noise, i.e. which corrupts decisions during integration. In other words, robust decision strategies increase the brain’s resilience to noise arising in neural computations during decision-making. PMID:28841644

  14. Simulation of CNT-AFM tip based on finite element analysis for targeted probe of the biological cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yousefi, Amin Termeh, E-mail: at.tyousefi@gmail.com; Miyake, Mikio, E-mail: miyakejaist@gmail.com; Ikeda, Shoichiro, E-mail: sho16.ikeda@gmail.com

    Carbon nanotubes (CNTs) are potentially ideal tips for atomic force microscopy (AFM) due to the robust mechanical properties, nano scale diameter and also their ability to be functionalized by chemical and biological components at the tip ends. This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cell’s. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). This reliable integration of CNT-AFM tip process provides a new class of high performance nanoprobes for single biological cellmore » analysis.« less

  15. Sparse alignment for robust tensor learning.

    PubMed

    Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Zhao, Cairong; Sun, Mingming

    2014-10-01

    Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods.

  16. Evaluation of Structural Robustness against Column Loss: Methodology and Application to RC Frame Buildings

    PubMed Central

    Bao, Yihai; Main, Joseph A.; Noh, Sam-Young

    2017-01-01

    A computational methodology is presented for evaluating structural robustness against column loss. The methodology is illustrated through application to reinforced concrete (RC) frame buildings, using a reduced-order modeling approach for three-dimensional RC framing systems that includes the floor slabs. Comparisons with high-fidelity finite-element model results are presented to verify the approach. Pushdown analyses of prototype buildings under column loss scenarios are performed using the reduced-order modeling approach, and an energy-based procedure is employed to account for the dynamic effects associated with sudden column loss. Results obtained using the energy-based approach are found to be in good agreement with results from direct dynamic analysis of sudden column loss. A metric for structural robustness is proposed, calculated by normalizing the ultimate capacities of the structural system under sudden column loss by the applicable service-level gravity loading and by evaluating the minimum value of this normalized ultimate capacity over all column removal scenarios. The procedure is applied to two prototype 10-story RC buildings, one employing intermediate moment frames (IMFs) and the other employing special moment frames (SMFs). The SMF building, with its more stringent seismic design and detailing, is found to have greater robustness. PMID:28890599

  17. Adaptive nonsingular fast terminal sliding-mode control for the tracking problem of uncertain dynamical systems.

    PubMed

    Boukattaya, Mohamed; Mezghani, Neila; Damak, Tarak

    2018-06-01

    In this paper, robust and adaptive nonsingular fast terminal sliding-mode (NFTSM) control schemes for the trajectory tracking problem are proposed with known or unknown upper bound of the system uncertainty and external disturbances. The developed controllers take the advantage of the NFTSM theory to ensure fast convergence rate, singularity avoidance, and robustness against uncertainties and external disturbances. First, a robust NFTSM controller is proposed which guarantees that sliding surface and equilibrium point can be reached in a short finite-time from any initial state. Then, in order to cope with the unknown upper bound of the system uncertainty which may be occurring in practical applications, a new adaptive NFTSM algorithm is developed. One feature of the proposed control law is their adaptation techniques where the prior knowledge of parameters uncertainty and disturbances is not needed. However, the adaptive tuning law can estimate the upper bound of these uncertainties using only position and velocity measurements. Moreover, the proposed controller eliminates the chattering effect without losing the robustness property and the precision. Stability analysis is performed using the Lyapunov stability theory, and simulation studies are conducted to verify the effectiveness of the developed control schemes. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Evolution of user analysis on the grid in ATLAS

    NASA Astrophysics Data System (ADS)

    Dewhurst, A.; Legger, F.; ATLAS Collaboration

    2017-10-01

    More than one thousand physicists analyse data collected by the ATLAS experiment at the Large Hadron Collider (LHC) at CERN through 150 computing facilities around the world. Efficient distributed analysis requires optimal resource usage and the interplay of several factors: robust grid and software infrastructures, and system capability to adapt to different workloads. The continuous automatic validation of grid sites and the user support provided by a dedicated team of expert shifters have been proven to provide a solid distributed analysis system for ATLAS users. Typical user workflows on the grid, and their associated metrics, are discussed. Measurements of user job performance and typical requirements are also shown.

  19. Teachable, high-content analytics for live-cell, phase contrast movies.

    PubMed

    Alworth, Samuel V; Watanabe, Hirotada; Lee, James S J

    2010-09-01

    CL-Quant is a new solution platform for broad, high-content, live-cell image analysis. Powered by novel machine learning technologies and teach-by-example interfaces, CL-Quant provides a platform for the rapid development and application of scalable, high-performance, and fully automated analytics for a broad range of live-cell microscopy imaging applications, including label-free phase contrast imaging. The authors used CL-Quant to teach off-the-shelf universal analytics, called standard recipes, for cell proliferation, wound healing, cell counting, and cell motility assays using phase contrast movies collected on the BioStation CT and BioStation IM platforms. Similar to application modules, standard recipes are intended to work robustly across a wide range of imaging conditions without requiring customization by the end user. The authors validated the performance of the standard recipes by comparing their performance with truth created manually, or by custom analytics optimized for each individual movie (and therefore yielding the best possible result for the image), and validated by independent review. The validation data show that the standard recipes' performance is comparable with the validated truth with low variation. The data validate that the CL-Quant standard recipes can provide robust results without customization for live-cell assays in broad cell types and laboratory settings.

  20. Dimensionality-varied deep convolutional neural network for spectral-spatial classification of hyperspectral data

    NASA Astrophysics Data System (ADS)

    Qu, Haicheng; Liang, Xuejian; Liang, Shichao; Liu, Wanjun

    2018-01-01

    Many methods of hyperspectral image classification have been proposed recently, and the convolutional neural network (CNN) achieves outstanding performance. However, spectral-spatial classification of CNN requires an excessively large model, tremendous computations, and complex network, and CNN is generally unable to use the noisy bands caused by water-vapor absorption. A dimensionality-varied CNN (DV-CNN) is proposed to address these issues. There are four stages in DV-CNN and the dimensionalities of spectral-spatial feature maps vary with the stages. DV-CNN can reduce the computation and simplify the structure of the network. All feature maps are processed by more kernels in higher stages to extract more precise features. DV-CNN also improves the classification accuracy and enhances the robustness to water-vapor absorption bands. The experiments are performed on data sets of Indian Pines and Pavia University scene. The classification performance of DV-CNN is compared with state-of-the-art methods, which contain the variations of CNN, traditional, and other deep learning methods. The experiment of performance analysis about DV-CNN itself is also carried out. The experimental results demonstrate that DV-CNN outperforms state-of-the-art methods for spectral-spatial classification and it is also robust to water-vapor absorption bands. Moreover, reasonable parameters selection is effective to improve classification accuracy.

  1. Super-delta: a new differential gene expression analysis procedure with robust data normalization.

    PubMed

    Liu, Yuhang; Zhang, Jinfeng; Qiu, Xing

    2017-12-21

    Normalization is an important data preparation step in gene expression analyses, designed to remove various systematic noise. Sample variance is greatly reduced after normalization, hence the power of subsequent statistical analyses is likely to increase. On the other hand, variance reduction is made possible by borrowing information across all genes, including differentially expressed genes (DEGs) and outliers, which will inevitably introduce some bias. This bias typically inflates type I error; and can reduce statistical power in certain situations. In this study we propose a new differential expression analysis pipeline, dubbed as super-delta, that consists of a multivariate extension of the global normalization and a modified t-test. A robust procedure is designed to minimize the bias introduced by DEGs in the normalization step. The modified t-test is derived based on asymptotic theory for hypothesis testing that suitably pairs with the proposed robust normalization. We first compared super-delta with four commonly used normalization methods: global, median-IQR, quantile, and cyclic loess normalization in simulation studies. Super-delta was shown to have better statistical power with tighter control of type I error rate than its competitors. In many cases, the performance of super-delta is close to that of an oracle test in which datasets without technical noise were used. We then applied all methods to a collection of gene expression datasets on breast cancer patients who received neoadjuvant chemotherapy. While there is a substantial overlap of the DEGs identified by all of them, super-delta were able to identify comparatively more DEGs than its competitors. Downstream gene set enrichment analysis confirmed that all these methods selected largely consistent pathways. Detailed investigations on the relatively small differences showed that pathways identified by super-delta have better connections to breast cancer than other methods. As a new pipeline, super-delta provides new insights to the area of differential gene expression analysis. Solid theoretical foundation supports its asymptotic unbiasedness and technical noise-free properties. Implementation on real and simulated datasets demonstrates its decent performance compared with state-of-art procedures. It also has the potential of expansion to be incorporated with other data type and/or more general between-group comparison problems.

  2. The integrated effects of future climate and hydrologic uncertainty on sustainable flood risk management

    NASA Astrophysics Data System (ADS)

    Steinschneider, S.; Wi, S.; Brown, C. M.

    2013-12-01

    Flood risk management performance is investigated within the context of integrated climate and hydrologic modeling uncertainty to explore system robustness. The research question investigated is whether structural and hydrologic parameterization uncertainties are significant relative to other uncertainties such as climate change when considering water resources system performance. Two hydrologic models are considered, a conceptual, lumped parameter model that preserves the water balance and a physically-based model that preserves both water and energy balances. In the conceptual model, parameter and structural uncertainties are quantified and propagated through the analysis using a Bayesian modeling framework with an innovative error model. Mean climate changes and internal climate variability are explored using an ensemble of simulations from a stochastic weather generator. The approach presented can be used to quantify the sensitivity of flood protection adequacy to different sources of uncertainty in the climate and hydrologic system, enabling the identification of robust projects that maintain adequate performance despite the uncertainties. The method is demonstrated in a case study for the Coralville Reservoir on the Iowa River, where increased flooding over the past several decades has raised questions about potential impacts of climate change on flood protection adequacy.

  3. A comparison of cosegregation analysis methods for the clinical setting.

    PubMed

    Rañola, John Michael O; Liu, Quanhui; Rosenthal, Elisabeth A; Shirts, Brian H

    2018-04-01

    Quantitative cosegregation analysis can help evaluate the pathogenicity of genetic variants. However, genetics professionals without statistical training often use simple methods, reporting only qualitative findings. We evaluate the potential utility of quantitative cosegregation in the clinical setting by comparing three methods. One thousand pedigrees each were simulated for benign and pathogenic variants in BRCA1 and MLH1 using United States historical demographic data to produce pedigrees similar to those seen in the clinic. These pedigrees were analyzed using two robust methods, full likelihood Bayes factors (FLB) and cosegregation likelihood ratios (CSLR), and a simpler method, counting meioses. Both FLB and CSLR outperform counting meioses when dealing with pathogenic variants, though counting meioses is not far behind. For benign variants, FLB and CSLR greatly outperform as counting meioses is unable to generate evidence for benign variants. Comparing FLB and CSLR, we find that the two methods perform similarly, indicating that quantitative results from either of these methods could be combined in multifactorial calculations. Combining quantitative information will be important as isolated use of cosegregation in single families will yield classification for less than 1% of variants. To encourage wider use of robust cosegregation analysis, we present a website ( http://www.analyze.myvariant.org ) which implements the CSLR, FLB, and Counting Meioses methods for ATM, BRCA1, BRCA2, CHEK2, MEN1, MLH1, MSH2, MSH6, and PMS2. We also present an R package, CoSeg, which performs the CSLR analysis on any gene with user supplied parameters. Future variant classification guidelines should allow nuanced inclusion of cosegregation evidence against pathogenicity.

  4. Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility.

    PubMed

    Cutajar, Marica; Thomas, David L; Hales, Patrick W; Banks, T; Clark, Christopher A; Gordon, Isky

    2014-06-01

    To investigate the reproducibility of arterial spin labelling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and quantitatively compare these techniques for the measurement of renal blood flow (RBF). Sixteen healthy volunteers were examined on two different occasions. ASL was performed using a multi-TI FAIR labelling scheme with a segmented 3D-GRASE imaging module. DCE MRI was performed using a 3D-FLASH pulse sequence. A Bland-Altman analysis was used to assess repeatability of each technique, and determine the degree of correspondence between the two methods. The overall mean cortical renal blood flow (RBF) of the ASL group was 263 ± 41 ml min(-1) [100 ml tissue](-1), and using DCE MRI was 287 ± 70 ml min(-1) [100 ml tissue](-1). The group coefficient of variation (CVg) was 18 % for ASL and 28 % for DCE-MRI. Repeatability studies showed that ASL was more reproducible than DCE with CVgs of 16 % and 25 % for ASL and DCE respectively. Bland-Altman analysis comparing the two techniques showed a good agreement. The repeated measures analysis shows that the ASL technique has better reproducibility than DCE-MRI. Difference analysis shows no significant difference between the RBF values of the two techniques. Reliable non-invasive monitoring of renal blood flow is currently clinically unavailable. Renal arterial spin labelling MRI is robust and repeatable. Renal dynamic contrast-enhanced MRI is robust and repeatable. ASL blood flow values are similar to those obtained using DCE-MRI.

  5. Economic Evaluation of Teledentistry in Cleft Lip and Palate Patients.

    PubMed

    Teoh, Jonathan; Hsueh, Arthur; Mariño, Rodrigo; Manton, David; Hallett, Kerrod

    2018-06-01

    To assess the use of Teledentistry (TD) in delivering specialist dental services at the Royal Children's Hospital (RCH) for rural and regional patients and to conduct an economic evaluation by building a decision model to estimate the costs and effectiveness of Teledental consultations compared with standard consultations at the RCH. A model-based analysis was conducted to determine the potential costs of implementing TD at the RCH. The outcome measure was timely consultations (whether the patient presented within an appropriate time according to the recommended schedule). Dental records at the RCH of those who presented for orthodontic or pediatric dental consultations were assessed. A cost-effectiveness analysis (CEA), comparing TD with the traditional method of consultation, was conducted. One-way sensitivity analysis was performed to test the robustness of the results. Results and Materials: A total of 367 TD appropriate consultations were identified, of which 241 were timely (65.7%). The mean cost of a RCH consultation was A$431.29, with the mean TD consult costing A$294.35. This represents a cost saving of A$136.95 per appointment. The CEA found TD to be a dominant option, with cost savings of A$3,160.81 for every additional timely consult. The model indicated that 36.7 days of clinic time may be freed up at the RCH to treat other patients and expand capacity. These results were robust when performing one-way sensitivity analysis. When taking a societal perspective, the implementation of TD is likely to be a cost-effective alternative compared with the standard practice of face-to-face consultation at the RCH.

  6. Deficits in working memory and motor performance in the APP/PS1ki mouse model for Alzheimer's disease.

    PubMed

    Wirths, Oliver; Breyhan, Henning; Schäfer, Stephanie; Roth, Christian; Bayer, Thomas A

    2008-06-01

    The APP/PS1ki mouse model for Alzheimer's disease (AD) exhibits robust brain and spinal cord axonal degeneration and hippocampal CA1 neuron loss starting at 6 months of age. It expresses human mutant APP751 with the Swedish and London mutations together with two FAD-linked knocked-in mutations (PS1 M233T and PS1 L235P) in the murine PS1 gene. The present report covers a phenotypical analysis of this model using either behavioral tests for working memory and motor performance, as well as an analysis of weight development and body shape. At the age of 6 months, a dramatic, age-dependent change in all of these properties and characteristics was observed, accompanied by a significantly reduced ability to perform working memory and motor tasks. The APP/PS1ki mice were smaller and showed development of a thoracolumbar kyphosis, together with an incremental loss of body weight. While 2-month-old APP/PS1ki mice were inconspicuous in all of these tasks and properties, there is a massive age-related impairment in all tested behavioral paradigms. We have previously reported robust axonal degeneration in brain and spinal cord, as well as abundant hippocampal CA1 neuron loss starting at 6 months of age in the APP/PS1ki mouse model, which coincides with the onset of motor and memory deficits described in the present report.

  7. GO-based functional dissimilarity of gene sets.

    PubMed

    Díaz-Díaz, Norberto; Aguilar-Ruiz, Jesús S

    2011-09-01

    The Gene Ontology (GO) provides a controlled vocabulary for describing the functions of genes and can be used to evaluate the functional coherence of gene sets. Many functional coherence measures consider each pair of gene functions in a set and produce an output based on all pairwise distances. A single gene can encode multiple proteins that may differ in function. For each functionality, other proteins that exhibit the same activity may also participate. Therefore, an identification of the most common function for all of the genes involved in a biological process is important in evaluating the functional similarity of groups of genes and a quantification of functional coherence can helps to clarify the role of a group of genes working together. To implement this approach to functional assessment, we present GFD (GO-based Functional Dissimilarity), a novel dissimilarity measure for evaluating groups of genes based on the most relevant functions of the whole set. The measure assigns a numerical value to the gene set for each of the three GO sub-ontologies. Results show that GFD performs robustly when applied to gene set of known functionality (extracted from KEGG). It performs particularly well on randomly generated gene sets. An ROC analysis reveals that the performance of GFD in evaluating the functional dissimilarity of gene sets is very satisfactory. A comparative analysis against other functional measures, such as GS2 and those presented by Resnik and Wang, also demonstrates the robustness of GFD.

  8. Automatic SAR/optical cross-matching for GCP monograph generation

    NASA Astrophysics Data System (ADS)

    Nutricato, Raffaele; Morea, Alberto; Nitti, Davide Oscar; La Mantia, Claudio; Agrimano, Luigi; Samarelli, Sergio; Chiaradia, Maria Teresa

    2016-10-01

    Ground Control Points (GCP), automatically extracted from Synthetic Aperture Radar (SAR) images through 3D stereo analysis, can be effectively exploited for an automatic orthorectification of optical imagery if they can be robustly located in the basic optical images. The present study outlines a SAR/Optical cross-matching procedure that allows a robust alignment of radar and optical images, and consequently to derive automatically the corresponding sub-pixel position of the GCPs in the optical image in input, expressed as fractional pixel/line image coordinates. The cross-matching in performed in two subsequent steps, in order to gradually gather a better precision. The first step is based on the Mutual Information (MI) maximization between optical and SAR chips while the last one uses the Normalized Cross-Correlation as similarity metric. This work outlines the designed algorithmic solution and discusses the results derived over the urban area of Pisa (Italy), where more than ten COSMO-SkyMed Enhanced Spotlight stereo images with different beams and passes are available. The experimental analysis involves different satellite images, in order to evaluate the performances of the algorithm w.r.t. the optical spatial resolution. An assessment of the performances of the algorithm has been carried out, and errors are computed by measuring the distance between the GCP pixel/line position in the optical image, automatically estimated by the tool, and the "true" position of the GCP, visually identified by an expert user in the optical images.

  9. The influence of delaying judgments of learning on metacognitive accuracy: a meta-analytic review.

    PubMed

    Rhodes, Matthew G; Tauber, Sarah K

    2011-01-01

    Many studies have examined the accuracy of predictions of future memory performance solicited through judgments of learning (JOLs). Among the most robust findings in this literature is that delaying predictions serves to substantially increase the relative accuracy of JOLs compared with soliciting JOLs immediately after study, a finding termed the delayed JOL effect. The meta-analyses reported in the current study examined the predominant theoretical accounts as well as potential moderators of the delayed JOL effect. The first meta-analysis examined the relative accuracy of delayed compared with immediate JOLs across 4,554 participants (112 effect sizes) through gamma correlations between JOLs and memory accuracy. Those data showed that delaying JOLs leads to robust benefits to relative accuracy (g = 0.93). The second meta-analysis examined memory performance for delayed compared with immediate JOLs across 3,807 participants (98 effect sizes). Those data showed that delayed JOLs result in a modest but reliable benefit for memory performance relative to immediate JOLs (g = 0.08). Findings from these meta-analyses are well accommodated by theories suggesting that delayed JOL accuracy reflects access to more diagnostic information from long-term memory rather than being a by-product of a retrieval opportunity. However, these data also suggest that theories proposing that the delayed JOL effect results from a memorial benefit or the match between the cues available for JOLs and those available at test may also provide viable explanatory mechanisms necessary for a comprehensive account.

  10. Ariadne's Thread: A Robust Software Solution Leading to Automated Absolute and Relative Quantification of SRM Data.

    PubMed

    Nasso, Sara; Goetze, Sandra; Martens, Lennart

    2015-09-04

    Selected reaction monitoring (SRM) MS is a highly selective and sensitive technique to quantify protein abundances in complex biological samples. To enhance the pace of SRM large studies, a validated, robust method to fully automate absolute quantification and to substitute for interactive evaluation would be valuable. To address this demand, we present Ariadne, a Matlab software. To quantify monitored targets, Ariadne exploits metadata imported from the transition lists, and targets can be filtered according to mProphet output. Signal processing and statistical learning approaches are combined to compute peptide quantifications. To robustly estimate absolute abundances, the external calibration curve method is applied, ensuring linearity over the measured dynamic range. Ariadne was benchmarked against mProphet and Skyline by comparing its quantification performance on three different dilution series, featuring either noisy/smooth traces without background or smooth traces with complex background. Results, evaluated as efficiency, linearity, accuracy, and precision of quantification, showed that Ariadne's performance is independent of data smoothness and complex background presence and that Ariadne outperforms mProphet on the noisier data set and improved 2-fold Skyline's accuracy and precision for the lowest abundant dilution with complex background. Remarkably, Ariadne could statistically distinguish from each other all different abundances, discriminating dilutions as low as 0.1 and 0.2 fmol. These results suggest that Ariadne offers reliable and automated analysis of large-scale SRM differential expression studies.

  11. A statistically robust EEG re-referencing procedure to mitigate reference effect

    PubMed Central

    Lepage, Kyle Q.; Kramer, Mark A.; Chu, Catherine J.

    2014-01-01

    Background The electroencephalogram (EEG) remains the primary tool for diagnosis of abnormal brain activity in clinical neurology and for in vivo recordings of human neurophysiology in neuroscience research. In EEG data acquisition, voltage is measured at positions on the scalp with respect to a reference electrode. When this reference electrode responds to electrical activity or artifact all electrodes are affected. Successful analysis of EEG data often involves re-referencing procedures that modify the recorded traces and seek to minimize the impact of reference electrode activity upon functions of the original EEG recordings. New method We provide a novel, statistically robust procedure that adapts a robust maximum-likelihood type estimator to the problem of reference estimation, reduces the influence of neural activity from the re-referencing operation, and maintains good performance in a wide variety of empirical scenarios. Results The performance of the proposed and existing re-referencing procedures are validated in simulation and with examples of EEG recordings. To facilitate this comparison, channel-to-channel correlations are investigated theoretically and in simulation. Comparison with existing methods The proposed procedure avoids using data contaminated by neural signal and remains unbiased in recording scenarios where physical references, the common average reference (CAR) and the reference estimation standardization technique (REST) are not optimal. Conclusion The proposed procedure is simple, fast, and avoids the potential for substantial bias when analyzing low-density EEG data. PMID:24975291

  12. Accuracy and robustness evaluation in stereo matching

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc M.; Hanca, Jan; Lu, Shao-Ping; Schelkens, Peter; Munteanu, Adrian

    2016-09-01

    Stereo matching has received a lot of attention from the computer vision community, thanks to its wide range of applications. Despite of the large variety of algorithms that have been proposed so far, it is not trivial to select suitable algorithms for the construction of practical systems. One of the main problems is that many algorithms lack sufficient robustness when employed in various operational conditions. This problem is due to the fact that most of the proposed methods in the literature are usually tested and tuned to perform well on one specific dataset. To alleviate this problem, an extensive evaluation in terms of accuracy and robustness of state-of-the-art stereo matching algorithms is presented. Three datasets (Middlebury, KITTI, and MPEG FTV) representing different operational conditions are employed. Based on the analysis, improvements over existing algorithms have been proposed. The experimental results show that our improved versions of cross-based and cost volume filtering algorithms outperform the original versions with large margins on Middlebury and KITTI datasets. In addition, the latter of the two proposed algorithms ranks itself among the best local stereo matching approaches on the KITTI benchmark. Under evaluations using specific settings for depth-image-based-rendering applications, our improved belief propagation algorithm is less complex than MPEG's FTV depth estimation reference software (DERS), while yielding similar depth estimation performance. Finally, several conclusions on stereo matching algorithms are also presented.

  13. Robust, Decoupled, Flight Control Design with Rate Saturating Actuators

    NASA Technical Reports Server (NTRS)

    Snell, S. A.; Hess, R. A.

    1997-01-01

    Techniques for the design of control systems for manually controlled, high-performance aircraft must provide the following: (1) multi-input, multi-output (MIMO) solutions, (2) acceptable handling qualities including no tendencies for pilot-induced oscillations, (3) a tractable approach for compensator design, (4) performance and stability robustness in the presence of significant plant uncertainty, and (5) performance and stability robustness in the presence actuator saturation (particularly rate saturation). A design technique built upon Quantitative Feedback Theory is offered as a candidate methodology which can provide flight control systems meeting these requirements, and do so over a considerable part of the flight envelope. An example utilizing a simplified model of a supermaneuverable fighter aircraft demonstrates the proposed design methodology.

  14. Extracting information in spike time patterns with wavelets and information theory.

    PubMed

    Lopes-dos-Santos, Vítor; Panzeri, Stefano; Kayser, Christoph; Diamond, Mathew E; Quian Quiroga, Rodrigo

    2015-02-01

    We present a new method to assess the information carried by temporal patterns in spike trains. The method first performs a wavelet decomposition of the spike trains, then uses Shannon information to select a subset of coefficients carrying information, and finally assesses timing information in terms of decoding performance: the ability to identify the presented stimuli from spike train patterns. We show that the method allows: 1) a robust assessment of the information carried by spike time patterns even when this is distributed across multiple time scales and time points; 2) an effective denoising of the raster plots that improves the estimate of stimulus tuning of spike trains; and 3) an assessment of the information carried by temporally coordinated spikes across neurons. Using simulated data, we demonstrate that the Wavelet-Information (WI) method performs better and is more robust to spike time-jitter, background noise, and sample size than well-established approaches, such as principal component analysis, direct estimates of information from digitized spike trains, or a metric-based method. Furthermore, when applied to real spike trains from monkey auditory cortex and from rat barrel cortex, the WI method allows extracting larger amounts of spike timing information. Importantly, the fact that the WI method incorporates multiple time scales makes it robust to the choice of partly arbitrary parameters such as temporal resolution, response window length, number of response features considered, and the number of available trials. These results highlight the potential of the proposed method for accurate and objective assessments of how spike timing encodes information. Copyright © 2015 the American Physiological Society.

  15. Robust detrending, rereferencing, outlier detection, and inpainting for multichannel data.

    PubMed

    de Cheveigné, Alain; Arzounian, Dorothée

    2018-05-15

    Electroencephalography (EEG), magnetoencephalography (MEG) and related techniques are prone to glitches, slow drift, steps, etc., that contaminate the data and interfere with the analysis and interpretation. These artifacts are usually addressed in a preprocessing phase that attempts to remove them or minimize their impact. This paper offers a set of useful techniques for this purpose: robust detrending, robust rereferencing, outlier detection, data interpolation (inpainting), step removal, and filter ringing artifact removal. These techniques provide a less wasteful alternative to discarding corrupted trials or channels, and they are relatively immune to artifacts that disrupt alternative approaches such as filtering. Robust detrending allows slow drifts and common mode signals to be factored out while avoiding the deleterious effects of glitches. Robust rereferencing reduces the impact of artifacts on the reference. Inpainting allows corrupt data to be interpolated from intact parts based on the correlation structure estimated over the intact parts. Outlier detection allows the corrupt parts to be identified. Step removal fixes the high-amplitude flux jump artifacts that are common with some MEG systems. Ringing removal allows the ringing response of the antialiasing filter to glitches (steps, pulses) to be suppressed. The performance of the methods is illustrated and evaluated using synthetic data and data from real EEG and MEG systems. These methods, which are mainly automatic and require little tuning, can greatly improve the quality of the data. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Representation and alignment of sung queries for music information retrieval

    NASA Astrophysics Data System (ADS)

    Adams, Norman H.; Wakefield, Gregory H.

    2005-09-01

    The pursuit of robust and rapid query-by-humming systems, which search melodic databases using sung queries, is a common theme in music information retrieval. The retrieval aspect of this database problem has received considerable attention, whereas the front-end processing of sung queries and the data structure to represent melodies has been based on musical intuition and historical momentum. The present work explores three time series representations for sung queries: a sequence of notes, a ``smooth'' pitch contour, and a sequence of pitch histograms. The performance of the three representations is compared using a collection of naturally sung queries. It is found that the most robust performance is achieved by the representation with highest dimension, the smooth pitch contour, but that this representation presents a formidable computational burden. For all three representations, it is necessary to align the query and target in order to achieve robust performance. The computational cost of the alignment is quadratic, hence it is necessary to keep the dimension small for rapid retrieval. Accordingly, iterative deepening is employed to achieve both robust performance and rapid retrieval. Finally, the conventional iterative framework is expanded to adapt the alignment constraints based on previous iterations, further expediting retrieval without degrading performance.

  17. Covert checks by standardised patients of general practitioners' delivery of new periodic health examinations: clustered cross-sectional study from a consumer organisation

    PubMed Central

    Thaler, Kylie; Harris, Mark F

    2012-01-01

    Objective To assess if data collected by a consumer organisation are valid for a health service research study on physicians' performance in preventive care. To report first results of the analysis of physicians performance like consultation time and guideline adherence in history taking. Design Secondary data analysis of a clustered cross-sectional direct observation survey. Setting General practitioners (GPs) in Vienna, Austria, visited unannounced by mystery shoppers (incognito standardised patients (ISPs)). Participants 21 randomly selected GPs were visited by two different ISPs each. 40 observation protocols were realised. Main outcome measures Robustness of sampling and data collection by the consumer organisation. GPs consultation and waiting times, guideline adherence in history taking. Results The double stratified random sampling method was robust and representative for the private and contracted GPs mix of Vienna. The clinical scenarios presented by the ISPs were valid and believable, and no GP realised the ISPs were not genuine patients. The average consultation time was 46 min (95% CI 37 to 54 min). Waiting times differed more than consultation times between private and contracted GPs. No differences between private and contracted GPs in terms of adherence to the evidence-based guidelines regarding history taking including questions regarding alcohol use were found. According to the analysis, 20% of the GPs took a perfect history (95% CI 9% to 39%). Conclusions The analysis of secondary data collected by a consumer organisation was a valid method for drawing conclusions about GPs preventive practice. Initial results, like consultation times longer than anticipated, and the moderate quality of history taking encourage continuing the analysis on available clinical data. PMID:22872721

  18. Impact of sodium lauryl sulfate in oral liquids on e-tongue measurements.

    PubMed

    Immohr, Laura Isabell; Turner, Roy; Pein-Hackelbusch, Miriam

    2016-12-30

    During development of oral liquid medicines taste assessment is often required to evaluate taste and taste masking. Electronic tongue analysis can provide taste assessment of medicinal products but should only be conducted with medicines that interact with the instrument without damaging the sensor membranes or interfering with their electrical output so that robust data is generated. To explore the impact of a substance deemed unsuitable for electronic tongue analysis the influence of the anionic surfactant sodium lauryl sulfate (SLS), on the performance of the electronic tongue was conducted using electronic tongues equipped with self-developed PVC based sensors. The results showed a significant impact of SLS on all applied sensor types and an alteration of the sensor's sensitivity. Nevertheless, concentration dependent sensor responses could still be obtained and the sensor performance was not impacted negatively. Assessment of unsuitable substances should therefore be evaluated prior to performing electronic tongue analysis so that their impact is understood fully. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Analysis of short-chain fatty acids in human feces: A scoping review.

    PubMed

    Primec, Maša; Mičetić-Turk, Dušanka; Langerholc, Tomaž

    2017-06-01

    Short-chain fatty acids (SCFAs) play a crucial role in maintaining homeostasis in humans, therefore the importance of a good and reliable SCFAs analytical detection has raised a lot in the past few years. The aim of this scoping review is to show the trends in the development of different methods of SCFAs analysis in feces, based on the literature published in the last eleven years in all major indexing databases. The search criteria included analytical quantification techniques of SCFAs in different human clinical and in vivo studies. SCFAs analysis is still predominantly performed using gas chromatography (GC), followed by high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) and capillary electrophoresis (CE). Performances, drawbacks and advantages of these methods are discussed, especially in the light of choosing a proper pretreatment, as feces is a complex biological material. Further optimization to develop a simple, cost effective and robust method for routine use is needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Algorithmic Coordination in Robotic Networks

    DTIC Science & Technology

    2010-11-29

    appropriate performance, robustness and scalability properties for various task allocation , surveillance, and information gathering applications is...networking, we envision designing and analyzing algorithms with appropriate performance, robustness and scalability properties for various task ...distributed algorithms for target assignments; based on the classic auction algorithms in static networks, we intend to design efficient algorithms in worst

  1. A two-step super-Gaussian independent component analysis approach for fMRI data.

    PubMed

    Ge, Ruiyang; Yao, Li; Zhang, Hang; Long, Zhiying

    2015-09-01

    Independent component analysis (ICA) has been widely applied to functional magnetic resonance imaging (fMRI) data analysis. Although ICA assumes that the sources underlying data are statistically independent, it usually ignores sources' additional properties, such as sparsity. In this study, we propose a two-step super-GaussianICA (2SGICA) method that incorporates the sparse prior of the sources into the ICA model. 2SGICA uses the super-Gaussian ICA (SGICA) algorithm that is based on a simplified Lewicki-Sejnowski's model to obtain the initial source estimate in the first step. Using a kernel estimator technique, the source density is acquired and fitted to the Laplacian function based on the initial source estimates. The fitted Laplacian prior is used for each source at the second SGICA step. Moreover, the automatic target generation process for initial value generation is used in 2SGICA to guarantee the stability of the algorithm. An adaptive step size selection criterion is also implemented in the proposed algorithm. We performed experimental tests on both simulated data and real fMRI data to investigate the feasibility and robustness of 2SGICA and made a performance comparison between InfomaxICA, FastICA, mean field ICA (MFICA) with Laplacian prior, sparse online dictionary learning (ODL), SGICA and 2SGICA. Both simulated and real fMRI experiments showed that the 2SGICA was most robust to noises, and had the best spatial detection power and the time course estimation among the six methods. Copyright © 2015. Published by Elsevier Inc.

  2. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling.

    PubMed

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2017-06-01

    Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.

  3. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling

    NASA Astrophysics Data System (ADS)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2017-06-01

    Objective. Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. Approach. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Main results. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. Significance. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.

  4. Conventional laboratory methods for cyanotoxins.

    PubMed

    Lawton, Linda A; Edwards, C

    2008-01-01

    It is clear from the literature that numerous methods are available for most cyanotoxins, although many publications on monitoring data indicate that the favored approach is the use proven, robust methods for individual toxins. The most effective approach is the utilization of a robust rapid screen, where positive samples are followed up by qualitative and quantitative analysis to provide the essential decision making data needed for successful management strategies (Fig. 2). Currently, rapid screens are available for microcystins, saxitoxins and anatoxin-a(s), whilst optimisation and validation is needed, many publications report good correlation with the mouse bioassay and HPLC. There is an urgent need for rapid, simple, and inexpensive assays for cylindrospermopsins, anatoxin-a and BMAA. Although methods exist for analysis of BMAA, the fact that a recent study showed 95% of cyanobacteria producing this, some at levels > 6,000 microg g(-1) dry wt, is of concern and rapid screening followed by robust analysis needed. An ideal approach would be a single method capable of extracting and detecting all cyanotoxins. Several publications describe such approaches using LC-MS, but as expected from a group of compounds with diverse chemistry, there are obvious limitations in recoveries during sample processing, chromatographic performance and sensitivity (Dahlmann et al. 2003, Dell'Aversano et al. 2004, Pietsch et al. 2001). Selection of methods must be based on the application requirements, equipment available and cost. For many organisations it may be more cost effective to out-source the occasional analysis. However, as the incidence of blooms appears to be increasing, the need for more rigorous monitoring is needed, sensible investment is needed to meet recommended guidelines. Most of the methods discussed in this paper are suitable for achieving this goal, although clean-up and concentration is usually necessary for physicochemical methods.

  5. DARPA super resolution vision system (SRVS) robust turbulence data collection and analysis

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Leonard, Kevin R.; Thompson, Roger; Tofsted, David; D'Arcy, Sean

    2014-05-01

    Atmospheric turbulence degrades the range performance of military imaging systems, specifically those intended for long range, ground-to-ground target identification. The recent Defense Advanced Research Projects Agency (DARPA) Super Resolution Vision System (SRVS) program developed novel post-processing system components to mitigate turbulence effects on visible and infrared sensor systems. As part of the program, the US Army RDECOM CERDEC NVESD and the US Army Research Laboratory Computational & Information Sciences Directorate (CISD) collaborated on a field collection and atmospheric characterization of a two-handed weapon identification dataset through a diurnal cycle for a variety of ranges and sensor systems. The robust dataset is useful in developing new models and simulations of turbulence, as well for providing as a standard baseline for comparison of sensor systems in the presence of turbulence degradation and mitigation. In this paper, we describe the field collection and atmospheric characterization and present the robust dataset to the defense, sensing, and security community. In addition, we present an expanded model validation of turbulence degradation using the field collected video sequences.

  6. Fuzzy logic-based flight control system design

    NASA Astrophysics Data System (ADS)

    Nho, Kyungmoon

    The application of fuzzy logic to aircraft motion control is studied in this dissertation. The self-tuning fuzzy techniques are developed by changing input scaling factors to obtain a robust fuzzy controller over a wide range of operating conditions and nonlinearities for a nonlinear aircraft model. It is demonstrated that the properly adjusted input scaling factors can meet the required performance and robustness in a fuzzy controller. For a simple demonstration of the easy design and control capability of a fuzzy controller, a proportional-derivative (PD) fuzzy control system is compared to the conventional controller for a simple dynamical system. This thesis also describes the design principles and stability analysis of fuzzy control systems by considering the key features of a fuzzy control system including the fuzzification, rule-base and defuzzification. The wing-rock motion of slender delta wings, a linear aircraft model and the six degree of freedom nonlinear aircraft dynamics are considered to illustrate several self-tuning methods employing change in input scaling factors. Finally, this dissertation is concluded with numerical simulation of glide-slope capture in windshear demonstrating the robustness of the fuzzy logic based flight control system.

  7. Adaptive local thresholding for robust nucleus segmentation utilizing shape priors

    NASA Astrophysics Data System (ADS)

    Wang, Xiuzhong; Srinivas, Chukka

    2016-03-01

    This paper describes a novel local thresholding method for foreground detection. First, a Canny edge detection method is used for initial edge detection. Then, tensor voting is applied on the initial edge pixels, using a nonsymmetric tensor field tailored to encode prior information about nucleus size, shape, and intensity spatial distribution. Tensor analysis is then performed to generate the saliency image and, based on that, the refined edge. Next, the image domain is divided into blocks. In each block, at least one foreground and one background pixel are sampled for each refined edge pixel. The saliency weighted foreground histogram and background histogram are then created. These two histograms are used to calculate a threshold by minimizing the background and foreground pixel classification error. The block-wise thresholds are then used to generate the threshold for each pixel via interpolation. Finally, the foreground is obtained by comparing the original image with the threshold image. The effective use of prior information, combined with robust techniques, results in far more reliable foreground detection, which leads to robust nucleus segmentation.

  8. Artificial Neural Networks for differential diagnosis of breast lesions in MR-Mammography: a systematic approach addressing the influence of network architecture on diagnostic performance using a large clinical database.

    PubMed

    Dietzel, Matthias; Baltzer, Pascal A T; Dietzel, Andreas; Zoubi, Ramy; Gröschel, Tobias; Burmeister, Hartmut P; Bogdan, Martin; Kaiser, Werner A

    2012-07-01

    Differential diagnosis of lesions in MR-Mammography (MRM) remains a complex task. The aim of this MRM study was to design and to test robustness of Artificial Neural Network architectures to predict malignancy using a large clinical database. For this IRB-approved investigation standardized protocols and study design were applied (T1w-FLASH; 0.1 mmol/kgBW Gd-DTPA; T2w-TSE; histological verification after MRM). All lesions were evaluated by two experienced (>500 MRM) radiologists in consensus. In every lesion, 18 previously published descriptors were assessed and documented in the database. An Artificial Neural Network (ANN) was developed to process this database (The-MathWorks/Inc., feed-forward-architecture/resilient back-propagation-algorithm). All 18 descriptors were set as input variables, whereas histological results (malignant vs. benign) was defined as classification variable. Initially, the ANN was optimized in terms of "Training Epochs" (TE), "Hidden Layers" (HL), "Learning Rate" (LR) and "Neurons" (N). Robustness of the ANN was addressed by repeated evaluation cycles (n: 9) with receiver operating characteristics (ROC) analysis of the results applying 4-fold Cross Validation. The best network architecture was identified comparing the corresponding Area under the ROC curve (AUC). Histopathology revealed 436 benign and 648 malignant lesions. Enhancing the level of complexity could not increase diagnostic accuracy of the network (P: n.s.). The optimized ANN architecture (TE: 20, HL: 1, N: 5, LR: 1.2) was accurate (mean-AUC 0.888; P: <0.001) and robust (CI: 0.885-0.892; range: 0.880-0.898). The optimized neural network showed robust performance and high diagnostic accuracy for prediction of malignancy on unknown data. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. MPLEx: a Robust and Universal Protocol for Single-Sample Integrative Proteomic, Metabolomic, and Lipidomic Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayasu, Ernesto S.; Nicora, Carrie D.; Sims, Amy C.

    2016-05-03

    ABSTRACT Integrative multi-omics analyses can empower more effective investigation and complete understanding of complex biological systems. Despite recent advances in a range of omics analyses, multi-omic measurements of the same sample are still challenging and current methods have not been well evaluated in terms of reproducibility and broad applicability. Here we adapted a solvent-based method, widely applied for extracting lipids and metabolites, to add proteomics to mass spectrometry-based multi-omics measurements. Themetabolite,protein, andlipidextraction (MPLEx) protocol proved to be robust and applicable to a diverse set of sample types, including cell cultures, microbial communities, and tissues. To illustrate the utility of thismore » protocol, an integrative multi-omics analysis was performed using a lung epithelial cell line infected with Middle East respiratory syndrome coronavirus, which showed the impact of this virus on the host glycolytic pathway and also suggested a role for lipids during infection. The MPLEx method is a simple, fast, and robust protocol that can be applied for integrative multi-omic measurements from diverse sample types (e.g., environmental,in vitro, and clinical). IMPORTANCEIn systems biology studies, the integration of multiple omics measurements (i.e., genomics, transcriptomics, proteomics, metabolomics, and lipidomics) has been shown to provide a more complete and informative view of biological pathways. Thus, the prospect of extracting different types of molecules (e.g., DNAs, RNAs, proteins, and metabolites) and performing multiple omics measurements on single samples is very attractive, but such studies are challenging due to the fact that the extraction conditions differ according to the molecule type. Here, we adapted an organic solvent-based extraction method that demonstrated broad applicability and robustness, which enabled comprehensive proteomics, metabolomics, and lipidomics analyses from the same sample.« less

  10. Reliability issues in active control of large flexible space structures

    NASA Technical Reports Server (NTRS)

    Vandervelde, W. E.

    1986-01-01

    Efforts in this reporting period were centered on four research tasks: design of failure detection filters for robust performance in the presence of modeling errors, design of generalized parity relations for robust performance in the presence of modeling errors, design of failure sensitive observers using the geometric system theory of Wonham, and computational techniques for evaluation of the performance of control systems with fault tolerance and redundancy management

  11. A New Color Image Encryption Scheme Using CML and a Fractional-Order Chaotic System

    PubMed Central

    Wu, Xiangjun; Li, Yang; Kurths, Jürgen

    2015-01-01

    The chaos-based image cryptosystems have been widely investigated in recent years to provide real-time encryption and transmission. In this paper, a novel color image encryption algorithm by using coupled-map lattices (CML) and a fractional-order chaotic system is proposed to enhance the security and robustness of the encryption algorithms with a permutation-diffusion structure. To make the encryption procedure more confusing and complex, an image division-shuffling process is put forward, where the plain-image is first divided into four sub-images, and then the position of the pixels in the whole image is shuffled. In order to generate initial conditions and parameters of two chaotic systems, a 280-bit long external secret key is employed. The key space analysis, various statistical analysis, information entropy analysis, differential analysis and key sensitivity analysis are introduced to test the security of the new image encryption algorithm. The cryptosystem speed is analyzed and tested as well. Experimental results confirm that, in comparison to other image encryption schemes, the new algorithm has higher security and is fast for practical image encryption. Moreover, an extensive tolerance analysis of some common image processing operations such as noise adding, cropping, JPEG compression, rotation, brightening and darkening, has been performed on the proposed image encryption technique. Corresponding results reveal that the proposed image encryption method has good robustness against some image processing operations and geometric attacks. PMID:25826602

  12. Multi-objective robust design of energy-absorbing components using coupled process-performance simulations

    NASA Astrophysics Data System (ADS)

    Najafi, Ali; Acar, Erdem; Rais-Rohani, Masoud

    2014-02-01

    The stochastic uncertainties associated with the material, process and product are represented and propagated to process and performance responses. A finite element-based sequential coupled process-performance framework is used to simulate the forming and energy absorption responses of a thin-walled tube in a manner that both material properties and component geometry can evolve from one stage to the next for better prediction of the structural performance measures. Metamodelling techniques are used to develop surrogate models for manufacturing and performance responses. One set of metamodels relates the responses to the random variables whereas the other relates the mean and standard deviation of the responses to the selected design variables. A multi-objective robust design optimization problem is formulated and solved to illustrate the methodology and the influence of uncertainties on manufacturability and energy absorption of a metallic double-hat tube. The results are compared with those of deterministic and augmented robust optimization problems.

  13. Robustness analysis of multirate and periodically time varying systems

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.

    1991-01-01

    A new method for analyzing the stability and robustness of multirate and periodically time varying systems is presented. It is shown that a multirate or periodically time varying system can be transformed into an equivalent time invariant system. For a SISO system, traditional gain and phase margins can be found by direct application of the Nyquist criterion to this equivalent time invariant system. For a MIMO system, structured and unstructured singular values can be used to determine the system's robustness. The limitations and implications of utilizing this equivalent time invariant system for calculating gain and phase margins, and for estimating robustness via singular value analysis are discussed.

  14. Robust Optimization and Sensitivity Analysis with Multi-Objective Genetic Algorithms: Single- and Multi-Disciplinary Applications

    DTIC Science & Technology

    2007-01-01

    multi-disciplinary optimization with uncertainty. Robust optimization and sensitivity analysis is usually used when an optimization model has...formulation is introduced in Section 2.3. We briefly discuss several definitions used in the sensitivity analysis in Section 2.4. Following in...2.5. 2.4 SENSITIVITY ANALYSIS In this section, we discuss several definitions used in Chapter 5 for Multi-Objective Sensitivity Analysis . Inner

  15. Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decomposition.

    PubMed

    Mathew, B; Schmitz, A; Muñoz-Descalzo, S; Ansari, N; Pampaloni, F; Stelzer, E H K; Fischer, S C

    2015-06-08

    Due to the large amount of data produced by advanced microscopy, automated image analysis is crucial in modern biology. Most applications require reliable cell nuclei segmentation. However, in many biological specimens cell nuclei are densely packed and appear to touch one another in the images. Therefore, a major difficulty of three-dimensional cell nuclei segmentation is the decomposition of cell nuclei that apparently touch each other. Current methods are highly adapted to a certain biological specimen or a specific microscope. They do not ensure similarly accurate segmentation performance, i.e. their robustness for different datasets is not guaranteed. Hence, these methods require elaborate adjustments to each dataset. We present an advanced three-dimensional cell nuclei segmentation algorithm that is accurate and robust. Our approach combines local adaptive pre-processing with decomposition based on Lines-of-Sight (LoS) to separate apparently touching cell nuclei into approximately convex parts. We demonstrate the superior performance of our algorithm using data from different specimens recorded with different microscopes. The three-dimensional images were recorded with confocal and light sheet-based fluorescence microscopes. The specimens are an early mouse embryo and two different cellular spheroids. We compared the segmentation accuracy of our algorithm with ground truth data for the test images and results from state-of-the-art methods. The analysis shows that our method is accurate throughout all test datasets (mean F-measure: 91%) whereas the other methods each failed for at least one dataset (F-measure≤69%). Furthermore, nuclei volume measurements are improved for LoS decomposition. The state-of-the-art methods required laborious adjustments of parameter values to achieve these results. Our LoS algorithm did not require parameter value adjustments. The accurate performance was achieved with one fixed set of parameter values. We developed a novel and fully automated three-dimensional cell nuclei segmentation method incorporating LoS decomposition. LoS are easily accessible features that ensure correct splitting of apparently touching cell nuclei independent of their shape, size or intensity. Our method showed superior performance compared to state-of-the-art methods, performing accurately for a variety of test images. Hence, our LoS approach can be readily applied to quantitative evaluation in drug testing, developmental and cell biology.

  16. Positioning performance analysis of the time sum of arrival algorithm with error features

    NASA Astrophysics Data System (ADS)

    Gong, Feng-xun; Ma, Yan-qiu

    2018-03-01

    The theoretical positioning accuracy of multilateration (MLAT) with the time difference of arrival (TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location performance of the time sum of arrival (TSOA) algorithm from the root mean square error ( RMSE) and geometric dilution of precision (GDOP) in additive white Gaussian noise (AWGN) environment. The TSOA localization model is constructed. Using it, the distribution of location ambiguity region is presented with 4-base stations. And then, the location performance analysis is started from the 4-base stations with calculating the RMSE and GDOP variation. Subsequently, when the location parameters are changed in number of base stations, base station layout and so on, the performance changing patterns of the TSOA location algorithm are shown. So, the TSOA location characteristics and performance are revealed. From the RMSE and GDOP state changing trend, the anti-noise performance and robustness of the TSOA localization algorithm are proved. The TSOA anti-noise performance will be used for reducing the blind-zone and the false location rate of MLAT systems.

  17. RSRE: RNA structural robustness evaluator

    PubMed Central

    Shu, Wenjie; Zheng, Zhiqiang; Wang, Shengqi

    2007-01-01

    Biological robustness, defined as the ability to maintain stable functioning in the face of various perturbations, is an important and fundamental topic in current biology, and has become a focus of numerous studies in recent years. Although structural robustness has been explored in several types of RNA molecules, the origins of robustness are still controversial. Computational analysis results are needed to make up for the lack of evidence of robustness in natural biological systems. The RNA structural robustness evaluator (RSRE) web server presented here provides a freely available online tool to quantitatively evaluate the structural robustness of RNA based on the widely accepted definition of neutrality. Several classical structure comparison methods are employed; five randomization methods are implemented to generate control sequences; sub-optimal predicted structures can be optionally utilized to mitigate the uncertainty of secondary structure prediction. With a user-friendly interface, the web application is easy to use. Intuitive illustrations are provided along with the original computational results to facilitate analysis. The RSRE will be helpful in the wide exploration of RNA structural robustness and will catalyze our understanding of RNA evolution. The RSRE web server is freely available at http://biosrv1.bmi.ac.cn/RSRE/ or http://biotech.bmi.ac.cn/RSRE/. PMID:17567615

  18. Correlation of Phosphorus Cross-Linking to Hydration Rates in Sodium Starch Glycolate Tablet Disintegrants Using MRI.

    PubMed

    Abraham, Anuji; Olusanmi, Dolapo; Ilott, Andrew J; Good, David; Murphy, Denette; Mcnamara, Daniel; Jerschow, Alexej; Mantri, Rao V

    2016-06-01

    Understanding the behavior of tablet disintegrants is valuable in the development of pharmaceutical solid dosage formulations. In this study, high-resolution magnetic resonance imaging has been used to understand the hydration behavior of a series of commercial sodium starch glycolate (SSG) samples, providing robust estimates of tablet disintegration rate that could be correlated with physicochemical properties of the SSGs, such as the extent of phosphorus (P) cross-linking as obtained from infra-red spectroscopy. Furthermore, elemental analysis together with powder X-ray diffraction has been used to quantify the presence of carboxymethyl groups and salt impurities, which also contribute to the disintegration behavior. The utility of Fast Low Angle SHot magnetic resonance imaging has been demonstrated as an approach to rapidly acquire approximations of the volume of a disintegrating tablet and, together with a robust voxel analysis routine, extract tablet disintegration rates. In this manner, a complete characterization of a series of SSG grades from different sources has been performed, showing the variability in their physicochemical properties and demonstrating a correlation between their disintegration rates and intrinsic characteristics. The insights obtained will be a valuable aid in the choice of disintegrant source as well as in managing SSG variability to ensure robustness of drug products containing SSG. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis.

    PubMed

    Martínez, Leandro

    2015-01-01

    The analysis of structural mobility in molecular dynamics plays a key role in data interpretation, particularly in the simulation of biomolecules. The most common mobility measures computed from simulations are the Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuations (RMSF) of the structures. These are computed after the alignment of atomic coordinates in each trajectory step to a reference structure. This rigid-body alignment is not robust, in the sense that if a small portion of the structure is highly mobile, the RMSD and RMSF increase for all atoms, resulting possibly in poor quantification of the structural fluctuations and, often, to overlooking important fluctuations associated to biological function. The motivation of this work is to provide a robust measure of structural mobility that is practical, and easy to interpret. We propose a Low-Order-Value-Optimization (LOVO) strategy for the robust alignment of the least mobile substructures in a simulation. These substructures are automatically identified by the method. The algorithm consists of the iterative superposition of the fraction of structure displaying the smallest displacements. Therefore, the least mobile substructures are identified, providing a clearer picture of the overall structural fluctuations. Examples are given to illustrate the interpretative advantages of this strategy. The software for performing the alignments was named MDLovoFit and it is available as free-software at: http://leandro.iqm.unicamp.br/mdlovofit.

  20. Assuring SS7 dependability: A robustness characterization of signaling network elements

    NASA Astrophysics Data System (ADS)

    Karmarkar, Vikram V.

    1994-04-01

    Current and evolving telecommunication services will rely on signaling network performance and reliability properties to build competitive call and connection control mechanisms under increasing demands on flexibility without compromising on quality. The dimensions of signaling dependability most often evaluated are the Rate of Call Loss and End-to-End Route Unavailability. A third dimension of dependability that captures the concern about large or catastrophic failures can be termed Network Robustness. This paper is concerned with the dependability aspects of the evolving Signaling System No. 7 (SS7) networks and attempts to strike a balance between the probabilistic and deterministic measures that must be evaluated to accomplish a risk-trend assessment to drive architecture decisions. Starting with high-level network dependability objectives and field experience with SS7 in the U.S., potential areas of growing stringency in network element (NE) dependability are identified to improve against current measures of SS7 network quality, as per-call signaling interactions increase. A sensitivity analysis is presented to highlight the impact due to imperfect coverage of duplex network component or element failures (i.e., correlated failures), to assist in the setting of requirements on NE robustness. A benefit analysis, covering several dimensions of dependability, is used to generate the domain of solutions available to the network architect in terms of network and network element fault tolerance that may be specified to meet the desired signaling quality goals.

  1. Automatic Identification of Mobile and Rigid Substructures in Molecular Dynamics Simulations and Fractional Structural Fluctuation Analysis

    PubMed Central

    Martínez, Leandro

    2015-01-01

    The analysis of structural mobility in molecular dynamics plays a key role in data interpretation, particularly in the simulation of biomolecules. The most common mobility measures computed from simulations are the Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuations (RMSF) of the structures. These are computed after the alignment of atomic coordinates in each trajectory step to a reference structure. This rigid-body alignment is not robust, in the sense that if a small portion of the structure is highly mobile, the RMSD and RMSF increase for all atoms, resulting possibly in poor quantification of the structural fluctuations and, often, to overlooking important fluctuations associated to biological function. The motivation of this work is to provide a robust measure of structural mobility that is practical, and easy to interpret. We propose a Low-Order-Value-Optimization (LOVO) strategy for the robust alignment of the least mobile substructures in a simulation. These substructures are automatically identified by the method. The algorithm consists of the iterative superposition of the fraction of structure displaying the smallest displacements. Therefore, the least mobile substructures are identified, providing a clearer picture of the overall structural fluctuations. Examples are given to illustrate the interpretative advantages of this strategy. The software for performing the alignments was named MDLovoFit and it is available as free-software at: http://leandro.iqm.unicamp.br/mdlovofit PMID:25816325

  2. Mars Phoenix Entry, Descent, and Landing Simulation Design and Modelling Analysis

    NASA Technical Reports Server (NTRS)

    Prince, Jill L.; Desai, Prasun N.; Queen, Eric M.; Grover, Myron R.

    2008-01-01

    The 2007 Mars Phoenix Lander was launched in August of 2007 on a ten month cruise to reach the northern plains of Mars in May 2008. Its mission continues NASA s pursuit to find evidence of water on Mars. Phoenix carries upon it a slew of science instruments to study soil and ice samples from the northern region of the planet, an area previously undiscovered by robotic landers. In order for these science instruments to be useful, it was necessary for Phoenix to perform a safe entry, descent, and landing (EDL) onto the surface of Mars. The EDL design was defined through simulation and analysis of the various phases of the descent. An overview of the simulation and various models developed to characterize the EDL performance is provided. Monte Carlo statistical analysis was performed to assess the performance and robustness of the Phoenix EDL system and are presented in this paper. Using these simulation and modelling tools throughout the design and into the operations phase, the Mars Phoenix EDL was a success on May 25, 2008.

  3. Performance Test Data Analysis of Scintillation Cameras

    NASA Astrophysics Data System (ADS)

    Demirkaya, Omer; Mazrou, Refaat Al

    2007-10-01

    In this paper, we present a set of image analysis tools to calculate the performance parameters of gamma camera systems from test data acquired according to the National Electrical Manufacturers Association NU 1-2001 guidelines. The calculation methods are either completely automated or require minimal user interaction; minimizing potential human errors. The developed methods are robust with respect to varying conditions under which these tests may be performed. The core algorithms have been validated for accuracy. They have been extensively tested on images acquired by the gamma cameras from different vendors. All the algorithms are incorporated into a graphical user interface that provides a convenient way to process the data and report the results. The entire application has been developed in MATLAB programming environment and is compiled to run as a stand-alone program. The developed image analysis tools provide an automated, convenient and accurate means to calculate the performance parameters of gamma cameras and SPECT systems. The developed application is available upon request for personal or non-commercial uses. The results of this study have been partially presented in Society of Nuclear Medicine Annual meeting as an InfoSNM presentation.

  4. Design and Experimental Evaluation of a Robust Position Controller for an Electrohydrostatic Actuator Using Adaptive Antiwindup Sliding Mode Scheme

    PubMed Central

    Lee, Ji Min; Park, Sung Hwan; Kim, Jong Shik

    2013-01-01

    A robust control scheme is proposed for the position control of the electrohydrostatic actuator (EHA) when considering hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. To reduce overshoot due to a saturation of electric motor and to realize robustness against load disturbance and lumped system uncertainties such as varying parameters and modeling error, this paper proposes an adaptive antiwindup PID sliding mode scheme as a robust position controller for the EHA system. An optimal PID controller and an optimal anti-windup PID controller are also designed to compare control performance. An EHA prototype is developed, carrying out system modeling and parameter identification in designing the position controller. The simply identified linear model serves as the basis for the design of the position controllers, while the robustness of the control systems is compared by experiments. The adaptive anti-windup PID sliding mode controller has been found to have the desired performance and become robust against hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. PMID:23983640

  5. Introduction: Aims and Requirements of Future Aerospace Vehicles. Chapter 1

    NASA Technical Reports Server (NTRS)

    Rodriguez, Pedro I.; Smeltzer, Stanley S., III; McConnaughey, Paul (Technical Monitor)

    2001-01-01

    The goals and system-level requirements for the next generation aerospace vehicles emphasize safety, reliability, low-cost, and robustness rather than performance. Technologies, including new materials, design and analysis approaches, manufacturing and testing methods, operations and maintenance, and multidisciplinary systems-level vehicle development are key to increasing the safety and reducing the cost of aerospace launch systems. This chapter identifies the goals and needs of the next generation or advanced aerospace vehicle systems.

  6. The Reliability of Free School Meal Eligibility as a Measure of Socio-Economic Disadvantage: Evidence from the Millennium Cohort Study in Wales

    ERIC Educational Resources Information Center

    Taylor, Chris

    2018-01-01

    Over the last 20 years, the use of administrative data has become central to understanding pupil attainment and school performance. Of most importance has been its use to robustly demonstrate the impact of socio-economic status (SES) on pupil attainment. Much of this analysis in England and Wales has relied on whether pupils are eligible for free…

  7. Reliability Assessment for Low-cost Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Freeman, Paul Michael

    Existing low-cost unmanned aerospace systems are unreliable, and engineers must blend reliability analysis with fault-tolerant control in novel ways. This dissertation introduces the University of Minnesota unmanned aerial vehicle flight research platform, a comprehensive simulation and flight test facility for reliability and fault-tolerance research. An industry-standard reliability assessment technique, the failure modes and effects analysis, is performed for an unmanned aircraft. Particular attention is afforded to the control surface and servo-actuation subsystem. Maintaining effector health is essential for safe flight; failures may lead to loss of control incidents. Failure likelihood, severity, and risk are qualitatively assessed for several effector failure modes. Design changes are recommended to improve aircraft reliability based on this analysis. Most notably, the control surfaces are split, providing independent actuation and dual-redundancy. The simulation models for control surface aerodynamic effects are updated to reflect the split surfaces using a first-principles geometric analysis. The failure modes and effects analysis is extended by using a high-fidelity nonlinear aircraft simulation. A trim state discovery is performed to identify the achievable steady, wings-level flight envelope of the healthy and damaged vehicle. Tolerance of elevator actuator failures is studied using familiar tools from linear systems analysis. This analysis reveals significant inherent performance limitations for candidate adaptive/reconfigurable control algorithms used for the vehicle. Moreover, it demonstrates how these tools can be applied in a design feedback loop to make safety-critical unmanned systems more reliable. Control surface impairments that do occur must be quickly and accurately detected. This dissertation also considers fault detection and identification for an unmanned aerial vehicle using model-based and model-free approaches and applies those algorithms to experimental faulted and unfaulted flight test data. Flight tests are conducted with actuator faults that affect the plant input and sensor faults that affect the vehicle state measurements. A model-based detection strategy is designed and uses robust linear filtering methods to reject exogenous disturbances, e.g. wind, while providing robustness to model variation. A data-driven algorithm is developed to operate exclusively on raw flight test data without physical model knowledge. The fault detection and identification performance of these complementary but different methods is compared. Together, enhanced reliability assessment and multi-pronged fault detection and identification techniques can help to bring about the next generation of reliable low-cost unmanned aircraft.

  8. A methodology for the synthesis of robust feedback systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Milich, David Albert

    1988-01-01

    A new methodology is developed for the synthesis of linear, time-variant (LTI) controllers for multivariable LTI systems. The resulting closed-loop system is nominally stable and exhibits a known level of performance. In addition, robustness of the feedback system is guaranteed, i.e., stability and performance are retained in the presence of multiple unstructured uncertainty blocks located at various points in the feedback loop. The design technique is referred to as the Causality Recovery Methodology (CRM). The CRM relies on the Youla parameterization of all stabilizing compensators to ensure nominal stability of the feedback system. A frequency-domain inequality in terms of the structured singular value mu defines the robustness specification. The optimal compensator, with respect to the mu condition, is shown to be noncausal in general. The aim of the CRM is to find a stable, causal transfer function matrix that approximates the robustness characteristics of the optimal solution. The CRM, via a series of infinite-dimensional convex programs, produces a closed-loop system whose performance robustness is at least as good as that of any initial design. The algorithm is approximated by a finite dimensional process for the purposes of implementation. Two numerical examples confirm the potential viability of the CRM concept; however, the robustness improvement comes at the expense of increased computational burden and compensator complexity.

  9. Mapping Quantitative Traits in Unselected Families: Algorithms and Examples

    PubMed Central

    Dupuis, Josée; Shi, Jianxin; Manning, Alisa K.; Benjamin, Emelia J.; Meigs, James B.; Cupples, L. Adrienne; Siegmund, David

    2009-01-01

    Linkage analysis has been widely used to identify from family data genetic variants influencing quantitative traits. Common approaches have both strengths and limitations. Likelihood ratio tests typically computed in variance component analysis can accommodate large families but are highly sensitive to departure from normality assumptions. Regression-based approaches are more robust but their use has primarily been restricted to nuclear families. In this paper, we develop methods for mapping quantitative traits in moderately large pedigrees. Our methods are based on the score statistic which in contrast to the likelihood ratio statistic, can use nonparametric estimators of variability to achieve robustness of the false positive rate against departures from the hypothesized phenotypic model. Because the score statistic is easier to calculate than the likelihood ratio statistic, our basic mapping methods utilize relatively simple computer code that performs statistical analysis on output from any program that computes estimates of identity-by-descent. This simplicity also permits development and evaluation of methods to deal with multivariate and ordinal phenotypes, and with gene-gene and gene-environment interaction. We demonstrate our methods on simulated data and on fasting insulin, a quantitative trait measured in the Framingham Heart Study. PMID:19278016

  10. High-Alpha Research Vehicle Lateral-Directional Control Law Description, Analyses, and Simulation Results

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Murphy, Patrick C.; Lallman, Frederick J.; Hoffler, Keith D.; Bacon, Barton J.

    1998-01-01

    This report contains a description of a lateral-directional control law designed for the NASA High-Alpha Research Vehicle (HARV). The HARV is a F/A-18 aircraft modified to include a research flight computer, spin chute, and thrust-vectoring in the pitch and yaw axes. Two separate design tools, CRAFT and Pseudo Controls, were integrated to synthesize the lateral-directional control law. This report contains a description of the lateral-directional control law, analyses, and nonlinear simulation (batch and piloted) results. Linear analysis results include closed-loop eigenvalues, stability margins, robustness to changes in various plant parameters, and servo-elastic frequency responses. Step time responses from nonlinear batch simulation are presented and compared to design guidelines. Piloted simulation task scenarios, task guidelines, and pilot subjective ratings for the various maneuvers are discussed. Linear analysis shows that the control law meets the stability margin guidelines and is robust to stability and control parameter changes. Nonlinear batch simulation analysis shows the control law exhibits good performance and meets most of the design guidelines over the entire range of angle-of-attack. This control law (designated NASA-1A) was flight tested during the Summer of 1994 at NASA Dryden Flight Research Center.

  11. A texture analysis method for MR images of airway dilator muscles: a feasibility study

    PubMed Central

    Järnstedt, J; Sikiö, M; Viik, J; Dastidar, P; Peltomäki, T; Eskola, H

    2014-01-01

    Objectives: Airway dilator muscles play an important role in the analysis of breathing-related symptoms, such as obstructive sleep apnoea. Texture analysis (TA) provides a new non-invasive method for analysing airway dilator muscles. In this study, we propose a TA methodology for airway dilator muscles and prove the robustness of this method. Methods: 15 orthognathic surgery patients underwent 3-T MRI. Computerized TA was performed on 20 regions of interest (ROIs) in the patients' airway dilator muscles. 53 texture parameters were calculated for all ROIs. The robustness of the TA method was analysed by altering the locations, sizes and shapes of the ROIs. Results: Our study shows that there is significant difference in TA results as the size or shape of ROI changes. The change of location of the ROI inside the studied muscle does not affect the TA results. Conclusions: The TA method is valid for airway dilator muscles. We propose a methodology in which the number of co-occurrence parameters is reduced by using mean values from four different directions (0°, 45°, 90° and 135°) with pixel spacing of 1 pixel. PMID:24773626

  12. TopoMS: Comprehensive topological exploration for molecular and condensed-matter systems.

    PubMed

    Bhatia, Harsh; Gyulassy, Attila G; Lordi, Vincenzo; Pask, John E; Pascucci, Valerio; Bremer, Peer-Timo

    2018-06-15

    We introduce TopoMS, a computational tool enabling detailed topological analysis of molecular and condensed-matter systems, including the computation of atomic volumes and charges through the quantum theory of atoms in molecules, as well as the complete molecular graph. With roots in techniques from computational topology, and using a shared-memory parallel approach, TopoMS provides scalable, numerically robust, and topologically consistent analysis. TopoMS can be used as a command-line tool or with a GUI (graphical user interface), where the latter also enables an interactive exploration of the molecular graph. This paper presents algorithmic details of TopoMS and compares it with state-of-the-art tools: Bader charge analysis v1.0 (Arnaldsson et al., 01/11/17) and molecular graph extraction using Critic2 (Otero-de-la-Roza et al., Comput. Phys. Commun. 2014, 185, 1007). TopoMS not only combines the functionality of these individual codes but also demonstrates up to 4× performance gain on a standard laptop, faster convergence to fine-grid solution, robustness against lattice bias, and topological consistency. TopoMS is released publicly under BSD License. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  13. Uncertainties propagation and global sensitivity analysis of the frequency response function of piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Ruiz, Rafael O.; Meruane, Viviana

    2017-06-01

    The goal of this work is to describe a framework to propagate uncertainties in piezoelectric energy harvesters (PEHs). These uncertainties are related to the incomplete knowledge of the model parameters. The framework presented could be employed to conduct prior robust stochastic predictions. The prior analysis assumes a known probability density function for the uncertain variables and propagates the uncertainties to the output voltage. The framework is particularized to evaluate the behavior of the frequency response functions (FRFs) in PEHs, while its implementation is illustrated by the use of different unimorph and bimorph PEHs subjected to different scenarios: free of uncertainties, common uncertainties, and uncertainties as a product of imperfect clamping. The common variability associated with the PEH parameters are tabulated and reported. A global sensitivity analysis is conducted to identify the Sobol indices. Results indicate that the elastic modulus, density, and thickness of the piezoelectric layer are the most relevant parameters of the output variability. The importance of including the model parameter uncertainties in the estimation of the FRFs is revealed. In this sense, the present framework constitutes a powerful tool in the robust design and prediction of PEH performance.

  14. Bio-logic analysis of injury biomarker patterns in human serum samples.

    PubMed

    Zhou, Jian; Halámek, Jan; Bocharova, Vera; Wang, Joseph; Katz, Evgeny

    2011-01-15

    Digital biosensor systems analyzing biomarkers characteristic of liver injury (LI), soft tissue injury (STI) and abdominal trauma (ABT) were developed and optimized for their performance in serum solutions spiked with injury biomarkers in order to mimic real medical samples. The systems produced 'Alert'-type optical output signals in the form of "YES-NO" separated by a threshold value. The new approach aims at the reliable detection of injury biomarkers for making autonomous decisions towards timely therapeutic interventions, particularly in conditions when a hospital treatment is not possible. The enzyme-catalyzed reactions performing Boolean AND/NAND logic operations in the presence of different combinations of the injury biomarkers allowed high-fidelity biosensing. Robustness of the systems was confirmed by their operation in serum solutions, representing the first example of chemically performed logic analysis of biological fluids and a step closer towards practical biomedical applications of enzyme-logic bioassays. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Performance of Between-Study Heterogeneity Measures in the Cochrane Library.

    PubMed

    Ma, Xiaoyue; Lin, Lifeng; Qu, Zhiyong; Zhu, Motao; Chu, Haitao

    2018-05-29

    The growth in comparative effectiveness research and evidence-based medicine has increased attention to systematic reviews and meta-analyses. Meta-analysis synthesizes and contrasts evidence from multiple independent studies to improve statistical efficiency and reduce bias. Assessing heterogeneity is critical for performing a meta-analysis and interpreting results. As a widely used heterogeneity measure, the I statistic quantifies the proportion of total variation across studies that is due to real differences in effect size. The presence of outlying studies can seriously exaggerate the I statistic. Two alternative heterogeneity measures, the Ir and Im, have been recently proposed to reduce the impact of outlying studies. To evaluate these measures' performance empirically, we applied them to 20,599 meta-analyses in the Cochrane Library. We found that the Ir and Im have strong agreement with the I, while they are more robust than the I when outlying studies appear.

  16. The Importance of Specific Workplace Environment Characteristics for Maximum Health and Performance: Healthcare Workers' Perspective.

    PubMed

    Sagha Zadeh, Rana; Shepley, Mardelle M; Owora, Arthur Hamie; Dannenbaum, Martha C; Waggener, Laurie T; Chung, Susan Sung Eun

    2018-05-01

    To examine the importance of specific workplace environment characteristics for maximum health and performance, assigned by healthcare employees, and how they relate to the nature of their work. A cross-sectional mixed-method study was conducted with content analysis and robust regression models to examine the relationship between workplace environment characteristics and perceived importance in promoting health and performance. Our findings suggest that perceptions of key environment characteristics that safeguard health and performance in healthcare workplaces may vary by employee sex, setting, and nature of healthcare work involved. Theme and model descriptions of the influence of these factors on participant perceptions are provided. Employee feedback on workplace characteristics that impact health and performance could be instrumental in determining the priorities of workplace design.

  17. Validation of metabolomics analysis of human perilymph fluid using liquid chromatography-mass spectroscopy.

    PubMed

    Mavel, Sylvie; Lefèvre, Antoine; Bakhos, David; Dufour-Rainfray, Diane; Blasco, Hélène; Emond, Patrick

    2018-05-22

    Although there is some data from animal studies, the metabolome of inner ear fluid in humans remains unknown. Characterization of the metabolome of the perilymph would allow for better understanding of its role in auditory function and for identification of biomarkers that might allow prediction of response to therapeutics. There is a major technical challenge due to the small sample of perilymph fluid available for analysis (sub-microliter). The objectives of this study were to develop and validate a methodology for analysis of perilymph metabolome using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Due to the low availability of perilymph fluid; a methodological study was first performed using low volumes (0.8 μL) of cerebrospinal fluid (CSF) and optimized the LC-HRMS parameters using targeted and non-targeted metabolomics approaches. We obtained excellent parameters of reproducibility for about 100 metabolites. This methodology was then used to analyze perilymph fluid using two complementary chromatographic supports: reverse phase (RP-C18) and hydrophilic interaction liquid chromatography (HILIC). Both methods were highly robust and showed their complementarity, thus reinforcing the interest to combine these chromatographic supports. A fingerprinting was obtained from 98 robust metabolites (analytical variability <30%), where amino acids (e.g., asparagine, valine, glutamine, alanine, etc.), carboxylic acids and derivatives (e.g., lactate, carnitine, trigonelline, creatinine, etc.) were observed as first-order signals. This work lays the foundations of a robust analytical workflow for the exploration of the perilymph metabolome dedicated to the research of biomarkers for the diagnosis/prognosis of auditory pathologies. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Performance analysis of SS7 congestion controls under sustained overload

    NASA Astrophysics Data System (ADS)

    Manfield, David R.; Millsteed, Gregory K.; Zukerman, Moshe

    1994-04-01

    Congestion controls are a key factor in achieving the robust performance required of common channel signaling (CCS) networks in the face of partial network failures and extreme traffic loads, especially as networks become large and carry high traffic volume. The CCITT recommendations define a number of types of congestion control, and the parameters of the controls must be well set in order to ensure their efficacy under transient and sustained signalling network overload. The objective of this paper is to present a modeling approach to the determination of the network parameters that govern the performance of the SS7 congestion controls under sustained overload. Results of the investigation by simulation are presented and discussed.

  19. Performance evaluation of BPM system in SSRF using PCA method

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Chu; Leng, Yong-Bin; Yan, Ying-Bing; Yuan, Ren-Xian; Lai, Long-Wei

    2014-07-01

    The beam position monitor (BPM) system is of most importance in a light source. The capability of the BPM depends on the resolution of the system. The traditional standard deviation on the raw data method merely gives the upper limit of the resolution. Principal component analysis (PCA) had been introduced in the accelerator physics and it could be used to get rid of the actual signals. Beam related information was extracted before the evaluation of the BPM performance. A series of studies had been made in the Shanghai Synchrotron Radiation Facility (SSRF) and PCA was proved to be an effective and robust method in the performance evaluations of our BPM system.

  20. Assessment of flood susceptible areas using spatially explicit, probabilistic multi-criteria decision analysis

    NASA Astrophysics Data System (ADS)

    Tang, Zhongqian; Zhang, Hua; Yi, Shanzhen; Xiao, Yangfan

    2018-03-01

    GIS-based multi-criteria decision analysis (MCDA) is increasingly used to support flood risk assessment. However, conventional GIS-MCDA methods fail to adequately represent spatial variability and are accompanied with considerable uncertainty. It is, thus, important to incorporate spatial variability and uncertainty into GIS-based decision analysis procedures. This research develops a spatially explicit, probabilistic GIS-MCDA approach for the delineation of potentially flood susceptible areas. The approach integrates the probabilistic and the local ordered weighted averaging (OWA) methods via Monte Carlo simulation, to take into account the uncertainty related to criteria weights, spatial heterogeneity of preferences and the risk attitude of the analyst. The approach is applied to a pilot study for the Gucheng County, central China, heavily affected by the hazardous 2012 flood. A GIS database of six geomorphological and hydrometeorological factors for the evaluation of susceptibility was created. Moreover, uncertainty and sensitivity analysis were performed to investigate the robustness of the model. The results indicate that the ensemble method improves the robustness of the model outcomes with respect to variation in criteria weights and identifies which criteria weights are most responsible for the variability of model outcomes. Therefore, the proposed approach is an improvement over the conventional deterministic method and can provides a more rational, objective and unbiased tool for flood susceptibility evaluation.

Top